@article{AIHPC_2000__17_2_169_0,
author = {Serre, Denis},
title = {Relaxations semi-lin\'eaire et cin\'etique des syst\`emes de lois de conservation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {169--192},
year = {2000},
publisher = {Gauthier-Villars},
volume = {17},
number = {2},
mrnumber = {1753092},
zbl = {0963.35117},
language = {fr},
url = {https://www.numdam.org/item/AIHPC_2000__17_2_169_0/}
}
TY - JOUR AU - Serre, Denis TI - Relaxations semi-linéaire et cinétique des systèmes de lois de conservation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 169 EP - 192 VL - 17 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_2000__17_2_169_0/ LA - fr ID - AIHPC_2000__17_2_169_0 ER -
Serre, Denis. Relaxations semi-linéaire et cinétique des systèmes de lois de conservation. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 2, pp. 169-192. https://www.numdam.org/item/AIHPC_2000__17_2_169_0/
[1] , , , A relaxation approximation to a moment hierarchy of conservation laws with kinetic formulation, Quaderno IAC 23 (1997).
[2] , , Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm. Pure Appl. Math. 46 (1994) 787-830. | Zbl | MR
[3] , , , Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 45 (1993) 755-781. | Zbl | MR
[4] , , , Positively invariant regions of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977) 373-392. | Zbl | MR
[5] , , Convergence of the relaxation approximation to a scalar nonlinear hyperbolic equation arising in chromatography, Z. Angew. Math. Phys. 47 (1996) 400-409. | Zbl | MR
[6] , Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal. 82 (1983) 27-70. | Zbl | MR
[7] , Existence and uniqueness of solutions for some hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal. 126 (1994) 79-101. | Zbl | MR
[8] , Invariant regions for systems of conservation laws, Trans. Amer. Math. Soc. 289 (1985) 591-610. | Zbl | MR
[9] , A convex entropy for a hyperbolic system with relaxation, J. Differential Equations 127 (1996) 95-107. | Zbl | MR
[10] , , The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995) 235-277. | Zbl | MR
[11] , , Stability and convergence of relaxation schemes towards systems of conservation laws, Soumis.
[12] , Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1987) 153-175. | Zbl | MR
[13] , L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q < 2, J. Math. Pures et Appl. 60 (1981) 309-322. | Zbl
[14] , Convergence to equilibrium for the relaxation approximation of conservation laws, Comm. Pure Appl. Math. 49 (1996) 795-823. | Zbl | MR
[15] , Recent results on hyperbolic relaxation problems, in: Analysis of Systems of Conervation Laws, Aachen, 1997, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., Vol. 99, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 128-197. | Zbl
[16] , A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws, J. Differential Equations 148 (2) (1998) 292-317. | Zbl | MR
[ 17] , The instant-response limit in Whitham's nonlinear traffic-flow model: uniform well-posedness, Asymptotic Anal. 1 (1988) 263-282. | Zbl | MR
[ 18] , Systèmes de Lois de Conservation, Diderot, Paris, 1996.
[19] , , Convergence with physical viscosity for nonlinear elasticity, Preprint éternel, Lyon, 1993.
[20] , Global existence and compactness in LP for the quasi-linear wave equation, Comm. Partial Differential Equations 19 (1994) 1829-1877. | Zbl | MR
[21] , Compensated compactness and applications to partial differential equations, in: Knops R.J. (Ed.), Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Research Notes in Math., Vol. 39, Pitman, Londres, 1979, pp. 136-192. | Zbl | MR
[22] , , On the rate of convergence to equilibrium for a system of conservation laws with a relaxation term, SIAM J. Math. Anal.28 (1997) 136- 161. | Zbl | MR
[23] , Materials with internal variables and relaxation to conservation laws, Preprint, Madison, 1998. | MR
[24] , Linear and Non-Linear Waves, Wiley, New York, 1974. | Zbl





