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Abstract
In this work, we propose an adaptive variation on the classical Heavy-ball method for convex quadratic minimization.
The adaptivity crucially relies on so-called “Polyak step-sizes”, which consists of using the knowledge of the optimal value
of the optimization problem at hand instead of problem parameters such as a few eigenvalues of the Hessian of the
problem. This method happens to also be equivalent to a variation of the classical conjugate gradient method, and
thereby inherits many of its attractive features, including its finite-time convergence, instance optimality, and its
worst-case convergence rates.

The classical gradient method with Polyak step-sizes is known to behave very well in situations in which it can be
used, and the question of whether incorporating momentum in this method is possible and can improve the method itself
appeared to be open. We provide a definitive answer to this question for minimizing convex quadratic functions, an
arguably necessary first step for developing such methods in more general setups.
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1 Introduction

Consider the convex quadratic minimization problem in the form

min
x∈Rd

{
f(x) ≜ 1

2 ⟨x, Hx⟩ + ⟨h, x⟩ ≜ 1
2 ⟨x − x⋆, H(x − x⋆)⟩ + f⋆

}
(1)

where H ≽ 0 is a symmetric positive semi-definite matrix, and we denote f⋆ the minimum value of f . In the
context of large-scale optimization (i.e. d ≫ 1), we are often interested in using first-order iterative methods
for solving (1). There are many known and celebrated iterative methods for solving such quadratic problems,
such as the Gradient descent and the Heavy-ball methods (a.k.a., Polyak momentum methods), including the
Chebyshev and the conjugate gradient methods (see [22, Chapter 3]). Each of those methods having different
specifications, the choice of the method largely depends on the application at hand. In particular, a typical
drawback of momentum-based methods is that they generally require the knowledge of some problem parameters
(such as extreme values of the spectrum of H). This problem is typically not as critical for simpler Gradient
descent schemes with no momentum, although it generally still requires some knowledge on problem parameters
if we want to avoid using linesearch-based strategies. This limitation motivates the search for adaptive strategies,
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2 Quadratic minimization: Heavy-ball method with Polyak step-sizes

Figure 1 Comparison in semi-log scale over 50 iterations of different first-order methods applied on
a 25-dimensional quadratic objective with condition number 10. GD with constant step-size, GD with
Polyak step-size and GD with variant of Polyak step-size refer to the GD method tuned respectively
with the step-size γ = 2/(L + µ), γt = (f(xt) − f⋆)/∥∇f(xt)∥2 and γt = 2(f(xt) − f⋆)/∥∇f(xt)∥2. HB
with constant tuning is the HB method tuned with constant parameters γt = (2/(

√
L + √

µ))2 and
mt = ((

√
L − √

µ)(
√

L + √
µ))2 while HB with Polyak step-size based tuning refers to Algorithm 1.

fixing the step-sizes using past observations about the problem at hand. In the context of (sub)gradient method, a
famous adaptive strategy is the so-called Polyak step-size, which relies on the knowledge of the optimal value f⋆:

xt+1 = xt − γt∇f(xt), with γt = f(xt) − f⋆

∥∇f(xt)∥2 . (2)

Polyak steps were originally proposed in [22] for nonsmooth convex minimization; a few variants are proposed
by, e.g., [2, 12, 15] including for stochastic minimization. Regarding speed, this strategy (and variants) enjoy
similar theoretical convergence properties as those for Gradient descent. This method appears to perform quite
well in applications where f⋆ can be efficiently estimated (see, e.g., [14] for an adaptation of the method for
estimating it online). Therefore, a remaining open question in this context is whether the performance of this
method can be improved by incorporating momentum in it. A first answer to this question was provided by [2],
although it is not clear that it can match the same convergence properties as optimal first-order methods. In
this work, we answer this question for the class of quadratic problems. In short, it turns out that the following
conjugate gradient-like iterative procedure

xt+1 = arg min
x

{
∥x − x⋆∥2 s.t. x ∈ x0 + span{∇f(x0), ∇f(x1), . . . , ∇f(xt)}

}
, (3)

can be rewritten exactly as a Heavy-ball type method whose parameters are chosen adaptively using the value
of f⋆. This might come as a surprise, as the iteration (3) might seem impractical due to its formulation relying
on the knowledge of x⋆. More precisely, (3) is exactly equivalent to:

xt+1 = xt − (1 + mt)ht∇f(xt) + mt(xt − xt−1), (4)

with parameters

∀ t ⩾ 0, ht ≜
2(f(xt) − f⋆)

∥∇f(xt)∥2 , (5)

m0 ≜ 0 and ∀ t ⩾ 1, mt ≜
−(f(xt) − f⋆)⟨∇f(xt), ∇f(xt−1)⟩

(f(xt−1) − f⋆)∥∇f(xt)∥2 + (f(xt) − f⋆)⟨∇f(xt), ∇f(xt−1)⟩ . (6)

In (4), mt corresponds to the momentum coefficient and ht to a step-size (see Theorem 4 for a discussion
about this choice of parametrization). With the tuning of (5), this step-size is twice the Polyak step-size in (2).
This Heavy-ball momentum method with Polyak step-sizes is summarized in Algorithm 1 and illustrated in
Figure 1. Due to its equivalence with (3), the Heavy-ball method (4) inherits nice advantageous properties of
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Algorithm 1 Adaptive Heavy-ball algorithm

Input T , f⋆ and routines to evaluate f : x 7→ f(x) ≜ 1
2 ⟨x − x⋆, H(x − x⋆)⟩ + f⋆ and

∇f : x 7→ ∇f(x) = H(x − x⋆).
Initialize x0 ∈ Rd, m0 = 0
for t = 0 · · · T − 1 do

ht = 2(f(xt)−f⋆)
∥∇f(xt)∥2

xt+1 = xt − (1 + mt)ht∇f(xt) + mt(xt − xt−1)
mt+1 = −(f(xt+1)−f⋆)⟨∇f(xt+1),∇f(xt)⟩

(f(xt)−f⋆)∥∇f(xt+1)∥2+(f(xt+1)−f⋆)⟨∇f(xt+1),∇f(xt)⟩
end
Result: xT

conjugate gradient-type methods, including:
i. finite-time convergence: the problem (1) is solved exactly after at most d iterations,
ii. instance optimality: for all H ≽ 0, no first-order method satisfying xt+1 ∈ x0 + span{∇f(x0), . . . , ∇f(xt)}

results in a smaller ∥xt − x⋆∥,
iii. it inherits optimal worst-case convergence rates on quadratic functions.
Of course, a few of those points need to be nuanced in practice due to finite precision arithmetic. The equivalence
between (3) and (4) is formally stated in the following theorem.

Theorem 1. Let (xt)t∈N be the sequence defined by the recursion (3), namely such that for any t, xt+1 is the
Euclidean projection of x⋆ onto the affine subspace x0 + span{∇f(x0), ∇f(x1), . . . , ∇f(xt)}. Then (xt)t∈N is the
sequence generated by Algorithm 1.

Theorem 1 turns out to be a particular case of a more general result stating that the iterates of any conjugate
gradient-type method described with a polynomial Q as

xt+1 = arg min
x

{⟨x − x⋆, Q(H)(x − x⋆)⟩ s.t. x ∈ x0 + span{∇f(x0), . . . , ∇f(xt)}} , (Q-minimization)

are equivalently written in terms of an adaptive Heavy-ball iteration. In particular, (3) corresponds to equa-
tion (Q-minimization) with Q(x) = 1. Similarly, classical conjugate gradient method corresponds to equa-
tion (Q-minimization) with Q(x) = x (this fact is quite famous, see, e.g., [19]). We were surprised not to find
this general result written as is in the literature, and we therefore provide it in Section 2. The key point of this
work is that the equivalent Heavy-ball reformulation of (3) can be written in terms of f⋆, thereby obtaining a
momentum-based Polyak step-size.

Notations

We denote ≼ the order between symmetric matrices; SpH the spectrum of the matrix H, namely its set of
eigenvalues; Rd[X] the set of polynomials with degree at most d.

1.1 Preliminary material
Worst-case optimality

Solving (1) is a very important problem and several methods have been proposed to achieve this goal. They
are compared with each other through notions of performance. This consists of evaluating the precision of
an algorithm over the functions of a given class after a given number T of iterations. The main framework is
worst-case analysis and the precision is the value of a given metric, e.g. the distance of the last iterate to the
optimizer ∥xT − x⋆∥, the function value of the last iterate f(xT ) − f(x⋆), or its gradient norm ∥∇f(xT )∥. The
worst-case analysis framework consists of finding the guarantees of a method that hold for each and every function
of a given class. For instance, the class of L-smooth µ-strongly convex quadratic functions described as quadratic
functions verifying µI ≼ H ≼ LI for given 0 < µ ⩽ L. The Gradient descent (GD) method characterized by the
update

xt+1 = xt − γt∇f(xt) (7)
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therefore verifies ∥xt − x⋆∥ = O((L−µ
L+µ )t) on all such functions for γt = 2

L+µ . Thanks to a relationship with
polynomial analysis, [9] proved that the Chebyshev method, described as

xt+1 = xt − γt∇f(xt) + mt(xt − xt−1), (8)

for a well chosen tuning of the parameters γt and mt (mt =
( √

L−√
µ√

L+√
µ

)2 1+((
√

L−√
µ)/(

√
L+√

µ))2(t−1)

1+((
√

L−√
µ)/(

√
L+√

µ))2(t+1) , γt =
2

L+µ (1 + mt)), is worst-case optimal on this class of function, achieving the guarantee ∥xt − x⋆∥ = O
(( √

L−√
µ√

L+√
µ

)t)
(often referred to as “acceleration”). Methods based on this two-term recursion are called “Heavy-ball” or
“Polyak momentum” [21]. In particular, the stationary regime of the Chebyshev method is the Heavy-ball (HB)
method tuned with mt =

( √
L−√

µ√
L+√

µ

)2 and γt = 2
L+µ (1 + mt) =

( 2√
L+√

µ

)2 and achieves the worst-case guarantee

∥xt − x⋆∥ = O
(
t
( 1−

√
κ

1+
√

κ

)t), close to the optimal one achieved by the Chebyshev method. Note that (8) is another
formulation of (4) where γt = (1 + mt)ht. In all the aforementioned tuning, ht has the same value: ht = 2

L+µ

(see Theorem 4 for more detailed discussion on this).

Span of gradients and Krylov subspaces

All methods described above can be defined using a recursion:

xt = x0 −
t−1∑
i=0

γ
(t)
i ∇f(xi) (9)

for some sequence (γ(t)
i )i∈[[0,t−1]]. Note that the recursion (9) can also be explicitly written as xt = x0 −

H
∑t−1

i=0 γ
(t)
i xi, and therefore, xt −x0 ∈ Hspan({xi}i∈[[0,t−1]]). We deduce by recursion that xt −x0 ∈ HKt(H, x0)

where Kt(H, x0) ≜ span({Hix0}i∈[[0,t−1]]) is called order-t Krylov subspace generated by H and x0. This creates
a link between first-order algorithms and polynomials, summarized in the following lemma (which is implicitly
used in [9] and formally stated, e.g., in [10, Proposition 4.1]).

Lemma 2. Let f be quadratic convex (1). The iterates xt satisfy

xt ∈ x0 + span{∇f(x0), . . . , ∇f(xt−1)} , (10)

where x0 is the initial approximation of x⋆, if and only if there exists a sequence of polynomials (Pt)t∈N, each of
degree at most 1 more than the highest degree of all previous polynomials and P0 of degree 0 (hence the degree of
Pt is at most t), such that

∀ t, xt − x⋆ = Pt(H)(x0 − x⋆), Pt(0) = 1 . (11)

Similar to the way we use this technique below, this lemma has already been extensively used to design
methods; see, e.g., [6, Chapter 1] or the blog post by [20] for gentle introductions to this technique. For instance,
we can use this technique for optimizing the step-size of the gradient method, or to derive the Chebyshev method,
which optimizes the worst-case on the class of smooth and strongly convex quadratic functions (see [8]). More
recently, [10] used it to derive a method that can take advantage of a possible gap in the spectrum of H. This
approach has also been used for other applications such as accelerated gossip algorithms [4].

Adaptive methods

In Theorem 2, while Pt(H) is a polynomial evaluated on the matrix H, its scalar coefficients might or might not
depend on H. If they depend on H, we say that the associated method is adaptive. Non-adaptive methods suffer
from two main drawbacks: (i) they use the same parameters for all the functions within the class of problems, not
taking advantage of the observed quantities; (ii) the underlying parameters must scale with the function class
parameters, and therefore depend on the values of L and µ, which are generally difficult to estimate (and actually
do not correspond to first-order information, as they rely on the Hessian of the function at hand). Ultimately,
adaptive methods aim at solving those issues by choosing parameters (step-size, momentum, etc.) on the fly.
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Polyak steps

It is straightforward that a Gradient descent update verifies on any convex function f that ∥xt+1 − x⋆∥2 ⩽
∥xt −x⋆∥2 −2γt(f −f⋆)+γ2

t ∥∇f(xt)∥2. [22] argues that, based on this inequality, the best-guaranteed progression
is then achieved for γt = f(xt)−f⋆

∥∇f(xt)∥2 . This choice is called “Polyak step-size” and has been studied intensively
even recently [12, 15]. Other variants of the latter have been proposed. For instance [2, Variant 1] suggested the
step-size γt = 2 f(xt)−f⋆

∥∇f(xt)∥2 . This also optimizes the exact progress of one Gradient descent update over quadratics
realizing a projection of xt − x⋆ over the orthogonal subspace of ∇f(xt). Therefore, the Polyak step-size strategy
applied to the Gradient descent method achieves the same worst-case guarantee of the well-tuned fixed step-size
Gradient descent method, while not relying on Hessian information. Moreover, due to its adaptivity to each
function, and since generic functions do not look like worst-cases, the Polyak step-size strategy applied to the
Gradient descent method performs very well in practice (See Figure 1 and [2, Figure 1]), sometimes even beating
the well-tuned non-adaptive Heavy-ball method even if the worst-case guarantees are sorted in a different order.

Instance-optimality

While optimal worst-case methods of the form of (9) have been found with predetermined parameters, it would
be better to find a method under the form of (9) that is optimal (for some performance metric), not only on
worst-case analysis, but on each function individually, taking advantage of the adaptivity of the parameters. The
well-known conjugate gradient method achieves this goal when the performance metric is the function value of
the last iterate. The MinRes method attacks the problem minimizing the gradient norm of the last iterate.

Contributions

In this work, we derive iterative methods in the form of (9) (which iterates lie in the span of previously observed
gradients) that are instance-optimal for a variety of performance metrics. All those methods updates are variations
of the Heavy-ball two-term recursion (8) with only parameters γt and mt changing from one method to another.
Finally, we show (see Theorem 1) that for a well-chosen yet classical performance metric, this associated method
Algorithm 1 is not relying on second-order information at all (not even L and µ). Instead, it uses a classical
variant of the Polyak step-size 2(f(xt)−f⋆)

∥∇f(xt)∥2 , providing an answer to the question “Can we accelerate methods with
Polyak step-size?”.

1.2 Related works
Polyak step-sizes were proposed in [22]. Despite the dependency on f⋆, the Polyak step-size is more studied
theoretically and used in practice due to its efficiency when applied to real-world problems. Recent works
(e.g. [7, 15]) argue that this dependency is not a practical issue for many problems which we can assume
verify f⋆ = 0 (see Section 3). A few variants of the Polyak step-size strategy were proposed by [2], including
a version incorporating a Nesterov-type momentum [17], achieving a worst-case guarantee of ∥xt − x⋆∥2 =
O((1 − 2(µ/L)2/3)2t) over the class of (non-necessarily quadratic) L-smooth µ-strongly convex functions, thereby
improving over previous works on adaptive first-order methods. However, the proposed method does not allow
to remove the dependency on L and does not achieve the black-box complexity of smooth strongly convex
minimization [18]. In [15], the authors study the stochastic Polyak step-size, whereas [7] applies it to Mirror
descent.

Many alternative adaptive methods have been proposed in the past. Among them, let us mention [3] which
introduced the so-called Barzilai–Borwein step-size rule, and the more recent [16] which developed a step-size
policy that adapts to the local geometry with convergence guarantees beyond quadratic minimization.

Finally, let us mention that, while working on quadratic functions is a prerequisite for the proposed method
to work on a more general class of functions, the reverse is not true. Recent papers (see [1, 11]) exhibit the failure
of famous algorithms to perform on the class of smooth strongly convex functions as good as on quadratic ones.

2 Main theorem

This section states and proves Theorem 1. In short, given a certain function f (characterized by H, x⋆

and f⋆ here) and a starting point x0, we search for an iterative procedure, possibly adaptive, verifying the
polynomial-based expression (11) such that xt converges as fast as possible to x⋆ for some predefined performance
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metric. Most classical ways to measure the performance of such optimization schemes include the distance to
optimum ∥xt − x⋆∥2, the function accuracy gap f(xt) − f⋆, the squared gradient norm ∥∇f(xt)∥2, and linear
combinations of the former. Let us abstract those notions by denoting the performance measure of choice by
⟨xt − x⋆, Q(H)(xt − x⋆)⟩ (with Q a predefined polynomial that is positive on R>0). Then, we consider the
iterative scheme given by (Q-minimization).

xt+1 = arg min
x

{⟨x − x⋆, Q(H)(x − x⋆)⟩ s.t. x ∈ x0 + span{∇f(x0), . . . , ∇f(xt)}} . (Q-minimization)

The next theorem provides an explicit instance-optimal method to solve equation (Q-minimization).

Theorem 3 (Main Theorem). The unique solution to equation (Q-minimization) is given by the Heavy-ball
procedure

xt+1 = xt − (1 + mt)ht∇f(xt) + mt(xt − xt−1) (12)

where
ht = ⟨xt − x⋆, HQ(H)(xt − x⋆)⟩

⟨xt − x⋆, H2Q(H)(xt − x⋆)⟩ ;

mt = −btht

1 + btht
, with bt = ⟨xt − x⋆, H2Q(H)(xt−1 − x⋆)⟩

⟨xt−1 − x⋆, HQ(H)(xt−1 − x⋆)⟩ .

(13)

Remark that setting Q(X) = X leads to a nice expression of the conjugate gradient method (see [22,
Section 3.2.2]). Indeed, setting Q(X) = X corresponds to optimally minimizing the excess loss f(xt) − f⋆.

As already known, the conjugate gradient method requires the knowledge of H (or a Hessian vector product)
in addition to first-order information to proceed. This is also a priori the case for most of all other choices
of Q( · ). In the particular case of Q(X) = 1, which corresponds to minimizing the distance to the optimum
(see (3)), we can use an alternate writing making use of f⋆:

ht = 2(f(xt) − f⋆)
∥∇f(xt)∥2

mt = −btht

1 + btht
, with bt = ⟨∇f(xt), ∇f(xt−1)⟩

2(f(xt−1) − f⋆) .

(14)

Proof.

Designing methods from the polynomial point of view. As suggested by Theorem 2, we look for an iterative
method that can be expressed in the form xt − x⋆ = Pt(H)(x0 − x⋆), where Pt is a tth degree polynomial with
Pt(0) = 1. Furthermore, as we look for an instance-optimal method, the latter polynomial must be instance-specific,
and the coefficients of Pt should depend on H (and should describe the iterative procedure (Q-minimization)).

Recalling that H is real symmetric matrix, we denote by λ ∈ Sp(H) its eigenvalues and by vλ the associated
orthonormal basis of eigenvectors, leading to H =

∑
λ∈Sp(H) λvλvT

λ . The quantity to be minimized can now be
written as:

⟨xt − x⋆, Q(H)(xt − x⋆)⟩ = ⟨x0 − x⋆, Pt(H)T Q(H)Pt(H)(x0 − x⋆)⟩ (15)

=
∑

λ∈Sp(H)

Q(λ)Pt(λ)2⟨x0 − x⋆, vλ⟩2 (16)

=
∫

λ∈R+
Pt(λ)2 dλQ(λ) (17)

with λQ the discrete measure
∑

λ∈Sp(H) Q(λ)⟨x0−x⋆, vλ⟩2 δλ (we sometimes use the shorthand notation
∫

P 2
t dλQ

for (17) in what follows). It is clear that (17) is 0 if and only if Pt(λ) = 0 for all λ ∈ Sp(H). As a consequence, we
conclude that (i) choosing the right sequence of polynomials leads to convergence in exactly |Sp(H)| iterations,
and (ii) ⟨P (1), P (2)⟩Q ≜

∫
P (1)P (2) dλQ is an inner product on R|Sp(H)|−1[X]. We therefore want to solve minimize

Pt∈Rt[X]
∥Pt∥2

Q

subject to Pt(0) = 1
(18)
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for any t ⩽ |Sp(H)| − 1 where ∥P∥2
Q ≜ ⟨P, P ⟩Q =

∫
P 2 dλQ denotes the underlying norm of the inner product

⟨ · , · ⟩Q. For t ⩾ |Sp(H)|, we consider instead Pt as a multiple of the polynomial
∏

λ∈Sp(H)(X − λ) in X. The
next steps are somewhat standard and follow a classical pattern for solving (18) (see, e.g. [4] and the references
therein).

From minimal norm to orthogonality. The solution to (18) is the projection of the polynomial 0 over the affine
space {P ∈ Rt[X] | P (0) = 1} with respect to the inner product ⟨ · , · ⟩Q. A necessary and sufficient condition
for P to be the solution of problem (18) is therefore to verify ⟨0 − P, ∆P ⟩Q = 0 for any ∆P in the vectorial
subspace {P ∈ Rt[X] | P (0) = 0} = XRt−1[X]. Hence Pt solves problem (18) iff

⟨Pt, XR⟩Q = 0, ∀ R ∈ Rt−1[X]. (19)

Note however, that for any (P, R) ∈ R[X]2,

⟨P, XR⟩Q =
∫

λ∈R+
P (λ) · λR(λ) dλQ(λ) =

∫
λ∈R+

P (λ) · R(λ) dλXQ(λ) ≜ ⟨P, R⟩XQ

with dλXQ(λ) ≜ λdλQ(λ) =
∑

λ∈Sp(H) λQ(λ)⟨x0 − x⋆, vλ⟩2 δλ. Using the latter inner product, the condition for
Pt to be the solution to problem (18) becomes:

Pt ∈ Rt−1[X]⊥XQ . (20)

Hence, (Pt)t∈N is a family of orthogonal polynomials for the inner product ⟨ · , · ⟩XQ.

From orthogonality to recursion. We now focus on finding an explicit expression for the polynomials Pt. As for
all families of orthogonal polynomials, (Pt)t∈N can be obtained through a two-term recursion of the form:

Pt+1(X) = (atX + bt)Pt(X) + ctPt−1(X), for some (at, bt, ct) ∈ R3, (21)

which is easy to verify by induction. Our goal is to find at, bt and ct. First, notice that (atX +bt)Pt(X)+ctPt−1(X)
is orthogonal to Rt−2[X] independently of the values of at, bt and ct. Those three coefficients can be found via
the following three conditions: (i) ⟨Pt+1, Pt⟩XQ = 0, (ii) ⟨Pt+1, Pt−1⟩XQ = 0, and (iii) Pt+1(0) = 1.

More precisely, it is clear that at ≠ 0 for Pt+1 to be of degree t + 1. Therefore, one can factorize by at.
Reparametrizing (21), one can write

Pt+1(X) = (ãt − X)Pt(X) + b̃tPt−1(X)
c̃t

, with (ãt, b̃t, c̃t) ∈ R3.

Moreover, evaluation at X = 0 gives ãt+b̃t

c̃t
= 1, thereby enforcing c̃t = ãt + b̃t. It remains to verify the two

orthogonality conditions (independent of c̃t):

ãt⟨Pt, Pt⟩XQ + b̃t⟨Pt−1, Pt⟩XQ = ⟨XPt(X), Pt(X)⟩XQ,

ãt⟨Pt, Pt−1⟩XQ + b̃t⟨Pt−1, Pt−1⟩XQ = ⟨XPt(X), Pt−1(X)⟩XQ.

Note that this system of equations is decoupled since ⟨Pt−1, Pt⟩XQ = 0, and we finally arrive to

Pt+1(X) = (ãt − X)Pt(X) + b̃tPt−1(X)
ãt + b̃t

, (22)

with
ãt = ⟨XPt(X), Pt(X)⟩XQ

⟨Pt, Pt⟩XQ
= ⟨xt − x⋆, H2Q(H)(xt − x⋆)⟩

⟨xt − x⋆, HQ(H)(xt − x⋆)⟩ ,

b̃t = ⟨XPt(X), Pt−1(X)⟩XQ

⟨Pt−1, Pt−1⟩XQ
= ⟨xt − x⋆, H2Q(H)(xt−1 − x⋆)⟩

⟨xt−1 − x⋆, HQ(H)(xt−1 − x⋆)⟩ .

(23)

From a polynomial recursion to an iterative optimization method. For reaching the final desired result, we
simply multiply (22) (evaluated in H) by x0 − x⋆:

xt+1 − x⋆ = ãt(xt − x⋆) − H(xt − x⋆) + b̃t(xt−1 − x⋆)
ãt + b̃t

= xt − x⋆ − 1
ãt + b̃t

∇f(xt) + −b̃t

ãt + b̃t

(xt − xt−1),
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thereby reaching the desired

xt+1 = xt − (1 + mt)ht∇f(xt) + mt(xt − xt−1) (24)

with (1 + mt)ht = 1
ãt + b̃t

and mt = −b̃t

ãt + b̃t

, hence, ht = 1
ãt

and mt = −b̃tht

1 + b̃tht

. (25)

From (24) and (25), we recognize a Heavy-ball method with some variable step-size ht and momentum term mt

corresponding to the theorem statement, thereby concluding the proof. ◀

▶ Remark 4 (Step-size parametrization). While the γt plays a different role in (7) and (8), they are both
usually called “step-size” by default. But we noticed that both in the Chebyshev method and the Heavy-ball
method (optimally tuned), ht = γt

1+mt
is exactly 2

L+µ , value of the optimal step-size for Gradient descent, and
that the Heavy-ball method converges on quadratic functions exactly when ht = γt

1+mt
⩽ 2

L , as for Gradient
descent. In (5), we notice again that the value of ht is the optimal step-size for a single step of Gradient
descent. For this reason, we believe that the natural parametrization of the Heavy-ball methods should be
xt+1 = xt − (1 + mt)ht∇f(xt) + mt(xt − xt−1) and that ht should be referred to as the “natural” step-size.
Indeed, when one thinks of the Heavy-ball method with Polyak step-sizes, they would set γt to the Polyak
step-size, not ht = γt

1+mt
. We therefore provide a novel view on what should be tested.

3 Numerical experiments

In this section, we compare Gradient descent, Heavy-ball, and conjugate gradient methods in an adaptive setting
or not. Figure 2 shows the performance of all these methods on a quadratic objective with known minimal value
f⋆. The hessian of this quadratic objective has been generated from a sequence of eigenvalues with geometric
increase, and a random orthogonal transformation. The difference between Figures 1 and 2 is the dimension of
the problem as well as the condition number of the objective function. Due to finite precision arithmetic, the
finite-time convergence is not visible when the condition number is too large. However, both figures show that
our method and the conjugate gradient algorithm behave similarly and faster than the other methods. The code
can be found on the following GitHub repository: https://github.com/bgoujaud/Heavy-ball_polyak_steps.

(a) Comparison of distances to optimum (b) Comparison of excess losses

Figure 2 Comparison in semi-log scale over 2000 iterations of different first-order methods applied
on a 1000-dimensional quadratic objective with condition number 105. GD with constant step-size, GD
with Polyak step-size and GD with variant of Polyak step-size refer to the GD method tuned respectively
with the step-size γ = 2/(L + µ), γt = (f(xt) − f⋆)/∥∇f(xt)∥2 and γt = 2(f(xt) − f⋆)/∥∇f(xt)∥2. HB
with constant tuning is the HB method tuned with constant parameters γt = (2/(

√
L + √

µ))2 and
mt = ((

√
L − √

µ)(
√

L + √
µ))2 while HB with Polyak step-size based tuning refers to Algorithm 1.

4 Concluding remarks and discussion

Polyak step-sizes are known for their general good working performances when the optimal value for the
optimization problem at hand is known. Whether Polyak step-sizes can be used together with momentum for
obtaining accelerated first-order methods appears to be an open question [2], which we answer in the simpler

https://github.com/bgoujaud/Heavy-ball_polyak_steps
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case of convex quadratic minimization. In this context, we argue that not only this tuning works well, but also it
pops up naturally when investigating instance-optimal first-order iterative methods. Furthermore, we believe it
is a necessary step for being able to understand more general optimization settings beyond quadratics. As our
method does not seem to work well beyond quadratics, we leave further investigations on this topic for future
work.

Among our competitors, we note that the celebrated conjugate gradient (CG) method is another instance-
optimal algorithm for quadratics. Whereas our method minimizes the distance to the solution at each iteration,
CG is instance-optimal for minimizing function values at each iteration. Perhaps interestingly, the two methods
appeared to behave similarly in our numerical experiments. That being said, the main practical differences
between the two methods are that CG Heavy-ball-like formulation naturally relies on higher order information
while Polyak step-sizes do require knowledge of f⋆. In typical optimization problems, this value is not known.
However, there are a few settings where this value is actually well-known, typically when f⋆ = 0 generically (in
machine learning, this setting is known as the “interpolation” regime; an alternative could be to use Polyak-steps
as a competitor to MinRes). Finally, let us mention that a few generalizations of CG, often referred to as
nonlinear conjugate gradient, were studied in the literature (see, e.g., [5, 13, 19]). A compelling direction for
future research would involve expanding our proposed method to a class of non-quadratic objectives.
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