Convergence on almost every line for functions with gradient in
Annales de l'Institut Fourier, Tome 24 (1974) no. 3, pp. 159-164
We prove that if for certain values of , then
On démontre que si pour certaines valeurs de , alors
@article{AIF_1974__24_3_159_0,
author = {Fefferman, Charles},
title = {Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$},
journal = {Annales de l'Institut Fourier},
pages = {159--164},
year = {1974},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {24},
number = {3},
doi = {10.5802/aif.523},
mrnumber = {52 #11574},
zbl = {0292.26013},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.523/}
}
TY - JOUR
AU - Fefferman, Charles
TI - Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$
JO - Annales de l'Institut Fourier
PY - 1974
SP - 159
EP - 164
VL - 24
IS - 3
PB - Institut Fourier
PP - Grenoble
UR - https://www.numdam.org/articles/10.5802/aif.523/
DO - 10.5802/aif.523
LA - en
ID - AIF_1974__24_3_159_0
ER -
%0 Journal Article
%A Fefferman, Charles
%T Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$
%J Annales de l'Institut Fourier
%D 1974
%P 159-164
%V 24
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.523/
%R 10.5802/aif.523
%G en
%F AIF_1974__24_3_159_0
Fefferman, Charles. Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$. Annales de l'Institut Fourier, Tome 24 (1974) no. 3, pp. 159-164. doi: 10.5802/aif.523
[1] , Svoǐctba graničnyh značeniǐ funkciǐ iz vesovyh prostranctv i ih priloženija k kraevym zadačam. Mehanika Splošnoǐ sredy i rodstvennye problemy analiza. Moskva 1972.
[2] , O teoremah vloženija dlja vesovyh klassov, Trudi Mat. Instta AN SSSR, 60 (1961), 282-303.
[3] , Doklady AN SSSR, to appear.
Cité par Sources :






