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D̂(0)
X,k,Q-modules holonomes sur une courbe

formelle

par Raoul HALLOPEAU

Résumé. Soit V un anneau complet de valuation discrète de caractéristique
mixte (0, p) et X une courbe formelle lisse sur V. Pour le faisceau D̂(0)

X,Q des
opérateurs différentiels cristallins de niveau zéro engendré localement par les
dérivations, Laurent Garnier a démontré que les D̂(0)

X,Q-modules holonomes
au sens de Berthelot sont de longueurs finies. En reprenant les méthodes de
Garnier, nous généralisons dans cet article ce résultat au cas des faisceaux
D̂(0)

X,k,Q introduits par Christine Huyghe, Tobias Schmidt et Matthias Strauch
pour un niveau de congruence k quelconque. Comme application, nous en
déduisons que les modules coadmissibles à connexions intégrables sont de
longueurs finies toujours lorsque X est une courbe formelle.

Abstract. Let X be a formal smooth curve over a complete discrete valua-
tion ring V of mixed characteristic (0, p). Let D̂(0)

X,Q be the sheaf of crystalline
differential operators of level 0 (i.e. generated by the derivations). In this sit-
uation, Garnier proved that holonomic D̂(0)

X,Q-modules as defined by Berthelot
have finite length. In this article, we address this question for the sheaves
D̂(0)

X,k,Q of congruence level k defined by Christine Huyghe, Tobias Schmidt
and Matthias Strauch. Using the same strategy as Garnier, we prove that
holonomic D̂(0)

X,k,Q-modules have finite length. We finally give an application
to coadmissible modules by proving that coadmissible modules with integrable
connection over curves have finite length.

1. Introduction
Un enjeu principal dans la théorie des D-modules arithmétiques consiste

à y généraliser la notion de D-modules holonomes. Une catégorie constituée
de tels modules permettra par exemple d’étudier les cohomologies cristal-
line et rigide. Des catégories de D-modules arithmétiques holonomes avec
Frobenius ont été construites par Berthelot et Caro de deux manières diffé-
rentes. Berthelot a défini une variété caractéristique comme une sous-variété
fermée du fibré cotangent de l’espace de base, ce qui lui a permis de défi-
nir la notion d’holonomie comme dans le cas complexe. Caro a quant à lui
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construit une catégorie de D-modules surholonomes munis d’un Frobenius
a priori stable par les six opérations et a montré que cette catégorie coïncide
avec la catégorie de Berthelot dans le cas des schémas quasi-projectifs.

Christine Huyghe, Tobias Schmidt et Matthias Strauch ont introduit
dans [7] un faisceau DX,∞ = lim←−k

D̂(0)
X,k,Q d’opérateurs différentiels obtenu

en rajoutant des niveaux de congruence k ∈ N aux faisceaux de Berthelot.
Les modules à considérer sur DX,∞ ne sont plus les DX,∞-modules cohérents
mais les DX,∞-modules coadmissibles. Nous ne disposons pas de bonne no-
tion d’holonomie pour ces modules. L’article [1] de Ardakov–Bode–Wadsley
introduit une catégorie de modules faiblement holonomes de D-modules co-
admissibles sur un espace analytique rigide en utilisant la caractérisation
classique des modules holonomes. Cependant, cette catégorie demeure trop
grosse, les D-modules faiblement holonomes ne sont par exemple pas tous
de longueur finie. Une autre approche possible consiste à définir une va-
riété caractéristique pour les D-modules coadmissibles. Une première étape
afin d’obtenir une catégorie de DX,∞ = lim←−k

D̂(0)
X,k,Q-modules holonomes est

de commencer par définir une bonne catégorie de D̂(0)
X,k-modules holonomes

pour un niveau de congruence k fixé. C’est l’objectif de cet article dans
le cas où X est une courbe formelle. Nous introduirons dans un autre ar-
ticle une variété caractéristique pour les DX,∞-modules coadmissibles afin
d’obtenir une notion d’holonomie dans ce contexte.

Expliquons maintenant le cadre et les résultats de cet article. Soit V
un anneau complet de valuation discrète de caractéristique mixte (0, p) et
K = Frac(V) son corps des fractions. Nous fixons un V-schéma formel lisse
X dont l’idéal de définition est engendré par une uniformisante ϖ de V.
Nous considérons le faisceau D̂(0)

X,k introduit dans l’article [7] de Huyghe–
Schmidt–Strauch. Il s’agit d’un faisceau de sous-algèbres du faisceau D̂(0)

X
des opérateurs différentiels cristallins obtenu en rajoutant un paramètre
k ∈ N appelé niveau de congruence. Soit U un ouvert affine de X sur lequel
on dispose d’un système de coordonnées étales (x1, . . . , xd). Si ∂1, . . . , ∂d

sont les dérivations associées, alors

D̂(0)
X,k(U) =

∑
α∈Nd

aα · ∂α1
1 . . . ∂αd

d , aα ∈OX(U) tels que aα ·ϖ−k|α| −→
|α|→∞

0

.

Pour k = 0, nous retrouvons le faisceau de Berthelot D̂(0)
X de niveau m = 0.

Notons D̂(0)
X,k,Q = D̂(0)

X,k ⊗V K. Pour k′ ≥ k, nous disposons d’une inclusion
D̂(0)

X,k′,Q(U) ⊂ D̂(0)
X,k,Q(U). Ces inclusions locales induisent un morphisme

de transition D̂(0)
X,k+1,Q → D̂

(0)
X,k,Q. On note DX,∞ = lim←−k

D̂(0)
X,k,Q le faisceau

limite projective des faisceaux D̂(0)
X,k,Q.



D-modules holonomes sur une courbe formelle 871

Rajouter un niveau de congruence k au faisceau D̂(0)
X,Q des opérateurs dif-

férentiels cristallins est très intéressant pour plusieurs raisons brièvement
décrites ci-dessous. Tout d’abord, les faisceaux D̂(0)

X,k,Q pour les différents
niveaux de congruences k interviennent naturellement pour résoudre cer-
taines questions données par exemple dans l’article [8] de Christine Huy-
ghe, Tobias Schmidt et Matthias Strauch. Les faisceaux D̂(0)

X,k,Q apparaissent
dans l’étude de représentations localement analytiques de groupes de Lie
p-adiques. Ils s’avèrent aussi utiles pour regarder des isocristaux surconver-
gents dans le cas ramifié.

Par ailleurs, d’un point de vue conceptuel, les faisceaux D̂(0)
X,k,Q sont per-

tinents. En effet, nous pouvons associer aux éléments de D̂(0)
X,Q des fonctions

analytiques sur le fibré cotangent T ∗X de X convergents sur une bande hori-
zontale de l’espace analytique rigide associé, le fibré cotangent rigide T ∗XK .
Les opérateurs de D̂(0)

X,k,Q définissent des fonctions sur T ∗XK convergents sur
un domaine grossissant avec k. Ces régions recouvrent T ∗XK lorsque k tend
vers l’infini. Plus précisément, soit (x1, . . . , xn, ξd, . . . , ξd) un système de co-
ordonnées locales sur T ∗U associée aux coordonnées étales de départ sur U .
Nous pouvons associer à tout opérateur P =

∑
α∈Nd aα(x) · ∂α1

1 . . . ∂αd
d de

l’algèbre D̂(0)
X,Q(U) un élément P (x, ξ) =

∑
α∈Nd aα(x) · ξα1

1 . . . ξαd
d du fibré

cotangent rigide T ∗UK . La fonction P (x, ξ) converge sur la bande hori-
zontale {|ξ1| ≤ 1, . . . , |ξd| ≤ 1} de T ∗UK . Un opérateur différentiel P de
D̂(0)

X,k,Q(U) définit une fonction analytique P (x, ξ) convergente sur la bande
horizontale {|ξ1| ≤ pk, . . . , |ξd| ≤ pk}. Ainsi, les opérateurs différentiels de
l’algèbre DX,∞(U) = lim←−k

D̂(0)
X,k,Q(U) =

⋂
k D̂

(0)
X,k,Q(U) induisent des fonc-

tions analytiques entières sur le fibré cotangent rigide T ∗XK .
Lorsque X est une variété complexe lisse, la variété caractéristique d’un

DX -module cohérent M non nul est une sous-variété involutive du fibré
cotangent T ∗X. La preuve de ce résultat repose sur la caractéristique nulle
de C. En particulier, une composante irréductible de Car M a une dimension
supérieure à celle de X. Le module M est appelé holonome si dim Car M ≤
dim X. La minimalité des dimensions des composantes irréductibles de la
variété caractéristique Car M implique que M est de longueur finie.

Soit maintenant E un D̂(0)
X,k-module à gauche cohérent. Sa variété caracté-

ristique Car E est définie en généralisant la construction de Berthelot pour
un niveau de congruence k comme suit. Notons κ le corps résiduel de V et
X = X×V Spec κ la fibre spéciale de X. La réduction E = E ⊗V κ modulo
ϖ de E est un DX,k-module cohérent, où DX,k = D̂(0)

X,k ⊗V κ est un faisceau
sur X. Les opérateurs différentiels de DX,k étant finis, on munit DX,k de la
filtration donnée par l’ordre des opérateurs différentiels. Classiquement, la
variété caractéristique de E est construite comme une sous-variété fermée
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du fibré cotangent T ∗X de X. La variété caractéristique de E est par défini-
tion celle de E. Un D̂(0)

X,k-module cohérent dont la variété caractéristique est
de dimension au plus la dimension de X est appelé module holonome. Ce-
pendant, les méthodes utilisées pour une variété complexe ne s’appliquent
plus puisque la caractéristique de κ est positive (la fibre spéciale X de X
est un κ-schéma). Le fait que ces modules soient de longueur finie n’est pas
connu en général.

Laurent Garnier a démontré dans [4] que les D̂(0)
X,Q-modules holonomes

sont de longueur finie lorsque X est une courbe formelle. Nous généralisons
dans cet article ce résultat à un niveau de congruence k ∈ N quelconque
toujours pour une courbe formelle X. Nous adaptons les constructions et
les preuves de Laurent Garnier pour les D̂(0)

X,k,Q-modules cohérents dans les
sections deux et trois.

La partie 2 commence par quelques rappels et propriétés sur les fais-
ceaux OX,Q et D̂(0)

X,k,Q. Nous introduisons dans la section 3 les variétés ca-
ractéristiques des D̂(0)

X,k,Q-modules cohérents. Nous expliquons dans la par-
tie 3.2 qu’il est suffisant d’étudier les variétés caractéristiques des quotients
DX,k,x/I de DX,k,x := DX,k⊗κOX,x. Nous démontrons ensuite dans 3.3 l’in-
égalité de Bernstein : les composantes irréductibles de la variété caractéris-
tique d’un D̂(0)

X,k,Q-module cohérent non nul sont de dimension au moins un.
Un D̂(0)

X,k,Q-module cohérent E est dit holonome si dim Car E ≤ dim X = 1.
Nous prouvons enfin dans les parties 3.4 et 3.5 les résultats suivants.

Proposition 1.1. Soit E un D̂(0)
X,k,Q-module cohérent. Les énoncés suivants

sont équivalents :

(1) E est holonome ;
(2) E est localement de la forme D̂(0)

U,k,Q/I pour un idéal cohérent I ≠ 0 ;
(3) E est de longueur finie ;
(4) E est de torsion ;
(5) Extd

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) = 0 pour tout entier d ̸= 1 ;

(6) il existe un ouvert non vide U de X tel que E|U soit un OX,Q|U -
module libre de rang fini. Autrement dit, E|U est un module à
connexion intégrable.

Considérons maintenant le faisceau DX,∞ = lim←−k
D̂(0)

X,k,Q. Dans la sec-
tion 4, nous appliquons les résultats précédents aux DX,∞-modules coad-
missibles, c’est à dire aux DX,∞-modules isomorphes à une limite projective
de D̂(0)

X,k,Q-modules cohérentsMk ayant de bonnes propriétés de transitions
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entre les différents niveaux de congruences. En particulier, nous construi-
sons une catégorie abélienne formée de DX,∞-modules coadmissibles de lon-
gueur finie. Elle est constituée des modules coadmissibles M ≃ lim←−k

Mk

vérifiant les deux points suivants.

(1) Il existe un rang k0 tel que pour tout k ≥ k0, Mk est un D̂(0)
X,k,Q-

module holonome.
(2) La limite supérieure pour k ≥ k0 des multiplicités des modulesMk

est finie.

Nous montrons que cette catégorie n’est pas triviale. En effet, elle contient
les DX,∞-modules coadmissibles de la forme DX,∞/P dès que P un opéra-
teur différentiel fini de DX,∞. Nous montrons enfin que les modules coadmis-
sibles à connexion intégrable appartiennent à cette catégorie. Les modules
à connexion intégrable sont donc de longueur finie.

Je remercie enfin mes directeurs de thèse, Christine Huyghe et Tobias
Schmidt, pour toutes les discussions qu’ils eurent avec moi et l’aide qu’ils
m’apportèrent.

Notations.

• V est un anneau complet de valuation discrète de caractéristique
mixte (0, p), d’idéal maximal m et de corps résiduel κ supposé par-
fait. On note | · | la valeur absolue normalisée de V, ϖ une unifor-
misante et K = Frac(V) son corps des fractions.
• X est une courbe sur κ lisse connexe quasi-compacte et x ∈ X est

un point fermé donné.
• X est un V-schéma formel lisse localement de type fini relevant X

d’idéal de définition engendré par l’uniformisante ϖ.
• XK est l’espace analytique rigide associé à X.
• t est un relèvement local sur OX d’une uniformisante en x (OX,x est

un anneau de valuation discrète puisque X est une courbe). Alors
dt est une base de Ω1

X,x. On note ∂ la dérivation associée.
• U est un ouvert affine de X contenant x sur lequel on dispose d’une

coordonnée locale.
• Soit f ∈ Γ(U,OX,Q)\{0} et r tel que f1 := ϖrf ∈ Γ(U,OX)\Γ(U,m ·
OX). On note U{f} ⊂ U l’ouvert sur lequel f1 est inversible. On re-
marquera que U{f}∪{x} = U\{V (f1)−{x}} (où f1 est la réduction
de f1 modulo m) est un ouvert puisque f1 n’a qu’un nombre fini de
zéros.
• Sauf mention contraire, les idéaux et les modules considérés seront

tous à gauche.
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2. Propriétés du faisceau D̂(0)
X,k,Q

On adapte dans cette section la seconde partie de l’article [4] de Laurent
Garnier à un niveau de congruence k ∈ N. On munit l’algèbre D̂(0)

X,k,Q(U)
d’une norme complète multiplicative puis on montre la simplicité de cette
dernière dans la partie 2.2. On énonce ensuite quelques théorèmes de divi-
sion sur D̂(0)

X,k,Q dans la section 2.3 On termine enfin par quelques rappels et
quelques propriétés sur les bases de division d’un idéal cohérent de D̂(0)

X,k,Q
dans la dernière sous-partie 2.4.

2.1. Rappels sur la norme spectrale de OX,Q. On redonne ici la dé-
finition d’une algèbre affinoïde et de sa norme spectrale. Puis on rappelle
quelques résultats utiles de la première partie de l’article [4] de Garnier.
On pourra s’y référer pour les preuves des lemmes énoncés.

On note Tn(V) = V⟨T1, . . . , Tn⟩ l’algèbre de Tate sur V à n-variables. Si
T α = T α1

1 . . . T αn
n et |α| = α1 + · · ·+ αn, alors

Tn(V) =

f(T ) =
∑

α∈Nn

cα · T α, |cα| −→
|α|→∞

0

 .

On munit Tn(V) de la norme de Gauss définie par |f | = max{|cα|}. C’est
une valuation et Tn(V) est le complété de V[T1, . . . , Tn] pour cette valua-
tion. En particulier, Tn(V) est une V-algèbre de Banach. Elle est de plus
noetherienne et tout idéal I est complet. Le quotient Tn(V)/I de Tn(V) est
donc une V-algèbre de Banach pour la topologie induite par le passage au
quotient. L’algèbre de Tate Tn(V) est l’ensemble des séries entières en T à
coefficients dans V qui convergent sur la boule unité fermée de Kn. On peut
aussi munir Tn(V) de la norme supérieure. Elle coïncide avec la norme de
Gauss. Cela provient du principe du maximum vérifié par Tn(V) : il existe
y ∈ Vn tel que |f | = |f(y)|.

Une V-algèbre affinoïde A est par définition une V-algèbre de Banach
isomorphe (en tant qu’algèbre topologique) à un quotient Tn(V)/I de Tn(V)
par un idéal I. Toutes les normes sur A induites par une présentation de A
comme quotient d’une algèbre de Tate sont équivalentes.

Si z est un idéal maximal de AK := A⊗V K, alors AK/z est une extension
finie de K. La valeur absolue de K s’étend uniquement en une valeur absolue
sur AK/z notée encore | · |. On définit la norme spectrale d’un élément
f ∈ AK de la manière suivante. On note f(z) l’image de f dans AK/z et
|f(z)| sa valeur absolue. Alors

∥f∥sp := max
z∈Spm AK

|f(z)|.

En général, ∥ · ∥sp est seulement une semi-norme inférieure à toute norme
de Gauss induite. Cependant, lorsque l’algèbre AK est intègre, c’est une
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valeur absolue ultramétrique équivalente aux normes de Gauss. C’est le cas
par exemple pour A = Tn(V).

Tout ouvert affine U de X est le spectre formel d’une V-algèbre affinoïde
A : U = Spf A. De plus, UK = Spm AK , où AK = A ⊗V K une K-algèbre
affinoïde (ie un quotient de Tn(K)). Puisque la courbe X est connexe et lisse,
l’algèbre AK est intègre. La norme spectrale ∥ · ∥sp est donc une valuation
complète sur l’algèbre affinoïde définissant UK .

On suppose pour la fin de cette partie que x est un point κ-rationnel de
X. Pour tout 0 ≤ λ < 1, on note Vλ := {y ∈ UK : |t(y)| ≥ λ}. C’est un
ouvert de XK contenu dans UK . Puisque l’ouvert U est affine, l’ouvert Vλ est
affinoide et ne dépend pas du choix de t pour tout λ vérifiant |λ| > |ω| = 1

p .
Puisque la courbe X est lisse en x, on dispose d’un isomorphisme permettant
d’identifier le tube ]x[ à un disque ouvert :

]x[ ∼−→ D(0, 1−) := {y ∈ Â1,an
K : 0 ≤ |t(y)| < 1}.

Soit f ∈ Γ(Vλ0 ,OXK
) une section de OXK

. Alors f|]x[∩Vλ0
s’écrit unique-

ment comme une série
∑

i∈N αi · ti, où les αi sont des éléments de K. Cette
fonction converge sur la couronne C([λ0, 1[) := {y ∈ Â1,an

K : λ0 ≤ |t(y)|< 1}.
Pour tout λ0 ≤ λ < 1, on note

N(f|]x[∩Vλ
, λ) := max

{
i ∈ N : |αi| · λi = sup

j∈N
|αj | · λj

}
∈ N ∪ {+∞}.

On pose
N(f) := lim

λ→1−
N(f|]x[∩Vλ

, λ) ∈ N ∪ {+∞}.

Lemme 2.1. Pour toute section f ∈ Γ(Vλ0 ,OXK
) non nulle, N(f) est un

entier positif ne dépendant pas du choix de t. De plus, si f|]x[∩Vλ0
=
∑

i∈N αi·
ti, alors N(f) est le plus petit indice tel que ∥f∥sp = |αN(f)| = maxj≥0 |αj |.
En particulier, ∥f∥sp est dans |K|.

Remarque 2.2.
(1) Si N(f) = 0, alors f n’a pas de zéro sur ]x[ et x ∈ U{f}.
(2) On a N(0, λ) = N(0) = +∞.

On rappelle que OX,x est un anneau de valuation discrète, de corps ré-
siduel κ lorsque x est un point κ-rationnel. Par définition, t en est une
uniformisante. On considère la valuation v de OX,x donnée par v(t) = 1.

Lemme 2.3. Soit f ∈ Γ(Vλ,OXK
) une section telle que ∥f∥sp = 1. Alors

N(f) est la valuation de (f mod ϖ) dans OX,x.

On écrit f|]x[∩Vλ0
=
∑

i∈N αi · ti, toujours sous l’hypothèse que ∥f∥sp = 1.
Autrement dit, les coefficients αi sont dans V. On a (f|]x[∩Vλ0

mod ω) =∑
i∈N αi · ti avec αi la réduction modulo ϖ de αi. Comme les coefficients αi
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convergent pour la topologie ϖ-adique, les αi sont presque tous nuls et la
somme définissant (f|]x[∩Vλ0

mod ϖ) est finie. Alors N(f) est le plus petit
entier n tel que αn ̸= 0.

Lorsque U est un ouvert affine de X, on note la norme spectrale de
l’algèbre affinoïde OX,Q(U) := OX(U)⊗V K simplement par | · |. On rappelle
qu’elle est équivalente à toute norme de Gauss induite sur OX,Q(U) et qu’il
s’agit d’une valuation.

2.2. Propriétés du faisceau D̂(0)
X,k,Q.

Le faisceau D̂(0)
X,k,Q. On commence par rappeler brièvement la définition

du faisceau D̂(0)
X,k,Q des opérateurs différentiels sur lequel on travaille. Le

lecteur peur regarder la seconde partie de l’article [7] de Christine Huy-
ghe, Tobias Schmidt et Matthias Strauch pour plus de détails. On désigne
toujours par U un ouvert affine contenant x sur lequel on dispose d’une
coordonnée étale. On note ∂ la dérivation associée.

Le faisceau D(0)
X,k est défini comme un sous-faisceau dépendant d’un pa-

ramètre k ∈ N appelé niveau de congruence du faisceau usuel D(0)
X des opé-

rateurs différentiels. On retrouve D(0)
X lorsque k = 0. Localement, D(0)

X,k(U)
est la V-algèbre engendrée par OX(U) et par la dérivation ϖk∂. Plus pré-
cisément,

D(0)
X,k(U) =

∑
n∈N

an · (ϖk∂)n, an ∈ OX(U), an = 0 pour n≫ 0

 .

On peut aussi voir D(0)
U,k comme le OU -module libre de base les puissances

de ϖk∂ :
D(0)

U,k =
⊕
n∈N
OU · (ϖk∂)n.

On noteDX,k la réduction modulo ϖ du faisceauD(0)
X,k. C’est le faisceau de

κ-algèbres sur la fibre spéciale X = X×V Spec κ de X engendré localement
sur U par OX |U et par la dérivation ∂k image de ϖk∂ après réduction
modulo ϖ. On rappelle que X et X ont même espace topologique. On
identifie donc U à un ouvert affine de X.

Soit D̂(0)
X,k := lim←−i

(
D(0)

X,k/ϖi+1D(0)
X,k

)
le complété ϖ-adique du faisceau D(0)

X,k

et D̂(0)
X,k,Q := D̂(0)

X,k ⊗V K. On dispose de la description locale suivante :

D̂(0)
X,k,Q(U) =

{ ∞∑
n=0

an · (ϖk∂)n, an ∈ OX,Q(U), |an| −→
n→∞

0
}

.

Il est démontré dans [7] que ces algèbres sont toutes noetheriennes et que
les faisceaux associés sont cohérents. Pour k′ > k, il est clair que D̂(0)

X,k′(U) ⊂
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D̂(0)
X,k(U). En particulier, D̂(0)

X,k,Q(U) est une sous-algèbre de l’algèbre des
opérateurs différentiels D̂(0)

X (U) = D̂(0)
X,0(U). Cependant, lorsque k ≥ 1, on

observe que l’algèbre D̂(0)
X,k(U) n’est pas isomorphe à l’algèbre D̂(0)

X (U). On
peut en effet le montrer en remarquant que le commutateur [ϖk∂, a] =
ϖk · ∂(a) dans D̂(0)

X,k(U) diffère du commutateur [∂, a] = ∂(a) dans D̂(0)
X (U).

Structure d’algèbre de Banach sur D̂(0)
X,k,Q(U). On munit maintenant

la K-algèbre D̂(0)
X,k,Q(U) d’une norme multiplicative complète ∥ · ∥k. Dans un

premier temps, on suppose encore que x est un point κ-rationnel de X.

Définition 2.4. Soit H =
∑

n∈N an · (ϖk∂)n un élément de D̂(0)
X,k,Q(U). On

pose
(1) ∥H∥k := maxn≥0{|an|} ;
(2) Nk(H) := max{n ∈ N : |an| = ∥H∥k} ;
(3) Nk(H) := N(aNk(H)).

On rappelle que si
∑

i∈N αi · ti est l’écriture comme série de aNk(H) sur
]x[ ∩ UK , alors ∥H∥k = |αNk(H)|. On peut remarquer que

D̂(0)
X,k(U) =

{
H ∈ D̂(0)

X,k,Q(U) : ∥H∥k ≤ 1
}

.

Soit H =
∑

n≥0 an·(ϖk∂)n un opérateur différentiel non nul de D̂(0)
X,k,Q(U).

On fixe un scalaire α ∈ K× tel que |α| = (maxn≥0 |an|)−1. Il s’agit bien
d’un élément de |K|× d’après le lemme 2.1. Alors αH est de norme 1 et
l’opérateur αH appartient à D̂(0)

X,k(U). L’entier Nk(H) est le plus grand in-
dice n tel que |α · an| = ∥αH∥k = 1. Ainsi, le nombre Nk(H) est l’ordre de
l’opérateur (αH mod ϖ) dans la κ-algèbre DX,k(U). Cet entier ne dépend
pas du choix de α. De plus, Nk(H) = Nk(αH) est la valuation de α ·aNk(H)
modulo ϖ dans OX,x d’après le lemme 2.3. Ce nombre ne dépend pas non
plus de α.

Les entiers Nk(H) et Nk(H) coïncident donc respectivement avec l’ordre
et la valuation de (αH mod ϖ) dans DX,k(U) pour tout scalaire α ∈ K
vérifiant ∥αH∥k = 1. Par ailleurs, ces définitions sont indépendantes du
choix de la coordonnée locale sur U .

Lemme 2.5. La norme ∥ · ∥k et les fonctions Nk et Nk ne dépendent pas
du choix de la coordonnée locale.

Démonstration. On considère une autre coordonnée locale sur l’ouvert U ;
on note ∂′ la dérivation associée. Puisque ∂′ est un générateur du faisceau
tangent OU ·∂, il existe un élément α de OX(U)× tel que ∂′ = α ·∂. Comme
|α| ≤ 1 et α est inversible, on a |α| = 1. Soit P =

∑
n∈N an · (ϖk∂′)n un
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opérateur différentiel de D̂(0)
X,k,Q(U). Sa norme ∥P∥k pour la dérivation ∂′

est le maximum des normes spectrales des coefficients an.
Par ailleurs, P =

∑
n∈N an · (αϖk∂)n. On a (α∂)2 = α2∂2 + α∂(α)∂.

Comme |∂n(α)| ≤ |α| = 1, le coefficient de ∂ a une norme spectrale infé-
rieure ou égale à un. Une récurrence sur n ≥ 1 montre que

(α∂)n = αn∂n +
n−1∑
m=0

bm∂m

avec |bm| ≤ 1 pour tout entier m ∈ {0, . . . , n− 1}. Il vient

P =
∑
n∈N

an

[
αn(ϖk∂)n + ϖkn

n−1∑
m=0

bm∂m

]

=
∑
n∈N

anαn(ϖk∂)n +
∑

n∈N∗
anϖk

n−1∑
m=0

ϖk(n−m−1)bm(ϖk∂)m

︸ ︷︷ ︸∑
n≥0 βn(ϖk∂)n

avec |βn| ≤ |ϖ|k · ∥P∥k et |anαn| = |an|. Lorsque k > 0, |βn| < ∥P∥k ; il
est clair que la norme de P pour la dérivation ∂ est aussi donnée par le
maximum maxn∈N |an|. Pour k = 0, le résultat reste vrai. En effet, dans la
seconde somme, le coefficient de (ϖk∂)n est une combinaison des ak pour
k > n et des bm. □

On rappelle que la norme ∥P∥k d’un opérateur différentiel P de D̂(0)
X,k,Q(U)

et que les entiers Nk(P ) et Nk(P ) dépendent du point x donné. Ce sont
des notions locales en x. On rappelle aussi, lorsque ∥P∥k = 1, que Nk(P )
est la valuation du coefficient dominant de P = (P mod ϖ) dans OX,x.

Proposition 2.6.
(1) Les algèbres D̂(0)

X,k(U) et D̂(0)
X,k,Q(U) sont complètes pour la norme

∥ · ∥k.
(2) La topologie induite par quotient sur tout D̂(0)

X,k,Q-module cohérent
est complète.

(3) Pour tout opérateurs H et Q de D̂(0)
X,k,Q(U), on a

∥HQ∥k = ∥H∥k · ∥Q∥k,

Nk(HQ) = Nk(H) + Nk(Q),
Nk(HQ) = Nk(H) + Nk(Q).

Démonstration. Le premier point découle du fait que l’algèbre D̂(0)
X,k,Q(U)

est complète pour la topologie ϖ-adique et que la topologie induite par
la norme spectrale est équivalente à la topologique ϖ-adique sur l’algèbre
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affinoïde OX,Q(U). On munit tout D̂(0)
X,k,Q-module cohérent E de la norme

induite par des présentations finies locales de E . Cette dernière est com-
plète et ne dépend pas des présentations choisies puisque la norme ∥ · ∥k est
multiplicative par 3. Cela montre le second point.

Soit maintenant H =
∑

n∈N an · (ϖk∂)n et Q =
∑

n∈N bn · (ϖk∂)n deux
opérateurs différentiels de D̂(0)

X,k,Q(U). On a

HQ =
∑
i∈N

ai · (ϖk∂)i

∑
j∈N

bj · (ϖk∂)j


=
∑

i,j≥0

(
i∑

ℓ=0

(
i

ℓ

)
· ai ·ϖkℓ · ∂ℓ(bj) ·ϖk(i+j−ℓ) · ∂i+j−ℓ

)

=
∑
u≥0

∑
ℓ≥0

0≤j≤u

((
u + ℓ− j

ℓ

)
· au+ℓ−j ·ϖkℓ · ∂ℓ(bj)

)
︸ ︷︷ ︸

αu∈OX,Q(U)

(ϖk∂)u.

On remarque déjà que∣∣∣∣∣
(

u + ℓ− j

ℓ

)
· au+ℓ−j ·ϖkℓ · ∂ℓ(bj)

∣∣∣∣∣
≤ |au+ℓ−j | · |∂ℓ(bj)| ≤ |au+ℓ−j | · |bj | ≤ ∥H∥k · ∥Q∥k.

Ainsi, ∥HQ∥k ≤ ∥H∥k · ∥Q∥k. Pour u = Nk(H) + Nk(Q), ℓ = 0 et j =
Nk(Q), le coefficient associé dans la somme définissant αu est aNk(H) ·
bNk(Q). Ce terme est donc de norme ∥H∥k · ∥Q∥k. Si j ≥ Nk(Q), alors
|bj | < ∥Q∥k. Si j < Nk(Q) ou si j ≤ Nk(Q) et ℓ ≥ 1, alors u + ℓ − j >
Nk(H). Donc |au+ℓ−j | < ∥H∥k. Dans tous ces cas, la norme du terme
associé dans αu est strictement inférieure à ∥H∥k · ∥Q∥k. Ceci prouve que
|αu| = ∥H∥k · ∥Q∥k. Autrement dit, ∥HQ∥k = ∥H∥k · ∥Q∥k.

Si u > Nk(H) + Nk(Q), on montre de manière analogue que |αu| <
∥H∥k · ∥Q∥k. Ainsi, Nk(HQ) = Nk(H) + Nk(Q). On peut supposer que H
et Q sont de norme un. Dans ce cas, Nk(H) = v(aNk(H) mod ϖ) et Nk(Q) =
v(bNk(Q) mod ϖ), où v est la valuation de OX,x. Puisque αNk(H)+Nk(Q) =
aNk(H)× bNk(Q)+ (un terme de norme spectrale strictement inférieure), on
a bien

Nk(HQ) = v(aNk(H) · bNk(Q) mod ϖ)
= v(aNk(H) mod ϖ) + v(bNk(Q) mod ϖ)
= Nk(H) + Nk(Q).
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□

Applications. On énonce dans cette partie quelques propriétés de l’al-
gèbre de Banach D̂(0)

X,k,Q(U). Les preuves sont adaptées de celles de Laurent
Garnier à un niveau de congruence k quelconque. La proposition suivante
caractérise l’inversibilité des éléments de D̂(0)

X,k,Q à l’aide des fonctions Nk

et Nk.

Proposition 2.7. On suppose que x est un point κ-rationnel. Soit H ∈
D̂(0)

X,k,Q(U). Il existe un ouvert V de U contenant x sur lequel H est inversible
si et seulement si Nk(H) = Nk(H) = 0. Si de plus ∥H∥k = 1, alors
H−1 ∈ D̂(0)

X,k(V ).

Démonstration. Si H est inversible d’inverse H−1, alors Nk(H) +
Nk(H−1) = Nk(1) = 0. Donc Nk(H) = 0 puisque Nk(H) est un entier
positif. De même, Nk(H) = 0. Réciproquement, on suppose que Nk(H) =
Nk(H) = 0. On écrit H =

∑
n∈N an · (ϖk∂)n. Ces deux conditions signi-

fient que |a0| > |an| pour tout n > 0 et que a0 n’a pas de zéro sur ]x[.
Autrement dit, a0 est inversible sur l’ouvert V = U{a0} ∪ {x} de U . Sur cet
ouvert, l’inverse de H est donné par la série classique

H−1 =
∑
i∈N

−∑
j∈N

aj

a0
(ϖk∂)j

i

a−1
0 .

Cet opérateur converge puisque∥∥∥∥∥∥
∑
j∈N

aj

a0
(ϖ∂)j

∥∥∥∥∥∥
k

= max
j≥1

{∣∣∣∣aj

a0

∣∣∣∣} < 1.

Ainsi, H−1 définit bien un opérateur de D̂(0)
X,k,Q(V ). Si maintenant H est de

norme un, alors les coefficients an et a−1
0 sont des éléments de OX(V ). Il en

découle que H−1 ∈ D̂(0)
X,k(V ). □

On fixe une clôture algébrique K de K. A partir de maintenant, et pour
le reste de l’article, x n’est plus supposé κ-rationnel. C’est un point κ′-
rationnel pour une certaine extension finie κ′ de κ. Soit K ′ une extension
finie de K dans K dont le corps résiduel est κ′. Quitte à étendre K par K ′,
on peut définir les fonctions Nk et Nk des opérateurs de D̂(0)

X,k,Q(U) en x.
Puisque l’extension K ′/K est finie, l’algèbre K⟨T1, . . . , Tn⟩ ⊗K K ′ est

complète. La K ′-algèbre de Tate Tn(K ′) coïncide donc avec Tn(K)⊗K K ′.
On munit K ′ de l’extension non normalisée de la valeur absolue de K, notée
encore | · |. Le morphisme canonique Tn(K)→ Tn(K ′) est une isométrie de
K-algèbres pour les normes de Gauss, égales aux normes spectrales. Plus
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généralement, si A est une K-algèbre affinoïde, alors A′ = A⊗K K ′ est une
K ′-algèbre affinoïde. Le morphisme canonique A → A′ est une isométrie
de K-algèbres affinoïdes. Lorsque A est intègre, la norme spectrale est une
norme sur A et le morphisme précédent est une isométrie pour les normes
spectrales.

On munit D̂(0)
X,k,Q(U)⊗K K ′ de la norme de K ′-algèbre ∥P ⊗ λ∥′k = |λ| ·

∥P∥k. Comme le morphisme canonique OX,Q(U)→ OX,Q(U)⊗K K ′ est une
K-isométrie, le morphisme D̂(0)

X,k,Q(U)→ D̂(0)
X,k,Q(U)⊗K K ′ est une isométrie

de K-algèbres. Soit H ∈ D̂(0)
X,k,Q(U). La fonction Nk(H) ne dépend donc pas

de l’extension K ′ de K mais seulement de H : cet entier est le même aussi
bien dans (D̂(0)

X,k,Q(U), ∥ · ∥k) que dans (D̂(0)
X,k,Q(U)⊗K K ′, ∥ · ∥′k).

Corollaire 2.8. Un opérateur différentiel H de D̂(0)
X,k,Q(U) est inversible au

voisinage de x si et seulement si Nk(H) = Nk(H) = 0.

Démonstration. La proposition 2.7 montre que H est inversible au voisi-
nage de x après extension des scalaires de K à K ′. Soit V ⊂ U un ouvert
contenant x sur lequel H est inversible. On écrit H =

∑∞
n=0 an · (ϖk∂)n ∈

D̂(0)
X,k,Q(V ). Puisque a0 est inversible dans OX,Q(V )⊗K K ′ et a0 ∈ OX,Q(V ),

a0 est inversible dans OX,Q(V ). L’inverse

H−1 =
∑
i≥0

−∑
j≥1

aj

a0
(ϖk∂)j

i

a−1
0

de H dans D̂(0)
X,k,Q(V )⊗K K ′ appartient donc à D̂(0)

X,k,Q(V ). □

Ce critère d’inversibilité permet de démontrer que la K-algèbre D̂(0)
X,k,Q(U)

est simple.

Proposition 2.9. Pour tout ouvert affine V de X, D̂(0)
X,k,Q(V ) est une al-

gèbre simple.

Démonstration. Soit I un idéal bilatère non nul de D̂(0)
X,k,Q(V ) et x ∈ V

un point fermé. On va montrer qu’il existe un voisinage ouvert affine W

de x dans V tel que I|W contienne un élément inversible dans D̂(0)
X,k,Q(W ).

Les points fermés étant denses dans V , ceci implique que I = D̂(0)
X,k,Q(V ).

D’après le corollaire 2.8, il suffit de montrer que quitte à réduire V , I
contient un élément P vérifiant Nk(P ) = Nk(P ) = 0. On peut remplacer
K par une extension finie afin que x soit rationnel et supposer que V est
affine.

On part d’un opérateur différentiel non nul H =
∑

i∈N ai · (ϖk∂)i de I.
Comme I est un idéal bilatère, les crochets [H, t] = Ht− tH et [H, t]n+1 :=
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[[H, t]n, t] pour n ∈ N restent des éléments de I. On a

[H, t] = ϖk ·
∑
i∈N∗

iai · (ϖk∂)i−1

et

[H, t]Nk(H) = (ϖkNk(H) ·Nk(H)!)
∑

i≥Nk(H)

(
i

Nk(H)

)
· ai · (ϖk∂)i−Nk(H).

Pour tout i > Nk(H), on a∣∣∣∣∣
(

i

Nk(H)

)
ai

∣∣∣∣∣ ≤ |ai| < |aNk(H)|.

Autrement dit, Nk([H, t]Nk(H)) = 0. Quitte à remplacer H par [H, t]Nk(H),
on peut supposer que Nk(H) = 0. Par ailleurs, ϖk · ∂ · ai · (ϖk∂)i =
ϖk · ∂(ai) · (ϖk∂)i + ai · (ϖk · ∂)i+1. Donc

[H, ϖk∂] = Hϖk∂ −ϖk∂H =
∑
i≥0

(
ai · (ϖk∂)i+1 −ϖk∂ · ai · (ϖk∂)i

)
= −ϖk

∑
i≥0

∂(ai) · (ϖk∂)i.

Ainsi, [H, ϖk∂]Nk(H) = (−ϖk)Nk(H)∑
i≥0 ∂Nk(H)(ai) · (ϖk∂)i. Puisque

Nk(H) = 0, on a

∀ i ≥ 1, |∂Nk(H)(ai)| ≤ |Nk(H)!| · |ai| < |Nk(H)!| · ∥H∥k.

Sur ]x[ ∩ UK on peut écrire a0 =
∑

i≥0 αi · ti, αi ∈ K. On a

∂Nk(H)(a0) = Nk(H)!
∑

i≥Nk(H)

(
i

Nk(H)

)
· αi · ti−Nk(H).

Comme Nk(H) = N(a0), on a

∀ i > Nk(H),
∣∣∣∣∣
(

i

Nk(H)

)
αi

∣∣∣∣∣ ≤ |αi| < |αNk(H)| = |αN(a0)| = ∥H∥k.

Ainsi, |∂Nk(H)(a0)| = |Nk(H)!| · |α0| = |Nk(H)!| ·∥H∥k et Nk(∂Nk(H)(a0)) =
0. Ceci montre que [H, ϖk∂]Nk(H) est un élément de I de fonctions Nk

et Nk nulles. Quitte à réduire l’ouvert V contenant x, cet élément est
inversible. □
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2.3. Théorèmes de division dans D̂(0)
X,k,Q. Les résultats de cette partie

sont une adaptation des théorèmes de division énoncés par Laurent Garnier
dans [4] pour D̂(0)

X,Q au cas des D̂(0)
X,k,Q-modules cohérents. Les preuves se

généralisent immédiatement pour un niveau de congruence k.

Définition 2.10. Soit P un opérateur différentiel de D̂(0)
X,k,Q(U).

(1) On appelle coefficient dominant de P son coefficient d’indice Nk(P ).
Si ∥P∥k = 1, il s’agit du coefficient dominant de P après réduction
modulo ϖ.

(2) On dit que P est Nk-dominant si P est un opérateur fini d’ordre
Nk(P ). Cette condition signifie que le coefficient de plus haut degré
de P est de norme maximale, ou de manière équivalente que P et
P ont le même ordre lorsque ∥P∥k = 1.

Proposition 2.11. Soit P un opérateur différentiel non nul de D̂(0)
X,k,Q(U).

On note b son coefficient dominant et V l’ouvert U{b}∪{x} de U . Alors tout
élément H de D̂(0)

X,k,Q(U) s’écrit uniquement sous la forme H = QP +R+S
avec :

(1) Q, R, S ∈ D̂(0)
X,k,Q(V ) ;

(2) R est d’ordre fini < Nk(P ) ;
(3) S =

∑
i≥Nk(P ) µi · (ϖk∂)i, µi ∈ K[t] de degré < Nk(P ) ;

(4) ∥H∥k = max{∥Q∥k · ∥P∥k, ∥R∥k, ∥S∥k}.

Si H ∈ D̂(0)
X,k(U), alors R et S sont dans D̂(0)

X,k(V ). Si de plus ∥P∥k = 1,
alors Q ∈ D̂(0)

X,k(V ).

Si Nk(P ) = 0, alors S = 0 puisque ses coefficients sont des polynômes
de degrés strictement inférieurs à Nk(P ). En se restreignant à l’ouvert V =
U{b}, on peut factoriser P par b et supposer que Nk(P ) = 0. On en déduit
le corollaire suivant.

Corollaire 2.12. Soit P un opérateur différentiel non nul de D̂(0)
X,k,Q(U)

de coefficient dominant b. Si V = U{b}, alors tout élément H de D̂(0)
X,k,Q(U)

s’écrit uniquement sous la forme H = QP + R avec :

(1) Q, R ∈ D̂(0)
X,k,Q(V ) ;

(2) R est d’ordre fini < Nk(P ) ;
(3) ∥H∥k = max{∥Q∥k · ∥P∥k, ∥R∥k}.

Ces théorèmes de divisions permettent de démontrer deux versions du
lemme de Hensel pour tout opérateur différentiel P de D̂(0)

X,k,Q(U).
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Proposition 2.13 (Lemme de Hensel). Soit H un opérateur non nul de
D̂(0)

X,k,Q(U) de coefficient dominant b. On note encore V = U{b}∪{x}. Alors
H se décompose uniquement sous la forme H = QP + S avec

(1) Q, P, S ∈ D̂(0)
X,k,Q(V ) ;

(2) P est Nk-dominant de coefficient dominant b ;
(3) S =

∑
i≥Nk(H) µi · (ϖk∂)i avec µi ∈ K[t] de degré < Nk(P ) ;

(4) ∥Q∥k = 1 et il existe un ouvert W ⊂ U tel que Q soit inversible
dans D̂(0)

X,k,Q(W ) ;
(5) ∥S∥k < ∥H∥k.

En ne cherchant plus à énoncer une division sur un ouvert contenant x,
on obtient la version suivante du lemme d’Hensel.

Proposition 2.14 (Lemme de Hensel). Soit H ∈ D̂(0)
X,k,Q(U)\{0} de coeffi-

cient dominant b. Alors H se décompose uniquement sous la forme H = QP
avec

(1) Q, P ∈ D̂(0)
X,k,Q(U{b}) ;

(2) P est Nk-dominant de coefficient dominant b ;
(3) ∥Q∥k = 1 et Q est inversible dans D̂(0)

X,k,Q(U{b}).

Les deux corollaires suivant se déduisent de la division selon un opérateur
différentiel de D̂(0)

X,k,Q.

Corollaire 2.15. Soit E = D̂(0)
X,k,Q/P un D̂(0)

X,k,Q-module cohérent à gauche
donné par un opérateur différentiel P de D̂(0)

X,k,Q(U). Il existe un ouvert V

de U (obtenu en retirant les zéros du coefficients dominant de P ) sur lequel
E|V ≃ D̂

(0)
X,k,Q/P̃ avec P̃ un opérateur Nk-dominant de même coefficient

dominant que P . De plus, E|V est un OX,Q-module libre de rang Nk(P ).

Démonstration. On applique le lemme d’Hensel à P avec V l’ouvert sur
lequel le coefficient dominant de P est inversible. On peut écrire P = QP̃
avec P̃ vérifiant les conditions de l’énoncé et Q un opérateur inversible dans
D̂(0)

X,k,Q(V ). On en déduit que E|V ≃ D̂
(0)
X,k,Q/P̃ . La seconde partie de l’énoncé

découle du théorème de division dans D̂(0)
X,k,Q(V ) puisque le coefficient do-

minant de P̃ est inversible sur l’ouvert V : tout élément H de D̂(0)
X,k,Q(V )

s’écrit uniquement sous la forme H = QP̃ + R avec R un opérateur fini de
D̂(0)

X,k,Q(V ) d’ordre strictement inférieur à Nk(P ). □

Corollaire 2.16. Soient P, Q ∈ D̂(0)
X,k,Q(U) tels que D̂(0)

X,k,Q/P ≃ D̂(0)
X,k,Q/Q

en tant que D̂(0)
X,k,Q-modules à gauche. Alors Nk(P ) = Nk(Q).
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Démonstration. Soit V un ouvert contenu dans U sur lequel D̂(0)
V,k,Q/P ≃

D̂(0)
V,k,Q/P̃ et D̂(0)

V,k,Q/Q ≃ D̂(0)
V,k,Q/Q̃ avec P̃ et Q̃ deux opérateurs finis d’ordre

respectif Nk(P ) et Nk(Q). Ces deux modules sont des OV,Q-modules libres
de rang Nk(P ) et Nk(Q) respectivement. Puisqu’ils sont isomorphes en
tant que D̂(0)

V,k,Q-modules, ils sont isomorphes en tant que OV,Q-modules.
On en déduit que Nk(P ) = Nk(Q). □

La proposition suivante provient de l’existence d’une division « eucli-
dienne » sur D̂(0)

X,k,Q et du lemme d’Hensel (proposition 2.14). La preuve est
analogue à celle de la proposition 5.1.2 de l’article [4] de Laurent Garnier
en rajoutant un niveau de congruence k.

Proposition 2.17. Soit E un D̂(0)
X,k,Q-module cohérent et U un ouvert af-

fine de X contenant x. Il existe alors un opérateur P de D̂(0)
X,k,Q(U), un

ouvert affine V contenu dans U (obtenu en retirant les zéros du coefficients
dominant de P ) et un entier n tels que

E|V ≃ (D̂(0)
V,k,Q/P )⊕ (D̂(0)

V,k,Q)n.

2.4. Base de division d’un idéal cohérent de D̂(0)
X,k,Q. On termine

cette section par définir une base de division d’un idéal cohérent non nul
I de D̂(0)

X,k,Q. Une telle base permettra de calculer la variété caractéristique
du D̂(0)

X,k,Q-module cohérent D̂(0)
X,k,Q/I.

On commence par définir la notion de base de division en x au niveau
de la fibre spéciale X de X. Soit U un ouvert affine contenant x admettant
une coordonnée locale associée à x. On note DX,k,x := DX,k(U)⊗κOX,x. En
tant que κ-algèbre, DX,k,x est isomorphe à

⊕
n∈NOX,x ·∂n

k où ∂k est l’image
de ϖk∂ après réduction modulo ϖ. Il s’agit de l’algèbre des opérateurs
différentiels en ∂k à coefficients dans OX,x. On note dans la suite l’algèbre
DX,k(U)⊗κ OX,x simplement par DX,k ⊗κ OX,x puisqu’elle ne dépend pas
du choix de U .

On rappelle que OX,x est un anneau de valuation discrète v d’uniformi-
sante t. Les notions de base de division en x vont coïncider entre un idéal
cohérent de D̂(0)

X,k et sa réduction modulo ϖ dans DX,k,x.
Soit P = αd ·∂d

k + · · ·+α1 ·∂k +α0 un opérateur non nul d’ordre d = d(P )
de DX,k,x. On appelle valuation de P celle de son coefficient dominant ad :
v(P ) := v(αd). L’exposant Exp(P ) de P est le couple (v(P ), d(P )) ∈ N2. Si
Q est un autre opérateur de DX,k,x, on vérifie que Exp(PQ) = Exp(P ) +
Exp(Q).
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Soit I un idéal cohérent à gauche non nul de DX,k,x. On définit son
exposant par

Exp(I) := {(v(P ), d(P )) : P ∈ I\{0}} ⊂ N2.

On a

Exp(ti · P ) = (i, 0) + Exp(P ) et Exp(∂j
k · P ) = (0, j) + Exp(P ).

On en déduit que Exp(I) = Exp(I) + N2. Ainsi, l’exposant de I est une
partie de N2 délimitée inférieurement par un escalier fini. On peut voir la
figure ci-dessous pour un exemple.

Soit P1 un élément de I de degré minimal d et de valuation minimale
parmi les éléments de I de degré d. On construit récursivement un élément
Pi de I d’ordre d(Pi+1) = d(Pi) + 1 et de valuation minimale parmi les élé-
ments de même degré jusqu’à obtenir un élément Pr de valuation minimale
dans I.

On obtient ainsi une famille d’opérateurs (P1, . . . , Pr) échelonnée pour
l’ordre telle que Pi soit de valuation minimale parmi les éléments de même
ordre, telle que d(I) = d(P1) soit l’ordre minimal des éléments de I et telle
que v(I) = v(Pr) soit la valuation minimale des éléments de I. Une telle
famille est appelée base de division de I.

Soit I un idéal cohérent de DX,k et x ∈ X. Alors Ix est un idéal cohérent
de DX,k,x = DX,k ⊗κ OX,x. On appelle base de division de I relativement
au point x une base de division (P1, . . . , Pr) de l’idéal Ix. Les opérateurs
P1, . . . , Pr sont des éléments de I(U) pour un certain ouvert affine U conte-
nant x.

La figure 2.1 illustre graphiquement le positionnement d’une base de
division en x vis-à-vis de l’exposant de I.

Soit maintenant I un idéal à gauche cohérent non nul de D̂(0)
X,k,Q et

Q ∈ Ix ; Q est un opérateur de D̂(0)
X,k,Q(U) pour un certain ouvert affine

U contenant x. On lui associe le couple (Nk(Q), Nk(Q)) ne dépendant que
de x appelé exposant de Q en x. Si Q est de norme un, on rappelle que
Nk(Q) et Nk(Q) sont respectivement la valuation et l’ordre de (Q mod ϖ)
dans DX,k,x. L’exposant de I en x est défini par

Exp(I) := {(Nk(Q), Nk(Q)) : Q ∈ Ix\{0}} ⊂ N2.

On définit comme pour un idéal de DX,k,x une base de division de I relative-
ment au point x. C’est une famille d’éléments (P1, . . . , Pr) de Ix échelonnée
pour la fonction Nk telle que Pi soit de fonction Nk minimale parmi les
éléments de même fonction Nk, telle que Nk(I) = Nk(Pr) soit minimale
parmi les éléments de I et telle que Nk(I) = Nk(P1) soit minimale parmi
les éléments de I. On demande de plus que les Pi soient normalisés : pour
tout i ∈ {1, . . . , r}, ∥Pi∥k = 1.
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valuation

degré

0

•
P1

•
P2

•P3

•
P4

•P5

•
Pr

•
v(I) = v(Pr)

•
v(P1)

•d(I)

•d(I) + 1

•d(I) + 2

•d(I) + r − 1 Exp(I)

Figure 2.1. Escalier et base de division de I en x

Cette dernière condition permet d’assurer la compatibilité des bases de
division dans D̂(0)

X,k et dans DX,k,x après réduction modulo ϖ. En effet, soit
I un idéal cohérent non nul de D̂(0)

X,k admettant une base de division en x.
On note I la réduction modulo ϖ de I ; c’est un idéal cohérent de DX,k et
Ix est un idéal de DX,k,x. Alors (P1, . . . , Pr) est une base de division de I
relativement à x si et seulement si (P1 mod ϖ, . . . , Pr mod ϖ) est une base
de division de Ix. En particulier, les escaliers et les exposants de I et I
coïncident en x.

Les deux lemmes suivants sont démontrés pour k = 0 par Laurent Gar-
nier dans [4], partie 4, proposition 4.2.1 et corollaire 4.2.2 respectivement.
Ils résultent de l’existence d’une division de tout élément de D̂(0)

X,k,Q(U) par
une base de division de I. Leurs preuves s’adaptent sans difficulté pour un
niveau de congruence k quelconque.

Lemme 2.18. Toute base de division de I en x engendre l’idéal Ix.

Une base de division existe toujours pour les idéaux de D̂(0)
X,k,Q. Cependant

ce n’est pas vrai dans D̂(0)
X,k. Si I est un idéal cohérent non nul de D̂(0)

X,k, il
n’est pas toujours possible de normaliser les Pi dans D̂(0)

X,k(U). En effet, de
la ϖ-torsion peut poser problème. Le lemme suivant donne une condition
nécessaire et suffisante pour que l’idéal I admette une base de division
relativement au point x.
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Lemme 2.19. Un idéal cohérent I non nul de D̂(0)
X,k admet une base de

division relativement au point x si et seulement si D̂(0)
X,k/I est sans ϖ-

torsion au voisinage de x.
La propriété suivante, à condition d’avoir une base de division, fournit

une présentation finie d’un idéal cohérent à gauche de D̂(0)
X,k en tant que

D̂(0)
X,k-module à gauche. Il s’agit de la proposition 4.3.1 de [4].

Proposition 2.20. On suppose que x est un point κ-rationnel. Soit I un
idéal cohérent non nul de D̂(0)

X,k admettant une base de division (P1, . . . , Pr)
relativement à x. Il existe un ouvert affine U de X contenant x et une
matrice de relation R ∈ Mr−1,r(D̂(0)

X,k(U)) obtenue à partir des Pi pour
lesquels le complexe suivant de D̂(0)

X,k,Q-modules est exact :

0 −→ (D̂(0)
U,k)r−1 ·R−→ (D̂(0)

U,k)r −→ I|U −→ 0.

3. D̂(0)
X,k,Q-modules holonomes

On commence cette section par définir la variété caractéristique d’un
D̂(0)

X,k,Q-module cohérent. Il s’agit d’une sous-variété fermée du fibré cotan-
gent T ∗X de la fibre spéciale X de X. On définit alors les D̂(0)

X,k,Q-modules
holonomes comme étant les D̂(0)

X,k,Q-modules cohérents dont la variété carac-
téristique est de dimension au plus un. On démontre dans la partie 3.4 que
les D̂(0)

X,k,Q-modules holonomes sont de longueur finie. Cela découle de l’in-
égalité de Bernstein, établit dans la partie 3.3 : un D̂(0)

X,k,Q-module cohérent
est non nul si et seulement si les composantes irréductibles de sa variété
caractéristique sont de dimension au moins un. Cette inégalité généralise
pour un niveau de congruence k celle démontrée par Laurent Garnier dans
l’article [4]. On en déduit que les multiplicités des variétés caractéristiques
vont s’additionner dans la catégorie des D̂(0)

X,k,Q-modules holonomes et qu’un
D̂(0)

X,k,Q-module cohérent est nul si et seulement ses multiplicités sont nulles.
On démontre enfin dans la partie 3.5 que les D̂(0)

X,k,Q-modules holonomes véri-
fient la caractérisation cohomologique classique : Extd

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) = 0

pour tout entier d ̸= 1.
On désigne toujours par U un ouvert affine de X contenant le point fermé

x (non supposé κ-rationnel) sur lequel on dispose d’une coordonnée étale.

3.1. Variété caractéristique des D̂(0)
X,k,Q-modules cohérents. On ré-

sume brièvement dans cette partie la construction de la variété caractéris-
tique d’un D̂(0)

X,k,Q-module cohérent, adaptée de celle de Berthelot pour un
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indice de congruence k. Cette variété est définie comme étant la variété
caractéristique « classique » de la réduction modulo ϖ d’un D̂(0)

X,k-module
cohérent, donc d’un DX,k-module cohérent. Le lecteur peut consulter les
notes de Berthelot, par exemple la partie 5.2 de [3], pour plus de détails.

On rappelle que le faisceau DX,k = D̂(0)
X,k⊗V κ est la réduction modulo ϖ

de D̂(0)
X,k. C’est un faisceau de κ-algèbres sur la fibre spéciale X = X×VSpec κ

de X. Comme X et X ont le même espace topologique, on peut identifier
U à un ouvert affine de X. On note ∂k l’image de ϖk∂ dans la κ-algèbre
DX,k(U). On a

DU,k =
⊕
n∈N
OU · ∂n

k .

On munit le faisceau DX,k de la filtration croissante donnée localement par
l’ordre des opérateurs différentiels :

∀ m ∈ N, Film(DU,k) :=
m⊕

n=0
OU · ∂n

k .

On note grDX,k =
⊕

m∈N grmDX,k le gradué associé et ξk l’image de ∂k

dans gr1(DX,k(U)). Localement, gr(DU,k) ≃ OU [ξk] est un anneau de poly-
nômes en une variable sur OU . En particulier, le fibré cotangent T ∗X de X
est isomorphe en tant que κ-schéma à Spec gr(DX,k). On identifie ces deux
schémas dans la suite. On note π : T ∗X → X la projection canonique.

Soit P =
∑d

n=0 an · ∂n
k un opérateur différentiel de DX,k(U) d’ordre d.

On lui associe un élément du gradué grDX,k(U) appelé symbole principal
de P en posant

σ(P ) := ad · ξd
k ∈ grdDX,k(U).

Remarque 3.1. On a [ϖk∂, x] = ϖk · id dans l’algèbre D̂(0)
X,k(U). Pour

tout entier k ≥ 1, on a donc [∂k, x] = 0. Ainsi, DX,k(U) est une κ-algèbre
commutative, donc une algèbre de polynômes en une variable : DX,k(U) =
OX(U)[∂k].

Une filtration (Filℓ E)ℓ∈N d’un DX,k-module quasi-cohérent à gauche E

est une suite croissante (Filℓ E)ℓ de sous OX -modules quasi-cohérents de E
telle que

(1) E =
⋃

ℓ∈N Filℓ E ;
(2) ∀ n, ℓ ∈ N, (FilnDX,k) · (Filℓ E) ⊂ Filℓ+n E.

Le gradué gr E pour une telle filtration est un grDX,k-module. La filtra-
tion est appelée bonne filtration si gr E est un grDX,k-module cohérent.
Puisque la courbe X est quasi-compacte, tout DX,k-module cohérent admet
une bonne filtration globale.
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On considère maintenant un DX,k-module cohérent E muni d’une bonne
filtration globale. On associe à E le OT ∗X -module cohérent

Ẽ := OT ∗X ⊗π−1(gr DX,k) π−1(gr E).

Définition 3.2. La variété caractéristique de E est le support de Ẽ :
Car E := Supp Ẽ.

C’est une sous-variété fermée de T ∗X puisque le DX,k-module Ẽ est co-
hérent. La variété caractéristique est indépendante du choix de la bonne fil-
tration choisie. Ce résultat a par exemple été démontré dans le lemme D.3.1
de [6] dans le cas d’un anneau commutatif noetherien, hypothèses que vé-
rifie la κ-algèbre commutative grDX,k(U).

On appelle multiplicités de E les multiplicités des composantes irré-
ductibles de sa variété caractéristique Car E. Soit C une composante ir-
réductible de Car E et η son point générique. Par définition, la multiplicité
mC = mC(E) de C est la longueur du (OT ∗X)η-module artinien Ẽη. C’est
un entier positif non nul dès que le module E est non nul. Lorsque C est une
partie fermée irréductible non vide du fibré cotangant T ∗X non contenue
dans la variété caractéristique Car E, on pose mC = 0.

On note I(Car E) l’ensemble des composantes irréductibles de la variété
caractéristique de E. On définit le cycle caractéristique de E par la somme
formelle

CC(E) :=
∑

C∈I(Car E)
mC · C.

On dispose du résultat suivant classique pour une variété complexe. La
preuve de ce dernier est faite par exemple dans le lemme D.3.3 de [6]. On
l’utilisera plus tard pour démontrer que les D̂(0)

X,k,Q-modules holonomes sont
de longueur finie.
Proposition 3.3. Soit 0 → M → N → L → 0 une suite exacte de DX,k-
modules cohérents. Alors Car N = Car M ∪ Car L. De plus, si C est une
composante irréductible de Car N , alors mC(N) = mC(M) + mC(L) (avec
mC(M) = 0 ou mC(L) = 0 si C n’est pas dans Car M ou Car L).

Soit maintenant E un D̂(0)
X,k,Q-module cohérent à gauche. Un modèle entier

de E est un D̂(0)
X,k-module cohérent E◦ sans ϖ-torsion tel que E ≃ E◦ ⊗V

K. Puisque E est cohérent, il existe un modèle entier E◦ d’après [2]. La
réduction E◦ ⊗V κ modulo ϖ de E◦ est un DX,k-module cohérent.
Définition 3.4. La variété caractéristique de E est la variété caractéris-
tique du DX,k-module cohérent E◦ ⊗V κ : Car E := Car(E◦ ⊗V κ).

C’est un sous-schéma fermé du fibré cotangent T ∗X de X indépendant
du choix du modèle entier. On appelle multiplicités de E les multiplicités
de sa variété caractéristique.
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On termine cette partie par des exemples explicites de variétés caracté-
ristiques. Ils permettent en pratique de calculer toutes les variétés caracté-
ristiques.

Exemple 3.5. On suppose que la courbe formelle X est affine munie d’une
coordonnée locale. On note toujours ξk = σ(∂k) l’image de la dérivation ∂k

dans gr1DX,k(X).
(1) Puisque le support de DX,k est X tout entier, on a Car D̂(0)

X,k,Q =
T ∗X.

(2) Si E = 0, alors sa variété caractéristique est vide.
(3) Soit E = D̂(0)

X,k,Q/P avec P ∈ D̂(0)
X,k,Q(X) un opérateur différentiel non

nul. Quitte à multiplier P par une bonne puissance de ϖ, on peut
supposer que ∥P∥k = 1. Alors E◦ = D̂(0)

X,k/P est un modèle entier
de E . On note d = Nk(P ) et b le coefficient d’indice d de P . La
réduction P de P modulo ϖ est un opérateur de DX,k(X) d’ordre
d. Son coefficient dominant est b = (b mod ϖ) ∈ OX(X).

On munit E◦ ⊗V κ ≃ DX,k/P de la filtration quotient. On a
gr(E◦ ⊗V κ) = grDX,k/(σ(P )), où σ(P ) = b · ξd

k est le symbole
principal de P . L’annulateur de ce module est l’idéal engendré par
σ(P ). La variété caractéristique de E est donnée par l’équation

Car(E) = {(x, ξ) ∈ T ∗X : σ(P )(x, ξ) = b(x) · ξd = 0}.

(4) Plus généralement, soit E = D̂(0)
X,k,Q/I pour un idéal cohérent non

nul I de D̂(0)
X,k,Q. On se donne un modèle entier E◦ = D̂(0)

X,k,Q/
◦
I de

E . On note I la réduction modulo ϖ de
◦
I. C’est un idéal de DX,k.

Alors
Car(E) = {(x, ξ) ∈ T ∗X : σ(P )(x, ξ) = 0 ∀ P ∈ I}.

3.2. Réduction au cas des DX,k,x-modules cohérents. Pour x ∈ X,
on note DX,k,x := (DX,k)x =

⊕
n∈NOX,x · ∂k. On associe à tout DX,k,x-

module cohérent E une variété caractéristique Car E définie comme une
sous-variété fermée du κ-schéma Spec (gr(DX,k,x)). On munit comme dans
la partie précédente l’algèbre DX,k,x de la filtration donnée par l’ordre des
opérateurs différentiels. On note grDX,k,x le gradué associé. Le module E
admet une bonne filtration ; on note gr E le gradué correspondant. Soit
ϕ : Spec (gr(DX,k,x))→ Spec(OX,x) la projection donnée par l’inclusion de
OX,x dans gr(DX,k,x). Alors

Car E := Supp
(
OSpec(gr(DX,k,x)) ⊗ϕ−1(gr DX,k,x) ϕ−1(gr E)

)
.

Cette variété caractéristique ne dépend pas de la bonne filtration choisie sur
E. On note s : X → T ∗X la section nulle du fibré cotangent. Les notions
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de variétés caractéristiques et de multiplicités coïncident entre les germes
de D̂(0)

X,k,Q en x et DX,k,x.

Lemme 3.6. Soit E un D̂(0)
X,k,Q-module cohérent et E◦ un modèle entier. On

dispose d’un isomorphisme de κ-schémas

Car(E◦ ⊗ κ)×X Spec(OX,x) ≃ Car(E◦
x ⊗ κ).

De plus, les multiplicités de Car(E◦
x ⊗ κ) sont les multiplicités des compo-

santes irréductibles de Car(E◦ ⊗ κ) contenant s(x).

Démonstration. Le morphisme DX,k(X) ⊗OX(X) OX,x → DX,k,x =⊕
n∈NOX,x·∂n

k est un isomorphisme deOX,x-modules carDX,k =
⊕

n∈NOX ·
∂n

k . Il s’agit en fait d’un isomorphisme de κ-algèbres pour le produit sur
DX,k(X)⊗OX(X)OX,x induit par le produit tensoriel. On dispose donc d’un
isomorphisme de κ-algèbres :

(3.1) DX,k(X)⊗OX(X) OX,x ≃ DX,k,x

On note E = E◦⊗V κ. C’est un DX,k-module cohérent. La question étant
locale en x, on peut supposer X affine. Comme E est DX,k-cohérent, E est
un OX -module quasi-cohérent. Il est donc suffisant d’étudier le module des
sections globales E(X).

On munit le DX,k(X)-module E(X) d’une bonne filtration
(Filn(E(X)))n∈N, le module E(X) ⊗OX(X) OX,x de la filtration
Filn(E(X)) ⊗OX(X) OX,x et Ex de la filtration image. On note gr(E(X))
et gr(Ex) les gradués associés. Le problème se réduit donc à démontrer
que gr(E(X)) ⊗ OX,x ≃ gr(Ex) en tant que gr(DX,k,x)-modules et que les
supports coincident.

Puisque OX,x est le localisé de OX(X) en x, E(X)⊗OX(X) OX,x est iso-
morphe à Ex en tant que OX,x-module. Le morphisme E(X)⊗OX(X)OX,x ≃
Ex est en fait un DX,k,x-isomorphisme. En effet, l’isomorphisme (3.1)
montre que l’on peut munir E(X) ⊗OX(X) OX,x d’une structure natu-
relle de DX,k,x-module. On vérifie ensuite que cette structure coïncide avec
celle de Ex et que le morphisme E(X) ⊗OX(X) OX,x ≃ Ex est un DX,k,x-
isomorphisme.

On en déduit que gr(E(X)) ⊗OX(X) OX,x ≃ gr(Ex) en tant que
gr(DX,k,x(X))-modules. Il reste à vérifier que leurs supports coïncident.
Soit y ∈ Spec(OX,x). On a

(gr(E(X))⊗OX
OX,x)y = (gr E(X))φ−1(y) ⊗OX,φ−1(y)

(OX,x)y

où φ est le morphisme canonique OX(X) → OX,x. Comme la κ-algèbre
OX(X) est intègre, ce module est non nul si et seulement si (gr E(X))φ−1(y)
est non nul. □
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Remarque 3.7. On a demontré que DX,k ⊗OX
OX,x ≃ DX,k,x en tant que

κ-algèbres. On identifie par la suite ces deux algèbres.

On désigne maintenant le DX,k-module E◦ ⊗V κ par E ⊗ κ et le DX,k,x-
module E◦

x ⊗V κ par Ex ⊗ κ. Ces notations sous-entendent le choix d’un
modèle entier. Puisque la variété caractéristique ne dépend pas du modèle
entier, les variétés Car(E ⊗ κ) et Car(Ex ⊗ κ) sont définies sans ambiguïté.

Lorsque x est un point κ′-rationnel pour une extension finie κ′ de κ, il
sera parfois nécessaire d’étendre les scalaires à κ′. Cependant, si E est un
DX,k,x-module cohérent, les variétés caractéristiques de E et E⊗κ κ′ auront
la même dimension puisque l’extension κ′/κ est finie. Il est donc suffisant
de tout démontrer au niveau de κ.

Définition 3.8. On appelle multiplicités de E en x les multiplicités de la
variété caractéristique Car(Ex ⊗ κ).

D’après le lemme 3.6, il s’agit des multiplicités des composantes irréduc-
tibles de la variété caractéristique de E contenant s(x).

L’étude de la variété caractéristique d’un D̂(0)
X,k,Q-module cohérent se ra-

mène donc à étudier les variétés caractéristiques des DX,k,x-modules co-
hérents. On explicite dans ce paragraphe la variété caractéristique d’un
DX,k,x-module cohérent non nul E. On peut tout d’abord se ramener au
cas où X est affine et E = DX,k,x/I pour un idéal à gauche I de DX,k,x.
En effet, puisque E est cohérent, E est engendré par des sections globales
e1, . . . , er. Si Ii = AnnDX,k,x

(ei), alors DX,k,x · ei ≃ DX,k,x/Ii. Comme la
variété caractéristique est un support et puisque le support d’une somme
est l’union des supports des termes de la somme, on a

Car(E) =
r⋃

i=1
Car(DX,k,x/Ii).

Ainsi, on peut supposer que E = DX,k,x/I. Si I = 0, alors Car E =
Spec

(
gr(DOX,x,k)

)
car le support de DX,k,x est l’espace tout entier. On

considère maintenant le cas où I est un idéal non nul. Soit P1 . . . , Pr

une base de division de I comme définie dans la partie 2.3. Les symboles
principaux σ(P1), . . . , σ(Pr) engendrent le gradué gr(I) comme gr(DX,k,x)-
module. On note d = d(I) et α = v(I). Par définition, le couple (α, d) est
l’exposant de I. On écrit Exp(P1) = (d, α1), Exp(P2) = (d + 1, α2), . . . ,
Exp(Pr) = (d + r − 1, α) où α1 ≥ α2 ≥ · · · ≥ α. Quitte à normaliser les
opérateurs Pi, on a σ(Pi) = tαi · ξd+i−1

k . La variété caractéristique de E est
alors

Car(E) =
{

(t, ξk) ∈ Spec gr(DX,k,x) :
tα1 · ξd

k = tα2 · ξd+1
k = · · ·

· · · = tα · ξd+r−1
k = 0

}
.
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Dans DX,k,x, la condition I ̸= 0 n’est pas équivalente à la condition
α ̸= 0 ou d ̸= 0. On peut avoir α = d = 0 : c’est le cas par exemple
pour I = (tn, ∂ℓ

k), n, ℓ ∈ N. Les équations de la variété caractéristique de
E = DX,k,x/I se réduisent aux équations suivantes :

(3.2) Car(DX,k,x/I) =


t · ξk = 0 si d(I) ̸= 0 et v(I) ̸= 0
ξk = 0 si v(I) = 0
t = 0 si d(I) = 0
t = ξk = 0 si d(I) = 0 et v(I) = 0

Lorsque dim(Car E) = 1, la variété caractéristique de E admet une ou
deux composantes irréductibles données par les équations t = 0 et ξk = 0.
Lorsque dim(Car E) = 0, Car E = (0, 0). En particulier, l’inégalité de Bern-
stein est fausse pour les DX,k-modules cohérents. Cependant, si E provient
d’un D̂(0)

X,k,Q-module cohérent, on montrera que le dernier cas de (3.2) n’est
pas possible. La variété caractéristique de E sera donc donnée par l’une des
trois premières équations.

Exemple 3.9.
(1) Si E = DX,k,x/(tα · ∂d

k) avec α, d ≥ 1, alors Car E a deux compo-
santes irréductibles d’équations respectives t = 0 et ξk = 0.

(2) Si E = DX,k,x/(tn, ∂ℓ
k), alors Car E = (0, 0).

(3) Soit E = DX,k/x un DX,k-module supporté en x. La variété carac-
téristique de E en x est la droite d’équation t = 0. Soit U un ouvert
affine de X contenant x sur lequel on dispose d’une coordonnée lo-
cale y. Le module E étant nul en dehors de U , on peut supposer
que X = U . Alors T ∗X est affine et l’on note (y, ξ) le système de
cordonnées locales de T ∗X associé à la coordonnée initiale y. On a
Car(E) = {(y, ξ) ∈ T ∗X : y = x}. La variété caractéristique de E
est la droite verticale de T ∗X passant par x :

y

ξ

0

Car E

x

T ∗X

Un tel module est appelé un Dirac.
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Un DX,k,x-module de la forme DX,k,x/I distinct de DX,k,x a deux multi-
plicités correspondant aux composantes t = 0 et ξk = 0, avec multiplicité
nulle si la composante est un point ou si la composante est vide. Lorsque x
est un point κ-rationnel, ces multiplicités correspondent aux nombres d(I)
et v(I). Cela a été prouvé par P.Maisonobe dans [10, partie III, paragraphe
2.1].

Soit maintenant E = D̂(0)
X,k/I pour un idéal cohérent non nul I. D’après

ce que l’on vient de dire, E a deux multiplicités en x (potentiellement nulles)
correspondant aux composantes t = 0 et ξk = 0 de la variété caractéristique
Car(Ex ⊗ κ). Ces multiplicités en un point κ-rationnel sont respectivement
les fonctions Nk(I) et Nk(I).

Proposition 3.10. Soit x un point κ-rationnel et I un idéal cohérent non
nul de D̂(0)

X,k tel que E = D̂(0)
X,k/I soit sans ϖ-torsion. Alors Nk(I) et Nk(I)

sont les multiplicités de E en x des composantes (ξk = 0) et (t = 0) de la
variété caractéristique Car(Ex ⊗ κ).

Démonstration. Puisque le module E = D̂(0)
X,k/I est sans ϖ-torsion, I admet

une base de division dans D̂(0)
X,k d’après le lemme 2.18. L’énoncé étant local

en x, on peut supposer X affine. La suite exacte courte 0 → I → D̂(0)
X,k →

E → 0 permet d’obtenir la suite exacte suivante :

0 −→ Tor1
V(E ⊗V κ) −→ I ⊗V κ −→ D̂(0)

X,k ⊗V κ −→ E ⊗V κ −→ 0.

Par hypothèse, E = D̂(0)
X,k/I est sans ϖ-torsion. On en déduit que

Tor1
V(E ⊗V κ) = 0. On obtient un DX,k,x-isomorphisme

Ex ⊗V κ ≃ DX,k,x/(I ⊗V κ)x.

Ainsi, le module Ex⊗V κ est donné par l’idéal I = I⊗V κ. On rappelle que I
et I ont le même escalier en x et que les fonctions Nk(I) et Nk(I) coïncident
avec v(I) et d(I). Comme les multiplicités de DX,k,x/I sont respectivement
l’ordre et la valuation de l’idéal I en x, on obtient le résultat. □

Soit enfin E = D̂(0)
X,k,Q/I pour un idéal cohérent I non nul de D̂(0)

X,k,Q. Si
E ≃ D̂(0)

X,k,Q/I ′ pour un autre idéal I ′, alors la proposition 4.2.1 de l’ar-
ticle [4] de Laurent Garnier (division selon une base de division) implique
que I et I ′ ont les mêmes fonctions Nk et Nk. Les entiers Nk(I) et Nk(I) ne
dépendent donc pas du choix de l’idéal I définissant E comme un quotient
de D̂(0)

X,k,Q. Lorsque I = D̂(0)
X,k,Q ·P avec P ̸= 0, ces nombres sont simplement

Nk(P ) et Nk(P ).
On peut trouver un modèle entier de E de la forme D̂(0)

X,k/J . C’est un
D̂(0)

X,k-module cohérent sans ϖ-torsion tel que E ≃ (D̂(0)
X,k/J )⊗V K. D’après
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le lemme 2.19, l’idéal J admet une base de division en chaque point x ∈ X.
Puisque (D̂(0)

X,k/J )⊗V K ≃ D̂(0)
X,k,Q/(J ⊗V K), on a D̂(0)

X,k,Q/I ≃ D̂(0)
X,k,Q/(J ⊗V

K). Ainsi, les idéaux I et J ⊗V K ont les mêmes fonctions Nk et Nk. Enfin,
puisque J et J ⊗V K ont les mêmes escaliers, on obtient Nk(I) = Nk(J )
et Nk(I) = Nk(J ). On en déduit le résultat suivant.

Corollaire 3.11. Soit x un point κ-rationnel et E ≃ D̂(0)
X,k,Q/I avec I un

idéal cohérent non nul de D̂(0)
X,k,Q. Alors Nk(I) et Nk(I) sont respectivement

les multiplicités de E en x des composantes irréductibles (ξk = 0) et (t = 0)
de Car(Ex ⊗ κ).

3.3. Inégalité de Bernstein. Cette partie est consacrée à la démonstra-
tion de l’inégalité de Bernstein : un D̂(0)

X,k,Q-module cohérent est non nul si
et seulement si sa variété caractéristique est de dimension au moins un, ou
de manière équivalente si ses multiplicités ne sont pas toutes nulles.

Comme on a pu le voir dans la partie précédente, l’inégalité de Bernstein
est fausse pour DX,k,x-modules cohérents. Par exemple, la variété caracté-
ristique du DX,k,x-module E = DX,k,x/(tp, ∂k) est réduite au point (0, 0).
L’inégalité de Bernstein étant vraie pour un D̂(0)

X,k,Q-module cohérent, cela
signifie que E ne provient pas d’un D̂(0)

X,k,Q-module cohérent. On peut cepen-
dant remarquer que E est un κ-espace vectoriel de dimension finie (égale
à p). Plus généralement, ce résultat est vrai pour tout DX,k,x-module cohé-
rent dont la variété caractéristique est réduite à un point.

Lemme 3.12. Soit x ∈ X et E un DX,k,x-module de type fini dont la
variété caractéristique Car E est un point. Alors E est un κ-espace vectoriel
de dimension finie.

Démonstration. On traite tout d’abord le cas où x est un point κ-rationnel.
On se donne une bonne filtration (Fili E)i∈N de E. On note gr E le gra-
dué associé. Par définition d’une bonne filtration, il existe des éléments
e1, . . . , en de E tels que leurs symboles principaux σ(e1), . . . , σ(en) en-
gendrent le gradué gr E. On peut démontrer que e1, . . . , en engendrent E
en tant que DX,k,x-module. On note dℓ l’ordre de eℓ. On peut vérifier que
pour tout entier m ≥ max1≤ℓ≤n{dℓ}, Film(E) =

∑n
ℓ=1 Film−dℓ(DX,k) · ei

On en déduit que Fili(DX,k,x) · Filj(E) = Fili+j(E) à partir d’un rang j

et que les Fili(E) sont des OX,x-modules de type fini. Quitte à décaler la
filtration, on peut supposer que

∀ i, j ∈ N, Fili(DX,k,x) · Filj(E) = Fili+j(E).
En particulier, Fili(E) = Fili(DX,k,x) · Fil0(E). Ainsi, tout système de gé-
nérateurs (e1, . . . , er) de Fil0(E) en tant que OX,x-module engendre E en
tant que DX,k,x-module.
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On suppose que Car E est un point. L’idéal définissant Car E est un
idéal maximal de OX,x[ξk] homogène en ξk : le point Car(E) correspond
nécessairement à l’idéal (t, ξk). Il existe donc deux entiers d et v tels que tv

et ξd
k annulent gr E. En particulier, ξd

k · gri(E) est nul dans grd+i(E). Sur
la filtration cela se traduit par

∂d
k · Fili E ⊂ Fili+d−1(E) = Fild−1(DX,k,x) · Fili(E).

Pour i = 0, on obtient

∂d
k · Fil0(E) ⊂ Fild−1(DX,k,x) · Fil0(E).

Il en résulte que pour tout entier naturel i,

Fili(E) = Fili(DX,k,x) · Fil0(E) ⊂ Fild−1(DX,k,x) · Fil0(E).

La filtration de E est donc stationnaire et Filn(E) = E pour tout entier
n ≥ d−1. Ainsi, E est engendré surOX,x par les ∂j

k ·ei pour j ∈ {0, . . . , d−1}
et i ∈ {1, . . . , r} : E est un OX,x-module de type fini.

On rappelle que Fil0(E) est annulé par tv et que pour tout entier k ≥ 1,
l’algèbre DX,k,x est commutative. Puisque Fil0(E) engendre E en tant que
DX,k,x-module, E est annulé par tv dès que k ≥ 1. Sinon, lorsque k = 0, le
fait que tv annule gr E implique que tv(ℓ+1) annule Filℓ(E). En particulier,
tvd annule E = Fild−1(E). Dans tous les cas, E est annulé par une puissance
de t que l’on note encore v.

Ainsi, E =E/tvE est unOX,x/tvOX,x-module de type fini. Pour conclure,
il suffit de prouver que OX,x/tvOX,x est un κ-espace vectoriel de dimension
finie. On le montre par récurrence sur v. On dispose de la suite exacte
d’anneaux

0 −→ tv−1OX,x/tvOX,x −→ OX,x/tvOX,x −→ OX,x/tv−1OX,x −→ 0

avec tv−1OX,x/tvOX,x ≃ κ = OX,x/tOX,x (via la multiplication par tv−1).
La première flèche κ→ OX,x/tvOX,x munitOX,x/tvOX,x d’une structure de
κ-espace vectoriel. La suite reste exacte en considérant les quotients comme
des κ-espaces vectoriels. Par hypothèse de récurrence, OX,x/tv−1OX,x est
un κ-espace vectoriel de dimension finie. Ainsi, OX,x/tvOX,x est aussi de
dimension finie sur κ.

Si maintenant x est un point quelconque, alors x est κ′-rationnel pour
une extension finie κ′ de κ. Le même raisonnement montre que E est un
κ′-espace vectoriel de dimension finie. Puisque κ′ est de dimension finie sur
κ, E sera un κ-espace vectoriel de dimension finie. □

Proposition 3.13 (inégalité de Bernstein). Soit E un D̂(0)
X,k,Q-module cohé-

rent non nul. Alors toute composante irréductible de Car E est de dimension
au moins un. En particulier, dim(Car E) ≥ 1. De plus les multiplicités de
E sont non nulles.



898 Raoul Hallopeau

Démonstration. On note E = E ⊗ κ la réduction modulo ϖ d’un modèle
entier E◦ de E . On rappelle que par définition, Car E = Car E. Si E est non
nul, alors E est aussi non nul. Dans ce cas, Car E ̸= ∅.

On suppose qu’une composante irréductible de Car E est un point z =
(x, ξ). Alors Car Ex = Car Ex est contenue dans un point. Si cette variété
caractéristique est vide, alors Ex = 0 et Ex = 0. Sinon le lemme 3.12 montre
que Ex est un κ-espace vectoriel de dimension finie.

On en déduit que E est un K-espace vectoriel de dimension finie au
voisinage de x. En effet, soit e1, . . . , er une base de Ex comme κ-espace
vectoriel. On note e1, . . . , er des relèvements de ces éléments dans E◦

x et
F = V · e1 + · · · + V · er. C’est un sous-V-module complet de E◦

x pour la
topologie ϖ-adique. Soit y ∈ E◦

x . On montre que y ∈ F . Puisque y ∈ E =
κ · e1 + · · ·+ κ · er, il existe y1 ∈ F et z1 ∈ ϖ · E◦

x tels que y = y1 + z1. De
même, ϖ−1z1 s’écrit sous la forme y2 + z̃2 avec y2 ∈ F et z̃2 ∈ ϖ · E◦

x . On
obtient y = (y1 + ϖy2) + z2 avec y1, y2 ∈ F et z2 = ϖz̃2 ∈ ϖ2 · E◦

x . Une
récurrence montre que pour tout entier n ≥ 1, il existe y1, . . . , yn ∈ F et
zn ∈ ϖn · E◦

x tels que

y = y1 + ϖy2 + · · ·+ ϖn−1yn + zn.

Puisque F est complet pour la topologie ω-adique, le terme y1 + ϖy2 +
· · · + ϖn−1yn converge vers un élément y∞ ∈ F . Par ailleurs, comme E◦

est sans ϖ-torson, E◦ est séparé pour la topologie ϖ-adique. Ainsi, la suite
(zn)n converge vers zéro. Le passage à la limite n→∞ donne y = y∞ ∈ F .
Autrement dit, E◦

x = F = V · e1 + · · · + V · er. On en déduit donc que
Ex ≃ E◦

x⊗V K = K ·e1 + · · ·+K ·er est un K-espace vectoriel de dimension
finie.

On rappelle que [ϖk∂, t] = ϖk · id. Comme Ex est un K-espace vectoriel
de dimension finie, on a

Tr([ϖk∂, t]) = 0 = Tr(ϖk · id) = ϖk · Tr(id) = (ϖk dimK Ex).

Puisque K est de caractéristique nulle, dimK Ex = 0. Donc Ex = 0 et E est
nul au voisinage de x.

Dans tous les cas, Ex = 0 et E est nul au voisinage de x. Ainsi, le support
de E est un sous-schéma fermé propre de X : sa dimension est strictement
inférieure à dim X = 1 puisque X est irréductible. Le support de E consiste
donc en un nombre fini de points. Autrement dit, E est une somme directe
de Dirac (ie de DX,k-modules supportés en un point). Mais la variété ca-
ractéristique d’un Dirac est de dimension un, voir l’exemple 3.9. La variété
caractéristique de E en x est alors une union finie de droites d’après la pro-
position 3.3. Cela contredit l’hypothèse qu’une composante irréductible est
un point. Ainsi, soit E est nul, soit les composantes irréductibles de Car E
sont de dimension au moins un.
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On rappelle que Car E = Supp Ẽ où Ẽ = OT ∗X⊗π−1(gr DX,k)π
−1(gr E) est

un OT ∗X -module cohérent. Soit η le point générique d’une composante irré-
ductible C de Car E . La multiplicité mC de C est la longueur du (OT ∗X)η-
module artinien Ẽη. Si E est non nul, alors Ẽη est aussi non nul. Sa longueur
mC est donc supérieure ou égale à un. Autrement dit, les multiplicités des
composantes irréductibles de Car E sont toutes non nulles. □

Corollaire 3.14. Un D̂(0)
X,k,Q-module cohérent E est nul si et seulement

dim(Car E) = 0, ou de manière équivalente si toutes ses multiplicités sont
nulles.

Démonstration. Le premier point découle de la proposition 3.13. On a vu
que E ̸= 0 implique Car E ̸= ∅. En particulier, si Car E = ∅, alors E = 0.
Dans ce cas, les multiplicités de E en les fermés irréductibles non vides
de T ∗X sont nulles par définition. Ainsi, E est nul si et seulement si ses
multiplicités sont toutes nulles. □

3.4. Modules holonomes. On démontre dans cette partie les propriétés
vérifiées par les D̂(0)

X,k,Q-modules holonomes énoncées dans l’introduction.
En particulier, les D̂(0)

X,k,Q-modules holonomes coincident avec les D̂(0)
X,k,Q-

modules de longueur finie.

Définition 3.15. Un D̂(0)
X,k,Q-module cohérent E est appelé module holo-

nome si E = 0 ou si dim Car(E) = dim X = 1.

Par l’inégalité de Bernstein, un module E est holonome si et seulement
si dim Car E ≤ 1. La catégorie des D̂(0)

X,k,Q-modules holonomes est une sous-
catégorie abélienne des D̂(0)

X,k,Q-modules cohérents d’après la proposition 3.3.
On réécrit ci-dessous son énoncé pour les D̂(0)

X,k,Q-modules cohérents.

Proposition 3.16. Soit 0 → M → N → L → 0 une suite exacte de
D̂(0)

X,k,Q-modules cohérents. Alors CarN = CarM∪ CarL. En particulier,
N est holonome si et seulement si L et M le sont.

Voici un exemple de modules holonomes : tout D̂(0)
X,k,Q-module cohérent

de la forme D̂(0)
X,k,Q/I est holonome dès que I est un idéal cohérent non nul

de D̂(0)
X,k,Q.

On regarde tout d’abord le cas très explicite où X = U est affine et
E = D̂(0)

X,k,Q/P pour un opérateur différentiel P non nul de D̂(0)
X,k,Q(X). On

normalise P afin d’avoir ∥P∥k = 1. Soit P l’image de P dans DX,k(X)
et x ∈ X. On écrit P =

∑d
n=0 an · ∂n

k avec d = Nk(P ). On note α =
Nk(P ) la valuation de ad dans l’anneau de valuation discrète OX,x. Quitte
à multiplier P par un élément inversible de OX,x, on peut supposer que le
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coefficient dominant de P est tα. Par définition, (d, α) est l’exposant de P
et de P . On note E = DX,k,x/P . Lorsque x est κ-rationnel, les multiplicités
de E sont d et α. L’idéal annulateur de E est le radical de l’idéal engendré
par le symbole principal σ(P ) = tα · ξd

k de P . On suppose P non inversible
au voisinage de x, ce qui est équivalent à avoir α ̸= 0 ou d ̸= 0 d’après
le corollaire 2.8. Dans ce cas, E est DX,k,x-module non nul. La variété
caractéristique de E en x est alors donnée par les équations

Car E =


t · ξk = 0 si α ̸= 0 et d ̸= 0
ξk = 0 si α = 0
t = 0 si d = 0

Ces composantes irréductibles sont toutes de dimension 1 et dim Car(Ex ⊗
κ) = 1. La variété caractéristique de E est donc de dimension 1 et E est
holonome. Si P est inversible au voisinage de x, alors E = 0 et la variété
caractéristique de E en x est vide. Cette condition est équivalente à α =
d = 0. On retrouve ainsi l’inégalité de Bernstein.

On passe au cas où E = D̂(0)
X,k,Q/I pour un idéal cohérent I non nul. Soit

E◦ = D̂(0)
X,k/J un modèle entier de E . La réduction modulo ϖ de J est un

idéal de DX,k que l’on note I. L’exposant de Ix est le couple (Nk(I), Nk(I)).
Le DX,k,x-module E = DX,k,x/Ix est isomorphe à Ex ⊗ κ. Si E ̸= 0, alors
Ex ⊗ κ ̸= 0 pour au moins un point x de X. D’après les formules (3.2)
données page 894 et l’inégalité de Bernstein, on a

Car(Ex ⊗ κ) =


t · ξk = 0 si Nk(I) ̸= 0 et Nk(I) ̸= 0
ξk = 0 si Nk(I) = 0
t = 0 si Nk(I) = 0

La variété caractéristique de Ex ⊗ κ est donc de dimension 1. Si E ̸= 0, on
en déduit que dim Car(E) = 1 et E est holonome. Réciproquement, on verra
plus tard que tout module holonome est de cette forme.

Proposition 3.17. Soit 0 → M → N → L → 0 une suite exacte de
D̂(0)

X,k,Q-modules holonomes. Alors CC(N ) = CC(M) + CC(L). Autrement
dit, les multiplicités s’additionnent pour les D̂(0)

X,k,Q-modules holonomes.

Démonstration. La proposition 3.3 nous assure que CarN = CarM ∪
CarL. Elle nous dit aussi que si C ∈ I(CarN ) (ensemble des compo-
santes irréductibles de CarN ), alors C ∈ I(CarM) ou C ∈ I(CarL) et
que mC(N ) = mC(M) + mC(L). On suppose M, L et N non nuls. Alors
dim CarN = dim CarM = dim CarL = 1 et toutes les composantes irré-
ductibles sont de dimension un d’après l’inégalité de Bernstein.

Soit I une composante irréductible de CarM ou de CarL. Alors I est
un fermé irréductible de Car(N ) de dimension maximale 1 = dim CarN :
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C est donc une composante irréductible de CarN . Ainsi, I(CarN ) =
I(CarM) ∪ I(CarL). L’égalité des cycles en découle puisqu’alors les mul-
tiplicités s’additionnent d’après 3.3. □

Remarque 3.18. Lorsque dim(CarN )) = 2, une composante irréductible
de CarL ou de CarM n’est pas toujours une composante irréductible de
CarN . En effet, la dimension de la variété caractéristique CarN peut être
strictement supérieure à celle de CarL ou de CarM. Les multiplicités ne
s’additionnent donc pas dans la catégorie des D̂(0)

X,k,Q-modules cohérents.

On rappelle que X est une courbe lisse connexe quasi-compacte. Le fibré
cotangent T ∗X reste quasi-compact et noethérien. La variété caractéris-
tique de tout D̂(0)

X,k,Q-module cohérent a donc un nombre fini de compo-
santes irréductibles et un nombre fini de multiplicités. Puisque les multipli-
cités sont additives et puisqu’un module dont les multiplicités sont nulles
est nul, tout D̂(0)

X,k,Q-module holonome va être de longueur finie.

Proposition 3.19. Tout D̂(0)
X,k,Q-module holonome est de longueur finie,

inférieure à la somme de toutes ses multiplicités.

Démonstration. Soit E un D̂(0)
X,k,Q-module holonome. Sa variété caractéris-

tique a un nombre fini de composantes irréductibles et E n’a qu’un nombre
fini de multiplicités. Puisque D̂(0)

X,k,Q est noetherien, il suffit de montrer
que toute suite décroissante (En)n∈N de sous-D̂(0)

X,k,Q-modules de E est sta-
tionnaire. On suppose que E0 = E . Comme En est inclus dans E , En est
holonome. On considère la suite exacte courte de modules holonomes

0 −→ En+1 −→ En −→ En/En+1 −→ 0.

Les multiplicités de En sont la somme de celles de En+1 et de En/En+1.
En particulier, les suites des multiplicités sont décroissantes. Elles sont
donc stationnaires à partir d’un certain rang commun n0 puisqu’il n’y a
qu’un nombre fini fixé de multiplicités (donné par le nombre de multiplicités
de E = E0). Pour tout entier n ≥ n0, les multiplicités de En/En+1 sont
donc nulles par additivité. Autrement dit, En/En+1 = 0 par l’inégalité de
Bernstein. Donc En = En+1 pour tout n ≥ n0. Ainsi, E est de longueur finie
inférieure ou égale à la somme de ses multiplicités. □

Le théorème suivant de Stafford, énoncé initialement pour les algèbres de
Weyl, implique que tout D̂(0)

X,k,Q-module holonome est monogène. La preuve
étant élémentaire, on en redonne une démontrée dans [9, partie 4].

Théorème 3.20 (Stafford). Soit R un anneau simple de longueur infinie
en tant que R-module à gauche. Alors tout R-module de longueur finie est
monogène.
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Démonstration. Soit M un R-module de longueur finie. On commence par
démontrer que M est engendré par deux éléments α et β par récurrence
sur la longueur ℓ de M . Si ℓ = 1, alors M est simple et donc engendré par
un élément. Soit α ∈ M\{0}. Si M ̸= R · α, alors M/Rα ̸= 0. Puisque
ℓ(M/Rα) < ℓ, l’hypothèse de récurrence implique que M/Rα est engendré
par un élément β pour un certain β ∈ M . Alors M est engendré par α et
β en tant que R-module : M = Rα + Rβ. On suppose dans la suite que
Rα ⊈ Rβ et que Rβ ⊈ Rα. Pour toute paire d’éléments (x, y) de M , on
note

ℓ(x, y) = (ℓ(Ry), ℓ((Rx + Ry)/Rx)) ∈ N2.

On dit que (x′, y′) < (x, y) si ℓ(x′, y′) < ℓ(x, y) pour l’ordre lexicographique.
On suppose par récurrence sur ℓ(α, β) ∈ N2 que pour tout couple (α′, β′) <
(α, β), il existe γ′ ∈M tel que Rα′ + Rβ′ = Rγ′. L’initialisation est donnée
par ℓ(0, 0) = (0, 0) pour M = 0.

Puisque ℓ(R) = +∞, L(α) := AnnR(α) ̸= 0. En effet, l’application
R → Rα, a 7→ aα n’est pas injective car ℓ(Rα) < ∞. On fixe un élé-
ment f ∈ L(α)\{0}. Comme R est simple, on peut trouver des éléments
s1, . . . , sm, r1, . . . , rm ∈ R tels que 1 =

∑m
i=1 si · f · ri.

S’il existe x ∈ L(α) et y ∈ L(β) tels que 1 = xr+y pour un certain r = ri,
alors M est engendré par un élément. En effet, β = (xr + y)β = xrβ =
x(α + rβ) car yβ = xα = 0 et α = (α + rβ)− rβ. Ainsi, α, β ∈ R · (α + rβ)
et M = Rα + Rβ = R · (α + rβ). On considère maintenant le cas où
R ̸= L(β) + L(α) · ri pour tout i ∈ {1, . . . , m}.

Puisque
∑m

i=1 si ·f ·ri = 1, on a
∑m

i=1 R ·f ·ri = R et
∑m

i=1 R ·friβ = Rβ.
Comme Rβ ⊈ Rα, il existe un élément r = ri tel que R · frβ ̸⊂ Rα.

L’inclusion stricte L(β) + R · fr ⊂ L(β) + L(α) · r ⊊ R implique
R · frβ ≃ (L(β) + R · fr)/L(β) ⊊ R/L(β) ≃ Rβ.

Autrement dit, (α, frβ) < (α, β). Par hypothèse, il existe γ′ ∈ M tel que
Rγ′ = R · frβ + Rα. Puisque R · frβ ̸⊂ Rα, Rα ⊊ Rγ′. On en déduit que

ℓ((Rγ′ + Rβ)/Rγ′) = ℓ((Rα + Rβ)/Rγ′) < ℓ((Rα + Rβ)/Rα).
Ainsi, (γ′, β) < (α, β). A nouveau par hypothèse de récurrence, il existe
γ ∈M tel que

Rγ = Rγ′ + Rβ = Rα + Rβ = M.

Cet élément γ engendre donc M en tant que R-module. □

Corollaire 3.21. Tout D̂(0)
X,k,Q-module holonome est localement monogène.

Démonstration. Soit U un ouvert affine de X muni d’une coordonnée étale
et E un D̂(0)

X,k,Q-module holonome. L’algèbre D̂(0)
X,k,Q(U) est simple par la

proposition 2.9. Elle est aussi de longueur infinie à gauche et à droite. En
effet, la suite (D̂(0)

X,k,Q(U) · (ϖk∂)n)n∈N est strictement décroissante puisque
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l’algèbre D̂(0)
X,k,Q(U) est intègre (la norme ∥ · ∥k est multiplicative). D’après

la proposition 3.19, le module E(U) est de longueur finie puisque E est
holonome. Le théorème 3.20 assure alors l’existence d’un élément e ∈ E(U)
tel que E|U ≃ D̂

(0)
U,k,Q · e. □

Soit E un D̂(0)
X,k,Q-module holonome. Il est localement monogène. Soit

U un ouvert de X sur lequel E engendré par une section e. Alors I =
AnnD̂(0)

U,k,Q
(u) est un idéal cohérent non nul de D̂(0)

U,k,Q. Autrement l’applica-

tion D̂(0)
U,k,Q-linéaire D̂(0)

U,k,Q → E|U , P 7→ P · u serait injective et E|U serait
aussi de longueur infinie. Ainsi, E|U ≃ D̂

(0)
U,k,Q/I pour un idéal cohérent I

non nul de D̂(0)
U,k,Q. Réciproquement, on a vu que tout D̂(0)

X,k,Q-module cohé-
rent de la forme E = D̂(0)

X,k,Q/I, où I est un idéal non nul, est holonome.
On peut maintenant énoncer plusieurs caractérisations des D̂(0)

X,k,Q-modules
holonomes.

Proposition 3.22. Soit E un D̂(0)
X,k,Q-module cohérent. Les points suivants

sont équivalents :
(1) E est holonome ;
(2) E est localement de la forme D̂(0)

U,k,Q/I pour un idéal cohérent I ≠ 0 ;
(3) E est de longueur finie ;
(4) E est de torsion : pour tout ouvert affine U de X et pour toute section

m ∈ E(U), il existe P ∈ D̂(0)
X,k,Q(U) non nul tel que P ·m = 0.

Démonstration. Les deux premiers points sont équivalents. D’après le théo-
rème de Stafford et le corollaire 3.21, le point 3 est équivalent aux premiers.

On suppose maintenant E de longueur finie. Soit U un ouvert affine
de X et (P mod I(U)) un opérateur non nul de D̂(0)

X,k,Q(U)/I(U). Puisque
E(U) est de longueur finie et D̂(0)

X,k,Q(U) est de longueur infinie, l’applica-
tion D̂(0)

X,k,Q(U) → E(U), Q 7→ Q · (P mod I(U)) n’est pas injective. Ainsi,
l’opérateur (P mod I(U)) est annulé par un élément non nul de D̂(0)

X,k,Q(U)
et E est un module de torsion.

Réciproquement, on suppose le module E de torsion. On se ramène au
cas où X est affine en considérant un recouvrement ouvert affine fini de X.
Comme le module E est cohérent, E est engendré par des sections globales
e1, . . . , er. On démontre par récurrence sur r que le module E est holonome.
Si r = 1, alors E ≃ D̂(0)

X,k,Q/I où I est l’idéal annulateur de e1. Cet idéal est
non nul car e1 est de torsion et donc E est holonome. Sinon par hypothèse
de récurrence, le module E ′ = D̂(0)

X,k,Q · e2 + · · ·+ D̂(0)
X,k,Q · er est de longueur
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finie. Puisque E/E ′ = D̂(0)
X,k,Q · e1 est aussi de longueur finie, le module E est

forcément de longueur finie. □

On relie maintenant les modules holonomes aux modules à connexion
intégrable. On identifie X avec la section nulle s : X → T ∗X du fibré
cotangent T ∗X de X. Le lemme suivant caractérise les modules à connexion
intégrable.

Lemme 3.23. Soit E un D̂(0)
X,k,Q-module holonome. Les énoncés suivants

sont équivalents.
(1) Le D̂(0)

X,k,Q-module E est localement un OX,Q-module libre de rang
fini.

(2) La variété caractéristique Car(E) de E est incluse dans X.
(3) Le module E est localement de la forme D̂(0)

X,k,Q/P avec P un opéra-
teur différentiel fini unitaire d’ordre égale au rang de E sur OX,Q.

Démonstration. On peut supposer que X est affine muni d’une coordonnée
locale. Dans ce cas, grDX,k ≃ OX [ξ]. On suppose que le module E est non
nul. Puisque E est holonome, E est de la forme D̂(0)

X,k,Q/I pour un idéal
cohérent non nul I de D̂(0)

X,k,Q. Alors E = E ⊗V κ est un grDX,k-module
cohérent de la forme OX [ξ]/I pour un certain idéal I non nul.

On suppose tout d’abord que E est un OX,Q-module libre de rang fini
d. Il en découle que E est un OX -module libre de rang d. Il existe des
sections e1, . . . , ed de E(X) telles que E = OX ·e1⊕· · ·⊕OX ·ed. La famille
{ξn · ei}n∈Z est liée sur OX . On peut donc trouver un entier m ≥ 1 et des
fonctions aj ∈ OX(X) tels que

(ξm + am−1ξm−1 + · · ·+ a0) · ei = 0.

Il en découle que la section ei est annulée par un polynôme unitaire Pi

de OX [ξ]. Le polynôme unitaire P = P1 . . . Pn annule tous les éléments
e1, . . . , en. Le polynôme P annule donc le module E = OX ·e1⊕· · ·⊕OX ·ed.
On en déduit que P ∈ I et que E = OX [ξ]/I est un OX [ξ]-module quotient
de OX [ξ]/P . Il vient Car(E) = Car(E) ⊂ Car(OX [ξ]/P ). Puisque P est
unitaire, on a Car(OX [ξ]/P ) = X. Ainsi, Car(E) ⊂ X.

On suppose maintenant que la variété caractéristique de E est contenue
dans X. Soit x un point de X. Quitte à étendre les scalaires κ par une exten-
sion finie, on peut supposer que x est κ-rationnel. L’hypothèse Car(E) ⊂ X
et la proposition 3.10 impliquent que Nk(I) = Nk(I) = vOX,x

(I) = 0. Toute
base de division de I en x est donc réduite à un unique opérateur différentiel
P vérifiant Nk(P ) = 0. La condition Nk(P ) = 0 signifie que le coefficient
d’ordre Nk(P ) de P est inversible dans OX,Q au voisinage de x. Un tel
opérateur P est défini sur un ouvert affine de X contenant x. Quitte à ré-
duire X, on peut supposer que P ∈ D̂(0)

X,k,Q(X) et que le coefficient d’ordre
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Nk(P ) de P est inversible dans OX,Q(X). Puisque P est une base de divi-
sion de l’idéal I, on sait que P engendre l’idéal I. Ainsi, E ≃ D̂(0)

X,k,Q/P .
Le corollaire 2.15 dit qu’il est possible de trouver un opérateur différentiel
Q unitaire d’ordre Nk(P ) tel que E ≃ D̂(0)

X,k,Q/Q. On obtient le troisième
point de la proposition.

Enfin le corollaire 2.15 assure que E est, localement au voisinage de x, un
OX,Q-module libre de rang Nk(Q). Le schéma formel X étant irréductible,
le nombre Nk(Q) ne dépend ni de Q ni de x d’après le corollaire 2.16. On
note d cet entier. Pour résumer, E est localement un OX,Q-module libre de
rang d. □

On en déduit une caractérisation des D̂(0)
X,k,Q-modules holonomes via les

modules à connexion intégrable.

Corollaire 3.24. Soit E un D̂(0)
X,k,Q-module cohérent. Alors E est holonome

si et seulement si il existe un ouvert non vide U de X tel que E|U soit un
module à connexion intégrable.

Démonstration. On suppose dans un premier temps que le module E est
holonome. La variété caractéristique de E a un nombre fini de composantes
irréductibles verticales. On note U l’ouvert de X obtenu en ôtant à X les
abscisses des composantes verticales de Car(E). Par définition de U , on a
Car(E|U ) ⊂ U . On en déduit que E|U est un module à connexion intégrable
d’après le lemme 3.23.

Réciproquement, soit U un ouvert non vide de X pour lequel E|U est
un module à connexion intégrable. Dans ce cas, Car(E|U ) ⊂ U , toujours
d’après le lemme 3.23. Si E n’est pas holonome, alors Car(E) = T ∗X. En
effet, T ∗X est irréductible puisque X l’est et Car(E) est une sous-variété
fermée de T ∗X de dimension maximale deux. En particulier, on aurait
Car(E|U ) = T ∗U . Cela contredit l’hypothèse Car(E|U ) ⊂ U . Ainsi E est
holonome. □

3.5. Caractérisation cohomologique des modules holonomes. On
énonce tout d’abord plusieurs résultats démontrés par Anne Virrion dans
l’article [12] pour les D̂(0)

X,Q-modules cohérents. Les preuves et les proposi-
tions se généralisent sans difficulté pour un niveau de congruence k quel-
conque. En effet, les arguments des preuves des énoncés de Virrion utilisés
ici se démontrent au niveau du gradué gr D̂(0)

X avant de remonter à D̂(0)
X

de manière classique. Il suffit donc de vérifier les mêmes propriétés pour
le gradué gr D̂(0)

X,k, ce qui est clair puisque gr D̂(0)
X,k ≃ gr D̂(0)

X . On démontre
ensuite qu’un D̂(0)

X,k,Q-module cohérent M est holonome si et seulement si

∀ d ̸= 1, Extd

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) = 0.



906 Raoul Hallopeau

Enfin, on définit un foncteur dualité de la catégorie des D̂(0)
X,k,Q-modules

holonomes dans elle même vérifiant un isomorphisme de bidualité.
La proposition suivante se démontre comme le théorème 4.3 du chapitre 0

de [12] dans le cas où X est une courbe formelle. La preuve repose sur le
calcul de la dimension du gradué du faisceau D̂(0)

X qui est identique au gra-
dué du faisceau D̂(0)

X,k. Les conclusions restent donc valides pour un niveau
de congruence k quelconque.

Proposition 3.25. La dimension cohomologique du faisceau D̂(0)
X,k est égale

à trois et la dimension cohomologique du faisceau D̂(0)
X,k,Q est inférieure ou

égale à trois.

Soit M un D̂(0)
X,k,Q-module cohérent. On pose

dimM = dim(Car(M)) ∈ {0, 1, 2},
codimM = 2 dim X − dimM = 2− dimM.

L’inégalité de Bernstein se traduit de la manière suivante sur la codi-
mension : M ̸= 0 si et seulement si codimM ≤ 1. Par ailleurs, M est un
module holonome si et seulement si codimM = 1. On note

ωX,Q :=
( 1∧

i=0
Ω1
X

)
⊗V K.

C’est un OX,Q-module libre de rang un. La proposition 2.1.1 du chapitre 1
de [12] appliquée au faisceau D̂(0)

X,k,Q implique le résultat suivant.

Proposition 3.26. Le foncteur • ⊗OX,Q ω−1
X,Q induit une équivalence de

catégorie entre la catégorie des D̂(0)
X,k,Q-modules à droites et la catégorie des

D̂(0)
X,k,Q-modules à gauche.

On note Db
c(D̂(0)

X,k,Q) la catégorie dérivée formée des complexes bornés
de D̂(0)

X,k,Q-modules cohérents. On identifie la catégorie des D̂(0)
X,k,Q-modules

cohérents avec les complexes concentrés en degré zéro. Pour tout complexe
M de Db

c(D̂(0)
X,k,Q), on définit son dual D(M) par

D(M) := RHom(M, D̂(0)
X,k,Q[1])⊗OX,Q ω−1

X,Q.

Virrion démontre en toute généralité dans le chapitre trois de [12] que D
est un foncteur de la catégorie Db

c(D̂(0)
X,k,Q) dans elle même et que pour tout

complexe M de Db
c(D̂(0)

X,k,Q), il existe un isomorphisme canonique M ≃
D ◦ D(M).

On rassemble dans la proposition suivante le corollaire 2.3 et la proposi-
tion 3.5 du chapitre 3 de [12]. Ces résultats se démontrent tout d’abord au
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niveau du gradé gr D̂(0)
X = gr D̂(0)

X,k. Le passage du gradué au faisceau D̂(0)
X

est systématique et valide plus généralement. En particulier, cela fonctionne
aussi pour le faisceau D̂(0)

X,k.

Proposition 3.27. Soit M un D̂(0)
X,k,Q-module cohérent non nul. Alors

(1) ∀ i ≥ 0, codim
(
Exti

D̂(0)
X,k,Q

(
M, D̂(0)

X,k,Q

))
≥ i ;

(2) codimM = inf
{

i ∈ N : Exti

D̂(0)
X,k,Q

(
M, D̂(0)

X,k,Q

)
̸= 0

}
.

On peut maintenant démontrer la caractérisation cohomologique sui-
vante des D̂(0)

X,k,Q-modules holonomes.

Proposition 3.28. Soit M un D̂(0)
X,k,Q-module cohérent. Alors M est ho-

lonome si et seulement si
∀ i ̸= 1, Exti

D̂(0)
X,k,Q

(
M, D̂(0)

X,k,Q

)
= 0.

De plus, si le module M est holonome, alors

M∗ := Ext1
D̂(0)

X,k,Q

(
M, D̂(0)

X,k,Q

)
⊗OX,Q ω−1

X,Q

est aussi un D̂(0)
X,k,Q-module holonome.

Démonstration. SoitM un D̂(0)
X,k,Q-module cohérent que l’on peut supposer

non nul. Par construction, Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) ⊗OX,Q ω−1

X,Q est un D̂(0)
X,k,Q-

module à gauche cohérent. Il vérifie donc l’inégalité de Bernstein. Autre-
ment dit, codim(Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q)) ≤ 1 ou Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) = 0.

Par ailleurs, on sait que codim(Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q)) ≥ i d’après la pro-

position 3.27. Ainsi Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) ̸= 0 implique i ≤ 1. On a donc

toujours Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) = 0 dès que i ≥ 2.

On suppose maintenant que le module M est holonome. Alors
dimM = codimM = 1. Le second point de la proposition 3.27 implique
que Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) = 0 pour tout entier i ̸= 1 = codimM. Réci-

proquement, on suppose que Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) = 0 dès que i ̸= 1. Le

second point de la proposition implique que codim(M) = 1. Autrement dit,
M est un module holonome.

Il reste à montrer que le module M∗ = Ext1
D̂(0)

X,k,Q
(M, D̂(0)

X,k,Q)⊗OX,Q ω−1
X,Q

est holonome dès queM est holonome. On sait d’après la proposition 3.27
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que codimM∗ ≥ 1. Si codimM∗ = 2, alors M∗ = 0 d’après l’inégalité
de Bernstein. Cela contredit l’hypothèse Ext1

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) ̸= 0. Donc

codimM∗ = 1 et M∗ est holonome. □

Remarque 3.29. On a démontré que Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) = 0 dès que

i ≥ 2 et M est un D̂(0)
X,k,Q-module cohérent.

On démontre enfin que le dual d’un D̂(0)
X,k,Q-module holonome demeure

holonome.

Corollaire 3.30. Le foncteur dualité préserve la catégorie des modules
holonomes. De plus, si M est un D̂(0)

X,k,Q-module holonome, alors

D(M) ≃M∗ = Ext1
D̂(0)

X,k,Q

(
M, D̂(0)

X,k,Q

)
⊗OX,Q ω−1

X,Q.

Démonstration. Soit M un D̂(0)
X,k,Q-module holonome. On note M∗ le

D̂(0)
X,k,Q-module holonome Ext1

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q)⊗OX,Q ω−1

X,Q. On sait d’après

la proposition 3.28 que pour tout i ̸= 1, Exti

D̂(0)
X,k,Q

(M, D̂(0)
X,k,Q) = 0. On a

donc Hi(D(M)) = 0 pour tout entier i ̸= 0. On en déduit que D(M) ≃
H0(D(M)) ≃ M∗ est un D̂(0)

X,k,Q-module holonome. L’isomorphisme de bi-
dualité M≃ (M∗)∗ provient du théorème 3.6 du chapitre 1 de [12]. □

4. DX,∞-modules coadmissibles
On introduit dans cette dernière section une catégorie abélienne formée

de DX,∞-modules coadmissibles de longueur finie. Idéalement, on aimerait
définir une catégorie de DX,∞-modules coadmissibles holonomes qui soit une
sous-catégorie pleine de celle-ci. On commence par rappeler les définitions
du faisceau DX,∞ et des DX,∞-modules coadmissibles.

4.1. Définition. Pour plus de détails sur le faisceau DX,∞ et sur les pro-
priétés des DX,∞-modules coadmissibles, le lecteur peut regarder l’article [7]
de Christine Huyghe, Tobias Schmidt et Matthias Strauch.

Soit U un ouvert affine contenant le point x sur lequel on dispose d’une
coordonnée locale associée à x. Pour tout entier k, l’algèbre D̂(0)

X,k+1,Q(U) est
une sous-algèbre de D̂(0)

X,k,Q(U). On considère les morphismes de transition
D̂(0)

X,k+1,Q → D̂
(0)
X,k,Q induits par ces inclusions locales. On définit le faisceau

DX,∞ comme la limite projective des faisceaux D̂(0)
X,k,Q.

Définition 4.1. On note DX,∞ := lim←−k
D̂(0)

X,k,Q.
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Le faisceau DX,∞ est un faisceau de K-algèbres sur le schéma formel X.
Il vérifie les trois points suivant :

(1) DX,∞(U) est une K-algèbre de Fréchet–Stein et sa topologie est
induite par les normes ∥ · ∥k des algèbres de Banach D̂(0)

X,k,Q(U) ;
(2) DX,∞(U) = lim←−k

D̂(0)
X,k,Q(U) =

⋂
k≥0 D̂

(0)
X,k,Q(U) ;

(3) DX,∞(U) = {
∑∞

n=0 an · ∂n : an ∈ OX,Q(U) tq ∀ η > 0, limn→∞ an ·
ηn = 0}.

Le lemme suivant caractérise les opérateurs différentiels finis de DX,∞(U)
à l’aide des fonctions Nk. On en déduit les éléments inversibles de DX,∞(U).

Lemme 4.2. Soit P un opérateur différentiel de DX,∞(U). La suite
(Nk(P ))k≥0 est croissante. De plus, P est un opérateur fini de degré d
si et seulement si la suite (Nk(P ))k est stationnaire de valeur limite d.

Démonstration. On écrit P =
∑∞

n=0 an ·∂n. On commence par montrer que
la suite (Nk(P ))k est croissante. Les coefficients de P dans la base (ϖk∂)n

de D̂(0)
X,k,Q sont ϖ−knan. Donc

Nk(P ) = max{n ∈ N : |ϖ|−kn · |an| = ∥P∥k}.

Soit n0 = Nk+1(P ). Puisque ∥P∥k+1 = |ϖ−(k+1)n0 · an0 | > |ϖ−(k+1)n · an|
par définition de n0, on a

∀ n > n0, |ϖ−knan| = |ϖ|n · |ϖ−(k+1)nan|

< |ϖ|n0 · |ϖ−(k+1)n0an0 | = |ϖ−kn0an0 |.

On en déduit que Nk(P ) ≤ n0 = Nk+1(P ).
On suppose maintenant que Nk(P ) = m à partir d’un rang k0. Cela

signifie que pour tout entier k ≥ k0 et pour tout entier n > m, |an|·|ϖ|−kn <

|am| · |ϖ|−km. Autrement dit,|an| < |am| · |ϖ|k(n−m). Mais |ϖ|k(n−m) → 0
lorsque k →∞. Le passage à la limite k →∞ donne |an| = 0. Ainsi, P est
un opérateur fini d’ordre m. □

Corollaire 4.3. Les opérateurs différentiels inversibles de l’algèbre
DX,∞(U) sont les fonctions inversibles :

DX,∞(U)× = OX,Q(U)×.

Démonstration. Soit P ∈ DX,∞(U) un opérateur inversible. Alors P est
inversible dans D̂(0)

X,k,Q(U) pour tout niveau de congruence k ∈ N. De ma-
nière équivalente, Nk(P ) = 0 pour tout entier k et le coefficient constant
de P inversible d’après le corollaire 2.8. Le lemme 4.2 implique que P est
un opérateur fini d’ordre 0. Autrement dit, P est un élément inversible de
OX,Q(U). □
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On termine cette partie par la définition des DX,∞-modules coadmissibles
suivie d’un exemple.

Définition 4.4. Un module coadmissible est un DX,∞-module M iso-
morphe à une limite projective lim←−k

Mk de D̂(0)
X,k,Q-modules cohérents Mk

tels que les applications de transitionMk+1 →Mk soient D̂(0)
X,k+1,Q-linéaires

et tels que pour chaque indice k, on dispose d’un D̂(0)
X,k,Q-isomorphisme

D̂(0)
X,k,Q ⊗D̂(0)

X,k+1,Q
Mk+1 ≃Mk induit par l’application de transition.

La catégorie des DX,∞-modules coadmissibles est abélienne et contient
les DX,∞-modules cohérents. En effet, une présentation finie locale d’un
DX,∞-module cohérent M fournie des présentations finies locales des mo-
dules Mk := D̂(0)

X,k ⊗DX,∞ M. On dispose de morphismes de transition na-
turels commutant entre ces présentations finies pour les différents niveaux
de congruence k. On en déduit que M est bien la limite projective des
D̂(0)

X,k,Q-modules cohérents Mk.
Soit M = lim←−k

Mk un DX,∞-module coadmissible. Il est démontré dans
[7, théorème 3.1.17] et [11, corollaire 3.1], que Mk ≃ D̂

(0)
X,k,Q ⊗DX,∞ M et

que M ≃ lim←−k

(
D̂(0)

X,k,Q ⊗DX,∞ M
)

en tant que DX,∞-module coadmissible.

On peut donc choisir Mk égale à D̂(0)
X,k,Q ⊗DX,∞ M.

On explicite dans l’exemple ci-dessous un opérateur différentiel infini P
de DX,∞(U) vérifiant Nk(P ) = k. On montre que DX,∞/P est un DX,∞-
module coadmissible isomorphe à une limite projective de la forme
lim←−k

D̂(0)
X,k,Q/Pk avec Pk un opérateur différentiel fini d’ordre k de l’algèbre

D̂(0)
X,k,Q(U).

Exemple 4.5. Soit P =
∏

n≥1(1 − ϖn∂) ∈ DX,∞(U). Alors Nk(P ) = k.
En effet, le coefficient de ∂n est à un signe près

ϖ1+2+···+n · (1+ϖ+ϖ2 + . . . ) + ϖ2+3+···+(n+1) · (1+ϖ+ϖ2 + . . . ) + . . .

= ϖ
n(n+1)

2 · an

avec an un élément de V de valeur absolue 1. Dans D̂(0)
X,k,Q(U), le coefficient

d’ordre n de P est ±ϖn( n+1
2 −k) ·an. Par définition, Nk(P ) est le plus grand

entier n maximisant la valeur absolue |ϖ|n( n+1
2 −k). On cherche donc le plus

grand entier n minimisant la puissance n
(

n+1
2 − k

)
.

La fonction x 7→ x
(

x+1
2 − k

)
est minimale en x = k − 1

2 de valeur −k2 −
k + 3

4 . La puissance n
(

n+1
2 −k

)
est donc minimale pour n = k− 1 et n = k.



D-modules holonomes sur une courbe formelle 911

Ceci prouve que Nk(P ) = k. On a de plus

∥Pk∥k = |ϖ|k( k+1
2 −k) = |ϖ|−k2/2+k/2.

Dans D̂(0)
X,k,Q(U), P s’écrit P = Pk · Qk avec Pk =

∏
1≤n≤k(1 − ϖn∂)

un opérateur fini d’ordre Nk(Pk) = k et Qk =
∏

n>k(1 − ϖn∂) inversible
dans D̂(0)

X,k,Q(U) puisque Nk(Qk) = 0 et puisque son coefficient constant est
inversible. On en déduit que D̂(0)

X,k,Q/P ≃ D̂(0)
X,k,Q/Pk. Par ailleurs, Pk+1 =

(1 − ϖk+1∂) · Pk avec 1 − ϖk+1∂ inversible dans D̂(0)
X,k,Q(U). On a donc

D̂(0)
X,k,Q/Pk+1 ≃ D̂

(0)
X,k,Q/Pk. Autrement dit, DX,∞/P ≃ lim←−k

D̂(0)
X,k,Q/Pk en

tant que DX,∞-module coadmissible.
On peut retrouver P à partir des opérateurs Pk : la suite (Pk)k converge

vers P dans l’algèbre de Fréchet–Stein DX,∞(U). En effet, il suffit de le
vérifier pour toutes les normes ∥ · ∥m. On a P − Pk = (Qk − 1) · Pk. Pour
k ≥ m, on observe que Nm(Pk) = m et que ∥Pk∥m = |ϖ|−

1
2 (m2−m). Le

coefficient constant de Qk − 1 est nul et le coefficient de ∂n est de la
forme ϖk+(k+1)+···+(k+n−1) · an, où an ∈ V est de valeur absolue 1. Dans
D̂(0)

X,m,Q(U), le coefficient de (ϖm∂)n est ωn(k+ n−1
2 −m) · an. Les coefficients

de Qk − 1 sont presque ceux de Pk : il suffit de remplacer k par m + 1− k.
La fonction x(k + x−1

2 −m) est minimale pour x = m + 1− k − 1/2. Pour
k assez grand, par exemple k ≥ m + 1, ce terme est négatif. La norme de
1 − Qk est donc donnée par le coefficient d’indice un : Nk(Qk − 1) = 1 et
∥Qk − 1∥m = |ϖ|k−m. Il vient

∥P − Pk∥m = ∥1−Qk∥m · ∥Pk∥m = |ϖ|k− m2
2 − m

2 −→
k→∞

0.

4.2. Une catégorie de DX,∞-modules coadmissibles de longueur
finie. Soit Mk un D̂(0)

X,k,Q-module holonome. On note m(Mk) la longueur
du cycle caractéristique de Mk. Si I(Car(Mk)) est l’ensemble des compo-
santes irréductibles de la variété caractéristique de Mk, alors

m(Mk) :=
∑

C∈I(Car(Mk))
mC(Mk) ∈ N.

Cette longueur est un entier naturel puisque les multiplicités mC(Mk) le
sont. Le corollaire 3.14 implique queMk = 0 si et seulement si m(Mk) = 0.

Soit maintenant M = lim←−k
Mk un DX,∞-module coadmissible. On sup-

pose qu’il existe un niveau de congruence k0 ∈ N tel que Mk soit un
D̂(0)

X,k,Q-module holonome pour tout entier k ≥ k0. On note kM le plus petit
entier naturel pour lequel Mk est holonome dès que k ≥ kM. On associe à
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un tel module coadmissible M une multiplicité m(M) définie par

m(M) = lim sup
k≥kM

{m(Mk)} = inf
k≥kM

{
sup
k′≥k

m(Mk′)
}
∈ N ∪ {∞}.

Définition 4.6. On note H(DX,∞) la catégorie constituée des DX,∞-
modules coadmissibles M = lim←−k

Mk vérifiant les deux points suivant.

(1) Il existe un niveau de congruence à partir duquel les D̂(0)
X,k,Q-modules

cohérents Mk sont tous holonomes.
(2) La multiplicité m(M) de M est finie, autrement dit m(M) ∈ N.

C’est une sous-catégorie pleine de la catégorie abélienne des DX,∞-
modules coadmissibles. On démontre dans ce qui suit que la catégorie
H(DX,∞) est abélienne et que tout object M de H(DX,∞) est de longueur
finie inférieure ou égale à m(M).

Soit M = lim←−k
Mk un object de H(DX,∞). Par définition, m(M) < ∞.

Autrement dit, il existe un entier k0 ≥ kM pour lequel supk≥k0{m(Mk)} <
∞. La suite (supk′≥k{m(Mk′)})k≥k0 est décroissante formée d’entiers na-
turels. Elle est donc stationnaire. Sa valeur limite est exactement m(M).
On en déduit qu’il existe un niveau de congruence k1 ≥ kM pour lequel

∀ k ≥ k1, m(M) = sup
k′≥k
{m(Mk′)}.

Soit 0 → M → N → L → 0 une suite exacte de DX,∞-modules co-
admissibles. On écrit M = lim←−k

Mk, N = lim←−k
Nk et L = lim←−k

Lk. Pour
tout entier naturel k, cette suite induit une suite exacte de D̂(0)

X,k,Q-modules
cohérents :

0 −→Mk −→ Nk −→ Lk −→ 0.

On note k0 = max{kM, kN , kL} ∈ N. Pour tout entier k ≥ k0, les modules
Nk,Mk et Lk sont holonomes par définition de H(DX,∞). Pour k ≥ k0, on
sait d’après la proposition 3.17 que CC(Nk) = CC(Mk) + CC(Lk). Il en
découle que pour tout k ≥ k0,

m(Nk) = m(Mk) + m(Lk).

On en déduit immédiatement la proposition suivante.

Proposition 4.7. Soit 0→M→ N → L → 0 une suite exacte de DX,∞-
modules coadmissibles vérifiant le premier point de la définition 4.6. Alors

(1) m(M) ≤ m(N ) et m(L) ≤ m(N ) ;
(2) m(N ) ≤ m(M) + m(L).

En particulier, N ∈ H(DX,∞) si et seulement si M ∈ H(DX,∞) et L ∈
H(DX,∞).
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Démonstration. On note M = lim←−k
Mk, N = lim←−k

Nk et L = lim←−k
Lk. Il

existe un niveau de congruence k1 ≥ max{kM, kN , kL} pour lequel m(M) =
supk′≥k{m(Mk′)}, m(N ) = supk′≥k{m(Nk′)} et m(L) = supk′≥k{m(Lk′)}
dès que k ≥ k1.

Pour tout entier naturel k ≥ k1, on a m(Nk) = m(Mk) + m(Lk) d’après
la proposition 3.17. Les inégalités m(Nk) ≥ m(Mk) pour k ≥ k1 donnent
m(N ) ≥ m(M) en passant à la borne supérieure sur k ≥ k1. De même,
m(Nk) ≥ m(Lk). Enfin, les inégalités

m(Nk) = m(Mk) + m(Lk)
≤ sup

k≥k1

{m(Mk)}+ sup
k≥k1

{µ(Mk)} = m(M) + m(L)

pour tout k ≥ k1 impliquent que

m(N ) = sup
k≥k1

{m(Nk)} ≤ m(M) + m(L). □

Remarque 4.8. Bien que m(Nk) = m(Mk) + m(Lk) pour un niveau
de congruence k fixé, la multiplicité m n’est a priori pas additive pour
les modules coadmissibles. En effet, ces égalités deviennent seulement des
inégalités en passant à la borne supérieure.

Cette proposition montre que la catégorie H(DX,∞) est abélienne.
L’exemple suivant assure qu’elle n’est pas triviale : elle contient les DX,∞-
modules coadmissibles de la forme DX,∞/P pour P un opérateur différentiel
fini de DX,∞.

Exemple 4.9. On suppose que X = U est affine. Soit P ∈ DX,∞(X). On
considère le DX,∞-module coadmissible M = DX,∞/P = lim←−k

Mk avec
Mk = D̂(0)

X,k,Q/P . Les D̂(0)
X,k,Q-modules cohérents Mk sont tous holonomes

d’après la proposition 3.22.
(1) On regarde tout d’abord ce qu’il se passe lorsque P est un opérateur

infini. La suite (Nk(P )) est croissante et diverge vers +∞ d’après
le lemme 4.2. La proposition 3.10 implique que m(Mk) ≥ Nk(P ).
On en déduit que m(M) = +∞. DoncM n’est pas un object de la
catégorie H(DX,∞).

(2) On suppose maintenant que P =
∑d

n=0 an · ∂n est un opérateur fini
d’ordre d. Alors Nk(P ) = d pour k assez grand d’après le lemme 4.2.
On ne considère maintenant que ces indices k. On sait d’après la
proposition 3.10 que les multiplicités de Car(Mk) en x sont les
nombres Nk(P ) = d et Nk(P, x) = N(ad, x) = valuation de (ad mod
ϖ) dans OX,x. En particulier, x est l’abscisse d’une composante
irréductible verticale de CarMk si et seulement si Nk(P, x) > 0. La
multiplicité de cette composante est alors Nk(P, x). Si x1, . . . , xs
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sont les zéros de ad, alors pour k suffisamment grand,

m(Mk) = d + N(ad, x1) + · · ·+ N(ad, xs).

Ces multiplicités ne dépendent plus de k. On en déduit que

m(M) = lim sup
k≥0

{m(Mk)} = d + N(ad, x1) + · · ·+ N(ad, xs) <∞.

Autrement dit, M = DX,∞/P appartient à la catégorie H(DX,∞).

Le lemme suivant montre que la multiplicité m caractérise les DX,∞-
modules holonomes nuls. Cela provient du fait qu’un D̂(0)

X,k,Q-module holo-
nome Mk est nul si et seulement si m(Mk) = 0.

Lemme 4.10. Un élément M de H(DX,∞) est nul si et seulement si
m(M) = 0.

Démonstration. On écrit M = lim←−k
Mk. Si M = 0, alors Mk = 0. Les

multiplicités de Mk sont toutes nulles par définition et m(Mk) = 0. Alors
m(M) = 0.

On suppose maintenant que m(M) = 0. Par définition de m(M), il
existe un niveau de congruence k à partir duquel m(Mk) = 0. Autre-
ment dit, les multiplicités du module Mk sont toutes nulles et Mk = 0
d’après le corollaire 3.14. Ainsi,Mk = 0 pour k suffisamment grand et donc
M = 0. □

Bien que la multiplicité m ne soit pas additive sur les suites exactes,
on peut démontrer que les éléments de H(DX,∞) sont de longueur finie en
utilisant la proposition 4.7 et le lemme 4.10.

Proposition 4.11. Soit M un élément de H(DX,∞). Alors M est de lon-
gueur finie inférieure ou égale à µ(M).

Démonstration. SoitM = lim←−k
Mk un élément de H(DX,∞). On démontre

que toute suite décroissante (Mn)n∈N de sous-DX,∞-modules coadmissibles
deM est stationnaire. On peut supposer queM0 =M. CommeMn est un
sous-module deM, on sait que m(Mn) ≤ m(M) d’après la proposition 4.7.
La suite (m(Mn))n est une suite décroissante d’entiers naturels. Elle est
donc stationnaire. Il existe un entier naturel n0 tel que pour tout n ≥ n0,
m(Mn+1) = m(Mn). On suppose dans la suite que n ≥ n0. On écrit
Mn = lim←−k

Mn
k . Il existe un rang kn ≥ max{kMn , kMn+1} pour lequel

(4.1) ∀ k ≥ kn, m(Mn) = sup
k′≥k
{m(Mn

k′)}

= m(Mn+1) = sup
k′≥k
{m(Mn+1

k′ )}
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Pour tout k ≥ kn, on considère la suite exacte de D̂(0)
X,k,Q-modules cohérents

0 −→Mn+1
k −→Mn

k −→Mn
k/Mn+1

k −→ 0.

On sait que m(Mn
k) = m(Mn+1

k ) + m(Mn
k/Mn+1

k ) d’après la proposi-
tion 3.17. En particulier, si m(Mn+1) = m(Mn+1

k ) pour un certain ni-
veau de congruence k ≥ kn, alors m(Mn) = m(Mn

k) d’après l’égalité (4.1)
puisque m(Mn

k) ≥ m(Mn+1
k ). On en déduit l’égalité des multiplicités

m(Mn+1
k ) = m(Mn

k) et que m(Mn
k/Mn+1

k ) = 0. Le corollaire 3.14 im-
plique alors que Mn

k/Mn+1
k = 0. Autrement dit, Mn

k ≃ M
n+1
k . Puisque

l’égalité 4.1 est vérifiée pour tout entier k ≥ kn, il existe une infinité d’en-
tiers k ≥ kn pour lesquels Mn

k ≃M
n+1
k .

Alors Mn ≃ Mn+1 en tant que DX,∞-modules coadmissibles. En effet,
soit (kℓ)ℓ≥0 une suite strictement croissante d’entiers naturels telle que pour
tout ℓ ∈ N, Mn

kℓ
= Mn+1

kℓ
. La propriété universelle de la limite projective

permet d’obtenir des isomorphismes de DX,∞-modules Mn ≃ lim←−ℓ
Mn

kℓ

et Mn+1 ≃ lim←−ℓ
Mn+1

kℓ
. Puisque Mn+1 est un sous-module de Mn, les

morphismes de transition des modules Mn+1
k sont induits par ceux des

Mn
k . On en déduit que les morphismes de transition Mn

kℓ+1
= Mn+1

kℓ+1
→

Mn
kℓ

= Mn+1
kℓ

des modules Mn
kℓ

sont aussi les morphismes de transition
des modules Mn+1

kℓ
. Il en découle, en passant à la limite projective sur ℓ,

que Mn ≃Mn+1.
On a démontré que pour tout entier n ≥ n0, Mn ≃ Mn+1. La suite

(Mn)n est donc stationnaire. On a aussi démontré que m(Mn+1) = m(Mn)
implique Mn+1 ≃Mn lorsque Mn+1 est un sous-module de Mn. Comme
la suite (m(Mn))n est décroissante de terme initial µ(M) < ∞, la lon-
gueur d’une suite strictement décroissante de sous-modules de M est de
longueur au plus m(M). De même, toute suite strictement croissante de
sous-modules deM est de longueur au plus m(M). Ainsi,M est un DX,∞-
module de longueur finie inférieure ou égale à m(M). □

Exemple 4.12. On continue l’exemple 4.9. On suppose toujours que X = U
est affine muni d’une coordonnée locale. Soit P =

∑d
n=0 an ·∂n un opérateur

fini d’ordre d de DX,∞(X). On note x1, . . . , xs les zéros de ad. On rappelle
que N(ad, x) est la valuation de (ad mod ϖ) dans l’anneau de valuation
discrète OX,x. Le DX,∞-module coadmissible DX,∞/P est de longueur finie
inférieure ou égale à m(M) = d + N(ad, x1) + · · · + N(ad, xs) d’après la
proposition.

On termine cette partie en démontrant que tout DX,∞-module à
connexion intégrable est de longueur finie.
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Lemme 4.13. SoitM = lim←−k
Mk un DX,∞-module coadmissible tel que les

Mk soient des OX,Q-modules libres de rang n pour k suffisamment grand.
Alors M est un OX,Q-module libre de rang n.

Démonstration. Par hypothèse, il existe un niveau de congruence k0 ∈ N
tels que Mk soit un OX,Q-module libre de rang n pour tout k ≥ k0. On
ne considère maintenant que les indices k supérieurs ou égaux à k0. On
note λk : Mk+1 → Mk le morphisme de transition au rang k. Ce der-
nier est D̂(0)

X,k+1,Q-linéaire donc OX,Q-linéaire. Par hypothèse, l’application
D̂(0)

X,k,Q ⊗D̂(0)
X,k+1,Q

Mk+1 → Mk, P ⊗ e 7→ P · λk(e) est un isomorphisme

D̂(0)
X,k,Q-linéaire. Cela implique que l’image λk(Mk+1) de λk est dense dans
Mk pour la topologie ϖ-adique. Comme Mk est un OX,Q-module libre
de rang fini, λk(Mk+1) est un sous-OX,Q-module fermé de Mk. Puisqu’il
est dense, λ(Mk) ≃ Mk en tant que OX,Q-modules. Autrement dit, l’ap-
plication λk : Mk+1 → Mk est surjective. Comme Mk et Mk+1 sont
des OX,Q-modules libre de même rang fini n, λk est un isomorphisme de
OX,Q-modules. On en déduit que M ≃ lim←−k≥k0

Mk ≃ Mk0 en tant que
OX,Q-module. Ainsi, M est un OX,Q-module libre de rang fini n. □

La réciproque de ce lemme est vraie : si M = lim←−k
Mk est un DX,∞-

module coadmissible et un OX,Q-module libre de rang n, alors il existe un
niveau de congruence k à partir duquel chaque Mk est un OX,Q-module
libre de rang n. Ce résultat est démontré dans [5].

Définition 4.14. Un module coadmissible M = lim←−k
Mk est appelé mo-

dule à connexion intégrable s’il existe un rang k à partir duquel chaqueMk

est un OX,Q-module libre de rang fini donné n.

Soit M = lim←−k
Mk un module à connexion de rang n. D’après le

lemme 3.23 et la proposition 3.10, les modulesMk ont une unique multipli-
cité égale à n. On déduit alors de la proposition 4.11 que tout DX,∞-module
intégrable à connexion est de longueur finie.

Proposition 4.15. SoitM = lim←−k
Mk un DX,∞-module à connexion inté-

grable. Alors M est un DX,∞-module de longueur finie inférieure ou égale
au rang rgOX,Q(M).

Bibliographie
[1] K. Ardakov, A. Bode & S. Wadsley, « D̂-modules on rigid analytic spaces III : Weak

holonomicity and operations », Compos. Math. 157 (2021), no 12, p. 2553-2584.
[2] P. Berthelot, « D-modules arithmétiques I. Opérateurs différentiels de niveau fini », Ann.

Sci. Éc. Norm. Supér. (4) 29 (1996), no 2, p. 185-272.
[3] ——— , « Introduction à la théorie arithmétique des D-modules », in Cohomologies p-

adiques et applications arithmétiques (II), Astérisque, vol. 279, Société Mathématique de
France, 2002, p. 1-80.



D-modules holonomes sur une courbe formelle 917

[4] L. Garnier, « Théorèmes de division sur D̂(0) et applications », Bull. Soc. Math. Fr. 123
(1995), no 4, p. 547-589.

[5] R. Hallopeau, « Microlocalisation des modules coadmissibles sur une courbe formelle »,
https://hal.science/hal-03975658, 2023.

[6] R. Hotta & T. Tanisaki, D-modules, perverse sheaves, and representation theory, Progress
in Mathematics, vol. 236, Springer, 2007, x+407 pages.

[7] C. Huyghe, T. Schmidt & M. Strauch, « Arithmetic structures for differential operators
on formal schemes », Nagoya Math. J. 243 (2021), p. 157-204.

[8] ——— , « Arithmetic differential operators with congruence level structures : First results
and examples », J. Number Theory 237 (2022), p. 332-352.

[9] A. Leykin, « Algorithmic proofs of two theorems of Stafford », J. Symb. Comput. 38 (2004),
no 6, p. 1535-1550.

[10] P. Maisonobe, Germes de D-modules à une variable et leurs solutions, dans Introduc-
tion à la théorie algébrique des systèmes différentiels p.97-146, Travaux en Cours, vol. 34,
Hermann, 1988.

[11] P. Schneider & J. Teitelbaum, « Algebras of p-adic distributions and admissible repre-
sentations », Invent. Math. 153 (2003), no 1, p. 145-196.

[12] A. Virrion, « Dualité locale et holonomie pour les D-modules arithmétiques », Bull. Soc.
Math. Fr. 128 (2000), no 1, p. 1-68.

Raoul Hallopeau
Irma, Université de Strasbourg
7 rue René Descartes
67000 Strasbourg, France
E-mail: hallopeau@unistra.fr

https://hal.science/hal-03975658
mailto:hallopeau@unistra.fr

	1. Introduction
	Notations

	2. Propriétés du faisceau Dkq
	2.1. Rappels sur la norme spectrale de O X, Q
	2.2. Propriétés du faisceau Dkq
	2.3. Théorèmes de division dans Dkq
	2.4. Base de division d'un idéal cohérent de Dkq

	3. Dkq-modules holonomes
	3.1. Variété caractéristique des Dkq-modules cohérents
	3.2. Réduction au cas des Dx-modules cohérents
	3.3. Inégalité de Bernstein
	3.4. Modules holonomes
	3.5. Caractérisation cohomologique des modules holonomes

	4. Di-modules coadmissibles
	4.1. Définition
	4.2. Une catégorie de Di-modules coadmissibles de longueur finie

	Bibliographie

