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LOCAL BORCHERDS PRODUCTS

by J. H. BRUINIER and E. FREITAG

1. Introduction.

Let L be an even lattice of signature (2, l). Throughout we assume
1 &#x3E; 3 and furthermore that L contains two orthogonal hyperbolic
planes (some results require 1 &#x3E; 4). Let r be a subgroup of finite index of
the orthogonal group of L and let Xr be the Baily-Borel compactification of

where xl denotes the corresponding Hermitean symmetric domain.
The boundary of this compactification is a curve, which usually has many
components. We consider in each component of this curve a generic point
s. We want to investigate the local divisor class group of Xr in s. This is

roughly the group of analytic line bundles Pic(Ureg) on the regular locus
of a small open neighbourhood U of s. Up to some exceptional cases the
boundary of Xr consists of singular points. In any case, here we define

As a precise definition of the local Picard group we take

where U runs through all open neighbourhoods of s. Our first goal is to
compute this local Picard group. To this end one has to determine the local

analytic cohomology

Keywords: Automorphic form - Automorphic product - Orthogonal group - Heegner
divisor - Local Picard group.
Math. classification: 11F55 - 14L35.
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This has been done in a more general context by Ballweg in his Heidelberg
thesis [Ba]. Using the result of Ballweg we obtain a satisfactory description
of the local Picard group.

The cusp s corresponds to a F-conjugacy class of parabolic subgroups
P C O (2, l) . We choose one such P and denote by the intersection of

P with F.

For sufficiently neat T this is a two-step nilpotent group, which splits
into a semi-direct product

The main result of the local computation can be expressed by the exact

sequence

Here R denotes the ring of convergent power series in one complex variable
and R* its group of units. (This ring occurs as the local ring of s in its
boundary component). The kernel of H 2 (]F", Z) , 1 m 
turns out to be non-trivial. Let D be a divisor in a small neighbourhood
of s. From the above exact sequence we see that there are two obstructions

for D to be the divisor of a meromorphic function (in a possibly smaller
neighbourhood of s). The first obstruction is a Chern class in H2 (r 00, Z).
We will find many examples where this Chern class is not trivial. If it is

trivial there is a second obstruction, a (usually non-unitary) character of
A. So our computation shows that it is a rather restrictive property of a
divisor to be principal, i.e., the divisor of a meromorphic function.

In Section 4 we investigate these obstructions for Heegner divisors.
Recall that for any /3 in the discriminant group of L and any negative ra-
tional integer m (satisfying a congruence condition modulo 1) the Heegner
divisor H (0, m) of discriminant (/3, m) is an algebraic divisor on Xr (see
(4.1) for a precise definition). It defines an element of Pic(Xr, s) which can
be realized as an automorphy factor for on the inverse image U of a
small neighbourhood of s under the canonical map Xr. To construct
this automorphy factor explicitly we introduce a certain local Borcherds

This is a holomorphic function on 7~ defined as an infinite

product, whose divisor (W) is invariant under r 00’ The restriction of (W) to
U equals the pullback of H(/3, m). The function T can be viewed as a local
analogue of the automorphic products discovered by Borcherds [Bol] or
more precisely of the generalized Borcherds products attached to Heegner
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divisors considered in [Brl]. Needless to mention that our construction is
quite trivial compared to the deep theory of Borcherds. However, it seems
remarkable that the local products have similar properties and carry non-
trivial information on the geometry of Xr.

The automorphy factor

is a cocycle, which represents the image of H (/3, m) in Pic(Xr, s). It can be
computed explicitly, and as an immediate consequence we may determine
its Chern class in H2 (r 00, Z) (Proposition 4.3).

It turns out that these Chern classes can be described by means of
certain vector valued theta series of weight 1 ~ l/2 for the metaplectic group
Mp (Z) (Theorem 4.5 and Proposition 5.1). One may infer that they are
related to the global obstructions for the existence of automorphic products,
that occur in the theory of Borcherds [Bol], [Bo2].

In the special case that L is unimodular we use a result due to

Waldspurger [Wal] to show that the local obstructions generate the space
of global obstructions. Let H be a linear combinations of Heegner divisors.
Assume that for every one-dimensional irreducible component B of the

boundary of Xr and a generic point s E B the divisor H is a torsion element

of Pic(Xr, s). Then our Proposition 5.1 combined with Waldspurger’s result
implies that there exists a Borcherds product for the orthogonal group of
L whose divisor equals H (see Theorem 5.4).

As a corollary we find that any meromorphic modular form for the

orthogonal group of L, whose divisor is a linear combination of Heegner
divisors, is a Borcherds product. This was also proved in greater generality
in [Brl], [Br2]. However, in these papers a completely different argument
is used, which does not say anything about the local Picard groups of Xr.

2. Boundary components.

As in the introduction we consider an even lattice L of rank -(- 2,
whose symmetric bilinear form (.,.) has signature (2, l). Then the quadratic
form
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has integral values. Throughout we assume l  3 and that L splits
two hyperbolic planes. (This is always true if 1 &#x3E; 5.) The dual lattice of L
is denoted by L’.

We extend the bilinear form to a C-bilinear form on the complexifi-
cation L oz C. We consider the following chain of subsets of the associated
projective space P(L oz C) :

Hi 

Here N denotes the zero quadric, i.e., the subset of C) represented
by vectors z of norm zero (z, z) = 0. The open subset J’C is defined by the
condition (z, z) &#x3E; 0. It has two connected components. We choose one of
them and denote it by Hl. The real orthogonal group 0(2, l) = O(L oz R)
acts on L oz C, P(L oz C), N, and IC. A subgroup of index 2 (the spinor
kernel) O’(2, 1) acts on H, -

We now describe the boundary of Hz in the zero quadric Let

F C L oz R be an isotropic line. It is easy to see that the associated point
in .J~ lies in the boundary of 

REMARK and DEFINITION 2.1.

i) Let F C L Oz R be an isotropic line. Then F represents a boundary
point of A boundary point of this type is called special, otherwise

generic. A set consisting of one special boundary point is called a zero-
dimensional boundary component.

ii) Let F C L Oz R be a two-dimensional isotropic subspace. The set
of all generic boundary points, which can be represented by an element of
F OR C is called the one-dimensional boundary component attached to F.

This gives a one-to-one correspondence between boundary components and
isotropic spaces F of the corresponding dimension. The boundary of is

the disjoint union of the boundary components.

The proof of the last statement follows from the following description:
Let F C L oz R be a two dimensional isotropic subspace. Then there exists
a complementary isotropic space F C L oz R such that F + F is the sum
of two orthogonal hyperbolic planes. There exist a basis el, e3 of F and a
basis e2, e4 of F such that

ANNALES DE L’INSTITUT FOURIER
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We briefly write (Zl, z2, Z3, Z4) instead of zlel + ... + z4e4. Hence the

elements of F are of the form (ZI, 0, z3, 0). We assume that this is not

a multiple of a real point. Then both must be different from 0, and
we may normalize such that z, = 1, i.e., the point is of the form ( l, 0, T, 0).
We have to clarify whether it is in the boundary of This depends on
the choice of the component H, c J’C. The point (i, i, 1, ) is contained in

IC. We may replace el by -el and e2 by -e2 and therefore assume that it
is contained in xl. Then

defines an embedding of the product of two usual complex upper half planes
~L into We have (in the projective space)

This means that the point (1, 0, -T, 0) belongs to the boundary of if

and only if the imaginary part of T is positive. Thus the one dimensional
boundary components can be considered as usual complex upper half
planes. It should be mentioned that the set of all boundary points, which
can be represented by a point of F oz C (including the special ones), can
be identified in the same manner with H U R U oo.

Rational boundary components.

A boundary component is called rational if the corresponding isotropic
space F is defined over Q. The union of Hz with all rational boundary com-
ponents is denoted by The rational orthogonal group

acts on 7~.
Denote by O (L) the integral orthogonal group of L and put O’ (L) _

O (L) n O’ (2, l) . Let r = r(L) be the discriminant kernel of O’(L). This
is the subgroup of finite index consisting of all elements, which act as the

identity on the discriminant group L’/L. Observe that F(L) is functorial
in the following sense: If L c L is a sublattice, then h(L) C r(L).



6

By the theory of Baily-Borel, the quotient

carries the structure of a (compact) projective variety, which contains 
as a Zariski open subvariety. The topology of Xr is the quotient topology
of a certain topology on We will describe part of it a little later. If
s C is any point and rs its stabilizer in F, the canonical map

defines an open embedding of a small neighbourhood of the image of s.

We recall another fact. If s, t are points in the same boundary
component and O’ ( 2, l ) is an element with g(s) = t, t hen g normalizes
the boundary component. In particular r s is contained this normalizer.

Therefore the local structure of a cusp depends on the normalizer of the

boundary component containing the cusp.

The normalizer of a one-dimensional boundary component.

In the following we abbreviate V = L oz R and G = 0~(2,~). Let
F C V be a two dimensional isotropic subspace. We write

for the normalizer of F and

for its centralizer. As in (2.1) we choose four isotropic elements el, e2, e3, e4
such that F = Rei +JRe3 and such that HI = Re1 +Re2 and H2 = JRe3+JRe4
are two orthogonal hyperbolic planes. We obtain an orthogonal decompo-
sition

where W is a negative definite subspace (of dimension l - 2). If xl, ... , x4 E
R and y E W, we briefly write (X 1, X2, X3, X4, X) instead of 
x4 e4 ~ x. All elements of Po have to fix the components x2 , x4 . We give
four examples by describing the image of X = (xl, x2, x3, x4, x) E V. The
first three are given by Eichler transformations. (Recall that if u E V
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is an isotropic vector and v E V is orthogonal on u, then the Eichler
transformation

defines an element of G.)

4. The orthogonal group O(W) is embedded into G (acting trivially on the
two hyperbolic planes).

It is useful to introduce adapted coordinates of Hi. If [Z] =
IZI, Z2, Z3, Z4, 3] is an element of then Z4 is different from zero and we

can normalize Z4 = 1. Since the norm of Z is zero, the coordinate Z3 is

determined by the other ones. We simply identify

(This is a tube domain realization of Hi in C .) An easy calculation shows
that the image of (Zl,Z2,3) under the transformations 1-4 (in the same
order) is given by

The transformations of type 1 and 2 commute, they generate a group,
which is isomorphic to the additive group of the vector space R x W. We
denote the orthogonal transformation, which corresponds to the element

(t, b) E R x W by Tt,b. The transformations of type 3 form a group
isomorphic to the additive group of W. The orthogonal transformation of
type 3, which corresponds to a C W, is denoted by Ra. A simple calculation
yields the commutation rule

This means that the set of all products RaTt,b is a group, which we denote
by U. Obviously U is a semi-direct product, and we have an exact sequence
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If we use the abbreviation

the group law is given by

Under the action of [a, t, b] on H, the point (Zl, z2, ~) is mapped to

We also mention that the subgroup of all elements [0, t, 0] is a normal

subgroup of U with trivial action of U. The natural projection [a, t, b] H 
(a, b) gives rise to the exact sequence

Here R and W x W are understood as additive groups. We will see that

this sequence does not split.

One immediately checks that a transformation of type 4 is contained
in U only if it is the identity. Moreover, it is easily seen that O ( W ) acts by
conjugation on U. Hence we may form the semi-direct product O(W).
It is a subgroup of the centralizer Po.

LEMMA 2.2. - The centralizer Po of the two-dimensional isotropic
subspace F C V is generated by the transformations of type 1-4. Further-
more, one has the exact sequences

The first two of these sequences split (as semi-direct products).
The full normalizer P is easy to describe. We have a natural ho-

momorphism P -~ GL(F) ~ GL (2, R). By definition P is a subgroup of
the spinor kernel. Thus the image is only GL+(F). We obtain the exact
sequence

The group GL+ (F) acts on the boundary component and this action can be
identified with the standard action of GL+ (2, R) on the upper half plane.
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3. Local cohomology.

Let us fix some notation for the rest of this paper. We suppose that the

two dimensional isotropic subspace F is defined over Q. Then F corresponds
to a rational one-dimensional boundary component BF of *

Since L ©z Q splits two hyperbolic planes, we may further assume that
the vectors ei , e3 (see (2.1)) are primitive elements of the lattice L and that
e2, e4 are contained in Let Nj (j = l, 3) be the uniquely determined
positive integers such that = Nj Z. Then are contained in L’.

We denote by L the subgroup

of the discriminant group L’/L.
Let D be the lattice L n F n p.1.. Then D is negative definite of

dimension l - 2 and W = D oz R. If A E V, then we write AD for the

orthogonal projection of A to W. If A is even contained in L’ then AD
belongs to D’. (But note that D’ is in general not a sublattice of L’.)

Recall that r = r (L) is the discriminant kernel of the integral
orthogonal group O’ (L) . It can be easily verified that for t and a, b E D
the transformations Tt,b and Ra are contained in r.

Notation 3.l. - We write r 00 for the subgroup of r, which is

generated by the transformations Tt,b and Ra with t E Z and a, b E D.
The subgroup of generated by the Tt,b is denoted by t. The subgroup
generated by the Ra is denoted by A.

The group is a subgroup of finite index in the stabilizer rs of any
generic boundary point s E BF- Moreover, is the semi-direct product
of the normal subgroup t and A. We have a natural exact sequence

which splits, i.e., there is a section

The groups t = Z x D and A = D are obviously Abelian. We now consider
the disjoint union xl U H. We identify a point T with the boundary
point ( 1, 0, -T, 0) E BF . This means that 7~ U ?oC is considered as a part of

We define a topology on Hz U H (which is induced from the topology on
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which leads to the Baily-Borel compactification, and which we don’t
introduce here).

We consider a point T E H. Let E &#x3E; 0 and denote by the c-ball

We define

We will often simply write E resp. 6~ instead of E(T) resp. if

the point T is clear from the context. The group acts on the set

DEFINITION 3.2. - A set U C Hz U H is called open, if its intersection
with ~Cl is open in the usual sense, and if for every T c ?-~ n U there exists
an c &#x3E; 0 such that

Baily’s criterion for the extension of a complex space (see [Ca], [Frl]
chapter II for a simplified version) applies to show that

is a normal complex space. It is holomorphically convex in the following
sense:

An arbitrary point a E Hz jr 00 U H is an isolated point of the set of common
zeros of finitely many analytic functions on U R.

This can be proved by standard constructions using Poincar6 series
(compare [Fr2] chapter 2 §4).

PROPOSITION 3.3. - The sets

dehne a fundamental system of Stein neighbourhoods of T E U H.

The space U is also a Stein space.

The proof follows from the fact that the function
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is plurisubharmonic on Hz/roo and can be extended to a continuous
function on Hz /r 00 

The singular locus of U H is exactly the boundary component
~C. If we remove the singularities from our Stein neighbourhoods U

~, we simply get We want to determine the group of analytic line
bundles

Every analytic line bundle on Ug is trivial because this is a contractible

Stein space. Hence

We use the abbreviation

The exact sequence

induces the exact sequence of cohomology groups

The group contains t as a normal subgroup, and the factor group is A.
Since Ug /t is a Stein space we have

where denotes the space of holomorphic functions on Ug, which
are periodic with respect to t. The elements of this space admit Fourier

expansions and the "constant" coefficients are functions which only depend
on z2 . If we denote by Po (e) all elements whose constant Fourier coefficient
vanishes we get a splitting

1 Grauert and Remmert [GrRe] introduced the notion of a plurisubharmonic
function p : X - R on an arbitrary complex space X. If X is smooth and p is a C°-
function such that the matrix is positive definite in any point for some local
coordinates zi then p is plurisubharmonic. If p is a continuous function on a complex
space and plurisubharmonic outside some thin analytic set, then it is plurisubharmonic
everywhere. If X is a holomorphically convex complex space and p a plurisubharmonic
function on X such that all Xg = Ix; p(x)  El are relatively compact then Xg and X
are Stein spaces.
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A special case of a more general result due to Ballweg [Ba] states:

PROPOSITION 3.4 (Ballweg). - Assume that p  l - 2. For sufficiently
small c the group vanishes.

For the rest of this section we assume that l &#x3E; 4 and that c &#x3E; 0 is

sufficiently small in the sense of Proposition 3.4.

By Ballweg’s result we know that

Using (3.3) and the isomorphism we may

rewrite the exact sequence (3.2) in the following way:

The natural projection A induces a homomorphism Hom(A, Z) -
Hom(r 00, Z). It can be used to obtain from (3.4) the exact sequence

We also have the exact sequence

because A is a free group. If we combine (3.5) and (3.6) we finally find that

is exact.

We now derive some information about H2 (r 00, Z). Every bilinear
form

defines a 2-cocycle2 of acting trivially on Z. We denote this cocycle by
B, too. It is given by

2 
Throughout we use the inhomogeneous standard complex of group cohomology

as in [Sh] chapter 8.
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In fact, it is easily checked that this is a 2-cocycle. Hence we get a map

from the group Bil(D) of bilinear forms on D to H2(h~, ~). Only the
image is important for our applications. It is a basic fact that this map is
not injective:

PROPOSITION 3.5. - The kernel of the map Bil(D) -~ H2(r 00, Z)
equals the cyclic subgroup generated by the bilinear form ( ~, ~ ) . The image
of this map is contained in the kernel of H2 (h~, Z) ~ H2 (r 00, R(~) ) .

Proof. The first statement follows from the so-called "Five Term

Exact Sequence" of group cohomology. If G is a group which acts on an
Abelian group A and if H is a normal subgroup then there is a certain

homomorphism

called "transgression", which has the property that the sequence

is exact. We apply this to the situation G = T~, A = Z (trivial operation),
H = Z, and the exact sequence

In this case Hl (H, 7~) ^--’ Z. A straightforward computation shows that

tg(l) E H2 (D x D, Z) is the bilinear form which maps the pair ([a, 0, b],
[a’, 0, b’]) to - (a’, b). But this bilinear form differs from (.,.) only by a
coboundary. Since Bil(D) ~ H2(r ()(), Z) factors through H2(D x D,Z) we
obtain the assertion.

It remains to show that the image of a bilinear form B vanishes in

H2 (h~ , R(~) ) . A cochain that trivializes B is given by

for [a, t, b] E and Z = R(c). Here B is extended C-bi-
linearly. D

One can define the trace tr(B) of an Element B C Bil(D) as the
trace of a Gram matrix of B with respect to an orthonormal basis of the
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quadratic space The trace of (., .) equals 2 - l. Proposition 3.5
implies

Remark 3.6. - An element B E Bil(D) defines a torsion element in
H2 (r oo, Z) if and only if

G - 

for any h G D.

The groups and H2(r oo, Z) are usually not torsion free.
However, in the present paper we ignore these torsion problems.

4. Local Heegner divisors.

Recall the notation introduced at the beginning of Section 3. Let X
be a normal irreducible complex space. By a divisor D on X we mean
a formal linear combination D (nY C Z) of irreducible closed
analytic subsets Y of codimension 1 such that the support is a

closed analytic subset of everywhere pure codimension 1. We write Div(X)
for the divisor group of X.

For any vector A E L’ of negative norm the orthogonal complement
of A in Hz defines a divisor À.1. on Let ,~ E L’/L and m E Z + with

m  0. Then

is a r-invariant divisor on Hi . It is the inverse image under the canonical
projection of an algebraic divisor on the quotient Xr (which will also
be denoted by H(/3,m)). The multiplicities of all irreducible components
equal 2, if 2/3 = 0, and 1, if 2,Q ~ 0 in L’/L. Following Borcherds we
call this divisor the Heegner divisor of discriminant (/3,m). Note that

m) = H( -/3, m).
In the present paper we are interested in the contribution of H(~3, ?7~)

to the local Picard groups at generic boundary points of Xr. Let s be
a generic point in BF and denote its image in Xr by s, too. Since Foo
has finite index in the stabilizer Fs of s, the local Picard group Pic(Xr, s)
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as defined in the introduction can be described by means of the groups
up to torsion. The group IB/Too acts on 1 m 

and the invariant part satisfies

The natural inclusion and projection maps induce the commutative dia-

gram

of divisor groups. The image of m) in is denoted by
HF (0, m) and will be called a local Heegner divisor. Its image in 
is a r oo - invariant divisor, which will also be denoted by HF (0, m). (Note
that our definitions of local divisor groups and local Heegner divisors also

depend on the choice of the complementary isotropic subspace F. )
The proof of the next lemma will be left to the reader.

LEMMA 4.1. - Let A E L’ be a vector of negative norm. Then À.1. has
non-zero intersection with UE for every E &#x3E; 0, if and only if A is orthogonal
to F.

Thus, if E is sufficiently small, the local Heegner divisor HF (/3, m) E
is given by

In particular if Hp(/3, m) =1= 0 in Div(UE), then 0 belongs to the subgroup
,C of L’/L. Observe that for any ,~ E ,C there exists a representative
~ E L’ n F . For the rest of this paper we fix such a representative /3 for
every ~3 E ,C. The assignment /3 H ~3D induces a surjective homomorphism

Throughout we will assume that c is small enough such that (4.3) holds.

Let A E L’ n F-~. Then the group acts on the set A + Ze i + ZC3 C
L’ r1 F.1. with finitely many orbits. Thus the divisor
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is invariant under It defines an element of For /3 E ,C the
local Heegner divisor Hp(/3, m) can be written as a finite sum

Recall that Pic(UE/r (0) can be described by automorphy factors in
the following way. An automorphy factor of on U, is a 1-cocycle of Foo
with values in R(~)*, i.e., a holomorphic function

with the property J(gg’,Z) = J(g,g’Z)J(g’,Z) for g, g’ E roo. An

automorphy factor of the form J(g, Z) = h(gZ)/h(Z) with h E R(E)* is

called trivial. The group = Hl(r 00, R(E)*) is the factor group
of the group of all automorphy factors modulo the subgroup of trivial

automorphy factors. Special automorphy factors are given by invertible
holomorphic functions, which do not depend on z1 and 3. These are simply
homomorphisms -~ C~ ( V (~) ) * .

If H is a divisor in then its image in Pic(UE/r oo) can
be determined as follows: Let f be a holomorphic function on Ug whose
divisor equals the inverse image of H in Then

is an automorphy factor of on UE. Its class in is the image
of H.

We shall now determine the position of in the Picard group
It will turn out that up to torsion it is completely determined

by the Chern class in H2(r 00, Z) of Hoo(À).

DEFINITION 4.2. - Let A E L’ n be a vector of negative norm.
Then we define the local Borcherds product attached to Hoo(À) by

for Here

and I
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The sign ~n ensures that the infinite product converges normally
on the whole generalized upper half plane Hi. It is invariant under the

subgroup t of Foe. However, it is not invariant under the subgroup A.

It is easily checked that the divisor of W x is exactly H 00 (À). There
is a strong analogy between functions of the above type and Borcherds’
automorphic products [Bol] or more precisely the generalized Borcherds
products attached to Heegner divisors which were introduced in [Brl], [Br2].

The properties of W x imply that the image of H 00 (À) in Pic( UE /r oo)
is given by the automorphy factor

Let us compute ~h ( ~a, t, b~ , Z) more explicitly. Using the formula for the
action of Ra we find

In the latter product only those n give a contribution different from 1,
which satisfy

Hence the product is actually finite.

The first case can only occur if (AD, a) &#x3E; 0. We may use the

elementary identity

to obtain

One immediately checks that the same formula holds in the second case,
too.
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We briefly recall the construction of the Chern class of a class [J] of
automorphy factors in Let J be an automorphy factor as
in (4.5) representing [J]. For any g E let A(g, Z) be a holomorphic
function on U, such that

Then

is an integral constant for all g, g’ C The function (g, g’) f--~ c(g, g’)
defines a 2-cocycle of acting trivially on Z. Obviously each A(g, Z)
is only determined up to an integral additive constant. It is easily seen
that a different choice of the functions A(g, Z) only changes c(g, g’) by a
coboundary. Moreover, any 2-cocycle corresponding to a trivial automorphy
factor is a coboundary. Thus, if we map [J] to the image of c( ~, ~ ) in

H 2 (r," Z), we get a well defined homomorphism. This is an explicit
construction of the Chern class map 6, the connecting homomorphism in
the exact sequence (3.2).

PROPOSITION 4.3. - The Chern class 6(H,, (A)) E of the

local Heegner divisor E Pic(U,/F,,) is given by the 2-cocycle

of F,,. In particular, b(H~ (~) ) belongs to the image of Bil(D) &#x3E;

H2(r 00, Z).
Proof. The divisor is represented by the automorphy factor

(4.7) as an element of Pic(UE /r (0)’ If we carry out the construction outlined
above, we get the assertion. 0

PROPOSITION 4.4. - The Chern class 6(H) of a finite linear combi-
nation

(c x E Z) of local Heegner divisors is a torsion element of H2(r 00, Z), if and
only if

for any
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Proof. The trace of the bilinear form B(a, b’) = (AD, a) (AD, b’)
is -(A D, A D). Hence the assertion follows from Remark 3.6 and Propo-
sition 4.3. D

The bilinear form ( -, - ) is non-degenerated, whereas (-,AD) (AD,-) is

obviously degenerated. Thus every individual local Heegner divisor 7~ (A)
is non-zero in oz Q.

The Chern class of Hoo(À) only depends on the projection AD E D’.
In fact, using the above results, it is easily seen that 7~oo(A) = H~ (~’) in

0z Q, if AD = A’
Our main interest lies in the divisors HF (,~, m) . In the following

theorem we describe their position in Pic(UE /r (0) up to torsion. Let

q E D’/D and m with m  0. We write for the bilinear

form

THEOREM 4.5. A finite linear combination

(with integral coefficients m) satisfying m) = c( -/3, m)) is a

torsion element if and only if

for all a ED.

Proof. - If the linear combination H is a torsion element of

then (4.10) follows by Proposition 4.4.

Conversely, assume that (4.10) holds for all a E D. Then we also have
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for all a, b E D 0z C. According to (4.7), an automorphy factor J

representing H in is given by

four 9 == [a, t, b] E r 00’ The linear terms in A + /3D cancel out, because
c(,~, m) - c( -/3, m). In the latter equation we write (A + /3, Z) = (A +
/3 D, 3) + (/3 - /3 D, Z). Here the second scalar product is just a rational linear
combination of 1 and z2. We now use (4.11) to rewrite J(g, Z) as follows:

where JLl, JL2 are suitable vectors in D 0z Q. The invertible functions

u1(Z) = e((/~2~)) and u2(Z) = e(zi) give rise to the trivial automorphy
factors

If we multiply J by appropriate rational powers of j, and j2, we find that
J is equivalent to

with a suitable constant r E Q. Thus J is a torsion element of 

D

Note that by (4.2) a linear combination of local Heegner divisors as
in (4.9) is a torsion element in for some E, if and only if it is
a torsion element of Pic(Xr, s).
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5. Modular forms.

In this section we investigate the relation between the obstructions
occurring in Theorem 4.5 and the coefficients of certain vector valued theta
series of weight 1--~ l/2. We find interesting connections to Borcherds’ global
"theory of obstructions" for the construction of automorphic products
[Bo2].

We write MP2(R) for the metaplectic cover of SL2(R). The elements
of are pairs (M, 0(-r)), where , and 0
denotes a holomorphic function on ?~ CT + d. The product of

I is given by

where MT = denotes the usual action of SL2(R) on H.cT-+d

Let be the inverse image of SL2 (Z) under the covering map
Mp2(JR) ---+ SL2(R). It is well known that Mp2(Z) is generated by

One has the relations , , where is the
w , ,

standard generator of the center of Mp2(Z). 
’ , "

Let N be an even lattice of signature (b+, b- ) equipped with a bilinear
form ( ~ , ~ ) . We write q for the corresponding quadratic form q(x) = 2 (x, x)
and denote the dual lattice by N’. (In our latter applications N will be L
or D.)

Recall that there is a unitary representation PN of on the

group algebra If we denote the standard basis of 

by (e, ),ENI / N then pN can be defined by the action of the generators
S, T E Mp (Z) as follows (see also [Bo 1], where the dual of pN is used):
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This representation is essentially the Weil representation attached to the
quadratic module (N’/N, q) (cf. [No]). It factors through a finite quotient
of Mp2(Z), Note that

Let 1~ and f : H - (C ~N’ /N~ be a holomorphic function. Then
f is called modular form of weight 1~ with respect to PN and if

ii) f is holomorphic at oo.

Here the second condition has the following meaning: Condition (i) implies
that f has a Fourier expansion of the form

where we have abbreviated c~(r) e (T) e,y . As usual, f is called holomor-
phic at oo, if all coefficients a(-y, n) with n  0 vanish. Moreover, if all

a(1,n) with n  0 vanish, then f is called cusp form. The C-vector space
of modular forms of weight k with respect to PN and is denoted

by Mk,N, the subspace of cusp forms by Sk, N .
For the rest of this paper let k = 1+//2. Recall that D = 

is a negative definitive lattice of rank 1 - 2. Special modular forms in the
space Sk, D can be constructed by means of theta series with harmonic
polynomials. The homogeneous polynomial

is harmonic in u and v. For any fixed v E W we have the C[D’ / D]-valued
theta series

By the usual Poisson summation argument it can be shown that 
is a cusp form in (see for instance [Bol] Theorem 4.1). We denote
by S9 the subspace of Sk,D, which is generated by the when v

varies through W.

The point is that the polynomials defined in (4.8) are precisely
the Fourier coefficients of 

Therefore Theorem 4.5 can also be stated as follows.
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PROPOSITION 5.1. - A finite linear combination

(with integral coefficients m) satisfying c(13, m) - c( - /3, m)) is a

torsion element if and only if

for any cusp form f E S9 with Fourier coefficients a(-y, n) (~y E D’/D and
n E Z - 

Borcherds constructed a lifting from certain vector valued modular
forms of weight 1 - l/2 for to meromorphic modular forms for the
group r(L) (cf. [Bol] Theorem 13.3). Since these lifts have certain inter-
esting infinite product expansions they are called automorphic products or
Borcherds products. Their divisors are linear combinations of Heegner divi-
sors. We now compare Proposition 5.1 with the following condition for the
existence of Borcherds products for the group r (L) with prescribed divisor
(cf. [Bo2] Theorem 3.1). 1

THEOREM 5.2 (Borcherds). - A finite linear combination of Heegner
divisors

(with c(,3, m) E Z and m) - c( -/3, m)) is the divisor of a Borcherds
product for the group r(L) (as in [Boll Theorem 13.3), if and only if for
any cusp form f E Sk,L with Fourier coefficients a( "y, n) the equality

holds.

By means of the j-operatQf, defined in [Brl] Lemma 15.2, it is possible
to embed Sk, D into Sk, L . According to Theorem 5.2 the space Sk,L carries
some information on the subgroup of Pic(Xr) generated by the Heegner
divisors 7;f(~,m). A subspace of Sk,L, the image of S9 encodes the
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subgroup of the local Picard group Pic(Xr, s) 0z Q, which is generated
by the pullbacks of the m)’s.

DEFINITION 5.3. - A divisor H on Xr is called trivial at generic
boundary points, if for every one-dimensional irreducible component B of
the boundary of Xr there exists a generic point s E B such that H is a
torsion element of Pic(Xr, s).

If F is a meromorphic modular form for the group h(L), then the
divisor (F) attached to F is trivial at generic boundary points. This is an
immediate consequence of the transformation behaviour of modular forms.

Unimodular lattices.

For the rest of this paper we assume that L is unimodular. Then D

is a negative definite even unimodular lattice of rank 1 - 2. Thus 1 - 2

(mod 8). Any negative definite even unimodular lattice can be realized as
a sublattice of L. This follows from the fact that there exists just one

isomorphism class of even unimodular lattices of signature (2, l) (cf. [Wat]
chapter 7, §3). The space Sk,D is the usual space of elliptic cusp
forms of weight k = 1 -~/2 for SL2 (Z) .

THEOREM 5.4. - Let

be a finite linear combination of Heegner divisors H(O, m) (with coefficients
c(O, m) E Z). Then the following statements are equivalent:

i) H is the divisor of a Borcherds product for the group F(L) as in
[Boll Theorem 13.3.

ii) H is the divisor of a meromorphic automorphic form for r(L).

iii) H is trivial at generic boundary points.
Proof. - We only have to prove that (iii) implies (i). Assume that H

is trivial at generic boundary points. Then by Proposition 5.1 we have

for any cusp form f C SO with Fourier coefficients a(O, n) and any
negative definite even unimodular lattice D of rank l -2. In view of Theorem
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5.2 it suffices to show that (5.8) holds for any cusp form f E Sk,L with
Fourier coefficients a(0, n). Hence it suffices to prove that the set of all theta
series (where D is any negative definite even unimodular lattice
and v E D 0z R) generates the space In fact, this is a consequence of
a Theorem due to Waldspurger [Wal] (see also [EZ] Theorem 7.4). D

As a corollary we find that any meromorphic modular form for the
group r(L), whose divisor is a linear combination of Heegner divisors, has
to be a Borcherds product. This result was already obtained in greater
generality (under the weaker condition that L splits two hyperbolic planes
over Z) in [Brl]. (See also [Br2] for the 0(2,2)-case of Hilbert modular
surfaces.) However, in [Brl] a completely different argument is used, which
does not say anything about the local Picard groups of Xr.

Moreover, as a consequence of Theorem 5.4 and Theorem 5.2 we may
infer that the rank of the subgroup of Pic(Xr) generated by the Heegner
divisors equals 1 + dim(Sk, L) .
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