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Kahler differentials and Z,-extensions

par LAURENT BERGER

RESUME. Soit K un corps p-adique, et soit K., /K une extension galoisienne
qui est presque totalement ramifiée, et dont le groupe de Galois est un groupe
de Lie p-adique de dimension 1. Nous montrons que K., n’est pas dense
dans (BJ,/Fil®> BJ;)®(K/K=) De plus, la restriction de 6 a l'adhérence
de K, est injective, et 'image de celle-ci via 0 est ’ensemble des vecteurs
du complété p-adique de K., qui sont C! de dérivée nulle pour l’action de
Gal(K«/K). L’ingrédient principal pour montrer ces résultats est la construc-
tion d’'un réseau explicite de Ok _ qui est commensurable avec O?(:of, ou
d: Ok, = Qo /o, est la différentielle canonique.

ABSTRACT. Let K be a p-adic field, and let K, /K be a Galois extension
that is almost totally ramified, and whose Galois group is a p-adic Lie group
of dimension 1. We prove that K., is not dense in (Bl / Fil* Bj ) %25/ Ke),
Moreover, the restriction of 8 to the closure of K, is injective, and the image
of the closure via 6 is the set of vectors of the p-adic completion of K, that
are C'!' with zero derivative for the action of Gal(K,/K). The main ingredient
for proving these results is the construction of an explicit lattice of Ok that
is commensurable with O%=°, where d : Ok — Qo,_jo, is the canonical
differential.

Introduction

Let K be a p-adic field, namely a finite extension of W (k)[1/p] where
k is a perfect field of characteristic p. Let C be the p-adic completion of
an algebraic closure K of K. Let Ko /K be a Galois extension that is
almost totally ramified, and whose Galois group is a p-adic Lie group of
dimension 1. Let K~ denote the p-adic completion of Koo, let BdR(/K\OO) =
Byg (C)Gal(K/K><) he Fontaine’s field of periods attached to K+ /K, and
for n > 1, let B, (K o) = B (Koo)/ Fil" Bl (K oo).

This note is motivated by Ponsinet’s paper [7], in which he relates the
study of universal norms for the extension K, /K to the question of whether
K is dense in B,, (f(\ o) for n > 1. The density result holds for n = 1 since
CCal(K/Keo) = | by the Ax—Sen—Tate theorem.

Our main result is the following.
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—

Theorem A. The field K is not dense in Ba(K ).

By the constructions of Fontaine and Colmez (see [2] and [4]), B2(C) =
B (C)/Fil* B{;(C) is the completion of K for a topology defined using
the Kéhler differentials Q¢ /0, . Some partial results towards Theorem A
have been proved by Iovita—Zaharescu in [6], by studying these Kéhler
differentials. Let Qo,._ 0, be the Kéhler differentials of Ok /Ok and let
d: Ok, = Qoy__jo, be the differential. Our main technical result is the
construction of a lattice of Ok _ that is commensurable with (9?&?. Since
the inertia subgroup of Gal(K,/K) is a p-adic Lie group of dimension 1,
there exists a finite subextension K/ K of K such that K, /Kj is a totally
ramified Zj-extension. Let K, be the n-th layer of this Z,-extension.

Theorem B. The lattices },~op" Ok, and O;i(:og are commensurable.

In order to prove this, we use Tate’s results on ramification in Z,-
extensions. As a corollary of Theorem B, we can say more about the com-
pletion of Ko in Ba(K ). The field K is a Banach representation of
the p-adic Lie group Gal(K/K). Let ¢ : Gal(Ko/Ko) — Z, be an iso-
morphism of p-adic Lie groups. If x € K, 0, We say that x is C! with zero
derivative for the action of Gal(K~/K) if g(z) —z = o(c(g)) as ¢(g) — 0.

Let 0 : Bo(C) — C be the usual map from p-adic Hodge theory.

—

Theorem C. The completion of Ko in Bo(K ) is isomorphic via 0 to
the set of vectors of f(\oo that are C' with zero derivative for the action of
Gal(K«/K).

This is a field, and it is also the set of y € f{\oo that can be written as
Y= n>0P"Yn with y, € Ky, and y, — 0.

We also prove that d(Ok_ ) contains no nontrivial p-divisible element
(Corollary 3.5), and that d : Ok, — Qo,_ 0, is not surjective (Corol-
lary 3.6). These two statements are equivalent to Theorem A by the results
of [6]; using our computations, we give a short independent proof.

1. Kahler differentials

Let K be a p-adic field. If L/K is a finite extension, let 0/ C Of
denote its different.

Proposition 1.1. Let K be a p-adic field, and let L/K be an algebraic
extension.
(1) If L/K s a finite extension, then Qo, 10, = Or/dr/kx as Of-
modules.
(2) If M/L/K are finite extensions, then the map Qo, 10, — QLo,, /05
s injective.



Kahler differentials and Zp-extensions 1079

(3) If L/K is an algebraic extension, and wi,wa € Qo, /0, then there
exists x € Of, such that wy = zwy if and only if Ann(w;) C Ann(ws).

Proof. See for instance [3, §2]. O

Recall (see [1, §2]) that an algebraic extension L/K is deeply ramified
if the set {val,(0p/k)}r is unbounded, as F' runs through the set of finite
extensions of K contained in L. Alternatively ([8, Remark 3.3]), L/K is
deeply ramified if and only if L is a perfectoid field. An extension Koo /K
as in the introduction is deeply ramified.

Corollary 1.2. If L/K is deeply ramified, then Qo, j0,, = L/Or, as Of-
modules.

Proposition 1.3. If L/K is deeply ramified, then d : O — Qo, o, s
surjective if and only if d(Or) is p-divisible.

Proof. Since L/K is deeply ramified, Qo, /0, is isomorphic to L/Oy by
Corollary 1.2. The claim now follows from the fact that a nonzero Op-
submodule of L/Op, is equal to L/Oy, if and only if it is p-divisible. O

Proposition 1.4. Let L/K be a deeply ramified extension, and let K' C L
be a finite extension of K.
(1) d:0p = Qo, o, is surjective if and only if d' : O — Qo, j0,., i
surjective.
(2) 0%=9 and OF=0 are commensurable.

Proof. We have an exact sequence of Op-modules, compatible with d and
d/
f 9
OL & QOK//OK — QOL/OK — QOL/OK/ — 0.

Let us prove (1). If d : O — Qo, o, is surjective, then clearly d’ :
OL — Qo,/0,, s surjective. Conversely, there exists r > 0 such that
P Qo0 =10} Ifw € Qo, o, write it as w = p"w,. By hypothesis,
there exists a,, € O, such that w, = d'a, in Qo, /0, Hence p" (wy—day) =
0 in Qp, /0, so that w = d(p"a,). We now prove (2). The exact se-
quence above implies that O%ZO C (9%,:0. Conversely, if x € (’)%,:0, then
dx € ker g = im f, so that p" - dx = 0. Hence p" - OCL”:O C (’)%ZO. O

Corollary 1.5. In order to prove Theorem B, we can replace K by any
finite subextension K' of K. In particular, we can assume that Ko /K is a
totally ramified Z,-extension.

2. Ramification in Z,-extensions

Let Koo/K be a totally ramified Z,-extension. We recall some of the
results of [9, §3.1] concerning the ramification of K /K and the action
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of Gal(Kx/K) on K. Let K, denote the n-th layer of K. /K, so that
(K, : K| =p".

Proposition 2.1. There are constants a,b such that for alln > 0, we have
val,(0k, k) —n—bl <p~"a

Proof. See [9, §3.1]. O

The notation ), -, p" Ok, denotes the set of elements of K., that are
finite sums of elements of p"Ok,,.

Corollary 2.2. There exists ng = 0 such that }_,~q POk C Od 0,

Proposition 2.3. There ezists ¢(Ko/K) > 0 such that for all n,k >

and v € Ok, , we have Valp(NmKHk/Kn(x)/x[K"ﬁLk:K"] -1 > C(KOO/K).

Proof. The result follows from the fact (see [10, 1.2.2]) that the extension
K /K is strictly APF. One can then apply 1.2.1, 1.2.2 and 1.2.3 of [10]. O

If n>0and x € Ko, then R,(z) = p~*- Trg, /K, (%) is independent
of k> 0 such that « € K, 1k, and is the normalized trace of z.

Proposition 2.4. There exists co € Zxq such that val,(Ry(z)) > valy(z)—
co foralln >0 and z € K

Proof. See [9, §3.1] (including the remark at the bottom of p. 172). O

In particular, R, (Ok_ ) C p~ 2Ok, for all n > 0. Let Kg- = K and for
n>1,let K,f be the kernel of R,,_1 : K,, = K,,_1, let RL R,—R,_1,and
Rg = Ry. Note that K;- = im(Ry : Ko — K,,). If v € K and i > 0, then
Ry (z) = 0for n > 0, and z = (35,41 Ry (2)) + Ri(z). Proposition 2.4
implies that Ry (O ) C p~©Ok,, for all n > 0. Let (’)IL(n = Ok, NK;-.

Corollary 2.5. If i > 0, we have Ok, C (D410 20k, ) &p 20k, .
Proof. If x € Ok, write x = 3,541 Rib (2) + Ri(). O
For n > 0, let g, denote a topological generator of Gal(K/Ky,).

Lemma 2.6. There exists a constant c3 such that for all n > 1 and all
v € Kby, we have valy(z) > valy (1= g)(x)) = cs.

Proof. See [9, §3.1] (including the remark at the bottom of p. 172). O

3. The lattice 0?(10

We now prove Theorem B. Thanks to Corollary 1.5, we assume that
K+ /K is a totally ramified Z,-extension. Let {py, }»n>0 be a norm compati-
ble sequence of uniformizers of the K,,. Let m, > 0 be the smallest integer
such that p™c - ¢(Kx/K) > 1/(p — 1) (where ¢(K~/K) was defined in
Proposition 2.3).
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Proposition 3.1. We have val (prH pk) = valy(k) — me.

Proof. Note that if z,y € C with val,(z —y) > v, then val, (2P — yP) >
min(v+1,pv). Let ¢ = ¢(Ks/K) and m = m.. We have val,(p | —pp) > ¢
by Proposition 2.3, so that Valp(pﬁjjll — pﬁj) >pleifp~le<1/(p—1).

m+1 m

In particular, val,(p?., — pb") > p™c > 1/(p — 1), so that we have

val (pnrrlrﬁl — ")y > j+1/(p—1)if j > 0. This implies the result. [
m ni OK

Theorem 3.2. There exists n; > 0 such that (’)d ey

m>n1 m

Proof. We prove the result with ny = [a — b+ m. + 2]. Take x € (’);l(jo
and write x = flal xi,ofz with z; € Ok, so that dz = ﬁial i:vz-pfl_l -dpp.
Since py, is a uniformizer of Of,,, the Ok, -module Qo /0, = OKn [k, /K

(see Proposition 1.1) is generated by dp,. If de = 0, then Z 0 o Lizipict

belongs to 0k, /k so that by Proposition 2.1 (and since val »(pP") < 1), for
all < we have

valp(z;) > n —a+b—valy(i) — 1.
For k > 1, let

¢
yk—zxkl k1+Z$w n(k 1) = Pr—k)-

Note that y € OKn—k+1' Let us bound val,(y;). We have
Valp( k:lp] (k‘ 1))> *a‘i“b*k
We also have val,(z,x¢) = n—a+b—k—val,(¢) —1, and by Proposition 3.1

Valp(pffi(kil) — pfl_k) > val,(0) — me.
Hence val,(y;) > n—a+b—k—1—m, and therefore y;, € p”_k+1_"1(9KH7H1.
Finally, we have x = y1 + -+ + Yn—n, + 2 ¢ xpn—nlgpfll, and », .’Epn—nlgpfll
belongs to Ok, , which implies the result. O
Remark 3.3. Compare with [5, Lemma 4.3.2].
Corollary 3.4. We have O%=0 C (Bynp, 1 P " 20k, ) & p~ 20k, .

Proof. By Theorem 3.2, it is enough to prove that

POk, | P p0g, | @ P 20k,

m>ni+1
for alln > ny. If 2 € p"Ok,,, write © = R (2) + Rp_y (x) + -+ -+ R 1 (z) +
Rp, (x). We have R- , (z) € p”_CZOIL{n_k C p("_k)_CQOll(n_k and likewise

Rp,(z) € p"" 20k, Cp" 20k, . O
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Corollary 3.5. There are no nontrivial p-divisible elements in d(Ok.,).

Proof. By Propositions 1.3 and 1.4, we can assume that K, /K is a totally
ramified Z,-extension. Let {a;};>1 be a sequence of Ok such that do; =
p - da;qq for all ¢ > 1.

Using Corollary 2.5, write oy = Y o, With o = Rk (a;) € p=© (’)Ijgm
form > n1+1 and a;,, = Ry, (o) € p_CQC’)Knl. Since pkakH —q4 € O}l(:og,
Corollary 3.4 implies that pkakﬂm — ym € P20k, for all m = ny.
Taking & > 0 now implies that «;,, € p" ™ 20k, for all m > nj.
Corollary 2.2 gives potmitezq, ¢ O}lig. Taking @ = ng + n1 + c2 + 1 gives

dOél =0. O
Corollary 3.6. The differential d: O, — Qo 0, s not surjective.
Proof. This follows from Corollary 3.5 and Proposition 1.3. U

4. The completion of K, in B2(C)

We now prove Theorems A and C. Since we are concerned with the
completion of K., we can once again replace K with a finite subexteniipn
of Ko and assume that K /K is a totally ramified Z,-extension. Let K2,
denote the completion of Ko, in B2(C) = BIz(C)/Fil? Bj;(C), so that
R =0(K2%) is a subring of K. Let T = Gal(Ko/K), and let ¢ : T — Z,
be an isomorphism of p-adic Lie groups. Let ws be the valuation on K
defined by wa(z) = min{n € Z such that p"z € O}l(:og}. The restriction of
the natural valuation of By(C) to K is ws (see [4, §1.4 and §1.5], or [2,
Theorem 3.1]; the natural valuation on By(C) comes from its definition as
the quotient of a certain Banach space, see ibid.).

The map 6 : B3(C) — C has the following property (see [4, §1.4]).

Lemma 4.1. If {z}r>1 s a sequence of Ko that converges to x € By(C)
for wa, then {xy}r>1 s Cauchy for valy, and 0(x) = limy_, 4o x) for the
p-adic topology.

Let M = @, p”(’)f(n. Corollary 2.2 and Theorem 3.2 imply that M
and (’)jl(:og are commensurable. Hence K. 2 is the M-adic completion of K.
Let wh be the M-adic valuation on K, so that w) and wy are equivalent.
Lemma 4.2. If # € Ko, then val,(R;:(z)) > wh(x) + n.

Proof. Write x = 37,50 Ry (2). If 2 € p M, then Ry (2) € p"™Ok,. O

Proposition 4.3. Every element x € f(\go can be written in one and only
one way as Y, z- where x;r € K- and p~"z;5 — 0 for val,.

Proof. Note that such a series converges for wo. The map R;- : Koo — K-
sends pYM C K to p“’*"(’)ll(n. It is uniformly continuous for the ws-adic

topology, so that it extends to a continuous map R : f(\go — K-
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Let x € ff\go be the wy-adic limit of {xy}r>1 with zp € K. For a given
k, the sequence {p™"R; (zg)}nz0 € [0 K; has finite support. As k —
+00, these sequences converge uniformly in [],5o Ki to {p™"R; () }n>o0,
so that p~" Ry (z) — 0 as n — 4o0. Hence 3,5 Ry (2) converges for wo.
Since z, = Y50 R (x)) for all k, we have = Y, Ry (). Finally, if
T =Y,y with 25 € K and p "z — 0 for valp, then z;; = R;(z)
which proves unicity. H

Corollary 4.4. The map 0 : f(\go — f(\oo is injective.

Proof. If z;- € K;- and x;- — 0 and > n>0 ry =0in Eoo, then o~ = 0 for

Corollary 4.5. The ring R is the set of y € f(\oo that can be written as
Y= ns0P"Yn with y, € Ky, and y, — 0.

Proposition 4.6. The ring R is a field, and R = {z € f(\oo such that
g(x) —x =o0(c(g)) asg — 1 inT}.

Proof. The fact that R is a field results from the second statement, since
9(1/2) =1/ = (2 — g(x))/(29(x)). Take y = ¥, p"y with g € K, and
yn — 0. If m > 1, then for all k£ > 0, we have y,, € p™ " O, . We can write
Y =Tk + Y pnor P"yn and then (g — 1)(y) € p™Ok_ if g € Gal(Koo/Ky).
This proves one implication.

Conversely, take 2 € K 5 such that g(z)—z = o(c(g)). Write z = > k>0 Tk
with 79 = Ro(z) € Ko and z, = Ri-(z) € Kj- for all k > 1. For n > 0,
let g, denote a topological generator of Gal(Ko/K,). Take m > 0, and
n > 0 such that we have val,((g, —1)(z)) = m+n. We have (1 —g,)(x) =
> ksni1(l = gn)xy, so that by Lemma 2.6 and Proposition 2.4:

> valp((1 = gn)(®n11)) — €3
> valy((1 — gn) (7)) —c2 —c3
>

This implies the result. O

Remark 4.7. Proposition 4.6 says that R is the set of vectors of f(\oo that
are C'! with zero derivative (flat to order 1) for the action of T

Theorem A follows from Corollary 4.4 since 6 : Bg(f(\ ) — K. o 1s not
injective. Finally, Corollary 4.4, Corollary 4.5, and Proposition 4.6 imply
Theorem C.

Acknowledgments. Ithank Léo Poyeton and the referee for their remarks.
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