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MODULI SPACES FOR LINEAR DIFFERENTIAL
EQUATIONS AND THE PAINLEVÉ EQUATIONS

by Marius VAN DER PUT & Masa-Hiko SAITO (*)

Abstract. — A systematic construction of isomonodromic families of connec-
tions of rank two on the Riemann sphere is obtained by considering the analytic
Riemann–Hilbert map RH : M → R, where M is a moduli space of connec-
tions and R, the monodromy space, is a moduli space for analytic data (i.e., or-
dinary monodromy, Stokes matrices and links). The assumption that the fibres of
RH (i.e., the isomonodromic families) have dimension one, leads to ten moduli
spacesM. The induced Painlevé equations are computed explicitly. Except for the
Painlevé VI case, these families have irregular singularities. The analytic classifi-
cation of irregular singularities yields explicit spaces R, which are families of affine
cubic surfaces, related to Okamoto–Painlevé pairs. A weak and a strong form of
the Riemann–Hilbert problem is treated. Our paper extends the fundamental work
of Jimbo–Miwa–Ueno and is related to recent work on Painlevé equations.

Résumé. — Une construction systématique des familles isomonodromiques de
connections de rang 2 sur la sphère de Riemann est obtenue de l’application ana-
lytique de Riemann–Hilbert RH : M → R, où M est un espace de modules de
connections et R est un espace de modules pour les données analytiques (i.e.,
la monodromie usuelle, les matrices de Stokes et les “links”). La condition que les
fibres de RH (i.e., les familles isomonodromiques) sont de dimension un mène à dix
espaces de modules M. L’équation induite de Painlevé est calculée explicitement.
À l’exception du cas Painlevé VI, les familles ont des singularités irrégulières. Uti-
lisant la classification des singularités irrégulières, on obtient les espaces R comme
familles explicites de surfaces affines cubiques liées aux pairs de Okamoto–Painlevé.
Une forme faible et une forme forte du problème de Riemann–Hilbert sont démon-
trées. Notre article est une extension du travail fondamental de Jimbo-Miwa-Ueno
et est en relation avec des travaux récents sur les équations de Painlevé.

Keywords: Moduli space for linear connections, irregular singularities, Stokes matrices,
monodromy spaces, isomonodromic deformations, Painlevé equations.
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Introduction

The theme of this paper is a systematic construction of the ten isomon-
odromic families of connections of rank two on P1 inducing Painlevé equa-
tions. They are obtained by considering the complex analytic Riemann–
Hilbert morphism RH : M → R from a moduli space M of connections
to a categorical moduli space of analytic data (i.e., ordinary monodromy,
Stokes matrices and links) R, here called the monodromy space. The fi-
bres of RH are the isomonodromic families. One requires that an isomon-
odromic family has dimension 1, since it is then (locally) parametrized by
one variable t and some combination q(t) of the entries of the connection is
a potential solution of some second order Painlevé equation. This condition
leads to the ten families. Our method extends the work of Jimbo, Miwa and
Ueno [17, 16], since we allow all possible irregular singularities including
ramification and resonance.

There is a natural morphism R→ P, where P is a parameter space build
from traces of matrices. For each of the ten families, the morphism R→ P
turns out to be a family of affine cubic surfaces with three lines at infinity.
We will give explicit equations of R for these ten families in § 2 and § 3.
The equation for Painlevé VI is classical [5, 14], and the equations for the
other nine families seem to be new.

Since many aspects of the well known family with four regular singulari-
ties leading to Painlevé VI, has been studied in great detail ([2, 12, 13, 11,
14]), our emphasis will be on families with irregular singularities. Of the
nine families with irregular singularities, six are again classical [16, 4]. The
three remaining ones were also recently discovered in [21, 20]. The corre-
sponding Painlevé equations appear already in [27] from the viewpoint of
the Okamoto–Painlevé pairs.

The moduli spaces of connectionsM are strongly related to the Okamo-
to–Painlevé pairs (S, Y ) of non fibre type [27, 25]. The latter determine
uniquely each type of Painlevé equation [25]. We will give a brief description
of this relation.

The surface S is the blow up of nine points (allowing for infinitely near
points) in P2 (or equivalently eight points in the Hirzebruch surface Σ2)
which lie on an effective anti-canonical divisor of P2 or Σ2. Let Y be the
unique effective anti-canonical divisor of S. The Okamoto–Painlevé condi-
tion on Y implies that Y has the same configuration as a degenerate elliptic
curve in the classification by Kodaira–Néron [22, 27, 25].

ANNALES DE L’INSTITUT FOURIER
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The configuration of the irreducible components of Y for the Okamoto–
Painlevé pairs are given by the eight extended Dynkin diagrams

D̃4, D̃5, D̃6, D̃7, D̃8, Ẽ6, Ẽ7, Ẽ8.

Each Dynkin diagram gives rise to a (uni)versal global family provided with
a unique vector field which induces a Painlevé equation [25].

One conjectures that a relative compactification of each of the ten fami-
lies of connections π :M→ T ×Λ with parameter space T ×Λ, is isomor-
phic to one of the above global (uni)versal families. As a consequence of this
conjecture, the fibres of π are the complement S\Y for a certain Okamoto–
Painlevé pair (S, Y ) of the given type. The conjecture has been proven for
Okamoto–Painlevé pairs of type D̃4, which corresponds to Painlevé VI.
(For the construction of the moduli spaces of linear connections with only
regular singularities and the Riemann-Hilbert correspondence for these, see
[12, 13, 10]).

There is an explicit analytic morphism Λ → P, given by exponentials,
which is compatible with the Riemann–Hilbert morphism RH :M → R.
The monodromy space R → P can have, as fibre, a singular (affine) cubic
surface Rp. As is conjectured and proved for the PVI case, the Riemann–
Hilbert morphism yields an analytic resolution (S \Y )→ Rp. The singular
points of type A1, A2, A3, D4 on the cubic surface yield 1, 2, 3 and 4 excep-
tional curves on S\Y which are called Riccati curves. The latter are related
to Riccati solutions of the corresponding Painlevé equation. Since the Ric-
cati curves on the Okamoto–Painlevé pairs are known ([26]), one can now
link each of the ten monodromy spaces R to an Okamoto–Painlevé pair
and an extended Dynkin diagram (see Table 2.1). We remark, as done in
[21], that for the case D̃6 there are two types of isomonodromic families
corresponding to PVdeg and PIII(D6). The same holds for Ẽ7.

In Section 4, a Zariski open set of the moduli spaceM of connections is
described for each of the ten families. The corresponding isomonodromic
equation produces an explicit Painlevé equation, confirming the statements
of Table 2.1.

The contents of this paper is the following. The first section deals with
the formal and analytic data attached to a differential moduleM over C(z).
The connections on P1 inducing given formal and analytic data are studied.
A weak and a strong form of the Riemann-Hilbert problem is treated. This
result is also obtained by [3] in a slightly different setting.

In Section 2, “good” families of connections on P1 are described and
studied. The monodromy space R is defined as a categorical quotient of
the analytic data.

TOME 59 (2009), FASCICULE 7



2614 Marius VAN DER PUT & Masa-Hiko SAITO

Then the ten families where the fibres of RH : M → R have dimen-
sion 1 are computed. The third Section contains the computation of the
ten monodromy spaces R→ P and the singularities of the fibres.

A theory of apparent singularities q is developed in Section 4. This is
essential for the computation of the second order equation q′′ = R(q, q′, t)
(where R is a rational function of q′, q, t) of the Painlevé type and of a
corresponding symplectic structure with canonical coordinates p, q and a
Hamiltonian equation. We obtain explicit Hamiltonian systems and explicit
Painlevé equations for the nine families (see Subsections 4.3–4.11) which are
natural from the view point of the Okamoto–Painlevé pairs. The explicit
forms of equations depend on the choice of a cyclic vector, the choice of the
parameter t and choices for the constants in the monodromy space. Though
we will not tune up these data such that our explicit forms coincide with
the classical Painlevé equations as in [7, 23, 16], one can transform one to
the other by some birational transformation of coordinates. Most of these
computations in Section 4 were made using Mathematica.

1. Singularities of a differential module

1.1. Summary

Let M be a differential module over K = C(z). The formal data (gener-
alized local exponents, formal monodromy), and the analytic data (mon-
odromy, Stokes matrices, links) of M are described. The weak form of the
Riemann-Hilbert problem for arbitrary singularities has the positive an-
swer:

Theorem 1.1. — For given formal and analytic data, there exists a
unique (up to isomorphism) differential module M inducing these data.

A strong form of the Riemann–Hilbert problem is:

Theorem 1.2. — Suppose that M is irreducible and has at least one
(regular or irregular) singular point which is unramified. Then there is a
connection (V,∇) on P1 representing M , such that V is free (i.e., a direct
sum of copies of OP1) and the poles of the connection ∇ have the minimal
order derived from the Katz invariant.

Results concerning invariant lattices are developed for the proof of The-
orem 1.2. That the strong Riemann–Hilbert problem has a negative answer
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if all the singularities of M are ramified, is shown by families of examples
related to Painlevé equations.

Bolibruch’s work [1] on the strong form of the Riemann–Hilbert prob-
lem is extended in the paper [3] to the case of irregular singularities. Our
Theorems 1.1 and 1.2 clarify and supplement [3], by introducing links.

For the convenience of the reader, the useful compact way to describe
the formal and the analytic singularities of differential modules (see [24] for
more details) is explained in the next subsections. Explicit examples are
given which will be used in the calculations for the monodromy spaces and
the Painlevé equations.

1.2. The formal classification

This is the classification of differential modules M = (M, δ) over the
differential field of the formal Laurent series C((t)) (here t is the local
parameter) , due to M. Hukuhara [9] and H. Turrittin [30]. For notational
convenience we will use the derivation t ddt on C((t)). The C-linear map
δ :M →M has, by definition, the property δ(fm) = tdfdt ·m+ f · δ(m) for
f ∈ C((t)), m ∈M .

The module M is called regular singular (this includes regular) if there
is an invariant lattice Λ ⊂ M , i.e., Λ ⊂ M is a free C[[t]]-submodule
containing a basis of M such that δ(Λ) ⊂ Λ. A regular singular M has a
basis e1, . . . , ed such that the vector spaceW := ⊕di=1Cei is invariant under
δ and such that the distinct eigenvalues λ1, . . . , λs (with 1 6 s 6 d) of δ
acting on W satisfy λi − λj 6∈ Z for i 6= j. Using this basis the operator
δ on M obtains the form t ddt + A, where A is the matrix of δ operating
on W . The λi are called the local exponents. These are only unique up to
integers. The (formal) monodromy matrix is (up to conjugation) e2πiA.

Clearly Λ := ⊕di=1C[[t]]ei is an invariant lattice. The non resonant case
is defined by s = d, i.e., the matrix A is diagonalizable and its eigenvalues
λ1, . . . , λd satisfy λi − λj 6∈ Z for i 6= j. In the non resonant case the
collection of all invariant lattices is {⊕di=1C[[t]]tniei | n1, . . . , nd ∈ Z} and
the formal monodromy has d distinct eigenvalues.

The solutions of a regular singular moduleM , say, represented in matrix
form t ddt + A, are vectors v with (t ddt + A)v = 0. One needs the following
differential ring extension Univrs := C((t))[{ta}a∈C, `] of C((t)) to obtain
the vector space V of all solutions. The symbols ta, ` are defined by the rules
ta · tb = ta+b, t1 coincides with t ∈ C((t)). Further t ddt t

a = ata, t ddt` = 1.
The intuitive meaning of these symbols is rather clear: ta stands for ea log t

TOME 59 (2009), FASCICULE 7



2616 Marius VAN DER PUT & Masa-Hiko SAITO

and ` for log t. Because these functions are multivalued, they are replaced
by symbols.

Then V consists of the vectors v with coordinates in Univrs satisfying
(t ddt + A)v = 0. In other words, V = {v ∈ Univrs⊗C((t))M | δ(v) = 0}.
The ring Univrs has a C((t))-linear differential automorphism γ, defined
by γta = e2πiata, γ` = ` + 2πi. Now γ induces on automorphism γ ⊗ id
on Univrs⊗M , commuting with δ. Then V is invariant under γ and the
restriction of γ to V , again written as γ or γV , is the formal monodromy.
From the pair (V, γV ) one recovers the differential module (M, δM ) as the
C((t))-vector space of the γ-invariant elements of Univrs⊗CV . On the last
space the operator δ is defined by δ(u⊗v) = δ(u)⊗v for u ∈ Univrs, v ∈ V .
The restriction of this δ toM is the δM . The above describes an equivalence
between the category of the regular singular differential modules and the
category of the pairs (V, γ) consisting of a finite dimensional vector space
V and an γ ∈ GL(V ). This equivalence respects all constructions of linear
algebra, in particular tensor products.

This maybe somewhat abstract way to deal with regular singular differ-
ential modules extends to the case of irregular singular differential modules.
It greatly simplifies the various classical classification results.

A typical example of an irregular singular module is the one-dimensional
module M = C((z))e with δe = (a+ q)e with q ∈ t−1C[t−1], q 6= 0, a ∈ C.
We call a + q the (generalized) local exponent and q the eigenvalue. One
observes that q is unique and a is unique up to a shift over an integer.

A more complicated example is the following. For any integer n > 1
we consider the field extension C((t1/n)) of degree n and an element a +
q ∈ C + (t−1/nC[t−1/n]). Then we define the differential module C((t1/n))e
of rank one over C((t1/n)) by δ(e) = (a + q)e. Now M is equal to this
object, seen as a differential module over the field C((t)). This module
has dimension n. From these examples and the regular singular differential
modules one can build, by constructions of linear algebra, all differential
modules. In order to have solutions for all differential modules over C((t))
we have to introduce new symbols e(q) for q ∈ Q :=

⋃
n>1 t

−1/nC[t−1/n].
The rules are t ddte(q) = q ·e(q) and e(q1)e(q2) = e(q1 +q2). One obtains the
differential ring extension Univ := ⊕q∈QUnivrs ·e(q), equipped with the
differential automorphism γ, extending the γ on Univrs by γe(q) = e(γq).
The meaning of γ(q) is already defined since γ(ta) = e2πiata for any a ∈ C.
The intuitive meaning of e(q) is rather evident, namely e

∫
q dtt . Since the

latter is a multivalued function we avoid its use and use the symbol e(q)
instead.

ANNALES DE L’INSTITUT FOURIER
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The solution space V of a differential module M , say, represented by
the matrix equation t ddt + A where A is a d × d-matrix with coefficients
in C((t)), is defined as V = {v ∈ (Univ)d | (t ddt + A)(v) = 0}. In other
words V = {v ∈ Univ⊗C((t))M | δ(v) = 0}. As before, there is an action of
γ on V . Moreover V has a direct sum decomposition V = ⊕q∈QVq where
Vq := {v ∈ Univrs ·e(q) ⊗C((t)) M | δ(v) = 0}. As the dimension of V is
finite (equal to dimC((t))M), almost all Vq are 0. Clearly γ(Vq) = Vγ(q).
Thus we have attached to M a tuple (V, {Vq}, γ) consisting of a finite
dimensional vector space V over C and subspaces Vq with V = ⊕q∈QVq and
an element γ ∈ GL(V ) such that γ(Vq) = Vγ(q) for all q. From this tuple one
can recover (M, δM ) as the C((t))-vector space of the γ-invariant elements
of ⊕q∈QUnivrs ·e(−q) ⊗C Vq. By definition δ acts as zero on V and thus
induces δM . In fact, M 7→ (V, {Vq}, γ) defines an equivalence of categories
commuting with all operations of linear algebra, and in particular with
tensor product. Our formal classification is that of the tuples (V, {Vq}, γ).

The elements q with Vq 6= 0 are called the eigenvalues and γ, acting on
V , is called the formal monodromy. The Katz invariant r(M) of M is the
maximum of the degrees in t−1 of the eigenvalues q.

Example 1.3. — We illustrate the above by classifying all differential
modules M of dimension 2 such that Λ2M is isomorphic to the trivial
module 1 := C((t))e with δe = 0. The possibilities for the tuple (V, {Vq}, γ)
are:

(i) V = V0 and γ ∈ SL(V ). This is the regular singular case. By taking
a logarithm 2πiA of γ one obtains the matrix equation t ddt +A.

(ii) V = Vq ⊕ V−q with q = a1t
−r + · · ·+ art−1 and a1 6= 0.This is the

unramified irregular case with eigenvalues ±q and Katz invariant r.
Give the spaces Vq, V−q a basis e1 and e2. Then the matrix of γ has
the form

(
α 0
0 α−1

)
. A corresponding matrix differential equation

can be written as t ddt +
(
q + a 0

0 −q − a

)
with e2πia = α.

(iii) For the ramified irregular case V = Vq⊕V−q with Katz invariant r,
one must have r = 1

2 +m, m ∈ Z, m > 0 and q = t1/2(a1t
−r−1/2 +

· · ·+ a∗t−1), a1 6= 0. This follows from γ(q) = −q. Consider a basis
b1 and b2 for Vq and V−q such that γ(b1) = b2. Then γ(b2) = −b1
since γ ∈ SL(V ). For the computation of the corresponding dif-
ferential module, it is easier to compute first the invariants un-
der γ2. This yields a differential module N = ⊕2

i=1C((t1/2))ei over
C((t1/2)) with δ(e1) = qe1, δ(e2) = −qe2. The element γ acts on N

TOME 59 (2009), FASCICULE 7



2618 Marius VAN DER PUT & Masa-Hiko SAITO

by γe1 = e2, γe2 = e1 and γt1/2 = −t1/2. The module M of the in-
variants under γ has the basis f1 = e1+e2, f2 = t1/2(e1−e2). Write
q = t1/2h. Then δ on the basis f1, f2 yields the matrix differential

equation t ddt +
(

0 th

h 1
2

)
.

Definition and examples 1.4. — Invariant lattices.
Let the differential module M = (M, δ) have Katz invariant r and let
r+ denote the smallest integer > r. A free submodule Λ ⊂ M over C[[t]],
containing a basis of M is usually called a lattice. We say that Λ is an
invariant lattice if, moreover tr+

δΛ ⊂ Λ. There exists an invariant lattice,
in fact the standard lattice defined in [24], p. 307 and p. 311, is an invariant
lattice. For later use we will compute all invariant lattices for the items of
Example 1.3.

(i) If the regular singular moduleM is non resonant, thenM has a basis
e1, e2 with δe1 = θ

2e1, δe2 = − θ2e2 and θ 6∈ Z. The notation θ
2 is

chosen for historical reasons. The invariant lattices are C[[t]]tn1e1 +
C[[t]]tn2e2 for any n1, n2 ∈ Z.

A typical resonant case is M = C((t))e1 + C((t))e2 with δe1 =
e2, δe2 = 0. The invariant lattices are C[[t]]tn1e1 + C[[t]]tn2e2 with
n1, n2 ∈ Z and n1 > n2.

(ii) M has a basis e1, e2 with δe1 = (q+a)e1, δe2 = −(q+a)e2. In this
case r+ = r and the invariant lattices are C[[t]]tn1e1 + C[[t]]tn2e2
for any n1, n2 ∈ Z.

(iii) M has basis f1, f2 with δf1 = hf2, δf2 = thf1 + 1
2f2. Now r+ = r+

1
2 . The invariant lattices are only the lattices tn · (C[[t]]f1 +C[[t]]f2)
and tn · (C[[t]]tf1 + C[[t]]f2) where n ∈ Z.

We omit the easy proofs for (i) and (ii). The proof of case (iii):
Consider the operator ∆ = h−1δ onM . Thus ∆f1 = f2, ∆f2 = tf1+ 1

2hf2
and ∆(fm) = (h−1tdfdt ) ·m+ f ·∆(m).

A lattice Λ is invariant if and only if ∆Λ ⊂ Λ. If Λ is an invariant lattice
then also tn ·Λ for any n ∈ Z. The lattices generated by f1, f2 and by tf1, f2
are clearly invariant. Let Λ be any invariant lattice. After multiplication
by some power of t we may suppose that Λ ⊂ (C[[t]]f1 + C[[t]]f2) and not
contained in t · (C[[t]]f1 + C[[t]]f2). If Λ = C[[t]]f1 + C[[t]]f2, then we are
finished. If not we consider the invariant lattice Λ + t · (C[[t]]f1 + C[[t]]f2).
Since ∆ induces on (C[[t]]f1+C[[t]]f2)/t·(C[[t]]f1+C[[t]]f2) a nilpotent map
with only one proper invariant subspace, namely generated by the image of
f2, we have that Λ+ t · (C[[t]]f1 +C[[t]]f2) = (C[[t]]tf1 +C[[t]]f2). It follows

ANNALES DE L’INSTITUT FOURIER
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that Λ contains an element of the form af1 + f2 for some a ∈ tC[[t]]. Now

∆(af1 + f2)−
(
a+ 1

2h

)
(af1 + f2) =

(
t+ h−1t

da

dt
−
(
a+ 1

2h

)
a
)
f1 ∈ Λ.

Thus tf1 ∈ Λ and also f2 ∈ Λ. Then Λ = C[[t]]tf1 + C[[t]]f2.
Comment. Two lattices Λ1,Λ2 in C((t))2 are called equivalent if there exists
an integer n with Λ1 = tn · Λ2. Two classes of lattices [Λ1], [Λ2] form an
edge if the representatives Λ1,Λ2 can be chosen such that there are proper
inclusions t · Λ1 ⊂ Λ2 ⊂ Λ1. One obtains a tree with vertices the classes
of lattices and edges as above. If one replaces C by a finite field then this
object is the well known Bruhat-Tits tree.

The classes of the invariant lattices form a subset of this tree. This subset
is a line for the first case of (i) and a half line for the second case of (i).
In case (ii), it is again a line and in case (iii) this subset consists of two
vertices which form an edge.

1.3. The analytic classification

This is the classification of the differential modules M over the field of
the convergent Laurent series C({t}). Again we use the derivation t ddt . One
associates to M the formal differential module M̂ = C((t)) ⊗M . If M̂ is
regular singular, then one calls M also regular singular. In that case there
exists also a basis e1, . . . , ed of M such that W := ⊕di=1Cei is invariant
under δ and the distinct eigenvalues of the matrix A of δ on W do not
differ by an integer. Then M is isomorphic to the module corresponding to
the matrix differential operator t ddt +A. The usual topological monodromy
around t = 0 coincides with the formal monodromy and that ends the
classification.

If M̂ is irregular singular, then it induces a tuple (V, {Vq}, γ). The sin-
gular directions d ∈ R of M depend only on M̂ and are defined as fol-
lows. Let q1, . . . , qs denote the eigenvalues of M̂ . A direction d ∈ R is
singular for qi − qj (with i 6= j) if the function exp(

∫
(qi − qj)dtt ) has

“maximal descent” for r → 0 on the half line t = reid. More explicitly, if
qi − qj = αkt−k + · · ·+α1t

−1, αk 6= 0, then d is a singular direction if and
only if αkre−idk is a positive real number. The collection of the singular
directions is the union over i 6= j of the singular directions of qi − qj .

If a direction d is non singular, then there is a functorial map multsd,
the multisummation in the direction d, which maps the (symbolic) solution
space V to the space of the actual solutions V (S) in a certain sector S

TOME 59 (2009), FASCICULE 7
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at t = 0 around d. For every v ∈ V the element multsd(v) has v as its
asymptotic expansion.

For each singular direction d, there is an analytic object, namely the
Stokes map Std ∈ GL(V ). The Stokes map Std is defined by comparing
the multisummation at directions d− < d < d+ close to d. More pre-
cisely multsd+ ◦Std = multsd− . The map Std is unipotent and has the form
Id +

∑
i,j Li,j where the sum is taking over all pairs i, j such that d is singu-

lar for qi−qj and where Lij is a linear map from Vqi to Vqj . The isomorphy
class of M induces a tuple (V, {Vq}, γ, {Std}), where the Std are described
above and where moreover the relation γ−1Stdγ = Std+2π holds.

The main result of the asymptotic analysis of irregular singularities is:
The category of the differential modules over C({t}) is equivalent to the

category of the tuples (V, {Vq}, γ, {Std}), satisfying the above properties.
This equivalence respects all constructions of linear algebra, in particular
the tensor product.

An important property that we will use is:
Let 0 6 d1 < · · · < ds < 2π denote the singular directions in [0, 2π).

Then the topological monodromy around the singular point is conjugated
to γ ◦ Stds ◦ · · · ◦ Std1 .

We note that this conjugation depends on the way the solution space
at a point close to the singular point t = 0 is identified with the (formal)
solution space V . Now we illustrate the above by continuing Examples 1.3.

Example 1.5. — Let M be an irregular differential module of dimen-
sion 2 over C({t}) such that Λ2M = {1}.

(ii) If M̂ is unramified with Katz invariant r, then V = Vq ⊕ V−q, q ∈
t−1C[t−1] has degree r in t−1. We recall that γ has the matrix

(
α 0
0 α−1

)
on any basis e1, e2 of V such that Vq = Ce1, V−q = Ce2. For q− (−q) there
are r singular directions (in [0, 2π)) and the same holds for (−q)− q. The
two pairs of singular directions intertwine. For the first ones the Stokes
matrices (w.r.t. the basis e1, e2) have the form

(1 ∗
0 1
)
, and for the second

ones the form is
(1 0
∗ 1
)
. Thus the Stokes matrices are given by 2r constants

ci and the topological monodromy around t = 0 is up to conjugation (and
we may choose the order) equal to(

α 0
0 α−1

)
·
(

1 0
c1 1

)
·
(

1 c2
0 1

)
· · ·
(

1 0
c2r−1 1

)
·
(

1 c2r
0 1

)
.

The basis e1, e2 is not unique, whereas the 1-dimensional spaces Vq and
V−q are. If we want Stokes data, independent of the choice of e1, e2, then
we have to divide the space A2r of the tuples (c1, . . . , c2r) by the action of
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the group Gm. For this action the c2i can be given weight +1 and the c2i−1
weight −1.

(iii) If M̂ is ramified, then there are again 2r singular directions in [0, 2π)
and Stokes matrices of the form

(1 ∗
0 1
)

and
(1 0
∗ 1
)
. The singular directions

intertwine. We choose now a basis e1, e2 of V with Vq = Ce1, V−q = Ce2
and γe1 = e2, γe2 = −e1. The topological monodromy around t = 0 is
conjugated to the product(

0 − 1
1 0

)
·
(

1 0
c1 1

)
·
(

1 c2
0 1

)
· · ·
(

1 0
c2r 0

)
.

In this case one may change the basis e1, e2 only into λe1, λe2 with λ ∈ C∗.
This does not have an effect on the Stokes data (c1, . . . , c2r) and no division
by Gm is needed.

1.4. The data for global differential modules

By a global differential module we mean a differential module M over
the field K = C(z). We investigate the data that will describe M .

The first case that we consider is classical, namely:
The position of the singular points {p1, . . . , pr} of M is fixed and all the

singular points are supposed to be regular singular.
One introduces the monodromy for M in the usual way. That is, one

chooses a base point b ∈ P1 \ {p1, . . . , pr} and loops α1, . . . , αr around the
singular points, generating the fundamental group π1 :=π1(P1\{p1, . . . , pr},
b). There is only one relation, namely α1 · · ·αr = 1. Then M induces a
monodromy homomorphism

monM : π1 → GL(V (b)),

where V (b) denotes the solution space at b. We note that monM (αi) is
conjugated to the local monodromy at pi (formal or topological). A weak
solution of the Riemann–Hilbert problem reads ([24], Thm 6.15):

Proposition 1.6. — The functorM 7→ monM from the category of the
differential modules with regular singularities at {p1, . . . , pr} to the cate-
gory of the finite dimensional complex representations of π, is an equiv-
alence of categories. This equivalence respects all constructions of linear
algebra, in particular tensor products.

Notation. — For any point p ∈ P1 we introduce the local parameter tp,
which is z − p if p ∈ C and z−1 for p =∞. The field Kp is the field of the
meromorphic functions at p, i.e., C({tp}) and K̂p is the completion of Kp,
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i.e., C((tp)). Further Op ⊂ Kp and Ôp ⊂ K̂p are the valuation rings, i.e.,
Op = C{tp} and Ôp = C[[tp]].

One associates to a global differential module M with fixed singulari-
ties {p1, . . . , pr}, the data: the isomorphy classes of the {Kpi ⊗K M} and
the monodromy representation monM as above. Now we give an example
showing that this is not sufficient for the reconstruction of M .

Example 1.7. — Two singular points 0 and ∞, both irregular.
At both points we prescribe local analytic data for the differential module
M . In other words, we prescribe the two analytic differential modulesM0 =
K0 ⊗M and M∞ = K∞ ⊗M . As we will see in Observations 1.10, this
leads to a connection (M,∇) on P1, where M is a vector bundle and
∇ :M→ Ω(k[0] +k[∞])⊗M (for some k > 0). The restrictions T0 and T1
of this connection to the two open sets P1 \ {0} and P1 \ {∞} are known
from the given data M0 and M∞. We suppose now that the topological
monodromies of M0 and M∞ are trivial. Thus the restrictions T0,1 and
T1,0 of T0 and T1 to the open set P1 \ {0,∞} are trivial. The glueing is
given by an isomorphism T0,1 → T1,0. Let m denote the dimension of M .
Then an isomorphism is given by a linear bĳection L : Cm → Cm. Further
L is unique up to multiplication (on the left, respectively on the right) by
an automorphism of M0 and M∞. One can easily produce M0 and M∞
which have only C∗ as group of automorphisms. Therefore the possible
connections (M,∇) and also the possible differential modules M are in
bĳection with PGL(m,C).

Definition 1.8. — Links and the formal and analytic data.
What is missing is a “link” between the solution space V (b) at the base

point b with the (symbolic) solution spaces V (pi) at the singular points.
This idea goes back to the work of Jimbo–Miwa–Ueno [17]. We make the
following construction to remedy this.

As before, α1, . . . , αr are loops starting at b around the singular points.
For each pi we choose a point p∗i on the loop close to pi and a line segment
[p∗i , pi] which is a non–singular direction at pi. The “link” Li : V (b) →
V (pi) is defined by analytic continuation from V (b) to V (p∗i ), followed by
the inverse of the multisummation map mults : V (pi) → V (p∗i ) in the
direction [p∗i , pi] (seen as an element in R). The role of the monodromy
map monM is taken over by links, i.e., the linear bĳections L1, . . . , Lr. The
multisummation mults : V (pi)→ V (p∗i ) (in the direction [pi, p∗i ]) is used to
identify the two vector spaces. Then the local topological monodromy topi,
along a circle starting in p∗i , is expressed as a product of the Stokes maps
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and the formal monodromy at pi. The relation α1 · · ·αr = 1 translates into

L−1
r ◦ topr ◦Lr . . . L−1

2 ◦ top2 ◦L2 ◦ L−1
1 ◦ top1 ◦L1 = 1.

The “formal and the analytic data” for M are defined as:
(1) The position of the singular points p1, . . . , pr;
(2) for each i, the formal structure (V (pi), {V (pi)q}, γi) at pi;
(3) for each i, the Stokes maps at pi;
(4) the links Li :W → V (pi).
(5) These data are supposed to satisfy the relation

L−1
r ◦ topr ◦Lr . . . L−1

2 ◦ top2 ◦L2 ◦ L−1
1 ◦ top1 ◦L1 = 1.

Here W stands for the space V (b). The formal part of the data is (1) (the
position of the singular points) and the eigenvalues q at each singular point.
The analytic part of the data is the direct sum decompositions ⊕qV (pi)q
of the spaces V (pi), including the permutation of the V (pi)q induced by
γ; further (3) and (4), since this combines the links and the Stokes maps.
We observe that these “formal and analytic data” are considered up to the
automorphisms of W and of the V (pi).

One might use L1 to identify W with V (p1) and then one is only left
with links Li : V (p1) → V (pi) for i = 2, . . . , r. Another way to reduce the
number of links by one, is to choose as base point b the singular point p1
and define links Li : V (p1)→ V (pi) for i = 2 . . . , r.

Theorem 1.9. — For given “formal and analytic data”, as above, there
exists a differential module M over K = C(z) inducing the data. Moreover
M is unique up to isomorphism.

Observations 1.10. — Global differential modules and connections.
Before giving the proof of Theorem 1.9, we have to make the relation

between differential modules M over K = C(z) and connections (M,∇)
(with singularities) on P1 explicit.

Let a connection (M,∇) (with singularities) be given. We note that we
may regard this connection either algebraically or analytically, because of
the GAGA theorem. On proper Zariski-open subsets of P1 we sometimes
seeM as an analytic vector bundle. The generic fibre M ofM is a vector
space of finite dimension over K, equipped with a ∇ : M → ΩK/C ⊗M .
After identifying ΩK/C withKdz, this givesM the structure of a differential
module.

On the other hand, let a differential module M be given. This is written
as a (generic) connection∇ :M → ΩK/C⊗M . Consider a set {p1, . . . , pr} ⊂
P1 of points including the singular points of M . For each i one chooses an
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Ôpi-lattice Λi in K̂pi⊗M and let ki satisfy ∇(Λi) ⊂ t−kii dti⊗Λi (where ti is
the local parameter at pi). For p 6∈ {p1, . . . , pr}, the module K̂p⊗M is non
singular and there is a unique Ôp-lattice Λp with ∇(Λp) ⊂ dtp⊗Λp, where
tp denotes the local parameter at p. Then there exists a unique connection
(M,∇) on P1 having the following properties (see [24], Lemma 6.16):

(1) M(V ) ⊂M for all, non empty, Zariski–open V ⊂ P1.
(2) There is a basis e1, . . . , em of M and a non empty Zariski–open

subset U ⊂ P1 such that the restriction of M to U is the free
algebraic vector bundle OUe1 ⊕ · · · ⊕OUem.

(3) For each pi one has M̂pi = Λi.
(4) For p 6∈ {p1, . . . , pr} one has M̂p = Λp.
(5) ∇ :M→ Ω(

∑
ki[pi])⊗M.

We still need another ingredient for the proof of Theorem 1.9. Let a
differential module N over Kp = C({tp}) be given and be written in the
form∇ : N → Kpdtp⊗N . Choose any C{tp}-lattice Λ ⊂ N and let k > 0 be
such that ∇(Λ) ⊂ t−kp dtp⊗Λ. Then the latter map extends to a connection
(N ,∇), defined on a suitable small disk around p and has the property
∇ : N → Ω(k[p])⊗N . We note that this extension depends on the choice
of the lattice Λ or more precisely on the unique lattice Λ′ in C((tp)) ⊗ N
with Λ′ ∩N = Λ.

Proof of Theorem 1.9. — We use the notation of Definition 1.8. For
r = 0, the data set is empty. The only module M corresponding to this is
the trivial differential module (of the required dimension, say m).

For r = 1, the data at p1 determines a differential module M1 over
Kp1 . We choose a lattice Λ ⊂ M1 (say the standard lattice) and then the
connection ∇1 : Λ→ Ω(k · [p1])⊗ Λ (some k > 0) extends to a connection
(M1,∇1) on a small open disk D around p1. The topological monodromy
around p1 of this connection is trivial. We consider the trivial connection
(M0,∇0) (of the required rank m) on P1 \ {p1}. The two connections can
be glued over D \{p1}, because of the triviality of top1, and there results a
connection (M,∇) on P1. Its generic fibre M is a differential module over
K, inducing the given complete data.

Let N be another differential module over K inducing the given (formal
and analytic) data. Then Kp1⊗N is isomorphic to Kp1⊗M and we choose
in Kp1 ⊗ N the lattice which maps to the lattice Λ ⊂ Kp1 ⊗ M . This
yields a connection (N ,∇N ) with only p1 as singularity. Outside p1 the
two connections are isomorphic and the same holds above a small enough
disk D around p1. The two isomorphisms above D \ {p1} will differ by an
element in GLm(C) (where m = dimM). The isomorphism between the
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connections above P1 \ {p1} can be changed by any element in GLm(C).
Then, after this change, the two connections are isomorphic and then N is
isomorphic to M .

Now we suppose that r > 2. The monodromy determines a connection
(M0,∇0) on P1 \{p1, . . . , pr}. The analytic data at pi determine a differen-
tial module over Kpi . For this differential module we choose the standard
lattice as before. This extends to a connection (Mi,∇i) on a small disk Di
around the point pi.

Since topi is conjugated to the monodromy of the loop λi, we have that
the restrictions of (M0,∇0) and (Mi,∇i) to Di \ {pi} are isomorphic. A
priori, many isomorphisms are possible. However, the link Li determines
the isomorphism. Namely, one takes the isomorphism such that the map
V (b) α→ V (p∗i )

β→ V (pi) is equal to the given Li, where α is the analytic
continuation for the connection (M0,∇0) and β is the inverse for the mul-
tisummation V (pi)→ V (p∗i ) for the connection (Mi,∇i). Glueing yields a
connection (M,∇) on P1 and its generic fibre has the required properties.

Consider another differential module N which produces the same (formal
and analytic) data. Then N yields a connection (N ,∇N ). This connection
is chosen such that the local connections at the points pi are standard, as
above. This connection is, above P1 \ {p1, . . . , pr} and above each of the
small enough disks Di, isomorphic to the same items for (M,∇). The links
Li imply that these isomorphisms glue to a global isomorphism between
(N ,∇N ) and (M,∇). Thus N is isomorphic to M . �

Observations 1.11. — (1) In the construction in the proof of Theo-
rem 1.9 from the given formal and analytic data to a connection (M,∇)
on P1, one can change the lattices Λi at the points pi. We note that this
corresponds to an elementary transformation in [12], Section 3. This will
change the connection on P1. However the corresponding differential mod-
ule does not change.

(2) By Proposition 1.6, the links are superfluous in case all the singular-
ities are regular singular. Another way to see this is to take the standard
lattice at each point pi. Then the glueing of the connection (M0,∇0) to the
connection (Mi,∇i) on a small disk Di around pi is unique, since the con-
nection (Mi,∇i) on Di and its restriction to Di \{pi} have the same group
of automorphisms, namely the elements in GL(m,C) commuting with the
topological monodromy.

(3) Theorem 1.9 is the weak solution of the Riemann–Hilbert problem
for differential modules with any type of singularities.
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Definition and examples 1.12. — The strong Riemann-Hilbert pro-
blem.

This problem can be formulated as follows:
Let M be the weak solution for the given formal and analytic data.
Does there exists a connection (M,∇) with generic fibre M and free

vector bundleM such that ∇ :M→ Ω(
∑
p(r+(p) + 1)[p])⊗M?

In the above, the sum
∑
p is taken over the singular points p of M , r(p)

is the Katz invariant of K̂p ⊗M and r+(p) is the smallest integer > r(p).
One observes that in case that all the singularities are regular singular

(this means that r(p) = 0 for every singular point p) the above is the
classical strong form of the Riemann–Hilbert problem.

In the proof of Theorem 1.9 one can choose at each singular point an
invariant lattice which exists according to Definition and examples 1.4.
One arrives at a connection (M,∇) which satisfies all conditions with the
exception that the vector bundle M is possibly not free. Under the as-
sumptions of Theorem 1.2, the invariant lattices can be changed to obtain
a free vector bundle. Now we give families of examples, closely related to
the Painlevé equations, where the strong Riemann–Hilbert problem has a
negative answer.

(1) The differential moduleM is given by the matrix differential equation
d
dz +

(0 f
1 0
)
, where f ∈ C[z] has degree 3. For M there is no solution for the

strong Riemann–Hilbert problem.

Proof. — The only singular point ∞ of M has Katz invariant r = 5/2
and r+ = 3. Suppose that M can be represented by a connection (V,∇)
with V free and ∇ : V → Ω(4[∞]) ⊗ V. Write V = H0(V). Then ∇ : V →
H0(Ω(4[∞]))⊗V and ∂ := ∇ d

dz
has, with respect to a basis of V , the form

d
dz +B where B is a polynomial matrix of degree 6 2.

For computational convenience we may suppose that f = f3z3 +f1z+f0
with f3 6= 0. There exists A ∈ GL2(C(z)) with A−1( ddz +

(0 f
1 0
)
)A = d

dz +B.
One easily verifies that A ∈ GL2(C[z]) and we may assume that A has
determinant 1. We use the notation

(
a b
c d

)t
=
(
d −b
−c a

)
. Write A = A0 +

A1z + · · · + Aszs with constant matrices Ai and As 6= 0. Then A−1 =
At0 + · · ·+Atszs and A−1A′ +A−1(0 f

1 0
)
A = B has degree 6 2.

Suppose first that s > 2. We compute the coefficients of z-powers in the
expression A−1A′ + A−1(0 f

1 0
)
A. The coefficient of z2s+3 is Ats

(0 f3
0 0
)
As is

zero and thus As has the form
(∗ ∗

0 0
)
. The coefficient of z2s+2 is then also

zero. The coefficient Ats−1
(0 f3

0 0
)
As−1 of z2s+1 is zero and then As−1 has the

form
(∗ ∗

0 0
)
. The coefficient of z2s yields that Ats

(0 0
1 0
)
As = 0. This implies

As = 0 in contradiction with the assumption.

ANNALES DE L’INSTITUT FOURIER



MODULI FOR DIFFERENTIAL AND PAINLEVÉ EQUATIONS 2627

In the case s = 1 one finds again At1
(0 f3

0 0
)
A1 = 0 and observes then that

the term (f3z3 +f1z)A−1(0 1
0 0
)
A has degree 6 2. This implies that the term

is 0, contradicting that A is invertible. �

Comments.
(a) The scalar equation ( ddz )

2 − f , obtained from M by using the first
basis vector as cyclic vector, has only ∞ as singularity, i.e., there is no
apparent singularity (see 4.2).

(b) In the above negative answer for the strong Riemann–Hilbert problem
one can replace f by any polynomial of odd degree > 3.

(c) Consider a differential module M of dimension two which has only
∞ as singular point and with r(∞) = 5/2 and Λ2M ∼= 1. Suppose that
M can be represented by a connection (V,∇) with V ∼= O ⊕O(−2). Write
more explicitly V = Oe1 ⊕ O(−2[∞])e2. Then ∂ := ∇ d

dz
has the form

d
dz +

(0 f
1 0
)
. One computes that the invariant lattices at ∞ have generators

{zne1, zn−1e2} or {zne1, zn−2e2} over C[[z−1]] (with any n ∈ Z). The con-
nections (V,∇) with ∇ : V → Ω(4[∞])⊗V representingM are of two types,
namely V ∼= O(n)⊕O(n− 1) and V ∼= O(n)⊕O(n− 2).

(d) Consider again of differential module M of rank two, Λ2M ∼= 1,
only ∞ as singular point and r(∞) = 5/2. Suppose now that the strong
Riemann-Hilbert problem has a positive answer for M . Then M can be
represented by a matrix differential equation of the form d

dz +A0 +A1z +(0 1
0 0
)
z2. Using the invariant lattices at∞ one finds that the vector bundles

of the connections ∇ : V → Ω(4[∞])⊗V, representing M , are of two types
namely isomorphic to O(n) ⊕ O(n) or O(n) ⊕ O(n − 1) (for any n ∈ Z.
Further M has a cyclic vector (essentially unique) which produces a scalar
differential equation with precisely one apparent singularity (see 4.2).

(2) LetM be a 2-dimensional differential module over C(z) with Λ2M =
1, r(0) = r(∞) = 1/2 and no singularities 6= 0,∞. Suppose that there
exists a connection ∇ : V → Ω(2[0] + 2[∞]) ⊗ V with generic fibre M
and V ∼= O ⊕ O(−2). Then M can be represented by a matrix differential
equation of the form

z
d

dz
+
(

0 c−1z
−1 + c0 + c1z

1 m

)
with c−1 6= 0 6= c1 and m ∈ Z.

In particular, the strong Riemann–Hilbert problem has a positive solution
for M . The special phenomenon is that the scalar equation, associated to
this matrix differential equation w.r.t. the first basis vector reads δ(δ −
m) − (c−1z

−1 + c0 + c1z), with δ := z ddz , and therefore has no apparent
singularities!
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Proof. — Identify V with Oe1 ⊕ O(−2[∞])e2. The operator δ := ∇z ddz
satisfies:
δe1 ∈ (Cz−1 + C + Cz)e1 + Cz−1e2 and
δe2 ∈ (Cz−1 + C + Cz + Cz2 + Cz3)e1 + (Cz−1 + C + Cz)e2.
Since the module is irreducible, we can change e2 into λe2+(∗+∗z+∗z2)e1

with suitable λ ∈ C∗, ∗ ∈ C and obtain δe1 = z−1e2. The condition
Λ2M = 1 implies that δe2 = (a−1z

−1 + a0 + a1z + a2z
2 + a3z

3)e1 +me2
with m ∈ Z. Conjugation of the corresponding matrix differential equation
with

(1 0
0 z
)

yields the matrix differential equation

z
d

dz
+
(

0 a−1z
−2 + a0z

−1 + a1 + a2z + a3z
2

1 m− 1

)
.

The assumptions r(0) = r(∞) = 1/2 imply a−1 = a3 = 0 and a0 6=
0 6= a2. This is the required form. The formula for the scalar equation is
obvious. �

Theorem 1.13. — Suppose that the differential module M over K =
C(z) is irreducible and has a (regular or irregular) singularity which is un-
ramified. Then the strong Riemann-Hilbert problem has a solution for M .

Proof. — We will adapt the proof of Theorem 6.22, [24] to the present
more general situation. As shown in the proof of Theorem 1.9, there exists
a connection (M,∇) such that ∇ :M→ Ω(

∑
(ki+ 1)[pi])⊗M, where the

pi are the singular points of M and ki is the smallest integer > the Katz
invariant at pi. The irreducibility of M implies that the defect of any M
is bounded by a number only depending on M , see Proposition 6.21, [24].

Let p = p1 be an unramified singular point. Then we want to prove the
equivalent of Lemma 6.20, [24], namely for any integer N > 1, there exists
a lattice Λ for K̂p⊗M such that Λ has a basis e1, . . . , em with the property
tp · ∇ei = dtp ⊗ ((ci + ai)ei +

∑
i 6=j ai,jej), with ci ∈ C; the ai ∈ t−1

p C[t−1
p ]

belong to the set of the eigenvalues of M at p and ai,j ∈ tNp C[[tp]].
It suffices to show the above for an indecomposable direct summand of
K̂p ⊗ M . This direct summand has only one eigenvalue and the formal
monodromy γ has only one Jordan block. Then the proof of Lemma 6.20,
[24], yields the required lattice for this indecomposable direct summand.

Finally, as in the proof of Theorem 6.22, [24], one can change the lattice
Λ step by step to obtain a connection (M,∇) whereM has defect 0. Taking
the tensor product with O(k[p1]) for a suitable k makesM free. �
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2. Families of differential modules

2.1. Good families and the monodromy space R

The aim is to study the formal and analytic data of a family of dif-
ferential modules M(u) depending on some parameters u. Of course, this
notion has to be made explicit. A rough approximation would be a matrix
differential equation d

dz + A(z, u) where each entry of the m × m-matrix
A(z, u) is a rational function in z with coefficients depending analytically
on the parameters u. We recall that for a point p, the local parameter is
tp (equal to z − p or z−1). Further we use the notation of Subsection 1.2:
V = V (p) for the formal solution space at p, the eigenvalues are q∗ and
correspond to subspaces Vq∗ of V . The singular directions at p are defined
in Subsection 1.3.

In order to have meaningful analytic data (as functions of u) one has to
make some assumptions. A good family is defined by the properties:

(1) The number r of the singular points is fixed. The position of these
points {p1, . . . , pr} may vary, but only slightly.

(2) For every singular point p, the degrees in t−1
p of the eigenvalues qi

and the degrees in t−1
p of the differences qi − qj , i 6= j is fixed.

(3) For every singular point p and every eigenvalue qi, the dimension
of the space Vqi is fixed.

(4) The top coefficients ci,j of the qi−qj may vary in a certain restricted
way. Namely, we impose that any singular direction for the singular
point p is a singular direction for a unique difference qi−qj , i 6= j of
the eigenvalues at p and that these singular directions vary slightly.
As a consequence, the order of the directions at p does not change
in the family.

Comments 2.1. — (a) From (1) it follows that one can take a base
point b and loops α1, . . . , αr around the singular points, valid for all M(u).
From a point p∗i on αi and close to pi, the direction of the line segment
[p∗i , pi] is non singular and lies between the “same” singular directions for
the familyM(u). This follows from (2), (3) and (4). Suppose that the family
M(u) satisfies (1)–(3), and that for M(0) every singular direction of each
singular point belongs to a unique difference qi − qj , i 6= j of eigenvalues.
Then condition (4) is valid for the restriction of this family to a suitable
neighbourhood of u = 0.

(b) Let a differential moduleM over K = C(z) be given and assume that
every singular direction of each singular point belongs to a unique difference
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of eigenvalues. We sketch the proof of the statement that there exists a local
analytic family M(u), satisfying (1)–(4), such that M(0) =M .

Write M as a matrix differential equation d
dz +

∑r
i=1(

∑ki
n=1

A(i,n)
(z−pi)n ),

with constant matrices A(i, n). Here, the singular points p1, . . . , pr are for
notational convenience different from ∞ (and thus

∑r
i=1A(i, 1) = 0). We

do not impose a condition on ki in relation with the Katz invariant at the
point pi. One considers the family

d

dz
+A(z, v) := d

dz
+
r∑
i=1

(
ki∑
n=1

A(i, n) + V (i, n)
(z − pi − vi)n

)
,

where the V (i, n) are matrices of indeterminates and the vi are also indeter-
minates. Let v denote the collection of all indeterminates. We consider this
family in a small enough polydisk D around 0 ∈ CN . The conditions (1)–
(3) on d

dz + A(z, v) define a Zariski closed subset Z ⊂ CN . The subfamily
d
dz +A(z, u) with u belonging to the locally closed set U = D∩Z 6= ∅ satis-
fies conditions (1)–(3). Further condition (4) is satisfied for this subfamily
since D small enough.

A priori, 0 is a singular point of U . If needed, one can, by resolution of
singularities, return to the case that U is a small open polydisk around the
point 0.

(c) The statement in (b) justifies the naive way of writing a family,
satisfying (1)–(4), locally as ddz+A(z, u). As mentioned in the introduction,
the theory of Okamoto–Painlevé pairs has the aim to improve on this. In
this paper however, we will deal with the naive local situation.

Let M(u) be a good family of dimension m for u, close to 0. According
to Definition 1.8, the formal data of the family are the position of the
singular points {pj}rj=1 and the eigenvalues q at the singular point pj . Now
we describe the items which do not vary in the family:

(a) V (j), the formal solution space at pj .
(b) The direct sum decomposition V (j) = ⊕i∈IjV (j, i), given by the

eigenvalues.
(c) The dimension of the spaces V (j, i).
(d) The permutation τj of the V (j, i), satisfying dimV (j, τji) = dimV

(j, i), induced by the action of γ on the eigenvalues.
(e) The order of the singular directions for any pj . This yields a se-

quence of Stokes maps {Stk(j)}
nj
k=1.

(f) Each Stk(j) has the form 1 +Rk, with Rk := it ◦M(j, k) ◦ prs with
prescribed s, t ∈ Ij , s 6= t (depending on k) and prs is the projection
V (j) → V (j, s) (with kernel ⊕h6=sV (j, h)) and it : V (j, t) → V (j)
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is the canonical injection. Moreover, M(j, k) : V (j, s) → V (j, t) is
a linear map which is not constant in the family.

(g) A vector space W of dimension m, representing the solution space
V (b) for a given base point b.

The analytic data of M(u) are tuples ({γj}, {Lj}, {Stk(j)}) satisfying:

(1) For each j, a map γj ∈ GL(V (j)) with γj(V (j, i)) = V (j, τji) for
all i.

(2) Stk(j) ⊂ GL(V (j)) of the form described in (f), determined by the
linear map M(j, k) : V (j, s)→ V (j, t).

(3) Linear bĳections Lj :W → V (j) for j = 1, . . . , r.
(4) Define topj := γj ◦ Stnj (j) ◦ · · · ◦ St1(j). The data should satisfy

the relation L−1
r ◦ topr ◦Lr · · · ◦ L−1

1 ◦ top1 ◦L1 = 1.

Let AnalyticData denote the set of all tuples. This has a natural struc-
ture of an affine variety over C. Two tuples ({γj}, {Lj}, {Stk(j)}) and
({γ′j}, {L′j}, {Stk(j)′}) are called equivalent, if there exists σj ∈ GL(V (j)),
j = 1, . . . , r, σ ∈ GL(W ) such that each σj preserves the direct sum
decomposition ⊕V (j, i) and further σj ◦ Lj = L′j ◦ σ, j = 1, . . . , r and
σj ◦ γj = γ′j ◦ σj , j = 1, . . . , r. In other words, the equivalence relation on
AnalyticData is given by the action of the reductive linear algebraic group
G := GL(W )×

∏
j,iGL(V (j, i)).

The monodromy space R is by definition AnalyticData//G, the cate-
gorical quotient. This is again an affine variety. In general this quotient is
not a geometric one. In particular, a closed point of R can correspond to
many equivalence classes. One may use L1 to identify each space V (1) with
W to reduce the space AnalyticData and the group G acting on it.

The map, which associates to u in D (a small polydisk around 0) the
tuple ({γj}, {Lj}, {Stk(j)}), is analytic. Indeed, it is rather clear that an-
alytic continuation depends in an analytic way on u. That the same is
valid for multisummation follows from [24], Proposition 12.20, p. 314. Thus
D → AnalyticData is analytic and hence D → R := AnalyticData//G
is analytic. The next example illustrates the above for a relatively simple
case.

Example 2.2. — The monodromy space R for the local family M(u)
with M(0) given by the matrix equation

z
d

dz
+

 z−1 + a1 0 0
0 ωz−1 + a2 0
0 0 ω2z−1 + a3

 , where ω = e2πi/3.
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A good choice (compare [24], 12.3) for the family M(u) is

z
d

dz
+

(
(1+u1)z−1+a1+u2 u3 u4

u5 (1 + u6)ωz−1 + a2 + u7 u8
u9 u10 (1 + u11)ω2z−1 + a3 + u12

)
.

The singular points are z = 0, ∞ and r(0) = 1, r(∞) = 0. The space
AnalyticData consist of the formal monodromy and six Stokes matrices at
0, the link between 0 and ∞ and the formal (=topological) monodromy at
∞. This link and the topological monodromy at ∞ are determined by the
data at 0 up to an automorphism of the solution space at ∞.

The eigenvalues at z = 0, u = 0 are q1 = z−1, q2 = ωz−1, q3 = ω2z−1.
The order of the six singular directions in R/2πZ is given by the dif-

ferences q1 − q2, q1 − q3, q2 − q3, q2 − q1, q3 − q1, q3 − q2. The topological
monodromy top0 at z = 0 is then the following product of matrices(

α1 0 0
0 α2 0
0 0 α3

)
·

(
1 0 0
0 1 c6
0 0 1

)
·

(
1 0 c5
0 1 0
0 0 1

)
·

(
1 c4 0
0 1 0
0 0 1

)

·

(
1 0 0
0 1 0
0 c3 1

)
·

(
1 0 0
0 1 0
c2 0 1

)
·

(
1 0 0
c1 1 0
0 0 1

)
.

The entries (α1, α2, α3) of the first matrix, the formal monodromy, are

(α1, α2, α3) = (e2πi(a1+u2), e2πi(a2+u7), e2πi(a3+u12)).
The c1, . . . , c6 are analytic functions of u, produced by multisummation

(in this case just Borel summation). The topological monodromy top∞ at
∞ is conjugated to top0. Under the condition that ai − aj 6∈ Z for i 6= j,
one has that top∞ is equal to e2πiA with

A =

(
a1 + u2 u3 u4
u5 a2 + u7 u8
u9 u10 a3 + u12

)
.

The group

G :=


 t1 0 0

0 t2 0
0 0 t3

 | t1t2t3 = 1

 ⊂ GL(V (0))

acts, by conjugation, on the data (α1, α2, α3, c1, . . . , c6). ThusR is the affine
space with coordinate ring C[α1, α

−1
1 , . . . , α3, α

−1
3 , c1, . . . , c6]G. A computa-

tion shows that this ring is C[α1, α
−1
1 , . . . , α3, α

−1
3 , x14, x25, x36, x135, x246]

where the only relation is x135x246−x14x25x36 = 0. Here x14 = c1c4, x25 =
c2c5, x135 = c1c3c5 et cetera. It is natural to see the eigenvalues (α1, α2, α3)
of the formal monodromy as a parameter space P. The fibers of R →
P are isomorphic to the 4-dimensional affine space with coordinate ring

ANNALES DE L’INSTITUT FOURIER



MODULI FOR DIFFERENTIAL AND PAINLEVÉ EQUATIONS 2633

C[x14, x25, x36, x135, x246] with relation x135x246 − x14x25x36 = 0. The sin-
gular locus of this space has three components, they are the image of the
locus where the differential equation is reducible {u| M(u) is reducible}.

The group G also acts on the local family M(u) and we obtain a local
Riemann–Hilbert morphism RH : {u ∈ C12| ‖u‖ < ε}//G→ R. This map
does not depend on the coefficients (1+u1), (1+u6)ω, (1+u11)ω2 of q1, q2, q3.
The fibres of RH are, by definition, the isomonodromic families. They are
parametrized by the three variables t1 =: u1, t2 := u6, t3 := u11. Using
z 7→ λz, one may normalize to (1 + u11) = 1 and thus the isomonodromic
family is parametrized by t1, t2. One expects that a suitable expression in
the other ui satisfies a Painlevé type of partial differential equations w.r.t.
the variables t1, t2. In fact it is possible to convert the situation into a one
variable case for PVI (cf. [2]).

Remarks 2.3. — The papers of M. Jimbo, T. Miwa and K. Ueno.
The above introduction of families of differential modules and their for-

mal and analytic data can be seen as an extension of the papers [17], [16],
which we will describe now, using our terminology.

In [17], [16] the base point b is taken to be∞ and this point is supposed to
be (irregular) singular. Further the irregular singularities p are of a simple
kind, namely all the eigenvalues (generalized exponents) qi are in t−1

p C[t−1
p ],

and all qi and qi − qj for i 6= j have the same degree in t−1
p (there is one

exception, related to the Painlevé I equation). We note that Example 2.2
is of the type considered in [17]. In particular, Borel summation or, better,
k-summation is sufficient for the asymptotic analysis of the singularity.
A theorem of Y. Sibuya [28] gives the required input from asymptotics.
The “links”, that we defined, are present in their work and the family of
linear differential equations is presented as a matrix differential equation
d
dz +A(z, u). The origin of the examples, in the appendix of [16], of families
related to Painlevé I–VI, is probably classical (discovered by R. Fuchs [6],
P. Painlevé [23], R. Garnier [8] et al.). Another source for similar examples
are the ones discovered by H. Flaschka and A.C. Newell [4]. Later work of
B. Malgrange [18, 19], clarifies and extends the papers [17], [16].

The new tool “multisummation” and the precise construction of the
Stokes matrices, enables to generalize the work of Jimbo, Miwa and Ueno.
Especially, as we will show in the next subsection, a “complete” list of the
equations related to Painlevé I–VI can be derived. Further, the monodromy
spaces R for the analytic data can now be computed and studied in detail.
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2.2. Finding the list. Tables for connections and R

We consider a local family M(u) of differential modules, represented by
a matrix equation d

dz + A(z, u) where A(z, u) is a 2× 2-matrix with trace
0 and u lies in a small polydisk D around 0. The possibilities of the formal
structure at the singular points is given in Example 1.3. The local Riemann–
Hilbert map RH : D → R forgets the formal data, namely the position of
the set of singular points S and the coefficients of the eigenvalues at the
irregular singular points.

The position of the points S contributes max(−3 + #S, 0) to the dimen-
sion of the fibre, because of the automorphisms of P1. A singular point
p with Katz invariant r(p) contributes to the fibre the dimension r(p) if
r(p) ∈ Z>0 and r+(p) = 1

2 + r(p) if r(p) ∈ 1
2 + Z>0. Further, in the space

D one divides by the action of a subgroup of the automorphisms of P1.
The requirement that the fibres of RH have dimension 1 produces the

list:
#S > 4 is excluded.
#S = 4, then S = {0, 1,∞, t}, only regular singular points, i.e., all
r(p) = 0.

#S = 3, then S = {0, 1,∞} and only one irregular point with r(p) ∈
{1, 1

2}. #S = 2, then S = {0,∞}, the contribution of the singular points
to the dimension of the fibre is 2, since we divide by the group z 7→ az.

#S = 1, then S = {∞}, the contribution of the singular point to the
dimension of the fibre is 3, since we divide by the group z 7→ az + b.

Columns 3–6 of the next table present the ten resulting cases. In the
second column one finds the classification of the related Painlevé equation
(some classes are divided into subclasses). The first column gives the ex-
tended Dynkin diagram of the corresponding Okamoto–Painlevé pair (see
the Introduction). The space R is mapped to a space of parameters P
(related to the parameters spaces of the Painlevé equations) consisting of
traces or eigenvalues of the matrices involved in the construction of R.

We will not number these ten families, but indicate them by their Katz
invariants, e.g., (0, 0, 0, 0), (0, 0, 1), . . . , (0,−, 3/2), (−,−, 3), (−,−, 5/2).
For a differential module M corresponding to one of the types, the strong
Hilbert-Riemann problem has a positive answer, except possibly for (1/2,
−, 1/2) and (−,−, 5/2) (see Definitions and examples 1.12). For these two
types we only consider the modules M(u) for which the strong Riemann–
Hilbert problem does have a positive answer. The strong Riemann-Hilbert
problem for a familyM(u) is more subtle. It seems that connections on the
vector bundle O⊕O(−1) is better adapted to families. For the Painlevé VI
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Dynkin Painlevé equation r(0) r(1) r(∞) r(t) dimP
D̃4 PVI 0 0 0 0 4
D̃5 PV 0 0 1 - 3
D̃6 PVdeg= PIII(D6) 0 0 1/2 - 2
D̃6 PIII(D6) 1 - 1 - 2
D̃7 PIII(D7) 1/2 - 1 - 1
D̃8 PIII(D8) 1/2 - 1/2 - 0
Ẽ6 PIV 0 - 2 - 2
Ẽ7 PII 0 - 3/2 - 1
Ẽ7 PII - - 3 - 1
Ẽ8 PI - - 5/2 - 0

Table 2.1. Classification of Families

case this is type of vector bundle is considered in [12, 13]. Here however we
will represent a familyM(u) by connections on O⊕O. This defines, in gen-
eral, an affine Zariski open subset of the space of all connections. However,
the monodromy space R classifies the analytic data (modulo some equiv-
alence) for the complete space of all connections. For each type there are
many possibilities. We will make choices that are helpful for the computa-
tion of the Painlevé equations and are moreover close to classical formulas.

It turns out that R → P is a family of affine cubic surfaces. There are
two sources for the singularities of the fibres. The first one is reducibility
of systems and is connected with the singularities of R itself. The other
source is resonance, i.e., at least one of the matrices involved in the con-
struction of R has a difference of eigenvalues belonging to Z\{0}. Section 3
provides the computations of the families R → P. We will also describe
the corresponding one-dimensional families of differential modules M(t).
This subsection ends with a list indicating the families of connections and
presenting the families R→ P of affine cubic surfaces by an equation. The
monodromy space R for (0, 0, 0, 0) is classical(cf. [5, 15]), the others seem
to be new.

(0,0,0,0). PVI. d
dz + A0

z + A1
z−1 + At

z−t , all tr(A∗) = 0.

x1x2x3 + x2
1 + x2

2 + x2
3 − s1x1 − s2x2 − s3x3 + s4 = 0, with

si = aia4 + ajak, (i, j, k) = a cyclic permutation of (1, 2, 3),
s4 = a1a2a3a4 + a2

1 + a2
2 + a2

3 + a2
4 − 4 with a1, a2, a3, a4 ∈ C.
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(0,0,1). PV. d
dz + A0

z + A1
z−1 + t/2 ·

(−1 0
0 1

)
, all tr(A∗) = 0.

x1x2x3 +x2
1 +x2

2− (s1 +s2s3)x1− (s2 +s1s3)x2−s3x3 +s23 +s1s2s3 +1 = 0
with s1, s2 ∈ C, s3 ∈ C∗.

(0,0,1/2). PVdeg. d
dz + A0

z + A1
z−1 +

(0 t2
0 0
)
, all tr(A∗) = 0.

x1x2x3 + x2
1 + x2

2 + s0x1 + s1x2 + 1 = 0 with s0, s1 ∈ C.

(1,-,1). PIII(D6). z ddz +A0z
−1 +A1 +

( t
2 0

0 − t2

)
z, all tr(A∗) = 0.

x1x2x3 + x2
1 + x2

2 + (1 + αβ)x1 + (α+ β)x2 + αβ = 0 with α, β ∈ C∗.

(1/2,-,1). PIII(D7). z ddz +A0z
−1 +A1 +

( t
2 0

0 − t2

)
z, all tr(A∗) = 0.

x1x2x3 + x2
1 + x2

2 + αx1 + x2 = 0 with α ∈ C∗.

(1/2,-,1/2). PIII(D8). z ddz +
( 0 0
−q 0

)
z−1 +

( p
q −

t
q

1 − pq

)
+
(0 1

0 0
)
z.

x1x2x3 + x2
1 − x2

2 − 1 = 0.

(0,-,2). PIV. z ddz +A0 +A1z +
( 1 0

0 −1
)
z2.

x1x2x3+x2
1−(s22+s1s2)x1−s22x2−s22x3+s22+s1s32 = 0 with s1 ∈ C, s2 ∈ C∗.

(0,-,3/2). PIIFN. z ddz +A0 +
(0 t+q

1 0
)
z +

(0 1
0 0
)
z2

x1x2x3 + x1 − x2 + x3 + s = 0, with s ∈ C.

(-,-,3). PII. d
dz +A0 +A1z +

( 1 0
0 −1

)
z2, all tr(A∗) = 0.

x1x2x3 − x1 − αx2 − x3 + α+ 1 = 0 with α ∈ C∗.

(-,-,5/2). PI. d
dz +

(
p t+q2

−q −p
)

+
(0 q

1 0
)
z +

(0 1
0 0
)
z2.

x1x2x3 + x1 + x2 + 1 = 0.

Table of the equations of the monodromy spaces for the 10 families.
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3. Computation of the monodromy spaces

3.1. Family (0, 0, 0, 0) and Painlevé PVI

For completeness we describe this classical family. The family of differ-
ential modules is represented by d

dz +A(z, t) := d
dz + A0

z + A1
z−1 + At

z−t with
constant 2 × 2 matrices having trace 0. Dividing by the action, by conju-
gation, of PSL2 one finds a moduli spaceM (say the categorical quotient)
of differential modules with dimension 7.

The monodromy data are given by the tuples (M1,M2,M3,M4) ∈ SL4
2

satisfying M1 · · ·M4 = 1. This defines an affine space of dimension 9. The
categorical quotient R of this space under the action, by conjugation with
PSL2, has dimension 6. The fibres of RH :M → R are parametrized by
t ∈ P1 \ {0, 1,∞}.

The coordinate ring of R is generated over C by x1, x2, x3, a1, a2, a3, a4
with ai = tr(Bi) and x1 = tr(B2B3), x2 = tr(B1B3), x3 = tr(B1B2).
There is only one relation ([5, 14]), namely (as in the list)

x1x2x3 + x2
1 + x2

2 + x2
3 − s1x1 − s2x2 − s3x3 + s4 = 0.

The morphism R → P := C4, given by (x1, . . . , a4) 7→ (s1, . . . , s4), is a
family of affine cubic surfaces with “three lines at infinity”. For information
concerning the singularities of R and of the fibres we refer to [[15], [14],
[11]].

3.2. Family (0, 0, 1) and Painlevé PV

For a differential module of type (0, 0, 1), the strong Riemann-Hilbert
problem has a positive answer. Indeed, the lattices at 0 and 1 can be chosen
arbitrary. By tradition one supposes that the corresponding local exponents
are ±θ0/2 and ±θ1/2. From Definition and examples 1.4 one concludes
that there exists a unique lattice at ∞ leading to a free vector bundle.
By tradition, the generalized local exponents at ∞ are ±(tz + θ∞)/2. The
module is then represented by the matrix differential equation d

dz + A0
z +

A1
z−1 + A∞, for certain constant matrices A0, A1, A∞ with trace 0. A∞
is normalized by A∞ = t/2 ·

(−1 0
0 1

)
with t ∈ C∗. Further −θ2i /4 is the

determinant of Ai for i = 0, 1 and, θ∞ is the (1, 1) entry of A0 +A1.
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3.2.1. The moduli space R for the analytic data

The symbolic solution space V at ∞ is written as Vq ⊕ V−q. Let e1, e2
be basis vectors for Vq and V−q. Starting at ∞ one makes loops around 0
and 1, producing monodromy matrices M1,M2, with respect to the basis
{e1, e2}. Let M∞ be the topological monodromy at ∞, then we have the
relation M1M2M∞ = 1. Further M∞ =

(
α 0

0 α−1

)( 1 0
f1 1

)(1 f2
0 1

)
, where the

first matrix is the formal monodromy and the others are the two Stokes
matrices. In the sequel, we will eliminate the choice of the basis vectors e1,
e2 of Vq and V−q for the matrix equation. One considers the isomorphism
C∗ × C× C→ {

(
a b
c d

)
∈ SL2 | a 6= 0}, given by

(α, f1, f2) 7→
(
α 0

0 α−1

)(
1 0
f1 1

)(
1 f2
0 1

)
=
(
α αf2
α−1f1 α

−1(1 + f1f2)

)
.

One concludes that the matricesMj =
(
aj bj
cj dj

)
∈ SL2 for j = 1, 2 determine

M∞ and that c1b2 +d1d2 = α is non zero. Therefore, the pairsM1,M2 that
occur define an affine variety with coordinate ring

R = C
[
a1, . . . , d2,

1
c1b2 + d1d2

]
/(a1d1 − b1c1 − 1, a2d2 − b2c2 − 1).

The group Gm = {
(
c 0
0 1
)
| c ∈ C∗} acts on V and thus on the matrices

M1,M2. For this action the weights are: +1 for b1, b2; −1 for c1, c2 and 0
for a1, d1, a2, d2. The subring R0 of R, consisting of the invariants under
the action of Gm is the subring consisting of the elements of weight 0. The
moduli space R for the analytic data is Spec(R0).

For the calculation of R0 we may at first forget the localization at the
degree 0 element c1b2 + d1d2. Now, using the two relations, we find that R
has a basis over C, consisting of the monomials

a∗1a
∗
2d
∗
1d
∗
2b
n1
1 b
n2
2 c
m1
1 c
m2
2 with n1m1 = 0, n2m2 = 0 and any integers ∗ > 0.

It follows that R0 is equal to C[a1, d1, a2, d2, b1c2, b2c1,
1

b2c1+d1d2
], where the

six generators have only one relation namely b1c2 ·b2c1 = (−1+a1d1)(−1+
a2d2). The singular locus of R is given by the additional equations 0 =
b1c2 = b2c1 = a1d1 − 1 = a2d2 − 1. One observes that this describes the
reducible analytic data, given by b1 = b2 = 0 or c1 = c2 = 0 (or equivalently
the corresponding reducible differential equations). The coordinate ring of
the singular locus of R is C[d1, d−1

1 , d2, d
−1
2 ].

Introduce new variables s1 := a1 + d1, s2 := a2 + d2, s3 := b2c1 + d1d2,
i.e., the traces ofM1,M2 and the eigenvalue α of the formal monodromy at
∞ and the new variable d3 := b1c2+d1d2−s2d1−s1d2+s1s2+s3. Exchange
these variables against a1, a2, b2c1 and b1c2. Then the ring R0 obtains the
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form R0 = C[d1, d2, d3, s1, s2, s3, s−1
3 ]/(R(s1, s2, s3)), where R(s1, s2, s3) is

equal to

d1d2d3 + d21 + d22 − (s1 + s2s3)d1 − (s2 + s1s3)d2 − s3d3 + s23 + s1s2s3 + 1.

In the sequel we will write xi = di for i = 1, 2, 3. The inclusion

C[s1, s2, s3, s−1
3 ] ⊂ C[x1, x2, x3, s1, s2, s3, s

−1
3 ]/(R(s1, s2, s3))

induces a surjective morphism

π : R→ P = C× C× C∗ = Spec(C[s1, s2, s3, s−1
3 ]),

which maps a given tuple (M1,M2,M∞) to (s1, s2, s3). Thus π : R→ P is
a family of affine cubic surfaces with equation F = 0 with

F = x1x2x3 +x2
1 +x2

2−(s1 +s2s3)x1−(s2 +s1s3)x2−s3x3 +s23 +s1s2s3 +1.

We note that this equation (or the cubic surface) has a symmetry, given
by interchanging (x1, s1) and (x2, s2) (i.e., interchanging M1,M2).

3.2.2. The singularities of R and the fibres of R→ P

The inclusion of the singular locus Spec(C[x1, x
−1
1 , x2, x

−1
2 ]) of R into R

has the explicit form

(x1, x2) ∈ (C∗)2 7→ (x1, x2, x1x2+x−1
1 x

−1
2 , x1+x−1

1 , x2+x−1
2 , x1x2) ∈ R(C).

The image of the induced morphism Spec(C[x1, x
−1
1 , x2, x

−1
2 ]) → P lies in

Pred := Spec(C[s1, s2, s3, s−1
3 ]/(R1)), where R1 is the irreducible element

R1 = (s3+s−1
3 )2−s1s2(s3+s−1

3 )+s21+s22−4. More precisely, since R1 is irre-
ducible, one has an inclusion C[s1, s2, s3, s−1

3 ]/(R1) → C[x1, x
−1
1 , x2, x

−1
2 ],

given by s1 7→ x1 + x−1
1 , s2 7→ x2 + x−1

2 , s3 7→ x1x2. This identifies the
first ring with the subring C[x1 + x−1

1 , x2 + x−1
2 , x1x2, x

−1
1 x

−1
2 ] of the sec-

ond one. It easily follows that C[x1, x
−1
1 , x2, x

−1
2 ] is the normalization of

C[s1, s2, s3, s−1
3 ]/(R1) in its field of fractions.

The singular locus of Pred itself is easily computed to be the union of two
disjoint components given by the ideals (s3−1, s1−s2) and (s3 +1, s1 +s2).
The map τ : Spec(C[x1, x

−1
1 , x2, x

−1
2 ]) → Pred is an isomorphism outside

the singular locus of Pred and further satisfies:

τ−1(s1, s1, 1) =

{(
1
2

(
s1 ±

√
s21 − 4

)
,

1
2

(
s1 ∓

√
s21 − 4

))}
for s1 6= ±2 and τ−1(±2,±2, 1) = ±(1, 1);
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τ−1(s1,−s1,−1) =

{(
1
2

(
s1 ±

√
s21 − 4

)
,−1

2

(
s1 ∓

√
s21 − 4

))}
for s1 6= ±2 and τ−1(±2,∓2,−1) = (±1,∓1).

If for a fixed point p ∈ P, the fibre π−1(p) has a singular point, then
the ideal ( ddx1

F (x1, x2, x3, p), ddx2
F (x1, x2, x3, p), ddx3

F (x1, x2, x3, p)) is not
the unit ideal and it follows that the ideal I := (F, ddx1

F, ddx2
F, ddx3

F ) ∩
C[s1, s2, s3, s−1

3 ] lies in the maximal ideal of C[s1, s2, s3, s−1
3 ] defined by

the point p. Using a Gröbner basis one verifies that I is generated by
(s21 − 4)(s22 − 4)R1(s1, s2, s3). Thus singular points in π−1(p) occur for p
lying on one of the five divisors on P defined by s1 = ±2, s2 = ±2, R1 = 0.
The first four divisors correspond to resonance for the matrices M1,M2
and the last one to reducibility. A singular point in π−1(p), with p lying on
only one of the divisors has type A1. If p lies on more than one divisor, the
singularity type can be different. The following table, of importance for the
comparison with the Okamoto-Painlevé pairs, gives the rather complicated
structure of the singularities of the fibres (see Table 3.1).

3.3. Family (0, 0, 1/2) and Painlevé PVdeg

A differential module of this type is irreducible and by Theorem 1.11
can be represented by a matrix differential equation of the form d

dz + A0
z +

A1
z−1 + A∞ with tr(A0) = tr(A1) = 0 and A∞ nilpotent. The generalized
eigenvalues at ∞ are ±t · z1/2 and t ∈ C∗. One may normalize by A∞ =(0 t2

0 0
)
.

For the computation of monodromy space R we give the solution space
V at∞ a basis e1, e2 such that Vq = Ce1, V−q = Ce2, γe1 = e2, γe2 = −e1.
Let M0,M1,M∞ denote the topological monodromies at 0, 1,∞ on the ba-
sis e1, e2. ThenM∞=

(0 −1
1 0

)(1 0
e 1
)

and one findsM0M1
(−e −1

1 0
)
=1. Changing

the basis at ∞ does not effect these data. Therefore R has dimension
3 + 3 + 1− 3 = 4 (for M0,M1,M∞ and the 3 equations). One considers the
map R→ P := C×C which sends the tuple to (s0, s1) := (tr(M0), tr(M1)).

Write M1 =
(
a1 b1
c1 d1

)
. The equation M0M1M∞ = 1 determines M0 in

terms of M1,M∞. In particular, s0 = −c1 + b1 + a1e. Thus R is the space,
given by the 5 variables a1, b1, c1, d1, e and the equation a1d1 − b1c1 = 1.
Use s0 and s1 = a1 + d1 to eliminate c1 and d1. Then the single equation
between b1, a1, e, s0, s1 reads a1b1e + a2

1 + b21 − a1s1 − b1s0 + 1 = 0. With
the choice x1 = −b1, x2 = −a1, x3 = e this equation is

x1x2x3 + x2
1 + x2

2 + s0x1 + s1x2 + 1 = 0 and shows that R→ P
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s1 s2 R1 Singular points Type of the
(x1, x2, x3) singularities

2 6= ±2 6= 0 (1, s3, s2) A1
2 2 6= 0 (1, s3, 2), (s3, 1, 2) A1 +A1
2 2 0 (1, 1, 2) A3
2 −2 6= 0 (−s3,−1,−2), (1, s3,−2) A1 +A1
2 −2 0 (1,−1,−2) A3
2 6= ±2 0 (1, s3, s3 + s−1

3 ) A2
−2 6= ±2 6= 0 (−1,−s3,−s2) A1
−2 2 6= 0 (−1,−s3,−2), (s3, 1,−2) A1 +A1
−2 2 0 (−1,−1,−2) A3
−2 −2 6= 0 (−1,−s3, 2), (−s3,−1,−2) A1 +A1
−2 −2 0 (−1,−1, 2) A3
−2 6= ±2 0 (−1,−s3, s3 + s−1

3 ) A2
6= ±2 2 6= 0 (s3, 1, s) A1
6= ±2 2 0 (s3, 1, s3 + s−1

3 ) A2
6= ±2 −2 6= 0 (−s3,−1,−s1) A1
6= ±2 −2 0 (−s3,−1, s3 + s−1

3 ) A2
6= ±2 6= ±2 0 (a1, a2, a3) A1
6= ±2 s1 0 (α, β, 2), (β, α, 2) A1 +A1
6= ±2 −s1 0 (α,−β, 2), (−β, α, 2) A1 +A1

This table of the singularities of the fibres uses the notation

(a1, a2, a3) = (
s23 − 1
s2s3 − s1

,
s3(s2s3 − s1)
s23 − 1

, s3 + s−1
3 ) and

α =
1
2

(
s1 +

√
s21 − 4

)
, β =

1
2

(
s1 −

√
s21 − 4

)
.

As usual, the symbol An, n > 1 stands for the surface singularity given by the local
equation x2 + y2 + zn+1 = 0.

Table 3.1. Singularities for the monodomy spaces for PV.

is a family of affine cubic surfaces. We note that there are no reducible cases
and that R is nonsingular. The singularities of the fibres occur only for the
loci s0 = ±2 and/or s1 = ±2, corresponding to resonance. The fibres for
(s0, s1) = (±2, 6= ±2) and (s0, s1) = ( 6= ±2,±2) contain one singular point
and the fibers for (s0, s1) = (±2,±2) contain two singular points. All these
surface singularities are of type A1.

3.4. Family (1,−, 1) and Painlevé PIII(D6)

Due to the ample choice of invariant lattices at 0 and at ∞, any dif-
ferential module of this type can be represented by a matrix differential
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equation z ddz +A0z
−1 +A1 +A2z. By a transformation z 7→ λz one arrives

at eigenvalues ± t2z
−1 at 0 and ± t2z at ∞ with t ∈ C∗. Moreover one can

normalize such that A2 = t
2
( 1 0

0 −1
)
. There are more normalizations possible.

The affine space AnalyticData is described as follows.
The formal solution space V (0) at 0 is given a basis e1, e2 such that the

formal monodromy, the Stokes matrices and the topological monodromy
top0 have the form(
α 0
0 α−1

)
,

(
1 0
a1 1

)
,

(
1 a2
0 1

)
,

(
α αa2
α−1a1 α

−1(1 + a1a2)

)
.

The last matrix is written as
(
m1 m2
m3 m4

)
. It is characterized by m1 6= 0, m1m4

−m2m3 = 1 and it determines α, a1, a2. Moreover, e1 ∧ e2 is a fixed global
solution of the second exterior power.

The formal solution space V (∞) at∞ is provided with a basis f1, f2, such
that f1 ∧ f2 is again this fixed global solution and the formal monodromy,
the Stokes maps and the topological monodromy top∞ have the matrices(
β 0
0 β−1

)
,

(
1 0
b1 1

)
,

(
1 b2
0 1

)
,

(
β βb2
β−1b1 β

−1(1 + b1b2)

)
.

The link L : V (0)→ V (∞) satisfies:
(i) top∞ ◦L = L ◦ top0, this follows from M1M∞ = 1.
(ii) L maps e1 ∧ e2 to f1 ∧ f2. Thus the matrix

(
`1 `2
`3 `4

)
of L w.r.t. the

given bases has determinant 1.
One uses (i) to forget the data for ∞. The coordinate ring for Analytic
Data is the localization of C[m1, . . . ,m4, `1, . . . , `4]/(m1m4−m2m3−1, `1`4
−`2`3− 1), given by 0 6= α = m1 and 0 6= β = `1`4m1 + `2l4m3− `1`3m2−
`2`3m4.

The monodromy space R is obtained by dividing AnalyticData by the
action of the elements (γ, δ) ∈ Gm × Gm, which is induced by the base
change e1, e2, f1, f2 7→ γe1, γ−1e2, δf1, δ

−1f2.

The new matrices are
(
m1 γ2m2
γ−2m3 m4

)
and

(
γ−1δ`1 γδ`2
γ−1δ−1`3 γδ

−1`4

)
.

The ring of invariants for the action of Gm × Gm is computed to be (a
localization of) C[m1,m4, `1`4,m2`1`3,m3`2`4]. We note that m2m3 and
`2`3 are omitted because of the determinant =1 relation. There is only one
relation between these five generators namely (recall α = m1)

(m2`1`3) · (m3`2`4) + (−αm4 + 1) · (`1`4) · (`1`4 − 1) = 0.
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Writing y1 := `1`4, y2 := m2`1`3, y3 := m3`2`4 and using the formula
for β one obtains the equation and the formula

y2y3 + (−αm4 + 1)y1(y1 − 1) = 0 and β = αy1 + y3 − y2 − (y1 − 1)m4.

Using the formula for β one eliminates y3 and obtains the equation

y2(β − αy1 + y2 + (y1 − 1)m4) + (−αm4 + 1)y1(y1 − 1) = 0.

For fixed α, β this is a cubic equation in y1, y2,m4. After a series of simple
transformations, one obtains the following equation for R→ P = C∗ ×C∗

x1x2x3 + x2
1 + x2

2 + (1 + αβ)x1 + (α+ β)x2 + αβ = 0.

The discriminant of R→ P has the formula (α−β)2(αβ−1)2 and therefore
the fiber above (α, β) with α 6= β, β−1 is non singular. The singular locus
of R consists of the two non intersecting lines

L1 : α = β, (x1, x2, x3) = (0,−α, α+ α−1) and

L2 : α = β−1, (x1, x2, x3) = (−1, 0, α+ α−1).
They correspond to the reducible connections (or equivalently reducible
monodromy data). All the singularities of the fibres are obtained by inter-
secting with L1 or L2. The corresponding surface singularities are of type
A1. If α 6= ±1 and β = α±1, then there is only one singular point in the
fiber. If α = β = ±1, then the fiber has two singular points.

3.5. Family (1/2,−, 1) and Painlevé PIII(D7)

By Theorem 1.2, any differential module of this type is represented by a
matrix differential equation z ddz +A0z

−1 +A1 +A2z. One may normalize
A2 =

( t
2 0
0 − t2

)
. After a transformation z 7→ λz one may suppose that the

eigenvalues at 0 are ±z−1/2 and ± t2 · z at ∞. Assuming that A0 and A2
have no common eigenvector leads to the explicit family

z
d

dz
+A0z

−1 +A1 +
( t

2 0
0 − t2

)
z.

For the description of the space AnalyticData, the formal solution space
V (0) at 0 is given the basis e1, e2 for which the formal monodromy, the
Stokes matrix and topological monodromy top0 have the matrices(

0 − 1
1 0

)
,

(
1 0
e 1

)
,

(
−e − 1

1 0

)
.
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The formal solution space V (∞) at ∞ is given a basis f1, f2 for which the
formal monodromy, the Stokes maps and the topological monodromy top∞
have the matrices(

α 0
0 α−1

)
,

(
1 0
c1 1

)
,

(
1 c2
0 1

)
,

(
α αc2
α−1c1 α

−1(1 + c1c2)

)
.

One writes top∞ =
(
a b
c d

)
with a 6= 0 and determinant 1. It is assumed

that e1 ∧ e2 and f1 ∧ f2 are the same global solution of the second exterior
power of the differential equation. The link L : V (0)→ V (∞) has therefore
a matrix

(
`1 `2
`3 `4

)
with determinant 1.

The equation top0 ·L−1top∞ L=1 can be written as
(
a b
c d

)
=L
( 0 1
−1 −e

)
L−1.

This eliminates
(
a b
c d

)
(and thus α, c1, c2). The coordinate ring of Analytic

Data is therefore C[`1, . . . , `4, e]/(`1`4−`2`3−1). The elements µ ∈ Gm act
on AnalyticData by the base change f1, f2 7→ µf1, µ−1f2. The elements
`1, `2, `3, `4 have weights −1,−1, 1, 1 for this action.

The coordinate ring of R is generated by the variables e, `13, `14, `23, `24
where `ij := `i`j . There are two relations, namely `14−`23 = 1 and `14`23 =
`13`24. R has dimension 3. The map R→ P = C∗ is defined by: an element
inR is mapped to α = −`24−`13−`23e, one of the eigenvalues of the formal
monodromy at ∞. Eliminate `14 = `23 + 1. Then we have the equation
(`23 + 1)`23 + `13(α + `13 + `23e) = 0 (here `24 is eliminated). We obtain
a family R → P = C∗ of non singular affine cubic surfaces given by the
equation `13`23e+ `213 + `223 + α`13 + `23 = 0.

3.6. Family (1/2,−, 1/2) and Painlevé PIII(D8)

We consider differential modules of this type for which the strong Rie-
mann–Hilbert problem has a solution (see Definition and examples 1.12,
part (2)). Then a matrix differential equation z ddz + A0z

−1 + A1 + A2z,
with nilpotent A0 and A2, represents the module. Further assuming that
the eigenvectors of A0 and A2 are distinct one can normalize to an equation
of the form (see 4.7)

z
d

dz
+
(

0 0
−q 0

)
z−1 +

(p
q −

t
q

1 − pq

)
+
(

0 1
0 0

)
z.

The space AnalyticData is build as follows. The formal solution space
V (0) at 0 is given a basis e1, e2, unique up to multiplication by the same
constant, such that V (0)z−1/2 = Ce1, V (0)−z−1/2 = Ce2, such that the
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formal monodromy has matrix
(0 −1

1 0
)
. There is one Stokes matrix

(1 0
a 1
)
.

The topological monodromy at 0 is the product, i.e.,
(−a −1

1 0
)
.

At ∞, one has similarly a basis f1, f2 for V (∞) with topological mon-
odromy

(0 −1
1 0

)(1 0
b 1
)

=
(−b −1

1 0
)
. The matrix of the link L : V (0) → V (∞)

with respect to these basis satisfies L : e1 ∧ e2 7→ f1 ∧ f2, because we as-
sume, as we may, that e1∧e2 and f1∧f2 are the same global solution of the
second exterior power. Thus L =:

(
`1 `2
`3 `4

)
has determinant 1. The identity(

`1 `2
`3 `4

)(
−a − 1
1 0

)
=
(
−b − 1
1 0

)(
`1 `2
`3 `4

)
describes the generators and relations of the coordinate ring of Analytic
Data. The only admissible bases change is e1, e2, f1, f2 7→ λe1, λe2, λf1, λf2
with λ ∈ C∗ acts trivially on AnalyticData and thus this space coincides
with R.

After elimination of b, `1, `3 one is left with the variables a, `2, `4 and one
equation, namely a`2`4 + `24 − `22 − 1 = 0, or in other variables

x1x2x3 + x2
1 − x2

2 − 1 = 0.

This defines a non singular affine cubic surface.

3.7. Family (0,−, 2) and Painlevé PIV

The singularity at∞ of a module of this type guarantees that the strong
Riemann-Hilbert problem has a solution. There is a corresponding matrix
differential equation which can be normalized to z ddz +A0 +A1z+

( 1 0
0 −1

)
z2.

Using the transformation z 7→ λz one may suppose that the eigenvalues at
∞ are ±(z2 + t

2 · z). The ingredients for AnalyticData are the following.
The symbolic solution space at∞ is written as Vq⊕V−q and one takes a

basis {e1} and {e2} for Vq and V−q. With respect to the basis {e1, e2} the
topological monodromy top∞ at ∞ has the form

top∞ =
(
α 0
0 α−1

)(
1 0
a1 1

)(
1 a2
0 1

)(
1 0
a3 1

)(
1 a4
0 1

)
,

where the first matrix is the formal monodromy and the others are the
4 Stokes matrices. Let top0 denote the monodromy at 0 written on the basis
e1, e2. The condition top0 · top∞ = 1 implies that top∞ determines top0.
The coordinate ring of AnalyticData is C[α, α−1, a1, . . . , a4]. An element
λ ∈ Gm acts on AnalyticData by the base change e1, e2 7→ λe1, λ−1e2. The
weights of α, a1, a2, a3, a4 for this action are 0,+1,−1,+1,−1. Therefore R
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has coordinate ring C[α, α−1, a12, a14, a23, a34], where aij := aiaj . There is
only one relation namely a12a34 − a14a23 = 0.

The singular points of R are given by the equations a12 = a14 = a23 =
a34 = 0. This coincides with the locus where the monodromy data (or
equivalently the differential modules) are reducible (namely a1 = a3 = 0 or
a2 = a4 = 0).

The morphism R → P := C × C∗, where P is a space of parameters, is
given by (α, a1, . . . , a4) 7→ (tr(top1), α). Now tr(top1) = tr(top∞) and

tr(top∞) = α(1 + a23) + α−1(a14 + a34 + a12 + a12a34 + 1).

Write s2 = α and s1 = tr(top∞) and exchange a23 with s1 by the formula

a23 = s−1
2 s1 − s

−2
2 (a14 + a34 + a12 + a12a34 + 1)− 1.

Then the coordinate ring of R has the form C[s1, s2, s−1
2 , a12, a14, a34] and

there is one relation, namely

a12a14a34 + (s22a12a34 + a2
14 + a14a12 + a14a34) + a14(1 + s22 − s1s2) = 0.

One makes the following substitutions

a14 = x1 − s22, a12 = x2 − 1, a34 = x3 − 1 and the relation R reads

x1x2x3 + x2
1 − (s22 + s1s2)x1 − s22x2 − s22x3 + s22 + s1s32 = 0,

and thus R→ P = C× C∗ is a family of affine cubic surfaces.

3.7.1. Singular loci of R and the fibres of R→ P

We have already remarked that the singular points of R correspond to
reducibility and are given by x1 = s22, x2 = 1, x3 = 1, s1 = s2 + s−1

2 .
For a fixed s = (s1, s2) ∈ P, the singular locus of the fibre is given by

the (relative) Jacobian ideal, generated by R, ∂R/∂x1, ∂R/∂x2, ∂R/∂x3. A
Gröbner basis for this ideal produces the following results.

The fiber has singular points if and only if s satisfies the equation

∆(s) := (s1 − 2)(s1 + 2)(s22 − s1s2 + 1) = 0.

We define three divisors of P by D±1 = {s1 = ±2}, Dred = {s22 − s1s2 +
1 = 0}. We have seen that Dred corresponds to the locus of the reducible
differential equations. Further s1 = eπiθ0 +e−πiθ0 , where ±θ0/2 are the local
exponents at z = 0 of the differential equation. Thus s1 = ±2 corresponds
to the resonant case θ0 ∈ Z. The table gives the singularities and their type
of the fibres.

ANNALES DE L’INSTITUT FOURIER



MODULI FOR DIFFERENTIAL AND PAINLEVÉ EQUATIONS 2647

s = (s1, s2) (x1, x2, x3) Type
D+

1 not Dred (2, s2), s2 6= 1 (s2, s2, s2) A1
D−1 not Dred (−2, s2), s2 6= −1 (−s2,−s2,−s2) A1
Dred not D±1 (s2 + s−1

2 , s2), s2 6= ±1 (s22, 1, 1) A1
D+

1 ∩Dred (2, 1) (1, 1, 1) A2
D−1 ∩Dred (−2,−1) (1, 1, 1) A2

3.8. Family (0,−, 3/2) and Painlevé PIIFN

A module of this type can be represented, by Theorem 1.2, by a matrix
differential equation z ddz +A0 +A1z+A2A2 with A2 nilpotent. One can use
the transformation z 7→ λz and choose a basis such that the explicit form is
z ddz+

(
a c
−b −a

)
+
(0 t+b

1 0
)
z+
(0 1

0 0
)
z2. The eigenvalues at∞ are ±(z3/2+ t2 ·z

1/2).
The space AnalyticData is formed as follows. The formal solution space
V at ∞ is given a basis e1, e2 such that the formal monodromy and the
three Stokes maps have the matrices(

0 − 1
1 0

)
,

(
1 0
a1 0

)
,

(
1 a2

0 1

)
,

(
1 0
a3 1

)
.

The topological monodromy top∞ is the product of these matrices and top0
is the inverse of top∞. Further, the base change e1, e2 7→ λe1, λe2 does not
effect the matrices. It follows that the coordinate ring of R is C[a1, a2, a3].
One computes that the trace s of the topological monodromy at 0 is s =
−a1a2a3 − a1 + a2 − a3. The map R → P is given by (a1, a2, a3) 7→ s.
Thus R → P is a family of affine cubic surfaces given by the equation
a1a2a3 + a1 − a2 + a3 + s = 0.

The singularities of the fibres occur only for the resonant case θ0 ∈ Z,
where ±θ0/2 are the local exponents at z = 0. Since s = eπiθ0 +e−πiθ0 , this
corresponds to s = ±2. For s = 2 one finds one singular point (a1, a2, a3) =
(−1, 1,−1) and for s = −2 one singular point (a1, a2, a3) = (1,−1, 1). The
type of the singularity is A1 in both cases.

3.9. Family (−,−, 3) and Painlevé PII

The family of connections. A differential module of this type can be
represented by a matrix differential equation d

dz +A0 +A1z+A2z
2, because

of the singularity at∞. Using a transformation z 7→ λz+µ and by choosing
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a suitable basis one arrives at the explicit form, having eigenvalues ±(z3 +
t
2 · z) at ∞, namely

d

dz
+
(
a10 + z2 a21z + a20
a31z + a30 −a10 − z2

)
and t = a10 + a21a31/2.

The group Gm acts by conjugation, in fact by a21z + a20 7→ λ(a21z + a20)
and a31z + a30 7→ λ−1(a31z + a30). In general, this cannot be used to
normalize the equation even further. (See Subsection 4.10).

The space AnalyticData consists of the formal monodromy and six
Stokes matrices. The formal solution space V at ∞ is given a basis e1, e2
such that the formal monodromy and the six Stokes maps have the matrices(

α 0
0 α−1

)
,

(
1 0
b1 1

)
,

(
1 b2
0 1

)
, · · · ,

(
1 b6
0 1

)
.

The product of all of them is the topological monodromy at∞ and hence is
equal to

(1 0
0 1
)
. The coordinate ring of AnalyticData is therefore generated

by α, α−1, b1, . . . , b6 and the matrix identity defines the ideal of the relations
I ⊂ C[α, α−1, b1, . . . , b6]. The basis e1, e2 is unique up to the action of the
elements λ ∈ Gm, given by e1, e2 7→ λe1, λ−1e2.

Call the six Stokes matrices M1, . . . ,M6. Then M3M4M5M6 is equal to(
α−1(1 + b1b2) −αb2
−α−1b1 α

)
which is the inverse of

(
α 0
0 α−1

)
M1M2.

We note that the product of the three matrices determines α, b1, b2. Further
one computes that α = b3b6 +(1+b3b4)(1+b5b6). Thus the coordinate ring
of AnalyticData is C[b3, b4, b5, b6, 1

b3b6+(1+b3b4)(1+b5b6) ]. For the group Gm
the variables b1, b3, b5 have weight −1, the variables b2, b4, b6 have weight
+1 and α has weight 0. Write bij := bibj for i < j. Then the coordinate
ring of R is the ring of the Gm-invariant elements and this is

C

[
b34, b36, b45, b56,

1
b36 + (1 + b34)(1 + b56)

]
.

There is only one relation, namely b34b56 = b36b45. We use the identity
α = b36 +(1+b34)(1+b56) to exchange b36 with α. Then the coordinate ring
of R has the form C[α, α−1, b34, b45, b56] and there is only one relation now.
Define x1 = b34 + 1 = tr(M3M4)− 1, x2 = b45 + 1 = tr(M4M5)− 1, x3 =
b56 + 1 = tr(M5M6)− 1. Then this relation reads x1x2x3−x1−αx2−x3 +
α+ 1 = 0 and defines a family R→ P = C∗ of cubic surfaces.

The locus in the affine space AnalyticData of reducible data has two
components. The first one is given by α = 1, b1 = b3 = b5 = 0 and the
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second one by α = 1, b2 = b4 = b6 = 0. These loci are mapped to the
unique singular point α = 1, x1 = x2 = x3 = 1 of R.

For α 6= 1, the affine cubic surface, given by the above equation, has no
singularities. The infinite part of the cubic surface consists of three lines.
The three intersection points of these lines are the infinite singularities.
The cubic surface for α = 1 has one extra singular point, namely x1 =
x2 = x3 = 1. (This cubic surface is the Cayley surface). The type of the
surface singularities is A1.

3.10. Family (−,−, 5/2) and Painlevé PI

According to Definition and examples 1.12, a differential module of this
type need not have a solution for the strong Riemann-Hilbert problem. We
deal here with the modules for which there is a solution, i.e., are represented
by a matrix differential equation d

dz + A0 + A1z + A2z
2 with nilpotent

A2 which can be normalized into
(0 1

0 0
)
. The map z 7→ λz + µ is used to

normalize the eigenvalues at ∞ to ±(z5/2 + t
2 · z

1/2). Conjugation with a
constant matrix of the form

(1 ∗
0 1
)

leads to the normalization

d

dz
+
(
p t+ q2
−q −p

)
+
(

0 q

1 0

)
z +

(
0 1
0 0

)
z2.

The space AnalyticData is given by the formal monodromy and 5 Stokes
maps which are on a basis e1, e2 of the formal solution space at ∞ given
by the matrices(

0 − 1
1 0

)
,

(
1 0
a1 1

)
,

(
1 a2

0 1

)
,

(
1 0
a3 1

)
,

(
1 a4

0 1

)
,

(
1 0
a5 1

)
.

Their product is the topological monodromy and thus equal to
(1 0

0 1
)
. The

base change e1, e2 7→ λe1, λe2 does not effect these matrices. Hence the
coordinate ring of R is generated by a1, . . . , a5 and their relations are given
by the above matrix identity.

After eliminating a2 by a2 = 1 + a4a5 and a1 by a1 = −1 − a3a4, one
obtains for the remaining variables a3, a4, a5 just one equation and R is
a non singular affine cubic surface with three lines at infinity, given by
a3a4a5 + a3 + a5 + 1 = 0.
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4. The Painlevé equations

4.1. Finding the Painlevé equations

For each of the ten families of Section 3, with the exception of (0, 0, 0, 0),
which is the well known classical case leading to PVI, we want to derive a
corresponding Painlevé equation q′′ = R(q, q′, t).

We choose one of the other nine cases. A Zariski open part M0 of the
corresponding moduli space is represented by a suitable matrix differential
operator. Recall that there is a morphism pr :M0 → T × Λ, where T de-
notes the space of the “time variable” t and the parameter space Λ consists
of the local exponents for the regular singular points and the constant term
of the generalized local exponents at the irregular singular points.

Choose λ ∈ Λ, let a ∈ P be the image of λ in the parameter space of
R. WriteM0

λ = pr−1(T × {λ}) and Ra for the fibre of R→ P at a. Then
the Riemann–Hilbert map restricts to RHλ :M0

λ → Ra and the fibres of
RHλ are parametrized by t. In particular,M0

λ has dimension 3. This space
is represented by an explicit family of differential operators ddz +A, where
the entries of A are rational functions in z with coefficients depending on
three explicit variables, say f, g, t. Later on we will make a rather special
choice for f, g.

An isomonodromic family d
dz+A = d

dz+A(z, t) on P1, parametrized by t,
is a fibre of some RHλ. The earlier variables f, g are now functions of t. Let
S denote the singular locus. On P1\S there exists a multivalued fundamen-
tal matrix Y(z, t), i.e., ( ddz+A(z, t))Y (z, t)=0, normalized by detY (z, t)=1.
By isomonodromy, ddtY (z, t) and Y (z, t) have the same behaviour for Stokes
and monodromy and thus B(z, t) := − ddtY (z, t) ·Y (z, t)−1 is univalued and
extends in a meromorphic way at the set S. Moreover B := B(z, t) has
trace 0 since detY (z, t) = 1. Therefore the entries of B are rational func-
tions in z and are analytic in t. It follows that the operators d

dz + A(z, t)
and d

dt +B(z, t) commute. This is equivalent to the identity

d

dt
A = d
dz
B + [B,A] and tr(B) = 0.

This equality is seen as a differential equation for matrices B, rational in
z and with trace 0. Assume (as we will in the examples) that d

dz + A is
irreducible, then B is unique. Indeed, the difference C of two solutions is
rational in z and satisfies ddzC = [C,A]. Thus C( ddz +A) = ( ddz +A)C and
C is an endomorphism of ddz + A. By irreduciblity, C is a multiple of the
identity and C = 0 because tr(C) = 0.
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For the actual computation of B for the cases of Subsection 2.2, the
following remarks are useful. If z = c is a regular, or regular singular
point (without resonance), then B has no pole at c. If the Katz invariant
r = r(c) > 0 is an integer, and the top coefficient of the eigenvalues at c
do not depend on t, then ordc(B) > −r+ 1. If however this top coefficient
depends on t, then ordc(B) > −r. If the Katz invariant r(c) = m+ 1

2 with
integer m > 0, then ordc(B) > −m− 1. The above matrix equation yields
explicit differential equations for f, g as functions of t, and an explicit B.

The symbols p, q denote a preferred choice for the variables f, g. To define
and find them we consider a pair (t, λ) ∈ T×Λ and the 2-dimensional space
M0
t,λ := pr−1({(t, λ)}. Let ddz +A be the corresponding matrix differential

operator and let a cyclic vector e be given. The monic scalar differential
operator L := ( ddz )

2 +a1
d
dz+a0 defined by Le = 0 has, in general, a number

of new singularities, called apparent singular points. In Subsection 4.2, we
will find good cyclic vectors e, defined by the condition that there is only
one apparent singular point. This singular point, varying in the family
M0

(t,λ), is the choice for q. To make this explicit, suppose that A =
(
a b
c −a

)
and that the first basis vector is the cyclic vector e. Then

L = ( d
dz

)2 − c
′

c
· d
dz
− a′ − a2 − bc+ a · c

′

c
, where a′ = da

dz
etc.

Thus c has as rational function in z a simple zero at q and this yields a
pole at q with residue 1 in the coefficient of d

dz in L. Now p is defined
as the residue at q of the “constant term” −a′ − a2 − bc + a · c

′

c of L,
multiplied by a factor F ∈ {1, q, q2, q(q − 1)} depending on the familyM.
This factor is introduced for geometrical reasons in connection with the
Okamoto–Painlevé pairs [25, 29] (see the formulas of 4.3).

A Zariski open, dense part of the space M0
(t,λ) is now parametrized by

p, q. On this space we introduce the symplectic structure by the closed
2-form dp∧dq

F (with F ∈ {1, q, q2, q(q − 1)}) and thus p, q are canonical
coordinates. The Zariski open subset of the space M0

λ is parametrized by
p, q, t. This space has a foliation given by the isomonodromy families, i.e.,
the fibres of RHλ. There is an Hamiltonian functionH = H(p, q, t), rational
in p, q and t, such that this foliation coincides with the foliation deduced
from the closed 2-form Ω = dp∧dq

F − dH ∧ dt on M0
λ. More precisely, the

vector field v = ∂
∂t +vp ∂∂p +vq ∂∂q describing ismonodromic families satisfies

v · Ω = 0 (see [25], Section 6 and [29], Subsection (2.3)).
The important fact is that for an isomonodromic family, q as function

of t satisfies the Painlevé equation q′′ = R(q, q′, t) that we are looking for.
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The functions p, q of t satisfy the Hamiltonian equations, modified with the
factor F ∈ {1, q, q2, q(q − 1)}, thus p′ = F · ∂H∂q , q

′ = −F · ∂H∂p .

4.2. Apparent singularities

Let M denote a differential module over C(z) of rank 2 with detM ∼= 1,
with singular points 0, 1,∞ and represented by a connection (V,∇) with V
free and ∇ : V → Ω(n0[1] +n1[1] +n∞[∞])⊗V for integers n0, n1, n∞ > 1.
Put V := H0(P1,V). Then M = C(z) ⊗ V and ∂ := ∇ d

dz
= d
dz + B0 +

B1 + B∞ with B0, B1, B∞ polynomials in z−1, (z − 1)−1, z of degrees
6 n0, n1,−1 +n∞ and with coefficients in End(V ). The free module N :=
C[z, 1

z(z−1) ]⊗V over C[z, 1
z(z−1) ] is invariant under ∂ and can be considered

as a differential module over C[z, 1
z(z−1) ][ ddz ].

Let e ∈M = C(z)⊗ V be a cyclic vector, producing the scalar equation
(∂2+a1∂+a0)e = 0. The poles of a1, a0, different from 0, 1,∞ are called the
apparent singularities. Let s 6= 0, 1,∞ have local parameter u = z− s. The
elements e ∈ C((u)) ⊗ V are written as formal Laurent series

∑
n>∗ vnu

n

with all vn ∈ V . Now ords(e), the order of e 6= 0 at s, is defined to be the
minimal integer d with vd 6= 0.

We will use the second exterior power Λ2N = C[z, 1
z(z−1) ] ⊗ Λ2V . Let

e ∈ N be a cyclic vector and N0 ⊂ N the submodule generated by e
and ∂e. Then Λ2N0 = b · Λ2N for some monic polynomial b with b(0) 6=
0, b(1) 6= 0. The following lemma is an explicit calculation corresponding
to [13], Subsection 4.2.

Lemma 4.1. — The zero’s of b are the apparent singular points.

Proof. — We fix a point s 6= 0, 1,∞ and show that ords(b) > 0 if and only
if s is an apparent singularity. First we consider the case that ords(e) = 0.
Since s is non singular, C[[u]] ⊗ V has a free basis w1, w2 over C[[u]] with
∂w1 = ∂w2 = 0. Write e = c1w1 + c2w2 with min(ord(c1), ord(c2)) = 0. We
may suppose that ord(c1) = 0 and ord(c2) = m > 1. The equation for the
cyclic vector is ∂2 + a1∂ + a0 with a1 = (−c′′1 c2+c1c′′2 )

(c1c′2−c′1c2) , a0 = (−c′′1 c
′
2+c′1c

′′
2 )

(c1c′2−c′1c2) . If
m = 1, then ords(c1c′2 − c′1c2) = 0 and s is not an apparent singularity. If
m > 2, then

ords(c1c′2 − c′1c2) = m− 1, ords(−c′′1c2 + c1c′′2) = m− 2,
ords(−c′′1c′2 + c′1c′′2) > m− 2.

Thus ords(a1) = −1, ords(a0) > −1 and s is an apparent singularity.
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Suppose now that e = unf , n > 1, ords(f) = 0. The equation for e is
obtained from the scalar equation ∂2 + a1∂ + a0 for f by the substitution
∂ 7→ ∂−nu−1 and reads ∂2 +(−2nu−1 +a1)∂+(n2 +n)u−2−na1u

−1 +a0.
This introduces a pole if there was no pole before and a pole of order 2 if
there was already a pole.

For e with ords(e) one has e∧∂e = (c1c′2− c′1c2)w1 ∧w2 and ords(c1c′2−
c′1c2) = m− 1 and for e = unf one has e ∧ ∂e = u2nf ∧ ∂f . From this the
statement follows. �

By multiplying a given cyclic vector e with
∏
s 6=0,1(z − s)− ords(e), the

number of zero’s of b (counted with multiplicity) goes down. The cyclic
vectors with minimal degree for b have the form e ∈ C[z, 1

z(z−1) ] ⊗ V (or
even, after multiplying with z∗(z−1)∗ one has e ∈ C[z]⊗V ) and ords(e) = 0
for all s 6= 0, 1. We note that the condition ords(e) = 0 is equivalent to b has
at most simple zero’s. We call a cyclic vector e good if the corresponding b
has degree one (and thus there is only one apparent singularity).

Application of Lemma 4.1 for finding good cyclic vectors v ∈ V .
Family (0, 0, 1), ∂ = d

dz + z−1A0 + (z − 1)−1A1 + A∞ and A0, A1, A∞ ∈
End(V ). We only consider good cyclic vectors v ∈ V . The operator ∂ is
multiplied by z(z − 1). The condition that v produces only one apparent
singularity is equivalent to v ∧ (z(z − 1)A∞(v) + (z − 1)A0(v) + zA1(v))
(as element of C[z]⊗Λ2V ) has only one zero 6= 0, 1. This is equivalent to v
is an eigenvector of A∞ or A0 or A1. Thus in total there are 6 good cyclic
vectors, in general.
Family (0, 0, 1/2), same formula for ∂ but with A∞ nilpotent. The good
cyclic vectors are the eigenvectors of the matrices A0, A1, A∞. There are,
in general, 5 good cyclic vectors.
Family (1,−, 1). Now we work with a module over C[z, z−1]. Here z2∂ =
z2 ddz+A2+A1z+A0z

2. The condition on v is v∧(A2(v)+A1(v)z+A0(v)z2)
has only one zero 6= 0. Thus v is an eigenvector of A2 or of A0. In general,
there are total 4 good cyclic vectors and they come in pairs.
Family (1/2,−, 1). As before, but now A2 is nilpotent and, in general, there
are in 3 good cyclic vectors.
Family (1/2,−, 1/2). As before, but both A2 and A0 are nilpotent. Thus,
in general, 2 good cyclic vectors.
Family (0,−, 2). z∂ = z ddz + A0 + zA1 + z2A2. Then a good cyclic vector
is eigenvector of A0 or of A2. Thus, in general 4 good cyclic vectors.
Family (0,−, 3/2). As before, but now, in general, 3 good cyclic vectors
because A2 is nilpotent.
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Family (−,−, 3). Now we work over the ring C[z] and ∂ = d
dz +A0 + zA1 +

z2A2. The possible v are eigenvector for A2. Thus 2 good cyclic vectors.
Family (−,−, 5/2). As before, but only one good cyclic vector, since A2 is
nilpotent.

Remarks 4.2. — (1) In general there are more complicated good cyclic
vectors, than those in V . However for (−,−, 5/2) there is only one good
cyclic vector.

(2) If a cyclic vector v ∈ V is eigenvector of two of the matrices, then
the corresponding scalar equation has no apparent singularity.

4.3. Family (0, 0, 1) and Painlevé V, PV(D̃5)

In terms of the parameters (p, q) of Subsection 4.1, the family reads

The singularities z 0 1 ∞
Katz invariant 0 0 1

generalized local exponents ± θ0
2 ± θ1

2 ±( t2z + θ∞
2 )

(4.1) ∇ d
dz

= d
dz

+ A0

z
+ A1

z − 1
+A∞ = d

dz
+ 1
z(z − 1)

A with

A0 =

 −p− 1
2q (qt− t+ θ∞)

(q−1)
(

(p+ 1
2 q(qt−t+θ∞))2−

θ2
0
4

)
q

− q
q−1 p+ 1

2q (qt− t+ θ∞)

 ,

A1 =

 p+ (q−1)(qt+θ∞)
2

(
θ1
2
)2 −

(
p+ (q−1)(qt+θ∞)

2

)
2

1 −
(
p+ (q−1)(qt+θ∞)

2

) 

A∞ =
(
− t2 0
0 t

2

)
.
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Write A = z(z − 1)(A∞ +A0/z +A1/(z − 1)) =
(
a(z) b(z)
c(z) −a(z)

)
with

a(z) = p+
1
2

(−2qt+ t− θ∞) (z − q)−
1
2
t(z − q)2,

b(z) = −
z

((
p+ 1

2 (q − 1)q
)2
− θ

2
1
4 + (q − 1)

(
θ2

0
4 −

θ2
1
4 −

qθ2
∞

4

))
q

−
(q − 1)

(
p+ 1

2 ((q − 1)qt− θ0 + qθ∞)
) (
p+ 1

2 ((q − 1)qt+ θ0 + qθ∞)
)

q
,

c(z) = −
(z − q)
q − 1

.

The first basis vector is chosen as cyclic vector and following Subsec-
tion 4.1, q is the unique zero of c(z) and p = a(q).

The parameter (p, q) gives canonical coordinates on an affine Zariski open
set U0 ∼= C× (C \ {0, 1}) of the moduli spaceMt,λ of the connections with
fixed t and fixed generalized local exponents λ. The symplectic form on U0,
which is natural from the view point of Okamoto–Painlevé pair, is given
by dp∧dq
q(q−1) .

The matrix different operator ddt+B, commuting with ∇ d
dz

, has the form

B = zB0 + 1
t
B1 where B0 =

(
− 1

2 0
0 1

2

)
and

B1 =

− p
q−1 −

1
2 (q − 1)t− θ∞2 −

(p+ 1
2 (q−1)qt)2−

θ2
1
4 +(q−1)

(
θ2

0
4 −

θ2
1
4 −

qθ2
∞

4

)
q

− 1
q−1

p
q−1 + 1

2 (q − 1)t+ θ∞
2

.
From

[
d
dt +B,∇ d

dz

]
= 0 one deduces the following.

Painlevé V, PV(D̃5)
(4.2)

dq

dt
=

2p
t

dp

dt
=

(2q − 1)p2

(q − 1)qt
+
θ20(q − 1)2 − θ21q

2

4q(q − 1)t
+

1
4

(q − 1)q (2qt− t+ 2θ∞ − 2) .

The equation (4.2) is equivalent to the second order differential equation
of q
(4.3)

q′′ = (2q − 1) (q′)2

2(q − 1)q
− q
′

t
+ (q − 1)q (2qt− t+ 2θ∞ − 2)

2t
+ θ

2
0

2qt2
+ θ21

2(q − 1)t2
.

By a rational transformation of (p, q), this can be transformed into the
classical Painlevé V in [16].

Now we compute the Hamiltonian function HV = HV (p, q, t, θ) for (4.2),
which is a rational function of (p, q, t). It is defined by the property that
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the foliation given by the 2-form Ω = dp∧dq
q(q−1) − dHV ∧ dt on U0 × (C \ {0})

coincides with the foliation given by isomonodromy. The latter is given by
the vector field v, equivalent to (4.2), satisfying v · Ω = 0 and of the form

v = ∂
∂t

+ vp
∂

∂p
+ vq

∂

∂q
, with vp = dp

dt
, vq = dq

dt
.

Now 0 = v · Ω = dHV + vp
dq

q(q − 1)
− vq

dp

q(q − 1)
, is equivalent to

(4.4)


dp

dt
= q(q − 1)∂HV∂q

dq

dt
= −q(q − 1)∂HV∂p .

Comparing this with (4.2), one obtains the following expression for HV

(4.5) HV (p, q, t) = − p2

(q − 1)qt
− θ

2
0

4qt
+ θ21

4(q − 1)t
+ 1

4
q (qt− t+ 2θ∞ − 2) .

4.4. Family (0, 0, 1/2) and degenerate Painlevé V, PVdeg(D̃6)

PVdeg stands for “degenerate PV” (cf. [21]) which turns out to be equiv-
alent to Painlevé equation of type PIII(D̃6). The first basis vector is chosen
as cyclic vector, the (p, q) are as in Subsection 4.1 and the family reads

The singular points z 0 1 ∞
Katz invariant 0 0 1

2

generalized local exponents ± θ0
2 ± θ1

2 ±tz
1
2

(4.6) ∇ d
dz

= d
dz

+ A0

z
+ A1

z − 1
+A∞ = d

dz
+ 1
z(z − 1)

A with

A0 =

(
−p θ2

0−4p2

4q
q p

)
A1 =

(
p

4p2−θ2
1

4(q−1)
1− q −p

)
A∞ =

(
0 t2

0 0

)

A =
(
p L

z − q −p

)
, L := (q + z − 1)p2

(q − 1)q
+(z − 1)θ20

4q
− zθ21

4(q − 1)
+t2(z−1)z.
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The operator ddt +B with
[
d
dt +B,∇ d

dz

]
= 0 satisfies B = zB0 +B1, where

B0 =
(

0 2t
0 0

)
, B1 =

 0 2p2

(q − 1)qt
+ θ

2
0

2qt
− θ21

2(q − 1)t
+ 2(q − 1)t

2
t

0

.
Solving

[
d
dt +B,∇ d

dz

]
= 0 with Mathematica yields the following.

Degenerate Painlevé V, PVdeg(D̃6)

(4.7)


dq

dt
= 4p
t

dp

dt
= 2(2q − 1)p2

(q − 1)qt
+ (q − 1)θ20

2qt
− qθ21

2(q − 1)t
+ 2q(q − 1)t

(4.8) q′′ = (2q − 1) (q′)2

2(q − 1)q
− q

′

t
+ 2(q − 1)θ20

qt2
− 2qθ21

(q − 1)t2
+ 8(q − 1)q.

The 2-form on C × (C \ {0, 1}) × (C \ {0}), natural for the Okamoto–
Painlevé pair of type D̃6, is given by

Ω = dp ∧ dq
q(q − 1)

− dHdV ∧ dt, where HdV = HdV (p, q, t, θ) is equal to

HdV (p, q, t, θ) = − 2p2

(q − 1)qt
− θ

2
0

2qt
+ θ21

2(q − 1)t
+ 2qt,(4.9)

=
2(p2 −

(
θ0
2
)2)

tq
−

2(p2 −
(
θ1
2
)2)

t(q − 1)
+ 2qt.(4.10)

We note that equation (4.7) is equivalent to the Hamiltonian system

(4.11)


dq

dt
= −q(q − 1)∂HdV

∂p
,

dp

dt
= q(q − 1)∂HdV

∂q
.

4.5. Family (1,−, 1) and Painlevé III, PIII(D̃6)

As before, the first basis vector is chosen to be the cyclic vector, (p, q)
are as introduced in Subsection 4.1 and the operator d

dt + B commuting
with ∇ d

dz
has the form B = zB0 +B1 + 1

zB2. We present now the data.

(4.12) ∇ d
dz

= d
dz

+ 1
z2
A0 + 1

z
A1 +A2 = d

dz
+ 1
z2
A.
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The singular points z 0 ∞
Katz invariant 1 1

generalized local exponents ±( t2z
−1 + θ0

2 ) ±( t2z + θ∞
2 )

A0 =

(
1
2
(
−tq2 − θ∞q + 2p

) t2q4+2tθ∞q3+θ2
∞q

2−4ptq2−4pθ∞q+4p2−t2
4q

−q 1
2
(
tq2 + θ∞q − 2p

) )
,

A1 =

(
θ∞
2

t2q4−θ2
∞q

2−4ptq2−2tθ0q+4p2−t2
4q2

1 − θ∞2

)
, A2 =

(
t
2 0
0 − t2

)
,

A =
(
p+ 1

2 (z − q) (qt+ zt+ θ∞) L

(z − q) −p− 1
2 (z − q) (qt+ zt+ θ∞)

)
,

L =
q
(
tq2 + θ∞q − 2p+ t

) (
tq2 + θ∞q − 2p− t

)
4q2

+
z
(
t2q4 −

(
θ2∞ + 4pt

)
q2 − 2tθ0q + 4p2 − t2

)
4q2

.

B0 =
( 1

2 0
0 − 1

2

)
, B1 =

(
q + θ∞

2t
t2q4−θ2

∞q
2−4ptq2−2tθ0q+4p2−t2

4q2t
1
t −q − θ∞2t

)
,

B2 =

(
tq2+θ∞q−2p

2t
−4p2+(1−q4)t2+2q2t(2p−qθ∞)+qθ∞(4p−qθ∞)

4qt
q
t

−tq2−θ∞q+2p
2t

)
.

Solving the equation [ ddt +B,∇ d
dz

] = 0 yields the following.

Painlevé III, PIII(D̃6).

(4.13)


dq

dt
= 4p+ q

t

dp

dt
= 4p2

qt
+ p
t

+ tq3 + q2 − t
q
− θ0 + q2θ∞ .

The system (4.13) is equivalent to the following second order equation.

(4.14) q′′ = (q′)2

q
− q

′

t
− 4θ0
t

+ 4(θ∞ + 1)q2

t
+ 4q3 − 4

q
.

The equations (4.13) or (4.14) are defined on C×C \ {0}×C \ {0} and the
2-form Ω on this affine open set is

Ω = dp ∧ dq
q2

− dHIII ∧ dt
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where HIII = HIII(p, q, t, θ) is a Hamiltonian function for PIII given by

(4.15) HIII(p, q, t, θ) = −2p2

q2t
− p
qt

+ q + q
2t

2
+ t

2q2
+ θ0
q

+ qθ∞.

As before, the equation (4.13) is equivalent to the Hamiltonian system:

(4.16)


dq

dt
= −q2 ∂HIII

∂p
,

dp

dt
= q2

∂HIII
∂q
.

4.6. Family (1/2,−, 1): Painlevé IIID7, PIII(D̃7)

This family can be written as

(4.17) ∇ d
dz

= d
dz

+ 1
z2
A0 + 1

z
A1 +A2 = d

dz
+ 1
z2
A.

The items p, q,B are as before and the form of B is zB0 + B1. We give
now the explicit data and the results on the Painlevé equation and the
Hamiltonian.

The singular points z 0 ∞
Katz invariant 1/2 1

generalized local exponents ±z−1/2 ±( t2z + θ∞
2 )

A0 =

(
1
2
(
−tq2 − θ∞q + 2p

) (tq2+θ∞q−2p)2

4q
−q 1

2
(
tq2 + θ∞q − 2p

) )

A1 =

(
θ∞
2

t2q4−θ2
∞q

2−4ptq2−4q+4p2

4q2

1 − θ∞2

)
, A2 =

(
t
2 0
0 − t2

)
and

A =
(
p+ 1

2 (z − q) (qt+ zt+ θ∞) q(−tq2−θ∞q+2p)2+z(t2q4−θ2
∞q

2−4ptq2−4q+4p2)
4q2

(z − q) −p− 1
2 (z − q) (qt+ zt+ θ∞)

)

B0 =
( 1

2 0
0 − 1

2

)
, B1 =

(
q
2 + θ∞

2t
t2q4−(θ2

∞+4pt)q2−4q+4p2

4q2t
1
t − q2 −

θ∞
2t

)
.

TOME 59 (2009), FASCICULE 7



2660 Marius VAN DER PUT & Masa-Hiko SAITO

Painlevé IIID7, PIII(D̃7)

(4.18)


dq

dt
= 2p
t

dp

dt
= 2p2

tq
+ tq

3

2
+ 1

2
(θ∞ + 1) q2 − 1

t
.

The system (4.18) is equivalent to the following second order equation.

(4.19) q′′ = (q′)2

q
− q

′

t
+ (θ∞ + 1) q2

t
+ q3 − 2

t2

HIIID7(p, q, t, θ) = − p
2

q2t
+ q

2t

4
+ 1

2
q (θ∞ + 1) + 1

qt
.(4.20)

(4.21)


dq

dt
= −q2 ∂HIIID7

∂p
,

dp

dt
= q2

∂HIIID7

∂q
.

4.7. Family (1/2,−, 1/2): Painlevé IIID8, PIII(D̃8)

We present the data and the results of the computation.

(4.22) ∇ d
dz

= d
dz

+ 1
z2
A0 + 1

z
A1 +A2 = d

dz
+ 1
z2
A.

The singular points z 0 ∞
Katz invariant 1/2 1

generalized local exponents ±
√
t · z−1/2 ±z1/2

A0 =
(

0 0
−q 0

)
, A1 =

(
p
q −

t
q

1 −pq

)
, A2 =

(
0 1
0 0

)
,

A =

(
pz
q

z(qz−t)
q

z − q −pzq

)
, B = B0 + 1

z
B1 where

B0 =

(
0 1

q

0 0

)
, B1 =

(
0 0
q
t 0

)
.
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Painlevé IIID8, PIII(D8).

(4.23)


dq

dt
= 2p+ q

t

dp

dt
= 2p2

qt
+ p
t

+ q
2

t
− 1 = q

3 + pq − tq + 2p2

qt
.

The system (4.23) is equivalent to the following second order equation.

(4.24) q′′ = (q′)2

q
− q

′

t
+ 2q2

t2
− 2
t

(4.25) Ω = dp ∧ dq
q2

− dHIIID8 ∧ dt, HIIID8 = − p
2

q2t
− p
qt

+ 1
q

+ q
t
.

The equation (4.23) is equivalent to the following Hamiltonian system:

(4.26)


dq

dt
= −q2 ∂HIIID8

∂p
,

dp

dt
= q2

∂HIIID8

∂q
.

4.8. Family (0,−, 2) and Painlevé IV, PIV(Ẽ6)

The family of connection with this data can be written as

(4.27) ∇ d
dz

= d
dz

+ 1
z
A0 +A1 + zA2 = d

dz
+ 1
z
A,

A0 =

 −q2 − tq2 + p
q4 + tq3 + t2q2

4 − 2pq2 − tpq + p2 − θ
2
0
4

q

−q q2 + tq
2
− p

 ,
A1 =

(
t
2 2q2 + tq − 2p+ θ∞
1 − t2

)
, A2 =

(
1 0
0 −1

)
.

The singular points z 0 ∞
Katz invariant 0 2

generalized local exponents ± θ0
2 ±(z2 + t

2z + θ∞
2 )

B = zB1 +B2, B1 =
(

1/2 0
0 −1/2

)
, B2 =

( q
2 + t

4 q2 + tq
2 − p+ θ∞

2
1
2 − q2 −

t
4

)
.
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Painlevé IV, PIV(Ẽ6)

(4.28)



dq

dt
= p

dp

dt
= 3q3

2
+ tq2 + 1

8
(
t2 + 4θ∞ + 4

)
q + 4p2 − θ20

8q

= 12q4 + 8tq3 + t2q2 + 4θ∞q2 + 4q2 + 4p2 − θ20
8q

.

The system (4.28) is equivalent to the following second order equation.

(4.29) q′′ = (q′)2

2q
+ 3q3

2
+ tq2 + 1

8
(
t2 + 4θ∞ + 4

)
q − θ

2
0

8q
.

(4.30) HIV E6(p, q, t, θ) = −p
2

2q
+ q

3

2
+ tq

2

2
+ (t2 + 4θ∞ + 4)q

8
+ θ

2
0

8q
.

Equation (4.28) is equivalent to the following Hamiltonian system:

(4.31)


dq

dt
= −q ∂HIV E6

∂p
,

dp

dt
= q

∂HIV E6

∂q
.

4.9. Family (0,−, 3/2) and Painlevé II, PIIFN(Ẽ7)

PIIFN(Ẽ7) stands for the Flaschka–Newell equation [4] which is equiv-
alent to the Painlevé equation PII. A family of connection with this data
is
(4.32)

∇ d
dz

= d
dz

+ 1
z
A0+A1+zA2 = d

dz
+ 1
z
A, A =

(
p

p2+qz2−θ2
0+q2z−2qtz
q

z − q −p

)
.

A0 =

 p
p2−

θ2
0
4
q

−q −p

 , A1 =
(

0 q + t
1 0

)
, A2 =

(
0 1
0 0

)
.

B := B0 + zB1, B1 =
(

0 1
0 0

)
B0 =

(
0 2q + t
1 0

)
.
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The singular points z 0 ∞
Katz invariant 0 3/2

generalized local exponents ± θ0
2 ±(z3/2 + t

2z
1/2)

Painlevé II, PIIFN (Ẽ7)

(4.33)


dq

dt
= 2p

dp

dt
=

(
2q3 + tq2 + p2 − θ

2
0
4

)
q

= 2q2 + tq +
p2 − θ

2
0
4
q
.

The system (4.33) is equivalent to the following second order equation.

q′′ = (q′)2

2q
+ 4q2 + 2tq − θ

2
0

2q
(4.34)

Ω = dp ∧ dq
q
− dHIIFNE7 ∧ dt with

(4.35) HIIFNTE7 = −
p2 − θ

2
0
4
q

+ q2 + tq.

Equation (4.33) is equivalent to the following Hamiltonian system:

(4.36)


dq

dt
= −q ∂HIIFNE7

∂p
,

dp

dt
= q

∂HIIFNE7

∂q
.

4.10. Family (−,−, 3) and Painlevé II, PII(Ẽ7)

We present the data and the results of the computation.

(4.37) ∇ d
dz

= d
dz

+A0 + zA1 + z2A2 = d
dz

+A where

A0 =
(
p− q2 2q3 − 2pq + tq + θ∞
−q q2 − p

)
, A1 =

(
0 2q2 − 2p+ t
1 0

)
,

A2 =
(

1 0
0 −1

)
, A =

(
p+ z2 − q2 (q + 1)t− 2(p− q2)(z + q)z + θ∞
z − q −p− z2 + q2

)
.

B := B0 + zB1, B0 =
( q

2 q2 − p+ t
2

1
2 − q2

)
, B1 =

(
1/2 0
0 −1/2

)
.

TOME 59 (2009), FASCICULE 7



2664 Marius VAN DER PUT & Masa-Hiko SAITO

The singular points z ∞
Katz invariant 3

generalized local exponents ±(z3 + t
2z + θ∞

2 )

Painlevé II, PII(Ẽ7)

(4.38)


dq

dt
= p

dp

dt
= 2q3 + tq + θ∞+1

2 .

q′′ = 2q3 + qt+ θ∞ + 1
2

(4.39)

Ω = dp ∧ dq − dHIIE7 ∧ dt, where

(4.40) HIIE7(p, q, t, θ) = 1
2

(−p2 + q4 + tq2 + (θ∞ + 1)q).

Equation (4.38) is equivalent to the following Hamiltonian system:

(4.41)


dq

dt
= −∂HIIE7

∂p
,

dp

dt
= ∂HIIE7

∂q
.

4.11. Family (−,−, 5/2) and Painlevé I, PI(Ẽ8)

The family of connection with the data can be written as

The singular points z ∞
Katz invariant 5

2

generalized local exponents ±(z5/2 + t
2z

1/2)

(4.42) ∇ d
dz

= d
dz

+A0 + zA1 + z2A2 = d
dz

+A, where

(4.43) A0 =
(
p q2 + t
−q −p

)
, A1 =

(
0 q

1 0

)
A2 =

(
0 1
0 0

)
,
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A =
(
p q2 + zq + z2 + t
z − q −p

)
.

B := B0 + zB1, B0 =
(

0 2q
1 0

)
, B1 =

(
0 1
0 0

)
.

Painlevé I, PI(Ẽ8)

(4.44)


dq

dt
= 2p

dp

dt
= 3q2 + t

The system (4.44) is equivalent to the following second order equation.

(4.45) q′′ = 6q2 + 2t

Ω = dp ∧ dq − dHIE8 ∧ dt, HIE8(p, q, t, θ) = −p2 + q3 + tq(4.46)

Equation (4.44) is equivalent to the following Hamiltonian system:

(4.47)


dq

dt
= −∂HIE8

∂p
,

dp

dt
= ∂HIE8

∂q
.
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