Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters, part II
Annales de l'Institut Henri Poincaré. C, Analyse non linéaire, Tome 20 (2003) no. 6, pp. 947-974
@article{AIHPC_2003__20_6_947_0,
     author = {Gazzola, Filippo and Peletier, Bert and Pucci, Patrizia and Serrin, James},
     title = {Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters, part {II}},
     journal = {Annales de l'Institut Henri Poincar\'e. C, Analyse non lin\'eaire},
     pages = {947--974},
     year = {2003},
     publisher = {Elsevier},
     volume = {20},
     number = {6},
     doi = {10.1016/S0294-1449(03)00013-1},
     mrnumber = {2008685},
     zbl = {1086.35041},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/S0294-1449(03)00013-1/}
}
TY  - JOUR
AU  - Gazzola, Filippo
AU  - Peletier, Bert
AU  - Pucci, Patrizia
AU  - Serrin, James
TI  - Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters, part II
JO  - Annales de l'Institut Henri Poincaré. C, Analyse non linéaire
PY  - 2003
SP  - 947
EP  - 974
VL  - 20
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/S0294-1449(03)00013-1/
DO  - 10.1016/S0294-1449(03)00013-1
LA  - en
ID  - AIHPC_2003__20_6_947_0
ER  - 
%0 Journal Article
%A Gazzola, Filippo
%A Peletier, Bert
%A Pucci, Patrizia
%A Serrin, James
%T Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters, part II
%J Annales de l'Institut Henri Poincaré. C, Analyse non linéaire
%D 2003
%P 947-974
%V 20
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/S0294-1449(03)00013-1/
%R 10.1016/S0294-1449(03)00013-1
%G en
%F AIHPC_2003__20_6_947_0
Gazzola, Filippo; Peletier, Bert; Pucci, Patrizia; Serrin, James. Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters, part II. Annales de l'Institut Henri Poincaré. C, Analyse non linéaire, Tome 20 (2003) no. 6, pp. 947-974. doi: 10.1016/S0294-1449(03)00013-1

[1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, Dover, 1972.

[2] Atkinson F.V., Peletier L.A., Ground states of −Δu=f(u) and the Emden-Fowler equation, Arch. Rational Mech. Anal. 93 (1986) 103-127. | Zbl

[3] Atkinson F.V., Peletier L.A., Elliptic equations with nearly critical growth, J. Differential Equations 70 (1987) 349-365. | Zbl | MR

[4] Berestycki H., Lions P.L., Nonlinear scalar field equations, I, Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983) 313-345. | Zbl | MR

[5] Brezis H., Peletier L.A., Asymptotics for elliptic equations involving critical exponents, in: Partial Differential Equations and Calculus of Variations, Birkhäuser, 1989, pp. 149-192. | Zbl | MR

[6] Franchi B., Lanconelli E., Serrin J., Existence and uniqueness of nonnegative solutions of quasilinear equations in Rn, Adv. Math. 118 (1996) 177-243. | Zbl | MR

[7] García Azorero J.P., Peral Alonso I., On limits of solutions of elliptic problems with nearly critical exponent, Comm. Part. Differential Equations 17 (1992) 2113-2126. | Zbl | MR

[8] Gazzola F., Critical growth quasilinear elliptic problems with shifting subcritical perturbation, Differential Integral Equations 14 (2001) 513-528. | Zbl | MR

[9] Gazzola F., Serrin J., Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters, Ann. Inst. H. Poincaré AN 19 (2002) 477-504. | Zbl | MR | Numdam

[10] Gazzola F., Serrin J., Tang M., Existence of ground states and free boundary problems for quasilinear elliptic operators, Adv. Differential Equations 5 (2000) 1-30. | Zbl | MR

[11] Knaap M.C., Peletier L.A., Quasilinear elliptic equations with nearly critical growth, Comm. Part. Differential Equations 14 (1989) 1351-1383. | Zbl | MR

[12] Ni W.M., Serrin J., Nonexistence theorems for quasilinear partial differential equations, Rend. Circolo Mat. Palermo (Centenary Supplement) Ser. II 8 (1985) 171-185. | Zbl | MR

[13] Ni W.M., Serrin J., Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. dei Lincei Atti dei Convegni 77 (1986) 231-257.

[14] Pucci P., Serrin J., A general variational identity, Indiana Univ. Math. J. 35 (1986) 681-703. | Zbl | MR

[15] Pucci P., Serrin J., Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J. 47 (1998) 501-528. | Zbl | MR

[16] Rey O., Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math. 65 (1989) 19-37. | Zbl | MR

[17] Rey O., The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52. | Zbl | MR

[18] Serrin J., Tang M., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 (2000) 897-923. | Zbl | MR

Cité par Sources :