@article{AIHPA_1991__54_2_199_0,
author = {Vodev, G.},
title = {Polynomial bounds on the number of scattering poles for symmetric systems},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {199--208},
year = {1991},
publisher = {Gauthier-Villars},
volume = {54},
number = {2},
mrnumber = {1110652},
zbl = {0816.35101},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1991__54_2_199_0/}
}
TY - JOUR AU - Vodev, G. TI - Polynomial bounds on the number of scattering poles for symmetric systems JO - Annales de l'I.H.P. Physique théorique PY - 1991 SP - 199 EP - 208 VL - 54 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1991__54_2_199_0/ LA - en ID - AIHPA_1991__54_2_199_0 ER -
Vodev, G. Polynomial bounds on the number of scattering poles for symmetric systems. Annales de l'I.H.P. Physique théorique, Tome 54 (1991) no. 2, pp. 199-208. https://www.numdam.org/item/AIHPA_1991__54_2_199_0/
[1] , and , La relation de Poisson pour l'équation des ondes dans un ouvert non borné application à la théorie de la diffusion, Comm. Partial Diff. Eq., T. 7, 1982, pp. 905-958. | Zbl | MR
[2] , The Analysis of Linear Partial Differential Operators I, Springer Verlag, Berlin, 1983. | Zbl
[3] , A Polynomial Bound on the Number of Scattering Poles for a Potential in Even Dimensional Space Rn, Comm. Partial Diff. Eq., T. 11, 1986, pp. 367-396. | Zbl | MR
[4] , On the Value Distribution of the Scattering Poles Associated to the Schrödinger Operator H = (- iV+b(x))2+α(x) in Rn, n≧3, preprint.
[5] and , Scattering Theory, Academic Press, 1967. | Zbl | MR
[6] , Polynomial Bounds on the Number of Scattering Poles, J. Funct. Anal., T. 53, 1983, pp. 287-303. | Zbl | MR
[7] , Polynomial Bounds on the Distribution of Poles in Scattering by an Obstacle, Journées « Equations aux Dérivées Partielles », Saint-Jean-de-Monts, 1984. | Zbl | Numdam
[8] , Weyl Asymptotics for the Phase in Obstacle Scattering, Comm. Partial Diff. Eq., T. 13, 1988, pp. 1431-1439. | Zbl | MR
[9] , The Theory of Functions, Oxford University Press, 1968.
[10] , Polynomial Bounds on the Number of Scattering Poles for Metric Perturbations of the Laplacian in Rn, n≧3, Odd, Osaka J. Math. (to appear). | Zbl | MR
[11] , Sharp Polynomial Bounds on the Number of Scattering Poles for Metric Perturbations of the Laplacian in Rn, preprint.
[12] , Distribution of Poles for Scattering on the Real Line, J. Funct. Anal., T. 73, 1987, pp. 277-296. | Zbl | MR
[13] , Sharp Polynomial Bounds on the Number of Scattering Poles of Radial Potentials, J. Funct. Anal., T. 82, 1989, pp. 370-403. | Zbl | MR
[14] , Sharp Polynomial Bounds on the Number of Scattering Poles, Duke Math. J., T. 59, 1989, pp. 311-323. | Zbl | MR





