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’1352 )k,@—modules holonomes sur une courbe
formelle

par Raour, HALLOPEAU

RESUME. Soit V un anneau complet de valuation discréte de caractéristique
mixte (0,p) et X une courbe formelle lisse sur V. Pour le faisceau 735% des
opérateurs différentiels cristallins de niveau zéro engendré localement par les
dérivations, Laurent Garnier a démontré que les 13560 Z@-modules holonomes
au sens de Berthelot sont de longueurs finies. En reprenant les méthodes de
Garnier, nous généralisons dans cet article ce résultat au cas des faisceaux
ﬁgg )k-,Q introduits par Christine Huyghe, Tobias Schmidt et Matthias Strauch
pour un niveau de congruence k quelconque. Comme application, nous en
déduisons que les modules coadmissibles a connexions intégrables sont de
longueurs finies toujours lorsque X est une courbe formelle.

ABSTRACT. Let X be a formal smooth curve over a complete discrete valua-
tion ring V of mixed characteristic (0, p). Let 23;0 3@ be the sheaf of crystalline
differential operators of level 0 (i.e. generated by the derivations). In this sit-
uation, Garnier proved that holonomic ng) ?@—modules as defined by Berthelot
have finite length. In this article, we address this question for the sheaves
ﬁgg )k’@ of congruence level k defined by Christine Huyghe, Tobias Schmidt
and Matthias Strauch. Using the same strategy as Garnier, we prove that
holonomic ﬁgg )k@—modules have finite length. We finally give an application
to coadmissible modules by proving that coadmissible modules with integrable
connection over curves have finite length.

1. Introduction

Un enjeu principal dans la théorie des D-modules arithmétiques consiste
a y généraliser la notion de D-modules holonomes. Une catégorie constituée
de tels modules permettra par exemple d’étudier les cohomologies cristal-
line et rigide. Des catégories de D-modules arithmétiques holonomes avec
Frobenius ont été construites par Berthelot et Caro de deux manieres diffé-
rentes. Berthelot a défini une variété caractéristique comme une sous-variété
fermée du fibré cotangent de ’espace de base, ce qui lui a permis de défi-
nir la notion d’holonomie comme dans le cas complexe. Caro a quant a lui
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construit une catégorie de D-modules surholonomes munis d’un Frobenius
a priori stable par les six opérations et a montré que cette catégorie coincide
avec la catégorie de Berthelot dans le cas des schémas quasi-projectifs.

Christine Huyghe, Tobias Schmidt et Matthias Strauch ont introduit

dans [7] un faisceau Dx oo = lim, 15;0 3@@ d’opérateurs différentiels obtenu

en rajoutant des niveaux de congruence k € N aux faisceaux de Berthelot.
Les modules a considérer sur Dy o, ne sont plus les Dy o,-modules cohérents
mais les Dy o-modules coadmissibles. Nous ne disposons pas de bonne no-
tion d’holonomie pour ces modules. L’article [1] de Ardakov-Bode-Wadsley
introduit une catégorie de modules faiblement holonomes de D-modules co-
admissibles sur un espace analytique rigide en utilisant la caractérisation
classique des modules holonomes. Cependant, cette catégorie demeure trop
grosse, les D-modules faiblement holonomes ne sont par exemple pas tous
de longueur finie. Une autre approche possible consiste a définir une va-
riété caractéristique pour les D-modules coadmissibles. Une premieére étape

afin d’obtenir une catégorie de Dy o, = mk 13;0 L Q—modules holonomes est
(0)

de commencer par définir une bonne catégorie de 13350 -modules holonomes
pour un niveau de congruence k fixé. C’est 'objectif de cet article dans
le cas ou X est une courbe formelle. Nous introduirons dans un autre ar-
ticle une variété caractéristique pour les Dy o-modules coadmissibles afin
d’obtenir une notion d’holonomie dans ce contexte.

Expliquons maintenant le cadre et les résultats de cet article. Soit V
un anneau complet de valuation discréte de caractéristique mixte (0,p) et
K = Frac(V) son corps des fractions. Nous fixons un V-schéma formel lisse
X dont l’idéal de définition est engendré par une uniformisante w de V.

)

Nous considérons le faisceau 25;0 i introduit dans l'article [7] de Huyghe-

Schmidt—Strauch. Il s’agit d’un faisceau de sous-algebres du faisceau ﬁgg )

des opérateurs différentiels cristallins obtenu en rajoutant un parametre

k € N appelé niveau de congruence. Soit U un ouvert affine de X sur lequel

on dispose d’un systéme de coordonnées étales (z1,...,24). Si O1,...,04

sont les dérivations associées, alors

ﬁgeogg(U) = Z aq - O .09, aq € Ox(U) tels que a, - w*k“’"‘ |j> 0
aeNd almree

Pour k = 0, nous retrouvons le faisceau de Berthelot 75(%0) de niveau m = 0.

Notons 75;02, 0= 75560 L ®y K. Pour k¥ > k, nous disposons d’une inclusion

ﬁgg L,@(U ) C ﬁgg L,Q(U)' Ces inclusions locales induisent un morphisme

de transition ﬁg{%ﬂ,@ — 23;036(@ On note Dy o = mk ngc@ le faisceau

(0)

limite projective des faisceaux ﬁ% k.Q"
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Rajouter un niveau de congruence k au faisceau 75;0?@ des opérateurs dif-
férentiels cristallins est tres intéressant pour plusieufs raisons brievement
décrites ci-dessous. Tout d’abord, les faisceaux ﬁgg L’Q pour les différents
niveaux de congruences k interviennent naturellement pour résoudre cer-

taines questions données par exemple dans l'article [8] de Christine Huy-

ghe, Tobias Schmidt et Matthias Strauch. Les faisceaux 73;0 L @ apparaissent
dans I’étude de représentations localement analytiques de groupes de Lie
p-adiques. Ils s’averent aussi utiles pour regarder des isocristaux surconver-

gents dans le cas ramifié.

Par ailleurs, d’un point de vue conceptuel, les faisceaux 73;60 L o sont per-

. . oy =~ .
tinents. En effet, nous pouvons associer aux éléments de Dge?@ des fonctions

analytiques sur le fibré cotangent T*X de X convergents sur une bande hori-
zontale de I’espace analytique rigide associé, le fibré cotangent rigide T*X .
Les opérateurs de ﬁgg L’@ définissent des fonctions sur T* X i convergents sur
un domaine grossissant avec k. Ces régions recouvrent T* Xy lorsque k tend
vers l'infini. Plus précisément, soit (x1,...,Zn,&4, - . .,&q) un systéme de co-
ordonnées locales sur T*U associée aux coordonnées étales de départ sur U.
Nous pouvons associer a tout opérateur P = Y cna ao(z) - 97 ... 057 de

Ialgebre DYy (U) un élément P(z,€) = Y pend aalz) - €7 .. €57 du fibré
cotangent rigide T*Ug. La fonction P(x,&) converge sur la bande hori-
zontale {|&1] < 1,...,|&| < 1} de T*Uk. Un opérateur différentiel P de

ﬁgg L’Q(U) définit une fonction analytique P(x,&) convergente sur la bande

horizontale {|¢1] < p¥,...,|&| < p*}. Ainsi, les opérateurs différentiels de
lalgebre Dy oo (U) = lim, @;OQQ(U) =Mk ﬁ;OLQ(U) induisent des fonc-
tions analytiques entieres sur le fibré cotangent rigide T*Xx.

Lorsque X est une variété complexe lisse, la variété caractéristique d’un
Dx-module cohérent M non nul est une sous-variété involutive du fibré
cotangent T X . La preuve de ce résultat repose sur la caractéristique nulle
de C. En particulier, une composante irréductible de Car M a une dimension
supérieure a celle de X. Le module M est appelé holonome si dim Car M <
dim X. La minimalité des dimensions des composantes irréductibles de la
variété caractéristique Car M implique que M est de longueur finie.

Soit maintenant £ un ﬁgg L-module a gauche cohérent. Sa variété caracté-
ristique Car £ est définie en généralisant la construction de Berthelot pour
un niveau de congruence k comme suit. Notons « le corps résiduel de V et
X = X xy Speck la fibre spéciale de X. La réduction E = £ ®y k modulo
w de &£ est un Dx p-module cohérent, ot Dx 1, = 15;0 L ®yp k est un faisceau
sur X. Les opérateurs différentiels de Dy j, étant finis, on munit Dy ;, de la
filtration donnée par l'ordre des opérateurs différentiels. Classiquement, la

variété caractéristique de E est construite comme une sous-variété fermée
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du fibré cotangent T* X de X. La variété caractéristique de £ est par défini-

tion celle de E. Un ﬁgg L—module cohérent dont la variété caractéristique est
de dimension au plus la dimension de X est appelé module holonome. Ce-
pendant, les méthodes utilisées pour une variété complexe ne s’appliquent
plus puisque la caractéristique de k est positive (la fibre spéciale X de X
est un k-schéma). Le fait que ces modules soient de longueur finie n’est pas
connu en général.

Laurent Garnier a démontré dans [4] que les 25;0 ?@—modules holonomes
sont de longueur finie lorsque X est une courbe formelle. Nous généralisons
dans cet article ce résultat a un niveau de congruence k € N quelconque
toujours pour une courbe formelle X. Nous adaptons les constructions et
les preuves de Laurent Garnier pour les ng)}f’@—modules cohérents dans les
sections deux et trois.

La partie 2 commence par quelques rappels et propriétés sur les fais-
ceaux Ox g et ngeo LQ. Nous introduisons dans la section 3 les variétés ca-

»(0)

ractéristiques des Dx’k@—modules cohérents. Nous expliquons dans la par-
tie 3.2 qu’il est suffisant d’étudier les variétés caractéristiques des quotients
Dx kz/1 de Dx o = Dx @ Ox 4. Nous démontrons ensuite dans 3.3 'in-
égalité de Bernstein : les composantes irréductibles de la variété caractéris-

. (0 . . . .
tique d’un Dge 3{: Q—module cohérent non nul sont de dimension au moins un.

Un ﬁgg L Q—module cohérent & est dit holonome si dim Car & < dim X = 1.
Nous prouvons enfin dans les parties 3.4 et 3.5 les résultats suivants.

Proposition 1.1. Soit £ un ﬁgeoi Q—module cohérent. Les énoncés suivants
sont équivalents :

1) & est holonome;

(1)

2) & est localement de la forme DO T pour un idéal cohérent L # 0 ;
U,k,Q

(3) & est de longueur finie ;

(4) & est de torsion;

(5) 5xtA(0) (M D;LQ) = 0 pour tout entier d #1;

(6)

x
6) il emste un ouvert non vide U de X tel que &y soit un Ox Q-

module libre de rang fini. Autrement dit, &y est un module a
connexion intégrable.

5(0)

Considérons maintenant le faisceau Dx oo = @k Dy k.Q" Dans la sec-
tion 4, nous appliquons les résultats précédents aux Dx -modules coad-
missibles, c’est a dire aux Dy o-modules isomorphes a une limite projective

5(0)

de Dak@—modules cohérents M}, ayant de bonnes propriétés de transitions
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entre les différents niveaux de congruences. En particulier, nous construi-
sons une catégorie abélienne formée de Dy o-modules coadmissibles de lon-
gueur finie. Elle est constituée des modules coadmissibles M ~ @k My,
vérifiant les deux points suivants.
(1) Il existe un rang ko tel que pour tout k > ko, My est un 73&0};7@—
module holonome.
(2) La limite supérieure pour k > ko des multiplicités des modules My,
est finie.

Nous montrons que cette catégorie n’est pas triviale. En effet, elle contient
les Dx oo-modules coadmissibles de la forme Dy o /P dés que P un opéra-
teur différentiel fini de Dy . Nous montrons enfin que les modules coadmis-
sibles & connexion intégrable appartiennent a cette catégorie. Les modules
a connexion intégrable sont donc de longueur finie.

Je remercie enfin mes directeurs de these, Christine Huyghe et Tobias
Schmidt, pour toutes les discussions qu’ils eurent avec moi et 'aide qu’ils
m’apporteérent.

Notations.

e V est un anneau complet de valuation discrete de caractéristique
mixte (0, p), d’idéal maximal m et de corps résiduel xk supposé par-
fait. On note |-| la valeur absolue normalisée de V, w une unifor-
misante et K = Frac()) son corps des fractions.

e X est une courbe sur « lisse connexe quasi-compacte et x € X est
un point fermé donné.

e X est un V-schéma formel lisse localement de type fini relevant X
d’idéal de définition engendré par I'uniformisante w.

e X est I'espace analytique rigide associé a X.

e ¢ est un relevement local sur Ox d’une uniformisante en z (Ox , est
un anneau de valuation discrete puisque X est une courbe). Alors
dt est une base de Q%M On note 0 la dérivation associée.

e U est un ouvert affine de X contenant x sur lequel on dispose d’une
coordonnée locale.

e Soit f € I'(U, Ox,0)\{0} et r tel que f1 :=w" f € (U, Ox)\I'(U, m-
Ox). On note Uyyy C U l'ouvert sur lequel f; est inversible. On re-
marquera que Uy pyU{z} = U\{V (f1)—{x}} (ou f} est la réduction
de f; modulo m) est un ouvert puisque f; n’a qu’un nombre fini de
7€ros.

e Sauf mention contraire, les idéaux et les modules considérés seront
tous a gauche.
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2. Propriétés du faisceau ’/ﬁgg L,Q

On adapte dans cette section la seconde partie de l'article [4] de Laurent
Garnier a un niveau de congruence k£ € N. On munit l'algebre 75;072,7@(U )
d’une norme compléte multiplicative puis on montre la simplicité de cette
derniere d?I)IS la partie 2.2. On énonce ensuite quelques théoremes de divi-

0

sion sur ﬁx kQ dans la section 2.3 On termine enfin par quelques rappels et

(0)

quelques propriétés sur les bases de division d’un idéal cohérent de 23% k.0
dans la derniere sous-partie 2.4.

2.1. Rappels sur la norme spectrale de Ox g. On redonne ici la dé-
finition d’une algebre affinoide et de sa norme spectrale. Puis on rappelle
quelques résultats utiles de la premiere partie de l'article [4] de Garnier.
On pourra s’y référer pour les preuves des lemmes énoncés.

On note T,,(V) = V(T1,...,T,,) Valgebre de Tate sur V a n-variables. Si
T =T ... T8 et |a| = a1 + -+ - + ay, alors

T.(V) = f(T) = Z Ca - T, |Ca||‘> 0

aeN® a|—o0

On munit 7, (V) de la norme de Gauss définie par |f| = max{|cy|}. C’est
une valuation et 7,,(V) est le complété de V[T1,...,T,] pour cette valua-
tion. En particulier, T,,()) est une V-algébre de Banach. Elle est de plus
noetherienne et tout idéal I est complet. Le quotient T,,(V)/I de T, (V) est
donc une V-algebre de Banach pour la topologie induite par le passage au
quotient. L’algebre de Tate T},(V) est 'ensemble des séries entieres en T' &
coeflicients dans V qui convergent sur la boule unité fermée de K™. On peut
aussi munir 7, (V) de la norme supérieure. Elle coincide avec la norme de
Gauss. Cela provient du principe du maximum vérifié par T,,(V) : il existe
y € V" tel que [f| = [f(y)|.

Une V-algebre affinoide A est par définition une V-algebre de Banach
isomorphe (en tant qu’algebre topologique) a un quotient 7,,(V) /I de T,,(V)
par un idéal I. Toutes les normes sur A induites par une présentation de A
comme quotient d’une algebre de Tate sont équivalentes.

Si z est un idéal maximal de A := A®y K, alors Ak /z est une extension
finie de K. La valeur absolue de K s’étend uniquement en une valeur absolue
sur Ag/z notée encore |-|. On définit la norme spectrale d’un élément
f € Ak de la maniere suivante. On note f(z) l'image de f dans Ax/z et
| f(2)| sa valeur absolue. Alors

[fllsp:= _max [f(z)].

z€Spm Ak

En général, || - ||sp est seulement une semi-norme inférieure a toute norme
de Gauss induite. Cependant, lorsque l'algebre Ag est intégre, c’est une
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valeur absolue ultramétrique équivalente aux normes de Gauss. C’est le cas
par exemple pour A = T, (V).

Tout ouvert affine U de X est le spectre formel d’une V-algebre affinoide
A : U = Spf A. De plus, Uy = Spm Ak, ot Ax = A ®yp K une K-algebre
affinoide (ie un quotient de 77, (K)). Puisque la courbe X est connexe et lisse,
l'algebre Ak est integre. La norme spectrale || - ||sp est donc une valuation
complete sur l'algebre affinoide définissant Ug .

On suppose pour la fin de cette partie que x est un point x-rationnel de
X. Pour tout 0 < A < 1, on note V) := {y € Uk : |[t(y)| > A}. C’est un
ouvert de X contenu dans Ux . Puisque 'ouvert U est affine, ’ouvert V) est
affinoide et ne dépend pas du choix de ¢ pour tout A vérifiant |A| > |w| = ;1).
Puisque la courbe X est lisse en z, on dispose d’un isomorphisme permettant
d’identifier le tube ]z[ & un disque ouvert :

Jz[ =5 D(0,17) == {y € A : 0 < |t(y)| < 1}.
Soit f € T'(V,, Ox, ) une section de Ox . Alors fizinvy, s’écrit unique-

ment comme une série Y ;. y a; - t*, ol les a; sont des éléments de K. Cette

fonction converge sur la couronne C([Ao, 1[) := {y € A : Ao < [t(y)| < 1}.
Pour tout A\g < A < 1, on note

N(fjajnvi»> A) = max {z €N:|ay] - A\ = sup |a] - )\j} € NU {+o0}.
JjeN

On pose
N(f):=

Lemme 2.1. Pour toute section f € T'(Vy,, Ox, ) non nulle, N(f) est un
entier positif ne dépendant pas du choix det. De plus, si f|]$[mV)\O =D ieN O

Jim. N(fijzjnvy> A) € NU {+o0}.

t', alors N(f) est le plus petit indice tel que || f|lsp = |on(p)| = max;>o oy
En particulier, ||f||sp est dans |K]|.
Remarque 2.2.
(1) Si N(f) =0, alors f n’a pas de zéro sur |z[ et x € Uyy;.
(2) Ona N(0,\) = N(0) = +o0.
On rappelle que Ox , est un anneau de valuation discrete, de corps ré-

siduel k lorsque x est un point x-rationnel. Par définition, ¢ en est une
uniformisante. On considere la valuation v de Ox , donnée par v(t) = 1.

Lemme 2.3. Soit f € I'(Vy, Ox,.) une section telle que ||f||sp = 1. Alors
N(f) est la valuation de (f mod w) dans Ox ;.

On écrit fﬂx[m% =Y @i - Y, toujours sous Phypothese que || fllsp = 1.
Autrement dit, les coefficients a; sont dans V. On a ( fl]x[ﬂVAO mod w) =

Y ien @i - t* avec @; la réduction modulo @ de ;. Comme les coefficients o
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convergent pour la topologie w-adique, les @; sont presque tous nuls et la
somme définissant ( fyelnvy, mod w) est finie. Alors N(f) est le plus petit
entier n tel que @, # 0.

Lorsque U est un ouvert affine de X, on note la norme spectrale de
'algebre affinoide Ox o(U) := Ox(U)®y K simplement par | - |. On rappelle
qu’elle est équivalente & toute norme de Gauss induite sur Ox o(U) et qu’il
s’agit d’une valuation.

2.2. Propriétés du faisceau ’/DT{O’LQ.

DO

Le faisceau D X.k0" On commence par rappeler brievement la définition

du faisceau D( )
lecteur peur regarder la seconde partie de l'article [7] de Christine Huy-
ghe, Tobias Schmidt et Matthias Strauch pour plus de détails. On désigne
toujours par U un ouvert affine contenant z sur lequel on dispose d’une
coordonnée étale. On note 0 la dérivation associée.

Le faisceau Dag ;. est défini comme un sous-faisceau dépendant d'un pa-
rametre k € N appelé niveau de congruence du faisceau usuel Dgeo)

0)

rateurs différentiels. On retrouve Dge

£Q des opérateurs différentiels sur lequel on travaille. Le

des opé-
lorsque k& = 0. Localement, D;OL(U )

est la V-algebre engendrée par Ox(U) et par la dérivation w”d. Plus pré-
cisément,

DQL(U) = Z an - (WO, a, € Ox(U), an =0 pour n>> 0
neN

(0)

On peut aussi voir Dy;;. comme le Oy-module libre de base les puissances

de w0 : .
DY) =P oy - (&*0)"
neN

(0)

On note Dx j, la réduction modulo w du faisceau D3€ - C'est le faisceau de
r-algebres sur la fibre spéciale X = X xy Speck de x engendré localement
sur U par Ox |y et par la dérivation Oy image de wkd apres réduction
modulo w. On rappelle que X et X ont méme espace topologique. On
identifie donc U a un ouvert affine de X.

Soit Dgg L = lim, (Dgg L / w”lpg L) le complété w-adique du faisceau Dgeo’ L

et 23;0 L Q= ﬁgg L ®yp K. On dispose de la description locale suivante :
ﬁx k,Q {Z an, - 0)", an € Ox(U), |ay] e 0} .

11 est démontré dans [7] que ces algébres sont toutes noetheriennes et que
les faisceaux associés sont cohérents. Pour k' > k, il est clair que ’.15;0 3« (U) C
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ﬁgg L(U ). En particulier, 75560 L,Q(U ) est une sous-algebre de l'algebre des
opérateurs différentiels @;0 )(U ) = 13;0 %(U ). Cependant, lorsque k& > 1, on
observe que 'algébre 13550 L(U ) n’est pas isomorphe a 'algebre @g) )(U). On
peut en effet le montrer en remarquant que le commutateur [wka, al =
w” - 9(a) dans ﬁggi(U) differe du commutateur [0, a] = 0(a) dans ﬁg))(U).

Structure d’algébre de Banach sur 1/7\5,2 L’Q(U). On munit maintenant

la K-algebre 25550 L o(U) d’une norme multiplicative complete | - [[¢. Dans un
premier temps, on suppose encore que x est un point k-rationnel de X.

Définition 2.4. Soit H = Y, an - (w"8)" un élément de DY), o(U). On
pose

(1) [|H |1 := maxp>o{[anl};

(2) Nx(H) :=max{n € N: |a,| = ||H||x};
(3) Nk(H) := N(aﬁk(H))'

On rappelle que si ),y o - t' est I’écriture comme série de ax, (g SUr
Jz[N Uk, alors || H|[;, = |, (m)]- On peut remarquer que

(0 (0
DOLW) = {H € DY) o(U) : |H] <1}

Soit H = 3,50 an-(w’0)™ un opérateur différentiel non nul de ﬁgEOLQ(U)
On fixe un scalaire o € K* tel que || = (max,>o|an|)”". Il s’agit bien
d’un élément de |K|* d’apres le lemme 2.1. Alors aH est de norme 1 et
lopérateur o H appartient a 15;0 L(U) L’entier N (H) est le plus grand in-
dice n tel que |a - a,| = ||aH||x = 1. Ainsi, le nombre Nj(H) est 'ordre de
l'opérateur («H mod w) dans la k-algebre Dx 1 (U). Cet entier ne dépend
pas du choix de a. De plus, Ni(H) = Ni(aH) est la valuation de o - O, (H)
modulo @ dans Ox , d’apres le lemme 2.3. Ce nombre ne dépend pas non
plus de a.

Les entiers Ni(H) et Ny(H) coincident donc respectivement avec 'ordre
et la valuation de (o mod w) dans Dx (U) pour tout scalaire & € K
vérifiant ||aH||r = 1. Par ailleurs, ces définitions sont indépendantes du
choix de la coordonnée locale sur U.

Lemme 2.5. La norme || - ||z et les fonctions Ny et Ny ne dépendent pas
du choiz de la coordonnée locale.

Démonstration. On considére une autre coordonnée locale sur 'ouvert U ;
on note @' la dérivation associée. Puisque 0 est un générateur du faisceau
tangent Oy -9, il existe un élément o de Ox(U)* tel que &' = - 9. Comme
la] < 1 et a est inversible, on a |a| = 1. Soit P = 3, cyay - (@)™ un
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opérateur différentiel de 73550 L’Q(U ). Sa norme || P||x pour la dérivation &’
est le maximum des normes spectrales des coefficients a,.

Par ailleurs, P = Y, cyan - (@)™, On a (ad)? = a?0? + ad(a)0.
Comme [0"(a)] < |a| = 1, le coefficient de 0 a une norme spectrale infé-
rieure ou égale a un. Une récurrence sur n > 1 montre que

n—1
()" =a"0" + Z by, 0™
m=0
avec |by,| < 1 pour tout entier m € {0,...,n — 1}. Il vient
P=> ap|a"(="0)" +w’mZb o
neN m=0
= Zana o)™ + Z anw” Z whr=m=Dp, (ko)™
neN neN*
Y nso Bn(@whO)"

avec |Bn| < |@|F || Pk et |ana™| = |an|. Lorsque k > 0, |Bn] < ||P|lx; il
est clair que la norme de P pour la dérivation O est aussi donnée par le
maximum maxXpey |an|. Pour k£ = 0, le résultat reste vrai. En effet, dans la

seconde somme, le coefficient de (c*9)™ est une combinaison des az pour
k > n et des b,,. O

On rappelle que la norme || P|[;; d'un opérateur différentiel P de 13;0 L,Q(U )
et que les entiers Ni(P) et Nj(P) dépendent du point x donné. Ce sont
des notions locales en z. On rappelle aussi, lorsque ||P|[x, = 1, que Ni(P)
est la valuation du coefficient dominant de P = (P mod w) dans Ox .
Proposition 2.6.

(1) Les algébres ﬁgsoi(U) et ﬁg)LQ(U) sont complétes pour la norme

I {15
(2) La topologie induite par quotient sur tout ﬁgLQ—module cohérent

est compléte.
(3) Pour tout opérateurs H et Q) de ﬁgc’@(U), on a

IHQk = [1H % - | Q&
Ni(HQ) = Nip(H) + Ni(Q),
Np(HQ) = Np(H) + Np(Q).
Démonstration. Le premier point découle du fait que I'algebre 25;0 L7Q(U )

est complete pour la topologie w-adique et que la topologie induite par
la norme spectrale est équivalente a la topologique w-adique sur 1’algébre
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affinoide Ox o(U). On munit tout D&LQ—module cohérent £ de la norme
induite par des présentations finies locales de £. Cette derniere est com-
pléte et ne dépend pas des présentations choisies puisque la norme || - || est
multiplicative par 3. Cela montre le second point.

Soit maintenant H = 3, cyan - (@)™ et Q = 3, en by - (*0)™ deux

opérateurs différentiels de 25;0 36 o(U). On a

HQ = Zai . (wka)i (Z b - (wka)j)

ieN jeN
_ Z <Z ( ) e 3f(bj) . hiti=0) ai+j—€>

4,70 \¢=0

u+ Ll — u

-3 X (M) s = o)) o
u>0 >0
0<j<u

au €0z ,0(U)

On remarque déja que

u+l—j
(70 s -0

< Jaure—gl - 10°(0)] < lawre—s| - [0 < 1H k- Q-

Ainsi, [|HQ||x < [|H||x - [|Qllx- Pour u = Np(H) + Np(Q), £ = 0 et j =
Ni(Q), le coefficient associé dans la somme définissant a, est ON, (1)
by, () Ce terme est donc de norme IH |l - [|Qlk- Si j > Ni(Q), alors
bj| < 1Qllx- Sij < Ni(Q) ousij < Ng(Q) et £> 1, alors u+£—j >
Ni(H). Donc |ayqe—j| < [[H||x. Dans tous ces cas, la norme du terme
associé dans «,, est strictement inférieure a || H||j - ||@Q||x. Ceci prouve que
|| = [|Hl[1 - QI Autrement dit, |HQI|r = [[H [z - | Ql|x-

Si u > Np(H)+ Ni(Q), on montre de maniére analogue que |oy,| <
| H|x - |Q|lg- Ainsi, Ny (HQ) = Np(H) + Ni(Q). On peut supposer que H
et () sont de norme un. Dans ce cas, N (H) = U(aﬁk(H) mod w) et N(Q) =

v(bx, () mod @), ot v est la valuation de Ox . Puisque o, 5, ¥, (q) =
AN, (H) < by L@ (un terme de norme spectrale strictement inférieure), on
a bien
Ne(HQ) = vlag, () by, () mod =)
= v(ag, () mod @) + v(by, () mod @)
Nip(H) + Ni(Q).
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g

Applications. On énonce dans cette partie quelques propriétés de 'al-
gebre de Banach 13;0 LQ(U ). Les preuves sont adaptées de celles de Laurent
Garnier a un niveau de congruence k quelconque. La proposition suivante
caractérise l'inversibilité des éléments de 73560 3&@ a laide des fonctions Ny
HJA@.

Proposition 2.7. On suppose que x est un point k-rationnel. Soit H €
ﬁgL’Q(U). Il existe un ouvert V de U contenant x sur lequel H est inversible
si et seulement si Ny(H) = Ni(H) = 0. Si de plus ||H|x = 1, alors
H™ e DYL(V).

Démonstration. Si H est inversible d’inverse H !, alors Ny(H) +
Ni(H™') = Ni(1) = 0. Donc Ni(H) = 0 puisque Ny(H) est un entier
positif. De méme, Nj(H) = 0. Réciproquement, on suppose que Nj(H) =
Ni(H) = 0. On écrit H = 3,,cyan - (@*9)". Ces deux conditions signi-
fient que |ag| > |a,| pour tout n > 0 et que ag n’a pas de zéro sur |z|[.
Autrement dit, ag est inversible sur l'ouvert V' = U,y U{z} de U. Sur cet
ouvert, 'inverse de H est donné par la série classique

i

H—IZZ —Z&(wkﬁ)j agt.

ieN jen @0
} <1

Ainsi, H~! définit bien un opérateur de ﬁg] L o(V). Si maintenant H est de

Cet opérateur converge puisque

Z ﬁ(w@)j = max {

— a0 j>1
jEN k

4

ao

norme un, alors les coefficients a,, et ay ! sont des éléments de Ox(V). Il en
découle que H1 € 13;036(1/) O

On fixe une cloture algébrique K de K. A partir de maintenant, et pour
le reste de D’article, x n’est plus supposé x-rationnel. C’est un point x'-
rationnel pour une certaine extension finie x’ de k. Soit K’ une extension
finie de K dans K dont le corps résiduel est «’. Quitte a étendre K par K’,
on peut définir les fonctions Ny, et Nj des opérateurs de 23;0 L’Q(U) en x.

Puisque 'extension K'/K est finie, I'algebre K(T1,...,T,) @k K’ est
complete. La K'-algebre de Tate T,,(K') coincide donc avec T,,(K) @k K'.
On munit K’ de I’extension non normalisée de la valeur absolue de K, notée
encore |- |. Le morphisme canonique T, (K) — T,,(K') est une isométrie de
K-algebres pour les normes de Gauss, égales aux normes spectrales. Plus



D-modules holonomes sur une courbe formelle 881

généralement, si A est une K-algebre affinoide, alors A’ = A @k K’ est une
K'-algebre affinoide. Le morphisme canonique A — A’ est une isométrie
de K-algebres affinoides. Lorsque A est intégre, la norme spectrale est une
norme sur A et le morphisme précédent est une isométrie pour les normes
spectrales.

On munit DY), o(U) @x K’ de la norme de K'-algebre | P @ All} = || -
| P|lx- Comme le morphisme canonique Ox g(U) = Ox,0(U) @k K’ est une
K-isométrie, le morphisme 6&%,@([]) — ﬁgc’@(U) ®x K' est une isométrie

de K-algebres. Soit H € 75;0;6 o(U). La fonction N (H) ne dépend donc pas
de I'extension K’ de K mais seulement de H : cet entier est le méme aussi

bien dans (DY) o (U), |- ) que dans (DL} o (U) @k K/, |- [})-

Corollaire 2.8. Un opérateur différentiel H de 13;036 o(U) est inversible au
voisinage de x si et seulement si Np(H) = Nx(H) = 0.

Démonstration. La proposition 2.7 montre que H est inversible au voisi-
nage de x apreés extension des scalaires de K a K’. Soit V' C U un ouvert
contenant z sur lequel H est inversible. On écrit H = Y2 ; a,, - (wk9)" €
ﬁggi@(\/). Puisque ag est inversible dans Ox (V) @k K’ et ag € Ox o(V),
agp est inversible dans Ox (V). L'inverse

i
_ a; i _
H'= Z —Z—J(wkﬁ)] ag!
i>0 j>1 %0
de H dans ZS;O’LQ(V) ®xk K’ appartient donc & ﬁggi,@(V). O
Ce critere d’inversibilité permet de démontrer que la K-algebre ngeo L,Q(U )
est simple.

Proposition 2.9. Pour tout ouvert affine V de X, ZA);OLQ(V) est une al-
gebre simple.

Démonstration. Soit I un idéal bilatere non nul de ﬁg)LQ(V) et x € V
un point fermé. On va montrer qu’il existe un voisinage ouvert affine W

de z dans V' tel que )y contienne un élément inversible dans 23;0 36 o(W).

Les points fermés étant denses dans V', ceci implique que I = ﬁgeo LQ(V).
D’apres le corollaire 2.8, il suffit de montrer que quitte a réduire Vv, 1
contient un élément P vérifiant Ny(P) = Ni(P) = 0. On peut remplacer
K par une extension finie afin que x soit rationnel et supposer que V est
affine.

On part d’un opérateur différentiel non nul H = 3,y a; - (w®0)? de I.
Comme I est un idéal bilatére, les crochets [H,t] = Ht —tH et [H,t]" ! =
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[H,t]",t] pour n € N restent des éléments de I. On a

= " Ziai-(w o)~
iEN*
et
VD = (@D N () Voo | i @D
.- Ni(H)
i>Ny(H)

Autrement dit, Ny ([H, t] #(H)) = 0. Quitte & remplacer H par [H,t Ni(H)
on peut supposer que N, ( ) = 0. Par ailleurs, @® - 9 - a; - (@*9)’ =
w” - 9(a;) - (W) + a; - (@ - 9)"*1. Donc

[H,w"d] = Ho"d — w"0H = Z (ai A(@*0) Tt — kD - a; - (wkﬁ)i)

i>0
= —o” Z(’)(ai) (w0
i>0
Ainsi, [H,@*o)Ne(H) = (—k)Nk(H) 2250 ONeUH) () - (w®d)?. Puisque

Ni(H)=0,0na
iz 1, 0% ()] < [NG(H)! - o] < [NeCED! - [ H].
Sur Jz[ N Ug on peut écrire ag = 3 ;5 i - t', a; € K. On a
N ) (qg) = N(H)! > ( i ) Coy - V),
iy \VR(H)

Comme Ni(H) = N(ap), on a

Vi > Ny(H), ‘(MEHJ%

Ainsi, [0V (ag)| = [N (H)!|-Jao] = [N(H)!|-[ H [ et Ne(@V+0D (ag)) =
0. Ceci montre que [H,w*d]Ns(H) est un élément de I de fonctions N,
et Np nulles. Quitte a réduire I'ouvert V contenant x, cet élément est
inversible. O

<ai| < \aNk(H)\ = ’aN(ao)\ = | H|x-
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2.3. Théorémes de division dans ’1/)\(;,%’@. Les résultats de cette partie
sont une adaptation des théorémes de division énoncés par Laurent Garnier
dans [4] pour Dg{o ()@ au cas des D;O L g-modules cohérents. Les preuves se

généralisent immédiatement pour un niveau de congruence k.

Définition 2.10. Soit P un opérateur différentiel de ﬁgg L,Q(U )

(1) On appelle coefficient dominant de P son coefficient d’indice N (P).
Si || P||x = 1, il s’agit du coefficient dominant de P apres réduction
modulo w.

(2) On dit que P est Ni-dominant si P est un opérateur fini d’ordre
Ni(P). Cette condition signifie que le coefficient de plus haut degré
de P est de norme maximale, ou de maniere équivalente que P et
P ont le méme ordre lorsque || P||x = 1.

Proposition 2.11. Soit P un opérateur différentiel non nul de ﬁgL,Q(U)'
On note b son coefficient dominant et V' 'ouvert Uy U{x} de U. Alors tout

élément H de ﬁg,ﬁ’@(U) s’écrit uniquement sous la forme H = QP+ R+ S
avec :

(1) Q. R.S € DY) o(V);

(2) R est d’ordre fini < Ny(P);

(3) 5= Zizﬁk(P) pi - (@), pi € K[t] de degré < Ni(P) ;

(4) [ Hll) = max{[|Qlx - [Pl [ Rllk, [k }-
Si H € ﬁgL(U), alors R et S sont dans ﬁgg;c(V) Si de plus || Pl = 1,
alors @Q € 15;07) (V).

Si Ni(P) = 0, alors S = 0 puisque ses coefficients sont des polynoémes
de degrés strictement inférieurs & Ni(P). En se restreignant a 'ouvert V =
Uiy, on peut factoriser P par b et supposer que N (P) =0. On en déduit
le corollaire suivant.

Corollaire 2.12. Soit P un opérateur différentiel non nul de ﬁgLQ(U)

de coefficient dominant b. SiV = Uy, alors tout élément H de ﬁge%,@(U)
s’écrit uniquement sous la forme H = QP + R avec :

(1) Q. Re DY) o(V); B
(2) R est d’ordre fini < Ni(P);
(3) [1H [l = max{[|Qllx - [ Pllx, [ Bllx}-

Ces théorémes de divisions permettent de démontrer deux versions du
lemme de Hensel pour tout opérateur différentiel P de Dgeo L oU)-
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Proposition 2.13 (Lemme de Hensel). Soit H un opérateur non nul de

YSQLQ(U) de coefficient dominant b. On note encore V.= Ugy U{z}. Alors
H se décompose uniquement sous la forme H = QP + S avec

(0
(1) Q7 Pa Sf D(x}g,(@a/) y
(2) P est Ng-dominant de coefficient dominant b ;
(3) 5= isN () M- (w®0)! avec p; € K|t] de degré < Ni(P);
(4) ||Qllx = 1 et il existe un ouvert W C U tel que Q soit inversible
dans ﬁg&’@(W) ;
() ISl < [1H1[x-

En ne cherchant plus a énoncer une division sur un ouvert contenant x,
on obtient la version suivante du lemme d’Hensel.

Proposition 2.14 (Lemme de Hensel). Soit H € @;OL o(UN\{0} de coeffi-
cient dominant b. Alors H se décompose uniquement sous la forme H = QP
avec

(0
(1) QP e DY) o(Uny) ;
(2) P est Ni-dominant de coefficient dominant b ;
(3) |Q|lx =1 et Q est inversible dans ﬁgL,Q(U{b})'

Les deux corollaires suivant se déduisent de la division selon un opérateur
différentiel de Dgeo ;C 0"

Corollaire 2.15. Soit £ = 13;02; o/ P un 7355036 g-module cohérent a gauche

donné par un opérateur différentiel P de @;036 Q(U). 1l existe un ouvert V

de U (obtenu en retirant les zéros du coefficients dominant de P) sur lequel
Ey ~ ZA);OL Q/ﬁ avec P un opérateur Ny-dominant de méme coefficient
dominant que P. De plus, &y est un Ox g-module libre de rang Ni(P).

Démonstration. On applique le lemme d’Hensel a P avec V 'ouvert sur

lequel le coefficient dominant de P est inversible. On peut écrire P = Q]5

avec P vérifiant les conditions de I'énoncé et (@ un opérateur inversible dans

@;OLQ(V) On en déduit que &y =~ 73;0;6@/]5 La seconde partie de 1’énoncé
(0)

découle du théoreme de division dans ﬁx,k,Q(V) puisque le coefficient do-

minant de P est inversible sur Pouvert V : tout élément H de @gg L o(V)
s’écrit uniquement sous la forme H = QZ3 + R avec R un opérateur fini de
Dgg 3€7Q(V) d’ordre strictement inférieur a Ny (P). O
Corollaire 2.16. Soient P,Q € ﬁ;OLQ(U) tels que nggzc’@/P ~ ﬁg@/@
en tant que Dgeoi g-modules @ gauche. Alors Ni(P) = N,(Q).
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Démonstration. Soit V un ouvert contenu dans U sur lequel 73%/0) o/ P =

ﬁg);g Q/ﬁ et ﬁ%% Q/Q ~ 23‘(93{ Q/@ avec P et Q deux opérateurs finis d’ordre
respectif Ni(P) et Ni(Q). Ces deux modules sont des Oy g-modules libres
de rang Nj(P) et Ni(Q) respectivement. Puisqu’ils sont isomorphes en

tant que 73%9,)6 Q—modules, ils sont isomorphes en tant que Oy, g-modules.
On en déduit que Nj(P) = N(Q). O

La proposition suivante provient de l’existence d’une division « eucli-
dienne » sur Dg] L o et du lemme d’Hensel (proposition 2.14). La preuve est
analogue a celle de la proposition 5.1.2 de larticle [4] de Laurent Garnier

en rajoutant un niveau de congruence k.

Proposition 2.17. Soit £ un ﬁg)i@—module cohérent et U un ouvert af-

fine de X contenant x. Il existe alors un opérateur P de ﬁgLQ(U), un
ouvert affine V' contenu dans U (obtenu en retirant les zéros du coefficients
dominant de P) et un entier n tels que

2.4. Base de division d’un idéal cohérent de 73(322,@' On termine
cette section par définir une base de division d’un idéal cohérent non nul
7 de Dg) L o Une telle base permettra de calculer la variété caractéristique

du 75560 LvQ—module cohérent 75;03“@ JZ.

On commence par définir la notion de base de division en x au niveau
de la fibre spéciale X de X. Soit U un ouvert affine contenant = admettant
une coordonnée locale associée a x. On note Dy j, » := Dx (V) ®, Ox . En
tant que x-algebre, Dx . , est isomorphe a @,,cy Ox - 0) ou Iy, est I'image
de w®0 apreés réduction modulo w. Il s’agit de I’algébre des opérateurs
différentiels en 0) a coefficients dans Ox .. On note dans la suite 'algebre
Dx k(U) ®x Ox o simplement par Dy ;, ®, Ox o puisqu’elle ne dépend pas
du choix de U.

On rappelle que Ox ; est un anneau de valuation discrete v d’uniformi-
sante ¢. Les notions de base de division en z vont coincider entre un idéal
cohérent de Dgg 36 et sa réduction modulo @ dans Dx .

Soit P = ag-0¢+---+aq -0k +ap un opérateur non nul d’ordre d = d(P)
de Dx i .. On appelle valuation de P celle de son coefficient dominant a4 :
v(P) := v(ag). L’exzposant Exp(P) de P est le couple (v(P),d(P)) € N2. Si
@ est un autre opérateur de Dx y ., on vérifie que Exp(PQ) = Exp(P) +
Exp(Q).
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Soit I un idéal cohérent a gauche non nul de Dy ,. On définit son
exposant par

Exp(I) := {(v(P),d(P)) : P € I\{0}} Cc N%
On a
Exp(t' - P) = (i,0) + Exp(P) et Exp(8] - P)=(0,5) + Exp(P).

On en déduit que Exp(I) = Exp(I) + N2. Ainsi, 'exposant de I est une
partie de N? délimitée inférieurement par un escalier fini. On peut voir la
figure ci-dessous pour un exemple.

Soit P; un élément de I de degré minimal d et de valuation minimale
parmi les éléments de I de degré d. On construit récursivement un élément
P; de I d’ordre d(P;11) = d(FP;) 4+ 1 et de valuation minimale parmi les élé-
ments de méme degré jusqu’a obtenir un élément P, de valuation minimale
dans I.

On obtient ainsi une famille d’opérateurs (P,..., P,) échelonnée pour
I’ordre telle que P; soit de valuation minimale parmi les éléments de méme
ordre, telle que d(I) = d(P;) soit I'ordre minimal des éléments de I et telle
que v(I) = v(F,) soit la valuation minimale des éléments de I. Une telle
famille est appelée base de division de I.

Soit I un idéal cohérent de Dy j et € X. Alors I, est un idéal cohérent
de Dx 1z = Dx i @x Ox z. On appelle base de division de I relativement

au point = une base de division (Py,..., P.) de I'idéal I,. Les opérateurs
Py, ..., P, sont des éléments de I(U) pour un certain ouvert affine U conte-
nant .

La figure 2.1 illustre graphiquement le positionnement d’une base de

division en x vis-a-vis de 'exposant de I.

0)
x,kQ €

Q € I,; Q est un opérateur de @;0 L}Q(U ) pour un certain ouvert affine

Soit maintenant Z un idéal & gauche cohérent non nul de D

U contenant z. On lui associe le couple (N(Q), N(Q)) ne dépendant que
de = appelé exposant de @ en x. Si @) est de norme un, on rappelle que
Ni(Q) et Np(Q) sont respectivement la valuation et I'ordre de (Q mod w)
dans Dy j ». L’exposant de I en x est défini par

Exp(Z) := {(Nk(Q), N(Q)) : Q € Z,\{0}} € N*.

On définit comme pour un idéal de Dx . , une base de division de Z relative-
ment au point z. C’est une famille d’éléments (P, ..., P,) de Z, échelonnée
pour la fonction N}, telle que P; soit de fonction N, minimale parmi les
éléments de méme fonction Ny, telle que Ni(Z) = Ni(P,) soit minimale
parmi les éléments de I et telle que Ni(Z) = Ni(P;) soit minimale parmi
les éléments de I. On demande de plus que les P; soient normalisés : pour
tout i € {1,...,7}, | Pills = 1.
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degré
d(I)+r—1¢ Exp([)
P,
P
Py
d(l) +2¢ P3
d(I)+1e
(1) b
d(l)4
(1) :
. . valuation
0 () =v(P) v(Pr)

FIGURE 2.1. Escalier et base de division de I en x

Cette derniere condition permet d’assurer la compatibilité des bases de
(0)

division dans Dy et dans Dx ., apres réduction modulo w. En effet, soit

(0)

7 un idéal cohérent non nul de ﬁx ;. admettant une base de division en x.
On note I la réduction modulo w de Z; c’est un idéal cohérent de Dx . et
I, est un idéal de Dx j . Alors (Pi,..., P,) est une base de division de 7
relativement a z si et seulement si (P, mod w, ..., P, mod w) est une base
de division de I,. En particulier, les escaliers et les exposants de I et 7
coincident en x.

Les deux lemmes suivants sont démontrés pour & = 0 par Laurent Gar-
nier dans [4], partie 4, proposition 4.2.1 et corollaire 4.2.2 respectivement.
Ils résultent de I’existence d’une division de tout élément de @;?L,Q(U ) par
une base de division de Z. Leurs preuves s’adaptent sans difficulté pour un
niveau de congruence k quelconque.

Lemme 2.18. Toute base de division de Z en x engendre l’idéal Z,,.

(0)

Une base de division existe toujours pour les idéaux de 15% k,Q" Cependant
ce n’est pas vrai dans ngg L Si Z est un idéal cohérent non nul de 23;0 L, il
n’est pas toujours possible de normaliser les P; dans 25;0 L(U ). En effet, de
la wo-torsion peut poser probléme. Le lemme suivant donne une condition
nécessaire et suffisante pour que l'idéal 7 admette une base de division
relativement au point z.
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Lemme 2.19. Un idéal cohérent T non nul de 7556026 admet une base de

L . . . . (0
division relativement au point x si et seulement si Dge L/I est sans w-
torsion au voisinage de x.

La propriété suivante, a condition d’avoir une base de division, fournit

(0)

une présentation finie d’un idéal cohérent a gauche de ﬁamc en tant que
ﬁg{—module a gauche. Il s’agit de la proposition 4.3.1 de [4].

Proposition 2.20. On suppose que x est un point k-rationnel. Soit T un
idéal cohérent non nul de D;OL admettant une base de division (Py,...,P,)
relativement & x. Il existe un ouvert affine U de X contenant x et une

matrice de relation R € MT_L,,(YS;OZC(U)) obtenue a partir des P; pour
(0)

lesquels le complexe suivant de ﬁx,ﬂ@—modules est exact :

S(0)\r—1 R, (5(0) v
0 — (DO))r—1 -5, (D((]}c) — Iy — 0.

)

3. '1/)\(32 L’Q—modules holonomes

On commence cette section par définir la variété caractéristique d’un
(0 , . i s , ,
Dge L g-module cohérent. Il s’agit d’une sous-variéte fermée du fibré cotan-

gent T* X de la fibre spéciale X de X. On définit alors les 13;0 L’Q—modules

, ~(0 , s
holonomes comme étant les Dge ;C Q—modules cohérents dont la variété carac-

téristique est de dimension au plus un. On démontre dans la partie 3.4 que
les Dg{o L g-modules holonomes sont de longueur finie. Cela découle de I'in-

)

égalité de Bernstein, établit dans la partie 3.3 : un 25;0 kQ—module cohérent
est non nul si et seulement si les composantes irréductibles de sa variété
caractéristique sont de dimension au moins un. Cette inégalité généralise
pour un niveau de congruence k celle démontrée par Laurent Garnier dans
larticle [4]. On en déduit que les multiplicités des variétés caractéristiques
vont s’additionner dans la catégorie des ﬁgg LQ—modules holonomes et qu’un

ZS;OL Q—module cohérent est nul si et seulement ses multiplicités sont nulles.

(0)

On démontre enfin dans la partie 3.5 que les ﬁx kg modules holonomes véri-

fient la caractérisation cohomologique classique : Sxt%m) (M, 73560 L Q) =0
x,k,@ vy
pour tout entier d # 1.

On désigne toujours par U un ouvert affine de X contenant le point fermé
x (non supposé k-rationnel) sur lequel on dispose d’une coordonnée étale.

3.1. Variété caractéristique des l/iagi’Q-modules cohérents. On ré-
sume brievement dans cette partie la construction de la variété caractéris-
tique d’'un Dg{o 3@ Q—module cohérent, adaptée de celle de Berthelot pour un
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indice de congruence k. Cette variété est définie comme étant la variété
caractéristique « classique » de la réduction modulo @ d’un Dgeo L—module
cohérent, donc d'un Dy j-module cohérent. Le lecteur peut consulter les

notes de Berthelot, par exemple la partie 5.2 de [3], pour plus de détails.

On rappelle que le faisceau Dx i, = Dge L ®y K est la réduction modulo w

de ﬁgg L C’est un faisceau de x-algebres sur la fibre spéciale X = X xySpec k
de X. Comme X et X ont le méme espace topologique, on peut identifier
U & un ouvert affine de X. On note ), I'image de w”d dans la s-algebre
D X,k(U ) On a

Dy =P Ov - 3.
neN
On munit le faisceau Dy j de la filtration croissante donnée localement par
I'ordre des opérateurs différentiels :

Vm eN, Fllm DUk @OU 6k

On note grDx ;. = P,,en & Dx i le gradué associé et & I'image de 0
dans gr(Dx (U)). Localement, gr(Dy k) =~ Op[&] est un anneau de poly-
noémes en une variable sur Oy . En particulier, le fibré cotangent 7% X de X
est isomorphe en tant que s-schéma & Spec gr(Dx ). On identifie ces deux
schémas dans la suite. On note 7 : T*X — X la projection canonique.

Soit P = Zi:o an - Of un opérateur différentiel de Dy ,(U) d’ordre d.
On lui associe un élément du gradué gr Dx i (U) appelé symbole principal
de P en posant

o(P):=ag- g;j € gryDx i(U).

Remarque 3.1. On a [@*d,2] = @ - id dans l'algébre ﬁ;oi(U ). Pour
tout entier £ > 1, on a donc [0k, x] = 0. Ainsi, Dx ,(U) est une k-algébre
commutative, donc une algebre de polynémes en une variable : Dx ,(U) =
Ox (U)[0k]-

Une filtration (Filﬁ E)ieny d'un Dx p-module quasi-cohérent & gauche E
est une suite croissante (Fil® E), de sous O x-modules quasi-cohérents de E
telle que

(1) E = Upen Fil‘ E;
(2) Vn, L €N, (FiI"Dxy) - (Fil* E) C Fil“™ E.

Le gradué gr F pour une telle filtration est un gr Dx p-module. La filtra-
tion est appelée bonne filtration si gr E est un gr Dx j-module cohérent.

Puisque la courbe X est quasi-compacte, tout Dx p-module cohérent admet
une bonne filtration globale.
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On considere maintenant un Dx j-module cohérent E muni d’une bonne
filtration globale. On associe a F le Op+x-module cohérent

E:=0Or-x Or—1(gr Dx 1) ™ (gr B).

Définition 3.2. La variété caractéristique de E est le support de E :
Car F := Supp E.

C’est une sous-variété fermée de T X puisque le Dx x-module E est co-
hérent. La variété caractéristique est indépendante du choix de la bonne fil-
tration choisie. Ce résultat a par exemple été démontré dans le lemme D.3.1
de [6] dans le cas d’un anneau commutatif noetherien, hypotheéses que vé-
rifie la k-algebre commutative gr Dy ,(U).

On appelle multiplicités de E les multiplicités des composantes irré-
ductibles de sa variété caractéristique Car F. Soit C' une composante ir-
réductible de Car E et 1 son point générique. Par définition, la multiplicité
mc = mg(E) de C est la longueur du (O7=x ),-module artinien En‘ Clest
un entier positif non nul dés que le module E est non nul. Lorsque C est une
partie fermée irréductible non vide du fibré cotangant 7% X non contenue
dans la variété caractéristique Car E, on pose m¢ = 0.

On note I(Car E) I’ensemble des composantes irréductibles de la variété
caractéristique de E. On définit le cycle caractéristique de E par la somme
formelle

CC(E) := Z me - C.
Cel(Car E)

On dispose du résultat suivant classique pour une variété complexe. La
preuve de ce dernier est faite par exemple dans le lemme D.3.3 de [6]. On
I'utilisera plus tard pour démontrer que les ZA?;O LQ—moduleS holonomes sont
de longueur finie.

Proposition 3.3. Soit 0 — M — N — L — 0 une suite ezxacte de Dx j-
modules cohérents. Alors Car N = Car M U Car L. De plus, si C est une
composante irréductible de Car N, alors mc(N) = mc(M) + mc(L) (avec
mc(M) =0 ou me(L) =0 si C nest pas dans Car M ou Car L).

(0)

Soit maintenant £ un 13% A Q—module cohérent a gauche. Un modéle entier

de & est un 75;60 L—module cohérent £° sans w-torsion tel que £ ~ £° ®y
K. Puisque & est cohérent, il existe un modele entier £° d’apres [2]. La
réduction £° ®y k modulo w de £° est un Dy p-module cohérent.

Définition 3.4. La variété caractéristique de & est la variété caractéris-
tique du Dy p-module cohérent £° ®y  : Car £ := Car(E° ®y k).

C’est un sous-schéma fermé du fibré cotangent T*X de X indépendant
du choix du modele entier. On appelle multiplicités de £ les multiplicités
de sa variété caractéristique.
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On termine cette partie par des exemples explicites de variétés caracté-
ristiques. Ils permettent en pratique de calculer toutes les variétés caracté-
ristiques.

Exemple 3.5. On suppose que la courbe formelle X est affine munie d’une
coordonnée locale. On note toujours & = o(9) 'image de la dérivation O
dans gry Dx 1 (X).

(1) Puisque le support de Dx  est X tout entier, on a Car ﬁggi@ =
T*X.

(2) Si € =0, alors sa variété caractéristique est vide.

(3) Soit & = @g;ﬂ’Q/P avec P € ﬁg)LQ(f) un opérateur différentiel non
nul. Quitte a multiplier P par une bonne puissance de w, on peut
supposer que ||Pl|y = 1. Alors £° = DgL/P est un modele entier

de £. On note d = N(P) et b le coefficient d’indice d de P. La
réduction P de P modulo @ est un opérateur de Dy j(X) d’ordre
d. Son coefficient dominant est b = (b mod @) € Ox (X).

On munit €° @y k ~ Dxy/P de la filtration quotient. On a
gr(€° @y k) = grDx/(o(P)), ot o(P) = b- &L est le symbole
principal de P. L’annulateur de ce module est I'idéal engendré par

o(P). La variété caractéristique de £ est donnée par 1’équation
Car(€) = {(2,€) € T"X : 0(P)(,€) = b(a) - £" = 0}.
(4) Plus généralement, soit £ = 75560 39,@ /Z pour un idéal cohérent non
nul Z de 15;036(@. On se donne un modele entier £° = 13;03{ o/T de

£. On note I la réduction modulo w de Z. C’est un idéal de Dx .
Alors

Car(&) ={(z,§) e T*X : 0(P)(x,§) =0 VP € I}.

3.2. Réduction au cas des Dx j z-modules cohérents. Pour z € X,
on note Dx o = (Dxk)e = Ppeny Ox,z - 0. On associe a tout Dx j -
module cohérent E une variété caractéristique Car E définie comme une
sous-variété fermée du k-schéma Spec (gr(Dx k. )). On munit comme dans
la partie précédente l'algébre Dy ;. , de la filtration donnée par l'ordre des
opérateurs différentiels. On note gr Dy 1 , le gradué associé. Le module E
admet une bonne filtration; on note gr E le gradué correspondant. Soit
¢ : Spec (gr(Dx k) — Spec(Ox ) la projection donnée par I'inclusion de
Ox,, dans gr(Dx j ,). Alors

Car E := Supp (OSpec(gr(Dx,k,z)) ®g-1(gr Dx 1.0) o (gr E)) .

Cette variété caractéristique ne dépend pas de la bonne filtration choisie sur
E. On note s : X — T*X la section nulle du fibré cotangent. Les notions
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de variétés caractéristiques et de multiplicités coincident entre les germes
-~
de D;}C@ enx et Dy z.

Lemme 3.6. Soit £ un 75;036 Q—module cohérent et £° un modéle entier. On
dispose d’un isomorphisme de k-schémas

Car(£° ® k) xx Spec(Ox ;) ~ Car(&; ® k).

De plus, les multiplicités de Car(EQ ® k) sont les multiplicités des compo-
santes irréductibles de Car(E° ® k) contenant s(x).

Démonstration. Le morphisme Dx (X) ®oy(x) Oxz — Dxpke
@D,.en Ox o-0; est un isomorphisme de Ox ,-modules car Dx 1, = @,,en Ox-
op. 11 s’agit en fait d’un isomorphisme de x-algébres pour le produit sur
Dx 1 (X)®0y (x) Ox .o induit par le produit tensoriel. On dispose donc d’un
isomorphisme de x-algebres :

(3.1) Dx 1(X) ®0x(x) Oxz =~ Dx ka

On note E = £°®y k. C’est un Dy p-module cohérent. La question étant
locale en z, on peut supposer X affine. Comme E est Dx j-cohérent, E est
un Ox-module quasi-cohérent. Il est donc suffisant d’étudier le module des
sections globales E(X).

On munit le Dxp(X)-module FE(X) dune bonne filtration
(Fil"(E(X)))nen, le module E(X) ®o,(x) Ox. de la filtration
Fil"(E(X)) ®oy(x) Ox,z et E; de la filtration image. On note gr(£(X))
et gr(Fy;) les gradués associés. Le probleme se réduit donc & démontrer
que gr(E(X)) ® Ox, ~ gr(E;) en tant que gr(Dx j,)-modules et que les
supports coincident.

Puisque Ox ; est le localisé de Ox(X) en z, E(X) ®0, (x) Ox,» est iso-
morphe & E, en tant que Ox z-module. Le morphisme F(X)®¢, (x)Ox .z =~
E, est en fait un Dy ,-isomorphisme. En effet, I'isomorphisme (3.1)
montre que l'on peut munir E(X) ®o, (x) Ox. dune structure natu-
relle de Dx i, ,-module. On vérifie ensuite que cette structure coincide avec
celle de E; et que le morphisme E(X) ®o, (x) Oxz = E; est un Dx j -
isomorphisme.

On en déduit que gr(E(X)) ®o,(x) Oxe =~ gr(E;) en tant que
gr(Dx o (X))-modules. Il reste a vérifier que leurs supports coincident.
Soit y € Spec(Ox ). On a

(gr(E(X)) ®ox Ox.2), = (8r E(X))p-1() ®0, 1, (Ox.a)y

ol ¢ est le morphisme canonique Ox(X) — Ox,. Comme la k-algebre
Ox (X) est integre, ce module est non nul si et seulement si (gr £(X))

¢ Hy)
est non nul. O
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Remarque 3.7. On a demontré que Dx  ®o, Ox .z ~ Dx i, en tant que
r-algebres. On identifie par la suite ces deux algebres.

On désigne maintenant le Dx p-module £° ®y k par £ ® K et le Dx i ;-
module & ®y k par £ ® k. Ces notations sous-entendent le choix d'un
modele entier. Puisque la variété caractéristique ne dépend pas du modele
entier, les variétés Car(€ ® k) et Car(E, ® k) sont définies sans ambiguité.

Lorsque x est un point x/-rationnel pour une extension finie ' de &, il
sera parfois nécessaire d’étendre les scalaires & x’. Cependant, si E est un
Dx i z-module cohérent, les variétés caractéristiques de E et E®, k' auront
la méme dimension puisque U'extension ’/k est finie. Il est donc suffisant
de tout démontrer au niveau de k.

Définition 3.8. On appelle multiplicités de £ en z les multiplicités de la
variété caractéristique Car(&, ® k).

D’apres le lemme 3.6, il s’agit des multiplicités des composantes irréduc-
tibles de la variété caractéristique de £ contenant s(z).

L’étude de la variété caractéristique d’un 25;0 3{7Q—module cohérent se ra-
mene donc a étudier les variétés caractéristiques des Dx i ,-modules co-
hérents. On explicite dans ce paragraphe la variété caractéristique d’un
Dx i z-module cohérent non nul E. On peut tout d’abord se ramener au
cas ou X est affine et £ = Dy /I pour un idéal a gauche I de Dx j ;.
En effet, puisque E est cohérent, F est engendré par des sections globales
e1,...,ep. Si I; = Annp, , (e;), alors Dx . - €; = Dx go/l;. Comme la
variété caractéristique est un support et puisque le support d’une somme
est I'union des supports des termes de la somme, on a

T
Car(E) = U Car(DX,k,x/Ii).
i=1
Ainsi, on peut supposer que E = Dxy,/I. Si I = 0, alors Car E =
Spec (gr(Doxyx,k)) car le support de Dx 1, est I'espace tout entier. On
considére maintenant le cas ou I est un idéal non nul. Soit P;..., P,
une base de division de I comme définie dans la partie 2.3. Les symboles
principaux o(P;),...,o(F,) engendrent le gradué gr(I) comme gr(Dx j o)-
module. On note d = d(I) et o = v(I). Par définition, le couple (a, d) est
I'exposant de I. On écrit Exp(P1) = (d,a1), Exp(P2) = (d + 1, a2), ...,
Exp(P,) = (d+7r—1,a) ol a1 > ay > -+ > «. Quitte & normaliser les
opérateurs P;, on a o(P;) = t™ ~§,‘j+i_1. La variété caractéristique de FE est
alors

aq d: (05 d+1:...
Car(E) = {(t,gk) € Specgr(Dx k.z) :t §p =17 - & } .
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Dans Dx ., la condition I # 0 n’est pas équivalente a la condition
a # 0oud # 0. On peut avoir « = d = 0 : c’est le cas par exemple
pour I = (t",0%), n,¢ € N. Les équations de la variété caractéristique de
E =Dx /1 se réduisent aux équations suivantes :

t-& =0 sid()

& =0 sio(I)=0
t=0 sid(I)=0
t=& =0 sidI)=0

(3.2) Car(Dx,k,m/I) =
et v(I)=0

Lorsque dim(Car E) = 1, la variété caractéristique de E admet une ou
deux composantes irréductibles données par les équations t = 0 et & = 0.
Lorsque dim(Car F) = 0, Car E = (0,0). En particulier, I'inégalité de Bern-
stein est fausse pour les Dy -modules cohérents. Cependant, si E provient
d’un ﬁgg LQ—module cohérent, on montrera que le dernier cas de (3.2) n’est
pas possible. La variété caractéristique de F sera donc donnée par 1'une des
trois premieres équations.

Exemple 3.9.

(1) Si E = Dx o/t 0¢) avec a,d > 1, alors Car E a deux compo-
santes irréductibles d’équations respectives t = 0 et & = 0.

(2) Si E =Dx ./ (t",05), alors Car E = (0,0).

(3) Soit E = Dx /x un Dx p-module supporté en x. La variété carac-
téristique de E en x est la droite d’équation ¢ = 0. Soit U un ouvert
affine de X contenant x sur lequel on dispose d’une coordonnée lo-
cale . Le module F étant nul en dehors de U, on peut supposer
que X = U. Alors T*X est affine et 'on note (y,&) le systeme de
cordonnées locales de T* X associé a la coordonnée initiale . On a
Car(E) = {(y,&) € T*X : y = z}. La variété caractéristique de E
est la droite verticale de T* X passant par x :

§
T*X

Car &

Un tel module est appelé un Dirac.
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Un Dy j y-module de la forme Dy j /I distinct de Dx i, a deux multi-
plicités correspondant aux composantes t = 0 et & = 0, avec multiplicité
nulle si la composante est un point ou si la composante est vide. Lorsque x
est un point k-rationnel, ces multiplicités correspondent aux nombres d(I)
et v(I). Cela a été prouvé par P.Maisonobe dans [10, partie III, paragraphe
2.1].

Soit maintenant £ = ﬁgg L /Z pour un idéal cohérent non nul Z. D’apres
ce que 'on vient de dire, £ a deux multiplicités en z (potentiellement nulles)
correspondant aux composantes t = 0 et £, = 0 de la variété caractéristique
Car(&; ® k). Ces multiplicités en un point x-rationnel sont respectivement
les fonctions N (Z) et Ni(Z).

Proposition 3.10. Soit © un point k-rationnel et T un idéal cohérent non
nul de Dggi tel que £ = Dg)}g/I soit sans w-torsion. Alors Ni(ZI) et Ny(T)
sont les multiplicités de € en x des composantes (& = 0) et (t = 0) de la
variété caractéristique Car(Ey @ K).

Démonstration. Puisque le module £ = ﬁg) L /T est sans w-torsion, Z admet

(0)

une base de division dans ﬁx . d’apres le lemme 2.18. L’énoncé étant local

en x, on peut supposer X affine. La suite exacte courte 0 — Z — 75560 L —

£ — 0 permet d’obtenir la suite exacte suivante :
0 — Tor},(€ @y k) —>I®vn—>ﬁ§€03€®vm—>£®ym—>0.

Par hypothese, & = ﬁggi/l est sans w-torsion. On en déduit que
Tor]l,(c‘: ®y k) = 0. On obtient un Dx j, ,-isomorphisme

Er Ry Kk~ DX,k,:c/(I Ry Iﬁ;)x.

Ainsi, le module &, ®y k est donné par I'idéal I = Z®y k. On rappelle que Z
et I ont le méme escalier en et que les fonctions N(Z) et Ny (Z) coincident
avec v([) et d(I). Comme les multiplicités de Dy /I sont respectivement
I'ordre et la valuation de Iidéal I en x, on obtient le résultat. O

Soit enfin £ = @;O L Q /Z pour un idéal cohérent Z non nul de ﬁgg L Q- Sl

E ~ 73;0};,@/1' pour un autre idéal 7', alors la proposition 4.2.1 de D'ar-
ticle [4] de Laurent Garnier (division selon une base de division) implique
que Z et 7' ont les mémes fonctions Ny, et Ni. Les entiers N (Z) et Nx(Z) ne
dépendent donc pas du choix de I'idéal Z définissant £ comme un quotient

de 23;0 L @- Lorsque 7 = ﬁgg L o P avec P # 0, ces nombres sont simplement
Nk(P) et Nk(P)
On peut trouver un modele entier de £ de la forme ﬁ&o L /J. Clest un

25;0 L—module cohérent sans w-torsion tel que £ ~ (25560 39 /J) @y K. D’apres
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le lemme 2.19, 'idéal J admet une base de division en chaque point x € X.
Puisque (Dy),/7) @y K ~ DY)}, o/(T@vK), ona DY) o /T =~ DY) o/ (T @y
K). Ainsi, les idéaux Z et J ®y K ont les mémes fonctions Ny, et Nj. Enfin,
puisque J et J ®y K ont les mémes escaliers, on obtient Ny (Z) = N(7)
et Ni(Z) = Ni(J). On en déduit le résultat suivant.

Corollaire 3.11. Soit x un point k-rationnel et £ ~ 13;02, Q/I avec I un

idéal cohérent non nul de 15;07;7@. Alors Ni(T) et Ni(Z) sont respectivement

les multiplicités de € en x des composantes irréductibles (£ = 0) et (t = 0)
de Car(&; @ k).

3.3. Inégalité de Bernstein. Cette partie est consacrée a la démonstra-
tion de l'inégalité de Bernstein : un 25;0 L7Q—module cohérent est non nul si
et seulement si sa variété caractéristique est de dimension au moins un, ou
de maniére équivalente si ses multiplicités ne sont pas toutes nulles.
Comme on a pu le voir dans la partie précédente, 'inégalité de Bernstein
est fausse pour Dy i, ,-modules cohérents. Par exemple, la variété caracté-
ristique du Dx  z-module E = Dy j, ./ (t?,0)) est réduite au point (0,0).
L’inégalité de Bernstein étant vraie pour un 75550 L’Q—module cohérent, cela

(0)

signifie que F ne provient pas d'un 1536 k@—module cohérent. On peut cepen-
dant remarquer que E est un k-espace vectoriel de dimension finie (égale
a p). Plus généralement, ce résultat est vrai pour tout Dx i ,-module cohé-
rent dont la variété caractéristique est réduite a un point.

Lemme 3.12. Soit v € X et E un Dx -module de type fini dont la
variété caractéristique Car E est un point. Alors E est un k-espace vectoriel
de dimension finie.

Démonstration. On traite tout d’abord le cas ot z est un point k-rationnel.
On se donne une bonne filtration (Fil° E);cy de E. On note gr E le gra-
dué associé. Par définition d’une bonne filtration, il existe des éléments
€l,...,e, de E tels que leurs symboles principaux o(ey),...,o(e,) en-
gendrent le gradué gr E. On peut démontrer que ey, ..., e, engendrent F
en tant que Dx j ;-module. On note dy I'ordre de e;. On peut vérifier que
pour tout entier m > max;<p<n{de}, FiI™(E) = Y7 Fil™ % (Dxy) - e;
On en déduit que Fil'(Dx ) - Fil/(E) = Fil"™(E) & partir d'un rang j
et que les Fil'(E) sont des O x,z-modules de type fini. Quitte a décaler la
filtration, on peut supposer que

Vi, j €N, Fil'(Dxy,)-Fil/(E) = Fil""(E).
En particulier, Fil'(E) = Fil'(Dx x ) - Fil’(E). Ainsi, tout systéeme de gé-

nérateurs (ei,...,e,) de Fil’(F) en tant que Ox ,-module engendre E en
tant que Dx . ,-module.
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On suppose que Car E est un point. L’idéal définissant Car E est un
idéal maximal de Ox ,[£x] homogene en & : le point Car(E) correspond
nécessairement a 'idéal (¢, ). Il existe donc deux entiers d et v tels que t¥
et & annulent gr E. En particulier, & - gr'(E) est nul dans gr?*!(E). Sur
la filtration cela se traduit par

of - Fil' E c Fil'"Y(E) = Fil""Y(Dx.,) - Fil'(E).
Pour ¢ = 0, on obtient
ot - Fil°(E) C Fil" ! (Dx ) - Fil’(E).
Il en résulte que pour tout entier naturel 7,
Fil'(E) = Fil'(Dx .,) - Fil°(E) C Fil" ! (Dx 1) - Fil’(E).

La filtration de E est donc stationnaire et Fil"(E) = E pour tout entier
n > d—1. Ainsi, E est engendré sur Ox , par les 9} -¢; pour j € {0,...,d—1}
et t€{l,...,r}: E est un Ox z-module de type fini.

On rappelle que Fil’(E) est annulé par t¥ et que pour tout entier k > 1,
l'algebre Dy 1, est commutative. Puisque Fil’(E) engendre E en tant que
Dx i z-module, E est annulé par t¥ des que k& > 1. Sinon, lorsque k = 0, le
fait que ¢V annule gr E implique que t*“t1) annule Fil’(F). En particulier,
t*? annule E = Fil?"}(E). Dans tous les cas, F est annulé par une puissance
de t que I'on note encore v.

Ainsi, E=E/t"E est un Ox , /t"Ox y-module de type fini. Pour conclure,
il suffit de prouver que Ox ,/t"Ox , est un k-espace vectoriel de dimension
finie. On le montre par récurrence sur v. On dispose de la suite exacte
d’anneaux

0 —s tv_IOX@/tUOX,z — OX,z/tUOX,x — OX,m/tU_IOXm — 0

avec t”_lOX@/t”OXJ ~ k = Ox ,/tOx , (via la multiplication par o=y,
La premiere fleche k — Ox ,/t"Ox , munit Ox . /t"Ox , d’'une structure de
k-espace vectoriel. La suite reste exacte en considérant les quotients comme
des k-espaces vectoriels. Par hypothese de récurrence, Ox ./ t”_IOX@ est
un k-espace vectoriel de dimension finie. Ainsi, Ox ,/t"Ox , est aussi de
dimension finie sur k.

Si maintenant x est un point quelconque, alors z est x/-rationnel pour
une extension finie £’ de k. Le méme raisonnement montre que F est un
k'-espace vectoriel de dimension finie. Puisque «’ est de dimension finie sur
k, E sera un k-espace vectoriel de dimension finie. ]

Proposition 3.13 (inégalité de Bernstein). Soit £ un 73;03{ g-module cohé-

rent non nul. Alors toute composante irréductible de Car £ est de dimension
au moins un. En particulier, dim(Car &) > 1. De plus les multiplicités de
& sont non nulles.
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Démonstration. On note £ = £ ® k la réduction modulo w d’un modele
entier £° de £. On rappelle que par définition, Car £ = Car E. Si £ est non
nul, alors E est aussi non nul. Dans ce cas, Car & # (.

On suppose qu’une composante irréductible de Car & est un point z =
(x,€). Alors Car &, = Car E, est contenue dans un point. Si cette variété
caractéristique est vide, alors £, = 0 et F, = 0. Sinon le lemme 3.12 montre
que E, est un k-espace vectoriel de dimension finie.

On en déduit que £ est un K-espace vectoriel de dimension finie au
voisinage de z. En effet, soit €;1,...,é,. une base de E, comme k-espace
vectoriel. On note eq,...,e, des relevements de ces éléments dans &£, et
F=V-e+---+4+V-e. Cest un sous-V-module complet de &; pour la
topologie w-adique. Soit y € £7. On montre que y € F. Puisque §y € E =
Kk-€ + -+ K-&, il existe y; € F et 21 € w- & tels que y = y1 + 21. De
méme, w2 s’écrit sous la forme yy + Zo avec yp € F et 2y € w - &y On
obtient y = (y1 + wy2) + 22 avec y1,y2 € F et 29 = w2 € w? - ES. Une
récurrence montre que pour tout entier n > 1, il existe y1,...,y, € F et
zn € W - & tels que

Y=y +wys+ -+ 0" yp + 2n.

Puisque F est complet pour la topologie w-adique, le terme y; + wys +
-+ 4+ " 1y, converge vers un élément y,, € F. Par ailleurs, comme &£°
est sans w-torson, £° est séparé pour la topologie w-adique. Ainsi, la suite
(zn)n converge vers zéro. Le passage a la limite n — oo donne y = yo, € F.
Autrement dit, & = F =V -e; + -+ V- e,. On en déduit donc que
Er~E, QK =K-e;+---+ K -e, est un K-espace vectoriel de dimension
finie.

On rappelle que [0, t] = w” - id. Comme &, est un K-espace vectoriel
de dimension finie, on a

Tr([w"0,t]) = 0 = Tr(w” - id) = @* - Tr(id) = (&" dimg &,).

Puisque K est de caractéristique nulle, dimg £, = 0. Donc &, =0 et & est
nul au voisinage de =x.

Dans tous les cas, F, = 0 et E est nul au voisinage de z. Ainsi, le support
de E est un sous-schéma fermé propre de X : sa dimension est strictement
inférieure a dim X = 1 puisque X est irréductible. Le support de F consiste
donc en un nombre fini de points. Autrement dit, £ est une somme directe
de Dirac (ie de Dx y-modules supportés en un point). Mais la variété ca-
ractéristique d’un Dirac est de dimension un, voir ’exemple 3.9. La variété
caractéristique de E en x est alors une union finie de droites d’apres la pro-
position 3.3. Cela contredit I’hypothese qu’une composante irréductible est
un point. Ainsi, soit £ est nul, soit les composantes irréductibles de Car &
sont de dimension au moins un.
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On rappelle que Car E = Supp E ou E = Or+x ®r—1(gr Dx’k)ﬂ_l(gr E) est
un O7+x-module cohérent. Soit n le point générique d’une composante irré-
ductible C' de Car £. La multiplicité m¢c de C' est la longueur du (Op«x),-
module artinien En' Si £ est non nul, alors En est aussi non nul. Sa longueur
mg est donc supérieure ou égale a un. Autrement dit, les multiplicités des
composantes irréductibles de Car £ sont toutes non nulles. O

Corollaire 3.14. Un ﬁg)i(@—module cohérent £ est nul si et seulement

dim(Car &) = 0, ou de maniére équivalente si toutes ses multiplicités sont
nulles.

Démonstration. Le premier point découle de la proposition 3.13. On a vu
que € # 0 implique Car & # (). En particulier, si Car& = (), alors £ = 0.
Dans ce cas, les multiplicités de £ en les fermés irréductibles non vides
de T*X sont nulles par définition. Ainsi, £ est nul si et seulement si ses
multiplicités sont toutes nulles. O

3.4. Modules holonomes. On démontre dans cette partie les propriétés

Lo (0 , , . .
vérifiées par les D;LQ—modules holonomes énoncées dans l'introduction.

En particulier, les ﬁgg L Q—modules holonomes coincident avec les 73;0 L o

modules de longueur finie.

Définition 3.15. Un ﬁg{o L g-module cohérent & est appelé module holo-
nome si & = 0 ou si dim Car(€) = dim X = 1.

Par I'inégalité de Bernstein, un module £ est holonome si et seulement
si dim Car & < 1. La catégorie des D;O 3{ Q—modules holonomes est une sous-

(0)

catégorie abélienne des ﬁx rg-modules cohérents d’apres la proposition 3.3.

(0)

On réécrit ci-dessous son énoncé pour les Dy’ Q—modules cohérents.
vy

Proposition 3.16. Soit 0 - M — N — L — 0 une suite exacte de
Dg)ag@—modules cohérents. Alors Car N' = Car M U Car L. En particulier,
N est holonome si et seulement si L et M le sont.

)

Voici un exemple de modules holonomes : tout 75;0 A Q—module cohérent

de la forme ﬁgg L,Q /Z est holonome dés que Z est un idéal cohérent non nul

de 23;0 L}Q.

On regarde tout d’abord le cas tres explicite ou X = U est affine et
£ = ﬁ;?L,Q/P pour un opérateur différentiel P non nul de 75;036@(.’{) On
normalise P afin d’avoir ||P|, = 1. Soit P I'image de P dans Dx ;(X)
et + € X. On écrit P = Y% _(a, - 9 avec d = Ni(P). On note a =
Ni(P) la valuation de a4 dans I'anneau de valuation discrete Ox .. Quitte
a multiplier P par un élément inversible de O X,z, on peut supposer que le
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coefficient dominant de P est t®. Par définition, (d, «) est 'exposant de P
et de P. Onnote E =D X/ P. Lorsque x est x-rationnel, les multiplicités
de E sont d et a. L’idéal annulateur de E est le radical de I'idéal engendré
par le symbole principal o(P) = t® - ¢4 de P. On suppose P non inversible
au voisinage de x, ce qui est équivalent a avoir  # 0 ou d # 0 d’apres
le corollaire 2.8. Dans ce cas, F est Dx j ,-module non nul. La variété
caractéristique de £ en x est alors donnée par les équations

t-&, =0 sia#0etd#0
CarE=1<&=0 sia=0
t=20 sid=0

Ces composantes irréductibles sont toutes de dimension 1 et dim Car(&,; ®
k) = 1. La variété caractéristique de € est donc de dimension 1 et & est
holonome. Si P est inversible au voisinage de z, alors £ = 0 et la variété
caractéristique de £ en z est vide. Cette condition est équivalente a o =
d = 0. On retrouve ainsi I'inégalité de Bernstein.

On passe au cas ou € = 13;03“@/1 pour un idéal cohérent Z non nul. Soit

E° = 75;03{: /J un modele entier de £. La réduction modulo w de J est un

idéal de Dx j que 'on note I. L’exposant de I, est le couple (N (Z), N (T)).
Le Dx jz-module E = Dy j, /I, est isomorphe a &, ® k. Si € # 0, alors
& ® k # 0 pour au moins un point x de X. D’apres les formules (3.2)
données page 894 et I'inégalité de Bernstein, on a

t-{kIO SiNk(Z)#OetNk(I)#O
Car(gx & /i) = fk =0 si Nk(I) =0
t=0 si Np(Z) =0

La variété caractéristique de &, ® k est donc de dimension 1. Si £ # 0, on
en déduit que dim Car(€) = 1 et £ est holonome. Réciproquement, on verra
plus tard que tout module holonome est de cette forme.

Proposition 3.17. Soit 0 - M — N — L — 0 une suite exacte de

ﬁ£3€7(@—modules holonomes. Alors CC(N) = CC(M) + CC(L). Autrement
dit, les multiplicités s’additionnent pour les ﬁgi,(@—modules holonomes.
Démonstration. La proposition 3.3 nous assure que Car N = Car M U
Car L. Elle nous dit aussi que si C € I(CarN) (ensemble des compo-
santes irréductibles de Car \), alors C' € I(Car M) ou C € I(CarL) et
que ma(N) = ma(M) + me(L). On suppose M, L et A/ non nuls. Alors
dim Car N = dim Car M = dim Car £ = 1 et toutes les composantes irré-
ductibles sont de dimension un d’apres 'inégalité de Bernstein.

Soit I une composante irréductible de Car M ou de Car L. Alors I est
un fermé irréductible de Car(N') de dimension maximale 1 = dim Car N :
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C est donc une composante irréductible de Car . Ainsi, I(Car ) =
I(Car M) U I(Car £). L’égalité des cycles en découle puisqu’alors les mul-
tiplicités s’additionnent d’apres 3.3. U

Remarque 3.18. Lorsque dim(Car \')) = 2, une composante irréductible
de Car L ou de Car M n’est pas toujours une composante irréductible de
Car V. En effet, la dimension de la variété caractéristique Car N/ peut étre
strictement supérieure a celle de Car £ ou de Car M. Les multiplicités ne
s’additionnent donc pas dans la catégorie des ﬁge%@—modules cohérents.
On rappelle que X est une courbe lisse connexe quasi-compacte. Le fibré
cotangent T* X reste quasi-compact et noethérien. La variété caractéris-

tique de tout ﬁgg L’Q-module cohérent a donc un nombre fini de compo-
santes irréductibles et un nombre fini de multiplicités. Puisque les multipli-
cités sont additives et puisqu’un module dont les multiplicités sont nulles

est nul, tout ﬁgg L Q—module holonome va étre de longueur finie.

Proposition 3.19. Tout @;OL -module holonome est de longueur finie,
inférieure d la somme de toutes ses multiplicités.

(0)

Démonstration. Soit & un Dy, Q—module holonome. Sa variété caractéris-
tique a un nombre fini de composantes irréductibles et £ n’a qu'un nombre

)

fini de multiplicités. Puisque 25;0 kQ €st noetherien, il suffit de montrer

que toute suite décroissante (&, )nen de SOUS—ﬁg) L g modules de & est sta-

tionnaire. On suppose que & = &. Comme &, est inclus dans &, &, est
holonome. On consideére la suite exacte courte de modules holonomes

0—E&1 — & — En/Enr1 — 0.

Les multiplicités de &, sont la somme de celles de &,4+1 et de &,/ 41.
En particulier, les suites des multiplicités sont décroissantes. Elles sont
donc stationnaires a partir d’'un certain rang commun ng puisqu’il n’y a
qu’un nombre fini fixé de multiplicités (donné par le nombre de multiplicités
de &€ = &). Pour tout entier n > ng, les multiplicités de &,/E,4+1 sont
donc nulles par additivité. Autrement dit, &,/&,4+1 = 0 par I'inégalité de
Bernstein. Donc &, = &£,1 pour tout n > ng. Ainsi, £ est de longueur finie
inférieure ou égale a la somme de ses multiplicités. O

Le théoreme suivant de Stafford, énoncé initialement pour les algebres de
(0)

Weyl, implique que tout 2336 % Q—module holonome est monogene. La preuve
étant élémentaire, on en redonne une démontrée dans [9, partie 4].

Théoréme 3.20 (Stafford). Soit R un anneau simple de longueur infinie
en tant que R-module a gauche. Alors tout R-module de longueur finie est
monogene.
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Démonstration. Soit M un R-module de longueur finie. On commence par
démontrer que M est engendré par deux éléments « et 8 par récurrence
sur la longueur ¢ de M. Si ¢ =1, alors M est simple et donc engendré par
un élément. Soit o« € M\{0}. Si M # R - a, alors M/Ra # 0. Puisque
{(M/Ra) < £, 'hypothese de récurrence implique que M/Ra est engendré
par un élément B pour un certain 3 € M. Alors M est engendré par « et
B en tant que R-module : M = Ra + RS. On suppose dans la suite que
Ra ¢ RS et que RS ¢ Ra. Pour toute paire d’éléments (z,y) de M, on
note
U(z,y) = (((Ry), {((Rz + Ry)/Rx)) € N°.

On dit que (2/,y) < (z,y) si £(2',y") < €(z,y) pour ordre lexicographique.
On suppose par récurrence sur £(a, 3) € N? que pour tout couple (o, 5') <
(a, B), il existe v/ € M tel que Ra/ + R’ = Ry’. L’initialisation est donnée
par £(0,0) = (0,0) pour M = 0.

Puisque ¢(R) = 400, L(a)) := Anng(a) # 0. En effet, 'application
R — Ra, a — aa n'est pas injective car {(Ra) < oo. On fixe un élé-
ment f € L(a)\{0}. Comme R est simple, on peut trouver des éléments
SlyevnySmyTly.-sTm € Rtelsque 1 =5 s;- ;.

S’il existe z € L(«) et y € L(p) tels que 1 = xr+y pour un certain r = r;,
alors M est engendré par un élément. En effet, 5 = (zr + y)f = arf =
z(a+rp)car yfp =za=0et a = (a+rp) —rp. Ainsi, o, B € R- (a+ 1)
et M = Ra+ Rf = R - (a+ rf). On considére maintenant le cas ou
R # L(B) + L(«) - r; pour tout i € {1,...,m}.

Puisque > si-f-r; =1, ona Y i  R-f-ri=Ret >.i"| R-frif = Rp.
Comme RS ¢ Ra, il existe un élément r = r; tel que R- frf ¢ Ra.

L’inclusion stricte L(B) + R - fr C L(S) + L(«) - 7 & R implique

R-frf~(L(B)+R- fr)/L(B) & R/L(B) ~ RS.
Autrement dit, (a, frg) < (a,8). Par hypothese, il existe v/ € M tel que
Ry =R - fr8+ Ra. Puisque R - fr8 ¢ Ra, Ra & Ry'. On en déduit que
U(RY + RB)/RY') = {((Ra + RB)/RY') < L((Ra + RpB)/Ra).

Ainsi, (7/,8) < («, ). A nouveau par hypotheése de récurrence, il existe
v € M tel que
Ry =Ry + RS = Ra+ RS = M.

Cet élément v engendre donc M en tant que R-module. O

Corollaire 3.21. Tout 75;036 Q—module holonome est localement monogene.

Démonstration. Soit U un ouvert affine de X muni d’une coordonnée étale
et £ un Dgg L’Q—module holonome. L’algebre Dgg L’Q(U ) est simple par la
proposition 2.9. Elle est aussi de longueur infinie a gauche et a droite. En
effet, la suite (Dgg LQ(U ) - (@F0)")pen est strictement décroissante puisque
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’algebre 75;02; o(U) est integre (la norme || - [ est multiplicative). D’apres
la proposition 3.19, le module £(U) est de longueur finie puisque & est
holonome. Le théoréme 3.20 assure alors I'existence d’un élément e € £(U)

~

tel que E‘U:D[(JO’LQ-e. O

Soit £ un 75(%02, g-module holonome. I est localement monogene. Soit
U un ouvert de X sur lequel £ engendré par une section e. Alors 7 =

(0)

Anngo) (u) est un idéal cohérent non nul de TSU r.0- Autrement I'applica-
Uykj7Q Yy

tion ﬁ$L7Q—linéaire 73[(]0367(@ — &, P~ P - u serait injective et &y serait

aussi de longueur infinie. Ainsi, & ~ ﬁg) 36 Q /Z pour un idéal cohérent 7

non nul de 758) LQ. Réciproquement, on a vu que tout @(X?L,Q—module cohé-

rent de la forme & = ﬁgg L Q /Z, ou T est un idéal non nul, est holonome.

. , . . =~
On peut maintenant énoncer plusieurs caractérisations des D; ;c Q—modules

holonomes.

Proposition 3.22. Soit £ un ﬁgeo L’Q-module cohérent. Les points suivants
sont équivalents :
(1) € est holonome;
2) & est localement de la forme 138%7@/1 pour un idéal cohérent L # 0 ;
) € est de longueur finie ;
) € est de torsion : pour tout ouvert affine U de X et pour toute section
m € E(U), il existe P € ﬁgL,Q(U) non nul tel que P -m = 0.

(
(3
(4

Démonstration. Les deux premiers points sont équivalents. D’apres le théo-
reme de Stafford et le corollaire 3.21, le point 3 est équivalent aux premiers.
On suppose maintenant £ de longueur finie. Soit U un ouvert affine

de X et (P mod Z(U)) un opérateur non nul de ﬁgin(U)/I(U). Puisque
E(U) est de longueur finie et ﬁgeo L,Q(U ) est de longueur infinie, 'applica-
tion ﬁgg’@(U) —E(U), Q— Q- (PmodZ(U)) n’est pas injective. Ainsi,
Popérateur (P mod Z(U)) est annulé par un élément non nul de ﬁgeo L#@(U )
et £ est un module de torsion.

Réciproquement, on suppose le module £ de torsion. On se ramene au
cas ou X est affine en considérant un recouvrement ouvert affine fini de X.
Comme le module £ est cohérent, £ est engendré par des sections globales
e1,...,er. On démontre par récurrence sur r que le module £ est holonome.
Sir=1,alors £ ~ 13;%7@/1 ou Z est I'idéal annulateur de e;. Cet idéal est
non nul car e; est de torsion et donc £ est holonome. Sinon par hypothese
de récurrence, le module £ = 15;0 3@@ ceg+ -+ 73;0 L’Q - e, est de longueur
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finie. Puisque £/&" = 75550 L o €1 est aussi de longueur finie, le module & est
forcément de longueur finie. O

On relie maintenant les modules holonomes aux modules & connexion
intégrable. On identifie X avec la section nulle s : X — T*X du fibré
cotangent T* X de X. Le lemme suivant caractérise les modules a connexion
intégrable.

Lemme 3.23. Soit £ un ﬁg3€7(@-module holonome. Les énoncés suivants
sont équivalents.

(1) Le ﬁggi@—module & est localement un Ox g-module libre de rang
fini.

(2) La variété caractéristique Car(E) de £ est incluse dans X.

(3) Le module £ est localement de la forme ZS;OL o/ P avec P un opéra-
teur différentiel fini unitaire d’ordre égale au rang de £ sur Ox .

Démonstration. On peut supposer que X est affine muni d’une coordonnée
locale. Dans ce cas, gr Dx ; ~ Ox[£]. On suppose que le module € est non

nul. Puisque £ est holonome, & est de la forme ﬁgg L Q/I pour un idéal

cohérent non nul 7 de 75;0%,@ Alors F = £ ®y k est un gr Dx p-module

cohérent de la forme Ox[¢]/I pour un certain idéal I non nul.

On suppose tout d’abord que &£ est un Ox g-module libre de rang fini
d. Il en découle que E est un Ox-module libre de rang d. Il existe des
sections e, ...,eq de E(X) telles que E = Ox-e1®---®Ox -eq4. La famille
{€" - e;}nez est liée sur Ox. On peut donc trouver un entier m > 1 et des
fonctions a; € Ox(X) tels que

&m+ 1€ ap) - e; = 0.

Il en découle que la section e; est annulée par un polynéme unitaire P;
de Ox[¢]. Le polynoéme unitaire P = P; ... P, annule tous les éléments
€1,...,en. Le polyndbme P annule donc le module £ = Ox-e1®---®Ox-eq.
On en déduit que P € I et que E = Ox[¢]/I est un Ox[¢]-module quotient
de Ox[¢]/P. 1l vient Car(€) = Car(E) C Car(Ox[{]/P). Puisque P est
unitaire, on a Car(Ox[{]/P) = X. Ainsi, Car(€) C X.

On suppose maintenant que la variété caractéristique de £ est contenue
dans X . Soit x un point de X. Quitte a étendre les scalaires k par une exten-
sion finie, on peut supposer que x est x-rationnel. L’hypothese Car(E) C X
et la proposition 3.10 impliquent que Ny (Z) = Ny(I) = voy , (1) = 0. Toute
base de division de Z en «x est donc réduite a un unique opérateur différentiel
P vérifiant Ni(P) = 0. La condition Ni(P) = 0 signifie que le coefficient
d’ordre Ni(P) de P est inversible dans Ox g au voisinage de z. Un tel
opérateur P est défini sur un ouvert affine de X contenant x. Quitte a ré-

duire X, on peut supposer que P € 15;03{ Q(X ) et que le coefficient d’ordre
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N (P) de P est inversible dans Oz g(X¥). Puisque P est une base de divi-
sion de l'idéal Z, on sait que P engendre 'idéal Z. Ainsi, £ ~ 25;0 LQ /P.
Le corollaire 2.15 dit qu’il est possible de trouver un opérateur différentiel
Q unitaire d’ordre N (P) tel que £ ~ ﬁgﬁ@/Q. On obtient le troisieme
point de la proposition.

Enfin le corollaire 2.15 assure que £ est, localement au voisinage de x, un
Ox g-module libre de rang N (Q). Le schéma formel X étant irréductible,
le nombre N;(Q) ne dépend ni de @ ni de x d’aprés le corollaire 2.16. On
note d cet entier. Pour résumer, &£ est localement un Oy g-module libre de
rang d. O

(0)

On en déduit une caractérisation des Dj Q—modules holonomes via les
9 9
modules a connexion intégrable.

Corollaire 3.24. Soit £ un 73;036 g-module cohérent. Alors £ est holonome
si et seulement si il existe un ouvert non vide U de X tel que &y soit un
module a connexion intégrable.

Démonstration. On suppose dans un premier temps que le module &£ est
holonome. La variété caractéristique de £ a un nombre fini de composantes
irréductibles verticales. On note U 'ouvert de X obtenu en 6tant & X les
abscisses des composantes verticales de Car(€). Par définition de U, on a
Car(€y) C U. On en déduit que &y est un module a connexion intégrable
d’apres le lemme 3.23.

Réciproquement, soit U un ouvert non vide de X pour lequel & est
un module & connexion intégrable. Dans ce cas, Car(&y) C U, toujours
d’apres le lemme 3.23. Si £ n’est pas holonome, alors Car(€) = T*X. En
effet, 7% X est irréductible puisque X l'est et Car(€) est une sous-variété
fermée de T*X de dimension maximale deux. En particulier, on aurait
Car(€y) = T*U. Cela contredit I'hypothese Car(£;) C U. Ainsi £ est
holonome. O

3.5. Caractérisation cohomologique des modules holonomes. On
énonce tout d’abord plusieurs résultats démontrés par Anne Virrion dans

larticle [12] pour les 15;0 @—modules cohérents. Les preuves et les proposi-
tions se généralisent sans difficulté pour un niveau de congruence k quel-

conque. En effet, les arguments des preuves des énoncés de Virrion utilisés
(0) (0)

ici se démontrent au niveau du gradué gr Dy’ avant de remonter a Dy

de manieére classique. Il suffit donc de vérifier les mémes propriétés pour

le gradué gr @gg 3«7 ce qui est clair puisque gr 73;0 L ~ gr 75;0). On démontre

ensuite qu’un ﬁg] L’@—module cohérent M est holonome si et seulement si

Vd£1, Extlg (M, DY) o) = 0.

X,k,Q



906 Raoul HALLOPEAU

Enfin, on définit un foncteur dualité de la catégorie des 13;02; g-modules
holonomes dans elle méme vérifiant un isomorphisme de bidualité.

La proposition suivante se démontre comme le théoréme 4.3 du chapitre 0
de [12] dans le cas ou X est une courbe formelle. La preuve repose sur le

calcul de la dimension du gradué du faisceau 25;0) qui est identique au gra-

, . (0 . . .
dué du faisceau Dg&c Les conclusions restent donc valides pour un niveau
de congruence k quelconque.

Proposition 3.25. La dimension cohomologique du faisceau 13;036 est égale
a trois et la dimension cohomologique du faisceau ﬁgeoam@ est inférieure ou
égale a trois.

Soit M un 75560 ;%Q—module cohérent. On pose
dim M = dim(Car(M)) € {0, 1, 2},
codim M = 2dim X — dim M = 2 — dim M.
L’inégalité de Bernstein se traduit de la maniére suivante sur la codi-

mension : M # 0 si et seulement si codim M < 1. Par ailleurs, M est un
module holonome si et seulement si codim M = 1. On note

1
wx,Q = (/\ Qé) Ry K.

i=0
C’est un Ox g-module libre de rang un. La proposition 2.1.1 du chapitre 1
(0)

de [12] appliquée au faisceau 2336 1,0 implique le résultat suivant.

Proposition 3.26. Le foncteur e @o, wg%@ induit une équivalence de

(0)

catégorie entre la catégorie des ﬁx,g(@—modules a droites et la catégorie des
ﬁge%ﬁ—modules a gauche.

On note ch’(ﬁg);g Q) la catégorie dérivée formée des complexes bornés
de 23;0 L g-modules cohérents. On identifie la catégorie des 13;0 LQ—modules
cohérents avec les complexes concentrés en degré zéro. Pour tout complexe

M de Dg(ﬁggi’(@), on définit son dual D(M) par

D(M) = RHom(M, DY} o[1]) @05, wx -
Virrion démontre en toute généralité dans le chapitre trois de [12] que D
est un foncteur de la catégorie Dg(ﬁ&@) dans elle méme et que pour tout
complexe M de ch’(ﬁgg LQ), il existe un isomorphisme canonique M ~
Do D(M).
On rassemble dans la proposition suivante le corollaire 2.3 et la proposi-
tion 3.5 du chapitre 3 de [12]. Ces résultats se démontrent tout d’abord au
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niveau du gradé gr 75(0) =gr ﬁgeoz, Le passage du gradué au faisceau 75(0)
est systématique et Vahde plus generalement En particulier, cela fonctlonne

»(0)

aussi pour le faisceau Dx I

Proposition 3.27. Soit M un ﬁggi@-module cohérent non nul. Alors
Vi >0, codim(Exti M,ﬁ(o) >
(1) (Exth (M D)) 2
2) codim M = inf{i € N : Exti M,D 0
(2) {i 5o, (M Dihg) 70}

On peut maintenant démontrer la caractérisation cohomologique sui-

5(0)

vante des Dik@—modules holonomes.

Proposition 3.28. Soit M un ﬁ;OLQ—module cohérent. Alors M est ho-
lonome si et seulement si

V’L 7é 1, gXtA(m (M, ,5;:073@@) = O
De plus, si le module M est holonome, alors

3(0) -1
M* = EXtﬁ(o) (M7D3€,k7@> ©0z0 “Wxq

X,k,Q

»(0)

est aussi un Dy, Q—module holonome.

Démonstration. Soit M un 75;0 L Q—module cohérent que ’on peut supposer

non nul. Par construction, ExtA(O) (M, 13;036 0) ®oxg w;%@ est un ﬁgg;ﬂ o
Dz k0
module a gauche cohérent. Il vérifie donc I'inégalité de Bernstein. Autre-

ment dit, codlm(é’xtA(O) (M,D;}C’Q)) <1 ou ExtAw) (M Dge 3“@) = 0.
x

x, y
Par ailleurs, on sait que codim(é'xtiAw) (M,Dgeo L Q)) > 1 d’apres la pro-

position 3.27. Ainsi SxtA(O) (/\/l Dék@) # 0 implique ¢ < 1. On a donc
x

toujours 5xtA(0) (/\/l D;LQ) =0 deés que i > 2.

On suppose mamtenant que le module M est holonome. Alors
dim M = codim M = 1. Le second point de la proposition 3.27 implique

que SxtiA(o) (M,ﬁg{ ) = 0 pour tout entier i # 1 = codim M. Réci-

x
proquement on suppose que SxtA(O) (/\/l ﬁgeo L Q) =0 des que i # 1. Le

x
second point de la proposition 1mphque que codim(M) = 1. Autrement dit,

M est un module holonome. R
Il reste & montrer que le module M* = Extl 50 (M, D;O;C 0) ®0xg wg%Q
Dx ko

est holonome dés que M est holonome. On sait d’ apres la proposition 3.27
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que codim M* > 1. Si codim M* = 2, alors M* = 0 d’apres I'inégalité
de Bernstein. Cela contredit I’hypothese Sxt%geogc@(/\/l,ﬁgi@) # 0. Donc

codim M™* =1 et M* est holonome. O

Remarque 3.29. On a démontré que Sxt%;oac@(/\/l,ﬁggi’@) = 0 des que
1> 2et M est un 75560 L Q—module cohérent.

On démontre enfin que le dual d’un 73;0 L Q—module holonome demeure

holonome.

Corollaire 3.30. Le foncteur dualité préserve la catégorie des modules

(0)

holonomes. De plus, si M est un ﬁx,k@-module holonome, alors

* 0 >
]D)(M) ~ M* = 5Xt%(o) (M7ID§E,3€,Q> ®O3€,Q wf}@'

X,k,Q

Démonstration. Soit M un ZS;OL @—module holonome. On note M* le

73;036 g-module holonome Sxt%m) (M, 75;02, 0) ®0x o Wy %@ On sait d’apres
vy }:,}“Q 1Yy ’ b
la proposition 3.28 que pour tout i #* 1, Ext%(o) (M,Dgg% Q) =0.0na

A %,k,0Q
donc H'(D(M)) = 0 pour tout entier ¢ # 0. On en déduit que D(M) =~
HO(D(M)) ~ M* est un 75;? L g-module holonome. L’isomorphisme de bi-
dualité M ~ (M*)* provient du théoréme 3.6 du chapitre 1 de [12]. O

4. Dx -modules coadmissibles

On introduit dans cette derniére section une catégorie abélienne formée
de Dx oo-modules coadmissibles de longueur finie. Idéalement, on aimerait
définir une catégorie de Dx o-modules coadmissibles holonomes qui soit une
sous-catégorie pleine de celle-ci. On commence par rappeler les définitions
du faisceau Dy o et des Dx o-modules coadmissibles.

4.1. Définition. Pour plus de détails sur le faisceau Dx o et sur les pro-
priétés des Dy oo-modules coadmissibles, le lecteur peut regarder I'article [7]
de Christine Huyghe, Tobias Schmidt et Matthias Strauch.

Soit U un ouvert affine contenant le point x sur lequel on dispose d’'une

coordonnée locale associée a . Pour tout entier k, I’algébre 75;0 L 410U ) est

une sous-algebre de 13;0 LQ(U ). On consideére les morphismes de transition
75;036 +1.0 15;036@ induits par ces inclusions locales. On définit le faisceau
(0)

Dy o comme la limite projective des faisceaux Dy, o

Définition 4.1. On note Dy o := l&nk ﬁg)}c’@
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Le faisceau Dx oo est un faisceau de K-algebres sur le schéma formel X.
Il vérifie les trois points suivant :

(1) Dx,0o(U) est une K-algebre de Fréchet—Stein et sa topologie est
induite par les normes || - ||, des algebres de Banach ﬁgﬁ o0);

(2) Dxoo(U) = @k D&O,L,@(U) = ﬂk;zo DQL,Q(U) ;
(3) DPxooc(U) ={>0Zgan-0": an € Oxo(U) tq V1 >0, lim,_o ap -
n" = 0}.
Le lemme suivant caractérise les opérateurs différentiels finis de Dx oo (U)
a I'aide des fonctions Nj. On en déduit les éléments inversibles de Dx.0(U).

Lemme 4.2. Soit P un opérateur différentiel de Dxoo(U). La suite
(Ng(P))k>o est croissante. De plus, P est un opérateur fini de degré d
si et seulement si la suite (N (P))y est stationnaire de valeur limite d.

Démonstration. On écrit P = Y ore o an - 0™. On commence par montrer que
la suite (N (P)) est croissante. Les coefficients de P dans la base (ww*9)"

de 73;036 o sont @ "q,,. Donc

Nj(P) =max{n € N: ]w\_k" an] = |1P||x}-

Soit ng = Npy1(P). Puisque ||Pllpy1 = |w Dm0 g, | > [+t . g, |
par définition de ng, on a

—(k+1)n

V'n > ng, |w_lman| = |w|n ’ |w an|

k+1)

<" - oo EF0a, | = w0 |.

On en déduit que Ng(P) < ng = Nyy1(P).

On suppose maintenant que Ni(P) = m & partir d’un rang kg. Cela
signifie que pour tout entier k > kg et pour tout entier n > m, |a,|-|w| " <
| - || F™. Autrement dit,|a,| < |am| - |@[F™). Mais |w|F™) — 0
lorsque k — oo. Le passage a la limite k¥ — oo donne |a,| = 0. Ainsi, P est
un opérateur fini d’ordre m. O

Corollaire 4.3. Les opérateurs différentiels inversibles de [’algébre
Dx.o(U) sont les fonctions inversibles :

Dy oo(U)* = Ox 0(U)*.

Démonstration. Soit P € Dx o(U) un opérateur inversible. Alors P est

(0)

inversible dans ﬁ%’k’Q(U) pour tout niveau de congruence k € N. De ma-

niere équivalente, Ni(P) = 0 pour tout entier k et le coefficient constant
de P inversible d’apres le corollaire 2.8. Le lemme 4.2 implique que P est
un opérateur fini d’ordre 0. Autrement dit, P est un élément inversible de
Ox0U). O
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On termine cette partie par la définition des Dx o.-modules coadmissibles
suivie d’un exemple.

Définition 4.4. Un module coadmissible est un Dx o-module M iso-

morphe a une limite projective @k M. de ﬁgeo L’Q-modules cohérents My,

tels que les applications de transition My — M}, soient ngeo L +17Q—linéaires
et tels que pour chaque indice k, on dispose d’un 25;0 39 Q—isomorphisme

ﬁg) 3@ 0 ®D(o) Mk+1 ~ My}, induit par 'application de transition.

La catégorie des Dy o-modules coadmissibles est abélienne et contient
les Dy oo-modules cohérents. En effet, une présentation finie locale d'un
Dy, 0o-module cohérent M fournie des présentations finies locales des mo-
dules My, = 13;0 L ®py. o, M. On dispose de morphismes de transition na-
turels commutant entre ces présentations finies pour les différents niveaux
de congruence k. On en déduit que M est bien la limite projective des
ﬁgg L’Q—modules cohérents M.

Soit M = imk M, un Dx -module coadmissible. I est démontré dans

[7, théoreme 3.1.17] et [11, corollaire 3.1], que My, ~ 75;%7@ @Dy M et

que M ~ L . ( xi@ @Dy oo /\/l) en tant que Dy -module coadmissible.

On peut donc choisir My, égale a ﬁgg}m@ ®Dy o M.

On explicite dans ’exemple ci-dessous un opérateur différentiel infini P
de Dx (U) vérifiant N;(P) = k. On montre que Dx oo/P est un Dx oo~
module coadmissible isomorphe a une limite projective de la forme
Jim, DY) o/ P avec Py un opérateur différentiel fini d’ordre k de 'algebre

DY) o(U).

Exemple 4.5. Soit P = [[,51(1 — @"9) € Dx,0o(U). Alors N(P) = k.
En effet, le coefficient de 0" est & un signe pres

T (It mt @+ ) @I (I mrw?) +

n(n+1)
= 0 2 cAp

avec a, un élément de V de valeur absolue 1. Dans ﬁgg L’Q(U ), le coefficient

dordre n de P est ("3 ) -ap,. Par définition, N (P) est le plus grand

n+1
entier n maximisant la valeur absolue |w|"(i7 ). On cherche donc le plus

grand entier n minimisant la puissance n (2 — k).
(x+1

(n+1

k:) est minimale en x = k — % de valeur —k? —
k) est donc minimale pour n = k—1et n = k.

La fonction x +— x
k43 - La puissance n
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Ceci prouve que N(P) = k. On a de plus
1Pl = || (55 —H) = || K2 /24k/2,

Dans ﬁgL’Q(U), P sécrit P = Py, - Qp avec Py = [[1<p<p(1 — @"0)
un opérateur fini d’ordre Ny(Py) = k et Qr = [[,,>5(1 — @"0) inversible
dans ﬁ;DLQ(U) puisque N1 (Qr) = 0 et puisque son coefficient constant est
inversible. On en déduit que 23;0 L’Q /P ~ 13;0 L’Q /Py. Par ailleurs, P11 =
(1 — @w"*19) - P, avec 1 — wk*19 inversible dans 75;036@((]) On a donc

ﬁggi’Q/PkH ~ ﬁgL’Q/Pk. Autrement dit, Dy o0/P =~ @k ﬁgLQ/Pk en
tant que Dx o-module coadmissible.

On peut retrouver P a partir des opérateurs Py : la suite (Py); converge
vers P dans l'algebre de Fréchet-Stein Dy oo(U). En effet, il suffit de le
vérifier pour toutes les normes ||« |m. On a P — P, = (Qr — 1) - Py. Pour
k > m, on observe que N,,(Py) = m et que ||Pg|/m = ]w\_%(mLm). Le
coefficient constant de () — 1 est nul et le coefficient de 9" est de la
forme bttt +ktn=1) o o3 q, € V est de valeur absolue 1. Dans

n—

ngg)m@(U), le coefficient de (w™d)" est w™F+ =™ . q,. Les coefficients
de @ — 1 sont presque ceux de Py : il suffit de remplacer k par m + 1 — k.
La fonction z(k + 51 — m) est minimale pour x = m+1—k — 1/2. Pour
k assez grand, par exemple kK > m + 1, ce terme est négatif. La norme de
1 — Qy est donc donnée par le coefficient d’indice un : Np(Qp — 1) = 1 et
1Qk — 1l|lm = |ew|*~™. 1l vient

k— m2 _m

1P = Prllm = 11 = Qillm - | Prllm = lew[*">"7> — 0.

4.2. Une catégorie de Dx -modules coadmissibles de longueur

finie. Soit M} un 13;0 L’@—module holonome. On note m(My) la longueur
du cycle caractéristique de My,. Si I(Car(My)) est 'ensemble des compo-
santes irréductibles de la variété caractéristique de My, alors

m(./\/lk) = Z mc(./\/ik) e N.
Cel(Car(My))

Cette longueur est un entier naturel puisque les multiplicités mga(My) le
sont. Le corollaire 3.14 implique que My, = 0 si et seulement si m(My) = 0.

Soit maintenant M = @k M}, un Dy -module coadmissible. On sup-
pose qu’il existe un niveau de congruence ky € N tel que My soit un
75;%7(@—module holonome pour tout entier £ > kg. On note kaq le plus petit
entier naturel pour lequel My, est holonome deés que k > kxq. On associe a
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un tel module coadmissible M une multiplicité m(M) définie par

m(M) = limsup{m(My)} = inf {supm(My) € NU{oo}.
E>kaq k>km | k'>k

Définition 4.6. On note H(Dx o) la catégorie constituée des Dy oo-

modules coadmissibles M = l&nk M, vérifiant les deux points suivant.

(1) 1l existe un niveau de congruence a partir duquel les 73;0 L,Q—modules
cohérents M. sont tous holonomes.
(2) La multiplicité m(M) de M est finie, autrement dit m(M) € N.

C’est une sous-catégorie pleine de la catégorie abélienne des Dy oo-
modules coadmissibles. On démontre dans ce qui suit que la catégorie
H(Dx,00) est abélienne et que tout object M de H(Dx o) est de longueur
finie inférieure ou égale & m(M).

Soit M = lim, M}, un object de H(Dx,0). Par définition, m(M) < oo.
Autrement dit, il existe un entier ko > kpq pour lequel supys g, {m(My)} <
oo. La suite (supyrsp{m(Mp/)})r>k, est décroissante formée d’entiers na-
turels. Elle est donc stationnaire. Sa valeur limite est exactement m(M).
On en déduit qu’il existe un niveau de congruence k; > kpq pour lequel

Vk>k, m(M)=sup{m(Mp)}.
k'>k

Soit 0 - M — N — L — 0 une suite exacte de Dy oo-modules co-
admissibles. On écrit M = lim, My, N = @k/\/‘k et L :Al'mk L. Pour
tout entier naturel k, cette suite induit une suite exacte de Dgg L,Q—modules
cohérents :

0—>./\/lk —>Nk—>£k—>0.
On note kg = max{k, kn, ket € N. Pour tout entier k > ko, les modules
N, My, et L, sont holonomes par définition de H(Dx o). Pour k > kg, on
sait d’apres la proposition 3.17 que CC(Ny) = CC(My) + CC(Ly). 1l en
découle que pour tout k > ko,

m(Nk) = m(/\/lk) + m(ﬁk)
On en déduit immédiatement la proposition suivante.

Proposition 4.7. Soit 0 - M — N — L — 0 une suite ezacte de Dx o0-
modules coadmissibles vérifiant le premier point de la définition 4.6. Alors
(1) m(M) <m(N) et m(L) <m(N);
(2) m(N) <m(M)+m(L).
En particulier, N € H(Dx0) si et seulement si M € H(Dxoo) €t L €
H(DX,OO)-
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Démonstration. On note M = @k My, N = @k/\/k et L = an L. 1
existe un niveau de congruence k1 > max{ka, kn, kz } pour lequel m(M) =
supps e {m(Mye)}, mN) = suppo{m(Nie)] et m(L) = supposy{m(Le)}
des que k > kq.

Pour tout entier naturel k > k1, on a m(N) = m(My) + m(Ly) d’apres
la proposition 3.17. Les inégalités m(Ny) > m(My) pour k > k1 donnent
m(N) > m(M) en passant & la borne supérieure sur k > k;. De méme,
m(Ng) > m(Ly). Enfin, les inégalités

m(/\/k) = m(/\/lk) + m(ﬁk)

< sup {m(Mg)} + sup {u(My)} = m(M) + m(L)
k>ky k>k1

pour tout k£ > kq impliquent que
m(N) = sup {m(Ng)} < m(M) +m(L). O

k>
Remarque 4.8. Bien que m(N;) = m(My) + m(Lg) pour un niveau
de congruence k fixé, la multiplicité m n’est a priori pas additive pour
les modules coadmissibles. En effet, ces égalités deviennent seulement des
inégalités en passant a la borne supérieure.

Cette proposition montre que la catégorie H(Dx o) est abélienne.
L’exemple suivant assure qu’elle n’est pas triviale : elle contient les Dy oo-
modules coadmissibles de la forme Dy o /P pour P un opérateur différentiel
fini de Dy -

Exemple 4.9. On suppose que X = U est affine. Soit P € Dy o (X). On
considere le Dy oo-module coadmissible M = Dx o/P = l&lk M, avec

My = 15;0 L,Q /P. Les 13;0 LvQ—modules cohérents M, sont tous holonomes
d’apres la proposition 3.22.

(1) Onregarde tout d’abord ce qu’il se passe lorsque P est un opérateur
infini. La suite (N (P)) est croissante et diverge vers +oo d’apres
le lemme 4.2. La proposition 3.10 implique que m(My) > Ni(P).
On en déduit que m(M) = +o00. Donc M n’est pas un object de la
catégorie H(Dx o).

(2) On suppose maintenant que P = ZZ:O Gy - O™ est un opérateur fini
d’ordre d. Alors Nj(P) = d pour k assez grand d’apres le lemme 4.2.
On ne considére maintenant que ces indices k. On sait d’apres la
proposition 3.10 que les multiplicités de Car(My) en x sont les
nombres Ni(P) = d et Ni(P,z) = N(agq,z) = valuation de (ag mod
w) dans Ox . En particulier, x est I’abscisse d’'une composante
irréductible verticale de Car My, si et seulement si Ny (P, x) > 0. La
multiplicité de cette composante est alors Ni(P,x). Si x1,..., x5
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sont les zéros de ag, alors pour k suffisamment grand,
m(My) =d+ N(ag,z1) + -+ -+ N(ag, zs).
Ces multiplicités ne dépendent plus de k. On en déduit que
m(M) = 1ir£1>581p{m(/\/lk)} =d+ N(ag,z1) + -+ + N(ag, zs) < oo.

Autrement dit, M = Dx /P appartient a la catégorie H(Dx o).

Le lemme suivant montre que la multiplicité m caractérise les Dx -
modules holonomes nuls. Cela provient du fait qu’un 75;0 ;C g-module holo-

nome My, est nul si et seulement si m(My) = 0.

Lemme 4.10. Un élément M de H(Dx,oo) est nul si et seulement si

m(M) = 0.

Démonstration. On écrit M = @k M. Si M = 0, alors My = 0. Les
multiplicités de My, sont toutes nulles par définition et m(Mj) = 0. Alors

m(M) = 0.
On suppose maintenant que m(M) = 0. Par définition de m(M), il
existe un niveau de congruence k & partir duquel m(My) = 0. Autre-

ment dit, les multiplicités du module M sont toutes nulles et My = 0
d’apres le corollaire 3.14. Ainsi, My, = 0 pour k suffisamment grand et donc

M =0. U

Bien que la multiplicité m ne soit pas additive sur les suites exactes,
on peut démontrer que les éléments de H(Dx ) sont de longueur finie en
utilisant la proposition 4.7 et le lemme 4.10.

Proposition 4.11. Soit M un élément de H(Dx ). Alors M est de lon-
gueur finie inférieure ou égale a pu(M).

Démonstration. Soit M = lim, M), un élément de H(Dx,00). On démontre
que toute suite décroissante (M™),cn de sous-Dx oo-modules coadmissibles
de M est stationnaire. On peut supposer que M" = M. Comme M" est un
sous-module de M, on sait que m(M™) < m(M) d’apres la proposition 4.7.
La suite (m(M™)),, est une suite décroissante d’entiers naturels. Elle est
donc stationnaire. Il existe un entier naturel ng tel que pour tout n > ny,
m(M") = m(M™). On suppose dans la suite que n > ng. On écrit
M = l&nk M7 . 1l existe un rang ky, > max{kp, kyn+1} pour lequel

(4.1) Vk>ky, mWM")= sg%{m(ﬂ/lﬁ/)}

= m(M"H) = sup {m(M};")}
K>k
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Pour tout £ > k,, on considere la suite exacte de ng) L Q—modules cohérents

0 — M — M — ME/MIT — 0.

On sait que m(MZ) = m(MPt) + m(MZ/ M) d’apres la proposi-
tion 3.17. En particulier, si m(M" 1) = m(M}™) pour un certain ni-
veau de congruence k > ky,, alors m(M"™) = m(M7}) d’apres 1'égalité (4.1)
puisque m(MZP) > m(MPT!). On en déduit I'égalité des multiplicités
m(MPtY) = m(MP) et que m(MP/MPH) = 0. Le corollaire 3.14 im-
plique alors que ./\/IZ/./\/IZJrl = 0. Autrement dit, M} ~ MZH. Puisque
I’égalité 4.1 est vérifiée pour tout entier k > k,, il existe une infinité d’en-
tiers k > k,, pour lesquels M} ~ MZH.

Alors M"™ ~ M"™*! en tant que Dy oo-modules coadmissibles. En effet,
soit (k¢)e¢>0 une suite strictement croissante d’entiers naturels telle que pour
tout £ € N, Mp = MZZH La propriété universelle de la limite projective
permet d’obtenir des isomorphismes de Dx o-modules M" ~ m ’ ke
et ML ~ @Z MZZH Puisque M"*! est un sous-module de M™, les

morphismes de transition des modules MZ'H sont induits par ceux des

n _ n+1
koy1 — Mkl+l —

ke, = MZZH des modules My, sont aussi les morphismes de transition

M. On en déduit que les morphismes de transition M

des modules MZZH Il en découle, en passant a la limite projective sur ¢,
que M" ~ M"TL

On a démontré que pour tout entier n > ng, M" ~ M"H. La suite
(M™),, est donc stationnaire. On a aussi démontré que m(M™ 1) = m(M™")
implique M™ !t ~ M" lorsque M"*! est un sous-module de M™. Comme
la suite (m(M™)),, est décroissante de terme initial pu(M) < oo, la lon-
gueur d’une suite strictement décroissante de sous-modules de M est de
longueur au plus m(M). De méme, toute suite strictement croissante de
sous-modules de M est de longueur au plus m(M). Ainsi, M est un Dy o-
module de longueur finie inférieure ou égale a m(M). O

Exemple 4.12. On continue I’exemple 4.9. On suppose toujours que X = U
est affine muni d’une coordonnée locale. Soit P = Zgzo an - 0™ un opérateur
fini d’ordre d de Dx oo(X). On note 1, ...,z les zéros de a4. On rappelle
que N(ag,x) est la valuation de (ag mod w) dans l’anneau de valuation
discréte Ox ;. Le Dx o-module coadmissible Dy o/ P est de longueur finie
inférieure ou égale & m(M) = d + N(aq,x1) + --- + N(aq, zs) d’apres la
proposition.

On termine cette partie en démontrant que tout Dy -module a
connexion intégrable est de longueur finie.
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Lemme 4.13. Soit M = im, My, un Dx oo-module coadmissible tel que les
My, soient des Ox g-modules libres de rang n pour k suffisamment grand.
Alors M est un Ox g-module libre de rang n.

Démonstration. Par hypothese, il existe un niveau de congruence kg € N
tels que My, soit un Ox g-module libre de rang n pour tout & > kg. On
ne considere maintenant que les indices k supérieurs ou égaux a kg. On
note A\ @ Mgy1 — My le morphisme de transition au rang k. Ce der-
nier est 15;0 36 H’Q—linéaire donc Ox g-linéaire. Par hypothese, ’application
YSQLQ ®§§€o’)k+1’@ Mii1 — My, P®e — P - Xg(e) est un isomorphisme
ﬁgg %Q-linéaire. Cela implique que I'image A(My11) de A est dense dans
M, pour la topologie w-adique. Comme M, est un Ox g-module libre
de rang fini, A\;(Mp41) est un sous-Ox g-module fermé de My,. Puisqu’il
est dense, A\(My,) ~ My, en tant que Ox g-modules. Autrement dit, I'ap-
plication Ag : Mpgi1 — My est surjective. Comme My et Mj,q sont
des Oz g-modules libre de méme rang fini n, A\; est un isomorphisme de
Ox g-modules. On en déduit que M ~ @kzko Mj, ~ My, en tant que
Ox g-module. Ainsi, M est un Oy g-module libre de rang fini n. Il

La réciproque de ce lemme est vraie : si M = l'mlC M, est un Dy oo-
module coadmissible et un Ox g-module libre de rang n, alors il existe un
niveau de congruence k a partir duquel chaque M;, est un Ox g-module
libre de rang n. Ce résultat est démontré dans [5].

Définition 4.14. Un module coadmissible M = lglk M, est appelé mo-
dule & connexion intégrable s’il existe un rang k & partir duquel chaque My,
est un Oz g-module libre de rang fini donné n.

Soit M = l’mk M un module & connexion de rang n. D’apres le
lemme 3.23 et la proposition 3.10, les modules M}, ont une unique multipli-
cité égale a n. On déduit alors de la proposition 4.11 que tout Dy o-module
intégrable a connexion est de longueur finie.

Proposition 4.15. Soit M = l&nk My, un Dy -module d connexion inté-
grable. Alors M est un Dx oo-module de longueur finie inférieure ou égale
au rang 180, (M).
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