A Boolean algebra has the interpolation property (property (I)) if given sequences , in with for all , there exists an element in such that for all . Let denote an algebra with the property (I). It is shown that if ( a Banach space) is a sequence of strongly additive measures such that exists for each , then defines a strongly additive map from to and the are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive -valued measures defined on is derived from the Nikodym boundedness theorem. A proof of the VHS theorem for group-valued measures is given.
Une algèbre booléenne possède la propriété (I) si étant données les suites dans avec pour tout , il existe un élément de tel que pour tout . Soit une algèbre ayant la propriété (I). On démontre que si ( un espace de Banach ) est une suite de mesures fortement additives telle que existe pour chaque , alors définit une mesure fortement additive et les sont uniformément fortement additives. Le théorème de Vitali-Hahn-Saks (VHS) pour des mesures fortement additives dans un espace Banach est déduit du théorème de Nikodym. Une preuve du théorème (VHS) pour des mesures à valeurs dans un groupe est donnée.
@article{AIF_1976__26_4_99_0,
author = {Faires, Barbara T.},
title = {On {Vitali-Hahn-Saks-Nikodym} type theorems},
journal = {Annales de l'Institut Fourier},
pages = {99--114},
year = {1976},
publisher = {Imprimerie Durand},
address = {Chartres},
volume = {26},
number = {4},
doi = {10.5802/aif.633},
mrnumber = {56 #572},
zbl = {0309.46041},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.633/}
}
TY - JOUR AU - Faires, Barbara T. TI - On Vitali-Hahn-Saks-Nikodym type theorems JO - Annales de l'Institut Fourier PY - 1976 SP - 99 EP - 114 VL - 26 IS - 4 PB - Imprimerie Durand PP - Chartres UR - https://www.numdam.org/articles/10.5802/aif.633/ DO - 10.5802/aif.633 LA - en ID - AIF_1976__26_4_99_0 ER -
Faires, Barbara T. On Vitali-Hahn-Saks-Nikodym type theorems. Annales de l'Institut Fourier, Tome 26 (1976) no. 4, pp. 99-114. doi: 10.5802/aif.633
[1] , Convergent sequences of finitely additive measures, Pacific J. Math., 11 (1961), 395-404. | Zbl | MR
[2] and , On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151-164. | Zbl | MR
[3] and , On finitely additive vector measures, Proc. Nat. Acad. Sci., U.S.A., 67 (1970), 1294-1298. | Zbl | MR
[4] , The Vitali-Hahn-Saks and Nikodym theorems for additive set functions, Bull. Amer. Math. Soc., 76 (1970), 1297-1298. | Zbl | MR
[5] , The Vitali-Hahn-Saks and Nikodym theorems, Bull. Amer. Math. Soc., 79 (1973), 758-760. | Zbl | MR
[6] , Applications of weak compactness and bases to vector measures and vectoriel integration, Revue Roum. Math., 18 (1973), 211-224. | Zbl | MR
[7] , Grothendieck spaces and vector measures, Vector and Operator Valued Measures and Applications, Academic Press, New York, 1973, 97-108. | Zbl | MR
[8] and , On vector measures, Trans. Amer. Math. Soc., 198 (1974), 253-271. | Zbl | MR
[9] , and , Convergence and boundedness of measures on non-sigma complete algebras, preprint.
[10] and , Vector measures, Notes prepared at Kent State University and the University of Illinois, 1973.
[11] , Topological rings of sets, continuous set functions, integration II, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astronom. et Phys., 20 (1972), 277-286. | Zbl
[12] and , Linear Operators, Part I, Interscience, New York, 1958. | Zbl | MR
[13] , Criteria of compactness in function spaces, Amer. J. Math., 74 (1952), 168-186. | Zbl
[14] , Über Folgen linearer Operationen, Monatsh. für Math. und Physik, 32 (1922), 3-88. | JFM
[15] , Sur les familles bornées de fonctions parfaitement additives d'ensemble abstrait, Monatsh. für Math. und Physik, 40 (1933), 418-426. | Zbl | JFM
[16] , Sur les suites convergentes de fonctions parfaitement additives d'ensemble abstrait, Monatsh, für Math. und Physik, 40 (1933), 427-432. | Zbl | JFM
[17] , Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astr. et Phys., 10 (1962), 641-648. | Zbl | MR
[18] , Decomposition of additive set functions, Duke Math. J., 10 (1943), 653-665. | Zbl | MR
[19] , On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math., 37 (1970), 13-36. | Zbl | MR
[20] , Addition to the note on some functionals, Trans. Amer. Math. Soc., 35 (1933), 967-974. | Zbl | MR | JFM
[21] , Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267-280. | Zbl | MR
[22] ., Applications of a lemma of Rosenthal to vector measures and series in Banach spaces, Preprint.
[23] , Sull'integrazione per serie, Rend. del Circolo Mat. di Palermo, 23 (1907), 137-155. | JFM
[24] , On Vitali-Hahn-Saks Type Theorems, Bull. Amer. Math. Soc., 80 (1974), 670-674. | Zbl | MR
Cité par Sources :





