
Laurent BERGER

Kähler differentials and Zp-extensions
Tome 36, no 3 (2024), p. 1077-1084.

https://doi.org/10.5802/jtnb.1308

© Les auteurs, 2024.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 4.0 FRANCE.
http://creativecommons.org/licenses/by-nd/4.0/fr/

C EN T R E
MER S ENN E

Le Journal de Théorie des Nombres de Bordeaux est membre du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2118-8572

https://doi.org/10.5802/jtnb.1308
http://creativecommons.org/licenses/by-nd/4.0/fr/
http://www.centre-mersenne.org/


Journal de Théorie des Nombres
de Bordeaux 36 (2024), 1077–1084

Kähler differentials and Zp-extensions

par Laurent BERGER

Résumé. Soit K un corps p-adique, et soit K∞/K une extension galoisienne
qui est presque totalement ramifiée, et dont le groupe de Galois est un groupe
de Lie p-adique de dimension 1. Nous montrons que K∞ n’est pas dense
dans (B+

dR/ Fil2 B+
dR)Gal(K/K∞). De plus, la restriction de θ à l’adhérence

de K∞ est injective, et l’image de celle-ci via θ est l’ensemble des vecteurs
du complété p-adique de K∞ qui sont C1 de dérivée nulle pour l’action de
Gal(K∞/K). L’ingrédient principal pour montrer ces résultats est la construc-
tion d’un réseau explicite de OK∞ qui est commensurable avec Od=0

K∞
, où

d : OK∞ → ΩOK∞ /OK
est la différentielle canonique.

Abstract. Let K be a p-adic field, and let K∞/K be a Galois extension
that is almost totally ramified, and whose Galois group is a p-adic Lie group
of dimension 1. We prove that K∞ is not dense in (B+

dR/ Fil2 B+
dR)Gal(K/K∞).

Moreover, the restriction of θ to the closure of K∞ is injective, and the image
of the closure via θ is the set of vectors of the p-adic completion of K∞ that
are C1 with zero derivative for the action of Gal(K∞/K). The main ingredient
for proving these results is the construction of an explicit lattice of OK∞ that
is commensurable with Od=0

K∞
, where d : OK∞ → ΩOK∞ /OK

is the canonical
differential.

Introduction
Let K be a p-adic field, namely a finite extension of W (k)[1/p] where

k is a perfect field of characteristic p. Let C be the p-adic completion of
an algebraic closure K of K. Let K∞/K be a Galois extension that is
almost totally ramified, and whose Galois group is a p-adic Lie group of
dimension 1. Let K̂∞ denote the p-adic completion of K∞, let BdR(K̂∞) =
BdR(C)Gal(K/K∞) be Fontaine’s field of periods attached to K∞/K, and
for n ⩾ 1, let Bn(K̂∞) = B+

dR(K̂∞)/ Filn B+
dR(K̂∞).

This note is motivated by Ponsinet’s paper [7], in which he relates the
study of universal norms for the extension K∞/K to the question of whether
K∞ is dense in Bn(K̂∞) for n ⩾ 1. The density result holds for n = 1 since
CGal(K/K∞) = K̂∞ by the Ax–Sen–Tate theorem.

Our main result is the following.
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Theorem A. The field K∞ is not dense in B2(K̂∞).

By the constructions of Fontaine and Colmez (see [2] and [4]), B2(C) =
B+

dR(C)/ Fil2 B+
dR(C) is the completion of K for a topology defined using

the Kähler differentials ΩOK̄/OK
. Some partial results towards Theorem A

have been proved by Iovita–Zaharescu in [6], by studying these Kähler
differentials. Let ΩOK∞ /OK

be the Kähler differentials of OK∞/OK and let
d : OK∞ → ΩOK∞ /OK

be the differential. Our main technical result is the
construction of a lattice of OK∞ that is commensurable with Od=0

K∞ . Since
the inertia subgroup of Gal(K∞/K) is a p-adic Lie group of dimension 1,
there exists a finite subextension K0/K of K∞ such that K∞/K0 is a totally
ramified Zp-extension. Let Kn be the n-th layer of this Zp-extension.

Theorem B. The lattices
∑

n⩾0 pnOKn and Od=0
K∞ are commensurable.

In order to prove this, we use Tate’s results on ramification in Zp-
extensions. As a corollary of Theorem B, we can say more about the com-
pletion of K∞ in B2(K̂∞). The field K̂∞ is a Banach representation of
the p-adic Lie group Gal(K∞/K). Let c : Gal(K∞/K0) → Zp be an iso-
morphism of p-adic Lie groups. If x ∈ K̂∞, we say that x is C1 with zero
derivative for the action of Gal(K∞/K) if g(x) − x = o(c(g)) as c(g) → 0.

Let θ : B2(C) → C be the usual map from p-adic Hodge theory.

Theorem C. The completion of K∞ in B2(K̂∞) is isomorphic via θ to
the set of vectors of K̂∞ that are C1 with zero derivative for the action of
Gal(K∞/K).

This is a field, and it is also the set of y ∈ K̂∞ that can be written as
y =

∑
n⩾0 pnyn with yn ∈ Kn and yn → 0.

We also prove that d(OK∞) contains no nontrivial p-divisible element
(Corollary 3.5), and that d : OK∞ → ΩOK∞ /OK

is not surjective (Corol-
lary 3.6). These two statements are equivalent to Theorem A by the results
of [6]; using our computations, we give a short independent proof.

1. Kähler differentials
Let K be a p-adic field. If L/K is a finite extension, let dL/K ⊂ OL

denote its different.

Proposition 1.1. Let K be a p-adic field, and let L/K be an algebraic
extension.

(1) If L/K is a finite extension, then ΩOL/OK
= OL/dL/K as OL-

modules.
(2) If M/L/K are finite extensions, then the map ΩOL/OK

→ ΩOM /OK

is injective.
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(3) If L/K is an algebraic extension, and ω1, ω2 ∈ ΩOL/OK
, then there

exists x ∈ OL such that ω2 = xω1 if and only if Ann(ω1) ⊂ Ann(ω2).

Proof. See for instance [3, §2]. □

Recall (see [1, §2]) that an algebraic extension L/K is deeply ramified
if the set {valp(dF/K)}F is unbounded, as F runs through the set of finite
extensions of K contained in L. Alternatively ([8, Remark 3.3]), L/K is
deeply ramified if and only if L̂ is a perfectoid field. An extension K∞/K
as in the introduction is deeply ramified.

Corollary 1.2. If L/K is deeply ramified, then ΩOL/OK
= L/OL as OL-

modules.

Proposition 1.3. If L/K is deeply ramified, then d : OL → ΩOL/OK
is

surjective if and only if d(OL) is p-divisible.

Proof. Since L/K is deeply ramified, ΩOL/OK
is isomorphic to L/OL by

Corollary 1.2. The claim now follows from the fact that a nonzero OL-
submodule of L/OL is equal to L/OL if and only if it is p-divisible. □

Proposition 1.4. Let L/K be a deeply ramified extension, and let K ′ ⊂ L
be a finite extension of K.

(1) d : OL → ΩOL/OK
is surjective if and only if d′ : OL → ΩOL/OK′ is

surjective.
(2) Od=0

L and Od′=0
L are commensurable.

Proof. We have an exact sequence of OL-modules, compatible with d and
d′

OL ⊗ ΩOK′ /OK

f−→ ΩOL/OK

g−→ ΩOL/OK′ → 0.

Let us prove (1). If d : OL → ΩOL/OK
is surjective, then clearly d′ :

OL → ΩOL/OK′ is surjective. Conversely, there exists r ⩾ 0 such that
pr · ΩOK′ /OK

= {0}. If ω ∈ ΩOL/OK
, write it as ω = prωr. By hypothesis,

there exists αr ∈ OL such that ωr = d′αr in ΩOL/OK′ . Hence pr(ωr −dαr) =
0 in ΩOL/OK

so that ω = d(prαr). We now prove (2). The exact se-
quence above implies that Od=0

L ⊂ Od′=0
L . Conversely, if x ∈ Od′=0

L , then
dx ∈ ker g = im f , so that pr · dx = 0. Hence pr · Od′=0

L ⊂ Od=0
L . □

Corollary 1.5. In order to prove Theorem B, we can replace K by any
finite subextension K ′ of K. In particular, we can assume that K∞/K is a
totally ramified Zp-extension.

2. Ramification in Zp-extensions
Let K∞/K be a totally ramified Zp-extension. We recall some of the

results of [9, §3.1] concerning the ramification of K∞/K and the action
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of Gal(K∞/K) on K∞. Let Kn denote the n-th layer of K∞/K, so that
[Kn : K] = pn.

Proposition 2.1. There are constants a, b such that for all n ⩾ 0, we have
|valp(dKn/K) − n − b| ⩽ p−na.

Proof. See [9, §3.1]. □

The notation
∑

n⩾0 pnOKn denotes the set of elements of K∞ that are
finite sums of elements of pnOKn .

Corollary 2.2. There exists n0 ⩾ 0 such that
∑

n⩾0 pn+n0OKn ⊂ Od=0
K∞ .

Proposition 2.3. There exists c(K∞/K) > 0 such that for all n, k ⩾ 0
and x ∈ OKn+k

, we have valp(NmKn+k/Kn
(x)/x[Kn+k:Kn] − 1) ⩾ c(K∞/K).

Proof. The result follows from the fact (see [10, 1.2.2]) that the extension
K∞/K is strictly APF. One can then apply 1.2.1, 1.2.2 and 1.2.3 of [10]. □

If n ⩾ 0 and x ∈ K∞, then Rn(x) = p−k · TrKn+k/Kn
(x) is independent

of k ≫ 0 such that x ∈ Kn+k, and is the normalized trace of x.

Proposition 2.4. There exists c2 ∈ Z⩾0 such that valp(Rn(x)) ⩾ valp(x)−
c2 for all n ⩾ 0 and x ∈ K∞.

Proof. See [9, §3.1] (including the remark at the bottom of p. 172). □

In particular, Rn(OK∞) ⊂ p−c2OKn for all n ⩾ 0. Let K⊥
0 = K0 and for

n ⩾ 1, let K⊥
n be the kernel of Rn−1 : Kn → Kn−1, let R⊥

n = Rn−Rn−1, and
R⊥

0 = R0. Note that K⊥
n = im(R⊥

n : K∞ → Kn). If x ∈ K∞ and i ⩾ 0, then
R⊥

n (x) = 0 for n ≫ 0, and x = (
∑

n⩾i+1 R⊥
n (x)) + Ri(x). Proposition 2.4

implies that R⊥
n (OK∞) ⊂ p−c2OKn for all n ⩾ 0. Let O⊥

Kn
= OKn ∩ K⊥

n .

Corollary 2.5. If i ⩾ 0, we have OK∞ ⊂ (
⊕

m⩾i+1 p−c2O⊥
Km

) ⊕ p−c2OKi.

Proof. If x ∈ OK∞ , write x =
∑

m⩾i+1 R⊥
m(x) + Ri(x). □

For n ⩾ 0, let gn denote a topological generator of Gal(K∞/Kn).

Lemma 2.6. There exists a constant c3 such that for all n ⩾ 1 and all
x ∈ K⊥

n+1, we have valp(x) ⩾ valp((1 − gn)(x)) − c3.

Proof. See [9, §3.1] (including the remark at the bottom of p. 172). □

3. The lattice Od=0
K∞

We now prove Theorem B. Thanks to Corollary 1.5, we assume that
K∞/K is a totally ramified Zp-extension. Let {ρn}n⩾0 be a norm compati-
ble sequence of uniformizers of the Kn. Let mc ⩾ 0 be the smallest integer
such that pmc · c(K∞/K) ⩾ 1/(p − 1) (where c(K∞/K) was defined in
Proposition 2.3).
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Proposition 3.1. We have valp(ρpk
n+1 − ρk

n) ⩾ valp(k) − mc.

Proof. Note that if x, y ∈ C with valp(x − y) ⩾ v, then valp(xp − yp) ⩾
min(v+1, pv). Let c = c(K∞/K) and m = mc. We have valp(ρp

n+1 −ρn) ⩾ c

by Proposition 2.3, so that valp(ρpj+1

n+1 − ρpj

n ) ⩾ pjc if pj−1c ⩽ 1/(p − 1).
In particular, valp(ρpm+1

n+1 − ρpm

n ) ⩾ pmc ⩾ 1/(p − 1), so that we have
valp(ρpm+j+1

n+1 − ρpm+j

n ) ⩾ j + 1/(p − 1) if j ⩾ 0. This implies the result. □

Theorem 3.2. There exists n1 ⩾ 0 such that Od=0
K∞ ⊂

∑
m⩾n1 pm−n1OKm.

Proof. We prove the result with n1 = ⌈a − b + mc + 2⌉. Take x ∈ Od=0
Kn

and write x =
∑pn−1

i=0 xiρ
i
n with xi ∈ OK , so that dx =

∑pn−1
i=0 ixiρ

i−1
n · dρn.

Since ρn is a uniformizer of OKn , the OKn-module ΩOKn /OK
= OKn/dKn/K

(see Proposition 1.1) is generated by dρn. If dx = 0, then
∑pn−1

i=0 ixiρ
i−1
n

belongs to dKn/K so that by Proposition 2.1 (and since valp(ρpn

n ) ⩽ 1), for
all i we have

valp(xi) ⩾ n − a + b − valp(i) − 1.

For k ⩾ 1, let

yk =
∑
p∤j

xpk−1jρj
n−(k−1) +

∑
ℓ

xpkℓ(ρ
pℓ
n−(k−1) − ρℓ

n−k).

Note that yk ∈ OKn−k+1 . Let us bound valp(yk). We have

valp(xpk−1jρj
n−(k−1)) ⩾ n − a + b − k.

We also have valp(xpkℓ) ⩾ n−a+b−k −valp(ℓ)−1, and by Proposition 3.1

valp(ρpℓ
n−(k−1) − ρℓ

n−k) ⩾ valp(ℓ) − mc.

Hence valp(yk) ⩾ n−a+b−k−1−mc and therefore yk ∈ pn−k+1−n1OKn−k+1 .
Finally, we have x = y1 + · · · + yn−n1 +

∑
ℓ xpn−n1 ℓρ

ℓ
n1 , and

∑
ℓ xpn−n1 ℓρ

ℓ
n1

belongs to OKn1
, which implies the result. □

Remark 3.3. Compare with [5, Lemma 4.3.2].

Corollary 3.4. We have Od=0
K∞ ⊂ (

⊕
m⩾n1+1 pm−n1−c2O⊥

Km
) ⊕ p−c2OKn1

.

Proof. By Theorem 3.2, it is enough to prove that

pnOKn ⊂

 ⊕
m⩾n1+1

pm−c2O⊥
Km

 ⊕ pn1−c2OKn1

for all n ⩾ n1. If x ∈ pnOKn , write x = R⊥
n (x)+R⊥

n−1(x)+ · · ·+R⊥
n1+1(x)+

Rn1(x). We have R⊥
n−k(x) ∈ pn−c2O⊥

Kn−k
⊂ p(n−k)−c2O⊥

Kn−k
and likewise

Rn1(x) ∈ pn−c2OKn1
⊂ pn1−c2OKn1

. □
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Corollary 3.5. There are no nontrivial p-divisible elements in d(OK∞).
Proof. By Propositions 1.3 and 1.4, we can assume that K∞/K is a totally
ramified Zp-extension. Let {αi}i⩾1 be a sequence of OK∞ such that dαi =
p · dαi+1 for all i ⩾ 1.

Using Corollary 2.5, write αi =
∑

αi,m with αi,m = R⊥
m(αi) ∈ p−c2O⊥

Km

for m ⩾ n1 +1 and αi,n1 = Rn1(αi) ∈ p−c2OKn1
. Since pkαk+i −αi ∈ Od=0

K∞ ,
Corollary 3.4 implies that pkαk+i,m − αi,m ∈ pm−n1−c2OKm for all m ⩾ n1.
Taking k ≫ 0 now implies that αi,m ∈ pm−n1−c2OKm for all m ⩾ n1.
Corollary 2.2 gives pn0+n1+c2αi ∈ Od=0

K∞ . Taking i = n0 + n1 + c2 + 1 gives
dα1 = 0. □

Corollary 3.6. The differential d : OK∞ → ΩOK∞ /OK
is not surjective.

Proof. This follows from Corollary 3.5 and Proposition 1.3. □

4. The completion of K∞ in B2(C)
We now prove Theorems A and C. Since we are concerned with the

completion of K∞, we can once again replace K with a finite subextension
of K∞ and assume that K∞/K is a totally ramified Zp-extension. Let K̂2

∞
denote the completion of K∞ in B2(C) = B+

dR(C)/ Fil2 B+
dR(C), so that

R = θ(K̂2
∞) is a subring of K̂∞. Let Γ = Gal(K∞/K), and let c : Γ → Zp

be an isomorphism of p-adic Lie groups. Let w2 be the valuation on K∞
defined by w2(x) = min{n ∈ Z such that pnx ∈ Od=0

K∞ }. The restriction of
the natural valuation of B2(C) to K∞ is w2 (see [4, §1.4 and §1.5], or [2,
Theorem 3.1]; the natural valuation on B2(C) comes from its definition as
the quotient of a certain Banach space, see ibid.).

The map θ : B2(C) → C has the following property (see [4, §1.4]).
Lemma 4.1. If {xk}k⩾1 is a sequence of K∞ that converges to x ∈ B2(C)
for w2, then {xk}k⩾1 is Cauchy for valp, and θ(x) = limk→+∞ xk for the
p-adic topology.

Let M =
⊕

n⩾0 pnO⊥
Kn

. Corollary 2.2 and Theorem 3.2 imply that M

and Od=0
K∞ are commensurable. Hence K̂2

∞ is the M -adic completion of K∞.
Let w′

2 be the M -adic valuation on K∞, so that w′
2 and w2 are equivalent.

Lemma 4.2. If x ∈ K∞, then valp(R⊥
n (x)) ⩾ w′

2(x) + n.
Proof. Write x =

∑
n⩾0 R⊥

n (x). If x ∈ pwM , then R⊥
n (x) ∈ pn+wOKn . □

Proposition 4.3. Every element x ∈ K̂2
∞ can be written in one and only

one way as
∑

n⩾0 x⊥
n where x⊥

n ∈ K⊥
n and p−nx⊥

n → 0 for valp.

Proof. Note that such a series converges for w2. The map R⊥
n : K∞ → K⊥

n

sends pwM ⊂ K∞ to pw+nO⊥
Kn

. It is uniformly continuous for the w2-adic
topology, so that it extends to a continuous map R⊥

n : K̂2
∞ → K⊥

n .



Kähler differentials and Zp-extensions 1083

Let x ∈ K̂2
∞ be the w2-adic limit of {xk}k⩾1 with xk ∈ K∞. For a given

k, the sequence {p−nR⊥
n (xk)}n⩾0 ∈

∏
n⩾0 K⊥

n has finite support. As k →
+∞, these sequences converge uniformly in

∏
n⩾0 K⊥

n to {p−nR⊥
n (x)}n⩾0,

so that p−nR⊥
n (x) → 0 as n → +∞. Hence

∑
n⩾0 R⊥

n (x) converges for w2.
Since xk =

∑
n⩾0 R⊥

n (xk) for all k, we have x =
∑

n⩾0 R⊥
n (x). Finally, if

x =
∑

n⩾0 x⊥
n with x⊥

n ∈ K⊥
n and p−nx⊥

n → 0 for valp, then x⊥
n = R⊥

n (x)
which proves unicity. □

Corollary 4.4. The map θ : K̂2
∞ → K̂∞ is injective.

Proof. If x⊥
n ∈ K⊥

n and x⊥
n → 0 and

∑
n⩾0 x⊥

n = 0 in K̂∞, then x⊥
n = 0 for

all n. □

Corollary 4.5. The ring R is the set of y ∈ K̂∞ that can be written as
y =

∑
n⩾0 pnyn with yn ∈ Kn and yn → 0.

Proposition 4.6. The ring R is a field, and R = {x ∈ K̂∞ such that
g(x) − x = o(c(g)) as g → 1 in Γ}.

Proof. The fact that R is a field results from the second statement, since
g(1/x) − 1/x = (x − g(x))/(xg(x)). Take y =

∑
n⩾0 pnyn with yn ∈ Kn and

yn → 0. If m ⩾ 1, then for all k ≫ 0, we have yn ∈ pm+nOKn . We can write
y = xk +

∑
n⩾k pnyn and then (g − 1)(y) ∈ pk+mOK∞ if g ∈ Gal(K∞/Kk).

This proves one implication.
Conversely, take x ∈ K̂∞ such that g(x)−x = o(c(g)). Write x =

∑
k⩾0 xk

with x0 = R0(x) ∈ K0 and xk = R⊥
k (x) ∈ K⊥

k for all k ⩾ 1. For n ⩾ 0,
let gn denote a topological generator of Gal(K∞/Kn). Take m ⩾ 0, and
n ≫ 0 such that we have valp((gn − 1)(x)) ⩾ m + n. We have (1 − gn)(x) =∑

k⩾n+1(1 − gn)xk, so that by Lemma 2.6 and Proposition 2.4:

valp(xn+1) ⩾ valp((1 − gn)(xn+1)) − c3

⩾ valp((1 − gn)(x)) − c2 − c3

⩾ n + m − c2 − c3.

This implies the result. □

Remark 4.7. Proposition 4.6 says that R is the set of vectors of K̂∞ that
are C1 with zero derivative (flat to order 1) for the action of Γ.

Theorem A follows from Corollary 4.4 since θ : B2(K̂∞) → K̂∞ is not
injective. Finally, Corollary 4.4, Corollary 4.5, and Proposition 4.6 imply
Theorem C.
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