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HARMONIC MEASURES ON NEGATIVELY CURVED
MANIFOLDS

by Yves BENOIST & Dominique HULIN

En l’honneur de Marcel Berger qui nous a initiés aux variétés pincées.

Abstract. — We prove that the harmonic measures on the spheres of a pinched
Hadamard manifold admit uniform upper and lower bounds.
Résumé. — Nous prouvons que les mesures harmoniques sur les sphères des

variétés Hadamard pincées admettent des bornes supérieures et infériueures uni-
formes.

1. Introduction

Let X be a Hadamard manifold. This means that X is a complete simply
connected Riemannian manifold of dimension k > 2 with non positive
sectional curvature KX 6 0.
For a point x in X and a radius R > 0, we let σx,R be the harmonic mea-

sure on the sphere S(x,R). We refer to Section 3.1 for a precise definition
of σx,R. The aim of these notes is to provide, under a pinching assumption,
uniform upper and lower bounds for the harmonic measures σx,R.

Theorem 1.1. — Let 0 < a < b and k > 2. There exist positive con-
stants M , N depending solely on a, b, k such that for any k-dimensional
Hadamard manifold X with pinched curvature −b2 6 KX 6 −a2, any
point x in X, any radius R > 0 and any angle θ ∈ [0, π/2], one has

(1.1) 1
M

θN 6 σx,R(Cθx) 6M θ
1
N

where Cθx stands for any cone with vertex x and angle θ.

Keywords: Harmonic function, Harmonic measure, Green function, Hadamard manifold,
Negative curvature.
2020 Mathematics Subject Classification: 53C43, 53C24, 53C35, 58E20.
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These inequalities (1.1) play a crucial role in the extension of the main
result of [4] from rank one symmetric spaces to Hadamard manifolds.

Indeed, using (1.1), we prove in [3] that any quasi-isometric map between
pinched Hadamard manifolds is within a bounded distance from a unique
harmonic map. The key point in (1.1) for this application is the fact that
the constants M and N do not depend on x nor R.

The proof of Theorem 1.1 relies on various technical tools of potential
theory on pinched Hadamard manifolds: the Harnack inequality, the barrier
functions constructed by Anderson and Schoen in [2], and upper and lower
bounds for Green functions due to Ancona in [1]. Related estimates are
available, like the one by Kifer–Ledrappier in [6, Theorem 3.1 and 4.1]
where (1.1) is proven for the sphere at infinity, or by Ledrappier–Lim in [7,
Proposition 3.9] where the Hölder regularity of the Martin kernel is proven.
Our approach also gives a non probabilistic proof of the Kifer–Ledrappier
estimates.

Here is the organization of this paper. In Section 2, we collect basic facts
on Hadamard manifolds and their harmonic functions. In Section 3, we
prove uniform estimates for the normal derivatives of Green functions. In
Section 4 and 5 we successively prove the upper bound and the lower bound
in (1.1). We postpone until Section 6 the proof of a few purely geometric
estimates on Hadamard manifolds that are needed in the argument.

2. Pinched Hadamard manifolds

In this chapter, we collect preliminary results on Hadamard manifolds
and their harmonic functions.

Let X be a Hadamard manifold with dimension k. For instance, the
Euclidean space Rk is a Hadamard manifold with zero curvature KX = 0,
and the real hyperbolic space Hk is a Hadamard manifold with constant
curvature KX = −1. We will say that X is pinched if there exist constants
a, b > 0 such that

−b2 6 KX 6 −a2 < 0.
For instance, any non-compact rank one symmetric space is a pinched

Hadamard manifold.

2.1. Laplacian and subharmonic functions

We introduce a few subharmonic functions on X, or on open subsets of
X, which will play the role of barriers in the following chapters.

ANNALES DE L’INSTITUT FOURIER



HARMONIC MEASURES ON NEGATIVELY CURVED MANIFOLDS 2953

When o is a point in X, we denote by ρo the distance function defined
by ρo(x) = d(o, x) for x in X. When F : X → R is a continuous function,
we denote by ∆F its Laplacian seen as a distribution. In local coordinates
(x1, . . . , xk) of X, we denote the coefficients of the metric tensor by gij , the
volume density reads as v :=

√
det(gij), and, when F is a smooth function,

its Laplacian is
∆F = v−1∂xi(vgij∂xjF ).

A real valued function F on X is harmonic if ∆F = 0, subharmonic if
∆F > 0 and superharmonic if ∆F 6 0.

Lemma 2.1. — Let X be a Hadamard manifold with dimension k, and
o ∈ X. The Laplacian of the distance function ρo satisfies

∆ρo > (k − 1)ρ−1
o .

If KX 6 −a2 < 0, one has

(2.1) ∆ρo > (k − 1) a coth(a ρo) .

If −b2 6 KX 6 0, one has

(2.2) ∆ρo 6 (k − 1) b coth(b ρo) .

These classical inequalities mean that the difference is a positive measure.
See [2, Section 2] and [4, Lemma 3.2].

The following corollary provides useful barriers on X.

Corollary 2.2. — Let X be a Hadamard manifold and o ∈ X.
(1) If KX 6 −a2 < 0 and 0 < m0 6 (k − 1) a, the function e−m0ρo is

superharmonic on X.
(2) If −b2 6 KX 6 0 andM0 > (k−1) b coth(b/4), the function e−M0ρo

is subharmonic on X rB(o, 1
4 ).

Proof. — For any smooth function f : [0,∞[→ R, one has

∆(f ◦ ρo) = f ′′ ◦ ρo + (f ′ ◦ ρo)∆ρo.

Therefore, one has for any τ > 0:

∆(e−τρo) = τ e−τρo (τ −∆ρo) .

(1). — Using (2.1), one gets:

∆(e−m0ρo) 6 (m0 − (k − 1) a coth(a ρo))m0 e
−m0ρo 6 0.

(2). — Using (2.2), one gets outside the ball B(o, 1
4 ):

∆(e−M0ρo) > (M0 − (k − 1) b coth(b ρo))M0 e
−M0ρo > 0. �

TOME 69 (2019), FASCICULE 7
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2.2. Anderson–Schoen barrier

Another very useful barrier is the following function u introduced by
Anderson and Schoen in [2].
We denote by ∂X the visual boundary of the Hadamard manifold X.

For each point w in X, this boundary is naturally identified with the set of
geodesic rays wξ starting at w. For 0 < θ 6 π

2 we denote by Cθwξ the closed
cone with axis wξ and angle θ: it is the union of all the geodesic rays wη
with vertex w and whose angle with the ray wξ is at most θ. Two geodesic
rays with vertex w are said to be opposite if their union is a geodesic i.e.
if their angle is equal to π.

Lemma 2.3. — Let X be a Hadamard manifold with −b2 6 KX 6
−a2 < 0. There exist constants 0 < ε0 6 1 and C0 > 1 such that for every
two opposite geodesic rays wξ+ and wξ− with the same vertex w ∈ X,
there exists a positive superharmonic function u on X such that:

u(x) > 1 for all x in the cone Cπ/2
wξ+(2.3)

u(x) 6 C0 e
−ε0d(w,x) for all x on the ray wξ−.(2.4)

This function u = uwξ+ will be called the Anderson–Schoen barrier for
the ray wξ+. The constants C0 and ε0 depend only on a, b and on the
dimension of X.
Proof. — See [2, Proof of Theorem 3.1]. We briefly sketch the construc-

tion of the function u. As shown in Figure 2.1, let o be the point at distance
1 from w on the geodesic ray wξ−.

w
xx

-

o

2p/3
p/6

u  =0
0

 =1
0

+

Figure 2.1. Construction of the Anderson–Schoen barrier.

Choose a non negative continous function u0 on X r o which is constant
on each ray with vertex o, and which is equal to 1 on the cone C2π/3

oξ+ and
is equal to 0 on the cone Cπ/6

oξ− as in Figure 2.1. Then, consider a function
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u1 obtained by smoothly averaging u0 on balls of radius 1. This function
u1 is defined as

u1(x) =
∫
X
χ(d(x, y))u0(y) dy∫
X
χ(d(x, y)) dy

,

where dy is the Riemannian measure on X and χ ∈ C∞(R) is a positive
even function whose support is [−1, 1]. Since χ is even this function u1
is of class C2. Moreover, this function u1 has the expected behavior (2.3)
and (2.4) and its second covariant derivative decays exponentially at infin-
ity. Therefore, using the same computation as in Corollary 2.2, one can find
explicit constants ε0 > 0 and C ′0 > 0 depending only on a, b and dimX

such that the function u := u1 + C ′0e
−ε0ρw is superharmonic. This is the

required function u. �

2.3. Harnack-Yau inequality

We state without proof a version of Harnack inequality due to Yau in [9].

Lemma 2.4. — Let X be a Hadamard manifold with −b2 6 KX 6 0.
Then, there exists a constant C1 = C1(k, b) such that for every open set
Ω ⊂ X and every positive harmonic function u : Ω→ ]0,∞[, one has

(2.5) ‖Dx log u‖ 6 C1 for all x in X with d(x, ∂Ω) > 1.

This lemma is true for any complete Riemannian manifold whose Ricci
curvature is bounded below. A short proof has been written by Peter Li
and Jiaping Wang in [8, Lemma 2.1].

3. Green functions

In this chapter, we collect various estimates for the Green functions on
Hadamard manifolds. We also explain why these Green functions are useful
to estimate harmonic measures.

3.1. Harmonic measures

We first recall the definition of harmonic measures.
SinceX is a Hadamard manifold, each exponential map expx : TxX → X

is a C∞-diffeomorphism (x ∈ X). In particular, any sphere S(x,R) with

TOME 69 (2019), FASCICULE 7
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R > 0 is a C∞-submanifold of X. Solving the Dirichlet problem on the ball
B(x,R) gives rise to a family of Borel probability measures σyx,R on S(x,R)
indexed by y ∈ B(x,R). These measures are called harmonic measures.
Indeed, for every continuous function f on the sphere S(x,R), there exists
a unique continuous function hf on the closed ball B(x,R) such that

(3.1) ∆hf = 0 in B̊(x,R) and hf = f on S(x,R).

The map f 7→ hf (y) is then a probability measure σyx,R on S(x,R). This
probability measure is defined by the equality

(3.2) hf (y) =
∫
S(x,R)

f(η) dσyx,R(η) ,

valid for any f ∈ C0(S(x,R)).
The harmonic measures that occur in Theorem 1.1 correspond to y = x,

namely one has σx,R := σxx,R. Our aim is to prove the bound (1.1) for these
measures σx,R.

Remark 3.1. — When X is the hyperbolic space Hk, or more generally
when X is a rank one symmetric space, the harmonic measure σx,R is a
multiple of the Riemannian measure Ax,R on the sphere S(x,R). But, for
a general Hadamard manifold X, these two measures need not be propor-
tional.

Remark 3.2. — When solving the Dirichlet problem on the visual com-
pactification X = X ∪ ∂X, one gets a family of probability measures
(σy∞)y∈X on ∂X which are also called harmonic measures. See [2, The-
orem 3.1].

3.2. Estimating the Green functions

Before begining the proof of Theorem 1.1, we recall the definition and a
few estimates for the Green functions.

For any closed ball B(x,R) in X and any point y in the interior B̊(x,R),
one denotes by Gyx,R the corresponding Green function. It is the unique
function on the ball B(x,R) which is continuous outside y and such that

(3.3) ∆Gyx,R = −δy in B̊(x,R) and Gyx,R = 0 on S(x,R).

When X is a pinched Hadamard manifold, one denotes by Gy∞ the Green
function on X corresponding to the point y ∈ X. It is the unique function
on X which is continuous outside y and such that

∆Gy∞ = −δy and lim
z→∞

Gy∞(z) = 0.

ANNALES DE L’INSTITUT FOURIER
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These Green functions Gyx,R and Gy∞ are non negative.
We now state various classical estimates for Green functions on Hada-

mard manifolds.
The first lemma provides a uniform estimate for a fixed radius R0.

Lemma 3.3. — Let X be a Hadamard manifold with −b2 6 KX 6 0.
For each R0 > 1, there exist constants C2 > c2 > 0 such that, for any x
in X:

(3.4) c2 6 G
x
x,R0

(z) 6 C2 for all z ∈ S(x, 1
2 ).

Proof. — This is a special case of [5, Theorem 11.4]. �

The second lemma, due to Ancona in [1], provides estimates for the Green
functions which are uniform in the radius R under pinching conditions.

Lemma 3.4. — Let X be a Hadamard manifold with −b2 6 KX 6
−a2 < 0.

(a) There exist constants C ′2 > c′2 > 0 such that for any R > 1, x in X
and y in B̊(x,R) with d(x, y) 6 R− 1, one has:

(3.5) c′2 6 G
y
x,R(z) 6 C ′2 for all z ∈ S(y, 1

2 ).

Similarly, one has for any y ∈ X:

c′2 6 G
y
∞(z) 6 C ′2 for all z ∈ S(y, 1

2 ).

(b) One can also choose constants c′′2 , C ′′2 such that, for any y in X:

c′′2 e
−M0d(y,z) 6 Gy∞(z) 6 C ′′2 e−m0d(y,z) for all z ∈ X rB(y, 1

2 ),

where m0 := (k − 1)a and M0 := (k − 1) b coth(b/4).

Here and in the sequel of this chapter, the constants ci and Ci only
depend on b and k = dimX, while c′i and C ′i only depend on a, b and k

(i = 2, 3, 4).
Proof of Lemma 3.4.
(a). — For the lower bound: by the maximum principle, one has Gyy,1 6

Gyx,R; then, use (3.4). For the upper bound: the maximum principle yields
Gyx,R 6 G

y
∞ and the bounds for Gy∞ are in [1, Proposition 7].

(b). — According to point a) and Corollary 2.2, both functions

z 7→ Gy∞(z)− c′2e−M0d(y,z) and z 7→ C ′2e
m0e−m0d(y,z) −Gy∞(z)

are positive on the sphere S(y, 1
2 ), go to zero at infinity, and are super-

harmonic on X r B(y, 1
2 ). Therefore, by the maximum principle, they are

positive on X rB(y, 1
2 ). See [1, Remark 2.1, p. 505] for more details. �

TOME 69 (2019), FASCICULE 7
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3.3. Bounding above the gradient of the Green functions

We explain why we are interested in bounding the gradient of the Green
functions, and prove such an upper bound.

Combining Equalities (3.1) and (3.3) with the Green formula, one gets
the equality

(3.6) hf (y) =
∫
S(x,R)

f(η)
∂Gyx,R
∂n

(η) dAx,R(η),

where ∂G
∂n := gradG.~n denotes the derivative of G in the direction of the

inward normal vector ~n to the sphere S(x,R), and where Ax,R denotes the
Riemannian measure on this sphere. Comparing with Formula (3.2), we get
the following expression for the harmonic measure:

(3.7) σyx,R =
∂Gyx,R
∂n

Ax,R .

The following two lemmas will provide a uniform upper bound for this
normal derivative when y and η are not too close.

The first lemma gives uniform estimates for a fixed radius R0.

Lemma 3.5. — Let X be a Hadamard manifold with −b2 6 KX 6 0.
For each R0 > 0, there exists C3 > 0 such that, for any x ∈ X and
η ∈ S(x,R0):

(3.8)
∂Gxx,R0

∂n
(η) 6 C3 .

The second lemma gives estimates which are uniform in the radius R
under a pinching condition.

Lemma 3.6. — Let X be a Hadamard manifold with −b2 6 KX 6
−a2 < 0. There exists C ′3 > 0 such that for R > 1, x ∈ X, y ∈ B̊(x,R),
η ∈ S(x,R):

(3.9)
∂Gyx,R
∂n

(η) 6 C ′3 as soon as d(y, η) > 1.

Proof of Lemmas 3.5 and 3.6. — The proofs of these two lemmas are the
same, except that they rely either on Lemma 3.3 or on Lemma 3.4. We will
only prove Lemma 3.6.
The strategy is to construct an explicit superharmonic function F on the

ball B(x,R) such that F (η) = 0, such that F > Gyx,R in a neighborhood of
η, and whose normal derivative at η is uniformly bounded.
As shown in Figure 3.1.A, we introduce the point y0 on the ray xη such

that d(x, y0) = R+ 1
3 . By construction one has d(η, y0) = 1

3 .

ANNALES DE L’INSTITUT FOURIER
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h

S(x,R)

S(y ,1/3)
0

S(y ,1/2)
0

0
yh

y

0
y

S(y ,1/2)
0

S(y ,1)
0

S(x,R)S(x,R-1/2)

x

y

x

(B)(A)

Figure 3.1. Proofs of uniform majoration and minoration for ∂Gy
x,R

∂n (η).

We let M0 = (k − 1) b coth(b/4), and we define

F (z) = C4(e−M0/3 − e−M0 d(y0,z))

for some constant C4 that we will soon determine. We first notice that,
according to Corollary 2.2,

(3.10) F is a positive superharmonic function on the ball B(x,R).

Moreover, since the point y ∈ B(x,R) satisfies d(y, η) > 1, since the angle
between the geodesic segments [ηy] and [ηy0] is obtuse, and since KX 6 0,
one must have d(y, y0) > 1. We now give a uniform bound for the Green
function Gyx,R on the sphere S(y0,

1
2 ). By the maximum principle, one has

(3.11) Gyx,R(z) 6 Gyx,R+1(z) for all z in B(x,R).

Moreover, using the bound (3.5) in Lemma 3.4, one gets

(3.12) Gyx,R+1(z) 6 C ′2 for all z in S(y, 1
2 ).

Combining (3.11) and (3.12) with the maximum principle, one infers that

Gyx,R(z) 6 C ′2 for all z in B(x,R) rB(y, 1
2 ).

In particular, one has

(3.13) Gyx,R 6 F on S(y0,
1
2 ) ∩B(x,R)

for the choice of the constant

C4 := C ′2
e−M0/3 − e−M0/2 .

Combining (3.10), (3.13) and the maximum principle it follows that, on the
grey zone of Figure 3.1.A:

Gyx,R 6 F on B(y0,
1
2 ) ∩B(x,R).

TOME 69 (2019), FASCICULE 7
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Therefore, one has the following inequality between the normal derivatives
of these functions at the point η:

∂Gyx,R
∂n

(η) 6 ∂F

∂n
(η) = C ′2 M0

1− e−M0/6 .

This proves the bound (3.9). �

3.4. Bounding below the gradient of the Green functions

We will also need a lower bound for the gradient of the Green functions.
The following two lemmas provide a uniform lower bound for the normal

derivative when y is not too far from η and not too close to the sphere.
The first lemma gives uniform estimates for a fixed radius R0.

Lemma 3.7. — Let X be a Hadamard manifold with −b2 6 KX 6 0.
For each R0 > 1, there exists c3 > 0 such that for x ∈ X, η ∈ S(x,R0),
one has

(3.14)
∂Gxx,R0

∂n
(η) > c3 .

The second lemma gives estimates which are uniform in the radius R
under a pinching condition.

Lemma 3.8. — Let X be a Hadamard manifold with −b2 6 KX 6
−a2 < 0. There exists c′3 > 0 such that for R > 1, x ∈ X, y ∈ B(x,R− 1),
η ∈ S(x,R):

(3.15)
∂Gyx,R
∂n

(η) > c′3 as soon as d(y, η) 6 4.

Proof of Lemmas 3.7 and 3.8. — The proofs of these two lemmas are the
same, except that they rely either on Lemma 3.3 or on Lemma 3.4. We will
only prove Lemma 3.8.
The strategy is as in Section 3.3. We construct a subharmonic function

f on the ball B(x,R) such that f(η) = 0, such that f 6 Gyx,R in a small
ball tangent at η to the sphere S(x,R), and whose normal derivative at η
is uniformly bounded below.
As shown in Figure 3.1.B, we introduce the point y0 on the ray xη such

that d(x, y0) = R − 1. By construction one has d(η, y0) = 1. We let again
M0 = (k − 1) b coth(b/4) and define

f(z) = c4(e−M0 d(y0,z) − e−M0) ,

ANNALES DE L’INSTITUT FOURIER
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for a constant c4 that we will soon determine. We first notice that, according
to Lemma 2.2,

(3.16) f is subharmonic outside B(y0,
1
2 ) and f ≡ 0 on S(y0, 1).

We now give a uniform lower bound for the Green function Gyx,R(w) for all
points w in S(x,R − 1

2 ) ∩B(y0, 1). Since d(x, y) 6 R − 1, we observe that
it follows from Lemma 3.4 that, for all z in S(y, 1

2 ):

Gyx,R(z) > c′2.

For w ∈ S(x,R− 1
2 )∩B(y0, 1), pick z ∈ S(y, 1

2 ) on the segment [yw]. Since
the segment [zw] is included in the ball B(x,R− 1

2 ) and has length at most
6, it follows from Harnack inequality (2.5), applied to X with the distance
2d, that:

Gyx,R(w) > c′2 e−12C1 .

This means that

(3.17) Gyx,R > f on S(x,R− 1
2 ) ∩B(y0, 1)

for the choice of the constant

c4 := c′2 e
−12C1

e−M0/2 − e−M0
.

Combining (3.16), (3.17) and the maximum principle, one gets the bound
on the grey zone of Figure 3.1.B

Gyx,R > f on B(y0, 1) rB(x,R− 1
2 ).

Therefore, one has the following inequality between the normal derivatives
at the point η:

∂Gyx,R
∂n

(η) > ∂f

∂n
(η) = c′2 M0 e

−12C1

eM0/2 − 1
.

This proves the bound (3.9). �

4. Upper bound for the harmonic measures

The aim of this chapter is to prove the upper bound in (1.1).
We recall that X is a k-dimensional Hadamard manifold satisfying the

pinching condition −b2 6 KX 6 −a2 < 0. Let x be a point in X. We will
denote by ξ a point on the sphere S(x,R), by xξ the ray with vertex x

that contains ξ, and by Cθxξ the cone with axis xξ and angle θ. We want to
bound

(4.1) σxx,R(Cθxξ) 6Mθ1/N

TOME 69 (2019), FASCICULE 7
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where the constantsM andN depend only on a, b and k. It is not restrictive
to assume that b = 1. We will distinguish three cases, letting

θR := 10−3 e−(R−2) :

• Bounded radius: R 6 2.
• Large angle: R > 2 and θ > θR.
• Small angle: R > 2 and θ 6 θR.

Without loss of generality, we may assume that θ 6 10−3.

4.1. Upper bound for a bounded radius

We prove (4.1) when R 6 2.
More precisely, when R 6 2, we will prove the upper bound (4.1) under

the weaker pinching condition −1 6 KX 6 0. This allows us to multiply
the metric by a ratio 2/R, while preserving this pinching condition. Hence
we can assume that the radius is R0 = 2. Using the expression (3.7) for the
density of the harmonic measure, the bound (3.8) for this density and the
bound (6.7) for the volume Ax,R0(Cθxξ), we get

σxx,R0
(Cθxξ) =

∫
Cθ
xξ

∂Gxx,R0

∂n
(η) dAx,R0(η) 6 C3 Ax,R0(Cθxξ) 6 C3 Vk θ

k−1.

This proves (4.1) when R 6 2.

4.2. Upper bound for a large angle

We prove (4.1) when R > 2 and θ > θR.
As shown in Figure 4.1.A, we introduce the point w on the ray xξ such

that d(x,w) = r, where r is given by

(4.2) θ = 10−3 e−r.

Since θR 6 θ 6 10−3, one has 0 6 r 6 R−2. In particular, the point w is
at distance at least 2 from every point η of the sphere S(x,R). According
to Lemma 6.1, and since 4 er θ 6 π

2 , one has

Cθxξ ∩ S(x,R) ⊂ Cπ/2
wξ ∩ S(x,R) .

We now introduce the Anderson–Schoen barrier u = uwξ for the ray wξ, as
constructed in Lemma 2.3. Since u is superharmonic, with u > 0 everywhere

ANNALES DE L’INSTITUT FOURIER
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Figure 4.1. Majoration of σxx,R(Cθxξ) for a large angle θ, and for a small
angle θ.

and u > 1 on the cone Cπ/2
wξ , one infers from the maximum principle that

one has for all y in B̊(x,R):

σyx,R(Cθxξ) 6 σ
y
x,R(Cπ/2

wξ ) 6 u(y).

Applying this equality with y = x, remembering the exponential decay (2.4)
of the Anderson–Schoen barrier on the ray wx and using (4.2), one gets:

σxx,R(Cθxξ) 6 u(x) 6 C0e
−ε0r 6 103ε0 C0 θ

ε0 .

This proves (4.1) when R > 2 and θ > θR.

4.3. Upper bound for a small angle

We prove (4.1) when R > 2 and θ 6 θR. The argument will combine
both the arguments used in Sections 4.1 and 4.2.
As shown in Figure 4.1.B, we introduce the point w on the ray xξ such

that d(x,w) = R− 2, and the angle ϕ given by

(4.3) ϕ := 4 eR−2 θ.

Since θ < θR, one has ϕ 6 1/100. According to Lemma 6.1, one has

Cθxξ ∩ S(x,R) ⊂ Cϕwξ ∩ S(x,R) .

First step. — We estimate the measure of the cone Cϕwξ for the harmonic
measure σyx,R at a point y within a bounded distance from ξ.

Lemma 4.1. — LetX be a Hadamard manifold with−1 6 KX 6 −a2 <

0. Keep the above notation x ∈ X, ξ ∈ S(x,R), w ∈ [xξ] with d(w, ξ) = 2
and ϕ 6 1/100 as in Figure 4.1.B. Then, there exists a constant C5 > 0
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depending only on a and k = dimX such that for all y in B̊(x,R)∩S(ξ, 2)
one has

(4.4) σyx,R(Cϕwξ) 6 C5 ϕ
k−1 .

Proof of Lemma 4.1. — One uses again the expression (3.7) for the den-
sity of the harmonic measure. Since ϕ 6 1/100, it follows from Lemma 6.3.a
that, for all η in Cϕwξ∩S(x,R), one has d(ξ, η) 6 1 hence d(y, η) > 1. There-
fore the bound (3.9) is valid at the point η. Hence one estimates

σyx,R(Cϕwξ =
∫
Cϕ
wξ

∂Gyx,R
∂n

(η) dAx,R(η) 6 C ′3 Ax,R(Cϕwξ) 6 C
′
3 V
′
k ϕ

k−1 ,

thanks to the bound (6.9) for the volume Ax,R(Cϕwξ). �

Second step. — We will need again the Anderson–Schoen barrier u =
uwξ associated to the geodesic ray wξ (see Lemma 2.3). Since u is super-
harmonic, with u > 0 everywhere and u > 1 on the sphere S(ξ, 2) ⊂ Cπ/2

wξ ,
it follows from (4.4) and the maximum principle that one has, for every
point y in B̊(x,R) r B̊(ξ, 2):

σyx,R(Cθxξ) 6 σ
y
x,R(Cϕwξ) 6 C5 ϕ

k−1 u(y) 6 C5 ϕ
ε0 u(y),

where we have used the constant ε0 6 1 from Lemma 2.3. Applying this
equality with y = x, remembering again the exponential decay (2.4) of the
Anderson–Schoen barrier on the ray wx and using (4.3), one finally gets:

σxx,R(Cθxξ) 6 C5 ϕ
ε0 u(x) 6 C0C5 ϕ

ε0 e−ε0(R−2) 6 C0C5 4ε0 θε0 .

This proves (4.1) when R > 2 and θ 6 θR.

5. Lower bound for the harmonic measures

The aim of this chapter is to prove the lower bound in (1.1).
The structure of this chapter is very similar to the structure of Section 4.

We recall that X is a k-dimensional Hadamard manifold satisfying the
pinching condition −b2 6 KX 6 −a2 < 0, x is a point on X, ξ is a point
on the sphere S(x,R) and Cθxξ is the cone with axis xξ and angle θ. We
want to prove that

(5.1) σxx,R(Cθxξ) >
1
M
θN ,

where the constantsM andN depend only on a, b and k. It is not restrictive
to assume that b = 1. Fix a length l0 > 2 such that

(5.2) 1
2 > C0 e

−ε0(l0−1) .
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We will distinguish three cases, letting

θ′R = 2πe−a(R−l0) :

• Bounded radius: R 6 l0.
• Large angle: R > l0 and θ > θ′R.
• Small angle: R > l0 and θ 6 θ′R.

5.1. Lower bound for a bounded radius

We prove (5.1) when R 6 l0.
As in Section 4.1, when R 6 l0, we will prove the lower bound (5.1) under

the weaker pinching condition −1 6 KX 6 0. This allows us to multiply the
distance by a ratio l0/R, while preserving this pinching condition. Hence
we can assume that the radius is R0 = l0. Using the expression (3.7) for
the density of the harmonic measure, the bound (3.14) for this density, and
the bound (6.7) for the volume Ax,R0(Cθxξ), one estimates

σxx,R0
(Cθxξ) =

∫
Cθ
xξ

∂Gxx,R0

∂n
(η) dAx,R0(η) > c3 Ax,R0(Cθxξ) > c3 vk θ

k−1.

This proves (5.1) when R 6 l0.

5.2. Lower bound for a large angle

We prove (5.1) when R > l0 and θ > θ′R.
As shown in Figure 5.1.A, we introduce the point w on the ray xξ such

that d(x,w) = r, where r is given by

(5.3) θ = 2π e−ar.

Since θ′R 6 θ 6 π/2, one has 0 6 r 6 R− l0.
In particular the point w is at distance at least l0 from every point η on

the sphere S(x,R). Since 1
4 e

ar θ > π/2, it follows from Lemma 6.1 that

Cθxξ ∩ S(x,R) ⊃ Cπ/2
wξ ∩ S(x,R) .

First step. — We first estimate the measure of the cone Cθxξ for the
harmonic measure σvx,R at a point v suitably chosen on the ray xξ.

Here we need the Anderson–Schoen barrier u = uwx for the ray wx i.e.
the ray opposite to wξ. Since u is superharmonic, with u > 0 everywhere
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Figure 5.1. Minoration of σxx,R(Cθxξ) for a large angle θ, and for a small
angle θ.

and u > 1 on the cone Cπ/2
wx , it follows from the maximum principle that,

for all y in B̊(x,R):

σyx,R(Cθxξ) > σ
y
x,R(Cπ/2

wξ ) = 1− σyx,R(Cπ/2
wx ) > 1− u(y).

Applying this estimate to the point y = v on the ray wξ with d(w, v) =
l0−1 and remembering the exponential decay (2.4) of the Anderson–Schoen
barrier on the ray wξ, one gets using (5.2) that:

(5.4) σvx,R(Cθxξ) > 1− u(v) > 1− C0e
−ε0(l0−1) >

1
2 .

Second step. — We now apply the Harnack inequality (2.5) to the pos-
itive harmonic function y 7→ σyx,R(Cθxξ) on the ball B̊(x,R). Since the seg-
ment [xv] stays at a distance at least 1 from the sphere S(x,R) and has
length bounded by r + l0, it follows from (5.3) and (5.4) that:

σxx,R(Cθxξ) > σvx,R(Cθxξ)e−C1l0−C1r >
1
2e
−C1l0

(
θ

2π

)C1/a

.

This proves (5.1) when R > l0 and θ > θ′R.

5.3. Lower bound for a small angle

We prove (5.1) when R > l0 and θ 6 θ′R. The argument will be similar
to those in Section 4.3.
As shown in Figure 5.1.B, we introduce the point w on the ray xξ such

that d(x,w) = R− 2. Let ϕ be the angle given by

(5.5) ϕ := 10−3 ea(R−l0) θ.
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Since θ 6 θ′R, one has ϕ 6 1
100 . Moreover, the definition of ϕ ensures that

1
4e
a(R−2)θ > ϕ, so that Lemma 6.1 ensures that:

Cθxξ ∩ S(x,R) ⊃ Cϕwξ ∩ S(x,R) .

First step. — We estimate the measure of the cone Cϕwξ for the harmonic
measure σwx,R seen from the point w.

Lemma 5.1. — LetX be a Hadamard manifold with−1 6 KX 6 −a2 <

0. Keep the above notation x ∈ X, ξ ∈ S(x,R), w ∈ [xξ] with d(w, ξ) = 2
and ϕ 6 1/100 as in Figure 5.1.B. Then, there exists a constant c5 > 0
depending only on a and k = dimX such that

(5.6) σwx,R(Cϕwξ) > c5 ϕ
k−1 .

Proof of Lemma 5.1. — Once again, we use the expression (3.7) for
the density of the harmonic measure. Since ϕ 6 1/100, it follows from
Lemma 6.3.a that one has d(ξ, η) 6 1 for any η in Cϕwξ ∩ S(x,R),. There-
fore one has 2 6 d(w, η) 6 3 and the bound (3.15) with y = w is valid for
this density. Thus

σwx,R(Cϕwξ) =
∫
Cϕ
wξ

∂Gwx,R
∂n

(η) dAx,R(η) > c′3 Ax,R(Cϕwξ) > c
′
3 v
′
k ϕ

k−1 ,

thanks to the bound (6.9) for the volume Ax,R(Cϕwξ). �

Second step. — We apply again the Harnack inequality (2.5) to the pos-
itive harmonic function y 7→ σyx,R(Cϕwξ) on the ball B̊(x,R). Since the
segment [xw] stays at distance at least 1 from the sphere S(x,R) and has
length smaller than R, this gives, using (5.6):

σxx,R(Cθxξ) > σxx,R(Cϕwξ) > σ
w
x,R(Cϕwξ)e

−C1R > c5 ϕ
k−1e−C1R .

Increasing C1, one may assume C1/a > k. Hence one gets, using also (5.5):

σxx,R(Cθxξ) > c′5 ϕC1/a

(
θ

ϕ

)C1/a

= c′5 θ
C1/a ,

with c′5 := 10−3C1/ae−C1l0c5. This proves (5.1) when R > l0 and θ 6 θ′R.

6. Geometry of Hadamard manifold

This last chapter is self-contained. We collect here two basic geometric
estimates in Hadamard manifolds that were used in the previous chapters.
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6.1. Geometry of triangles

We first compare the angles in a triangle.
We will denote by H2(−a2) the real hyperbolic plane with curvature −a2.

Lemma 6.1. — Let X be a Hadamard manifold with −b2 6 KX 6
−a2 < 0. Let r, R, L be the side lengths of a geodesic triangle in X and
let θ, ϕ be the two angles as in Figure 6.1. Assume that 0 6 ϕ 6 π/2 and
bL > 2. Then one has the following angle estimates

(6.1) 1
4 e

ar 6
ϕ

θ
6 4 ebr.

R

q

L

r

j

r

j

R L

qb

b

b

h

l
b

r

j

R L

qa

a

a

h

l
a

Figure 6.1. A triangle in X and its comparison triangles in H2(−a2)
and H2(−b2).

Proof. — The proof relies on comparison triangles in the hyperbolic
planes H2(−a2) and H2(−b2) i.e. the triangles with same side lengths r, R
and L.
We denote by θa and ϕa the angles and by ha, la the lengths seen in

H2(−a2) as in Figure 1. We use similar notations in H2(−b2). The pinching
assumption tells us that

(6.2) θb 6 θ 6 θa and ϕa 6 ϕ 6 ϕb.

We will use the following identities for the right triangle in H2(−a2) with
side lengths L, la and ha:

(6.3) sinh(aL) sinϕa = sinh(aha) and cosh(aL) = cosh(ala) cosh(aha).

Taking the ratio of these two equalities and repeating this computation for
the right triangle with side lengths R, r + la and ha, one gets

(6.4) sinϕa
sin θa

= tanh(aR)
tanh(aL)

cosh(ar + ala)
cosh(ala) .

We will also use the easy inequalities, valid for any t > 0 and 0 6 α 6 π
2 :

(6.5) 1
2e

t 6 cosh(t) 6 et and 2
π
α 6 sinα 6 α.
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We first prove the lower bound in (6.1). We notice that (6.2) ensures that
the angle ϕa is acute, so that the angle θa is also acute. Using (6.2), (6.4),
(6.5) and the bound L 6 R, we obtain

ϕ

θ
>
ϕa
θa
>

2
π

sinϕa
sin θa

= 2
π

tanh(aR)
tanh(aL)

cosh(ar + ala)
cosh(ala) >

ear

π
>

1
4 e

ar.

We now prove the upper bound in (6.1) when the angle ϕb is acute. The
computation is similar, using also the assumption bL > 2:

ϕ

θ
6
ϕb
θb
6
π

2
sinϕb
sin θb

= π

2
tanh(bR)
tanh(bL)

cosh(br + blb)
cosh(blb)

6
πebr

tanh(2) 6 4 ebr.

Finally, we prove the upper bound in (6.1) when the angle ϕb is obtuse.
We notice that since the angle ϕ is acute, one has r 6 R and therefore

(6.6) 2hb > R+ L− r > L ,

so that the hypothesis ensures that bhb > 1. Similar computations using
equalities analogous to (6.3) now yield
ϕ

θ
6

π

2θb
6
π

2
1

sin θb
= π

2
tanh(bR)
tanh(bhb)

cosh(br − blb) 6
πebr

2 tanh(1) 6 4 ebr.

Note that the constants in (6.1) are not optimal. �

6.2. Volume estimates

We now estimate the Riemannian measures on spheres.
As before, for x in X and R > 0, we denote by Ax,R the Riemannian

measure of the sphere S(x,R).
The first lemma provides volume estimates for a fixed radius R0 > 1.

Lemma 6.2. — Let X be a Hadamard manifold with −1 6 KX 6 0
and fix R0 > 1. There exist constants Vk > vk > 0 depending only on
k = dimX and R0 and such that, for every x in X, ξ in S(x,R) and
ϕ 6 π

2 , one has:

(6.7) vk ϕ
k−1 6 Ax,R0(Cϕxξ) 6 Vk ϕ

k−1.

Proof. — Let x ∈ X. Because of the pinching assumption, the exponen-
tial map expx : TxX → X is a diffeomorphism and its restriction to the
ball B(0, R0) ⊂ TxX induces a diffeomorphism Φx : B(0, R0) → B(x,R0)
whose derivatives are uniformly bounded

(6.8) ‖DΦx‖ 6 eR0 and ‖DΦ−1
x ‖ 6 1 .

The bounds (6.7) follow. �
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The second lemma provides volume estimates which are uniform in R.

Lemma 6.3. — Let X be a Hadamard manifold with −1 6 KX 6 0. Let
R > 2, x ∈ X, ξ ∈ S(x,R), w ∈ [xξ] with d(w, ξ) = 2 and ϕ 6 ϕ0 := 1/100
as in Figure 6.2.

(a) One has the inclusion Cϕwξ ∩ S(x,R) ⊂ B(ξ, 1).
(b) There exist constants V ′k > v′k > 0 depending only on k = dimX

such that

(6.9) v′k ϕ
k−1 6 Ax,R(Cϕwξ) 6 V

′
k ϕ

k−1.

xw

S(x,R)

x

S(w,1)

j

h

y

n

Figure 6.2. Estimation of the volume Ax,R(Cϕwξ).

Proof.
(a). — Let η be a point on S(x,R) such that the angle ϕ between wξ and

wη is bounded by 1/100. The triangle (w, ξ, η) also satisfies the following
properties:

d(w, ξ) = 2, d(w, η) > 2, and the angle between ξw and ξη is acute.

Since −1 6 KX 6 0, the comparison triangle (w′, ξ′, η′) in H2 satisfies
the same properties. A direct computation in H2 gives then d(η′, ξ′) 6 1.
Therefore one also has d(η, ξ) 6 1.
(b). — As shown in Figure 6.2, since X is a Hadamard manifold, the

intersection S(x,R) ∩ Cϕ0
wξ is a hypersurface that can be parametrized in

polar coordinates with origin w: there exists a C∞ diffeomorphism

Ψw : S(w, 1) ∩ Cϕ0
wξ −→ S(x,R) ∩ Cϕ0

wξ

ν 7−→ η = Ψw(ν) = expw(ρν exp−1
w ν) ,

where ρ is a C∞ function on S(w, 1)∩Cϕ0
wξ with values in the interval [2, 3].

Since X is a Hadamard manifold, at every point of this hypersurface
S(x,R) ∩ Cϕ0

wξ the angle ψ between the normal vector to S(x,R) and the
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radial vector seen from w is at most ϕ0. Therefore, using Jacobi fields, one
checks that the derivatives of Ψw and its inverse are uniformly bounded

‖DΨw‖ 6
e2

cos(ϕ0) 6 10 and ‖DΨ−1
w ‖ 6 1 .

Therefore, one has

Aw,1(Cϕwξ) 6 Ax,R(Cϕwξ) 6 10k−1Aw,1(Cϕwξ)

The bounds (6.9) now follow from (6.7). �
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