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Computing the cohomology of constructible étale
sheaves on curves

par Christophe LEVRAT

Résumé. Nous présentons une expression explicite du complexe de cohomo-
logie d’un faisceau constructible de groupes abéliens sur le site étale d’une
courbe algébrique irréductible sur un corps algébriquement clos, dans le cas
où la torsion du faisceau est inversible dans le corps. Cette expression fait
intervenir uniquement des groupes finis, et est fonctorielle en la courbe et le
faisceau. En particulier, nous montrons comment calculer l’action galoisienne
sur ce complexe. Nous présentons également un algorithme qui calcule cette
expression, et étudions sa complexité. Nous illustrons cet algorithme par plu-
sieurs exemples.

Abstract. We present an explicit expression for the cohomology complex of
a constructible sheaf of abelian groups on the small étale site of an irreducible
curve over an algebraically closed field, when the torsion of the sheaf is invert-
ible in the field. This expression only involves finite groups, and is functorial
in both the curve and the sheaf. In particular, we explain how to compute
the Galois action on this complex. We also present an algorithm which com-
putes this complex and study its complexity. We illustrate this algorithm with
several examples.

1. Introduction

Let X0 be an algebraic curve over a field k. Let n be a positive integer
invertible in k0, and F0 be a constructible sheaf of Z/nZ-modules on the
(small) étale site of X0. Denote by k a separable closure of k0, by X the
base change of X0 to k, and by F the restriction of F0 to X. The étale
cohomology complex RΓ(X,F) is equipped with an action of Gal(k|k0).
Given the curve X and a suitable explicit description of the sheaf F , we
are interested in computing a finite extension k1 of k0 and a complex of
(Z/nZ)[Gal(k1|k0)]-modules which represents RΓ(X,F).

The computability of étale cohomology groups of torsion sheaves on
schemes of finite type over algebraically closed fields was proved in 2014 by
Poonen, Testa and van Luijk [16, Thm. 7.9] in characteristic zero, and by
Madore and Orgogozo in arbitrary characteristic [11, Thm. 0.1]. However,
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the algorithms described in these articles are not efficient enough to be
used in practice, and the only known result about their complexity is that
Madore and Orgogozo’s algorithm is primitive recursive [10, Prop. 4.1.9].
In the case of smooth curves, some more efficient algorithms are known.
When X is a smooth projective curve, H1(X, µn) is canonically isomorphic
to the n-torsion of Pic(X); two algorithms, one developed by Huang and
Ierardi [8], the other by Couveignes [1], compute this group when the base
field k0 is finite. Jin’s algorithm [9] computes H1(X,F) where X is a smooth
curve and F is locally constant.

In this paper, we consider the case where X0 is an integral curve over a
field, and F0 is a constructible sheaf (or even a complex of such sheaves)
on X0. We present an explicit expression for the cohomology complex
RΓ(X,F) with the aforementioned Galois action, as well as an algorithm
which computes this complex (under some classical computability assump-
tions on the field k0). The latter makes use of an existing algorithm comput-
ing H1(X, µn), such as those mentioned above. We also provide complexity
bounds for this method. In particular, in the case of locally constant sheaves
on smooth projective curves over finite fields, the complexity of computing
H1(X,F) using this algorithm is lower than Jin’s. In the case where the
base field k0 is finite, we present an idea that should allow us to reduce
the complexity of this algorithm, and explain why this would be a crucial
step towards developing a polynomial-time point counting algorithm for
surfaces.

In Section 2, we investigate the properties of the minimal Galois cover
of a scheme trivialising the Z/nZ-torsors on this scheme, as well as its con-
struction in the case of curves. In Section 3, we explain how to compute
the cohomology of a locally constant sheaf on a scheme of cohomological
dimension at most 1. Section 4 contains the proof of the main theorem: an
explicit expression of RΓ(X,−) when X is a curve over a field of cohomo-
logical dimension at most 1. We then present in Section 5 the algorithms
used to compute the cohomology of a constructible sheaf on such a curve,
as well as their complexity. We also describe the potential application of
our algorithms to point counting on surfaces over finite fields. In Sections 6
and 7, we illustrate these algorithms in two situations.

Terminology. Unless explicitly stated otherwise, the word cover denotes
a surjective finite étale map. A Galois cover is always supposed to be con-
nected.

2. The cover trivialising Z/nZ-torsors

2.1. General construction and properties. Let n be a positive integer.
We will denote by Λ the ring Z/nZ. Given a (discrete) Λ-module M , we
will denote by M∨ its Λ-dual.
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Lemma 2.1. Let G be a locally compact topological group. Consider the
abelian group Λ, with the trivial action of G. Suppose the continuous coho-
mology group H1(G, Λ) is finite. There is a unique closed normal subgroup
S of G such that G/S is isomorphic to the Λ-dual H1(G, Λ)∨ of H1(G, Λ).
Moreover, S is a characteristic subgroup of G.

Proof. Define S as the closure in G of Gn[G, G]. This group S is a character-
istic subgroup of G (i.e. stable by all continuous automorphisms) because
Gn and [G, G] are stable by automorphisms. Since Λ is an n-torsion abelian
group, there is a canonical isomorphism

Homcont(G/S, Λ) ∼−→ Homcont(G, Λ) = H1(G, Λ).

Pontryagin duality [7, Thm. 7.63] applied to the locally compact abelian
group G/S yields the following isomorphism:

Homcont(G/S, Λ)∨ ∼−→ G/S.

Now let H be a closed normal subgroup of G such that G/H is isomorphic
to H1(X, Λ)∨. It necessarily contains S since G/H is a Λ-module. Since
G/S and G/H have the same finite cardinality, H = S. □

Corollary 2.2. Let X be an integral noetherian scheme such that H1(X, Λ)
is finite. Up to isomorphism, there is a unique étale Galois cover X⟨n⟩ of
X with automorphism group isomorphic to H1(X, Λ)∨.

Proof. This follows immediately from Lemma 2.1, the canonical isomor-
phism

H1(π1(X), Λ) ∼−→ H1(X, Λ)
and Grothendieck–Galois theory. □

From now on, given such a scheme X, we will always denote by X⟨n⟩ a
Galois cover of X as in the previous corollary.

Proposition 2.3. Let X be an integral noetherian scheme such that
H1(X, Λ) is finite. For any finitely generated Λ-module M , the morphism
H1(X, M)→ H1(X⟨n⟩, M) is trivial.

Proof. Recall that X⟨n⟩ corresponds to the open subgroup S of π1(X),
which is the closure of the subgroup π1(X)n[π1(X), π1(X)]. Since M is n-
torsion, any map π1(X) → M is trivial on S, hence Hom(π1(X), M) →
Hom(π1(X⟨n⟩), M) is trivial. □

2.2. Explicit construction in the case of curves. Let U be a smooth
integral curve over a field k. Denote by K its function field. Let n be a
positive integer invertible in k. Recall the following description of H1(U, µn)
in terms of divisors on U .
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Lemma 2.4. The group H1(U, µn) is canonically isomorphic to the quo-
tient of

{(D, f) ∈ Div(U)×K× | nD = div(f)}
by the subgroup of pairs (div(f), fn) with f ∈ K×.

Proof. This follows immediately from the corresponding description in
terms of invertible sheaves given in [17, 040Q]. □

We will denote by [D, f ] the class of the pair (D, f) in H1(U, µn). Now
suppose that k is separably closed. Let X be the smooth compactifica-
tion of U . Denote by g the genus of X. Consider the closed complement
Z = {P1, . . . , Pr} of U in X. When r = 0 the lemma above is the usual
description of H1(X, µn) as the group of n-torsion points on the Jacobian
of X. When r ⩾ 1, the Gysin sequence

0 −→ H1(X, µn) −→ H1(U, µn) −→ H0(Z, Λ) −→ Λ −→ 0
shows that H1(U, µn) is a free Λ-module of rank 2g − 1 + r. Consider a
basis ([Di, gi])1⩽i⩽s of H1(U, µn). For every integer j ∈ {1 . . . s}, we denote
by Vj the normalisation of U in K( n

√
g1, . . . , n

√
gj), by ϕj the induced cover

Uj → U , and set V = Vs.

Proposition 2.5. The cover ϕ : V → U is isomorphic to U ⟨n⟩ → U .

Proof. First of all, each cover Vi → Vi−1 is étale, because it is constructed
by taking an nth root of a function whose valuation at each point is a
multiple of n. Let us check by induction on j ∈ {1, . . . , r} that Vj → Vj−1
is Galois with group µn(k). This is obviously true for j = 1. For any i ∈
{1, . . . , j − 1} the extension Vi = Vi−1( n

√
gi) of Vi−1 is Galois with group

µn(k) by the induction hypothesis. The Hochschild–Serre spectral sequence
yields an exact sequence

0 −→ H1(µn(k), Λ) −→ H1(Vi−1, Λ) −→ H1(Vi, Λ).
Therefore, the kernel of ϕ⋆

i : H1(U, Λ) → H1(Vi, Λ) is the direct sum
Λ[D1, g1]⊕· · ·⊕Λ[Di, gi] ≃ Λi, and [Dj , gj ] is not in the kernel; the order of
ϕ⋆

i [Dj , gj ] in H1(Vi, µn) is still n. Thus, V → U is finite étale of order nr. The
field k being separably closed, the extension k(V ) of k(U) is the splitting
field of the polynomials T n− g1, . . . , T n− gr, so it is Galois. The morphism
V → U is therefore an étale Galois cover. An element of the group Aut(V |U)
is an automorphism defined by ( n

√
g1 7→ ζ1 n

√
g1, . . . , n

√
gr 7→ ζr

n
√

gr), where
the ζi are nth roots of unity in k; the group Aut(V |U) is therefore canon-
ically isomorphic to HomΛ(H1(U, µn), µn) = H1(U, Λ)∨. Lemma 2.1 now
ensures that V is isomorphic to U ⟨n⟩. □

Remark 2.6. We will often consider the following situation. Let V →
U be an étale Galois cover of smooth integral curves over k. The cover
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V ⟨n⟩ → U is still Galois because V ⟨n⟩ → V is characteristic (i.e. if V → S

is a Galois cover, V ⟨n⟩ → S is Galois as well). Sometimes, we will need
to compute a subcover V ′ → V of V ⟨n⟩ by taking nth roots of functions
g1, . . . , gt generating a submodule of H1(V, µn). In that case, V ′ → U is
still Galois if and only if the submodule generated by g1, . . . , gt is stable
under the action of Aut(V |U). This is the case for instance if we take the
submodule of elements of H1(V, µn) defined over some subfield of k over
which the elements of Aut(V |U) are also defined.

2.3. Ramification at infinity. Let U be an integral affine curve over an
algebraically closed field k. Denote by X the smooth compactification of
U . Let n be an integer invertible in k, and denote by Λ the ring Z/nZ.
Let us study the ramification at infinity of U ⟨n⟩ → U , i.e. the ramification
of the smooth compactification X ′ of U ⟨n⟩ above the points P0, . . . , Pr of
X−U . The map H2

Z(X, µn)→ H2(X, µn) can be expressed, using the Gysin
isomorphism H0(Z, Λ)→ H2

Z(X, µn) and the isomorphism H2(X, µn)→ Λ,
as the sum map H0(Z, Λ) → Λ. A basis of its kernel is given by (P1 − P0,
. . . , Pr − P0). Consider functions g1, . . . , gr ∈ k(X) such that

div(gi) = nDi + (Pi − P0)

where Di ∈ Div0(X − {P0, . . . , Pr}). The cover X ′ → X⟨n⟩ corresponds to
the function field extension

k(X⟨n⟩)( n
√

g1, . . . , n
√

gr)

of k(X⟨n⟩). Let i ∈ {1 . . . r}. The extension k(X⟨n⟩)( n
√

gj , j ̸= i) of k(X⟨n⟩)
yields a cover Yi → X⟨n⟩ which is unramified above Pi because vPi(gj) = 0.
The cover X ′ → Yi, however, is ramified at Pi; let Qi be a preimage of Pi

in Yi. Since vQi(gi) = 1, the fibre X ′
Qi

is isomorphic to k[x]/(xn), and the
ramification index of X ′ → Yi at any preimage of Qi is n. Above Pi, there
are exactly 1

n |H
1(U, Λ)| points of X ′, each of with ramification index n. Let

Ri be a preimage of Qi in X ′. The inertia subgroup IRi|Pi
⊂ Aut(U ⟨n⟩|U)

of Ri fits in the short exact sequence

0 −→ IRi|Qi
−→ IRi|Pi

−→ IQi|Pi
−→ 0

(see [17, 0BU7]). As IQi|Pi
= 0, there are isomorphisms

IRi|Pi
= IRi|Qi

= Aut(X ′|Yi) ≃ Λ.
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X ′ • •
Ri

• • n2g+r−1 points

Yi • •
Qi

. . . • • n2g+r−1 points

X⟨n⟩ • . . . . . . . . . • n2g points

X •
Pi

Λ

Λr

H1(X,Λ)

Figure 2.1. Ramification at infinity of the cover U ⟨n⟩ → U

As a subgroup of Aut(U ⟨n⟩|U), the group IRi|Pi
is generated by n

√
gi 7→

ζ n
√

gi, where ζ is a primitive nth root of unity in k. The results regarding
preimages and ramification indices also apply to P0, which had been chosen
arbitrarily. With the above notation, the subgroup IR0|P0 is generated by
the automorphism

( n
√

g1, . . . , n
√

gr) 7−→ (ζ n
√

g1, . . . , ζ n
√

gr).

2.4. Cohomology of the ramification groups. Let n be a positive
integer. Denote by Λ the ring Z/nZ. Let us consider an étale Galois cover
V → U of smooth integral curves over an algebraically closed field k of
characteristic prime to n. Let K be the function field of U . Denote by X
(resp. Y ) the smooth compactification of U (resp. V ). Set G = Aut(V |U).
Let x be a closed point of X−U . Consider an inertia group I ⊂ Gal(Ksep|K)
at x, and one of its finite quotients Iy ⊂ G, which is the stabiliser in G of
a closed point y ∈ Y − V mapping to x. Denote by P ◁ I and Py ◁ Iy the
wild inertia subgroups. There are canonical isomorphisms [17, 09EE]

I/P
∼−→ lim

m∤p
µm(k) and Iy/Py

∼−→ µe(k)

where e is the ramification index of Y → X at y. From now on, we assume
that n divides e. Let M be a Λ[G]-module.

Proposition 2.7. In the situation described above, the canonical maps

τ⩽1 RΓ(Iy/Py, MPy ) −→ RΓ(I/P, MP ) −→ RΓ(I, M)

are quasi-isomorphisms.

Proof. Let σ denote a pro-generator of I/P , and σy its image in Iy/Py. The
actions of σ and σy on M are equal. Set Ny =

∑e
i=1 σi

y. The usual results
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on the cohomology of (pro)-cyclic groups [18, Calc. 6.2.1] [5, Prop. 8.1.4]
show that the map on the left hand side is:

RΓ(I/P, MP ) MP MP 0

τ⩽1 RΓ(Iy/Py, MPy ) MP ker(Ny) 0

σ−id

σy−id

Since n divides e, the action of Ny on M is trivial and ker(Ny) = MP , which
shows that the map above is a quasi-isomorphism. The fact that the map
on the right hand side is a quasi-isomorphism is shown in [5, Prop. 8.1.4]
as well. □

The following lemma shows how to explicitly construct the inverse of the
map on the left hand side as a morphism of complexes; it will be used in
Theorem 4.5. We denote by Homcr the groups of crossed homomorphisms:
given a group G and a G-module M , Homcr(G, M) is the group of maps
f : G→M such that for all g, h ∈ G, f(gh) = f(g) + g · f(h).

Lemma 2.8. The canonical map Homcr(Iy/Py, MPy )→ Homcr(Iy, M) has
a section.

Proof. Let u : Iy →M be a crossed homomorphism. Consider the commu-
tative diagram

Iy M MPy

Iy/Py MPy

u q

α

and set f = q ◦ u. For all x ∈ Py and g ∈ Iy, the definition of MPy

ensures that f(xg) = f(x) + q(x · u(g)) = f(x) + f(g). Hence, for any
x ∈ Py, f(x|Py |) = |Py|f(x) is zero ; since multiplication by |Py| is an
automorphism of M , this means that f(x) = 0. Therefore, there is a quo-
tient map f : Iy/Py → MPy . Set u = α−1 ◦ f : Iy/Py → MPy . The map
u 7→ u is clearly linear. Moreover, u is still a crossed homomorphism since
u(g1g2) = α−1f(g1g2) = α−1f(g1) + q(g1 · α−1u(g2)). The Iy-linearity of
α−1q concludes. □

2.5. A similar cover with Galois action. Let k0 be a perfect field,
and k be an algebraic closure of k0. Let n be an integer invertible in k.
Denote by Λ the ring Z/nZ. Let V0 be a geometrically integral smooth curve
over k0. As usual, the base change − ×k0 k will be denoted by removing
the subscript 0. We wish to compute a (connected) characteristic cover
V ′

0 of V0 such that the map H1(V, Λ) → H1(V ′, Λ) is trivial. In the case
where V is connected and the elements of H1(V, µn) are defined over k0,
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the cover V ⟨n⟩ constructed in the previous sections comes from k0, and we
are done. However, this is not the case in general. The construction below
is a refinement of the simple idea of computing the Galois orbit of V ⟨n⟩.

Construction of V ′
0. The function field of Y0 is of the form k0(x)[y]/(f),

with f ∈ k(x)[y]. Denote by k1 the algebraic closure of k0 in k0(x)[y]/(f);
since k0 is perfect, k1 is a separable extension. Let V1 be a connected
component of V . Let ([D1, g1], . . . , [Dr, gr]) be a basis of H1(V1, µn) as in
Lemma 2.4. Denote by k2 the minimal extension of k0 over which the gi

are defined. Let L be the Galois closure of the extension of k0 generated by
k1, k2 and µn(k). Let α be a primitive element of the extension L|k1, and
m ∈ k1[t] its minimal polynomial. For i ∈ {1 . . . r}, write gi = g′

i(α, x, y)
with g′

i ∈ k0(x)[t, y]/(m(t), f(x, y)). Let V ′
0 → V0 be the normalisation of V0

in the function field k0(α, x, y)( n

√
g′

1, . . . , n
√

g′
r). The curve V ′ is isomorphic

to the Gal(L|k0)-orbit of V
⟨n⟩

1 ; it has [L : k0] connected components, and
the map H1(V, Λ)→ H1(V ′, Λ) is trivial.

Note that since the degree of V ′
0 → (V0×k1 L) is nr and that of V0×k1 L→

V0 is [L : k1], the degree of V ′
0 → V0 is nr[L : k1].

Proposition 2.9. The cover V ′
0 → V0 is characteristic, i.e. if V0 is an étale

Galois cover of a curve U0, then V ′
0 → U0 is still Galois.

Proof. Consider the situation where V0 is an étale Galois cover of a smooth
integral k0-curve U0. Here is how to explicitly compute the automorphism
group of V0 → U0. The map V ′

0 → V0 has degree nr[L : k1]. Using the
notations above, set zi = n

√
g′

i. The elements of Aut(k0(V ′
0)|k0(V0)) are

defined by t 7→ σ(t), zi 7→ ζizi where σ ∈ Gal(L|k1) and ζi ∈ µn(L). There
are deg(V ′

0 → V0) = nr[L : k1] such automorphisms since µn(k) ⊂ L, hence
the cover V ′

0 → V0 is Galois. Let us now compute the automorphism group
of V ′

0 → U0. Its elements are defined by

(t, x, y, z1, . . . , zr) 7−→ (σ(t), x′, y′, z′
1, . . . , z′

r)

where σ ∈ Gal(L|k0), the pair (x′, y′) is the image of (x, y) under a U0-
automorphism of V0 whose image in Gal(k1|k0) is the same as that of σ,
and the elements z′

i ∈ k0(V ′
0) satisfy z′

i
n = ϕ(g′

i). As expected, there are
deg(V ′

0 |U0) = nr[L : k1] deg(V0 → U0) elements in Aut(V ′
0 |U0), and V ′

0 →
U0 is Galois. □

Remark 2.10. If need be, the Galois extension L of k0 may be chosen to
be a little larger, for instance to make sure that the points at infinity of the
curve V ′ are defined over L. This does not affect any of the previous proofs.
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3. Schemes of cohomological dimension 1

Let n be a positive integer, and Λ = Z/nZ. Let X be an integral noe-
therian scheme, and η be a generic geometric point of X.

Proposition 3.1. Let L be a finite locally constant sheaf of Z/nZ-modules
on X. Let Y → X be an étale Galois cover such that L |Y is constant and
the morphism

H1(X, L ) −→ H1(Y, L |Y )
is trivial. Then the morphism

τ⩽1 RΓ(Aut(Y |X), Lη) −→ τ⩽1 RΓ(X, L )

is a quasi-isomorphism.

Proof. Let G be the automorphism group of Y → X. The associated
Hochschild–Serre spectral sequence yields the following short exact se-
quence:

0 −→ H1(G, Lη) −→ H1(X, L ) −→ H0(G, H1(Y, L |Y ))

Hence the map H1(G, Lη)→ H1(X, L ) is an isomorphism, and

RΓ(G, Lη) −→ RΓ(X, L )

yields isomorphisms on cohomology groups in degree 0 and 1. □

Remark 3.2. If in addition X has cohomological dimension 1 then

τ⩽1 RΓ(Aut(Y |X), Lη) −→ RΓ(X, L )

is a quasi-isomorphism.

Remark 3.3. Here is how to construct a cover Y as in the proposition,
provided that H1(W, Λ) is finite. Pick an étale Galois cover W → X such
that L |W is a constant sheaf. Set Y = W ⟨n⟩: since Y → W is character-
istic, the cover Y → X is still Galois, and Proposition 2.3 ensures that
H1(X, L )→ H1(Y, L |Y ) is trivial.

Given a profinite group H, we will denote by PH(Λ) the usual projective
resolution (sometimes called bar resolution) of the trivial Λ[[H]]-module Λ.

Proposition 3.4. Suppose X is of cohomological dimension 1. Let L =
[L 0 → L 1 → · · · → L s] be a complex of finite locally constant sheaves
of Λ-modules on X, and Y be an étale Galois cover of X such that each
map H1(X, L i)→ H1(Y, L i|Y ) is trivial. Write G = Aut(Y |X). Consider
the double complex B•,• defined by Bi,j = HomΛ[G](τ⩾−1P −j

G (Λ), L i
η). Then

RΓ(X, L ) is represented by the total complex Tot B•,•.
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Proof. We wish to compute

RΓ(X, L ) = RΓ(π1(X), Lη) = RHomΛ[[π1(X)]](Λ, Lη),

which is represented by the complex

Hom•
Λ[[π1(X)]](Pπ(Λ), Lη) = Tot(A•,•)

where Ai,j = HomΛ[[π1(X)]](P
−j
π1(X)(Λ), L i

η). The map B•,• → A•,• induced
by the quotient map π1(X)→ G defines a morphism between the spectral
sequence associated to these quotients. Recall that for each i ∈ {1 . . . s},
the map

τ⩽1 HomΛ[G](PG(Λ), L i
η) −→ HomΛ[[π1(X)]](Pπ1(X)(Λ), L i

η)

is a quasi-isomorphism. Since the functor Hom(−, L i
η) is left exact,

HomΛ[G](τ⩾−1PG(Λ), L i
η) = τ⩽1 HomΛ[H](PG(Λ), L i

η).

Hence the map B•,• → A•,• defines, on each column, a quasi-isomorphism
of complexes. It therefore induces an isomorphism between the first pages
of the corresponding spectral sequences (for the upward orientation) associ-
ated to B•,• and A•,•: in position (i, j), it is the isomorphism Hj(H, L i

η)→
Hj(π1(X), L i

η) for j ⩽ 1, and 0→ Hj(π1(X), L i
η) = 0 otherwise. Therefore,

the map between the abutments of these two spectral sequences is an iso-
morphism, i.e. the map Tot(B•,•)→ Tot(A•,•) is a quasi-isomorphism. □

4. Explicit computation of RΓ of a (possibly singular) curve

In this section, we are going to describe how to compute the cohomology
of a complex of constructible sheaves on a curve. Let k0 be a field, and k
be a separable closure of k0. Consider a geometrically irreducible curve X0
over k0, and its base change X over k. We are allowed to make the follow-
ing additional assumptions, which do not alter the computed cohomology
complex.

• The field k0 is perfect, hence k is algebraically closed: the perfect
closure kpf

0 of k0 being a purely inseparable extension, the base
change −×k0 kpf

0 induces an isomorphism on cohomology.
• The curve X is reduced: being a universal homeomorphism, the

map Xred → X induces an isomorphism on cohomology.
• The curve X has at worst multicross singularities [17, 0C1P]: the

seminormalisation map Xsn → X being a universal homeomor-
phism [17, 0EUS], it induces an isomorphism on cohomology, so
we may assume X is seminormal. Since a seminormal curve over an
algebraically closed field has at worst multicross singularities [2, §2,
Cor. 1], we may assume this is the case for X.
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4.1. Cohomology with support in a 0-dimensional subscheme. Let
k be an algebraically closed field. Let n be an integer invertible in k, and Λ =
Z/nZ. Let X be an integral curve over k. Consider a nonempty closed zero-
dimensional subscheme i : Z → X, and its open complement j : U → X.
Let RΓZ(X,−) denote cohomology with support in Z. Since RΓZ(X,−) =⊕

z∈Z RΓz(X,−), we consider a single point z ∈ Z and focus on computing
RΓz(X,−).
Lemma 4.1. Let L be a finite locally constant sheaf on U .

• H0
z(X, j!L ) = H0

z(X, j⋆L ) = H1
z(X, j⋆L ) = 0

• H1
z(X, j!L ) = H0(z, i⋆j⋆L )

• H2
z(X, j!L ) = H2

z(X, j⋆L )
• For all i ⩾ 3, Hi

z(X, j!L ) = Hi
z(X, j⋆L ) = 0.

Proof. Since H0(X, j⋆L ) → H0(X − z, j⋆L ) is an isomorphism and
H1(X, j⋆L ) → H1(X − z, j⋆L ) is always a monomorphism, the long ex-
act sequence for cohomology with support associated to j⋆L shows that
H0

z(X, j⋆L ) = H1
z(X, j⋆L ) = 0. Moreover, for any j ⩾ 3, the groups

Hj−1(X − z, j⋆L ) and Hj(X, L ) are trivial, hence Hj
z(X, j⋆L ) = 0. Recall

that Hi
z(X, i⋆−) = Hi(z,−). The long exact sequence of Hi

z(X,−) associ-
ated to the short exact sequence

0 −→ j!L −→ j⋆L −→ i⋆i⋆j⋆L −→ 0
shows that H0

z(X, j!L ) = 0, H1
z(X, j!L ) = H0(z, i⋆j⋆L ) and also

H2
z(X, j!L ) = H2

z(X, j⋆L ). The groups Hi
z(X, j!L ) are also trivial as soon

as i ⩾ 3. □

Let us now compute the group H2
z(X, j!L ) = H2

z(X, j⋆L ). From now
on, we assume X to have only multicross singularities. Let z1, . . . , zr be
the preimages of z in the normalisation X̃ of X. Denote by Xz the strict
henselisation of X at z. It contains one closed point z′, as well as r minimal
primes z′

1, . . . , z′
r. Set Uz := U ×X Xz. Consider the following cartesian

diagram.
Uz Xz z′

U X z

g′

j′

g

i′

j i

The following proof is given in [14, II, Prop. 1.1] in the special case of
smooth curves.
Lemma 4.2. Let F be a sheaf on Uz. For every nonnegative integer q, the
group Hq(Xz, j′

!F) is trivial.

Proof. The assertion holds for q = 0 since H0(Xz, j′
!F) is the kernel of the

map H0(Xz, j′
⋆F)→ H0(Xz, i′

⋆i′⋆j⋆F), which is simply the identity map of
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H0(Uz,F). Let us first show that for any injective sheaf J on Uz, the sheaf
j′

!F on X is acyclic. To this end, we are going to prove that

0 −→ j′
!J −→ j′

⋆J −→ i′
⋆i′⋆j′

⋆J −→ 0

is an injective resolution of j′
!J ; the long exact sequence associated to

this short exact sequence then shows that Hq(Xz, j′
⋆J) = 0 for any q ⩾

1. Fix separable closures of k(z′
1), . . . , k(z′

r), and denote by I1, . . . , Ir the
associated Galois groups. The functor i⋆j⋆ may be rewritten as follows:

ModI1 × · · · ×ModIr −→ Ab

(M1, . . . , Mr) 7−→M I1
1 × · · · ×M Ir

r

This functor admits a left adjoint, which sends an abelian group M to
(M, . . . , M) with trivial (I1, . . . , Ir)-action. Since this left adjoint is exact,
i′⋆j′

⋆ sends injectives to injectives. The functors i′
⋆ and j′

⋆ also send injec-
tives to injectives, therefore the short exact sequence above is an injective
resolution of j′

!J . We are now ready to prove the result. Let F be a sheaf
on Uz, and let J• be an injective resolution of F . Then j′

!J
• is an acyclic

resolution of j′
!F , and Hq(Xz, j′

!F) is the qth cohomology group of the com-
plex Γ(Xz, j′

!J
•). The latter group is the image of F under the qth right

derived functor of Γ(Xz, j′
!−), which is zero as proven above. □

Let ν : X̃ → X be the normalisation map. Set z̃ := z ×X X̃.

Proposition 4.3. Let L be a finite locally constant sheaf on U . The map

RΓz(X, j⋆L ) −→ RΓz̃(X̃, ν⋆j⋆L )

is a quasi-isomorphism.

Proof. Denote by η1, . . . , ηr the generic points of the strict henselisations
of X̃ at the preimages z1, . . . , zr of z in X̃. Denote by X̃z the normalisation
of the strict henselisation of X at z. The normalisation of Uz is

Uz ×Xz X̃z = U ×X (X̃z1 ⊔ · · · ⊔ X̃zr ) = η1 ⊔ · · · ⊔ ηr

and since normalisation is birational, the map

η1 ⊔ · · · ⊔ ηr −→ Uz

is an isomorphism. Lemma 4.1 shows that it suffices to prove that

H2
z(X, j⋆L ) −→ H2

z̃(X̃, ν⋆j⋆L ) = H2
z1(X̃, ν⋆j⋆L )× · · · ×H2

zr
(X̃, ν⋆j⋆L )

is an isomorphism. Let us compute H2
z(X, j⋆L ). By excision, there is a

canonical isomorphism

H2
z(X, j⋆L ) ∼−→ H2

z′(Xz, g⋆j!L ) = H2
z′(Xz, j′

!g
′⋆L ).
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The long exact sequence in cohomology with support on z′ for the sheaf
j′

!g
′⋆L reads:

H1(Xz, j′
!g

′⋆L )−→H1(Uz, g′⋆L )−→H2
z′(Xz, j′

!g
′⋆L )−→H2(Xz, j′

!g
′⋆L ).

Lemma 4.2 ensures that the map

H1(Uz, g′⋆L ) −→ H2
z′(Xz, j′

!g
′⋆L )

is an isomorphism. Since the scheme Uz is the coproduct of the points
z′

1, . . . , z′
r, the group H1(Uz, g′⋆L ) is simply H1(z′

1, Lz′
1
)×· · ·×H1(z′

r, Lz′
r
).

On the other hand, for t ∈ {1 . . . r}, H2
zt

(X̃, ν⋆j⋆L ) is isomorphic to
H1(ηt, Lηt), and the map

H1(z′
t, Lz′

t
) −→ H1(ηt, Lηt)

is simply the isomorphism induced by ηt
∼→ z′

t. □

Denote by K the function field of X, and by Ksep a separable closure
of K.

Corollary 4.4. For each point z ∈ Z ×X X̃, choose a place of Ksep above
z and denote by Iz the corresponding inertia group. The one-term complex

0 −→ 0 −→
⊕

z∈Z×XX̃

H1(Iz, M) −→ 0 −→ · · ·

represents RΓZ(X, j⋆L ).

Proof. This is merely rephrasing Proposition 4.3 using the fact that only
H2

z is nonzero, which was proven in Lemma 4.1. □

4.2. Cohomology of constructible sheaves. Let k be an algebraically
closed field. Let n be an integer invertible in k. Denote by Λ the ring Z/nZ.
Let X be an integral curve with multicross singularities over k. Denote by
ν : X̃ → X its normalisation. Let F• = [F0 → · · · → F t] be a complex
of constructible sheaves of Λ-modules on X. This section aims to give an
explicit description of the cohomology complex RΓ(X,F).

Let j : U → X be the inclusion of a regular open affine subscheme of
X on which every sheaf Fs is locally constant. Let i : Z → X be the
inclusion of its closed complement with the reduced subscheme structure.
Set L • := j⋆F•, and M• := L •

η . Let V → U be an étale Galois cover such
that:

• each sheaf L s|V , s ∈ {0, . . . , t} is constant;
• each map H1(U, L s)→ H1(V, L s|V ), s ∈ {0, . . . , t} is trivial;
• the ramification index of V → U above every point of X̃ − U is

divisible by n.
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Denote by G the group Aut(V |U). Let Z̃ be the preimage of Z in X̃.
Given z̃ ∈ Z̃, denote by Iz̃ ⊂ G its inertia group, and by Pz̃ ◁ Iz̃ its wild
inertia subgroup. For each integer s ∈ {0, . . . , t}, let ϕs : Fs → j⋆L s be the
adjunction unit. Denote by ∂M the transition maps of the complex M•, by
∂F those of F•, and by ∂G the coboundary maps in the cochain complex
representing group cohomology with respect to the group G; in particular,
given an element m in a G-module, ∂G(m) is the crossed homomorphism
g 7→ g ·m−m. The remainder of this section will be dedicated to the proof
of the following result.

Theorem 4.5. In this situation, RΓ(X,F•)[1] ∈ Db
c(Λ) is represented by

the cone of the following morphism of complexes, whose terms are indexed
by s ⩾ 0:

· · · M s⊕Homcr(G, M s−1)⊕
⊕

z∈Z Fs
z⊕

⊕
z̃∈Z̃ H1(Iz̃/Pz̃, M s−2

Pz̃
) · · ·

· · ·
⊕

z̃∈Z̃

(
M s ⊕Homcr(Iz̃/Pz̃, M s−1

Pz̃
)⊕H1(Iz̃/Pz̃, M s−2

Pz̃
)
)

· · ·

Here, (a, b, cz, dz̃) is sent to (a−ϕz(c), resIz
G (b), d) where z = ν(z̃) and resIz

G
denotes the composite map

Homcr(G, M s) −→ Homcr(Iz, M)s −→ Homcr(Iz/Pz, M s
Pz

)

defined in Lemma 2.8. Then the transition map of the top complex is
(a, b, cz, dz̃) 7→ (∂M (a), ∂M (b)+(−1)s∂G(a), ∂F (cz), ∂M (dz̃)+(−1)s resIz

G (b)).
The transition map of the bottom complex is (a, b, c) 7→ (∂M (a), ∂M (b) +
(−1)s∂G(a), ∂M (c) + (−1)s∂G(b)).

Corollary 4.6. When computing the cohomology of a single constructible
sheaf F on X with generic geometric fibre M , the complex RΓ(X,F)[1] is
the cone of the following morphism of complexes:

(
⊕

z∈Z Fz)⊕M Homcr(G, M)
⊕

z̃∈Z̃ H1(Iz̃/Pz̃, MPz̃ )

⊕
z̃∈Z̃ M

⊕
z̃∈Z̃ Homcr(Iz̃/Pz̃, MPz̃ )

⊕
z̃∈Z̃ H1(Iz̃/Pz̃, MPz̃ )

(0,∂G)

((ϕz−id)z̃→z)z

(resIz̃
G )z̃

(resIz̃
G )z̃ id

∂Iz

Proof of the theorem. The functors j⋆, j⋆, i⋆, i⋆ can be extended to the (non-
derived) category of complexes of constructible sheaves on X. These func-
tors will allow us to compute RΓ(X,F•) in the following way: first consider
a short exact sequence involving F• in this category of complexes of con-
structible sheaves on X, then compute the associated distinguished triangle
in Db

c(Λ).



Computing the cohomology of constructible étale sheaves on curves 1099

Consider the following short exact sequence of complexes of constructible
sheaves on X:

0 −→ F• −→ j⋆L
• ⊕ i⋆i⋆F• −→ i⋆Q• −→ 0

where Q• := i⋆j⋆L •. Here, the first map is just the sum of the two adjunc-
tion maps F• → j⋆j⋆F• and F• → i⋆i⋆F•, and the second map is the dif-
ference of the adjunction maps j⋆L → i⋆i⋆j⋆L and i⋆i⋆F• → i⋆i⋆j⋆j⋆F•.
The object RΓ(X,F•)[1] of Db

c(Λ) is the cone of the morphism

RΓ(X, j⋆L
•)⊕ RΓ(X, i⋆i⋆F•) −→ RΓ(X, i⋆Q•).

Computing RΓ(X, j⋆L ). The following distinguished triangle in
Db

c(X, Λ) [17, 09XP]:

RΓZ(X, j⋆L
•) −→ RΓ(X, j⋆L

•) −→ RΓ(U, L •) +1−−→

shows that RΓ(X, j⋆L •)[1] is the cone of RΓ(U, L •)→ RΓZ(X, j⋆L •)[1].
Let us now turn to the computation of RΓ(U, L •) and RΓZ(X, j⋆L •). Ac-
cording to Proposition 3.4, RΓ(U, L •) is represented by the total complex
associated to the double complex

Homcr(G, M0) Homcr(G, M1) Homcr(G, M2) · · ·

M0 M1 M2 · · ·

which is

M0 −→M1 ⊕Homcr(G, M0) −→M2 ⊕Homcr(G, M1) −→ · · ·

For each integer s ∈ {0, . . . , t}, RΓZ(X, j⋆L s) is represented by the one-
term complex ⊕

z̃∈Z̃

H2
z̃(X, ν⋆j⋆L

s)[−2]

according to Lemma 4.1. By Corollary 4.4 and Proposition 2.7,
H2

z̃(X, ν⋆j⋆L s)=H1(Iz̃,M s)=H1(Iz̃/Pz̃,M s
Pz̃

). It follows that RΓ(X, j⋆L •)
is represented by the complex

M0 (∂0
M ,∂0

G)
−−−−−→M1 ⊕Homcr(G, M0)

(∂1
M ,∂0

G−∂0
M ,resIz̃

G )
−−−−−−−−−−−−→M2 ⊕Homcr(G, M1)⊕

⊕
z̃∈Z̃

H1(Iz̃, M0) −→ · · ·
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Representing RΓ(X, i⋆i⋆F•). For all s ∈ {0, . . . , t}, RΓ(X, i⋆i⋆Fs) is
simply represented by the one-term complex H0(Z,Fs)[0]. Therefore
RΓ(X, i⋆i⋆F•) is represented by the complex⊕

z∈Z

F0
z −→

⊕
z∈Z

F1
z −→

⊕
z∈Z

F2
z −→ · · ·

whose differentials are those of F•.

Representing RΓ(X, i⋆Q•). We know that

RΓ(X, i⋆Qs) = RΓ(X, i⋆i⋆j⋆L
s)

is represented by the one-term complex
⊕

z∈Z̃ H0(Iz, M s) concentrated in
degree zero. However, in order to be able to express the map RΓZ(X, j⋆L )→
RΓ(X, i⋆Qs) as a morphism of complexes, we will write RΓ(X, i⋆Qs) as the
following three-term complex:⊕

z̃∈Z̃

M s −→
⊕
z̃∈Z̃

Homcr(Iz̃/Pz̃, M s
Pz̃

) −→
⊕
z̃∈Z̃

H1(Iz̃/Pz̃, M s
Pz̃

)

whose first differential is the one sending (ms
z̃)z̃ to (gz̃ 7→ (gz̃ ·ms

z̃ −ms
z̃))z̃,

and the second one is the usual quotient map. By the same arguments as
above, RΓ(X, i⋆Q•) is thus represented by the complex⊕

z̃∈Z̃

M0 −→
⊕
z̃∈Z̃

(M1 ⊕Homcr(Iz̃/Pz̃, M0
Pz̃

))

−→
⊕
z̃∈Z̃

(M2 ⊕Homcr(Iz̃/Pz̃, M1
Pz̃

)⊕H1(Iz̃/Pz̃, M0
Pz̃

)) −→ · · ·

Putting everything together. We have now computed each term of the
morphism of complexes

RΓ(X, j⋆L
•)⊕ RΓ(X, i⋆i⋆F•) −→ RΓ(X, i⋆Q•)

whose cone is RΓ(X,F•). The morphism itself is the difference of the two
adjunction maps. □

Remark 4.7. A cover V → U as in the theorem may be computed in
the following way: consider an étale Galois cover W → U such that each
L i|W is constant, and set V = W ⟨n⟩. While W ⟨n⟩ is the canonical choice,
we may for complexity reasons choose any of its subcovers that still satisfy
the three required properties listed above. Here is one example of such a
subcover. The action of Gal(k|k0) on H1(U, L •) factors through a finite
quotient Gal(k1|k0). The image of H1(U, L •) in H1(W, Λ) is still defined
over k1, and we may construct a Galois subcover of W ⟨n⟩ → U by taking
nth roots only of functions that are defined over k1. This will be used in the
case of finite fields in Section 5.6.
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4.3. Computing the Galois action. Let k0 be a perfect field, let k be
an algebraic closure of k0 and G0 = Gal(k|k0). Consider a curve X0 over k0.
For the sake of simplicity, we consider a single sheaf F0 on X0. The general
case of complexes of sheaves is handled in the same way. Let X = X0×k0 k
and F = F0|X . This section is dedicated to the description of a complex of
Λ[G0]-modules representing RΓ(X,F). Let U0 be an affine open subset of
X0 on which F is locally constant, and W0 → U0 be a Galois cover such that
F0|W0 is constant. Let Z0 be the reduced closed complement of U0 in X0.
Denote by U, W, Z their base changes to k. Consider the cover V = W ⟨n⟩,
and the complex representing RΓ(X,F) computed above using V .

The easy case: when W0 has a rational point w0. In that case,
W is connected. The terms of RΓ(X,F) consist of cohomology groups of
G = Aut(V |U) or Iz/Pz, where z is a closed point at infinity of U , with
values in (a suitable quotient of) M . Understanding the action of G0 on G
is straightforward: let w be a geometric point of W whose image in W is
w0, let u be its image in U and v a preimage of w in V = W ⟨n⟩. The group
G0 acts on π1(W, w) ⊂ π1(U, u) by functoriality, and since W ⟨n⟩ → W is
characteristic, this action restricts to π1(V, v). Moreover, for z ∈ X(k0), the
group G0 acts naturally on Iz/Pz, which is canonically isomorphic to µe(k),
where e is the ramification index of V ⟨n⟩ → U above z. Finally, the group
MPz does not depend on the choice of preimage of Z in the compactification
of V ⟨n⟩. For a point z defined over an extension k1 of k0, we need to consider
its Galois orbit T : then G0 acts naturally on

⊕
t∈T RΓ(It/Pt, MPt), where

the preimages of t whose inertia groups we compute have been chosen in
the same G0-orbit. These considerations allow us to compute the action of
G0 on each of the terms of the complex representing RΓ(X,F).

The general case. In general, W need not be connected, and the func-
tion field k0(W0) may contain a finite nontrivial Galois extension of k0.
Section 2.5 shows how to construct a Galois cover V0 → U0 whose function
field contains a sufficiently large Galois extension L of k0 over which the
elements of H1(W, µn) as well as the points at infinity of V := V0 ×k0 k are
defined. This ensures that any closed point of the smooth compactification
of V0 above a point of Z0 is exactly L. Consider a connected component Vc of
V . The group Gc := Aut(Vc|U) = ker(Aut(V0|U0)→ Gal(L|k0)) is the sta-
biliser of Vc in G := Aut(V0|U0). Set M0 = H0(V0,F0) and M = H0(V,F);
then M is the induced representation indG

Gc
(M0), and Shapiro’s lemma [15,

Thm. 4.19] shows that the map
τ⩽1 RΓ(Gc, M0) −→ τ⩽1 RΓ(G, M)

in Db
c(Λ) is a quasi-isomorphism. As an abelian group, M = Md

0 where d
is the number of connected components of V . The group G0 acts naturally
on M as it does on set the connected components of V , in a way that is
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compatible with its action on G. This allows to compute the action of G0 on
τ⩽1 RΓ(G, M). Let z ∈ Z0 be a closed point with residue field k1. Let v be a
preimage of z in V0. Denote by T := {τ(z), τ ∈ Gal(k1|k0)} the G0-orbit of
z. For each τ ∈ Gal(k1|k0), consider a preimage vτ of τ(z) in V0; we choose
the vτ to be in the same G0-orbit. Let Dτ ◁ G be the decomposition group
of vτ . The map Dτ → Gal(L′|k0) is surjective, and its kernel is the inertia
group Iτ of vτ , so that M = indDτ

Iτ
M0. Shapiro’s lemma now ensures that

RΓ(Dτ , M) = RΓ(Iτ , M0) = RΓ(Iτ /Pτ , MPτ
0 )

in Db
c(Λ). The group G0 acts naturally on the complex

⊕
τ RΓ(Dτ , M),

whose cohomology groups are H0(T, j⋆F|U ) and H2
T (X, j⋆F|U ). Using these

notations, RΓ(X,F)[1] is isomorphic in Db
c(Λ[G0]) to the cone of the fol-

lowing morphism of complexes:

0 M ⊕
⊕

T H0(T,F) Homcr(G, M)
⊕

T

⊕
τ H1(Iτ /Pτ , MPτ ) 0

0
⊕

T

⊕
τ MPτ

⊕
T

⊕
τ Homcr(Iτ /Pτ , MPτ )

⊕
T

⊕
τ H1(Iτ /Pτ , MPτ ) 0

⊕
T,τ

(resG
Iτ

−ϕz)

(∂G,0)

⊕
T,τ

resG
Iτ id⊕

z
∂Iτ

where T runs through the G0-orbits in Z, and τ runs through the k0-
automorphisms of the residue field of the closed points of T .

4.4. Functoriality over Spec k. Consider a morphism ϕ : X ′ → X of
integral curves over an algebraically closed field k. As usual, let n be an
integer invertible in k, and denote by Λ the ring Z/nZ. Let F be a con-
structible sheaf of Λ-modules on X. Here is how to compute a morphism
of complexes of Λ-modules representing RΓ(X,F) → RΓ(X ′, ϕ⋆F). Let U
be an affine open subset of X on which F is locally constant. Let W → U
be an étale Galois cover such that F|W is constant, and W ′ → U ′ be the
Galois closure of a connected component of W ×X X ′. Consider the Galois
covers V = W ⟨n⟩ →W and V ′ = (W ′)⟨n⟩ →W ′. Given the construction of
V and V ′, the map H1(W, µn)→ H1(W ′, µn) defines a map V ′ → V .

By elementary Galois theory, there is a map Aut(V ′|U ′) ⊆ Aut(V ′|U)→
Aut(V |U). For each point z ∈ X − U , choose a preimage zV of z in the
smooth compactification of V . For each preimage z′ of z in X ′, consider
a preimage z′

V of z′ in the smooth compactification of V ′ whose image
in V is zV . Consider the inertia groups PV ◁ IV ⊆ Aut(V |U) of zV and
PV ′ ◁ IV ′ ⊆ Aut(V ′|U ′) of z′

V . The map Aut(V ′|U ′) → Aut(V |U) induces
for each choice of z, z′, zV , z′

V a map IV ′/PV ′ → IV /PV . The functoriality of
the bar resolution thus allows to compute the maps RΓ(Aut(V ′|U ′), M)→
RΓ(Aut(V |U), M) and RΓ(IV /PV , MPV ) → RΓ(IV ′/PV ′ , MPV ′ ) that are
needed to compute the morphism of complexes representing RΓ(X,F) →
RΓ(X ′, ϕ⋆F).
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4.5. Cohomology of curves over a field of cohomological dimen-
sion 1. Consider a perfect field k0 of cohomological dimension 1 such that
H1(k0,Z/nZ) is finite, e.g. a finite field or the fraction field of a strictly
henselian local DVR. Let n be an integer invertible in k0. Denote by Λ the
ring Z/nZ. Let X0 be an integral curve over k0, and F•

0 be a complex of
constructible sheaves of Λ-modules on X0. Denote by k the algebraic clo-
sure of k0, by G0 the Galois group Gal(k|k0) and by X,F the respective
base changes of X0,F0 to k. Theorem 4.5 shows how to compute a complex
M• of G0-modules representing RΓ(X,F•). Recall that

RΓ(X0,F•
0 ) = RΓ(G0, RΓ(X,F•)).

We described in Section 3 how to determine a complex representing this
object. Let k1 be a Galois extension of k such that the action of G0 on
RΓ(X,F•) factors through Gal(k1|k0). Consider the extension k

⟨n⟩
1 of k0

with Galois group H1(k1, Λ)∨, and the Galois group G = Gal(k⟨n⟩
1 |k0).

Then RΓ(X0,F0) is represented by the total complex associated to the
double complex Bi,j = HomΛ[G](τ⩾−1P −j

G (Λ), M i), where PG is the usual
projective resolution of Λ as a Λ[G]-module.

Remark 4.8. The same method also applies in theory to the general case
where H1(k0, Λ) is infinite, using continuous group cohomology and Λ[[G]]-
modules; one particularly interesting case to consider would be when k0 is
the function field of a curve over an algebraically closed field. However, to
go any further in practical computations, one is quickly confronted with the
issue of computing a generating set of H1(k0,Z/nZ) ≃ k×

0 /(k×
0 )n.

5. Algorithmic aspects

In this whole section, n is a positive integer and Λ denotes the ring Z/nZ.

5.1. Representing curves and sheaves.

Representing curves. A smooth projective curve over a field k0 is de-
fined by a (possibly singular) plane model given by a polynomial in two
variables. When working with a closed subscheme of a smooth curve, we
may always suppose that its image in the plane model is nonsingular. Such
a closed subscheme is defined by equations; an open subscheme is defined
by its closed complement. A morphism of smooth curves is given by a mor-
phism of plane models, i.e. by two polynomials in two variables. The only
time we need to work with rational points is when considering the geomet-
ric points in a given closed subscheme Z0 of the curve; in that case, we may
replace k0 with a finite extension over which these points are defined. This
extension has degree bounded by the number r of geometric points in Z0,
and passing to this extension has no impact on the complexity estimates
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given below, which are all at least polynomial in r. A curve X with multi-
cross singularities is defined by its normalisation X̃, as well as the subsets
of points of X̃ that have the same singular image in X; again, we suppose
that these subsets of X̃ have a nonsingular image in the plane model.

Representing sheaves. Let X be a smooth curve over an algebraically
closed field k of characteristic prime to n. A constructible sheaf of Λ-
modules on the étale site of X will be described by the following gluing
data, which defines it uniquely [13, II, Thm. 3.10]:

• a closed 0-dimensional subscheme Z of X, defined by an equation;
• a finite locally constant sheaf L on the open complement U of

Z, defined by a Galois cover V → U and the action of the group
G = Aut(V |U) on the Λ-module M = H0(V, L );
• for each point z ∈ Z, the Λ-module Fz defined by generators and

relations;
• for each point z ∈ Z, the gluing morphism ϕz : Fz → (j⋆L )z =

H0(Iz, M), where Iz ⊂ G is the stabiliser of a preimage of z in V .
This data also allows to represent morphisms and direct sums of sheaves in
a very straightforward manner, as well as to compute tensors products and
Hom-sheaves; see [10, §III.4] for more details. While this representation of
constructible sheaves might not be the first that comes to mind, it is well
suited to our computation of cohomology groups. The usual ways of defining
constructible sheaves (as cokernel of f!Λ→ g!Λ with f, g étale or kernel of
f⋆Λ→ g⋆Λ with f, g finite) also admit an algorithmic representation, which
can be converted into this one (see [10, §III.3]).

5.2. Computing the cohomology of µn: existing algorithms. Our
methods rely on existing algorithms which, given a smooth integral curve
X over an algebraically closed field k of characteristic prime to n, compute
H1(X, µn). Recall that we need to be able to compute it even for affine
curves, which can prove to be a bit trickier than in the projective case.

The most efficient algorithm computing H1(X, µn), developed by Cou-
veignes, only applies to projective curves over finite fields, and actually
requires prior knowledge of the characteristic polynomial of the Frobenius
endomorphism of X; since it makes use of some properties of the Frobenius
and the group structure of Pic0(X)[n], adapting it to the cohomology of
affine curves, or of curves over other types of fields does not seem easy.
Given a curve of genus g over Fq, described by an ordinary plane model of
degree d, it computes Pic0(X)(Fq)[n] in time polynomial in d, g, log q, n [1,
Thm. 1].

While it was also first described only for projective curves over finite
fields, Huang and Ierardi’s method [8] applies to more general settings.
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Their algorithm constructs an affine scheme whose points correspond to di-
visors D such that nD is the divisor of a rational function, and then finds a
point in each irreducible component of this scheme, which is enough to find
a representative of every n-torsion class in Pic0(X). This strategy readily
adapts to the computation of division by n in Pic0(X), thus allowing to
compute the cohomology of µn on an open subset of X. It is also indepen-
dent of the chosen base field. The complexity of their algorithm, computed
when the base field is Fq, is polynomial in ng, nd, log q [10, Prop. 4.3.3].

In the remainder of this article, we will denote by H1Const(k0, n, d, g, r)
or simply H1Const(X, n) the complexity of the computation of H1(X, µn),
where X is a smooth integral curve of genus g over k, given by a degree
d polynomial in k0[x, y], with r points at infinity. We will also denote by
Root(k0, n, d) the complexity of computing an nth root of an element in a
degree d extension of k0.

5.3. Computing in H1(X, µn). Let U be a smooth integral curve over
an algebraically closed field k of characteristic prime to n. Let X be the
smooth compactification of U . Let n be an integer invertible in k, and Λ
be the ring Z/nZ. Denote by P0, . . . , Pr the points of X − U . Recall that
the elements of H1(U, µn) are equivalence classes [D, f ] of pairs where f is
a rational function on U such that divU (f) = nD. The class [D, f ] is trivial
in H1(U, µn) precisely when f is an nth power. The sum [D, f ] + [D′, f ′] is
defined by [D + D′, ff ′].

Here is how to compute the coordinates of an element of H1(U, µn) in a
given basis using the Weil pairing, as is done in the projective case in [1,
§8]. The Weil pairing

en : H1(U, µn)×H1
c(U, µn) −→ µn

is nondegenerate. In this context,

H1
c(U, µn) = {(D, f)∈Div(U)×k(X)× |nD=div(f), f(P0)=···=f(Pr)=1}

{(D, fn) where f(P0) = · · · = f(Pr) = 1}

sits in the short exact sequence

0 −→ µn(k)r

µn(k) −→ H1
c(U, µn) −→ H1(X, µn) −→ 0

and may be computed in the following way. Choose a primitive nth root of
unity ζ ∈ k. For each i ∈ {1 . . . r}, consider a function gi ∈ k(X) such
that gi(P0) = ζ−1, gi(Pi) = ζ, and gi(Pj) = 1 for all j ̸= 0, i. Then
([div(g1), gn

1 ], . . . , [div(gr, gn
r ]) is a basis of the image of µn(k)r/µn(k) in

H1
c(U, µn). The Weil pairing is computed as usual: given v = [D, f ] ∈
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H1(U, µn) and w = [E, g] ∈ H1
c(U, µn) where f and g are suitably nor-

malised,

en(v, w) = f(E)
g(D) .

Algorithm 1: CoordinatesInBasis
Data: Smooth integral curve U over alg. closed field k, smooth

compactification X of U
The points P0, . . . , Pr of X − U
Positive integer n invertible in k
Basis B = (v1, . . . , v2g+r) of H1(U, µn), where
vi = (Di, fi) ∈ Div(U)×K× and ([v1], . . . , [v2g]) is a basis of
H1(X, µn)
Element v0 ∈ H1(U, µn) represented by (D0, f0) ∈ Div(U)×K×

Primitive nth root of unity ζ ∈ k
Result: Coordinates (α1, . . . , α2g+r) ∈ Λ2g+r of v w.r.t. B

Function h ∈ k(X)× such that f = hnfα1
1 . . . f

α2g+r

2g+r

for i ∈ {1 . . . r} do
Compute function fi such that fi(P0) = ζ−1, fi(Pi) = ζ, and
fi(Pj) = 1 for j ̸= 0, i

Set v1−i := (div(gi), gn
i )

end
Compute matrix
M = en(vi, vj)0⩽i⩽2g+r,1−r⩽i⩽2g ∈ Mat(2g+r+1)×(2g+r)(µn(k))

Compute an element (1,−α1, . . . ,−α2g) ∈ ker(M): then
v0 =

∑
i αivi in H1(U, µn)

Compute Riemann–Roch space L of D0 −
∑

i αiDi

Pick h ∈ L: then D0 −
∑

i αiDi = div(h−1)
Compute nth root c ∈ k of f0hn ∏

i f−αi
i ∈ k

return α1, . . . , α2g+r ∈ Λ and function ch ∈ k(X)×

Lemma 5.1. Suppose all of the divisors D0, . . . , D2g+r are given as differ-
ence of two effective divisors of degree ⩽ m, and the curve X is given by
a plane model of degree d. This algorithm returns the coordinates of v in
time Poly(d, m, g, r) + Root

(
k0, n, n(2g+r)2

)
.

Proof. Computing the functions fi using Lagrange interpolation, as well as
the matrix M using the definition above, is straightforward. The kernel of
M is computed using standard linear algebra techniques over Λ (using the
isomorphism µn(k)→ Λ given by ζ 7→ 1), which run in polynomial time in
the size of M . □
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5.4. Construction of V ⟨n⟩. Let k be an algebraically closed field of char-
acteristic prime to n. Let X be an integral smooth projective curve over
k, and U an affine open subscheme of X. Let V be an étale Galois cover
of U . The following algorithm computes the cover V ⟨n⟩ → V defined in
Section 2.1, as well as the group Aut(V ⟨n⟩|U).
Algorithm 2: nTorsCover
Data: Galois cover V → U of smooth integral curves over alg.

closed field k
Generating set S of Aut(V |U)
Integer n invertible in k
Result: Generating set of Aut(V ⟨n⟩|U)

Compute basis [Di, fi]1⩽i⩽s of H1(V, µn) (see Section 5.2)
for σ ∈ S do

for i ∈ {1 . . . s} do
Compute σ⋆(Di, fi)
Compute h, α1, . . . , αs such that σ⋆fi = hn

i fα1
1 . . . fαs

s using
Algorithm 1

end
Define ρσ : (x, y) 7→ σ(x, y), zj 7→ hjzα1

1 . . . zαs
s

end
for i ∈ {1 . . . s} do

Define ϕi : (x, y) 7→ (x, y), zi 7→ ζzi, (zj)j ̸=i 7→ (zj)j ̸=i

end
return {ρσ}σ∈S ∪ {ϕi}1⩽i⩽s

Proposition 5.2. If U has r points at infinity and V is given by an or-
dinary plane model of degree d, Algorithm 2 computes a generating set of
Aut(V ⟨n⟩|U) in

H1Const(k0, n, d, (2g + r)[V : U ], r[V : U ])

elementary operations.

Proof. The genus of V is bounded by (2g + r)[V : U ]. The complexity of
computing the coordinates of the pullback of the divisors is polynomial-
time in n, [V : U ](2g + r), d, hence dominated by that of computing a basis
of H1(V, µn). □

Here is how, once G⟨n⟩ = Aut(V ⟨n⟩ → U) has been computed, to compute
the preimages of points of X in the smooth compactification of V ⟨n⟩, as well
as their inertia group. This is done by considering a suitable explicit model
of V ⟨n⟩. Recall that the function field of V ⟨n⟩ is obtained from that of V
by adjoining nth roots of functions f1, . . . , ft ∈ k(V ). Write fi = gi

hi
, where
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gi, hi ∈ k[x, y]. Denote by Z (resp. W , resp. W ⟨n⟩) the sets of points at
infinity of U (resp. V , resp. V ⟨n⟩). Consider a point z ∈ Z, and a preimage
w of z in W . Replacing fi with hn

i fi if necessary, we may suppose hi(w) ̸= 0.
Then the affine curve given by the equation of V and hiz

n
i −gi contains nt−1

preimages of w, which are nonsingular. Given one of these preimages w, the
inertia subgroup Iw can be computed simply by evaluating the elements of
G⟨n⟩ at w.
Algorithm 3: InertiaGroup
Data: Galois cover V → U of smooth integral curves over alg.

closed field k, with smooth compactification Y → X Integer
n invertible in k

Group Aut(V ⟨n⟩|U) and basis (Di, fi = gi
hi

)1⩽i⩽s of H1(V, µn)
Point z in compactification of U , preimage w of z in
compactification of V
Result: Preimage w⟨n⟩ of w in compactification of V ⟨n⟩

Generating set of inertia group I⟨n⟩ ⊂ Aut(V ⟨n⟩|U) of w⟨n⟩

for i ∈ {1 . . . s} do
if hi(w) = 0 then

gi ← hn−1
i gi, hi ← 1

end
Compute root ti of hi(z)T n − gi(z) ∈ k[T ]

end
Set w⟨n⟩ = (w, t1, . . . , ts) ∈ Spec Y [z1, . . . , zn]/(hiz

n
i − gi)

I⟨n⟩ := {σ ∈ G⟨n⟩ | σ(w⟨n⟩) = w⟨n⟩}
return w⟨n⟩, I⟨n⟩

Lemma 5.3. Algorithm 3 returns a preimage w⟨n⟩ of w in the smooth
compactification of V ⟨n⟩ and its stabiliser in

[V : U ]
(
(n2g+r + (2g + r)Root

(
k0, n, n([V :U ](2g+r))2))

elementary operations.

Proof. Computing w⟨n⟩ requires [V : U ](2g + r) computations of nth roots
in k. Computing I⟨n⟩ requires [V : U ]n2g+r function evaluations. □

5.5. Computation of RΓ. Let k0 be a perfect field of characteristic
prime to n, and k be an algebraic closure of k0. Let X0 be an integral
curve over k0 with ordinary singularities, and X = X0 ×k0 k. Consider a
complex F•

0 = [F0
0 → . . . → F t

0] of constructible sheaves of Z/nZ-modules
on X0, and set F• := (F0)•|X . Let U be a smooth open affine subscheme
of X such that F•|U is a complex of locally constant sheaves. Let r be
the number of points of X − U . Let V → U be an étale Galois cover such
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that, for each integer i ∈ {0 . . . t}, the sheaf F i|U is constant. Denote by G
the automorphism group of V → U . The following algorithm computes the
cohomology complex RΓ(X,F•) described in Theorem 4.5.
Algorithm 4: RGamma
Data: Integral curve X over alg. closed field k
Integer n invertible in k
Constructible sheaf complex F• on X as described in Section 5.1:
affine open U ⊂ X where each F i is locally constant,
Galois cover V → U which trivialises L • := F•|U ,
Galois group Aut(V |U) and inertia subgroups Iz ⊂ G for z ∈ X −U ,
generic fibres M i of F i with action of Aut(V |U),
fibres F i

z for z ∈ X − U ,
adjunction units ϕi

z : F i
z → (M i)Iz .

Result: Complex of Λ-modules representing RΓ(X,F)

Compute Aut(V ⟨n⟩|U) using Algorithm 2
Compute inertia subgroups I ′

z ⊂ Aut(V ⟨n⟩|U) using Algorithm 3
Using linear algebra, compute Homcr(Aut(V ⟨n⟩|U), M i) and
Homcr(I ′

z, M i) for z ∈ X − U
Compute the morphism
Ψ: RΓ(X, i⋆i⋆F•)⊕ RΓ(X, j⋆L •)→ RΓ(X, i⋆i⋆j⋆L •) of
Theorem 4.5

return Cone(Ψ)[−1]

Theorem 5.4. Let m be an integer such that M and the fibres F i
z, z ∈ Z,

i ∈ {0 . . . t} are given by at most m generators. Denote by d the degree of an
ordinary plane model of V . Algorithm 4 computes a complex of Λ-modules
representing RΓ(X,F) in

H1const(k0, n, d, [V : U ](2g + r)) + Poly
(
(n[V :U ](2g+r))2

, m, t
)

+ [V : U ](2g + r)Root
(
k0, n, n([V :U ](2g+r))2)

elementary operations. When k0 = Fq, this number is bounded by

Poly
(
n([V :U ](2g+r))2

, nd, m, log q, t
)

.

Proof. This is just putting together the complexities of the previous algo-
rithms, taking into account that the computation of modules of crossed
homomorphisms is done using linear algebra over Λ. In order to bound the
number in the case of a finite field, we use the complexity of Huang and
Ierardi’s algorithm to compute H0(V, µn). □
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Remark 5.5. The only existing algorithm computing H1(X,F) when F is
locally constant is Jin’s algorithm; its complexity is exponential in |M |log |M |

[9, Thm. 1.2], to which the complexity of our algorithm compares favourably.

5.6. Improving complexity when k0 is finite. Here we consider the
case where k0 = Fq is a finite field, X0 is a smooth curve over k0, and
F0 is a constructible sheaf of Fℓ-vector spaces on X0, where ℓ is a prime
not dividing q. Let U0 be an open subset of X0 on which F0 is locally
constant. Denote by V0 → U0 an étale Galois cover such that F0|V0 is
constant with fibre M . For simplicity, we assume V0 to be geometrically
connected; if it were not, the field extension FQ defined below should be
replaced by its compositum with the field extension defined in Section 2.5.
Write m = dimFℓ

(M). Denote by k = Fq an algebraic closure of k0, and by
X, U, V the base changes of X0, U0, V0 to k. Denote by gX the genus of X
and by r the number of points of X − U .

Lemma 5.6. Set D = |GLm(2gX+r)(Fℓ)| and Q = qD. Consider a basis
(D1, f1), . . . , (Ds, fs) of the Fℓ-vector space H1(V, µℓ)(FQ), that is, the sub-
space of elements of H1(V, µℓ) invariant under the action of Gal(k|FQ).
Denote by V

⟨ℓ⟩
D the étale Galois cover of V defined by the function field

extension k(V )( ℓ
√

f1, . . . , ℓ
√

fs). The map H1(U,F|U ) → H1(V ⟨ℓ⟩
D ,F|

V
⟨ℓ⟩

D

) is
trivial.

Proof. We know that the action of Gal(k|k0) factors through a finite quo-
tient Gal(k1|k0), where [k1 : k0] divides AutFℓ

(H1(U,F)). Recall the prime-
to-p fundamental group of U is generated by at most 2g + r elements. Now
H1(U,F) is a quotient of Homcr(π1(U)(p′), M); its dimension as an Fℓ-vector
space is bounded above by m(2gX + r). Therefore, AutFℓ

(H1(U,F)) injects
into GLm(2gX+r)(Fℓ). Note that since ℓ divides Q− 1, the field FQ contains
a primitive ℓth root of unity ζ, and the isomorphism H1(V,Fℓ)→ H1(V, µℓ)
defined by 1 7→ ζ is Gal(k|FQ)-equivariant. Since the U -automorphisms of
V are defined over Fq, the set H1(V, µℓ)(FQ) is stable under the action of
Aut(V |U), and V ′ → U is still Galois. The construction of V

⟨ℓ⟩
D ensures

that H1(V,Fℓ)(FQ) → H1(V ⟨ℓ⟩
D ,Fℓ) is trivial. The m copies of F|V ≃ Fm

ℓ
being stable under the action of Gal(k|k0), the map

H1(U,F) −→ H1(V ⟨ℓ⟩
D ,F) ∼−→ H1(V ⟨ℓ⟩

D ,Fℓ)m

factors through H1(V,Fℓ)(FQ)m, and is also trivial. □

Hence, we may use V
⟨ℓ⟩

D instead of V ⟨ℓ⟩ in Algorithm 4. Note that D ⩽
ℓ(m(2g+r))2 .
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Computing H1(V, Fℓ)(FQ). This group is isomorphic to H1(V, µℓ)(FQ).
Denote by V the smooth projective curve containing V , and by JV its
Jacobian. Consider a basis (Di, fi)1⩽i⩽s of H1(V, µℓ)(FQ). Here, the Di are
divisors on V such that ℓDi = divV (fi). The proof of Lemma 2.4 tells us
that we may assume some of these pairs to form a basis of JV [ℓ](FQ). For
the remaining ones, the elements Mi := ℓDi − divV (fi) form a basis of the
space of Gal(k|FQ)-invariant elements of the kernel of the following map.

H0(V − V,Fℓ) −→ Fℓ

(λP )P ∈V −V 7−→
∑
P

λP

Finding the Di amounts to dividing the Mi by ℓ in JV . Here is how to do
this. Any element of J(FQ) has order dividing Q−1. Write Q−1 = ℓαs with
s prime to ℓ. Then sMi ∈ J [ℓα](FQ), and we may find in J [ℓα+1](FQ) an
element Ei such that ℓEi = sMi: to do this, compute J [ℓα+1](FQ) and use
linear algebra. Actually, given the definition of α, J [ℓα+1](FQ) = J [ℓα](FQ).
Considering integers u, v such that uℓ+vs = 1, we have Mi = ℓ·(uMi+vEi).

Complexity. Since Q = qD where D = |GLm(2gX+r)(Fℓ)|, the integers α

and s can be computed easily. As soon as qℓ−1 ̸= 1 mod ℓ2, we know qℓ−1

has order ℓα−1 in (Z/ℓαZ)× and

α− 1 ⩽ vℓ(D) = (m(2gX + r))(m(2gX + r)− 1)
2

which is polynomial in m, gX , r. The complexity of computing H1(V, µℓ)(FQ)
is dominated by the computation of J [ℓα](FQ). Couveignes’ algorithm com-
putes J [ℓα](FQ) in time polynomial in ℓα, the genus of V and log(Q), as-
suming the characteristic polynomial of the Q-Frobenius on V is known.

5.7. Potential application: point counting on surfaces. Let X0 be
a smooth projective surface over a finite field k0 = Fq. Denote by k an
algebraic closure of k0, and set X = X0 ×k0 k. Consider the problem of
computing |X(k0)|. The usual approach, as in Schoof’s algorithm, is to
compute this number modulo ℓ for enough primes ℓ up to O(log q).

The Lefschetz theorem reduces this question to computing the trace of
the Frobenius on Hi(X,Fℓ). The classical way of computing these groups,
as in [13, §V.3], is by using a Lefschetz pencil, which yields a fibration
π : X̃ → P1, where X̃ is a blowup of X at a finite number of points. Edix-
hoven conjectured in [3, Epilogue] that this strategy might allow us to
compute |X(k0)| in time polynomial in log(q). Here is where we stand on
this conjecture. The sheaf F := R1π⋆Fℓ is a constructible sheaf on the pro-
jective line. It is locally constant on the open subset U of P1 over which the
fibres of π are smooth curves. For z ∈ P1 − U , we know how to compute
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RΓ(Xz,Fℓ). Moreover, given an explicit description of F , we know how to
compute RΓ(P1,F). Denote by Xη the generic fibre of π, and by gη its
genus. A trivialising cover V → U of F|U is given by the normalisation
of U in an extension of K of k(t) over which Pic(Xη)[ℓ] is defined. The
following data helps us estimate the complexity we need for the different
steps of the algorithms:

• the degree [K : k(t)] is smaller than ℓ4g2
η̄ ;

• the number r = |P1 − U | only depends on π and not on ℓ;
• the genus gV of V is bounded by rℓ4g2

η̄ .
Computing the whole cover V ⟨ℓ⟩ would be too costly. However, as suggested
in Section 5.6, it is sufficient to compute a subcover V

⟨ℓ⟩
D of V ⟨ℓ⟩ using only

elements of H1(V, µℓ) defined over a degree D = O(ℓ4g2
η̄r2

) extension FQ of
Fq. Hence, if we could compute:

• H1(Xη, µℓ) in time polynomial in ℓ and log(q),
• H1(V, µℓ)(FQ) in time polynomial in ℓ, log Q and the genus of V ,

then we should be able to compute the Hi(X,F) with their Frobenius action
in time Poly(ℓ, log q). Mascot recently described an algorithm to deal with
the first item of the list [12, Alg. 2.2] using p-adic approximation; however,
parts of his method are not yet rigorous [12, Rk. 4.3].

For the moment, this is nothing more than wishful thinking: all existing
algorithms to compute H1(V, µℓ), even for projective curves, have complex-
ity exponential either in log(q) or in the genus of V . However, there is
some hope. Harvey’s algorithm [6, Thm. 1], which computes the zeta func-
tion of hyperelliptic curves, reaches an average polynomial-time complexity.
Combined with Couveignes’ algorithm and Section 5.6, this allows for an
average polynomial-time complexity for the computation of H1(V, µℓ)(FQ)
in the case where V is an open subset of a hyperelliptic curve.

6. First example: sheaves on subschemes of P1

6.1. The cover. Take n = 2. Let k0 be a field of odd characteristic in
which −1 is not a square. Consider the degree 2 (ramified) Galois cover

f : P1 −→ P1

y 7−→ y2

whose automorphism group is generated by τ : y 7→ −y. Set U = P1 −
{0, 1,∞} and V = f−1U = P1 − {0,±1,∞}, and consider the étale cover
f : V → U induced by f .

Computation of V ⟨n⟩. The group H1(V, µ2) ≃ Λ3 is generated by the
divisor-function pairs (0 − ∞, y), (1 − ∞, y − 1), (−1 − ∞, y + 1). The
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cover V ⟨n⟩ → V with group H1(V, Λ)∨ corresponds to the field extension
k(√y,

√
y − 1,

√
y + 1)/k(y). The corresponding cover of V = P1 is the map

Proj k[z0, z1, z2, z3]/(z2
1 − (z2

0 − z2
3), z2

2 − (z2
0 + z2

3)) −→ Proj k[y0, y1]
(z0 : z1 : z2 : z3) 7−→ (z2

0 : z2
3)

which is ramified above 0,±1,∞.

Computation of Aut(V ⟨n⟩|U). The automorphism group G :=
Aut(V ⟨n⟩|U) has order 16; in order to compute all of its elements, it suffices
to compute a preimage of τ in Aut(V ⟨n⟩|U). Such a preimage is given by
γ : (z0 : z1 : z2 : z3) 7→ (

√
−1z0 :

√
−1z2 :

√
−1z1 : z3). Let

σ1 : (z0 : z1 : z2 : z3) 7−→ (−z0 : z1 : z2 : z3)
σ2 : (z0 : z1 : z2 : z3) 7−→ (z0 : −z1 : z2 : z3)
σ3 : (z0 : z1 : z2 : z3) 7−→ (z0 : z1 : −z2 : z3)

be the obvious generators of Aut(V ⟨n⟩|V ) ◁ G. Then γσ2 = σ3γ and γσ3 =
σ2γ, which implies that ⟨σ2, σ3⟩ is normal in G. It is easy to check that the
composite map

⟨γ⟩ −→ G/⟨σ2, σ3⟩
is an isomorphism; therefore,

G = ⟨σ2, σ3⟩⋊ ⟨γ⟩.

6.2. Cohomology of a locally constant sheaf. The sheaf F := f⋆Λ is
locally constant on U , trivialised by the cover f : V → U since f⋆f⋆Λ ≃ Λ2.
It corresponds to the Aut(V |U)-module Λ2, where the non-trivial element of
Aut(V |U) exchanges the two copies of Λ. Since f is finite, Rf⋆Λ = (f⋆Λ)[0]
and there is a canonical isomorphism

RΓ(U, f⋆Λ) = RΓ(V, Λ).

We therefore expect to find

H1(U,F) = H1(V, Λ) ≃ Λ3.

Computing RΓ(U, F). We know that RΓ(U,F) is represented by the
following two-term complex:

Λ2 −→ Homcr(G, Λ2).

A crossed homomorphism f : G → Λ2 is determined by the images of
σ1, σ2, σ3, γ. Using the relations γσ1 = σ1γ, γσ2 = σ3γ and γ2 = σ1σ2σ3, we
see that such a map is uniquely determined by a tuple (a, a1, a2, a3) ∈ Λ4;
the corresponding map f is defined by f(σ1) = (a1, a1), f(σ2) = (a2, a3),
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f(σ3) = (a3, a2) and f(γ) = (a, a + a1 + a2 + a3). The principal crossed ho-
momorphisms correspond to (0, 0, 0, 0) and (1, 0, 0, 0). Hence the complex
above is isomorphic to

Λ2 −→ Λ4

(a, b) 7−→ (a + b, 0, 0, 0)

and its cohomology groups are Λ and Λ3, as expected.

Computing the Galois action. The action of G0 = Gal(k|k0) on
Aut(Y |X) clearly factors through the quotient Gal(k0(

√
−1)|k0). The lat-

ter group is generated by ϕ :
√
−1 7→ −

√
−1. The automorphism ϕ acts

trivially on σ1, σ2, σ3, and
ϕ · γ = σ1σ2σ3γ : (z0 : z1 : z2 : z3) 7−→ (−

√
−1z0 : −

√
−1z1 : −

√
−1z2 : z3).

The action of ϕ on Λ2 is trivial, and its action on Homcr(G, Λ2) ≃ Λ4 is
(ϕ · f)(x) = ϕf(ϕ−1x) = f(ϕ−1x). Explicitly, since ϕ · γ = σ1σ2σ3γ, this
action is given by

ϕ · (a, a1, a2, a3) = (a + a1 + a2 + a3, a1, a2, a3).

6.3. Ramification. The following illustrates Section 2.4 and provides a
few results that will be used in the next example.

Ramification. Let Z, W, W ′ denote the sets of points at infinity of
U, V, V ⟨n⟩ respectively. The following table gives an overview of the sit-
uation.

Points in Z 0 1 ∞
Preimages in W
Ramification

0
index 2

−1
index 1

1
index 1

∞
index 2

Preimages in W ′

Ramification
4 points
index 4

4 points
index 2

4 points
index 2

4 points
index 4

A preimage in W ′

Its inertia group
P0 = (0,

√
−1, 1)

⟨γσ2⟩ ≃ µ4(k)
P−1 = (

√
−1,
√
−2, 0)

⟨σ3⟩ ≃ µ2(k)
P1 = (1, 0,

√
2)

⟨σ2⟩ ≃ µ2(k)
P∞ = (1 : 1 : 1 : 0)
⟨γ⟩ ≃ µ4(k)

The canonical isomorphism IP0 → µ4(k) can be described explicitly as
follows. The function y is a uniformiser of V ⟨n⟩ at P0 = (0,

√
−1, 1). The

orbit of y under the action of IP0 = ⟨γσ2⟩ is {±y,±
√
−1y}. Hence the set

{σ(y)
y (P0) | σ ∈ IP0} is exactly µ4(k), and the isomorphism IP0 to µ4(k)

sends an element σ ∈ IP0 to σ(y)
y (P0).

The generator
√
−1 of µ4(k) exchanges the two copies of Λ in M = Λ2.

The Λ-module of crossed homomorphisms µ4(k)→M is isomorphic to Λ2,
and τ⩽1 RΓ(IP0 , M) is represented by the following complex.

Λ2 −→ Λ2

(a, b) 7−→ (a + b, a + b)
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The group F0 = H0(IP0 , M) is generated by (1, 1), and H2
0(X, j⋆F) =

H1(IP0 , M) is generated by the class of (0, 1). The compuation of the com-
plex τ⩽1 RΓ(IP∞ , M) is done in the same way and yields the same result.
The group IP1 is canonically isomorphic to µ2(k), and acts trivially on M .
Therefore, τ⩽1 RΓ(IP1 , M) is represented by the following complex.

Λ2 −→ Λ2

(a, b) 7−→ 0

The computation for P−1 is the same and yields the same result.

6.4. Cohomology of a constructible sheaf. We still consider a field k0
of odd characteristic, where −1 is not a square. Define k1 = k0(

√
−1). Let

us now consider the ramified cover of projective curves f : P1 → P1 defined
by f , and the sheaf F := f⋆Λ on P1. Since f is unramified outside 0,∞,
the sheaf F is locally constant on the open subset Gm = P1 − {0,∞}, and
L := F|Gm is trivialised by f |Gm : Gm → Gm, y 7→ y2. The cover G⟨n⟩

m is
also Gm → Gm, z 7→ z2, and the composite

G⟨n⟩
m −→ Gm

f−→ Gm

is given by z 7→ z4. Its automorphism group is G = ⟨γ : z 7→
√
−1z⟩ ≃

Z/4Z, and the inertia subgroups at 0 and ∞ are both equal to G. Denote
by j the inclusion Gm → P1. We have (j⋆L )0 = Λ and (j⋆L )∞ = Λ. The
adjunction units F0 → (j⋆L )0 and F∞ → (j⋆L )∞ are the identity maps
Λ→ Λ.

Computing RΓ(Gm, L ). The crossed homomorphisms G→M = Lη ≃
Λ2 are uniquely determined by the image of (a, b) ∈ Λ2 under γ. The
usual cochain complex representing τ⩽1 RΓ(G, M) = τ⩽1 RΓ(Gm, L ) is the
following.

Λ2 −→ Homcr(G, Λ2)
(a, b) 7−→ [γ 7→ (a + b, a + b)]

Therefore H1(G, M) is isomorphic to Λ, and the kernel of the map Λ2 →
H1(G, M) sending a crossed homomorphism to its cohomology class is
⟨(1, 1)⟩ ; this map can be rewritten as

Λ2 −→ Λ
(a, b) 7−→ a + b.

Computing RΓ(X, j⋆L ). The element RΓ(X, j⋆L )[1] ∈ Db
c(X, Λ) is the

cone of

τ⩽1 RΓ(G, M) −→ H1(I0, M)[−1]⊕H1(I∞, M)[−1] = Λ2[−1].
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Therefore, RΓ(X, j⋆L ) is represented by the complex

Λ2 −→ Λ2 −→ Λ2

where both morphisms are given by (a, b) 7→ (a + b, a + b).

Computing RΓ(X, F). Let us now turn to the computation of the map

RΓ(X, j⋆L )⊕ RΓ(Z, i⋆F) −→ RΓ(Z, i⋆j⋆L ).

On the one hand, RΓ(Z, i⋆F) = H0(Z, i⋆F)[0] = F0[0] ⊕ F∞[0]. On the
other hand, RΓ(Z, i⋆j⋆L ) is represented by the complex

Λ2 ⊕ Λ2 Λ2 ⊕ Λ2 Λ2α′ β′

where the arrows are given by α′ : (a, b, c, d) 7→ (a+ b, a+ b, c+d, c+d) and
β′ : (a, b, c, d) 7→ (a + b, c + d). Hence the map we were looking for is

Λ4 Λ2 Λ2

Λ4 Λ4 Λ2

α

u

β

v id

α′ β′

where, writing the upper left-hand side term as F0 ⊕F∞ ⊕M , the arrows
are given by

• u : (a, b, c, d) 7→ (a + c, a + d, b + c, b + d)
• α : (a, b, c, d) 7→ (c + d, c + d)
• β : (a, b) 7→ (a + b, a + b)
• v : (a, b) 7→ (a, b, a, b)
• α′ : (a, b, c, d) 7→ (a + b, a + b, c + d, c + d)
• β′ : (a, b, c, d) 7→ (a + b, c + d).

Computing the cone of this morphism and shifting by 1 yields the following
complex, which represents RΓ(X,F).

Λ4 Λ6 Λ6 Λ2∂0 ∂1 ∂2

• ∂0 : (a, b, c, d) 7→ (c + d, c + d, a + c, b + c, a + d, b + d)
• ∂1 : (a, b, c, d, e, f) 7→ (a+b, a+b, a+c+d, b+c+d, a+e+f, b+e+f)
• ∂2 : (a, b, c, d, e, f) 7→ (a + c + d, b + e + f).

The cohomology groups of this complex are H0 = ⟨(1, 1, 1, 1)⟩, H1 = 0
and H2 = ⟨(1, 0, 1, 0, 0, 0)⟩ ≃ Λ. This result was to be expected: we have
computed the cohomology of (P1 x 7→x2

−−−→ P1)⋆Λ, which is the cohomology of
the constant sheaf Λ on P1.
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Computing the Galois action. The action of Gal(k|k0) on RΓ(X,F)
factors through the quotient Gal(k0(

√
−1)|k0) of Gal(k|k0). Denote by

σ :
√
−1 7→ −

√
−1 the nontrivial element of Gal(k0(

√
−1)|k0). The group

Gal(k|k0) acts on G by σ · γ = γ3, and trivially on M . Its action on
τ⩽1 RΓ(G, M) = Λ2 → Λ2 is trivial on the first term, and (a, b) 7→ (b, a) on
the second. In particular, it acts trivially on H1(G, M) = Λ. The action of
σ on F0,F∞ is also trivial. Hence the action of Gal(k|k0) on the complex

Λ4 −→ Λ6 −→ Λ6 −→ Λ2

representing RΓ(X,F) is trivial on the first and last terms,
σ · (a, b, c, d, e, f) = (b, a, c, d, e, f)

on the second term, and
σ · (a, b, c, d, e, f) = (a, b, d, c, f, e)

on the third term. In particular, Gal(k|k0) acts trivially on H0(X, Λ) and
H2(X, Λ), as expected.

7. Second example: sheaves on subschemes of an elliptic curve

The examples in this section illustrate a non-trivial case in which we
can easily compute the cohomology of sheaves using (almost) only func-
tions that are already available in current computer algebra systems: when
the locally constant part of the sheaf is trivialised by a subscheme of a
hyperelliptic curve.

7.1. The cover. Consider the finite field k0 = F11, and the integer n =
2 invertible in k0. Consider the field extension F121 = F11(a), where a
generates the cyclic group F×

121 and a2 + 7a + 2 = 0. Denote by E the
elliptic curve over k = F11 defined by the affine Weierstrass equation y2 =
(x − 1)(x − 2)(x − 3). Let C be the genus 2 curve over k given by the
affine equation y2 = (x2 − 1)(x2 − 2)(x2 − 3). The curve C has two points
at infinity ∞+,∞− which do not lie on the affine open defined by this
equation. Consider the degree 2 cover f : C → E given by (x, y) 7→ (x2, y).
It is ramified at the affine points P = (0, 4) and Q = (0, 7) of C, whose
images in E are respectively (0, 4) and (0, 7). Denote by C = C − {P, Q}
and E = E − {f(P ), f(Q)} the affine curves obtained from C and E by
removing the ramification locus. Denote by f : C → E the étale Galois
cover induce by f . Both curves C and E are obtained by base change from
curves C0 and E0 defined over k0 = F11.

Computing the Galois group of C⟨n⟩ → E will allow us to determine the
cohomology of any locally constant sheaf on E trivialised by f . First, we
need to compute H1(C, µ2). This is where we need to cheat a little since
no algorithm performing this computation for a general curve has been
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implemented yet (see Section 5.2 for existing algorithms); fortunately, C
being a genus two curve, we have other means of finding a generating set
for this group.

Computing H1(C, µ2). Denote by

P ±
1 = (±1, 0), P ±

2 = (±a6, 0), P ±
3 = (±5, 0)

the points of C with y-coordinate 0. A basis of Jac(C)[2] is given by the
classes of the divisors
D1 := P +

1 − P −
1 , D2 := P +

2 − P −
2 , D3 := P +

2 − P +
3 , D4 := P +

1 − P −
3 .

The rational functions

f1 := x− 1
x + 1 , f2 := x− a6

x + a6 , f3 := x− a6

x− 5 , f4 := x− 1
x + 5

all satisfy 2Di = div(fi). Denote by D5 the divisor P −Q, which is linearly
equivalent to two times the divisor

D5 := (a41, a29) + (−a41, a29)− (∞+ +∞−).

We found this divisor D5 using a brute-force search on Jac(C)(F121); for
hyperelliptic curves such as C, this can also be done using division polyno-
mials (see e.g. [4, Thm. C]). In the particular case where n = 2, division by
2 has even been explicitly described by Zarhin [19, Thm. 3.2]. The divisor
of the rational function

f5 = y + a8x2 + 7
x

is 2D5 −D5. Therefore, an F2-basis of H1(C, µ2) is given by

(D1, f1), . . . , (D4, f4), (D5, f5).

Computing Aut(C⟨n⟩|E). The cover C⟨n⟩ → C with group H1(C, Λ)∨ is
defined by its function field k(C)(z1, . . . , z5) where z2

i = fi. Recall that we
never need to compute a smooth model of C⟨n⟩. For reasons explained in
Section 7.2, we choose to replace f5 with x2f5, which still yields the same
function field. The group G = Aut(C⟨n⟩|E) has order 64; it contains the
normal subgroup H = Aut(C⟨n⟩|C) ≃ (Z/2Z)5 generated by the elements
γi : zi 7→ −zi. Let us now determine a preimage in G of the generator
σ : (x, y) 7→ (−x, y) of Aut(C|E). First, we compute the divisors σ⋆Di.

σ⋆D1 = −D1

σ⋆D2 = −D2

σ⋆D3 = D1 + D3 + div(h3) where h3 = y
x3+a58x2+a2x+a54

σ⋆D4 = D2 + D4 + div(h4) where h4 = y
x3+a80x2+a103x+a114

σ⋆D5 = D5
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Note that σ⋆f3 = h2
3f1f3, σ⋆f4 = h2

4f2f4 and σ⋆f5 = −f5. Since a30 is a
square root of −1 in F121, the automorphism δ ∈ G given by

x 7−→ −x, y 7−→ y, z1 7−→
1
z1

, z2 7−→
1
z2

,

z3 7−→ h3(x, y)z1z3, z4 7−→ h4(x, y)z2z4, z5 7−→ a30z5

is a preimage of σ. In particular, since

h3(x, y)h3(−x, y) = h4(x, y)h4(−x, y) = −1,

the automorphism δ2 is given by

x 7−→ x, y 7−→ y, z1 7−→ z1, z2 7−→ z2,

z3 7−→ −z3, z4 7−→ −z4, z5 7−→ −z5.

] Hence δ2 = γ3γ4γ5 and the order of δ as an element of G is 4. Furthermore,
δγ1 = γ1γ3δ and δγ2 = γ2γ4δ. The elements γ3, γ4, γ5 generate the center
of G. Its commutator subgroup is ⟨γ3 = [γ1, δ], γ4 = [γ2, δ]⟩. Finally, let
us compute the action of Gal(F121|F11) = ⟨ϕ : a 7→ 2a−1⟩ on G, which can
be done very easily since the elements of G are defined by their action on
coordinates of points. Predictably, ϕ acts trivially on the γi; it also sends δ
to γ5δ.

7.2. Ramification. Here is how to compute the preimages of the points P
and Q in C⟨n⟩. We have computed its function field as k(C⟨n⟩) = k(C)(z2

1−
f1, . . . , z2

5 − f5), and would now like to compute an actual affine model of
C⟨n⟩. For each i ∈ {1 . . . 5}, write fi = gi

hi
. For P and Q to have easily

computable preimages, we can replace fi with h2
i fi when hi(P ) = 0 or

hi(Q) = 0. This is only the case for f5, which now reads x(y + a8x2 + 7).
The following affine curve is birational to C⟨n⟩:

Spec k[x, y, z1, . . . , z5]/ (y2 − (x2 − 1)(x2 − 2)(x2 − 3),
(x + 1)z2

1 − (x− 1),
(x + a6)z2

2 − (x− a6),
(x− 5)z2

3 − (x− a6),
(x + 5)z2

4 − (x− 1),
z2

5 − x(y + a8x2 + 7)).

The 1
2 |H

1(C, µ2)| = 16 preimages of P = (0, 4) in C⟨n⟩ are the points
(0, 4,±1,±a30,±3a3,±3a30, 0). The preimages of Q = (0, 7) are the points
(0, 7,±1,±a30,±3a3,±3a30, 0). Choose two preimages PC⟨n⟩ = (0, 4, 1,
a30, 3a3, 3a30, 0) and QC⟨n⟩ = (0, 7, 1, a30, 3a3, 3a30, 0) of P and Q in this
affine curve birational to C⟨n⟩, and denote by PE = (0, 4), QE = (0, 7)
their respective images in E. The inertia group IP

C⟨n⟩ |PE
⊂ G has order
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|IP |PE
| · |IP

C⟨n⟩ |P | = 2 × 2 = 4; it is generated by δ. The same applies to
IQ

C⟨n⟩ |Q = ⟨δ⟩.

7.3. Cohomology of a locally constant sheaf on E. Consider the
locally constant sheaf F on E trivialised by C, with generic fibre M = Λ3,
defined by the representation:

Aut(C|E) −→ GL3(Λ)

σ 7−→

0 0 1
0 1 0
1 0 0


Computations using Magma yield H0(E,F) ≃ Λ2 and H1(E,F) ≃ Λ8.
More precisely, the 1-cocycles c1, . . . , c8 below form a basis of H1(G, M);
the null-cohomologous cocycle c′ is the image of the 0-cocycle (1 0 0) ∈M .

Cocycle c c(γ1) c(γ2) c(γ3) c(γ4) c(γ5) c(δ)
c1 (1 0 0) (0 0 0) (1 0 1) (0 0 0) (0 0 0) (0 0 1)
c2 (0 1 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
c3 (0 0 1) (0 0 0) (1 0 1) (0 0 0) (0 0 0) (0 0 1)
c4 (0 0 0) (1 0 0) (0 0 0) (1 0 1) (0 0 0) (0 0 1)
c5 (0 0 0) (0 1 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
c6 (0 0 0) (0 0 1) (0 0 0) (1 0 1) (0 0 0) (0 0 1)
c7 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (1 0 1) (0 0 1)
c8 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 1 0)
c′ (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (1 0 1)

The action of ϕ ∈ Gal(F121|F11) on Homcr(G, M) only affects the element
c7 of this basis, sending it to ϕ⋆c7 = c7 + c′. Its action on H1(G, M) is
therefore trivial.

Remark 7.1. We now know that the action of Gal(F121|F11) on H1(E,F)
is trivial. Therefore, we could have chosen a subcover of C⟨n⟩ by first com-
puting a basis of H1(C, µ2)(F11) and then taking nth roots of the functions
appearing in this basis. With the notations above, such a basis is given by
(D1, f1), (D2, f2), (D4, f4), (D3 + D5, f3f5). Set k(C ′) = k(C)(z1, z2, z4, t3)
where z2

i = fi and t2
3 = f3f5. Using the previous notations h3, h4, a preim-

age of σ ∈ Aut(C|E) in Aut(C ′|E) is the automorphism δ given by:

x 7−→ −x, y 7−→ y, z1 7−→
1
z1

, z2 7−→
1
z2

, z4 7−→ h4(x, y)z2z4,

t3 7−→ a30h3(x, y)t3.
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The group Aut(C ′|E) only has order 32, and one can check that the map

RΓ(Aut(C ′|E), M) −→ RΓ(Aut(C⟨n⟩|E), M)

is a quasi-isomorphism.
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