We study the basic algebraic properties of a 3-variable Tutte polynomial the author has associated with a morphism of matroids, more precisely with a matroid strong map, or matroid perspective in the present paper, or, equivalently by the Factorization Theorem, with a matroid together with a distinguished subset of elements. Most algebraic properties of the usual 2-variable Tutte polynomial of a matroid generalize to the 3-variable polynomial. Among specific properties we show that the 3-variable Tutte polynomial of a matroid pointed by a normal subset can be used to abridge the computation of the 2-variable Tutte polynomial of , and that the 3-variable Tutte polynomial of a matroid perspective is computationally equivalent to the two-variable Tutte polynomials of the matroids of its Higgs factorization.
On étudie les propriétés algébriques fondamentales d’un polynôme de Tutte à 3 variables que l’auteur a associé à un morphisme de matroïdes - plus précisément à un morphisme fort, ou perspective dans le présent article, ou encore, de façon équivalente d’après le Théorème de Factorisation, à un matroïde muni d’un sous-ensemble distingué d’éléments. La plupart des propriétés algébriques du polynôme de Tutte habituel à 2 variables se généralisent au polynôme à 3 variables. Parmi les propriétés spécifiques on montre que le polynôme à 3 variables d’un matroïde pointé par un sous-ensemble normal peut être utilisé pour raccourcir le calcul du polynôme de Tutte (à 2 variables) de , et que le polynôme de Tutte à 3 variables d’une perspective de matroïdes est équivalent pour le calcul aux polynômes de Tutte à 2 variables des matroïdes de sa factorisation de Higgs.
@article{AIF_1999__49_3_973_0,
author = {Las Vergnas, Michel},
title = {The {Tutte} polynomial of a morphism of matroids {I.} {Set-pointed} matroids and matroid perspectives},
journal = {Annales de l'Institut Fourier},
pages = {973--1015},
year = {1999},
publisher = {Association des Annales de l'Institut Fourier},
volume = {49},
number = {3},
doi = {10.5802/aif.1702},
mrnumber = {2000f:05024},
zbl = {0917.05019},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1702/}
}
TY - JOUR AU - Las Vergnas, Michel TI - The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives JO - Annales de l'Institut Fourier PY - 1999 SP - 973 EP - 1015 VL - 49 IS - 3 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1702/ DO - 10.5802/aif.1702 LA - en ID - AIF_1999__49_3_973_0 ER -
%0 Journal Article %A Las Vergnas, Michel %T The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives %J Annales de l'Institut Fourier %D 1999 %P 973-1015 %V 49 %N 3 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1702/ %R 10.5802/aif.1702 %G en %F AIF_1999__49_3_973_0
Las Vergnas, Michel. The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives. Annales de l'Institut Fourier, Tome 49 (1999) no. 3, pp. 973-1015. doi: 10.5802/aif.1702
[1] , Combinatorial Theory, Springer, 1979. | Zbl | MR
[2] , , , On the Martin and Tutte polynomial, J. Combinatorial Theory, ser.B, to appear (26 p.).
[3] , A decomposition for combinatorial geometries, Trans. Amer. Math. Soc., 171 (1972), 235-282. | Zbl | MR
[4] , Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc., 203 (1975), 1-44. | Zbl | MR
[5] , A combinatorial perspective on the Radon convexity theorem, Geometriæ Dedicata, 5 (1976), 459-466. | Zbl | MR
[6] , The broken-circuit complex, Trans. Amer. Math. Soc., 234 (1977), 417-433. | Zbl | MR
[7] , , Uniquely representable combinatorial geometries, Teorie Combinatorie (vol. 1), B. Serge ed., Accademia Nazionale dei Lincei, Roma, 1976, 83-108. | Zbl
[8] , , The Tutte polynomial and its applications, chapter 6 in : White N. (ed.), Matroid Applications, Cambridge University Press, 1992. | Zbl | MR
[9] , The Tutte polynomial of a ported matroid, J. Combinatorial Theory, ser. B, 46 (1989), 96-117. | Zbl | MR
[10] , , , Euler's relation, Möbius functions, and matroid identities, Geometriæ Dedicata, 12 (1982), 147-162. | Zbl | MR
[11] , A higher invariant for matroids, J. Combinatorial Theory, 2 (1967), 406-416. | Zbl | MR
[12] , Möbius inversions in lattices, Arch. Math. (Basel), 19 (1968), 595-607. | Zbl | MR
[13] , The Tutte polynomial, Aequationes Mathematicæ, 3 (1969), 211-229. | Zbl | MR
[14] , , The Tutte polynomial of a morphism of matroids, III. Vectorial matroids, 19 pp., J. Combinatorial Theory, ser. B, to appear.
[15] , , On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions and orientations of graphs, Trans. Amer. Math. Soc., 280 (1983), 97-126. | Zbl | MR
[16] , On Tutte polynomials of matroids representable over GF(q), European J. Combinatorics, 10 (1989), 247-255. | Zbl | MR
[17] , Matroïdes orientables, C.R. Acad. Sci. Paris, sér. A, 280 (1975), 61-64. | Zbl | MR
[18] , Sur les extensions principales d'un matroïde C.R. Acad. Sci. Paris, sér. A, 280 (1975), 187-190. | Zbl | MR
[19] , Extensions normales d'un matroïde, polynôme de Tutte d'un morphisme, C.R. Acad. Sci. Paris, sér. A, 280 (1975), 1479-1482. | Zbl | MR
[20] , Acyclic and totally cyclic orientations of combinatorial geometries, Discrete Mathematics, 20 (1977), 51-61. | Zbl | MR
[21] , Convexity in oriented matroids, J. Combinatorial Theory, ser. B, 29 (1980), 231-243. | Zbl | MR
[22] , On the Tutte polynomial of a morphism of matroid, Annals Discrete Mathematics, 8 (1980), 7-20. | Zbl | MR
[23] , Eulerian circuits of 4-valent graphs imbedded in surfaces, in: L. Lovász & V. Sós (eds.), Algebraic Methods in Graph Theory, North-Holland, 1981, 451-478. | Zbl | MR
[24] , The Tutte polynomial of a morphism of matroids, II. Activities of orientations, in: J.A. Bondy & U.S.R. Murty (eds.), Progress in Graph Theory, Academic Press, 1984, 367-380. | Zbl | MR
[25] , On the foundations of combinatorial theory. I: Theory of Möbius functions, Z. für Wahrscheinlichkeitstheorie und verw. Gebiete, 2 (1964), 340-368. | Zbl | MR
[26] , Modular elements of geometric lattices, Algebra Universalis, 1 (1971), 214-217. | Zbl | MR
[27] , Acyclic orientations of graphs, Discrete Mathematics, 5 (1973), 171-178. | Zbl | MR
[28] , A contribution to the theory of dichromatic polynomials, Canadian J. Math., 6 (1954), 80-91. | Zbl | MR
[29] , The dichromatic polynomial, Proc. Fifth Bristish Combinatorial Conference (Aberdeen 1975), Utilitas Math., Winnipeg 1976, 605-635. | Zbl | MR
[30] (ed.), Theory of Matroids, Cambridge University Press, 1986. | Zbl | MR
[31] , Facing up to arrangements: face-count formulas for partitions of spaces by hyperplanes, Memoirs Amer. Math. Soc., 154 (1975). | Zbl | MR
Cité par Sources :






