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Akashi series and Euler characteristics of signed
Selmer groups of elliptic curves with semistable

reduction at primes above p

par Antonio LEI et Meng Fai LIM

Résumé. Soit p un nombre premier impair, et soit E une courbe elliptique
définie sur un corps des nombres F ′ ayant réduction semi-stable en chaque
premier de F ′ sur p et ayant réduction supersingulière en au moins un premier
sur p. Sous des hypothèses appropriées, nous calculons la série d’Akashi des
groupes de Selmer signés de E sur une Zd

p-extension d’une extension finie F
de F ′. Comme un sous-produit, nous calculons aussi le caractéristique d’Euler
de ces groupes de Selmer.

Abstract. Let p be an odd prime number, and let E be an elliptic curve
defined over a number field F ′ such that E has semistable reduction at every
prime of F ′ above p and is supersingular at least one prime above p. Under
appropriate hypotheses, we compute the Akashi series of the signed Selmer
groups of E over a Zd

p-extension over a finite extension F of F ′. As a by-
product, we also compute the Euler characteristics of these Selmer groups.

1. Introduction
Throughout this article, p will always denote an odd prime number. Let

E be an elliptic curve defined over a number field F ′. If E has good ordinary
reduction at every prime of F ′ above p and F is a finite extension of F ′,
the p-primary Selmer group of E over the cyclotomic Zp-extension F cyc of
F is conjectured to be cotorsion over Zp[[Γ]] (meaning that its Pontryagin
dual is torsion over Zp[[Γ]]; see [29]), where Γ = Gal(F cyc/F ). Granted this
conjecture, Perrin-Riou [33] and Schneider [36, 37] computed the Γ-Euler
characteristics of the aforementioned Selmer group and showed that its
value is related to the p-part of the algebraic invariants appearing in the
formula of the Birch and Swinnerton-Dyer conjecture. Their calculations
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have since then been extended to higher dimensional p-adic Lie extensions
(see [6, 7, 10, 39, 40, 41]).

If E has supersingular reduction at one prime above p, then the p-primary
Selmer group of E over F cyc is not expected to be cotorsion over Zp[[Γ]]
(see [6, 37]). When F = F ′ = Q, Kobayashi [20] defined the plus and
minus Selmer groups of E over Qcyc by constructing the plus and minus
norm groups Ê±(Qcyc

p ), which are subgroups of the formal group of E at
p. He was able to describe the algebraic structure of these plus and minus
norm groups precisely and show that the plus and minus Selmer groups are
cotorsion over Zp[[Γ]]. These Selmer groups have been extended to different
settings by various authors (see [1, 2, 3, 15, 16, 17, 18, 19, 21, 23, 24, 25, 31]).
When E is defined over Q and F is a number field where p is unramified,
Kim [15, 16] studied the structure of plus and minus Selmer groups over
F cyc. In particular, he showed that these Selmer groups do not contain
non-trivial submodules of finite index. This led to a formula of the Γ-Euler
characteristics of these Selmer groups under the assumption that the p-
primary Selmer group of E over F is finite (see [16]). Remarkably, the
Euler characteristics of the plus and minus Selmer groups turn out to be
the same as the usual Selmer group in the ordinary case.

One of the key ingredients in Kim’s works is a precise description of the
algebraic structure of Kobayashi’s plus and minus norm groups over Kcyc,
where K is a finite unramified extension of Qp. For the minus norm group,
Kim’s result is unconditional, whereas the plus norm group is studied under
the hypothesis that 4 does not divide |K : Qp| (see [15, 17]). In [19], Kita-
jima and Otsuki were able to describe the plus norm groups even when 4
divides |K : Qp|. Furthermore, they relaxed the hypothesis that the elliptic
curve E is defined over Q and allowed E to have mixed reduction types at
primes above p. In their setting, E is defined over a number field F ′ with
good reduction at all primes above p and that if u is a prime of F ′ above
p where E has supersingular reduction, then F ′u = Qp. Let F be a finite
extension of F ′ where the supersingular primes of E above p are unramified
and let Σss denote the set of primes of F lying above these supersingular
primes. On choosing one of the two plus and minus norm subgroups for
each prime of Σss, we may define 2|Σss| signed Selmer groups. Such mixed
signed Selmer groups were first considered by Kim in [17]. In [1], the Γ-Euler
characteristics of these mixed signed Selmer groups have been computed.
In a different vein, we may consider a Zdp-extensions of F , which we denote
by F∞ and write G = Gal(F∞/F ). We may define plus and minus Selmer
groups of E over F∞ (see [17, 24]). In [24], assuming that p splits completely
in F , the G-Euler characteristics of the plus and minus (no mixed signs)
Selmer groups have been computed.
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In this article, we assume that our elliptic curve E is defined over F ′
with no additive reduction at all primes above p (multiplicative reduction
is allowed). We shall introduce certain hypotheses, labeled (S1)–(S5), in the
main body of the article. Our goal is to compute the Akashi series of mixed
signed Selmer groups over F∞ under hypotheses (S1)–(S4). Here, F∞/F
is a Zdp-extension and F/F ′ is a finite extension, with G = Gal(F∞/F ) as
above. As a by-product, we compute the G-Euler characteristics of these
Selmer groups under the additional hypothesis (S5). Our main results are:
Theorem 1.1 (Theorem 5.1). Suppose that (S1)–(S4) are satisfied. Assume
that the Pontryagin dual of a signed Selmer group of E over F cyc, denoted
by X~s(E/F cyc), is torsion over Zp[[Γ]]. Then the Pontryagin dual of a signed
Selmer group of E over F∞, denoted by X~s(E/F∞), is torsion over Zp[[G]],
whose Akashi series is well-defined and is given by, up to a unit in Zp[[Γ]],

T r · charΓ(X~s(E/F cyc)),
where r is the number of primes of F cyc above p with nontrivial decompo-
sition group in F∞/F cyc and at which E has split multiplicative reduction,
T = γ−1 with γ being a topological generator of Γ and charΓ(X~s(E/F cyc))
denotes a characteristic power series of the Zp[[Γ]]-module X~s(E/F cyc).
Theorem 1.2 (Theorem 5.3). Suppose that (S1)–(S5) are satisfied. If the p-
primary Selmer group of E over F is finite, then the G-Euler characteristic
of X~s(E/F∞) is well-defined and is given by

|X(E/F )[p∞]| ×
∏
v∈Σ′

c(p)
v ×

∏
v∈Σo

(d(p)
v )2.

Here, Σ′ denotes the set of primes of F where E has bad reduction, c(p)
v

is the highest power of p dividing |E(Fv) : E0(Fv)|, where E0(Fv) is the
subgroup of E(Fv) consisting of points with nonsingular reduction modulo
v, Σo denotes the set of primes of F lying above p where E has good ordinary
reduction and d(p)

v is the highest power of p dividing |Ẽv(fv)|, where fv is
the residue field of Fv.

The structure of our article is as follows. In Section 2, we gather pre-
liminary algebraic results which will be used in subsequent sections of the
article. In particular, we review the definition and some basic properties of
Akashi series in Section 2.1 and prove some basic results on the structure
of certain Iwasawa modules in Section 2.2. In Section 3, we study the local
cohomology of elliptic curves. We consider the ordinary and supersingular
cases separately. In the supersingular case, we build on results of Kitajima
and Otsuki for the cyclotomic Zp-extension to study the structure of the
local quotient H1(K∞,E[p∞])

Ê±(K∞)⊗Qp/Zp
, where K∞ is a Z2

p-extension of a finite un-
ramified extension of Qp. This quotient is crucially used to define the signed
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Selmer groups. We show that its Pontryagin dual is free over a two-variable
Iwasawa algebra (see Corollary 3.9). This result is one of the key ingredi-
ents in the proof of Theorem 1.1 and may be of independent interest. In
Section 4, we give the definition of mixed signed Selmer groups over the cy-
clotomic Zp-extension, as well as a Zdp-extension. We show how these Selmer
groups can be related via Galois descent (see Lemma 4.9), which also plays
an important role in the proof of Theorem 1.1. Furthermore, we study the
cotorsionness of these Selmer groups as well as a natural extension of the
MH(G)-conjecture of Coates et al. Finally, we put everything together to
prove Theorems 1.1 and 1.2 in Section 5. At the end of the article, we show
that we may use these theorems to study the vanishing of X~s(E/F∞) (see
Corollaries 5.4 and 5.5).

2. Preliminary algebraic results
2.1. Review of Akashi series. In this subsection, G denotes a fixed
compact pro-p p-adic Lie group without p-torsion (we will mostly work
with G which is isomorphic to Zdp for some integer d). Furthermore, we
suppose that there exists a closed normal subgroup H of G such that Γ :=
G/H ∼= Zp.

Definition 2.1. If M is a finitely generated Zp[[Γ]]-module, charΓ(M) de-
notes a characteristic power series of M .

Note that charΓ(M) is well-defined up to a unit in Zp[[Γ]]. If charΓ(M)
is a unit, we shall write charΓ(M) = 1. Following [4, 7, 41], we have the
following definition.

Definition 2.2. LetM be Zp[[G]]-module. We say that the Akashi series of
M is well-defined if Hi(H,M) is Zp[[Γ]]-torsion for every i ≥ 0. In this case,
we define AkH(M) to be the (H-)Akashi series of M , which is given by

AkH(M) :=
∏
i≥0

charΓHi(H,M)(−1)i
.

Note that the Akashi series is only well-defined up to a unit in Zp[[Γ]]. If
the Akashi series ofM is a unit in Zp[[Γ]], we shall write AkH(M) = 1. Note
that since G (and hence H) has no p-torsion, H has finite p-cohomological
dimension, and therefore, the alternating product is a finite product.

Lemma 2.3. Suppose that we are given a short exact sequence of Zp[[G]]-
modules

0 −→M ′ −→M −→M ′′ −→ 0.
If any two of the modules have well-defined Akashi series, so does the third.
In this case, we have

AkH(M) = AkH(M ′) AkH(M ′′).
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Proof. See [7, Lemma 4.1] or [41, Proposition 2.2]. �

Since the group G we will work with is isomorphic Zdp, the following
lemma will be useful in our subsequent discussion.

Lemma 2.4. Suppose that G ∼= H × Γ with dimH ≥ 1. For every Zp[[G]]-
module M that is finitely generated over Zp, we have

AkH(M) = 1.

Proof. See [7, Lemma 4.5] or [41, Proposition 2.3]. �

We end this section by recalling a link between Akashi series and Euler
characteristics.

Definition 2.5. The G-Euler characteristics of a Zp[[G]]-module M is said
to be well-defined if Hi(G,M) is finite for each i ≥ 0. In this case, the
G-Euler characteristics is given by

χ(G,M) =
∏
i≥0
|Hi(G,M)|(−1)i

.

Again, since G has no p-torsion, the product in the definition of χ(G,M)
is finite.

Proposition 2.6. Let G be a compact p-adic group without p-torsion,
and let H be a closed normal subgroup of G with G/H ∼= Zp. Let M be
a finitely generated Zp[[G]]-module whose G-Euler characteristics is well-
defined. Then the Akashi series of M is well-defined and we have

χ(G,M) = |ϕ(AkH(M))|−1
p ,

where | · |p is the p-adic norm with |p|p = p−1, and ϕ is the augmentation
map from Zp[[Γ]] to Zp.

Proof. See [4, Theorem 3.6] or [7, Lemma 4.2]. �

2.2. Modules over two-variable Iwasawa algebras. In this subsec-
tion, we will study modules over Zp[[G]], where G is a p-adic group isomor-
phic to Z2

p. We begin by recalling the following result on Zp[[Γ]]-modules,
where Γ ∼= Zp and we write Γn = Γpn .

Proposition 2.7. LetM be a finitely generated Zp[[Γ]]-module and r a non-
negative integer such that MΓn is a free Zp-module of rank rpn for every
n ≥ 0. Then M is a free Zp[[Γ]]-module of rank r.

Proof. See [35, p. 207, General Lemma]. �

Now, fix two subgroupsH and Γ ofG so thatG ∼= H×Γ andH ∼= Γ ∼= Zp.
For an integer n ≥ 0, we write Hn = Hpn and Gn = Hn × Γ (not to be
confused with Hpn × Γpn !). Let M be a finitely generated Zp[[G]]-module.
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Since Gn is a subgroup of G of finite index,M is also finitely generated over
Zp[[Gn]]. It then follows from [27, Lemma 4.5] that MHn and H1(Hn,M)
are finitely generated Zp[[Γ]]-modules. Since Hn

∼= Zp, we can identify MHn

with H1(Hn,M), and in particular, MHn is finitely generated over Zp[[Γ]].
We now come to the goal of this subsection, which is to prove the following
analogue of Proposition 2.7.

Proposition 2.8. Let M be a finitely generated Zp[[G]]-module and r ≥ 0
an integer such that MHn is a free Zp[[Γ]]-module of rank rpn for every
n ≥ 0. Then M is a free Zp[[G]]-module of rank r.

In preparation for the proof of Proposition 2.8, we prove the following
two lemmas.

Lemma 2.9. Let M be a finitely generated Zp[[G]]-module. There exists an
integer n0 such that MHn = MHn0 for all n ≥ n0.

Proof. Since G is commutative, each MHn is also a Zp[[G]]-submodule of
M . Furthermore, they form an ascending chain and hence must stabilize
by the Noetherian property of M . �

Lemma 2.10. Let M be a finitely generated Zp[[G]]-module. Then we have

rankZp[[Γ]]
(
MHn

)
= pn rankZp[[G]](M) + c

for n� 0, where c is some constant independent of n.

Proof. It follows from [27, Lemma 4.5] that

rankZp[[Γ]]
(
MHn

)
= rankZp[[Gn]](M) + rankZp[[Γ]]

(
MHn

)
.

By Lemma 2.9, the quantity rankZp[[Γ]]
(
MHn

)
stabilizes for large enough

n. On the other hand, we have rankZp[[Gn]](M) = |G : Gn| rankZp[[G]](M) =
pn rankZp[[G]](M). Putting these equations together, the proposition
follows. �

We can now prove Proposition 2.8:

Proof of Proposition 2.8. Since MH is a free Zp[[Γ]]-module of rank r, M
is generated by r elements over Zp[[G]] by Nakayama’s Lemma. In other
words, we have a short exact sequence

0 −→ K −→ Zp[[G]]r −→M −→ 0

of Zp[[G]]-modules. Furthermore, it follows from the hypothesis of the propo-
sition and Lemma 2.10 that rankZp[[G]](M) = r. Thus, K must be torsion
over Zp[[G]]. But Zp[[G]]r has no nontrivial torsion submodule, it follows
that K = 0, and consequently, M ∼= Zp[[G]]r. �
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3. Elliptic curves over local fields
In this section, we record certain results on elliptic curves over a p-adic

local field. We consider the ordinary and supersingular cases separately.

3.1. The ordinary case. Let K be a finite extension of Qp and E an
elliptic curve defined over K. In this subsection, our elliptic curve E is
always assumed to have either good ordinary reduction or multiplicative
reduction. Then from [5, p. 150], we have the following short exact sequence
of Gal(K/K)-modules

0 −→ C −→ E[p∞] −→ D −→ 0,

where C and D are cofree Zp-modules of corank one. Furthermore, C and D
are characterized by the fact that C is divisible and that D is the maximal
quotient of E[p∞] by a divisible subgroup on which Gal(K/Kur) acts via
a finite quotient. Here, Kur is the maximal unramified extension of K.
In fact, as a Gal(K/K)-module, D can be explicitly described as follows
(see [5]):

(3.1) D =


Ẽ, if E has good ordinary reduction,
Qp/Zp, if E has split multiplicative reduction,
Qp/Zp ⊗ φ, if E has nonsplit multiplicative reduction,

where Ẽ is the reduction of E and φ is a nontrivial unramified character of
Gal(K/K).

Lemma 3.1. Let E be an elliptic curve defined over a finite extension K
of Qp. Let K∞ be a Zrp-extension of K which contains the cyclotomic Zp-
extension Kcyc. Write H = Gal(K∞/Kcyc). Then the following statements
hold.

(a) We have
H1(K, E[p∞])
E(K)⊗Qp/Zp

∼= H1(K, D)

for K = Kcyc or K∞.
(b) H0(Kcyc, D) is finite if E has either good ordinary or non-split

multiplicative reduction. If E has split multiplicative reduction, then
H0(Kcyc, D) ∼= Qp/Zp.

(c) If r ≥ 2, then AkH(D(K∞)∨) = 1.

Proof. Assertion (a) follows from a well-known result of Coates–Greenberg
[5, Proposition 4.3]. Assertion (b) follows from the explicit description of D
given in (3.1) above. Finally, assertion (c) is a consequence of Lemma 2.4
since Gal(K∞/K) ∼= H ×Gal(Kcyc/K). �
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3.2. The supersingular case. Let E be an elliptic curve defined over
Qp with good supersingular reduction and ap = 1 + p− |Ẽ(Fp)| = 0, where
Ẽ is the reduction of E. Let K be a finite unramified extension of Qp.
Denote by Ê the formal group of E. For convenience, if L is an extension
of Qp, we write Ê(L) for Ê(mL), where mL is the maximal ideal of the
ring of integers of L. Denote by Kcyc (resp. Knr) the cyclotomic (resp,
the unramified) Zp-extension of K. If n ≥ 0 is an integer, we write Kn

(resp. K(n)) for the unique subextension of Kcyc/K (resp. Knr/K) whose
degree over K is equal to pn.

Lemma 3.2. The formal groups Ê(K(m)Kn) has no p-torsion for all inte-
gers m,n ≥ 0. In particular, E(K(m)Kn) has no p-torsion for every m,n.

Proof. The first assertion is [19, Proposition 3.1] or [20, Proposition 8.7].
For the second assertion, consider the following short exact sequence

0 −→ Ê(K(m)Kn) −→ E(K(m)Kn) −→ Ẽ(km,n) −→ 0,

where km,n is the residue field of K(m)Kn. Since Ẽ(km,n) has no p-torsion
by our assumption that E has good supersingular reduction, the second
assertion follows from the first assertion. �

Following [15, 16, 17, 19, 20, 24, 31], we define the following plus and
minus norm groups.

Definition 3.3. We define Ê+(K(m)Kn) and Ê−(K(m)Kn) to be{
P ∈ Ê(K(m)Kn) : trn/l+1(P ) ∈ E(K(m)Kl), 2 | l, 0 ≤ l ≤ n− 1

}
and{

P ∈ Ê(K(m)Kn) : trn/l+1(P ) ∈ E(K(m)Kl), 2 - l, 0 ≤ l ≤ n− 1
}

respectively, where trn/l+1 : Ê(K(m)Kn) −→ Ê(K(m)Kl+1) denotes the
trace map with respect to the formal group law of Ê.

By [20, Lemma 8.17], the groups Ê±(K(m)Kcyc) ⊗ Qp/Zp inject into
H1(K(m)Kcyc, E[p∞]) via the Kummer map.

In the rest of this subsection, we write K∞ =
⋃
m,n≥0K

(m)Kn. Note that
Gal(K∞/K) ∼= Z2

p. Denote by Γ the Galois group Gal(Kcyc/K) which is
also identified with Gal(KcycK(m)/K(m)) for m ≥ 0. We shall also write
H = Gal(K∞/Kcyc) which is identified with Gal(Knr/K). For m ≥ 0, set
Hm = Gal(K∞/KcycK(m)), which is identified with Gal(Knr/K(m)).
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Lemma 3.4. We have (Ê(Knr) ⊗ Qp/Zp)Hm = Ê(K(m)) ⊗ Qp/Zp for
m ≥ 0. Furthermore, Ê(Knr)⊗Qp/Zp is a cofree Zp[[H]]-module of corank
|K : Qp|. In particular,

H1
(
Hm, Ê(Knr)⊗Qp/Zp

)
= 0

for m ≥ 0.

Proof. The first assertion is [17, Proposition 2.10]. Since Ê(K(m))⊗Qp/Zp
is cofree over Zp for each m, (Ê(Knr) ⊗ Qp/Zp)Hm , is a cofree Zp-module
with Zp-corank |K : Qp|pm by Mattuck’s theorem [28]. Proposition 2.7
then implies that Ê(Knr) ⊗ Qp/Zp is a cofree Zp[[H]]-module of corank
|K : Qp|. �

We require an analog of the above lemma over K∞. As a start, we record
the following.

Lemma 3.5. We have H1(Hm, Ê(K∞)) = 0.

Proof. Replacing K by K(m), it suffices to prove the case for K (or H).
By a well-known result of Coates–Greenberg [5, Corollary 3.2], we have
H i(Kcyc, Ê(K)) = 0 = H i(K∞, Ê(K)) for i ≥ 1. Hence the spectral se-
quence

H i(H,Hj(K∞, Ê(K)) =⇒ H i+j(Kcyc, Ê(K))
degenerates yielding the required isomorphism. �

We can now establish the following analog of Lemma 3.4.

Proposition 3.6. We have

H i
(
Hm, Ê(K∞)⊗Qp/Zp

)
=
{
Ê(KcycK(m))⊗Qp/Zp, if i = 0,
0, if i ≥ 1.

Proof. As before, it suffices to prove the proposition for H. Since H ∼= Zp,
the vanishing is clear for i ≥ 2. By Lemma 3.2, we have the following short
exact sequence

0 −→ Ê(K∞) −→ Ê(K∞)⊗Qp −→ Ê(K∞)⊗Qp/Zp −→ 0.
In view of Lemma 3.5, upon taking H-invariant, we have

0 −→ Ê(Kcyc) −→ Ê(Kcyc)⊗Qp −→ (Ê(K∞)⊗Qp/Zp)H −→ 0
and

H1
(
H, Ê(K∞)⊗Qp

)
∼= H1

(
H, Ê(K∞)⊗Qp/Zp

)
The isomorphism for i = 0 follows from the short exact sequence. Also, note
that in the isomorphism above, the left-hand side is a Qp-vector space, while
the right-hand side is p-power torsion. Hence we must haveH1(H, Ê(K∞)⊗
Qp/Zp) = 0. �
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Corollary 3.7. We have

H i
(
Hm, Ê

±(K∞)⊗Qp/Zp
)

=
{
Ê±(KcycK(m))⊗Qp/Zp, if i = 0,
0, if i ≥ 1.

Proof. Again, it suffices to prove the proposition for H. Since H ∼= Zp, the
vanishing is clear for i ≥ 2. By [17, Proposition 2.6], we have

0 −→ Ê(K) −→ Ê+(Kcyc)⊕ Ê−(Kcyc) −→ Ê(Kcyc) −→ 0

and

0 −→ Ê(Knr) −→ Ê+(K∞)⊕ Ê−(K∞) −→ Ê(K∞) −→ 0.

For simplicity, we shall write A = Qp/Zp, ÊL = Ê(L) and Ê±L = Ê±(L) for
L ∈ {K,Kcyc,Knr,K∞}. In view of Lemma 3.2, the exact sequences above
induce the following short exact sequences

0 −→ ÊK ⊗A −→
(
Ê+
Kcyc ⊗A

)
⊕
(
Ê−Kcyc ⊗A

)
−→ ÊKcyc ⊗A −→ 0,

0 −→ ÊKnr ⊗A −→
(
Ê+
K∞
⊗A

)
⊕
(
Ê−K∞ ⊗A

)
−→ ÊK∞ ⊗A −→ 0,

which in turn fit into the following diagram

0 // ÊK ⊗A

��

//
(
Ê+
Kcyc ⊗A

)
⊕
(
Ê−Kcyc ⊗A

)
��

// ÊKcyc ⊗A

��

// 0

0 //
(
ÊKnr ⊗A

)H //
(
Ê+
K∞
⊗A

)H ⊕ (Ê−K∞ ⊗A)H //
(
ÊK∞ ⊗A

)H
.

Since the leftmost and rightmost vertical maps are isomorphisms by
Lemma 3.4 and Proposition 3.6, so is the middle map. This implies the
isomorphism of the corollary for i = 0. Finally, the bottom sequence of the
diagram continues in the form

H1(H, Ê(Knr)⊗A) −→ H1(H, Ê+(K∞)⊗A)⊕H1(H, Ê−(K∞)⊗A)

−→ H1(H, Ê(K∞)⊗A).

Again, taking Lemma 3.4 and Proposition 3.6 into account, we obtain the
desired vanishing for i = 1. �

We end this subsection with a discussion on the structure of the Zp[[G]]-
module H1(K∞,E[p∞])

Ê±(K∞)⊗Qp/Zp
.

Proposition 3.8. We have

H i

(
Hm,

H1(K∞, E[p∞])
Ê±(K∞)⊗Qp/Zp

)
=


H1(KcycK(m),E[p∞])
Ê±(KcycK(m))⊗Qp/Zp

, if i = 0,

0, if i ≥ 1.
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Proof. Consider the spectral sequence

H i(Hm, H
j(K∞, E[p∞])

)
=⇒ H i+j(KcycK(m), E[p∞]).

By [30, Theorem 7.1.8(i)], Hr(K∞, E[p∞]) = 0 = Hr(KcycK(m), E[p∞])
for r ≥ 2. Also, we have H0(K∞, E[p∞]) = 0 by Lemma 3.2. Hence the
spectral sequence degenerates to yield

H i
(
Hm, H

1(K∞, E[p∞])
)

=
{
H1(KcycK(m), E[p∞]), if i = 0,
0, if i ≥ 1.

The conclusion of the corollary now follows from combining the above ob-
servations with an analysis of the Hm-cohomology exact sequence of

0 −→ Ê±(K∞)⊗Qp/Zp −→ H1(K∞, E[p∞]) −→ H1(K∞, E[p∞])
Ê±(K∞)⊗Qp/Zp

−→ 0

and taking Corollary 3.7 into account. �

Corollary 3.9. The module H1(K∞,E[p∞])
Ê±(K∞)⊗Qp/Zp

is Zp[[G]]-cofree of corank
|K : Qp|.

Proof. It follows from the preceding proposition that(
H1(K∞, E[p∞])
Ê±(K∞)⊗Qp/Zp

)Hm

∼=
H1(KcycK(m), E[p∞])
Ê±(KcycK(m))⊗Qp/Zp

,

where the latter is Zp[[Γ]]-cofree of corank |K : Qp|pm by a calculation
of Kitajima–Otsuki [19, Proposition 3.32]. The required conclusion now
follows from Proposition 2.8. �

4. Multiply signed Selmer groups
Throughout this section, we fix E to be an elliptic curve defined over a

number field F ′ and F a finite extension of F ′. The following assumptions
will be in force.

(S1) There exists at least one prime u of F ′ lying above p at which E
has good supersingular reduction.

(S2) For each u of F ′ above p at which E has good supersingular reduc-
tion, we have
(a) F ′u ∼= Qp and u is unramified in F/F ′;
(b) au = 1+p−|Ẽu(Fp)| = 0, where Ẽu is the reduction of E at u.

(S3) E does not have additive reduction at all primes of F lying above p.
Let F cyc be the cyclotomic Zp-extension of F and Fn the intermediate

subfield of F cyc/F with |Fn : F | = pn for n ≥ 0.
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4.1. Selmer groups over cyclotomic Zp-extensions. From now on, Σ
is a fixed finite set of primes of F which contains all the primes above p,
all the ramified primes of F/F ′, the bad reduction primes of E and the
archimedean primes. Let FΣ denote the maximal algebraic extension of F
unramified outside Σ. For any extension F of F which is contained in FΣ,
we write GΣ(F) = Gal(FΣ/F).

Definition 4.1. We define
Σp = {primes of F above p},
Σ′ = Σ \ Σp,

Σss = {u ∈ Σp : E has good supersingular reduction at u},
Σo = Σp \ Σss.

For any subset S of Σ and any extension F of F , we write S(F) for the
set of primes of F above S.

By (S2), every prime in Σss is totally ramified in F cyc/F . In particular,
for each such prime v, there is a unique prime of Fn lying above the said
prime. We then write Êv for the formal group E over Fv.

Definition 4.2. Let ~s = (sv)v∈Σss ∈ {+,−}Σss . The signed Selmer group
Sel~s(E/Fn) is defined to be the kernel of

H1(GΣ(Fn), E[p∞])

−→
⊕

v∈Σss(Fn)

H1(Fn,v, E[p∞])
Êsv (Fn,v)⊗Qp/Zp

×
⊕

v∈Σ(Fn)\Σss(Fn)

H1(Fn,v, E[p∞])
E(Fn,v)⊗Qp/Zp

.

We set Sel~s(E/F cyc) = lim−→n
Sel~s(E/Fn) and write X~s(E/F cyc) for its Pon-

tryagin dual.

For our purposes, we work with a different description of Sel~s(E/F cyc).
Note that for primes outside p, we have E(Fn,v) ⊗ Qp/Zp = 0. For primes
in Σo(F cyc), we have

H1(F cyc
v , E[p∞])

E(F cyc
v )⊗Qp/Zp

∼= H1(F cyc
v , Dv)

by Lemma 3.1(a), where Dv is defined as in Section 3.1.

Definition 4.3. Let ~s = (sv)v∈Σss ∈ {+,−}Σss . Given v ∈ Σ(F cyc), we
define

J~sv (E/F cyc) :=


H1(F cyc

v ,E[p∞])
Êsv (F cyc

v )⊗Qp/Zp
v ∈ Σss(F cyc),

H1(F cyc
v , Dv) v ∈ Σo(F cyc),

H1(F cyc
v , E[p∞]) v ∈ Σ′(F cyc).
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Remark 4.4. The Selmer group Sel~s(E/F cyc) sits inside the following
exact sequence:

0 −→ Sel~s(E/F cyc) −→ H1(GΣ(F cyc), E[p∞]) −→
⊕

v∈Σ(F cyc)
J~sv (E/F cyc).

Conjecture 4.5. For all choices of ~s, the Zp[[Γ]]-module X~s(E/F cyc) is
torsion.

When E has good ordinary reduction at all primes above p, the above
conjecture is precisely Mazur’s conjecture in [29], which is known to hold
in the case when E is defined over Q and F an abelian extension of Q
(see [14]). For an elliptic curve over Q with good supersingular reduction
at p, this conjecture has been proved to be true by Kobayashi in [20]; see
also [3] for a generalization of this conjecture for abelian varieties and [2]
for progress towards this conjecture for CM abelian varieties. We record
certain consequences of Conjecture 4.5, which will be utilized in subsequent
discussion of the article.
Proposition 4.6. Suppose that (S1)–(S3) are valid, and that X~s(E/F cyc)
is a torsion Zp[[Γ]]-module. Then the following assertions hold.

(a) H2(GΣ(F cyc), E[p∞]) = 0.
(b) There is a short exact sequence

0 −→ Sel~s(E/F cyc) −→H1(GΣ(F cyc), E[p∞])

−→
⊕

v∈Σ(F cyc)
J~sv (E/F cyc) −→ 0.

Proof. See [21, Proposition 2.7] or [23, Proposition 4.4]. �

4.2. Selmer groups over Zd
p-extensions. Throughout this subsection,

let F∞ be a Zdp-extension of F which satisfies the following hypothesis.
(S4) F cyc ⊆ F∞, and every v ∈ Σss(F cyc) is unramified in F∞/F cyc.
Write G = Gal(F∞/F ), H = Gal(F∞/F cyc) and Γ = Gal(F cyc/F ). Let

Ln be the unique subextension of F∞/F such that Gal(Ln/F ) ∼= (Z/pn)d.
Let ~s = (sv)v∈Σss ∈ {+,−}Σss . For w ∈ Σss(Ln), we set sw = sv, where v is
the prime of F below w. By (S4), Ln,w is the compositum of a subextension
of the cyclotomic Zp-extension of Fv and a subextension of the unramified
Zp-extension of Fv. Hence we can define Êsw(Ln,w) as in Definition 3.3.
Definition 4.7. For ~s = (sv)v∈Σss ∈ {+,−}Σss , the signed Selmer group
Sel~s(E/Ln) is then defined to be the kernel of
H1(GΣ(Ln), E[p∞])

−→
⊕

w∈Σss(Ln)

H1(Ln,w, E[p∞])
Êsw(Ln,w)⊗Qp/Zp

×
⊕

w∈Σ(Ln)\Σss(Ln)

H1(Ln,w, E[p∞])
E(Ln,w)⊗Qp/Zp

.
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We set Sel~s(E/F∞) = lim−→n
Sel~s(E/Ln) and write X~s(E/F∞) for its Pon-

tryagin dual.

Remark 4.8. Analogous to Definition 4.3 and Remark 4.4, we define for
w ∈ Σ(F∞)

J~sw(E/F∞) :=


H1(F∞,w,E[p∞])
Êsw (F∞,w)⊗Qp/Zp

w ∈ Σss(F∞),

H1(F∞,w, Dw) w ∈ Σo(F∞),
H1(F∞,w, E[p∞]) w ∈ Σ′(F∞).

and we have the exact sequence

0 −→ Sel~s(E/F∞) −→ H1(GΣ(F∞), E[p∞]) −→
⊕

w∈Σ(F∞)
J~sw(E/F∞).

We may now relate the signed Selmer groups over F∞ to those over F cyc

via the following lemma.

Lemma 4.9. Suppose that (S1)–(S4) hold. There is an injection

Sel~s(E/F cyc) −→ Sel~s(E/F∞)H

with cokernel being cofinitely generated over Zp.

Proof. Consider the following diagram

0 // Sel~s(E/F cyc)

α

��

// H1(GΣ(F cyc), E[p∞]
)

β

��

//
⊕

v∈Σ(F cyc) J
~s
v (E/F cyc)

γ=⊕γv

��

0 // Sel~s(E/F∞)H // H1(GΣ(F∞), E[p∞]
)H //

(⊕
w∈Σ(F∞) J

~s
w(E/F∞)

)H
with exact rows. As seen in the proof of Proposition 3.8, for all w ∈ Σss(F∞),
we have E(F∞,w)[p∞] = 0. Hence we also have E(F∞)[p∞] = 0. Combining
this observation with a Hochschild–Serre spectral sequence argument, we
see that β is an isomorphism. Thus, α is injective.

It remains to show that ker γ is cofinitely generated over Zp. By Propo-
sition 3.8, γv is injective for v ∈ Σss(F cyc). For v ∈ Σ(F cyc) \ Σss(F cyc),
the kernel of γv is given by H1(Hv, Dv(F∞,w)) or H1(Hv, E[p∞](F∞,w))
accordingly to v divides p or not, where Hv is the decomposition group of
H with respect to a prime w of F∞ above v. The conclusion now follows
from the fact that the cohomology groups H1(H,W ) are cofinitely gener-
ated over Zp for any p-adic Lie group H and any Zp-cofinitely generated
H-module W . (Note: In fact, since Zdp-extension is unramified outside p
(cf. [12, Theorem 1]), we have Hv = 1 for v ∈ Σ′(F∞), and so one even
has ker γv = 0 for these primes. This latter observation will be used in the
proof of Theorem 5.1.) �
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Remark 4.10. The above lemma is certainly well-known when E has good
ordinary reduction (see [6, 7, 10]). Unlike the ordinary case, where the
argument is quite formal, the supersingular situation is less straightforward.
This is because we do not have a nice enough descent theory for the formal
group of an elliptic curve in ramified towers (see [25, Section 6]). In the
setting considered in the present article, thanks to hypothesis (S4), we
have applied results of Kim [17] and Kitajima–Otsuki [19] to obtain such a
descent theory in Section 3.2.

We now state the following natural generalisation of Conjecture 4.5.

Conjecture 4.11. For all choices of ~s ∈ {+,−}Σss, the Selmer group
X~s(E/F∞) is torsion over Zp[[G]].

When E has good ordinary reduction at all primes above p, the above
conjecture is a natural extension of Mazur’s conjecture (see [6, 7, 9, 10, 32]).
When E has supersingular reduction with F ′ = Q and F an imaginary
quadratic field where p splits, this was studied in [18, 22, 23].

Conjecture 4.11 has the following consequence, which is analogous to
Proposition 4.6 as a consequence of Conjecture 4.5.

Proposition 4.12. Suppose that (S1)–(S4) are valid, and that X~s(E/F∞)
is a torsion Zp[[G]]-module. Then we have the following assertions.

(a) H2(GΣ(F∞), E[p∞]) = 0.
(b) There is a short exact sequence

0 −→ Sel~s(E/F cyc) −→H1(GΣ(F∞), E[p∞])

−→
⊕

w∈Σ(F∞)
J~sw(E/F∞) −→ 0.

Proof. The proof is similar to that of Proposition 4.6 with some extra tech-
nicality. By [34, Proposition A.3.2], we have an exact sequence

0 −→ Sel~s(E/F∞) −→ H1(GΣ(F∞), E[p∞]) −→
⊕

w∈Σ(F∞)
J~sw(E/F∞)

−→ S~s(E/F∞)∨ −→ H2(GΣ(F∞), E[p∞]) −→ 0,

where S~s(E/F∞) is a Zp[[G]]-submodule of

H1
Iw(F∞/F, TpE) := lim←−

n

H1(GΣ(Ln), TpE).

(For the precise definition of S~s(E/F∞), we refer readers to loc. cit. For our
purposes, the submodule theoretical information suffices.) The conclusion
of the proposition will follow once we can show that S~s(E/F∞) = 0.
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A standard corank calculation (see [32, Theorem 3.2]) tells us that
corankZp[[G]]

(
H1(GΣ(F∞), E[p∞])

)
− corankZp[[G]]

(
H2(GΣ(F∞), E[p∞])

)
= |F : Q|.

For the local summands, we also have

corankZp[[G]]

 ⊕
w∈Σ(F∞)

J~sw(E/F∞)

 = [F : Q],

where in the calculations, we made use of [32, Theorem 4.1] for primes
in Σ(F∞) \ Σss(F∞) and Corollary 3.9 for primes in Σss(F∞). It follows
from these formulas and the above exact sequence that if Sel~s(E/F∞) is a
cotorsion Zp[[G]]-module, then S~s(E/F∞) is a torsion Zp[[G]]-module.

Hence the required assertionS~s(E/F∞) = 0 will follow once we can show
that H1

Iw(F∞/F, TpE) is a torsion-free Zp[[G]]-module. To see this, we first
recall the following spectral sequence of Jannsen ([13, Theorem 1])

ExtiZp[[G]]
(
Hj(GΣ(F∞), E[p∞])∨,Zp[[G]]

)
=⇒ H i+j

Iw (F∞/F, TpE).
By considering the low degree terms, we have an exact sequence

0 −→ Ext1
Zp[[G]]((E(F∞)[p∞])∨,Zp[[G]]

)
−→ H1

Iw(F∞/F, TpE)

−→ Ext0
Zp[[G]]

(
H1(GΣ(F∞), E[p∞])∨,Zp[[G]]

)
.

From the proof of Lemma 4.9, we have E(F∞)[p∞] = 0. Hence the leftmost
term vanishes, which in turn implies that H1

Iw(F∞, TpE) injects into an
Ext0-term. But since the latter is a reflexive Zp[[G]]-module by [30, Corol-
lary 5.1.3], H1

Iw(F∞/F, TpE) must be torsion-free over Zp[[G]]. This com-
pletes the proof of the proposition. �

We now relate Conjectures 4.5 and 4.11.

Proposition 4.13. Suppose that (S1)–(S4) are satisfied. Assume that
X~s(E/F cyc) is torsion over Zp[[Γ]]. Then the Zp[[G]]-module X~s(E/F∞) is
torsion.

Proof. It follows from Lemma 4.9 that X~s(E/F∞)H is torsion over Zp[[Γ]].
Since H is abelian (and hence solvable), we may apply [9, Lemma 2.6] to
conclude that X~s(E/F∞) is torsion over Zp[[G]]. �

In what follows, we discuss a natural extension of the MH(G)-conjecture
formulated by Coates et al. in [4] for the signed Selmer groups in our set-
ting. Although we do not use it in subsequent calculations, it may be of
independent interest. See also [11, 25] on this subject.

Conjecture 4.14 (MH(G)-conjecture). For all choices of ~s, the module
X~s(E/F∞)/X~s(E/F∞)[p∞] is finitely generated over Zp[[H]].
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We give a partial evidence towards this conjecture (compare with [4,
Proposition 5.6] and [6, Theorem 6.4]). Again, we remind the reader that
the result is available in this context thanks to hypothesis (S4) and descent
results of Kim and Kitajima–Otsuki [17, 19].
Proposition 4.15. Suppose that (S1)–(S4) are satisfied. Assume that
X~s(E/F cyc) is finitely generated over Zp. Then the dual Selmer group
X~s(E/F∞) is finitely generated over Zp[[H]]. In particular, the MH(G)-
conjecture is valid.
Proof. It follows from Lemma 4.9 and the hypothesis of the proposition
that X~s(E/F∞)H is finitely generated over Zp. The conclusion thus follows
from Nakayama’s Lemma. �

5. Proofs of main results
This section is devoted to proving the main results of the article (The-

orems 1.1 and 1.2 in the introduction). Throughout, we retain the setting
and notation of Section 4. Furthermore, we fix a choice of ~s = (sv)v∈Σss ∈
{+,−}Σss .

For convenience, we identify Zp[[Γ]] ∼= Zp[[T ]] under a choice of a topo-
logical generator of Γ. We first prove our result on Akashi series of signed
Selmer groups (Theorem 1.1).
Theorem 5.1. Suppose that (S1)–(S4) are satisfied. Assume that the
Zp[[Γ]]-module X~s(E/F cyc) is torsion. Then X~s(E/F∞) is torsion over
Zp[[G]], whose Akashi series is well-defined and is given by

AkH(X~s(E/F∞)) = T r · charΓ(X~s(E/F cyc)),
where r is the number of primes of F cyc above p with nontrivial decompo-
sition group in F∞/F cyc and at which E has split multiplicative reduction.
Proof. The first assertion is precisely Proposition 4.13. Hence it follows from
Propositions 4.6 and 4.12 that H2(GΣ(F), E[p∞]) = 0 for F = F cyc, F∞.
Also, we have H0(K∞, E[p∞]) = 0 by the proof of Lemma 4.9. Hence the
spectral sequence

H i(H,Hj(GΣ(F∞), E[p∞])
)
⇒ H i+j(GΣ(F cyc), E[p∞])

degenerates to yield

(5.1) H i
(
H,H1(GΣ(F∞), E[p∞])

)
=
{
H1(GΣ(F cyc), E[p∞]), if i = 0,
0, if i ≥ 1.

On the other hand, it follows from Propositions 4.6 and 4.12 that we have
a short exact sequence
(5.2) 0 −→ Sel~s(E/F) −→ H1(GΣ(F), E[p∞]) −→

⊕
u∈Σ(F)

J~su(E/F) −→ 0
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for F = F cyc and F∞, and where as before, we write Ju(E/F) for the local
terms. The short exact sequence (5.2) for F = F cyc and the H-cohomology
long exact sequence associated to (5.2) when F = F∞ fit in the following
commutative diagram

0 // Sel~s(E/F cyc)

��

// H1(GΣ(F cyc), E[p∞]
)

��

//
⊕
v∈Σ(F cyc) J

~s
v (E/F cyc) −→ 0

g=⊕gv

��

0 // Sel~s(E/F∞)H // H1(GΣ(F∞), E[p∞]
)H //

(⊕
w∈Σ(F∞) J

~s
w(E/F∞)

)H
with exact rows.

As already seen in the proof of Lemma 4.9, the middle vertical map is an
isomorphism. By Proposition 3.8, gv is an isomorphism for v ∈ Σss(F cyc).
Since Zdp-extension is unramified outside p (cf. [12, Theorem 1]), it follows
that Hv = 1 for primes outside p, and so we also have that gv is an iso-
morphism for such prime. In conclusion, we have the following short exact
sequence

0 −→ Sel~s(E/F cyc) −→ Sel~s(E/F∞)H

−→
⊕

v∈Σo(F cyc)
dimHv≥1

H1(Hv, Dv(F∞)) −→ 0

by the snake lemma and the isomorphisms

H i
(
H,Sel~s(E/F∞)

)
∼=

⊕
v∈Σo(F cyc)
dimHv≥1

H i+1(Hv, Dv(F∞))

for i ≥ 1, coming from the H-cohomology long exact sequence associated
to (5.2) when F = F∞ (thanks to the vanishing of H i(H,H1(GΣ(F∞),
E[p∞])) as given by (5.1)). Via the duality

Hi(H,M) ∼= H i(H,M∨)∨,

the above calculations can be translated to yield

AkH(X~s(E/F∞)) = charΓ(X~s(E/F cyc)) ·
∏

v∈Σo(F cyc)
dimHv≥1

charΓ(Dv(F cyc
v )∨)

AkHv (Dv(F∞,w)∨) .

But by Lemma 3.1, AkHv (Dv(F∞,w)∨) = 1. Also, if v is a prime of good
ordinary reduction or non-split multiplicative reduction, then Dv(F cyc

v ) is
finite and so charΓ(Dv(F cyc

v )∨) = 1. Finally, if v is a prime of split multi-
plicative reduction, we have charΓ(Dv(F cyc

v )∨) = charΓ(Zp) = T . Thus, we
have proven our theorem. �
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Remark 5.2. In [7, 41], the Akashi series are computed under the validity
of theMH(G)-conjecture. However, as noted in [26, p. 284], one can perform
these computations under the weaker hypothesis that the Pontryagin dual
of the signed Selmer group over F∞ is a torsion Zp[[G]]-module.

We introduce one last hypothesis.
(S5) (a) The elliptic curve E has good reduction at all primes above p;

(b) For our fixed choice of ~s, we have 4 - |Fv : Qp| whenever sv = +.
We can now prove Theorem 1.2.

Theorem 5.3. Suppose that (S1)–(S5) are satisfied. If the p-primary
Selmer group Sel(E/F ) is finite, then χ(G,X~s(E/F∞)) is well-defined and
is given by

χ(G,X~s(E/F∞)) = |X(E/F )[p∞]| ×
∏
v∈Σ′

c(p)
v ×

∏
v∈Σo

(d(p)
v )2.

Here, c(p)
v is the highest power of p dividing |E(Fv) : E0(Fv)|, where E0(Fv)

is the subgroup of E(Fv) consisting of points with nonsingular reduction
modulo v, and d(p)

v is the highest power of p dividing |Ẽv(fv)|, where fv is
the residue field of Fv.

Proof. By [1, Theorem 2.3], we have that Sel~s(E/F cyc) is cotorsion over
Zp[[Γ]] and that

χ(Γ, X~s(E/F cyc)) = |X(E/F )[p∞]| ×
∏
v∈Σ′

c(p)
v ×

∏
v∈Σo

(d(p)
v )2.

In view of Proposition 2.6 and Theorem 5.1, it remains to show that the
G-Euler characteristics of X~s(E/F∞) is well-defined. Since G ∼= Zdp, it is
sufficient to show that Sel~s(E/F∞)G is finite by [38, part (1) of the theo-
rem on p. 3455]. Let Jv(E/F ) denote the quotient H1(Fv ,E[p∞])

E(Fv)⊗Qp/Zp
for v ∈ Σ.

Consider the following diagram
(5.3)

0 // Sel(E/F )

��

// H1(GΣ(F ), E[p∞]
)

��

//
⊕

v∈Σ Jv(E/F ) −→ 0

⊕lv
��

0 // Sel~s(E/F∞)G // H1(GΣ(F∞), E[p∞]
)G //

(⊕
w∈Σ(F∞) J

~s
w(E/F∞)

)G
with exact rows (the surjectivity of the first row follows from the finiteness
of Sel(E/F ); see [16, Proposition 3.8]). By a similar argument to that in
the proof of Lemma 4.9, the middle vertical map is an isomorphism. Hence
it remains to show that ker lv is finite for every v. For v ∈ Σ \ Σss, this
follows from [8, Propositions 4.1 and 4.5].
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Now let v ∈ Σss and w ∈ Σss(F∞) a prime above v. Writing Gv =
Gal(F∞,w/Fv) and A = Qp/Zp, we have the following diagram

0 // E(Fv)⊗A

av

��

// H1(Fv, E[p∞])

bv

��

// H
1(Fv ,E[p∞])
E(Fv)⊗A −→ 0

lv
��

0 //
(
E±(F∞,w)⊗A

)Gv // H1(F∞,w, E[p∞])Gv //

(
H1(F∞,w,E[p∞])
Ê±(F∞,w)⊗A

)Gv

with exact rows and that bv is an isomorphism. Consequently, av is injective
and ker lv ∼= coker av. Under (S5)(b), [17, Proposition 2.18] tells us that av
is an isomorphism, which in turn implies that lv is injective. The proof of
the theorem is now complete. �

We now prove the following vanishing criterion. When the elliptic curve
has good ordinary reduction at all primes above p, this was established
in [10, Proposition 4.12] and [26, Theorem 5.11]. Our result shows that the
analogue assertion holds even allowing supersingular reduction.

Corollary 5.4. Suppose that (S1)–(S5) are satisfied. Assume that the
Zp[[Γ]]-module X~s(E/F cyc) is torsion. Then AkH(X~s(E/F∞)) = 1 if and
only if Sel~s(E/F∞) = 0.

Proof. We shall freely use the notation of Theorem 5.3 in the proof. The
if direction is clear. Conversely, suppose that AkH(X~s(E/F∞)) = 1. By
Theorem 5.1, we have charΓ(X~s(E/F cyc)) = 1, which in turn implies that
Sel~s(E/F cyc) is finite. Following the proof of Theorem 5.3, we may show
that the restriction map

Sel(E/F )→ Sel~s(E/F cyc)Γ

is injective with finite cokernel. Thus, Sel(E/F ) is also finite and Theo-
rem 5.3 says that χ(G,X~s(E/F∞)) is well-defined.

Since AkH(X~s(E/F∞)) = 1, Proposition 2.6 gives X(E/F )[p∞] = 0,
c

(p)
v = 1 for every v ∈ Σ′ and |Ẽv(fv)| = 1 for every v ∈ Σo. As seen in the
proof of Theorem 5.3, one has ker lv = 0 for v ∈ Σss in the diagram (5.3).
By [8, Proposition 4.1] and that c(p)

v = 1, it follows that ker lv = 0 for
v ∈ Σ′. For v ∈ Σo, the equality |Ẽv(fv)| = 1 implies that Dv(Fv) = 0.
Since F∞,w is a pro-p extension of Fv for w above v, we have Dv(F∞,w) = 0
and hence ker lv = 0 for v ∈ Σo. Therefore, ker lv = 0 for every v ∈ Σ.
Thus, the diagram (5.3) gives the isomorphism

Sel(E/F )→ Sel~s(E/F∞)G.
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Recall that Sel(E/F ) is finite and X(E/F )[p∞] = 0. This implies that
Sel(E/F ) = 0. Consequently, Sel~s(E/F∞)G = 0. Since G is pro-p, this in
turn yields that Sel~s(E/F∞) = 0 as required. �

Finally, we end our article with the following observation, which is a
generalization of [1, Corollary 2.8].

Corollary 5.5. Assume that (S1)–(S5) are valid. Suppose that ~s is such
that Sel~s(E/F∞) = 0. Then Sel~t(E/F∞) = 0 for every ~t ∈ {+,−}Σss that
verifies (S5)(b).

Proof. Following from the proof of Theorem 5.3, the restriction map

Sel(E/F )→ Sel~s(E/F∞)G

is injective with finite cokernel. In particular, our hypothesis implies that
Sel(E/F ) = 0 and hence is finite. By the fact that χ(G,X~s(E/F∞)) = 1
and Theorem 5.3, we have X(E/F )[p∞] = 0, c(p)

v = 1 for every v ∈ Σ′ and
|Ẽv(fv)| = 1 for every v ∈ Σo. One may now proceed as in the proof of
Corollary 5.4 to show that Sel~t(E/F∞) = 0. �
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