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Computing the cohomology of constructible étale
sheaves on curves

par CHRISTOPHE LEVRAT

RESUME. Nous présentons une expression explicite du complexe de cohomo-
logie d’un faisceau constructible de groupes abéliens sur le site étale d’une
courbe algébrique irréductible sur un corps algébriquement clos, dans le cas
ou la torsion du faisceau est inversible dans le corps. Cette expression fait
intervenir uniquement des groupes finis, et est fonctorielle en la courbe et le
faisceau. En particulier, nous montrons comment calculer I'action galoisienne
sur ce complexe. Nous présentons également un algorithme qui calcule cette
expression, et étudions sa complexité. Nous illustrons cet algorithme par plu-
sieurs exemples.

ABSTRACT. We present an explicit expression for the cohomology complex of
a constructible sheaf of abelian groups on the small étale site of an irreducible
curve over an algebraically closed field, when the torsion of the sheaf is invert-
ible in the field. This expression only involves finite groups, and is functorial
in both the curve and the sheaf. In particular, we explain how to compute
the Galois action on this complex. We also present an algorithm which com-
putes this complex and study its complexity. We illustrate this algorithm with
several examples.

1. Introduction

Let Xy be an algebraic curve over a field k. Let n be a positive integer
invertible in kg, and Fy be a constructible sheaf of Z/nZ-modules on the
(small) étale site of Xy. Denote by k a separable closure of ky, by X the
base change of Xy to k, and by F the restriction of Fy to X. The étale
cohomology complex RI'(X,F) is equipped with an action of Gal(k|ko).
Given the curve X and a suitable explicit description of the sheaf F, we
are interested in computing a finite extension k; of kg and a complex of
(Z/nZ)[Gal(k1|ko)]-modules which represents RI'(X, F).

The computability of étale cohomology groups of torsion sheaves on
schemes of finite type over algebraically closed fields was proved in 2014 by
Poonen, Testa and van Luijk [16, Thm. 7.9] in characteristic zero, and by
Madore and Orgogozo in arbitrary characteristic [11, Thm. 0.1]. However,
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the algorithms described in these articles are not efficient enough to be
used in practice, and the only known result about their complexity is that
Madore and Orgogozo’s algorithm is primitive recursive [10, Prop. 4.1.9].
In the case of smooth curves, some more efficient algorithms are known.
When X is a smooth projective curve, H' (X, p,,) is canonically isomorphic
to the n-torsion of Pic(X); two algorithms, one developed by Huang and
Terardi [8], the other by Couveignes [1], compute this group when the base
field ko is finite. Jin’s algorithm [9] computes H' (X, F) where X is a smooth
curve and F is locally constant.

In this paper, we consider the case where X is an integral curve over a
field, and Fy is a constructible sheaf (or even a complex of such sheaves)
on Xy. We present an explicit expression for the cohomology complex
RI'(X, F) with the aforementioned Galois action, as well as an algorithm
which computes this complex (under some classical computability assump-
tions on the field ko). The latter makes use of an existing algorithm comput-
ing H' (X, p1,,), such as those mentioned above. We also provide complexity
bounds for this method. In particular, in the case of locally constant sheaves
on smooth projective curves over finite fields, the complexity of computing
H'(X,F) using this algorithm is lower than Jin’s. In the case where the
base field kg is finite, we present an idea that should allow us to reduce
the complexity of this algorithm, and explain why this would be a crucial
step towards developing a polynomial-time point counting algorithm for
surfaces.

In Section 2, we investigate the properties of the minimal Galois cover
of a scheme trivialising the Z/nZ-torsors on this scheme, as well as its con-
struction in the case of curves. In Section 3, we explain how to compute
the cohomology of a locally constant sheaf on a scheme of cohomological
dimension at most 1. Section 4 contains the proof of the main theorem: an
explicit expression of RI'(X, —) when X is a curve over a field of cohomo-
logical dimension at most 1. We then present in Section 5 the algorithms
used to compute the cohomology of a constructible sheaf on such a curve,
as well as their complexity. We also describe the potential application of
our algorithms to point counting on surfaces over finite fields. In Sections 6
and 7, we illustrate these algorithms in two situations.

Terminology. Unless explicitly stated otherwise, the word cover denotes
a surjective finite étale map. A Galois cover is always supposed to be con-
nected.

2. The cover trivialising Z/nZ-torsors

2.1. General construction and properties. Let n be a positive integer.
We will denote by A the ring Z/nZ. Given a (discrete) A-module M, we
will denote by MV its A-dual.
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Lemma 2.1. Let G be a locally compact topological group. Consider the
abelian group A, with the trivial action of G. Suppose the continuous coho-
mology group HY(G, A) is finite. There is a unique closed normal subgroup
S of G such that G/S is isomorphic to the A-dual H (G, A)Y of HY(G, A).

Moreover, S is a characteristic subgroup of G.

Proof. Define S as the closure in G of G"[G, G]. This group S is a character-
istic subgroup of G (i.e. stable by all continuous automorphisms) because
G" and |G, G| are stable by automorphisms. Since A is an n-torsion abelian
group, there is a canonical isomorphism

Homeont (G/S, A) — Homeont (G, A) = HY(G, A).

Pontryagin duality [7, Thm. 7.63] applied to the locally compact abelian
group G/S yields the following isomorphism:

Homeont (G/S, A)Y = G/S.

Now let H be a closed normal subgroup of G such that G/H is isomorphic
to HY(X, A)V. Tt necessarily contains S since G/H is a A-module. Since
G/S and G/H have the same finite cardinality, H = S. O

Corollary 2.2. Let X be an integral noetherian scheme such that H! (X, A)
is finite. Up to isomorphism, there is a unique étale Galois cover X™ of
X with automorphism group isomorphic to HY(X, A)V.

Proof. This follows immediately from Lemma 2.1, the canonical isomor-
phism

Hl(Trl(X)a A) - Hl(Xa A)
and Grothendieck—Galois theory. O

From now on, given such a scheme X, we will always denote by X ™ a
Galois cover of X as in the previous corollary.

Proposition 2.3. Let X be an integral noetherian scheme such that
HY(X,A) is finite. For any finitely generated A-module M, the morphism
HY(X, M) — HY (X M) is trivial.

Proof. Recall that X" corresponds to the open subgroup S of m1(X),
which is the closure of the subgroup 71 (X)"[m1(X), 71 (X)]. Since M is n-
torsion, any map 71(X) — M is trivial on S, hence Hom(m(X), M) —
Hom (71 (X ™), M) is trivial. O

2.2. Explicit construction in the case of curves. Let U be a smooth
integral curve over a field k. Denote by K its function field. Let n be a
positive integer invertible in k. Recall the following description of H! (U, pn)
in terms of divisors on U.
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Lemma 2.4. The group H (U, uy,) is canonically isomorphic to the quo-
tient of

{(D, f) eDiv(U) x K* | nD =div(f)}
by the subgroup of pairs (div(f), f™) with f € K*.

Proof. This follows immediately from the corresponding description in
terms of invertible sheaves given in [17, 040Q)]. O

We will denote by [D, f] the class of the pair (D, f) in H' (U, u,). Now
suppose that k is separably closed. Let X be the smooth compactifica-
tion of U. Denote by g the genus of X. Consider the closed complement
Z =A{Pi,...,P} of U in X. When r = 0 the lemma above is the usual
description of H' (X, i,,) as the group of n-torsion points on the Jacobian
of X. When r > 1, the Gysin sequence

0 — HY (X, ) — HY(U, pty) — HY(Z,A) — A — 0

shows that H'(U, uy,) is a free A-module of rank 2g — 1 + 7. Consider a
basis ([Ds, gi])1<i<s of HY(U, ). For every integer j € {1...s}, we denote
by Vj the normalisation of U in K(3/g1,-..,{/d;), by ¢; the induced cover
Uj = U, and set V = V.

Proposition 2.5. The cover ¢: V — U is isomorphic to U™ — U.

Proof. First of all, each cover V; — V;_1 is étale, because it is constructed
by taking an n'® root of a function whose valuation at each point is a
multiple of n. Let us check by induction on j € {1,...,r} that V; — V;_4
is Galois with group p, (k). This is obviously true for j = 1. For any ¢ €
{1,...,5 — 1} the extension V; = V;_1(/g;) of V;_1 is Galois with group
in (k) by the induction hypothesis. The Hochschild—Serre spectral sequence
yields an exact sequence
0 — H'(un(k), A) — H' Vi1, A) — HY(V;, A).

Therefore, the kernel of ¢: HY(U,A) — HY(V;,A) is the direct sum
A[Dy,g1]®---®A[D;, gi] ~ A%, and [Dj, g;] is not in the kernel; the order of
¢¥[Dy, g;] in HY (Vi, ) is still n. Thus, V' — U is finite étale of order n”. The
field k£ being separably closed, the extension k(V') of k(U) is the splitting
field of the polynomials 7™ — g1,...,T™ — g, so it is Galois. The morphism
V' — U is therefore an étale Galois cover. An element of the group Aut(V|U)
is an automorphism defined by (/g1 — (13/91, - --,/Gr — (+{/9r), where
the ¢; are n'® roots of unity in k; the group Aut(V|U) is therefore canon-
ically isomorphic to Homy (HY(U, tn), ) = HY(U,A)V. Lemma 2.1 now
ensures that V is isomorphic to U™. Il

Remark 2.6. We will often consider the following situation. Let V. —
U be an étale Galois cover of smooth integral curves over k. The cover
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V) — U is still Galois because V™ — V is characteristic (i.e. if V — S
is a Galois cover, V" — S is Galois as well). Sometimes, we will need
to compute a subcover V! — V of V™ by taking n'™ roots of functions
g1, .., gt generating a submodule of HY(V,uy,). In that case, V' — U is
still Galois if and only if the submodule generated by gi,...,g: is stable
under the action of Aut(V|U). This is the case for instance if we take the
submodule of elements of H(V, ) defined over some subfield of k over
which the elements of Aut(V|U) are also defined.

2.3. Ramification at infinity. Let U be an integral affine curve over an
algebraically closed field k. Denote by X the smooth compactification of
U. Let n be an integer invertible in k, and denote by A the ring Z/nZ.
Let us study the ramification at infinity of U™ — U, i.e. the ramification
of the smooth compactification X’ of U™ above the points Py, ..., P, of
X —U. The map H%(X, pn) — H?(X, u,) can be expressed, using the Gysin
isomorphism H°(Z, A) — H%(X, i1,) and the isomorphism H?(X, 1,,) — A,
as the sum map H%(Z,A) — A. A basis of its kernel is given by (P, — P,
..., P. — Py). Consider functions g1, ..., g, € k(X) such that

div(g;) = nD; + (P; — P)

where D; € Div2(X — {Py,...,P,}). The cover X’ — X{™ corresponds to
the function field extension

KX (/g1 /o)

of k(X{™). Let i € {1...7}. The extension k:(X<”))({L/g7,j # i) of k(X ™)
yields a cover Y; = X (") which is unramified above P; because vp,(g;5) = 0.
The cover X’ — Y;, however, is ramified at P;; let Q; be a preimage of P;
in Y;. Since vg,(g:) = 1, the fibre X, is isomorphic to k[z]/(z"), and the
ramification index of X’ — Y; at any preimage of Q; is n. Above P;, there
are exactly 2|H'(U, A)| points of X', each of with ramification index n. Let

R; be a preimage of Q; in X’. The inertia subgroup I, p, C Aut(UM™|U)
of R; fits in the short exact sequence
00— IRi\Qi — IRi\Pi — IQi\Pz‘ —0

(see [17, 0BUT7]). As I, p, = 0, there are isomorphisms

IRi|Pi = IRz‘Qz = Aut(X’]YZ) ~ A
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As a subgroup of Aut(U™|U), the group I R;|P; is generated by /g; —
¢X/gi, where ( is a primitive n™ root of unity in k. The results regarding
preimages and ramification indices also apply to Py, which had been chosen
arbitrarily. With the above notation, the subgroup Ig p, is generated by

the automorphism
/g1, /9r) — (g1, - -, C/gr).

2.4. Cohomology of the ramification groups. Let n be a positive
integer. Denote by A the ring Z/nZ. Let us consider an étale Galois cover
V — U of smooth integral curves over an algebraically closed field k£ of
characteristic prime to n. Let K be the function field of U. Denote by X
(resp. Y') the smooth compactification of U (resp. V). Set G = Aut(V|U).
Let x be a closed point of X —U. Consider an inertia group I C Gal(K5P|K)
at x, and one of its finite quotients I, C G, which is the stabiliser in G of
a closed point y € Y — V mapping to x. Denote by P <I and P, < I, the
wild inertia subgroups. There are canonical isomorphisms [17, 09EE]

I/p = lﬁlr)gum(k) and I,/ Py — (k)
where e is the ramification index of Y — X at y. From now on, we assume
that n divides e. Let M be a A[G]-module.
Proposition 2.7. In the situation described above, the canonical maps
<1 RI(I,/P,, M™) — RT(I/P,M") — RI(I, M)
are quasi-isomorphisms.

Proof. Let o denote a pro-generator of I /P, and oy its image in I,/ P,. The
actions of o and o, on M are equal. Set Ny, = > 7 o,. The usual results
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on the cohomology of (pro)-cyclic groups [18, Calc. 6.2.1] [5, Prop. 8.1.4]
show that the map on the left hand side is:

RI(I/P,MP) —_— MP 2 P 0

R

<1 R(1,/P,, M™) S MP 275 ker(N,) — 0
Since n divides e, the action of N, on M is trivial and ker(N,) = M?, which
shows that the map above is a quasi-isomorphism. The fact that the map

on the right hand side is a quasi-isomorphism is shown in [5, Prop. 8.1.4]
as well. ]

The following lemma shows how to explicitly construct the inverse of the
map on the left hand side as a morphism of complexes; it will be used in
Theorem 4.5. We denote by Hom¢, the groups of crossed homomorphisms:
given a group G and a G-module M, Hom¢ (G, M) is the group of maps
f: G — M such that for all g,h € G, f(gh) = f(g) +g- f(h).

Lemma 2.8. The canonical map Home, (1, /Py, M*v) — Home, (I, M) has
a section.

Proof. Let u: I, — M be a crossed homomorphism. Consider the commu-
tative diagram

I, —— M —— Mp,

and set f = gow. For all z € P, and g € I, the definition of Mp,
ensures that f(zg) = f(z) + q(z - u(g)) = f(x) + f(g). Hence, for any
x € Py, f(zPvl)y = |P,|f(x) is zero ; since multiplication by |P,| is an
automorphism of M, this means that f(x) = 0. Therefore, there is a quo-
tient map f: I,/P, — Mp,. Set w = o~ o f: I,/P, — M*. The map
u +— @ is clearly linear. Moreover, @ is still a crossed homomorphism since
u(g,92) = a ' flg192) = a1 f(g1) + q(g1 - @ tu(ge)). The I,-linearity of
a~1q concludes. O

2.5. A similar cover with Galois action. Let ky be a perfect field,
and k be an algebraic closure of ky. Let n be an integer invertible in k.
Denote by A the ring Z/nZ. Let Vj be a geometrically integral smooth curve
over kg. As usual, the base change — xj, k will be denoted by removing
the subscript o. We wish to compute a (connected) characteristic cover
V§ of Vp such that the map H'(V,A) — HY(V’ A) is trivial. In the case
where V is connected and the elements of H'(V, u,,) are defined over kq,
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the cover V" constructed in the previous sections comes from ko, and we
are done. However, this is not the case in general. The construction below
is a refinement of the simple idea of computing the Galois orbit of V("

Construction of V. The function field of Yj is of the form ko(z)[y]/(f),
with f € k(z)[y]. Denote by ki the algebraic closure of kg in ko(z)[y]/(f);
since kg is perfect, ki is a separable extension. Let V; be a connected
component of V. Let ([D1,91],...,[Dr,g-]) be a basis of H(V1, ) as in
Lemma 2.4. Denote by ko the minimal extension of kg over which the g;
are defined. Let L be the Galois closure of the extension of kg generated by
k1, ks and p,(k). Let a be a primitive element of the extension L|k;, and
m € kq[t] its minimal polynomial. For ¢ € {1...r}, write ¢; = ¢(a, z,y)
with ¢} € ko(x)[t,y]/(m(t), f(x,y)). Let Vj — Vi be the normalisation of Vj

in the function field ko(a, z,y)({/d}, ..., /g.). The curve V' is isomorphic

to the Gal(L|ko)-orbit of V1<n>; it has [L : ko] connected components, and
the map HY(V, A) — HY(V’, A) is trivial.

Note that since the degree of Vj — (Vp xx, L) is n” and that of Vy xy, L —
Vo is [L : k1], the degree of Vj — Vg is n"[L : k1].

Proposition 2.9. The cover Vi — Vp is characteristic, i.e. if Vi is an étale
Galois cover of a curve Uy, then V§j — Uy is still Galois.

Proof. Consider the situation where Vj is an étale Galois cover of a smooth
integral kg-curve Uy. Here is how to explicitly compute the automorphism
group of Vp — Up. The map Vj — Vj has degree n"[L : ki]. Using the
notations above, set z; = @ The elements of Aut(ko(Vy)|ko(Vh)) are
defined by t — o(t), z; — (;z; where o € Gal(L|k1) and ¢; € p,(L). There
are deg(Vy — Vo) = n"[L : k1] such automorphisms since p, (k) C L, hence
the cover Vj — Vj is Galois. Let us now compute the automorphism group
of Vi — Uy. Its elements are defined by

(t,ZC, Yy 21y ZT) — (O’(t),l‘,,y,, Zi? R Z;‘)
where o € Gal(L|ko), the pair (2/,y') is the image of (x,y) under a Up-
automorphism of V) whose image in Gal(k;|ko) is the same as that of o,
and the elements 2] € ko(V() satisfy z/" = ¢(g}). As expected, there are
deg(Vg|Uy) = n"[L : k1] deg(Vo — Up) elements in Aut(Vy|Up), and Vy —
Uy is Galois. O

Remark 2.10. If need be, the Galois extension L of kg may be chosen to
be a little larger, for instance to make sure that the points at infinity of the
curve V' are defined over L. This does not affect any of the previous proofs.
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3. Schemes of cohomological dimension 1

Let n be a positive integer, and A = Z/nZ. Let X be an integral noe-
therian scheme, and 7 be a generic geometric point of X.

Proposition 3.1. Let £ be a finite locally constant sheaf of Z/nZ-modules
on X. Let Y — X be an étale Galois cover such that £y is constant and
the morphism

HY(X,. %) — H'(Y, Z]y)
1s trivial. Then the morphism
<1 RI'(Aut(Y'X), %) — 7<1 RI'(X, .2)
is a quasi-isomorphism.
Proof. Let G be the automorphism group of ¥ — X. The associated

Hochschild—Serre spectral sequence yields the following short exact se-
quence:

0 — HY(G, %) — H'(X,¥) — H(G,H(Y, Zy))

Hence the map H'(G, %;) — H' (X, %) is an isomorphism, and
RIG,.%;) — RI'(X,.2)
yields isomorphisms on cohomology groups in degree 0 and 1. O
Remark 3.2. If in addition X has cohomological dimension 1 then
<1 RT'(Aut(Y'X), Z5) — RINX,.Z)

18 a quasi-isomorphism.
Remark 3.3. Here is how to construct a cover Y as in the proposition,
provided that HY(W, A) is finite. Pick an étale Galois cover W — X such
that ZL|w is a constant sheaf. Set Y = W™ : since Y — W is character-

istic, the cover Y — X is still Galois, and Proposition 2.3 ensures that
HY(X, %) - HY(Y, ZLly) is trivial.

Given a profinite group H, we will denote by P (A) the usual projective
resolution (sometimes called bar resolution) of the trivial A[H]-module A.

Proposition 3.4. Suppose X is of cohomological dimension 1. Let & =
(L0 — LY — .. — %] be a complex of finite locally constant sheaves
of A-modules on X, and Y be an étale Galois cover of X such that each
map HY(X, 2% — HY(Y, L|y) is trivial. Write G = Aut(Y|X). Consider
the double complex B** defined by B" = Hom g (7>-1Pg” (A), .Z%) Then
RI(X,.Z) is represented by the total complex Tot B**.
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Proof. We wish to compute
RI'(X, Z) = RI'(m (X),Z5) = RHomp [, (x)) (A, £5),
which is represented by the complex

Hom;\[[m(x)]] (Pr(A), Z5) = Tot(A*®)
where Ab = HomAﬂﬁl(X)H(P;%X) (A),Z%) The map B** — A®** induced
by the quotient map 71(X) — G defines a morphism between the spectral
sequence associated to these quotients. Recall that for each i € {1...s},
the map

<1 Homy g1 (P (A), ) — Homp [, (x)] (Pry () (A), )

is a quasi-isomorphism. Since the functor Hom(—, .,2”%) is left exact,

HOII]A[G] (T>_1pg(A),gﬁi) = T<1 HomA[H](Pg(A),,i”,—;)

Hence the map B*® — A®* defines, on each column, a quasi-isomorphism
of complexes. It therefore induces an isomorphism between the first pages
of the corresponding spectral sequences (for the upward orientation) associ-
ated to B** and A**: in position (i, 5), it is the isomorphism H’(H, .Z%) —
H (m (X),,ﬁfﬁ’) for j < 1,and 0 — H/(m; (X),,,i”ﬁ’) = 0 otherwise. Therefore,
the map between the abutments of these two spectral sequences is an iso-
morphism, i.e. the map Tot(B®**) — Tot(A®**) is a quasi-isomorphism. [J

4. Explicit computation of RI' of a (possibly singular) curve

In this section, we are going to describe how to compute the cohomology
of a complex of constructible sheaves on a curve. Let kg be a field, and &
be a separable closure of ky. Consider a geometrically irreducible curve Xg
over kg, and its base change X over k. We are allowed to make the follow-
ing additional assumptions, which do not alter the computed cohomology
complex.

e The field kg is perfect, hence k is algebraically closed: the perfect
closure kgf of kg being a purely inseparable extension, the base
change — Xy, k:gf induces an isomorphism on cohomology.

e The curve X is reduced: being a universal homeomorphism, the
map Xyeq — X induces an isomorphism on cohomology.

e The curve X has at worst multicross singularities [17, 0C1P]: the
seminormalisation map X" — X being a universal homeomor-
phism [17, OEUS], it induces an isomorphism on cohomology, so
we may assume X is seminormal. Since a seminormal curve over an
algebraically closed field has at worst multicross singularities [2, §2,
Cor. 1], we may assume this is the case for X.
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4.1. Cohomology with support in a 0-dimensional subscheme. Let
k be an algebraically closed field. Let n be an integer invertible in k, and A =
Z/nZ. Let X be an integral curve over k. Consider a nonempty closed zero-
dimensional subscheme i: Z — X, and its open complement j: U — X.
Let RI'z(X, —) denote cohomology with support in Z. Since RI'z(X, —) =
@D.c, RI'.(X, —), we consider a single point z € Z and focus on computing
RI', (X, —).

Lemma 4.1. Let £ be a finite locally constant sheaf on U.
HY(X, j12) = HX(X, j.?) = HL(X, j.&) = 0

Hi(X, ]|$) = HO(Z, i*j*g)

HI (X, j12) = H(X, ji.2)

For alli > 3, H.(X, i) = HL(X, j..&) = 0.

Proof. Since H*(X,j,.¢) — HYX — 2,j,.%) is an isomorphism and
HY(X,j,.Z) — HY(X — 2,j,.%) is always a monomorphism, the long ex-
act sequence for cohomology with support associated to j,.Z shows that
HY(X,j,.2) = HYX, &) = 0. Moreover, for any j > 3, the groups
H (X — 2,j,.%) and H/(X,.Z) are trivial, hence H.(X, j,.Z) = 0. Recall
that H.(X,i,—) = H'(z,—). The long exact sequence of H’ (X, —) associ-
ated to the short exact sequence

0 — )l — L — i,i" L — 0

shows that HY(X,j.%¢) = 0, Hi(X,j;f) = H%2,i*j,.%) and also
H2(X,51.%) = H3(X, j,..Z). The groups H.(X, ji.Z) are also trivial as soon

as ¢ > 3. [l
Let us now compute the group H2(X,j.Z) = H2(X, j».Z). From now
on, we assume X to have only multicross singularities. Let z1,...,2, be

the preimages of z in the normalisation X of X. Denote by X, the strict
henselisation of X at z. It contains one closed point 2/, as well as » minimal
primes z,...,z.. Set U, = U xx X,. Consider the following cartesian

Y re
diagram.

The following proof is given in [14, II, Prop. 1.1] in the special case of
smooth curves.

Lemma 4.2. Let F be a sheaf on U,. For every nonnegative integer q, the
group HY(X, jiF) is trivial.

Proof. The assertion holds for ¢ = 0 since H(X, j{F) is the kernel of the
map HO(X,j.F) — HO(X.,i.i"*j,F), which is simply the identity map of
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HO(U,, F). Let us first show that for any injective sheaf .J on U, the sheaf
JiF on X is acyclic. To this end, we are going to prove that

0—jiJ — jiJ —i'i"ji.J — 0

is an injective resolution of j/J ; the long exact sequence associated to
this short exact sequence then shows that HY(X,,j.J) = 0 for any ¢ >
1. Fix separable closures of k(2}),...,k(z]), and denote by I,...,I, the
associated Galois groups. The functor i*j, may be rewritten as follows:

NIOd[1 Xoee XMOd]T — Ab
(My, ..., M) — Mt x ... x M

This functor admits a left adjoint, which sends an abelian group M to
(M, ..., M) with trivial (I1,...,I,)-action. Since this left adjoint is exact,
i"*j. sends injectives to injectives. The functors 4, and j also send injec-
tives to injectives, therefore the short exact sequence above is an injective
resolution of j{.J. We are now ready to prove the result. Let F be a sheaf
on U, and let J® be an injective resolution of F. Then j{J® is an acyclic
resolution of jiF, and H?(X, j{.F) is the ¢ cohomology group of the com-
plex I'(X,,j{J*). The latter group is the image of F under the ¢*" right
derived functor of I'(X, j{—), which is zero as proven above. O

Let v: X — X be the normalisation map. Set z =z X x X.
Proposition 4.3. Let . be a finite locally constant sheaf on U. The map
RI.(X, ji.?) — RT:(X, v j.2)

s a quasi-isomorphism.

Proof. Denote by ni,...,n, the generic points of the strict henselisations
of X at the preimages 21, ..., 2, of z in X . Denote by X, the normalisation
of the strict henselisation of X at z. The normalisation of U, is

U, xx, Xo =U xx (X, U---UX,)=mU---Un,
and since normalisation is birational, the map
mu---Un — U,
is an isomorphism. Lemma 4.1 shows that it suffices to prove that
H2(X,j,Z) — HA(X,v%,.%) = H2 (X, vjL) x - x H (X, v*j,.2L)

is an isomorphism. Let us compute HE(X, J«Z). By excision, there is a
canonical isomorphism

H2(X,j,.2) = H2(X.,¢*).%L) = H2/(X., jig* Z).



Computing the cohomology of constructible étale sheaves on curves 1097

The long exact sequence in cohomology with support on 2’ for the sheaf
J1g™* & reads:

HY(X,,jl¢* L) —H'(U,,¢"* &) — B%(X,,jig* L) — HB*(X,, jl¢*ZL).
Lemma 4.2 ensures that the map
HY(U., ¢"* %) — H2(X., jig* %)

is an isomorphism. Since the scheme U, is the coproduct of the points
24, ..., 2., the group HY(U,, ¢*.Z) is simply Hl(z’l,fzi) X+ X Hl(z;,fz;).
On the other hand, for ¢t € {1...r}, Hzt(X,u*j*f) is isomorphic to
H' (1, -%,,), and the map

H' (Zz/fa fzg) — H' (e "%ﬁt)

is simply the isomorphism induced by n; = 2;. ]

Denote by K the function field of X, and by K% a separable closure
of K.

Corollary 4.4. For each point z € Z X x X’, choose a place of K5 above
z and denote by I, the corresponding inertia group. The one-term complex

0—0— P H'(IL,M-—0—- -
ZEZXXX

represents Rz (X, j..Z).

Proof. This is merely rephrasing Proposition 4.3 using the fact that only
Hz is nonzero, which was proven in Lemma 4.1. O

4.2. Cohomology of constructible sheaves. Let k& be an algebraically
closed field. Let n be an integer invertible in k. Denote by A the ring Z/nZ.
Let X be an integral curve with multicross singularities over k. Denote by
v: X — X its normalisation. Let F* = [F* — ... — F'] be a complex
of constructible sheaves of A-modules on X. This section aims to give an
explicit description of the cohomology complex RI'(X, F).

Let j: U — X be the inclusion of a regular open affine subscheme of
X on which every sheaf F° is locally constant. Let i: Z — X be the
inclusion of its closed complement with the reduced subscheme structure.
Set £* == j*F*, and M*® := Z7. Let V — U be an étale Galois cover such
that:

e cach sheaf Z*|y, s € {0,...,t} is constant;

e cach map HY(U, .Z*) — HY(V,.Z%|v), s € {0,...,t} is trivial;

e the ramification index of V' — U above every point of X -Uis
divisible by n.
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Denote by G the group Aut(V|U). Let Z be the preimage of Z in X.
Given z € Z , denote by Iz C G its inertia group, and by P; < Iz its wild
inertia subgroup. For each integer s € {0,...,t}, let ¢*: F* — j,.Z° be the
adjunction unit. Denote by ) the transition maps of the complex M*®, by
Or those of F*, and by Jg the coboundary maps in the cochain complex
representing group cohomology with respect to the group G; in particular,
given an element m in a G-module, dg(m) is the crossed homomorphism
g — g-m —m. The remainder of this section will be dedicated to the proof
of the following result.

Theorem 4.5. In this situation, RT'(X, F*)[1] € Db(A) is represented by
the cone of the following morphism of complexes, whose terms are indexed
by s > 0:

- — M*@®Hom (G, MSil)@@zeZ fj@@geZ HI(IE/P27 M}%g_2) —
1
s Diey (M® ® Homee(I3/Pe, M3 ") @ HY (I Ps, M3 %)) — -+

Here, (a,b,c,,dz) is sent to (a— ¢,(c), resé?(b), d) where z = v(Z) and reséf
denotes the composite map

Hom (G, M?®) — Home (I, M)* — Home, (I, /P, M}p,)

defined in Lemma 2.8. Then the transition map of the top complex is
(a,b,cs,dz) — (Onr(a), dar(b)+(—1)*0g(a), OF(cs), Onr(dz)+(—1)* res (b)).
The transition map of the bottom complex is (a,b,c) — (Opr(a), dnr(b) +
(=1)*9c(a), O (c) + (=1)*0a(b)).

Corollary 4.6. When computing the cohomology of a single constructible
sheaf F on X with generic geometric fibre M, the complex RT'(X, F)[1] is
the cone of the following morphism of complexes:

Iz _
(@.cr Fo) o M —2%) 5 Hom (G, M) S92, @ WY1/ P2 Mp,)
L(@a—id)z—n)- Lresg): Jid

a z
D.cy M — @. .5 Home(I5/ Pz, Mp.) — @5 H' (I:/Ps, Mp.)

Proof of the theorem. The functors jy, j*, ix, i* can be extended to the (non-
derived) category of complexes of constructible sheaves on X. These func-
tors will allow us to compute RI'(X, F*) in the following way: first consider
a short exact sequence involving F* in this category of complexes of con-
stru(l:)tible sheaves on X, then compute the associated distinguished triangle
in D2(A).
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Consider the following short exact sequence of complexes of constructible
sheaves on X:
0 —F° — LD, F —1,0° —0

where Q° = i*j,.%Z*. Here, the first map is just the sum of the two adjunc-
tion maps F*® — jxj*F* and F* — i,i*F°®, and the second map is the dif-
ference of the adjunction maps jx.Z — 141" jxZ and i, i*F® — 04" juj* F°.
The object RT'(X, F*)[1] of D4(A) is the cone of the morphism

RI(X, j,.Z*) @ RI(X, i,i*F°*) — RI(X,i,Q°%).

Computing RI'(X,j,Z). The following distinguished triangle in
D4(X,A) [17, 09XP]:

RT (X, j,.%°) — RI(X, j,.#*) — RI(U,.#*) 25

shows that RI'(X, j..Z*)[1] is the cone of RI'(U, Z*) — RI'z(X, j..Z*)[1].
Let us now turn to the computation of RI'(U, £*) and RI'z (X, j,.Z*). Ac-
cording to Proposition 3.4, RI'(U,.%Z*) is represented by the total complex
associated to the double complex

Home, (G, M?) —— Hom, (G, M') —— Home (G, M?) —— ---

I I I

MO Mt M?

which is
M° — M* & Home, (G, M) — M? & Home (G, MY) —> -+

For each integer s € {0,...,t}, RI'z(X, j..Z®) is represented by the one-
term complex

P (X, v* 5. 2%)[-2]
zeZ
according to Lemma 4.1. By Corollary 4.4 and Proposition 2.7,
HZ(X,v*j.2%)=H"(I;, M*)=H'(Iz/ Pz, M}, ). It follows that RT'(X, j,.£*)
is represented by the complex
%)

89
Mo e,y Hom,, (G, M?)

1 Iz
(03,08 =08y resg)

M? @® Home, (G, M) @ @Hl(I:E,MO) —
zeZ
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Representing RI'(X,,3*F*®). For all s € {0,...,t}, RI'(X,4,i*F®) is
simply represented by the one-term complex H°(Z, F%)[0]. Therefore
RI'(X, i,i*F*®) is represented by the complex

br—pr—pF—- -
z2€Z 2€Z z2€Z

whose differentials are those of F°.

Representing RI'(X,1,Q°®). We know that
RI(X,i,Q%) = RI(X, ixi*j,.Z*)

is represented by the one-term complex @, H(I,, M?) concentrated in
degree zero. However, in order to be able to express the map RI'z (X, j..Z) —
RI'(X, 1, Q%) as a morphism of complexes, we will write RT'(X, 7, Q%) as the

following three-term complex:
P M* — @ Home,(I:/ Pz, Mp.) — @ H'(Iz/ Pz, M},)
zeZ zeZ zeZ
whose first differential is the one sending (m%)z to (gz — (gz - mi — m%))s,

and the second one is the usual quotient map. By the same arguments as
above, RT'(X,7,Q*) is thus represented by the complex

@ MO — @(Ml @ Homcr(IZ/Pfa M}(]Dg))

zeZ zeZ
— EB(M2 & Home, (I:/P;, Mp.) ® H' (I:/P;, Mp.)) — -+
zeZ

Putting everything together. We have now computed each term of the
morphism of complexes

RT(X, j,.£*) & RT(X, i,i*F*) — RI(X, i, Q°)

whose cone is RI'(X, F*). The morphism itself is the difference of the two
adjunction maps. O

Remark 4.7. A cover V. — U as in the theorem may be computed in
the following way: consider an étale Galois cover W — U such that each
Lw is constant, and set V = W While W is the canonical choice,
we may for complexity reasons choose any of its subcovers that still satisfy
the three required properties listed above. Here is one example of such a
subcover. The action of Gal(k|ko) on HY(U,.£*) factors through a finite
quotient Gal(ky|ko). The image of HY(U, £*) in HY(W,A) is still defined
over ky, and we may construct a Galois subcover of W™ — U by taking
nt™ roots only of functions that are defined over ky. This will be used in the
case of finite fields in Section 5.6.
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4.3. Computing the Galois action. Let ky be a perfect field, let k be
an algebraic closure of ky and By = Gal(k|kg). Consider a curve X over k.
For the sake of simplicity, we consider a single sheaf Fy on Xy. The general
case of complexes of sheaves is handled in the same way. Let X = X x, k
and F = Fp|x. This section is dedicated to the description of a complex of
A[®p]-modules representing RI'(X, F). Let Uy be an affine open subset of
X on which F is locally constant, and Wy — Uy be a Galois cover such that
Folw, is constant. Let Zy be the reduced closed complement of Up in Xp.
Denote by U, W, Z their base changes to k. Consider the cover V = W,
and the complex representing RI'(X, F) computed above using V.

The easy case: when Wy has a rational point wg. In that case,
W is connected. The terms of RI'(X, F) consist of cohomology groups of
G = Auwt(V|U) or I,/P,, where z is a closed point at infinity of U, with
values in (a suitable quotient of) M. Understanding the action of &y on G
is straightforward: let @ be a geometric point of W whose image in W is
wo, let @ be its image in U and © a preimage of @ in V = W{™ . The group
B¢ acts on 71 (W, @) C m(U,a) by functoriality, and since W™ — W is
characteristic, this action restricts to 71 (V, 0). Moreover, for z € X (kg), the
group & acts naturally on I, /P,, which is canonically isomorphic to p.(k),
where e is the ramification index of V(" — U above z. Finally, the group
MP= does not depend on the choice of preimage of Z in the compactification
of V™ For a point z defined over an extension ki of ko, we need to consider
its Galois orbit T then & acts naturally on @,cp RIU(I¢/P;, M), where
the preimages of ¢ whose inertia groups we compute have been chosen in
the same &g-orbit. These considerations allow us to compute the action of
®( on each of the terms of the complex representing RT'(X, F).

The general case. In general, W need not be connected, and the func-
tion field ko(Wp) may contain a finite nontrivial Galois extension of k.
Section 2.5 shows how to construct a Galois cover Vj — Uy whose function
field contains a sufficiently large Galois extension L of kg over which the
elements of H (W, 11,) as well as the points at infinity of V := Vg xy, k are
defined. This ensures that any closed point of the smooth compactification
of Vi above a point of Zj is exactly L. Consider a connected component V. of
V. The group G, := Aut(V,|U) = ker(Aut(Vy|Uy) — Gal(L|ko)) is the sta-
biliser of V. in G := Aut(Vy|Up). Set My = H(Vpy, Fo) and M = H(V, F);
then M is the induced representation indgc(Mo), and Shapiro’s lemma [15,
Thm. 4.19] shows that the map

T7<1 RI'(G¢, My) — 7<1 RI'(G, M)

in DY(A) is a quasi-isomorphism. As an abelian group, M = Mg where d
is the number of connected components of V. The group & acts naturally
on M as it does on set the connected components of V, in a way that is
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compatible with its action on G. This allows to compute the action of &y on
7<1 RI'(G, M). Let z € Zj be a closed point with residue field k1. Let v be a
preimage of z in Vj. Denote by T := {7(z), T € Gal(k;|ko)} the Bg-orbit of
z. For each 7 € Gal(k1|ko), consider a preimage v, of 7(2) in Vp; we choose
the v; to be in the same &g-orbit. Let D, <G be the decomposition group
of v;. The map D, — Gal(L'|ko) is surjective, and its kernel is the inertia
group I of v;, so that M = indﬁ T Mp. Shapiro’s lemma now ensures that

RI(D,, M) = RI(I,, My) = RI(I,/P,, M{™)

in DY(A). The group ®( acts naturally on the complex @. RI'(D,, M),
whose cohomology groups are H(T, j,F|r) and H%(X, j,F|v). Using these
notations, RI'(X, F)[1] is isomorphic in DY(A[&]) to the cone of the fol-
lowing morphism of complexes:

0+M @ @ H(T, F) 20,
J@T,r(resﬁ —92) J@Tﬁ resg Jid

@z a T
0— @ B, Mp, =~ @ @, Home I,/ Pr, Mp,)»Bp B, H' (I,/ P, Mp.) 0

Home (G, M) ———— @7, H(I./P;, Mp,)~0

where T runs through the &g-orbits in Z, and 7 runs through the ko-
automorphisms of the residue field of the closed points of 7.

4.4. Functoriality over Spec k. Consider a morphism ¢: X' — X of
integral curves over an algebraically closed field k. As usual, let n be an
integer invertible in k, and denote by A the ring Z/nZ. Let F be a con-
structible sheaf of A-modules on X. Here is how to compute a morphism
of complexes of A-modules representing RT'(X, F) — RI[(X', ¢*F). Let U
be an affine open subset of X on which F is locally constant. Let W — U
be an étale Galois cover such that Fly is constant, and W' — U’ be the
Galois closure of a connected component of W x x X’. Consider the Galois
covers V =W — W and V! = (W')™ — W'. Given the construction of
V and V', the map H*(W, u,,) — HY(W’, 11,,) defines a map V! — V.

By elementary Galois theory, there is a map Aut(V'|U") C Aut(V'|U) —
Aut(V|U). For each point z € X — U, choose a preimage zy of z in the
smooth compactification of V. For each preimage z’ of z in X', consider
a preimage z{, of 2’ in the smooth compactification of V' whose image
in V is zy. Consider the inertia groups Py < Iy C Aut(V|U) of zy and
Py < Iy C Aut(V'|U’) of 2z{,. The map Aut(V'|U’) — Aut(V|U) induces
for each choice of z, 2/, zv, 2y, a map Iy+ /Py — Iy /Py. The functoriality of
the bar resolution thus allows to compute the maps RI'(Aut(V'|U"), M) —
RT(Aut(V|U), M) and RT(Iy /Py, M) — RI(Iy/ /Py, MPv') that are
needed to compute the morphism of complexes representing RI'(X, F) —
RT(X', ¢*F).
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4.5. Cohomology of curves over a field of cohomological dimen-
sion 1. Consider a perfect field kg of cohomological dimension 1 such that
H'(ko,Z/nZ) is finite, e.g. a finite field or the fraction field of a strictly
henselian local DVR. Let n be an integer invertible in kg. Denote by A the
ring Z/nZ. Let X be an integral curve over ko, and Fg be a complex of
constructible sheaves of A-modules on Xy. Denote by k the algebraic clo-
sure of kg, by &( the Galois group Gal(k|kg) and by X, F the respective
base changes of Xg, Fp to k. Theorem 4.5 shows how to compute a complex
M?® of Bg-modules representing RI'(X, F*). Recall that

RT(Xo, F) = RI(G0, RT(X, F*)).

We described in Section 3 how to determine a complex representing this
object. Let k; be a Galois extension of k£ such that the action of &y on

RI'(X, F*) factors through Gal(k;|ko). Consider the extension kim of ko
with Galois group H'(ky,A)Y, and the Galois group G = Gal(k§n>|ko).
Then RI'(Xg, Fp) is represented by the total complex associated to the
double complex B* = Hom g (7>_1ng (M), M%), where Pg is the usual
projective resolution of A as a A[G]-module.

Remark 4.8. The same method also applies in theory to the general case
where HY (ko, ) is infinite, using continuous group cohomology and A[G]-
modules; one particularly interesting case to consider would be when kg is
the function field of a curve over an algebraically closed field. However, to
go any further in practical computations, one is quickly confronted with the
issue of computing a generating set of H(ko, Z/nZ) ~ kg /(k{)".

5. Algorithmic aspects

In this whole section, n is a positive integer and A denotes the ring Z/nZ.
5.1. Representing curves and sheaves.

Representing curves. A smooth projective curve over a field kg is de-
fined by a (possibly singular) plane model given by a polynomial in two
variables. When working with a closed subscheme of a smooth curve, we
may always suppose that its image in the plane model is nonsingular. Such
a closed subscheme is defined by equations; an open subscheme is defined
by its closed complement. A morphism of smooth curves is given by a mor-
phism of plane models, i.e. by two polynomials in two variables. The only
time we need to work with rational points is when considering the geomet-
ric points in a given closed subscheme Z of the curve; in that case, we may
replace kg with a finite extension over which these points are defined. This
extension has degree bounded by the number r of geometric points in Zj,
and passing to this extension has no impact on the complexity estimates
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given below, which are all at least polynomial in r. A curve X with multi-
cross singularities is defined by its normalisation X , as well as the subsets
of points of X that have the same singular image in X; again, we suppose
that these subsets of X have a nonsingular image in the plane model.

Representing sheaves. Let X be a smooth curve over an algebraically
closed field k of characteristic prime to n. A constructible sheaf of A-
modules on the étale site of X will be described by the following gluing
data, which defines it uniquely [13, II, Thm. 3.10]:

e a closed O-dimensional subscheme Z of X, defined by an equation;

e a finite locally constant sheaf .Z on the open complement U of
Z, defined by a Galois cover V' — U and the action of the group
G = Aut(V|U) on the A-module M = H(V, Z);

e for each point z € Z, the A-module F, defined by generators and
relations;

e for each point z € Z, the gluing morphism ¢,: F, — (jxZ). =
H(I., M), where I, C G is the stabiliser of a preimage of z in V.

This data also allows to represent morphisms and direct sums of sheaves in
a very straightforward manner, as well as to compute tensors products and
Hom-sheaves; see [10, §II1.4] for more details. While this representation of
constructible sheaves might not be the first that comes to mind, it is well
suited to our computation of cohomology groups. The usual ways of defining
constructible sheaves (as cokernel of fiA — g/A with f, g étale or kernel of
fxd — g A with f, g finite) also admit an algorithmic representation, which
can be converted into this one (see [10, §II1.3]).

5.2. Computing the cohomology of u,: existing algorithms. Our
methods rely on existing algorithms which, given a smooth integral curve
X over an algebraically closed field k of characteristic prime to n, compute
HY(X, pt,). Recall that we need to be able to compute it even for affine
curves, which can prove to be a bit trickier than in the projective case.

The most efficient algorithm computing H!(X, 1,,), developed by Cou-
veignes, only applies to projective curves over finite fields, and actually
requires prior knowledge of the characteristic polynomial of the Frobenius
endomorphism of X; since it makes use of some properties of the Frobenius
and the group structure of Pic’(X)[n], adapting it to the cohomology of
affine curves, or of curves over other types of fields does not seem easy.
Given a curve of genus g over I, described by an ordinary plane model of
degree d, it computes Pic®(X)(FF,)[n] in time polynomial in d, g,log g, n [1,
Thm. 1].

While it was also first described only for projective curves over finite
fields, Huang and Ierardi’s method [8] applies to more general settings.
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Their algorithm constructs an affine scheme whose points correspond to di-
visors D such that nD is the divisor of a rational function, and then finds a
point in each irreducible component of this scheme, which is enough to find
a representative of every n-torsion class in Pic?(X). This strategy readily
adapts to the computation of division by n in Pic®(X), thus allowing to
compute the cohomology of i, on an open subset of X. It is also indepen-
dent of the chosen base field. The complexity of their algorithm, computed
when the base field is F,, is polynomial in n9, n?,log ¢ [10, Prop. 4.3.3].

In the remainder of this article, we will denote by H1Const(kgy,n,d, g,r)
or simply H1Const(X,n) the complexity of the computation of H (X, u,,),
where X is a smooth integral curve of genus g over k, given by a degree
d polynomial in kg[z,y], with r points at infinity. We will also denote by
Root(kg, n,d) the complexity of computing an n'" root of an element in a
degree d extension of k.

5.3. Computing in H'(X, p,). Let U be a smooth integral curve over
an algebraically closed field & of characteristic prime to n. Let X be the
smooth compactification of U. Let n be an integer invertible in k, and A
be the ring Z/nZ. Denote by Py, ..., P, the points of X — U. Recall that
the elements of HY(U, p1,,) are equivalence classes [D, f] of pairs where f is
a rational function on U such that divy(f) = nD. The class [D, f] is trivial
in HY(U, p,,) precisely when f is an n'" power. The sum [D, f] + [D', f'] is
defined by [D + D', f f'].

Here is how to compute the coordinates of an element of H' (U, p,,) in a
given basis using the Weil pairing, as is done in the projective case in [1,
§8]. The Weil pairing

en: HYU, pn) x BXU, ) — pin
is nondegenerate. In this context,

{(D, f) eDiv(U) xk(X)* |nD=div(f), f(Po) =---= f(P)=1}
{(D, f) where f(Ry) = --- = f(P;) =1}

Hi(Uv ,LLn) =

sits in the short exact sequence

pin (K)"
fin (k)

and may be computed in the following way. Choose a primitive n'® root of
unity ¢ € k. For each i € {1...r}, consider a function ¢g; € k(X) such
that g;(Py) = ¢, ¢:i(P) = ¢, and ¢;(P;) = 1 for all j # 0,i. Then
([div(g1),97]s- - -, [div(gr, g/]) is a basis of the image of (k)" /pn(k) in
HY(U, pt,). The Weil pairing is computed as usual: given v = [D, f] €

h
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HY(U, ) and w = [E,g] € H(U, u,) where f and g are suitably nor-
malised,
f(E)

en(v,w) = ===

9(D)’

Algorithm 1: COORDINATESINBASIS

Data: Smooth integral curve U over alg. closed field k, smooth
compactification X of U

The points Py, ..., P of X — U

Positive integer n invertible in &

Basis B = (v1,...,vag+,) of H'(U, 1), where

v; = (Dy, fi) € Div(U) x K* and ([v1],.. ., [vag]) is a basis of

H' (X, i)

Element vy € HY(U, u,,) represented by (Do, fo) € Div(U) x K*

Primitive n'® root of unity ¢ € k

Result: Coordinates (aq, ..., ag4r) € A%t of v wrt. B

Function h € k(X)* such that f = h"f{"* ... fort"

forie{l...r} do
Compute function f; such that f;(Py) = ¢!, fi(P) = ¢, and
Set vi—; = (div(g:), g}")
end
Compute matrix
M = en(vi, vj)o<i<eg+r1-r<i<zg € Mabagiri1)x(2g+r) (Hn(K))
Compute an element (1, —ai, ..., —ag,) € ker(M): then
Vo = Zz ;U5 in HI(U7 ,un)
Compute Riemann-Roch space L of Dy — >, o D;
Pick h € L: then Dy — Y, oy D; = div(h™1)
Compute n'! root ¢ € k of foh"[], fi “* € k
return aq, ..., a4 € A and function ch € k(X)*

Lemma 5.1. Suppose all of the divisors Dy, ..., Dagi, are given as differ-
ence of two effective divisors of degree < m, and the curve X is given by
a plane model of degree d. This algorithm returns the coordinates of v in

time Poly(d, m, g,r) + Root (k:o, n, n(29+7”)2),

Proof. Computing the functions f; using Lagrange interpolation, as well as
the matrix M using the definition above, is straightforward. The kernel of
M is computed using standard linear algebra techniques over A (using the
isomorphism p, (k) — A given by ¢ + 1), which run in polynomial time in
the size of M. O
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5.4. Construction of V(™. Let k be an algebraically closed field of char-
acteristic prime to n. Let X be an integral smooth projective curve over
k, and U an affine open subscheme of X. Let V' be an étale Galois cover
of U. The following algorithm computes the cover V™ — V defined in
Section 2.1, as well as the group Aut(V{™|U).

Algorithm 2: NTORSCOVER
Data: Galois cover V' — U of smooth integral curves over alg.
closed field k
Generating set S of Aut(V|U)
Integer n invertible in &
Result: Generating set of Aut(V ™ |U)

Compute basis [D;, fili<i<s of H'(V, ;) (see Section 5.2)

for o0 € S do

forie {1...s} do
Compute o*(D;, f;)
Compute h,aq,...,as such that o* f; = A f{* ... f& using
Algorithm 1

end
Define po: (z,y) = o(z,y), zj — hjz{" ... 23
end

forie {1...s} do

| Define ¢;: (x,y) = (x,v), 2z = Czi, (25) i = (25) i
end

return {py }oes U {¢i}1<ics

Proposition 5.2. If U has r points at infinity and V is given by an or-
dinary plane model of degree d, Algorithm 2 computes a generating set of

Aut(V|U) in
H1Const(ko,n,d, (29 +r)[V : U],r[V : U])
elementary operations.

Proof. The genus of V' is bounded by (2g + 7)[V : U]. The complexity of
computing the coordinates of the pullback of the divisors is polynomial-
time in n, [V : U](2g +r), d, hence dominated by that of computing a basis
of H(V, i1,). O

Here is how, once G{™ = Aut(V<"> — U) has been computed, to compute
the preimages of points of X in the smooth compactification of V™, as well
as their inertia group. This is done by considering a suitable explicit model
of V" Recall that the function field of V{" is obtained from that of V
by adjoining n** roots of functions fi,..., f; € k(V). Write f; = Z—i, where
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gi,hi € k[z,y]. Denote by Z (resp. W, resp. W{™) the sets of points at
infinity of U (resp. V, resp. V™). Consider a point z € Z, and a preimage
w of z in W. Replacing f; with h f; if necessary, we may suppose h;(w) # 0.
Then the affine curve given by the equation of V and h;z!' —g; contains n'~!
preimages of w, which are nonsingular. Given one of these preimages w, the
inertia subgroup I,, can be computed simply by evaluating the elements of
G™ at w.
Algorithm 3: INERTIAGROUP
Data: Galois cover V' — U of smooth integral curves over alg.
closed field k, with smooth compactification ¥ — X Integer
n invertible in k
Group Aut(V{™|U) and basis (D, f; = #) 1 <ics of H'(V, )
Point z in compactification of U, preimaée w of z in
compactification of V'
Result: Preimage w™ of w in compactification of V%
Cenerating set of inertia group I™ C Aut(V™|U) of w(™

forie{l...s} do

if h;(w) =0 then

| g« Wi hi 1

end

Compute root t; of h;(2)T" — gi(z) € k[T
end
Set w™ = (w,ty,...,t;) € SpecY[z1,. .., zn]/(hiz? — g;)
I = {0 € G | o(w™) = wim}

return w(™, 1

(n

Lemma 5.3. Algorithm 8 returns a preimage w'™ of w in the smooth

compactification of V™ and its stabiliser in
[V : U] ((n2g+r + (29 + r)Root (ko, n, n([V:U}@g”)F))
elementary operations.

Proof. Computing w™ requires [V : U](2g + r) computations of n'" roots
in k. Computing I™ requires [V : U]n?*" function evaluations. O

5.5. Computation of RI'. Let ky be a perfect field of characteristic
prime to n, and k£ be an algebraic closure of ky. Let Xy be an integral
curve over ko with ordinary singularities, and X = Xy Xy, k. Consider a
complex F§ = [FJ — ... — F{] of constructible sheaves of Z/nZ-modules
on X, and set F* = (Fp)®|x. Let U be a smooth open affine subscheme
of X such that F*|y is a complex of locally constant sheaves. Let r be
the number of points of X — U. Let V' — U be an étale Galois cover such
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that, for each integer i € {0...t}, the sheaf F?|; is constant. Denote by G
the automorphism group of V' — U. The following algorithm computes the
cohomology complex RI'(X, F*) described in Theorem 4.5.

Algorithm 4: RGAaMMA
Data: Integral curve X over alg. closed field &
Integer n invertible in k
Constructible sheaf complex F* on X as described in Section 5.1:
affine open U C X where each F is locally constant,
Galois cover V' — U which trivialises .Z°* = F°*|y,
Galois group Aut(V|U) and inertia subgroups I, C G for z € X — U,
generic fibres M* of F* with action of Aut(V|U),
fibres F¢ for z € X — U,
adjunction units ¢%: Fi — (M?)!=.
Result: Complex of A-modules representing RI'(X, F)

Compute Aut(V ™|U) using Algorithm 2

Compute inertia subgroups I/ ¢ Aut(V ™ |U) using Algorithm 3

Using linear algebra, compute Home, (Aut(V ™ |U), M?) and
Home, (I, M?) for z € X —U

Compute the morphism
U: RO(X, i, F*) & RO(X, jo. %) — RI(X, i,i*j,.2*) of
Theorem 4.5

return Cone(¥)[—1]

Theorem 5.4. Let m be an integer such that M and the fibres F', z € Z,
i € {0...t} are given by at most m generators. Denote by d the degree of an
ordinary plane model of V. Algorithm 4 computes a complex of A-modules

representing RI'(X, F) in

Hlconst(ko,n,d, [V : U](2g + 1)) + Poly ((n[V:U](Qg”))?, m, t)

+ [V : U](2g + r)Root (kzo, n, n([V:U](QgJ”’))Q)
elementary operations. When ko = Iy, this number is bounded by
Poly (n([V:UWﬁTW,nd, m,log q, t) .

Proof. This is just putting together the complexities of the previous algo-
rithms, taking into account that the computation of modules of crossed
homomorphisms is done using linear algebra over A. In order to bound the
number in the case of a finite field, we use the complexity of Huang and
Terardi’s algorithm to compute HO(V, u,,). O
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Remark 5.5. The only existing algorithm computing HY (X, F) when F is
locally constant is Jin's algorithm; its complexity is exponential in | M |18 |M]

[9, Thm. 1.2], to which the complexity of our algorithm compares favourably.

5.6. Improving complexity when kg is finite. Here we consider the
case where kg = I, is a finite field, X is a smooth curve over ky, and
Fo is a constructible sheaf of Fy-vector spaces on X, where £ is a prime
not dividing ¢. Let Uy be an open subset of Xy on which Fy is locally
constant. Denote by Vy — Up an étale Galois cover such that Foly, is
constant with fibre M. For simplicity, we assume V{ to be geometrically
connected; if it were not, the field extension Fg defined below should be
replaced by its compositum with the field extension defined in Section 2.5.
Write m = dimg,(M). Denote by k = E an algebraic closure of kg, and by
X,U,V the base changes of Xy, Uy, Vj to k. Denote by gx the genus of X
and by r the number of points of X — U.

Lemma 5.6. Set D = |GLy, 29y 4r)(Fe)| and Q = q". Consider a basis
(D1, f1),...,(Ds, fs) of the Fy-vector space HY(V, we)(Fq), that is, the sub-
space of elements of HY(V, ug) invariant under the action of Gal(k|Fg).
Denote by V1<)£> the étale Galois cover of V defined by the function field
extension k(V)/f1, ... /fs). The map HY (U, Fly) — Hl(Vg@,}'\

trivial.

VL<)15>) 8

Proof. We know that the action of Gal(k|ko) factors through a finite quo-
tient Gal(ky|ko), where [k : ko] divides Auty, (H' (U, F)). Recall the prime-
to-p fundamental group of U is generated by at most 2g + r elements. Now
H'(U, F) is a quotient of Hom, (71 (U)®"), M); its dimension as an Fy-vector
space is bounded above by m(2gx +r). Therefore, Auty, (H' (U, F)) injects
into GLyy, (2 +r) (F¢). Note that since ¢ divides @ — 1, the field Fg contains
a primitive £** root of unity ¢, and the isomorphism H(V,F,) — HY(V, 1)
defined by 1 — ( is Gal(k|Fg)-equivariant. Since the U-automorphisms of
V are defined over F,, the set H'(V, uy)(Fg) is stable under the action of

Aut(V|U), and V' — U is still Galois. The construction of Vlga ensures

that H'(V,F,)(Fg) — Hl(Vg>,IE‘g) is trivial. The m copies of Fl|y ~ F}*
being stable under the action of Gal(k|kp), the map

H'(U, F) — HY(V, F) = 7Y (V0 T

factors through H'(V,F,)(Fg)™, and is also trivial. O

Hence, we may use Vé@ instead of V{ in Algorithm 4. Note that D <
(m(2g+1))*
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Computing H*(V,Fy)(Fg). This group is isomorphic to H*(V; u,)(Fg).
Denote by V the smooth projective curve containing V, and by Jy7 its
Jacobian. Consider a basis (D;, f;)1<i<s of H'(V, 11¢)(Fg). Here, the D; are
divisors on V' such that ¢D; = divy (f;). The proof of Lemma 2.4 tells us
that we may assume some of these pairs to form a basis of J3;[(](Fg). For
the remaining ones, the elements M; = {D; — divy;(f;) form a basis of the
space of Gal(k|Fg)-invariant elements of the kernel of the following map.

HO(V — V,F,) — T,

(AP pey_y — XA
P
Finding the D; amounts to dividing the M; by £ in J;;. Here is how to do
this. Any element of J(Fg) has order dividing @ —1. Write Q —1 = (*s with
s prime to £. Then sM; € J[¢*](Fg), and we may find in J[(*T!](Fg) an
element F; such that {E; = sM;: to do this, compute J [60‘“](1&2) and use
linear algebra. Actually, given the definition of o, J[(*TY(Fg) = J[¢*](Fg).
Considering integers u, v such that u¢+vs = 1, we have M; = {-(uM;+vE;).

Complexity. Since Q = ¢P where D = |GLypn(2gx ) (Fe)|, the integers
and s can be computed easily. As soon as ¢! # 1 mod ¢2, we know ¢‘~!

has order ¢/~ in (Z/(*7Z)* and

(m(29x +7))(m(2g9x +7) = 1)

2
which is polynomial in m, gx, 7. The complexity of computing H!(V, we)(Fog)
is dominated by the computation of J[¢*](Fg). Couveignes’ algorithm com-
putes J[(*](Fg) in time polynomial in ¢*, the genus of V and log(Q), as-
suming the characteristic polynomial of the @-Frobenius on V' is known.

Oé—lé?}g(D):

5.7. Potential application: point counting on surfaces. Let Xy be
a smooth projective surface over a finite field ky = F,. Denote by k an
algebraic closure of kp, and set X = Xy Xy, k. Consider the problem of
computing |X (kg)|. The usual approach, as in Schoof’s algorithm, is to
compute this number modulo ¢ for enough primes ¢ up to O(logq).

The Lefschetz theorem reduces this question to computing the trace of
the Frobenius on Hi(X ,IFy). The classical way of computing these groups,
as in [13, §V.3], is by using a Lefschetz pencil, which yields a fibration
7: X — P!, where X is a blowup of X at a finite number of points. Edix-
hoven conjectured in [3, Epilogue| that this strategy might allow us to
compute |X (k)| in time polynomial in log(q). Here is where we stand on
this conjecture. The sheaf F := R'w,F, is a constructible sheaf on the pro-
jective line. It is locally constant on the open subset U of P! over which the
fibres of m are smooth curves. For z € P! — U, we know how to compute
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RI'(X,,Fy). Moreover, given an explicit description of F, we know how to
compute RI'(P!, F). Denote by Xj the generic fibre of 7, and by g5 its
genus. A trivialising cover V' — U of F|y is given by the normalisation
of U in an extension of K of k(t) over which Pic(Xp)[¢] is defined. The
following data helps us estimate the complexity we need for the different
steps of the algorithms:

e the degree [K : k(t)] is smaller than 0495,
e the number r = |P! — U] only depends on 7 and not on ;

e the genus gy of V is bounded by 0495,
Computing the whole cover V¥ would be too costly. However, as suggested
in Section 5.6, it is sufficient to compute a subcover Vg> of V& using only

elements of H'(V, y1y) defined over a degree D = 0(64972’77"2) extension Fg of
F,. Hence, if we could compute:

o H'(Xj, p¢) in time polynomial in ¢ and log(q),
e H'(V, 14)(Fg) in time polynomial in £, log @ and the genus of V,

then we should be able to compute the H (X, F) with their Frobenius action
in time Poly(¢,log q). Mascot recently described an algorithm to deal with
the first item of the list [12, Alg. 2.2] using p-adic approximation; however,
parts of his method are not yet rigorous [12, Rk. 4.3].

For the moment, this is nothing more than wishful thinking: all existing
algorithms to compute H'(V, puy), even for projective curves, have complex-
ity exponential either in log(g) or in the genus of V. However, there is
some hope. Harvey’s algorithm [6, Thm. 1], which computes the zeta func-
tion of hyperelliptic curves, reaches an average polynomial-time complexity.
Combined with Couveignes’ algorithm and Section 5.6, this allows for an
average polynomial-time complexity for the computation of H!(V, 11¢)(Fg)
in the case where V is an open subset of a hyperelliptic curve.

6. First example: sheaves on subschemes of P!

6.1. The cover. Take n = 2. Let kg be a field of odd characteristic in
which —1 is not a square. Consider the degree 2 (ramified) Galois cover

f: Pl —p!
y—y°

whose automorphism group is generated by 7:y + —y. Set U = P! —
{0,1,00} and V = ffly = P! — {0,41, 00}, and consider the étale cover
f:V = U induced by f.

Computation of V(™. The group HY(V, o) ~ A3 is generated by the
divisor-function pairs (0 — o0,y), (1 — oo,y — 1),(—=1 — oo,y + 1). The
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cover V™ — V with group HY(V, A)Y corresponds to the field extension
k(\/¥,vy — 1,v/y + 1)/k(y). The corresponding cover of V = P! is the map

Proj k[z0, 21, 22, 23]/ (£ — (2§ — 23), 23 — (24 + 23)) — Projk[yo, y1]
(20 :21: 22t 23) — (22 : 22)

which is ramified above 0, +1, cc.

Computation of Aut(V(™|U). The automorphism group G =
Aut(V{™|U) has order 16; in order to compute all of its elements, it suffices
to compute a preimage of 7 in Aut(V{™|U). Such a preimage is given by
vi(zo: 2122 23) = (V—1z0: V=129 : /=121 : 23). Let

o1: (20121:Z2:23>'—>(—ZQ:21222:Z3)

09 20:2’1:Z2:23>'—>(202—21222:Z3)

H(
0'31(20:2’1:Z2:23>'—>(202Z1:—22:Z3)

be the obvious generators of Aut(V{|V) 1 G. Then yoy = o3 and o3 =
o927, which implies that (o9, 03) is normal in G. It is easy to check that the
composite map

(v) — G/(02,03)

is an isomorphism; therefore,
G= <02703> A <’7>

6.2. Cohomology of a locally constant sheaf. The sheaf F := f, A is
locally constant on U, trivialised by the cover f: V — U since f*f,A ~ AZ.
It corresponds to the Aut(V|U)-module A%, where the non-trivial element of
Aut(V|U) exchanges the two copies of A. Since f is finite, Rf,A = (f.A)[0]

and there is a canonical isomorphism
RI(U, fiA) = RI'(V, A).
We therefore expect to find
HY (U, F) = H' (V,A) ~ A3
Computing RT (U, F). We know that RI'(U,F) is represented by the
following two-term complex:
A? — Hom (G, A?).

A crossed homomorphism f: G — A? is determined by the images of
01,09,03,7. Using the relations yo, = 017, y02 = 037 and 42 = 010903, we
see that such a map is uniquely determined by a tuple (a, a1, as,a3) € A%
the corresponding map f is defined by f(o1) = (a1,a1), f(o2) = (ag,as),
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f(o3) = (a3, az2) and f(v) = (a,a+ a1 + az + a3). The principal crossed ho-
momorphisms correspond to (0,0,0,0) and (1,0,0,0). Hence the complex
above is isomorphic to
A% — A1
(a7 b) 'H (a + b7 07 07 0)

and its cohomology groups are A and A3, as expected.

Computing the Galois action. The action of &, = Gal(k|kg) on
Aut(Y|X) clearly factors through the quotient Gal(ko(v/—1)|ko). The lat-
ter group is generated by ¢: /—1 — —+/—1. The automorphism ¢ acts
trivially on o1, 02, 03, and

¢y =o0102037: (20:21: 22 23) — (—V—=1zp: =V =121 : =/ =129 : 23).
The action of ¢ on A2 is trivial, and its action on Home (G, A?) ~ A% is
(¢- f)(x) = ¢f(p~tx) = f(¢~1a). Explicitly, since ¢ - v = 102037, this
action is given by

d) ! (a,al,CLQ, a/3) = (CL + a1 + az + as, a1, az, CL3)-

6.3. Ramification. The following illustrates Section 2.4 and provides a
few results that will be used in the next example.

Ramification. Let Z,W,W'’ denote the sets of points at infinity of
U,V,V{" respectively. The following table gives an overview of the sit-
uation.

Points in Z 0 1 o0
Preimages in W 0 -1 1 0
Ramification index 2 index 1 index 1 index 2
Preimages in W’ 4 points 4 points 4 points 4 points
Ramification index 4 index 2 index 2 index 4

A preimage in W | Py = (0,v/—1,1) | P_; = (vV-1,vV/=2,0) | P, = (1,0,v2) | Po = (1:1:1:0)
Its inertia group | (10r2) = jua (k) (o) 2 polk) | (o) = pa(k) | () = palk)

The canonical isomorphism Ip, — u4(k) can be described explicitly as
follows. The function y is a uniformiser of V™ at Py = (0,+/—1,1). The

orbit of y under the action of Ip, = (yo2) is {xy, £/ —1y}. Hence the set
o

sends an element o € Ip, to %(PO).

The generator v/—1 of u4(k) exchanges the two copies of A in M = A2
The A-module of crossed homomorphisms ju4(k) — M is isomorphic to A2,
and 7<; RI'(Ip,, M) is represented by the following complex.

A2 — A?

(a,b) — (a+b,a+b)

(Py) | o € Ip,} is exactly pa(k), and the isomorphism Ip, to pa(k)
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The group Fo = H°(Ip,, M) is generated by (1,1), and H3(X,j.F) =
H'(Ip,, M) is generated by the class of (0,1). The compuation of the com-
plex 7<1 RI'(Ip_, M) is done in the same way and yields the same result.
The group Ip, is canonically isomorphic to us(k), and acts trivially on M.
Therefore, 7<; R['(Ip,, M) is represented by the following complex.

A? — A2
(a,b) — 0

The computation for P_; is the same and yields the same result.

6.4. Cohomology of a constructible sheaf. We still consider a field kg
of odd characteristic, where —1 is not a square. Define ki = ko(y/—1). Let
us now consider the ramified cover of projective curves f: P! — P! defined
by f, and the sheaf F := f,A on P!. Since f is unramified outside 0, oo,
the sheaf F is locally constant on the open subset G,, = P! — {0, 00}, and
& = Flg,, is trivialised by fl|g,,: Gm — Gm,y + y*. The cover G is
also G,, = G,,, z — 22, and the composite

G — G L Gim

is given by z + z%. Its automorphism group is G = (y: z +— /—1z) ~
Z/AZ, and the inertia subgroups at 0 and oo are both equal to G. Denote
by j the inclusion G, — P!. We have (j,.£)o = A and (j,-%)e = A. The
adjunction units Fo — (jx-Z)o and Foo — (Jx-Z)oo are the identity maps
A — A

Computing RT(G,,,.%). The crossed homomorphisms G — M = % ~
A? are uniquely determined by the image of (a,b) € A? under ~. The
usual cochain complex representing 7<; RI'(G, M) = 7<; RI'(G,y,, .Z) is the
following.

A% — Hom, (G, A?)
(a,b) — [y — (a + b,a +b)]
Therefore HI(G, M) is isomorphic to A, and the kernel of the map A% —

Hl(G, M) sending a crossed homomorphism to its cohomology class is
((1,1)) ; this map can be rewritten as

A2 — A
(a,b) —> a +b.
Computing RT'(X, j,.Z). The element RT'(X, j,.2)[1] € D(X, A) is the
cone of

7«1 R[(G, M) — H'(Iy, M)[-1] ® H' (1o, M)[-1] = A?[-1].
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Therefore, RI'(X, j,-%) is represented by the complex
A2 — A2 — A2
where both morphisms are given by (a,b) — (a + b,a + b).

Computing RT(X,F). Let us now turn to the computation of the map
RI(X, j.Z) @ RI(Z,i*F) — RI(Z,i*j.L).

On the one hand, RT'(Z,i*F) = H°(Z,i*F)[0] = Fo[0] @ Fuo[0]. On the
other hand, RI'(Z,1*j,.Z) is represented by the complex

a/

A2@ A2 —, A2 A2 2, g2

where the arrows are given by o: (a,b,¢,d) — (a+b,a+b,c+d,c+d) and
p': (a,b,e,d) — (a+b,c+ d). Hence the map we were looking for is

Ny L RN

Pl

/

J AN VAN

where, writing the upper left-hand side term as Fo ® Foo @ M, the arrows
are given by

o u: (a,b,c,d)— (a+c,a+d,b+c,b+d)
o a:(a,b,c,d)— (c+d,c+d)

.5( b) s (a+b,a+b)

* v: (a,0) > (a,b,0,b)

a
o o (a,bcd) (a+ba+bc+d,c+d)
oﬁ’.(a,b,c d) — (a+b,c+d).

Computing the cone of this morphism and shifting by 1 yields the following
complex, which represents RI'(X, F).

do 01 o))

A* AS AS A2
e 0y: (a,b,c,d) = (c+d,c+d,a+c,b+c,a+d, b+ d)
e 01: (a,b,c,de, f) — (a+b,a+b,a+c+d,b+c+d,a+e+ f,b+e+f)

e 0y: (a,b,c,dye, f)— (a+c+d,b+e+ f).
The cohomology groups of this complex are HY = ((1,1,1,1)), H' = 0
and H? = ((1,0,1,0,0,0)) ~ A. This result was to be expected: we have

computed the cohomology of (P! “—* i PY), A, which is the cohomology of
the constant sheaf A on P!,



Computing the cohomology of constructible étale sheaves on curves 1117

Computing the Galois action. The action of Gal(k|ko) on RI'(X,F)
factors through the quotient Gal(ko(y/—1)|ko) of Gal(k|ko). Denote by
o: /=1 + —+/—1 the nontrivial element of Gal(ko(v/—1)|ko). The group
Gal(k|ko) acts on G by o -~ = ~3, and trivially on M. Its action on
7<1 RT(G, M) = A? — A? is trivial on the first term, and (a, b) +— (b,a) on
the second. In particular, it acts trivially on H'(G, M) = A. The action of
o on Fy, Foo is also trivial. Hence the action of Gal(k|ko) on the complex

At — AS — A% — A?
representing RT'(X, F) is trivial on the first and last terms,
o-(a,bye,de, f)=(bya,c,d,e, f)
on the second term, and
o-(a,b,e,d,e, f) = (a,b,d,c, f,e)

on the third term. In particular, Gal(k|kg) acts trivially on HY(X,A) and
H?(X, A), as expected.

7. Second example: sheaves on subschemes of an elliptic curve

The examples in this section illustrate a non-trivial case in which we
can easily compute the cohomology of sheaves using (almost) only func-
tions that are already available in current computer algebra systems: when
the locally constant part of the sheaf is trivialised by a subscheme of a
hyperelliptic curve.

7.1. The cover. Consider the finite field ky = 11, and the integer n =
2 invertible in kg. Consider the field extension Fio1 = Fi1(a), where a
generates the cyclic group Fiy; and a? 4+ 7a + 2 = 0. Denote by E the
elliptic curve over k = Fq; defined by the affine Weierstrass equation y? =
(x — 1)(z — 2)(z — 3). Let C be the genus 2 curve over k given by the
affine equation y? = (22 — 1)(2? — 2)(2? — 3). The curve C has two points
at infinity ooy, 00— which do not lie on the affine open defined by this
equation. Consider the degree 2 cover f: C' — E given by (z,7) — (22, y).
It is ramified at the affine points P = (0,4) and Q = (0,7) of C, whose
images in E are respectively (0,4) and (0,7). Denote by C = C — {P,Q}
and E = E — {f(P), f(Q)} the affine curves obtained from C and E by
removing the ramification locus. Denote by f: C — FE the étale Galois
cover induce by f. Both curves C' and E are obtained by base change from
curves Cy and FEy defined over ky = [Fq4.

Computing the Galois group of C(™ — E will allow us to determine the
cohomology of any locally constant sheaf on E trivialised by f. First, we
need to compute H'(C, up). This is where we need to cheat a little since
no algorithm performing this computation for a general curve has been



1118 Christophe LEVRAT

implemented yet (see Section 5.2 for existing algorithms); fortunately, C
being a genus two curve, we have other means of finding a generating set
for this group.

Computing H'(C, p2). Denote by

PE=(%1,0), Pf=(xd5%0), Pf=(%£50)
the points of C' with y-coordinate 0. A basis of Jac(C)[2] is given by the
classes of the divisors

Dy =P —P7, Dy=Pf —Py, D3=Py —Pf, Dy:==P'—P;.

r—1 x —ab x —ab

The rational functions
z—1
h=orr P BT uTs TS
all satisfy 2D; = div(f;). Denote by Ds the divisor P — @, which is linearly
equivalent to two times the divisor

Ds = (a™,a®) + (—a™, a®) — (coy 4+ 00 ).

We found this divisor D5 using a brute-force search on Jac(C)(Fi21); for
hyperelliptic curves such as C, this can also be done using division polyno-
mials (see e.g. [4, Thm. C]). In the particular case where n = 2, division by
2 has even been explicitly described by Zarhin [19, Thm. 3.2]. The divisor
of the rational function

f _y+a8x2+7
5T x

is 2D5 — Ds. Therefore, an Fa-basis of H!(C, uo) is given by
(-D17 fl)? sy (-D47 f4)) (557 f5)

Computing Aut(C{™|E). The cover C\" — C with group H'(C,A)Y is
defined by its function field k(C)(21,...,25) where z2 = f;. Recall that we
never need to compute a smooth model of C™ . For reasons explained in
Section 7.2, we choose to replace f5 with 22 f5, which still yields the same
function field. The group G' = Aut(C™|E) has order 64; it contains the
normal subgroup H = Aut(C‘™|C) ~ (Z/2Z)® generated by the elements
Yi: z; — —z;. Let us now determine a preimage in G of the generator
o: (z,y) — (—z,y) of Aut(C|E). First, we compute the divisors o*D;.

O'*Dl = —D1

U*DQ = —D2

0*D3 = Dy + D3 + div(hg) where hy =

0*Dy = Dy + Dy + div(hy) where hy =

O'*Dg, == D5

Y
mL'*‘>_;’_a58m2 +a2z+a54

Yy
23413052+ ql08 54 gl14
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Note that o*f3 = h3fifs, 0*fs = h2fafs and o*f5 = —f5. Since ¥ is a
square root of —1 in Fyo1, the automorphism é € G given by
1 1
T —x, Yy, 21— —, 29— —,
21 22
23— ha(z,y)zzs,  za— ha(w,y)z02, 25— a0z

is a preimage of ¢. In particular, since

h3($,y)h3(—$,y) = h4($7y)h4(_x7y) = -1,

the automorphism 62 is given by

r——zx, Yy——y, z21t—2z1, 22722,
23— —23, 24 /> —Z4, R5t—r —2Z5.

] Hence 62 = v3y475 and the order of 6 as an element of G is 4. Furthermore,
0y1 = 17390 and dv9 = 2v49. The elements 73,4, 75 generate the center
of G. Its commutator subgroup is (y3 = [y1,9],74 = [72,9]). Finally, let
us compute the action of Gal(F121|F11) = (¢: a — 2a~!) on G, which can
be done very easily since the elements of G are defined by their action on
coordinates of points. Predictably, ¢ acts trivially on the ~;; it also sends ¢
to ’)/55.

7.2. Ramification. Here is how to compute the preimages of the points P
and @ in C™ . We have computed its function field as k(C™) = k(C) (27 —
fi,...,22 — f5), and would now like to compute an actual affine model of
C™ . For each i € {1...5}, write f; = i% For P and @ to have easily
computable preimages, we can replace f; with h2f; when h;(P) = 0 or
hi(Q) = 0. This is only the case for fs5, which now reads z(y + a®z? + 7).
The following affine curve is birational to C{™:

SpeCk[xayazla s 725]/ (y2 - ('12 - 1)(%’2 - 2)($2 - 3)7
(x+1)27 — (x — 1),
(v +a%)23 — (z — a%),
(z —5)23 — (z —a®),
(z45)2% — (z — 1),
(y + a2z +7)).

The 1[H'(C,u2)| = 16 preimages of P = (0,4) in C{™ are the points
(0,4, 41, +a%0, £3a3, £3a3°,0). The preimages of Q = (0,7) are the points
(0,7, +1,4a%, £3a3, £3a%°,0). Choose two preimages Powmy = (0,4,1,
a®,3a3,3a%,0) and Qo = (0,7,1,a%,3a3,3a%°,0) of P and Q in this
affine curve birational to C™, and denote by Pp = (0,4),Qr = (0,7)
their respective images in E. The inertia group [ PP C G has order
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[Ip|p,| - ‘Ipc<n>u)| = 2 X 2 = 4; it is generated by 6. The same applies to
19 1@ = (9)-

7.3. Cohomology of a locally constant sheaf on FE. Consider the
locally constant sheaf F on E trivialised by C, with generic fibre M = A3,
defined by the representation:

Aut(C|E) — GL3(A)

0 01
c— [0 1 O
1 00

Computations using Magma yield HY(E,F) ~ A% and HY(E, F) ~ A%

A°.
More precisely, the 1-cocycles ci,. .., cg below form a basis of HY(G, M )
the null-cohomologous cocycle ¢ is the image of the 0-cocycle (1 0 0) € M.
Cocydle ¢ | c(n) | ) | cls) | eta) | es) | <)

1 (100){(000)[(101)|(000)|[(000)|(001)

c2 (010){(000)[(000)|(000)|(000)|(000)

cs (001)[{(000)|(101)|(000)|[(000)|(001)

c4 (000){(100)[(000)|(101)[{(000)|(001)

cs (000)|(010)[(000)|(000)|(000)|(000)

c6 (000)[{(001)[(000)|(101)[{(00O0)|(001)

cr (000)[{(000)|(000)|(000)|[(L01)[(001)

cs (000)|(000)[(000)|(000)|(000)|(010)

d (000)[{(000)|[(000)|(000)[(00O0)|(101)

The action of ¢ € Gal(F121|F11) on Hom, (G, M) only affects the element
c7 of this basis, sending it to ¢*c¢; = c¢7 + ¢. Its action on HY(G, M) is
therefore trivial.

Remark 7.1. We now know that the action of Gal(Fi91|F11) on HY(E, F)
is trivial. Therefore, we could have chosen a subcover of C\™ by first com-
puting a basis of HY(C, u2)(F11) and then taking n™ roots of the functions
appearing in this basis. With the notations above, such a basis is given by
(D1, f1), (D2, f2), (D4, f1), (D3 + Ds, fs f5). Set k(C') = k(C)(21, 22, 24, t3)
where z2 = f; and t3 = f3fs. Using the previous notations hs, hy, a preim-
age of o € Aut(C|E) in Aut(C'|E) is the automorphism & given by:

1 1
T —x, Yy, 21+ o 29— o 24— hy(x,y) 2224,
1 2

tsy — a*hy(z, y)ts.
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The group Aut(C’'|E) only has order 32, and one can check that the map

RI(Aut(C'|E), M) — RT(Aut(C™|E), M)

1S a quasi-isomorphism.
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