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FINITE GAUSS MEASURE ON THE SPACE
OF INTERVAL EXCHANGE TRANSFORMATIONS.
LYAPUNOV EXPONENTS

by Anton ZORICH

1. Introduction.

Consider an orientable measured foliation on a closed orientable
surface M, 92 of genus g with singularities of the saddle type. Throughout the
paper we will assume, that the foliation has neither closed singular leaves,
nor saddle connections. We will also assume, that the foliation is uniquely
ergodic. A generic orientable measured foliation can be reduced to ones
which obey all the indicated properties (see, say [8] or [1]), as a consequence
of unique ergodicity of a generic interval exchange transformation (see [9],
[16]). Recall that we can define an orientable measured foliation as a
foliation of leaves of a closed 1-form w. Any leaf of the orientable measured
foliation as described above winds around the surface along one and the
same cycle from the first homology group H; (M, 92, R) of the surface, which
is called asymptotic cycle, see [14]. This cycle is just Poincaré dual to the
cohomology class [w] of corresponding 1-form. In a sense asymptotic cycle
gives the first term of approximation of dynamics of leaves.

Study of further terms of approximation gives the following picture
(see [22] for details). Computer experiments show, that taking the next
term of approximation we get a two-dimensional subspace in H;(M, 3 ,R),
i.e., with a good precision leaves deviate from the asymptotic cycle not
arbitrary, but inside one and the same two-dimensional subspace H? in the
first homology. Taking further steps n = 3, ..., g of approximation we get

Key words: Interval exchange transformation — Gauss measure — Rauzy induction — Lya-
punov exponents — Orientable measured foliation.
Math. classification: 28D05 — 28A — 58E05 — 58F.
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subspaces H* of dimension k for the k-th step; collection of the subspaces
generates a flag H! C H? C ... C HY of subspaces in the first homology
group. The largest, g-dimensional subspace, gives a Lagrangian subspace
in 2g-dimensional symplectic space H; (M, 3, R), with the intersection form
considered as a symplectic form. We stop at level g since deviation from
corresponding Lagrangian subspace is in a sense already negligible. The
main conjecture of [22] claims existence of this asymptotic Lagrangian flag
for almost all orientable measured foliations on surfaces as described above.

Having an orientable measured foliation on a surface, one can consider
the interval exchange transformation induced by the first return map on
a piece of transversal. Taking shorter and shorter pieces of transversal
we will get longer and longer pieces of leaf bounded by the point of
first return. Joining the ends of the piece of leaf along transversal we
get a closed cycle, representing an element of the first homology. The
asymptotic behavior of this cycle is what we need to investigate. To
trace modifications of our cycles we use special procedure for shortening
our piece of transversal. Namely, we use iterates of Rauzy induction for
the corresponding interval exchange transformation (see [13] and later
expositions in [16] and [6]). The transformation operator representing
modification of our cycles after k steps of Rauzy induction is the product of
k elementary matrices Ax_1 - - - Ag related to each step of Rauzy induction.
Each term A;, 0 < 7 < k—1, belongs to the finite set of elementary matrices.
We now need to study properties of these products of matrices.

Though the mapping 7 : IET — IET corresponding to Rauzy
induction on the space I ET of interval exchange transformations is ergodic
with respect to some absolutely continuous invariant measure on IET
([16]), we can not immediately use multiplicative ergodic theorem to study
products of matrices Ag_1 - - - A1 since the invariant measure is not finite.

We construct another map G : IET — IET, which assigns to a point
y € IET some iterate G(y) = 7"®(y) of the map T evaluated at y,
where n(y) depends on the point y. The numbers n(y),n(G(y)),... here
are analogous to the entries of continuous fraction expansion for a real
number. In the simplest case of interval exchange transformation of two
intervals the numbers n(y), n(G(y)), - - . ,n(G*(y)), . . . are exactly the entries
of the corresponding continuous fraction, and the map G coincides (up to
duplication and conjugation) with the classical map of the unit interval to
itself related to Euclidean algorithm. Morally the relation between the map
G and Rauzy induction 7 is the same as relation between multiplicative
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and additive continued fraction algorithms described in [2]. We prove that
the map G is ergodic with respect to some finite absolutely continuous
invariant measure on IET.

Note that initial matrix-valued function A(y) on IET related to
Rauzy induction induces a new cocycle,

B(y) = A(T"V7Y(y)) - AT"®2(y)) - A(y)-

This time we are already able to apply Oseledets theorem to study
products of matrices B. Consider the collection of corresponding Lyapunov
exponents 6, > ... > 6,,, where m is the number of subintervals under
exchange.

We prove that 641 = ... = 0p—y = 0, where g is the genus of the
original surface. As for the remaining Lyapunov exponents, we prove, that
they are grouped into pairs 6; = —0,,_;+1. We calculate explicitly the
largest Lyapunov exponent 6;. We show that general results in [18] imply
61 > 6.

We prove that Lyapunov exponents of the differential DG are repre-
sented by 61 + 61,02 + 01,...,0,,_1 + 0;. It means in particular that all
Lyapunov exponents of the map G are strictly positive.

Presumably Lyapunov exponents fs,...,0; are also nonzero, and
hence positive, and all of them have multiplicities one. This conjecture
implies existence of asymptotic Lagrangian flag in the first homology of
the surface, responsible for approximation of the leaves.

2. Interval exchange transformations and Rauzy induction.

In this section we recall the notion of interval exchange transforma-
tion, and of Rauzy induction; see original papers [5], [6], [9], [13], [15],
[16], [17], [18]. Consider an interval X, and cut it into m subintervals of
lengths A1,...,An. Now glue the subintervals together in another order,
according to some permutation m € &,, and preserving the orientation.
We again obtain an interval X of the same length, and hence we defined
a mapping T : X — X, which is called interval exchange transformation.
Our mapping is piecewise linear, and it preserves the orientation and Le-
besgue measure. It is singular at the points of cuts, unless two consecutive
intervals separated by a point of cut are mapped to consecutive intervals
in the image.
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Remark 1. — Note that actually there are two ways to glue the
subintervals “according to permutation 7”. We may send the interval
number k to the place m(k), or we may have the intervals in the image
to appear in the order 7(1),...,n(m). Following [16] we use the first way;
under this choice the second way corresponds to permutation 7.

Given an interval exchange transformation T corresponding to a pair
i
(A7), \eRY, T €Sy, set fo=0, 8, = Aj, and X; = [B;_1, B;[. Define
j=1

skew-symmetric m x m-matrix Q(7) as follows:

1 ifi<jand n(é) > n(j)
(2.1) Qj(m) =< =1 ifi> j and 7(i) < 7(j)
0 otherwise.

Consider a translation vector
6 = Q(m)A.
Our interval exchange transformation T is defined as follows:

T(z) =z + 6, forre X;,1<i<m.

Note that, if for some k < m we have w{1,...,k} ={1,...,k}, then
the map T decomposes into two interval exchange transformations. We
consider only the class &9, of irreducible permutations — those which have
no invariant subsets of the form {1,...,k}, where 1 < k < m.

Having an interval exchange transformation 7' corresponding to the
pair (A, 7) one can construct a closed orientable surface Mg, a closed 1-
form w on M, 92, and a nonselfintersecting curve v in M, 3, such that v would
be transversal to leaves of w, and the induced Poincaré (first return) map
v — « would coincide with the initial interval exchange transformation
T (see corresponding constructions in [16] and in [9]). The genus g of
the surface is defined by combinatorics of the permutation n as follows
(see [16]).
Let m € &2,. Define permutation ¢ = o(7) on {0,1,...,m} (see 2.1
in [16]) by
a7 1(1) -1 ji=0
o(j)=qm j=n"Y(m)
7 (m(j) +1) —1 otherwise.
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Let

S(4) = {4,0(),%(),...} € {0,1,2,...,m} j=0,1,...,m

be the cyclic subset for the permutation o. To each subset S of this form
assign the vector bg € R™, which is presented in components as follows
(see 2.9 in [16]):

(2.2) Vi=x5' —xk l<ism
where
i _[1 ifjesS
X5 =10 otherwise.
Let
X (n) := {set of cyclic subsets for o(m)}
(2.3) Yo(m) := X(m)\S(0)

N(m) := CardX(m).
According to [16] the genus g of the surface M7 is
_ m~—(N(m)—-1)
—
To each permutation 7 € G, we assign m X m permutation matrix

(1 ifj=n(),
Fij(m) = {O otherwise.

We denote by 7, € G,,,, 1 < k < m the following permutation:
n={1,2,...,k,k+2,...,mk+1} 1<k<m-1
Tm—1 = {1,2,...,m} =id.

Permutation 7, cyclically moves one step forward all the elements occurring
after the element k.

Define the norm ||| of A € R™ to be ||A|| = 3 |Ai|- By A™! we
i=1

denote the standard simplex A™~! = {A|X € RT; ||A|| = 1}. Having an
interval exchange transformation, defined by a pair (A, 7), where vector
A = (A1,...,Am) € R, defines the lengths of subintervals, and 7 is a
permutation, 7 € G,,, we can renormalize vector A to A/||A|| € A™~1. The
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interval exchange transformation corresponding to the pair (A/||A||, 7) is
obviously conjugate to the initial one.

Now we remind construction of Rauzy induction [13]. Whenever it
is possible we try to use notations as in [16]. We also use some notations
from [6).

Consider two maps a,b : &% — &% on the set of irreducible
permutations (see [13]):

a(r) = W-T;_ll(m)
(2.4) b(r) = Tamy-T

where one should consider product of permutations as composition of
operators — from right to left. Say, b(2,3,1) = (1,3,2)-(2,3,1) = (3,2,1).
Considering permutation as a map from one ordering of 1,2,...,m to
another, operator b corresponds to the modification of the image ordering
by cyclically moving one step forward those letters occurring after the
image of the last letter in the domain, i.e., after the letter m. Operation a
corresponds to the modification of the ordering of the domain by cyclically
moving one step forward those letters occurring after one going to the last
place, i.e., after 7~1(m), see [6].

Note that

(a(m) ™! = b(x™Y).

In components the maps a, b are as follows, (see [16]):

(4) j<mH(m)
a(m)(j) = n(m)  j=7n"(m)+1
m(j —1) other j
(2.5)
m(4) m(j) < m(m)
b(m)(G) = { (@) +1 7w(m) <7(j) <m
7(m)+1 w(j) =m.

The Rauzy class R(mp) of an irreducible permutation my is the
subset of those permutations m € &2, which can be obtained from 7o by
some composition of mappings a and b. We will also denote by the same
symbol PR(mg) the oriented graph, which vertices are indexed by elements
7 € R(mp), and which directed edges are either of the type 7 — a(m), or of
the type 7 +— b(r).
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Denote by E identity m x m-matrix, and by I; ; square m x m-matrix,
which has only one nonzero entry, which equals one, at the (7, j) place. For
any 7 € 69, define matrices A(m,a), A(m,b) as follows, (see [13]):

(2.6) A(m,a) = (E+ Iﬂ-—l(m)’m) . P(Tﬂ.—l(m))
(27) A(ﬂ'vb) =E+ Im,?r—l(m).

Consider the interval exchange transformation T corresponding to
a pair (A, ), where A = (A1,...,A\p) € A™" 1 1 € &Y. Compare the
lengths Ap, and Ar-1(y,) of the last subinterval in the domain and in the
image of T'. Suppose they are not equal. Let v = min(Am, Ax-1(m)). Cut off
an interval of the length v from the right hand side of the initial interval
and consider induction of the map T' to the subinterval [0,1—v[. According
to [13] the new map would be again an interval exchange transformation
of m subintervals corresponding to a pair (X, n’), where

’onN (A_l(ﬂ', a), a(ﬂ')) Am < Ar=1(m
(X, m') = { (A=Y(m, )X, b(m))  Am > A,,_l((m)).

Rescaling the vector )’ we get the transformation

T:A™ 1 x 6% - A™ ! x &9,

A/
(A7) — (—,ﬂ") .
X
Remark 2. — The fact that the map 7 is not defined on the

“diagonals” Ay, = Ar-1(m) does not lead to any trouble since we may
neglect any set of zero measure in any further considerations.

Consider restriction of this map to invariant subsets of the form
A™=1 x R(r). In [16] W.Veech proves, that Rauzy induction 7 is conser-
vative and ergodic on each A™~! x R(r). It admits unique up to a scalar
multiple absolutely continuous invariant measure, but this measure is infi-
nite.

3. The map ¢ — a “speed up” of Rauzy induction.

Fix some Ty € &Y, and confine ourselves to the class R(mp) = R. We
denote

()\(k),w(k)) = TF\\, )
A, 7 @) := (A, 7).
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By A™~! x 7 we denote the standard simplex A™~! indexed by an
element 7 € R from the finite set R. We subdivide each simplex A™~ 1 x 7
into two subsimplices

A™ U x = (AT(m)UA™ (7)) x 7
where
AT(m) ={A €A™ | A > Ap-1(my}
A™(m) ={A € A™ | A < Ar-1(m)}-
Similarly define positive cones A*(r) UA~(r) = R
For almost all points on A™~! x R we can define the function
(3.1)
n(A, ) = k_miél k such that

=1,4,...

AE) e A=(x®*))  when A € At (n)
2B e A+ (x*))  when A € A~ (7).

In other words we iterate Rauzy induction and count how many
consecutive transformations of the same type (a or b, see (2.4), (2.5))
we can make.

DEFINITION 1. — We define the map G related to Rauzy induction T
to be

G: “Iglm (AT (m)uA=(m) — "LEJm (A*(m)u A= (m))
G\, ) := Tr™ (N 7).

One should consider domain of G as | | (A*(7) U A~ (m)) forgetting
TeR

that simplices At (w) and A~(m) were once glued into one. Actually,
defining the domain of G we have to take a complement to a subset of
measure zero, see Remark 2. In particular the common “face” of A™(m)
and A~ (7) does not belong to the domain of G.

Note that the map G maps simplices At to A~ and vice versa.

Define the following matrix-valued function B(A, 7) on a subset of the
full measure in || (At (w)U A_(n)) as
TER

(3.2) B\, 7):= AN, 7@y . AARAT=D) g(r(m)-1))

where matrix-valued function A(X, ) is defined by (2.6). By definition of
B(A, ) we have

B\, 7)) -\

Ne= 1 o
IB=1(A, ) - Al
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for the image (X, 7') = G(A, 7) of the map G (see also explicit formulae (3.6)
and (3.7) below). Note, that det B(A,7) = %1.

We can give also a direct definition of G as follows. Let

3;=)\m+/\m—1+~~~+>\7r—1(m)+1+)‘m+/\m—1+~-~

n terms

S:L_ = \)‘ﬂ"l(m) + /\ﬂ"l(m—l) +...+ ’\7r"1(7r(m)+1) + )‘w‘l(m) + )‘7r‘1(m—1) +. e
n t;;ms
We define
(3.3)
maxn such that s, < Ar-1(m)  when Ay < Ap-1(m)
n(\ ) =< ™!
maxn such that s} < Ap, when A > Ar-1(m).
nz
We define
- hen A < Ap-1(m
(3.4) v(A,T) = {Sggw woen Hm)
Sn(Am) when Ay > Ar-1(m).

Note that definitions (3.1) and (3.3) of n(A,7) are equivalent. Consider
an interval exchange transformation 7' corresponding to a pair (A,n),
A€ Am L 1 e &Y. Cut off an interval of the length v(A, ) from the
right hand side of the initial interval and consider induction of the map
T to the subinterval [0,1 — v(A,7)[. The new map would be again an
interval exchange transformation of m subintervals corresponding to the
pair (X, 7’). There would be two cases.

Let
(3.5)

i

n(A, m)mod (m — 7~ 1(m)) when Apn < Ar—1(m)
n(A, m)mod (m — m(m)) when Ay > Ar-1(m).

Case a. A\, < Ar-1(m)- In this case
I o
T =TT, 2
and
Y j<n=1(m)
Ae-1(my — V(A ) j=n"1(m)

)‘m—w'l(m)——q+j ﬂ-_l(m) <J< ﬂ-_l(m) +4q
Ni—q 7 i(m)+qg<j<m.

36) N
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Case b. A\, > Ar-1(m). In this case
' = Tg(m) -
and

’_ /\j j<m
(3.7) A= {)\m -v(\,7) j=m.

One can see, that the matrix B(\, m) defined by (3.2) is the matrix
of transformation (3.6) when Ap, < Arz-1(m), and of transformation (3.7),
when A, > AW—I(m).

Rescaling the vector X we get the transformation

G: |_| (AT (m)u A~ (7)) — |_| (At (m)u A~ (7))

(38) TER TER

A7) — (ﬁ,w') .

In other words at one step of the new induction we are shortening one
and the same interval A;-1(;,) or A, whichever is larger, as much as
possible, cutting cyclically from its right-hand side intervals of the lengths
AmsAm—1y-++, Ar=1(m)+1 in the first case, and intervals of the lengths
Ar=1(m)» Ar=1(m—1)s+-+» Ax—1(x(m)+1) in the second case. The lengths of
the rest intervals stay unchanged (up to reenumeration in the first case).

4. Formulation of results.

THEOREM 1. — Let m > 1, and let R be a Rauzy class. The map

G on the space of interval exchange transformations || (A*(w)U A~ (7))
TER
admits the invariant measure

p=y_dm(fiwt(m) + frw(r) 6
TER
where 8, m € R, is the unit mass at m; ¢(r) are constants specified below;
and wt(r) (w™(w)) is the Euclidean measure on A" (w) (A~(w)). For each
m € R the density f} (correspondingly f_ ) is the restriction to At ()
(correspondingly A~(m)) of a function which is rational, positive, and
homogeneous of degree —m on RT.

The measure u is finite.
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We define the measure p in section 5 following analogous definition
in [16]. What is crucial for us is finiteness of the measure, which is proved
in sections 6-7.

THEOREM 2. — Let m > 1, and let R € &Y, be a fixed Rauzy class.
Then the map G is ergodic on

LJ AT (m)U A ()
wER
with respect to the absolutely continuous invariant probability measure p.
Theorem 2 is proved in section 8.

We remind notation

log(z) when z > 1
)
(4.1) log™ (x) := {0 when 0 < z < 1.

By ||B|| we denote the norm of the matrix B; the particular choice of the

norm is of no importance for us.

ProposITION 1. — Function logt | B(\, 7)|| = log | B(\,7)| is inte-

grable over the space || A*(mw)U A~ () with respect to the measure p.
TER

/ log || B(, m)|| p(dz) < oo
|_| (A+(m)uA—(m))

TER

CoroLLARY 1. — Cocycle B~1()\, ) is measurable, i.e.

[ gt 1B O m o) < o
L (a+(myua-(x))
TER
Denote by

(B(k>(,\, 7r))_1 = BYGF 1\ 7)) -...- B-HG(\, 7)) - B-1(\, 7)

the product of matrices B~! taken at the trajectory of a point (A, )
under the action of the map G. Apply multiplicative ergodic theorem to
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the cocycle B~(\, 7). Let 6, > ... > 0,, be the corresponding Lyapunov
exponents.

THEOREM 3. — The middle m — 2g Lyapunov exponents are equal to
zero

09+1 = 0g+2 =...= Gm_g = 0
The remaining 2g9 Lyapunov exponents are distributed in pairs
Ok = —Om—k+1 for k=1,...,g.
The first Lyapunov exponent is strictly greater then the second one

01 > 05.

Differential D() )G is also a measurable cocycle on the space of inter-

val exchange transformations || A*(7)U A~ (r). Consider the collection
TER
of corresponding Lyapunov exponents. The dimension of the space is m—1,

so the differential has m — 1 Lyapunov exponents.

Proprosition 2. — Collection of Lyapunov exponents for the diffe-
rential DG of the map G coincides with the collection

01+61>0,+0,>...>0,,_1+0,.

In particular all Lyapunov exponents of the cocycle DG are strictly posi-
tive.

TuHEOREM 4. — The largest Lyapunov exponent 6; equals

==Y [ (oglB~I(m Al - log Al du

weﬂAi(")
= % Z / log|detDQ|du
WEmAi(ﬂ_)
(4.2) . / log(1 — v(\, 7))dp
WEmAi(ﬂ_)

(4.3) > / |log(1 — Am) — log(1 — Ax-1(m))| dis-

WGmAi(ﬂ_)
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CONJECTURE 1. — The top g Lyapunov exponents are distinct and
strictly positive

01 >0;>...>0,>0.

5. Construction of the invariant measure.

In this section we remind construction of the space of zippered
rectangles presented in [16]. Then we define some particular subspace in it
and an automorphism of the subspace, which projects to the map G. Finally
we define a measure on the space of interval exchange transformations
invariant under G. Since we are extensively using the technique in [16] we
need to remind briefly some definitions and results from there.

For 7 € &%, define H(w) C R™ as the annulator of the system of
vectors bg, S € X(n), see (2.2):

(5.1) H(r)={h€R™|h-bg =0 forall S € X(m)}.

Remark 3. — There is a natural local identification of the space H ()
with H;(MZ;R) (see Proposition 4 and Remark 4 below).

Define the parallelepiped Z(h, ) to be the set of solutions a € R™
to the following system of equations and inequalities (which are equations
(2.3) and inequalities (3.1) in [16]):

h; —a; = Rg@i)+1 — Go(i) (0<i<m)
hi > 0 (I<igsm)
a; > 0 (1 <1< m)
(5.2) am > —hp-1m,
hm > am
h7r—1m+1 2 Ar—1m
min(h;, hit1) > a; (0<i<m,i#n 'm)

where following [16] we use “dummy” components hg = hAm41 = ag = 0.
Define the cone

H*(r) = {h € H(n)| Z(h, ) is nonempty}.

The zippered rectangles space of type m is the set of triples (A, h,a),
A € RP,h € HY(w),a € Z(h,). Parameters h and a determine the
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structure of the Riemann surface in the family of flat surfaces corresponding
to the interval exchange transformation (X, ) (see [16] for details).

Define Q(fR) to be the set of zippered rectangles (A, h, a, ) such that
m € Ris in a given Rauzy class R, and A-h = 1. Define also a codimension-
one subspace Y (R) C Q(R) by additional constraint ||| = 1.

In [16] W.Veech defines the flow P*(\, h,a,7) = (', e"th,e"ta, ),
t € R on Q(R) and a one-to-one invertible (a.e.) bimeasurable transforma-
tion U : Q(R) — Q(R)
(5.3)
[ (A7Y(m,a)X, AT (7, a)h,d’,a(m)) when Am < Ap-1p,
U hya,m) = { (A=Y(m,b), AT (m,b)h, a”,b(r)) when Am > Ap-1m

where matrices A(w,a) and A(m,b) are defined by equations (2.6); trans-
formations a(w),b(r) are defined by (2.4) and (2.5); and vectors a’,a” are
defined as follows:

a; j<mlm
a5 =< hp-tm + am_y j=7"lm
aj—1 ™ im < j <m
0 {aj 0<j<m
a/j - .
_(h‘lr—lm - ar—lm—l) J=m.

Define t(z),z € Y(R), by t(z) = —log(1 — min(Am, Ar-1,,)). Consider a
mapping S : T(R) —» Y(R), Sz = UP' @)z,

The following measure

(5.5) n=" c(m)n

TeER

on Y(fR) is constructed in [16] as a measure invariant under transformation
S. Here c(r) are the constants,

¢(m) = (Volume of fundamental domain in Z™ N H (7r))—1

and

px(dh)
Ne = gh(da) “Q)\“ wm—l(d)\)
(see 11.4 in [16]). Here HY = {h € H*(r)|h- X = 1}; &,(da) is the
Euclidean measure on Z(h, 7) in dimension N (7)—1; pux(dh) is the measure
on HY induced by the Euclidean metric; [|QA] is the Euclidean norm of the
orthogonal projection of the vector A on H(n); and wy,—1(d)) is Euclidean
measure on A™~1,
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Finally we remind that the following diagram
s
T(R) —_— T(R)

pl lp
T
Am 1y — AM™1IxR

is commutative (see [16]), where p : (A, h,a,m) — (A7) is the natural
projection. Hence the measure pn is invariant under Rauzy induction 7" on
the space A™ 1 x R of interval exchange transformations.

Having reminded constructions in [16] we now modify them to get
a measure 4 on the space of interval exchange transformations invariant
under the map G. But before we need to prove the technical lemma.

LEMMA 1. —The subset of T (R) determined by the equation a,, = 0
has codimension one in Y(fR), and hence has measure zero.

Proof. — If S(m) € Zo(m), ie., if 0 ¢ S(m), the statement follows
easily from results of sections 2 and 3 in [16]. Suppose for some m € R
we have 0 € S(m). Consider the subset Y C T(R) for which a,, vanishes,
am = 0. Consider the smallest positive [ such that ¢'0 = m. Note that
the definition of ¢ implies ! > 2. System (5.2) implies that the following
equation is valid for any point of Y:

hoo+1 — hoo + ho2041 — ho20 + ... + hgi-1041 — hgt-10 =0

(see also (2.4) in [16]). Rewrite the equation above as h-b = 0. We need to
prove that vector b is linearly independent from the system of vectors bg,
S € Lo(m), defined by (2.2) ((2.9) in [16]). According to section 2 in [16]
the space H () is defined by the system bg - h = 0. Hence any subset which
satisfies additional independent linear relation is contained in the subspace
of codimension 1, and hence has measure zero.

To prove linear independence of vector b we use an idea of Proposi-
tion 12.8 in [16] (see also Lemma 6 below). Suppose dependence holds, and
replace Xo(w) by its smallest subset X for which dependence holds. We
introduce sets of indices Sy = {00,...,0'710} (which is nonempty since
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l>2)and
(5.6) E=Su ] s
S€E,
By construction (5.6) is a disjoint union and E € {1,...,m}. Linear

dependence implies that every point of F is also a point of E + 1 which is
also a disjoint union. We get E = F + 1, which is absurd. Hence vector b
is linear independent from the system bg, S € Lg(m). O

Define the parallelepipeds

Z*t(h,7) ={a € Z(h,T)|am
Z (h,m)={a € Z(h,7)|am

0}
0}.

>
<

Define the subcones
H**(n) = {h € H*(1)| Z* (h,T) is nonempty}
H*~(n) = {h € H"(n)| Z~ (h,7) is nonempty}.
For a given Rauzy class R define
QY(R) = {(\ hya,m) € QR) | A € At (n);h € HYH (n);a € ZF(h,7)}
Q" (R) = {(\ h,a,7) € AR) | A€ A (r);h € HY (n);a € Z7 (h,7)}.
Define also
THR) = T(R) N QT (R)
T™(R) = T(R)NQ (R)
TER) = TH(R)UT™(R).
Consider the following map F : T*(R) — T(R):

F(\ h,a,m) = S (X, h, a, )

where n(A, 7) is defined by (3.1).

LEMMA 2. — The map F is the induction of the map S to the subspace
TE(R) C T(R).

Proof. — We need to prove, that the image of F belongs to T*(R),
and, that n(\, 7) is the first return time, i.e., the number of the first
iteration of the map S when the image of a point £ = (A, h,a,7) € T(R)
belongs to Y*(R). Suppose A € At (7). Then z(V) = (AW M) o) 7)) =
S(x) is obtained by transformation “of the type b”, see (5.3). Recall the
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remark in [16], saying that the image a’ in (5.4) of the transformation of the
“type a” satisfies a], > 0, and the image a” in (5.4) of the transformation
of the “type b” satisfies a”, < 0. Hence, if A € A*(z()) and oy # 0,
then the point z(!) = S(z) does not belong to T*(fR) since a$) < 0. The
first time the iterate would get back to the space Y*(R) is the first time
vector A(®¥) = T*)\ would get to the simplex of the type A~ (we neglect the
set of measure zero of the points {z = (A, h,a,7) € T(R)|am = 0}, see
Lemma 1). But this is exactly the definition (3.1) of the function n(, 7).

The case, when we have A € A~ () for the initial point is analogous
to one discussed above. O

Since the map S is almost everywhere one-to-one, and the measure 75
from (5.5) is invariant under S we get the following obvious corollary.

COROLLARY 2. — The map F is almost everywhere one-to-one map
on T*(R). The measure n from (5.5) confined to Y*(R) is invariant under
F.

Proof. O
LEMMA 3. — The following diagram is commutative:
JZ’
T(R) =, T(R)
pl e

Ll (A*(muA=(r) —— || (A+H(m)UA~(r)).
TER TER

Proof. — This is just a straightforward corollary of definitions F =
S G = 7M™ ¢ and of commutativity of the initial diagram above.

O

Define measure p on || (At (m)U A~ (7)) as p = pn.
TER

The properties of the measure y are described by Theorem 1. The
invariance of the measure follows from its definition. The statement about
the concrete form of the measure is just the original theorem 11.6 in [16] for
the initial measure invariant under Rauzy induction 7. What is new (and
rather essential for us) is that the measure p is now finite, which would be
proved in the next two sections. In other words we claim that the section
Y+ has finite “area” (while the initial section Y chosen in [16] had infinite
“area’).
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Morally, we claim that the fiber p~1(), ) is “iceberg-like”, i.e., there
is a huge “underwater part” specified by inequality a,, < 0 for A € At
(and a,, > 0 for A € A™) which gives an impact to the measure leading
to it infiniteness; while the rest part of the “iceberg”, which is “above the
water”, and which volume gives us our density function, leads to the finite
measure.

6. The cones H*+(r,W) and H*~(m,W).

The goal of this section is to prove technical Lemmas 5 and 6 which
we will use in the proof of Lemma 8 at the end of section 9.

This section is parallel to §12 in [16], but dealing with the spaces
H**(r) and H*~ (7, W) we are able to improve the estimate of Proposition
12.8 in [16]. Here we would not exclude the subsets containing m and 7~ 1m
anymore.

Let m > 1, and fix 7 € &%,. Consider W C {1,2,...,m} such
that W # @; W # {1,2,...,m}. Define 3o(W) (cf. 2.3) to be the set
of S € () such that

(SU{S+1})\{m+1} CW.

Here {S+1} = {j +1|j € S}.

Next define H*+(m,W) (H*~(m,W)) to be the subset of those
h € H**+(r) (correspondingly , H*~ (7)) which are supported on W i.e.,
h; =0,5 ¢ W,h € Ht*(r) (correspondingly h; = 0,5 ¢ W,h € H*~(r)).
We use the same definition for H+(w, W) as in [16], except that we do not
assume 7~ 'm, m ¢ W anymore, unless it is specially indicated.

We will need the following statement to prove Lemma 5:

LeEMMA 4. — In both of the following cases
(1) meW,n'm¢Wandhe H ~(n,W),a € Z~(h,7);
(2) mé¢W,n'meW;and he Ht*(m,W), a € Z*(h,7);
the following equality is valid:

0<a; <hj hjt (0<j<m).
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Proof. — Case (1): h € Ht* (n,W), a € Z~(h,7), and m € W,
7~ lm ¢ W. In this case a,, < 0. Since 77 'm ¢ W, we get hy-1,, = 0.
Since by definition h.,+1 = 0 we may combine equation

h“/r—lm —Qr-1py = hm+1 — am
from (5.2) with inequality a,-1(m,,) > 0 to obtain
0<az-1,, = am <0.

Combining this with inequalities from (5.2) we prove the lemma for this
case.

Case (2): he HYY(nm,W),a € Z*(h,n),and m ¢ W, n~'m € W. In
this case an, > 0. Since m ¢ W, we get hy, = 0. Since from (5.2) am < hm,
we obtain 0 < a,, < b, =0, and hence

(6.1) am =0.
Using the following equation from (5.2)
hr-1m — Qr—1p = Bppy1 — G
we get
Qr=1p = Bp—1y,.
Combining this equation and equation (6.1) with inequalities (5.2) we

complete the proof of Lemma 4. O

LEMMA 5. — In both of the following cases
(1) meW,n'm¢W and he Ht = (n,W), a € Z~(h,7);
(2) m¢W,nlmeW;and he Ht**(n,W), a € Z*(h,7);

the following strict inequality is valid:

dim H** (7, W) 4 Card £o(W) < Card W.

Proof. — The proof is the same as the proof of Proposition 12.8 in [16],
except that Lemma 12.3 from [16] used in the proof should be replaced by
Lemma 4. O

Now we consider one more case. We stress that the statement below is
formulated for the subcone H* (w, W) C H*(r) in the “old” cone from [16].
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LEMMA 6. — Let m~1m, m € W, where W is as above. Then

dim H* (7, W) + Card Zo(W) < Card W.

Proof. — If H*(w,W) = {0} we can apply the same arguments as in
Proposition 12.8 in [16]. Suppose now that H+(m, W) # {0}. We have to
consider two cases separately.

Case (i). W # {k,k+1,...,m}, 1 < k < m. In this case we can
apply the arguments similar to those in Proposition 12.8 in [16].

Since W is nonempty, we are able to find i € W, ¢ # m, so that
i+ 1 ¢ W. Define [ > 1 to be the first integer such that o' # m and at
least one of o'i, o*i + 1 fails to belong to W. Since i + 1 ¢ W, we have
hit1 = 0 for any h € H*(m,W). Since i < m equations (3.1) in [16] (see
also equations (5.2)) imply for any h € H*(w,W) and a € Z(h,w) the
relation 0 < a; < h;41 = 0. By construction o'i # m, and at least one of
hotsy hotiy1 is equal to zero for any h € HY(r,W). If o'i # 7~'m, then
for any h € H*(m,W) and a € Z(h,7) equations (3.1) in [16] (see also
equations (5.2)) provide us with 0 < a,1; < min(hyi;, hyi41) = 0. Note
that 77'm € W, hence if 6'i = 7= 'm, then d'i + 1 = 7= lm + 1 ¢ W.
In this case equations (3.1) in [16] (see also equations (5.2)) provide us
with 0 < @r-17 < Ag-11m41 = 0, which is valid for any h € H* (7w, W) and
a € Z(h,m).

Since for any h € H* (7, W) and a € Z(h,n) we have a; = az;; =0
equations (3.1) in [16] (see also equations (5.2)) provide us with additional
equation

hi —hgiv1 +hoi — ... + hoi-1; — hotj1 =0 (he H* (m,W)),

which is valid for any h € H*(m,W) (see (12.6) in [16]). We rewrite it
as h-b =0, h € Ht(r,W). We have to prove that vector b and vectors
bs, S € ¥p(W) are linearly independent. Note that by Lemma 2.12 in [16]
the collection {bg|S € Lo(m)} is linearly independent. Hence the collection
{bs|S € To(W)} is linearly independent on W.

If S(m) ¢ (W) and for any 1 < j < [ we have 07i # m, then we can
apply the same arguments as in Proposition 12.8 in [16] which complete
the proof in this case.

Suppose S(m) € £o(W), or 07 = m for some 1 < j < . Suppose
the collection b, bg, S € Xo(W) is not linearly independent. Consider the
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smallest subset ¥, C Xo(W) for which dependence holds. We introduce

sets So = {04,...,0' " ti}(= @ if | = 1) and

(6.2) E={i}usu |J s
SeXy

By construction £ C W, and (6.2) is a disjoint union. If there is to be
dependence then every point of E is also a point of

(6.3) E'=(S+1u |J (S+1)ufdi+1}.
SeXy

Now (6.3) is also a disjoint union, and cardinality considerations imply
E = FE'.Butif m ¢ E, then FE is invariant under the map j — oj+1, which
contradicts Lemma 12.7 in [16]. On the other hand, inclusion m + 1 € E’,
contradicts £ C W. Hence we proved linear independence in this case. As
bs, S € Lo(W), and b (restricted to W) are orthogonal to H* (7, W) we
get the desired inequality.

Case (ii). W = {k,k+ 1,...,m}, 1 < k < m. First note that k > 1
by assumptions on the set W. By assumptions of Lemma 6 7~ 1m, m € W.
Since permutation 7 is irreducible, we have 7~'m # m and hence k < m.

Define [ > 1 to be the first integer such that o~!(k — 1) # m and
at least one of o~!(k — 1), 07!(k — 1) + 1 fails to belong to W. Since
k—1 # n~'m, m, we conclude that for any h € H*(r,W) and a € Z(h, )
the equation ay_; = 0is valid. If 0~!(k—1)+1 € W, then 0~ (k—1) = k—1
and for any h € H* (7, W) and a € Z(h, ) the equation a,-i(x_1) = 0 is
valid. If 0%k — 1) + 1 ¢ W, then 07 !(k — 1) < k — 1 and hence both
oYk —1),07'(k — 1) + 1 do not belong to W, which implies that for any
h € H*(m,W) and a € Z(h, ) the equation a,-i(,_1) = 0 is valid. Hence
any h € HT (m, W) satisfy the equation

ht = ho-1(k—1) + ho-1(k—1)41 — - -+ = ho-1+1(k—1) + ho-t+1(k—1)41 =0

which we rewrite as (h - b) = 0. We need to prove that vector b and the
vectors {bs|S € Xo(W)} are linear independent. For suppose not, and
replace Xo(W) by its smallest subset £, C Xo(W) for which dependence
holds. Consider sets So = {c7"1(k —1),...,07 1 (k—1)} (we let Sy = @ if
I=1)and

E=Su ] s
SEX,
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which is a disjoint union. Note that E C W. If dependence holds, then
every point of E is also a point of

E'=(So+1U |J (S+1)U{k})\{m+1}

SEXy

which is again a disjoint union. By the same reasons every point of E’ is
a point of E, so E = FE’. Note that if dependence holds, then m € E,
otherwise cardinalities of the sets F and E’ differ by one, which leeds to
contradiction.

Note that k € E’, and hence k € E, which implies k + 1 € E’, and
then k+ 1 € E, etc. Hence E = W.

Consider the map U : j+— 0j+1on {0,1,...,m}. is easy to see that
U(E) = (Eu{m+1})\{o~"*1(k — 1) + 1}. By the assumptions on the set
W we have 1 ¢ W. Hence for any j € W, and for any g > 1 such that U9(j)
is well-defined, we get inequality U?(j) # 1. In particular the set W does
not contain any closed orbits of the map U, i.e., for any j € W, and for
any q > 1 such that U?(j) is well-defined, we get inequality U?(j) # j (see
the proof of Lemma 12.7 in [16])). Hence the whole set W is represented
as a single orbit of some jo, € W under the action of the map U:

Ji—J2 oo Jmoktl

where jpy_k41 = 7 'm, U(m~'m) = m+ 1. Note that UPj; never equals 0.
Note that UPj; never equals 7=1(r1 — 1), since U(r~!(r1 — 1)) = 1, and
1 ¢ W. Hence for any 1 < p < m — k+ 1 we have

(6.4) oUPj, = 7~ H(nUPj; +1) — 1.

Let j; = 7~ 1(r). Due to (6.4) we get jo = 7 1(r +1),...,fm-k+1 =
7~ (r4+m—k). On the other hand j,,_x+1 = 7~ *(m). Hence r+m—k = m,
and r = k. Hence W = {n~1(k),7=1(k + 1),...,7~1(m)}. By assumption
W = {k,k+1,...,m}, 1 < k < m, which means that permutation 7~!, and
hence 7 is not irreducible. We proved that assumption on linear dependence
of b and {bg|S € Xo(W)} leads to contradiction, so this collection is linearly
independent. As bg, S € Xo(W), and b (restricted to W) are orthogonal
to H*(mr,W) and linearly independent we get the desired inequality, and
prove case (ii).

Lemma 6 is proved. O
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7. Finiteness of the measure.

In this section we will prove that the integrals of the density functions

o) =/++ Volume (Z*(h,r))dh
(7.1) it
fr(N) =/+_ Volume (Z~(h,)) dh

H)x
of the measure y in Theorem 1 over corresponding simplices A*(7) are

finite. We use the scheme similar to one in §13 in [16]. In particular we use
the following bound (4.12) from there:

(7.2) Volume Z(h,m) < [[ B(*,$)™! for h € Hy (r)

SEE()(W)
where
(7.3) B(\S)= > A (m¢SeN(n)
JESU{S+1}
and

B(A, S(m)) = Min (Ag-1m, Am) + > Aj if S(m) € To(n)

jeES(m)U{S(m)+1}
j#ET—lm, mm+1

(see (4.7), (4.8) in [16]). We apologize for using the busy notation B(\, S)
— we don’t want to change the original notation in [16]. Since we would
not use the matrices (3.2) in this section, and since B(A,S) has different
arguments we hope that it would not lead to any confusion.

We need to improve slightly bound (7.2). In our situation the equation
—hz-1ym € am < hiy, is replaced by one of the equations —h,-1,, < @m <0
or 0 < a,, < hy, depending on whether A € A~ or A € A™. Recall the
bound (4.4) in [16]

Volume Z(h,7) <[] J(h,S) for h € Hf ()
SEEo(w)

where
J(h,S) = Min {h;, hi1]i € S} for S € To(m), S # S(m)
and

J(h,S(m)) = Min [hﬂ_1m+1,hﬂ-1m+hm, {hi,hiy1]i € S(m),i # 7~ 'm, m}]
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assuming S(m) € To(r).
Let J*(h,8) = J=(h, S) = J(h, S) for S # S(m). Let

J*(h,S(m)) = Min [hr-1m41, b, {hi, hiy1li € S(m),i # 77 m, m}]
and
J7(h, S(m)) = Min [hr-1m11, Br=1m, {Ri, hiy1]i € S(m),i # 77 m, m}].
It is easy to see that
Volume Z*(h,m) <[] J*(h,S) for he Hf (m)
S€Tp(m)

Volume Z~(h,7) < [[ J7(h,S) for h € H ()
SET(m)

(cf. (4.6) in [16]).
Next define B¥(\,S) = B~(\,S) = B(\,S) for S € Zy(n),S #
S(m). For those S(m) which obey S(m) € Zy(r) define

BT (), S(m)) = Am + > A, if S(m) € Bo(n)
JES(m)U{S(m)+1}
j;é'lr_lm,mm+1
(7.4)
B~(\, 8(m)) = Ap-1m + > A if S(m) € Zo(n).

JES(Mm)U{S(m)+1}
j;é‘rr_lm, mm+1

Note that if A\ € AT (\,7), h € Ht*(r), S(m) € £o(n), then
Bt(\, S(m))J*t(h,S(m)) < h- A
and if A € A=(\,7), h € Ht~(n), S(m) € Eo(r), then
B~ (A, S(m))J ™ (h,S(m)) < h-A
(cf. (4.9) in [16]). Now we are ready to modify bound (7.2).

LEMMA 7. — Suppose h lies in the H(r) interior of H** (), and let
A € At(m) be such that h- A =1. Then

(7.5) Volume Z*(h,m) < [ (B*(\S))7".
SeXo(m)
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Suppose h lies in the H(r) interior of H*~(r), and let A € A~ (m) be such
that h- A =1. Then

(7.6) Volume Z=(h,m) < [[ (B-(A,8))™"
S€To(m)
(cf. Proposition 4.10 in [16]).

From now on we fix the permutation 7 and one of the subsimplices
At(r) = {d € A(m) | Am = M-} or A~ (1) = (A € A(®) | A <
Ar-1m}. Corresponding cone H**(r) in the first case and H*~ () in the
second case can be subdivided to a finite union of cones with simplex base.
Note that this subdivision is not canonical unless H** () (correspondingly
H*=(m)) is itself a cone with a simplex base. Fix some subdivision.
Each cone C intersects with the hyperplane (h-\) = 1 by simplex Aj.
Integral (7.1) decomposes to the sum of integrals like

(7.7) / Volume (Z*(h, ) dh.
Ay
According to bounds (7.5) and (7.6) each of integrals (7.7) is bounded by

/ Volume (Z* (h, 7)) dh < Volume (A,) - [[ (B¥(A,8))™
Ax S€To(m)

/ Volume (Z~ (h, 7)) dh < Volume (A)) - H (B_()\,S))_l.
Ax SeXo(r)

Let vy,...,vag, where 29 = dim H**(r) = dimC = m — N(7) + 1 be
extremals which span C. We can choose vectors v; to be positive. They are
defined up to multiplication by positive scalars, and do not depend on A.
Fix collection of v;. The vertices of the simplex Ay are given by points
vj/(vj - A), where v; does not depend on A. Hence

29
1
Volume (Ay) = const - Jl;[l A

(cf. 13.5 in [16]) where const is a constant that does not depend on .

ProPOSITION 3. — For each subsimplex A* (1), A=(w), m € R C &9,
and for each cone C in the corresponding space H** () function

(7.8) =TT II @)

Ly,
j=1 "7 SeXo ()

is integrab]é over the corresponding subsimplex A% ().
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Proof. — Consider one of the simplices A*(r) or A=(m) in the
standard simplex A™"! = {A € RT | > A; =1}. We use the following

1<i<m
change of coordinates to replace domain of f by standard simplex A™~1.
For A*(r), that is for subsimplex Ay, > A;-1,, We define

Apcim = .
(7.9) Am = N+ %A;_lm
Aj = X; forj#aim, m.
For A~ (m) we define
An-lpm = N 1+ %)\’m
(7.10) A, = % v
Aj = X, forj# 7~ im, m.
Consider vectors vy’ ..., vz, such that
v AN) =v;" - N 1<7<2g.
Denote

BT*(A(X),S) if A e A*(n)

B'(\,8) := {B'(A(A’),S) if \e A= (m).

Consider induced function

(711) f(A')=f*<A(A')>=(H v,fx) 1 5.8

j=1"J SeXo(n)

on A™1,

LeEMMA 8. — Consider a subset W C {1,2,...,m},0 < Card W < m.
Then number of factors N'(W) in (7.11) which depend only on the variables
with subscripts in W is strictly less than Card W

N'(W) < Card W
(cf. the statement following 13.6 in [16]).
Proof. — Note that components of the vectors v;, 1 < j <, are

nonnegative. All components of (co)vectors B¥(),S), S € ¥o(n), are
nonnegative as well. Coordinates are modified in (7.9) and (7.10) by
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nonnegative matrices. It means that if some factor in (7.11) depends only
on the variables )\; with subscripts in W, then the corresponding factor
in (7.8) also depends only on the variables with subscripts in W. Hence
N'(W) < N(W), where N(W) is the number N (W) of those factors in (7.8)
which depend only on the variables with subscripts in W.

By construction all the vectors v; € HY*(r) C H*(r), 1 < j <
2g = dim H*(7), are linearly independent. Due to definition (7.3) for every
factor B(\, S)~!, S # S(m) with subscripts in W corresponding bg also has
subscripts in W. Note that if S(m) € Xo(7) and B’(), S(m)) has subscripts
in W, then due to definitions (7.4) and to the form of corresponding
changes of coordinates (7.9) and (7.10) we get m~'m,m € W. Hence
if S(m) € Xo(m) and B’(A,S(m)) has subscripts in W, then bg(y,) is
supported on W.

For those W, such that #='m, m ¢ W the statement of the lemma
follows from Proposition 12.8 in [16].

For those W, which contain both 7~'m, m € W, the statement of
the lemma follows from Lemma 6.

Now we have to consider cases of subsimplex A*(w) and A~ ()
separately. Suppose we started with the subsimplex A* (). Then the case
77 im € W, m ¢ W follows from Lemma 5. Consider the rest case, when
n~lm ¢ W, m € W. Due to our change of coordinates (7.9), each factor
in (7.11) containing variable A;, would necessarily contain A/ _, . Hence
none of them would be counted towards N'(W) for the W like ours. Hence

N'(W)=N'((W\m) < N(W\m) < Card W — 1,

and we obtain desired strict inequality.

We use similar arguments for the subsimplex A~ (7) to complete the
proof of Lemma 8. O

To complete the proof of Proposition 3 we apply Proposition 13.2
in [16] to function f()’). For every subset W C {1,2,...,m}, 0 <
Card W < m we define fy(\') to be the product of all factors in (7.11)
which have subscripts in W, and we define D(W, X’) to be the product
of the rest factors. Functions fy/()\’), and D(W, ') obey all conditions of
Proposition 13.2 in [16], except that f()’) is homogeneous of degree —m
on R7, which does not affect the proof of this proposition. Proposition 3,
and hence Theorem 1 are proved. D
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8. Ergodicity of the map G.

Now we can prove ergodicity of the map G. In fact, since we have
already proved that the section T has finite “area” ergodicity of G follows
from the ergodicity of the Teichmiiller geodesic flow on the corresponding
connected component of the corresponding stratum in the space of quadra-
tic differentials, see [9], [7], [19], [20]. We prefer to present an independent
direct proof. The proof is similar to the proof of ergodicity of Rauzy induc-
tion 7 (c.f. Theorem 13.8 in [16], and Theorem 1.11 in [6]).

Proof. — Let A be a matrix such that det A = 1, with some of the

. . . . . ___AA
entries possibly negative. Consider projective linear map T4 : A — AN

and suppose T4 maps some compact subset K C A™! into A™!,
Im (K) € A™~ L. Let J4 be Jacobian of T4. Then according to (7.1) and

(7.2) in [15]
Ja(A) ( A )m
—_ < —_ .
avek Ja(N) o N,

1<ism
Consider a subset A = {A|X\; > ¢, i =1,...,m; > A = 1} Then for
any K C A, and any matrix A € SL (m) such that A(K) C A™! we get
from the estimate above, that

Ja(A n\"
sup —A(—,—)— < (—) .
avek Ja(N) €
Note that this estimate does not depend neither on A nor on the subset K
anymore. We remind that

A
gk(/\,ﬂ’g)=("A—)\”-,7r), det A =1.

Consider the set Ag(\, mo, k) € A™ ! of (N, mg) for which G* uses the same
matrix A. Then G¥(\, mp) maps Ag(),mo, k) onto one of the (A*(w), ),
(A= (m), ).

Consider analogous subsimplices A7 (), 7o, k) corresponding to Rauzy
induction 7. It is known that diameters of subsimplices Az (A, 79, k) tend
to zero as k — oo for almost all A (see [16] and [6]). (Actually this set of
full measure is exactly the set of uniquely ergodic transformations.) Since
Ag(A, o, k) = Ar (A, o, 1(k)) for some I(k) we conclude, that diameters of
the subsimplices Ag (A, 7o, k) tend to zero for almost all A as well. Hence up
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to a set of measure zero we can subdivide A, to subsimplices Ag (), mo, k),
Aj € A Suppose now E is an invariant subset under the mapping G. If
for some € > 0 we have u(E N A¢) < u(A.), then, probably refining our
subdivision, for any § > 0 we will find a subsimplex Ag = Ag(Ag, 7o, ko)
from our subdivision such that u(E N Ag)/u(Ag) < 6. Let (A%(m),7) =
G*o(Ag(Xo, o, ko). Then u(EN(A*, 7)) < §/e™. Since 6§ is arbitrary small,
we can find some 7, such that u(E N (A%, 7)) = 0. Combining this with
the following lemma we complete the proof of ergodicity of G. O

LEMMA 9. — The only invariant subcollections of simplices of the
form (A%, 7), © € R(mp) are @ and (At U A7) x R(mp).

Proof. — Consider the oriented graph representing Rauzy class R(mg).
Any ordered pair of vertices of this graph can be joined by an oriented path
(see [16]).

Consider the following oriented graph, responsible for the map G.
We enumerate the set of vertices of the new graph by duplicated set
R(mo), providing each m € MR(mp) with additional superscript “+” or
“-»_ We join 7] with 75, 71, T2 € R(m), by an arrow, if there is some
(A, m) € (At(m),m) which is mapped by G to (A~ (m2), 7). Similarly
we join m; with mf, m,m € R(m), by an arrow, if there is some
(A, m1) € (A= (1), m1) which is mapped by G to (AT (piz), m2). (Note that
points of A* are always mapped to points of A¥.) To prove the lemma we
need to prove that any ordered pair of vertices of the graph just constructed
can be connected by an oriented path.

First note that for each m € R(mp) there is a pair of arrows going in
opposite directions joining 7+ and 7w~. This arrows come from the points
determining ¢(A,m) = 0, see (3.5). Next note that for each edge of the
graph, corresponding to Rauzy induction, which goes from the vertex m; to
vertex g, there is corresponding edge of the new graph, which joins either
edges wf’ and 7, or edges 7m; and 7r2+ , depending on whether the initial
edge of the Rauzy graph was of type “a” or “b” correspondingly (see (2.4)).
Note also that there is a natural orientation preserving projection of the
new graph to Rauzy graph, which sends each pair of vertices 7+ and 7~
to vertex m, and each edge of the new graph to the oriented chain of the
edges of Rauzy graph.

Now having an arbitrary pair of vertices ﬂ' and 7, we construct
an oriented path in the Rauzy graph joining m; and my. Taking into
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consideration remarks above it is easy to “lift this path up” to the new
graph. Lemma is proved, and hence Theorem 2 is proved as well. O

9. Lyapunov exponents.

We will need several facts concerning quotient cocycles.

Consider a map g : Y — Y preserving a probability measure on the
space Y. Consider a cocycle A(y), y € Y, with the values in the group
GL(m), i.e., a GL(m)-valued measurable function on Y. We remind that
cocycle C is called measurable if the function log™ ||C|| is integrable. Here
|C|| is some norm of the matrix, and log™ is defined by (4.1). Suppose that
corresponding fiberwise linear mapping on the total space of the trivialized
linear bundle has measurable invariant subbundle K(y) C R™, i.e., A(y) :
K(y) — K(g(y)) almost everywhere. We can consider restriction A|x of A
to K. Subspace K(y) has the natural induced norm; restricted cocycle is
obviously measurable, and collection of its Lyapunov exponents at a point
y coincides with corresponding subcollection of Lyapunov exponents of the
initial cocycle A.

Consider now one more measurable subbundle L(y) C R™ and
assume that L(y) is transversal to K(y) almost everywhere, and that
dim L + dim K = m. Assume for simplicity that we choose the Euclidian
norm as a norm in R™. One can easily generalize the condition below
to the case of other norms. Consider the angle K(y), L(y) between linear
subspaces K (y) and L(y). We will assume that

logsin(K (y), L(y)) € L} (Y, )

which is equivalent to

—

(9.1) log(K (y), L(y)) € L'(Y, ).

This obviously works, say, if we choose L = K=, or if, say, for almost all
y € Y the angle is separated from zero by some constant. We define the
quotient cocycle C on the subbundle L as follows: let

Ay) : v v 4w
where v € L(y) and vV € L(g(y)), w? € K(g(y)). We define C(y) as

Cly) : v — oW,
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In other words C(y) := Pr(g(y)) o A(y)|L(y) where Pr : R,y — L(y) is the
operator of projection to L along K. Note that since K is invariant we get

C®(y) = Pr(g®(y)) o AP W)lgy).

LemMA 10. — Under assumptions of condition (9.1) quotient cocycle
is measurable.

Proof. — Since

1AW
Clol < Y
Il < sin(K (9(y)), L(9()))

we get

log* [|C(y)]| < log* [|A(y)]| - logsin(K (g(1)), L((»)))

and both functions in the right-hand side of the inequality are integrable.

(]
Let

1
— lim & *®) () -
(9-2) 0(4,y,v) := lim - log|A™(y)-vl.

Define similarly 6(C,y,v).

LEmMMA 11. — For almost any point y € Y and for any v € L(y) the
limits 0(A, y,v) and 6(C,y,v) exist and

0(A,y,v) > 0(C,y,v)

(note that we do not assume ergodicity of g).

Proof. — Due to multiplicative ergodic theorem (Oseledets theo-
rem [12]) the limits above exist for both of our measurable cocycles for
the set of full measure in Y. Take the intersection of this two sets of full
measure. We have

IC® () - o]l < I1A® (y) - vl

p——— .

sin(K (9™ (), L(g® ()
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Hence

im L log* O™ im L log™ 4B
Jm clog” [CP ()l < lim o log™ AT (y)]

— lim %logsin(K(g(k)(y)/):\L(g(k)(y)))-

k—+o00

Due to Ergodic theorem assumption (9.1) implies that the last limit
in expression above is equal to zero for almost all y € Y. O

Let us prove Proposition 1.
Proof. — Choose the norm
| Bl :=m - Hili}XIBijl-

Recalling the definitions (3.2)—(3.7) of the nonnegative integer matrix-
valued function B(\, 7) we see, that the following inequalities for the entries
of matrix B are valid:

Aﬂ'_ m
B;j(A, ) < ——xl—(——) < :\—1— when A € A~ ()
and
Am 1 +
Bij(Am) < < when X € A* ().

)\,r—l(m) = )‘w—l(m)
To prove integrability of the function log || B(A, 7)|| over || At (m)UA~(7)
meR

with respect to the measure y, it is sufficient to prove integrability of the
function
B\ 7) = {log Am .if e A—+(7r)
log/\,r_l(m) if A e A~ (m).
To prove integrability of h, it is sufficient to prove for each # € R
integrability of the product h(\')f(\') of A with the function f in (7.11),
bounding the density of p, over the standard simplex A™~!, now already
with respect to Lebesgue measure. We do it the same way, as we proved
integrability of f in section 7. We use Lemma 8 and then trivially modify
the proof of Proposition 13.2 in [16] to fit our case. Proposition 1 is proved.

O

To prove Corollary 1 note that |det B(\,7)| = 1. Hence

m—1
157 = mmgx B < (m = 1) (maxlBl ) < B
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Hence
log* |B7!|| < (m — 1) log || B|

which implies that the function log* || B=1(), )| is integrable. Corollary 1
is proved.

Since the function log™t ||B=1(\,7)|| is integrable, we can use multi-
plicative ergodic theorem to study products B=(G¥(\,7))-...- B~}(\, 7).
To prove Theorem 3 let us first prove the following

LeEmMMA 12. — At least m — 2g Lyapunov exponents are equal to zero,
i.e., there is some j, 1 < 7 < 29 4+ 1 such that

Oj = 0j+1 =...= 0j+m-29—1 =0.

Proof. — We need to consider only nontrivial case when m > 2g.
Consider the (m — 2g)-dimensional subspace K(m) = Ker ((r)) — the
kernel of the “degenerate symplectic form” Q(), see (2.1). Let

AE k)Y = gE) () 7).

According to [17] K(7(!)) = B~1(\, 7)K(x), i.e., the kernel is preserved by
our cocycle. The collection of vectors bg, S € Zo(n), (see (2.2) and (2.3))
provides the canonical basis in K(w), see [17]. Moreover, our cocycle
maps the canonical basis in K(7) to the canonical basis in K (7)), see
Lemma, 5.6 in [17]. For any vector bg(w) from the canonical basis one has
1 < ||bg(m)|| < m for any . Since (B(k)()\,ﬂ'))_1 maps this basis to the
corresponding canonical basis in K (7(*)) one has

1< ||(B®A, ™)™ - b(m)|| < m.

For every point (A, 7) having infinite orbit under iterations of the map G
we have presented m — 2g linearly independent vectors bg(w), S € o(n),
such that

. 1 k -1
Jim - log |(B® (X, 7)™ - b(m)|| = 0.
Hence at least m — 2g Lyapunov exponents of the cocycle B~(\, ) are
equal to zero. Lemma 12 is proved. O

Recall, that there is natural local identification between the space
R?* of interval exchange transformations with fixed permutation = € &Y
and the first relative cohomology H'(MZ, {saddles};R) of corresponding
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surface Mg2 with respect to the set of saddles of corresponding foliation
(see [4]). Recall that the saddles are enumerated by the classes S € X(7)
(see section 6 in [16]). Consider the following terms of the exact sequence
of the pair {set of saddles} C M?

0= H°(MZ,{saddles};R) — H°(MZ;R)=2Z — H°(saddles;R) —
—  HY(M?, {saddles};R) — H'(MZR) — H'(saddles;R)=0.

We present now two statements based on the results in [22].

LEmMMA 13. — Under identification with cohomology, vector bs re-
presents the image of the element in H°(saddles;R) dual to the saddle
corresponding to the class S. In particular the (m — 2g)-dimensional image
of H%(saddles; R) is spanned by vectors bs, S € ¥(n) and hence coincides
with Ker (Q(m)).

ProposiTion 4. — Under local identification of the space of interval
exchange transformations with relative cohomology H' (M, 92, saddles; R) the
quotient space over the subspace spanned by vectors bg, S € ¥(x), coin-
cides with the absolute cohomology H'(M, 92; R). The symplectic structure
induced by Q(m) on the quotient space coincides with the intersection form
on cohomology.

Remark 4. — Recalling the definition (5.1) of the space H(w) as
the annulator of the subspace spanned by vectors bg, S € X(w), we see,

that H () is locally identified in our setting with the absolute homology
H, (M 92 i R).

Remark 5. — Suppose GF(\, ) preserves the permutation . In [16]
W. Veech constructs the pseudo Anosov diffeomorphism determined by
the matrix B¥(\,7). We note that the automorphism in cohomology
H(M?2;R) defined by B*®)(A,7) above, coincides with the automorphism
in cohomology, induced by the corresponding pseudo Anosov transforma-
tion.

Now let us prove the relation

6k = —0m—k+1 for k= 1,...,g.

Proof. — Matrix Q(7) defined by (2.1) provides us with the “dege-
nerate symplectic form” in the fibers of (A™~! x k) x R™. This form is
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preserved by the cocycle (B ) (see, say, [10]):
_Nn\T _
m) = (BROm) ) - 2@®) - (BO(,m)

In those rare cases, when Rauzy class R determines nondegenerate
form © the statement follows directly from result in [3], where it is proved
that if a cocycle has values in symplectic matrices then the Lyapunov
exponents appear in pairs 6, —@. The fact, that our symplectic structure
is different over different simplices A™~! x 7, where m € R, does not
affect the statement. Indeed, we can induce our map to some simplex
A™~! x 7. The induced cocycle would now preserve the fixed symplectic
form Q(7), and hence the result in [3] would be directly applicable. But
Lyapunov exponents of the induced cocycle are proportional to the ones of

the initial cocycle with coefficient of proportionality equal to the inverse of
p(A™ ! x ) (see [21]).

In general Q(m) has a kernel. This kernel determines (m — 2g)-
dimensional subbundle K(A,7) = K(n) C R™ in our trivialized vector
bundle over (A™~! x R). This subbundle is invariant under the action of
the cocycle B~1(\, 7). According to Lemma 12 all Lyapunov exponents of
the cocycle B~1(\, ) restricted to the subbundle K are equal to zero.

Consider the quotient cocycle on the quotient bundle R™ /K. Since we
are taking the quotient over the kernel of Q(7), we can induce the form Q()
to the quotient bundle to get there nondegenerate symplectic form. This
symplectic form is obviously preserved by the quotient cocycle. Applying
the arguments mentioned above to the quotient cocycle we see that the
Lyapunov exponents of the quotient cocycle are distributed into pairs éi,
—0;,1<i< g. Applying Lemma 11 to our case we see that the whole
collection of Lyapunov exponents of the cocycle B~1(\,7) is obtained by
joining (m — 2g) zero ones (corresponding to the cocycle restricted to K),
with the rest ones, which are in the one-to-one correspondence with ones
of the quotient cocycle. Moreover, for every pair we have inequality

(9.3) 0; > 0;.

Now note that the sum of all Lyapunov exponents of the quotient cocycle
equals zero, since it is symplectic. The sum of all Lyapunov exponents of
the cocycle B=1(\,7) is also equal to zero since det B(\,m) = 1. Hence
in (9.3) we have equalities for all pairs of exponents. a

To complete the proof of Theorem 3 we have to show that 6, > 05.
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Proof. — It is easy to find a point (Ag, 7p) and a positive k such that
the matrix B := B¥(\g, ) is strictly positive. (In fact, almost all points
have this property.) There is a whole neighborhood O()\, 7, k) of the points
sharing the same matrix B¥(\, ) = B¥(\g, 7o) = B this neighborhood has
nontrivial measure. The following strict inequality is valid for the matrix
B:

min BirBis
%,J,T,8 BisBjr
The map G is ergodic with respect to finite measure, and hence the general
results in section 6 of [18] imply the desired inequality 61 > 6. Theorem 3
is proved. O

> 0.

Let us prove now Theorem 4.
Proof. — Denote
(A®) 7 (k) .= gF (A, 7).
We see, that vectors (B(k)()\, 71'))—1 - X and A®) are proportional. Let

~1 ) -
10 = LB

be coefficient of contraction for one iteration. To prove that some number
0 belongs to the collection of Lyapunov exponents it is sufficient to present
for a set of points (A, 7) of nonzero measure a vector v(A, ) € R™ such
that

I(BOOm) " oml

plm 5 o o0, )]l
Let
v(A, ) = A
Then
1 NE0em)
k fIAl

1

log(r(G*F*(\,m)) - ...7(G(\, ™)) - (A, 7))

ol

% (logr(A, ) +log r(G(A, 7)) + ... +log r(G*~1 (A, 7))).
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Applying Ergodic theorem to the sum above we prove that the
following number 6 is present in the collection of Lyapunov exponents

o) 0= [ oghB - Nl - logIAl)dn
TER Ai(ﬂ')

Note that in fact we have absolute freedom in choosing the norm || ||.
Choosing the norm ||v|| := |v1] + ... + |vsm| we will get for A € A*

log | B~ (A, ) - All — log Al = log(1 — (X, 7)) ~ log 1
where v(A, ) is defined by (3.6). Choosing for v € R™ x 7 another norm
lvll = |vg |4+ - .+|v,,_1(m)_1|+|v,r—1(m)+1|+. A |vm—1|+max(|vm], [Vr-1(m)!)
we get

log(1 — Ar-1(my) — log(1 — Ap,) for X € A= (7)

log | B(A, m)-All—log [|All = {log(l  Am) — 108(1 = Ap-1(my) for A € A*().

Remark 6. — Note that the second norm is different for the spaces
R™ corresponding to different A*(r). In fact, we should consider R™ as

a fiber of a trivialized vector bundle over || A*(w)U A~ (n), and we can
TER
even choose the norm, which would differ (continuously) from fiber to fiber.

It is easy to see, that the integral (9.4) would be the same anyway.

Note that expressions (4.2) and (4.3) for 6; in the statement of
Theorem 4 differ from the corresponding expressions for # above only by
a sign. Since we already proved, that 8; = —0,,, to complete the proof of
Theorem 4 we just need to prove, that Lyapunov exponent 6 computed
above is the smallest one, i.e., that @ = 6,,. This is true since for almost
every point (A, m) € A%(7) and for every w € A% ()

. B®OX\ mw
lim ———— =
kso B (A, myw]
Hence the whole space R™ is asymptotically contracted by B(*)(\, ) to the

one-dimensional subspace spanned by A as k tends to infinity. Theorem 4
is proved. O

We complete this section by proving Proposition 2.

Proof. — We remind that the cocycle B~1(\, ) has a nice invariant
one-dimensional subbundle corresponding to the smallest Lyapunov expo-
nent —6;. The fiber of this subbundle over a point (X, 7) is just (Mg, i.e.,
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it is spanned by the vector A\. We will call this subbundle as tautologi-
cal bundle. Consider the quotient vector bundle and the induced quotient
cocycle on it.

As a representative of the cohomology class of the quotient cocycle
we can choose the quotient cocycle C~1(\, 7) on the hyperplane L = {v €
R™ | vy +...4vm = 0}, or any other hyperplane transversal to any A € R7*.
We can identify the quotient bundle R™/(A\)g with the trivialized vector
bundle with the fiber L. Since minygam-1 sin(/\/,Z) > 0 by the choice of the
hyperplane L, we conclude that condition (9.1) is valid and Lemma 10 is
applicable to our case. Hence cocycle C~!(), ) is measurable with respect
to the measure p.

Choose a point (A, 7) and consider the limits §(B~1, (), 7),v) and
6(C~1, (A, m),v) defined by (9.2) We will show that in our case inequalities
from Lemma 11 become equalities:

LemMA 14. — For almost any point (A, 7) € A™~! x R and for any
v € L the limits §(B~1, (), 7),v) and 8(C~1, (), 7),v) exist and coincide :

6(C~1(\, ),v) = (B~ () 7),v).

Proof. — Due to multiplicative ergodic theorem the limits above exist
for both of our measurable cocycles for the set of full measure in A™~! x R.
Take the intersection Z of this two sets of full measure. Obviously u(Z) = 1.

Choose some small neighborhood O, € A™~! of the point (1/m, ...,
1/m). Let

a:= inf inf (ﬂ)
AEO: 0#veR™\(RTUR™)

where R™\(RT U R™) is the complement to the union of positive and

negative cones, and (m) is the angle between two vectors. By construction
of O, we have a > 0.

Note that since B(*)(\, ) is nonnegative matrix for any (\,7) we
have

B®(\ ) : (RTUR™) — (RTUR™).

Since L((RT UR™) = 0 we conclude that for any 0 # v € L we have

(BO(Am) v ¢ (RT URT).
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For a set of points (A,m) of full measure trajectory (A m), G(}, 71')
G(G(A\,T)),... will visit O, x 7 infinitely many times. Let Z, u(Z)

be intersection of this set with the set Z. Then for any (\,7) € Z both
limits (B~1(\, 7),v) and 8(C~1(\,7),v) exist for any v € L. On the other
hand whenever G¥)(\, ) € O, the angle between (B® ()\,ﬂ'))_l -v and A
is greater than or equal to . Hence for such values k the norms

1B~ (A, m)o

<aill(CP)7 (A mp
(™) =1\, )| <

az[|(B®) 1 (A, m)o

are mutually bounded by means of positive constants a; and as depending
only on the choice of L and O.. Since by construction for any point
(A\,7) € Z we have infinitely many values k for which the relations above
are valid we proved coincidence of our limits. 0O

Since we already know the Lyapunov exponents of the cocycle B!,
and we know that the Lyapunov exponent corresponding to the tautological
subbundle is equal to 6,,(B~!) we get the following obvious corollary of
Lemma 14:

CoroLLARY 3. — The collection of Lyapunov exponents of the
cocycle C~Y(\, ) coincides with 61(B~1),02(B~1Y),...,0m_1(B7!) (ie.,
the collection is obtained by omitting the least Lyapunov exponent of the
cocycle B~Y(\, 7)). O

Consider the trivialized vector bundle with the base || A*(r)U
TER
A=(m) and a fiber R™. The map G and the cocycle B=1(\,7) define the

map on the total space of this bundle (z,v) — (G(z), B~1(z)v), where
z = (A,7) is a point in the base, and v is a vector in the fiber. Note, that
the quotient of the trivialized bundle over tautological bundle is isomorphic
to the tangent bundle over our base. Moreover, it is easy to see, that
the composition of the induced action in the total space of the quotient
bundle with fiberwise homothety with coefficient || B='A||~! coincides with
the action of the differential DG under suggested identification. In fact,
we just use canonical isomorphism T'G;(m) = Hom(y,y1), where v is
the tautological, and v+ is the normal bundle to the Grassmann manifold
G1(m) = RP™1. The impact of the homothety can be easily computed
since homothety commutes with our induced cocycle in the quotient bundle
(and, actually with any fiberwise linear mapping). This impact is just a shift
of all Lyapunov exponents by 6;. Proposition 2 is proved. a
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10. Appendix. Examples of Gauss measures.

Values of Lyapunov exponents for m =2 and 3.

For the interval exchange transformations of two and three subinter-
vals we know all Lyapunov exponents.

In dimension two there is only one Rauzy class containing the only
one permutation (2,1)

Ry :=R((2,1)) ={(2, 1}

Corresponding map G is conjugate to the duplication of the classical map
z — {1/z} related to Euclidean algorithm and to continuous fraction
expansion. The highest Lyapunov exponent is equal to

7['2 _ le(—l)

61(%2) = 12log2  Lij(—1)

~ 1.1865691104156254528...

where Li,(z) is the n-polylogarithm. Note that 6;(9R3) is exactly the
Lévy constant responsible for the growth rate of denominator of continued
fraction. The second Lyapunov exponent equals the first one taken with
the opposite sign:

02(R2) = —61(R2).

In dimension three there is again only one Rauzy class containing three
permutations:

Rs :=R((3,2,1)) ={(3,2,1),(2,3,1),(3,1,2)}.

The highest Lyapunov exponent is equal to

7!’2 Liz(l)
61(Rs) = 6(1+2log2) 1—2Liy(—1)
2Lis(—1)
=2 ")  ~0.68932571507073294...
2Li; (1) — 1 06 507073

The second Lyapunov exponent vanishes, and the third one is equal to the
first one taken with the opposite sign:

02(%3) =0 03(9{3) = —91(9{3).

The first completely nontrivial case is interval exchange transformations of
four subintervals. There are two Rauzy classes here; the following one is
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interesting for us:

Ry 1= R((4,3,2,1))
={(4,3,2,1),(4,1,3,2),(2,4,3,1),(3,1,4,2),(2,4,1, 3),
(4,2,1,3),(3,2,4,1)}.

Corresponding surface has genus 2; corresponding measured foliation on
this surface has single 6-prongs saddle. The other Rauzy class for m = 4
corresponds to surface of genus 1.

The measures of corresponding simplices A*(w), 7 € Ry are as
follows. (We do not normalize the total measure to 1 to avoid fractional
expressions.)

2
p(A*(4,3,2,1)) = 7—;— log2— 2¢(3) ~ 1.91797

4

p(AT(4,1,3,2)) =p(A*(2,4,3,1)) = 34(3) ~ 0.901543

p(A*(3,1,4,2)) = p(A*(2,4,1,3)) = -2-4(3) ~ 0.751286
2

p(A*(4,2,1,3)) = pu(A*(3,2,4,1)) - % log 2 ~ 1.14018.

Rauzy class R4 is invariant under operation of taking inverse permu-
tation. The measures of the simplices A~ (), m € Ry satisfy the following
relation:

w(A=(m) = u(A* (7).
In this normalization the total measure is equal to
o LJ At(m) | =3¢(8) + §7r2 log 2
3

TER
(10.1) = 3Lis(1) — 10Liz(1)Li; (~1) ~ 15.00798.

Here ((3) = Liz(1) ~ 1.20206 is the value of the Riemann zeta function
at 3.

The densities of the measure p on the simplices At (7) in our
normalization are as follows (compare with analogous densities in [16]):
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Density on A*(4,3,2,1), Ay > ); is equal to:

frm () = 1 1 1 1
e VINED VR VIS VS VIS VIS VNS Wiy vy
1 1 1 1 1 1

I VIS WS vy vk gy WL By 5 WaTip v S Wiy W R W

Density on A*(4,1,3,2), Ay > A1 is equal to:

fana) = —] 1 1 ( 1
IR N T A A+ A A+ A2+ A3 \ g+ A3+ A

1
+)\1+)\2+)\3+)\4)
1 1 1 | ] 1
S Wi s vk B i Ve pi g i B
| 1 1
RS W W very wi e

Density on A*(2,4,3,1), Ay > A is equal to:

PN 1 1 1 1
S SN VNI VIS VRIS VRS VIS VNI Vil VI Vi Vi Wi
1 1 1

Aa+A3 A3+ 1—=X°

Density on A*(3,1,4,2), Ay > A3 is equal to:

f (/\)*l ! ! .
S VIS VNI VIS Ui RTIS VNI VS VNI Vi VI Wi
1 1 1

A 1=Do 1=23°

Density on A*(2,4,1,3), Ay > A2 is equal to:

fara) = 1 1 ( 1
SE D VUG VS VTS VAVED VS VI I VTS VANED ik U VRS VIS Wi

1
T
/\2+>\3+)\4>
_ 1 1 1 " 1 1 1
_)\3+)\4 1-X 1= A3+ 1=X2 1 =)y
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Density on A*(4,2,1,3), Ay > )1 is equal to:

f (/\)_ 1 1 1 ( 1
4213 —/\2+)\3 Ao+ A M+ x4+ A3+ \ A1+ X+ N\

1
4
/\2+)\3+)\4)
_ 1 1 1 n 1 1 1
~)\2+)\3 A+ 1—-X) A+ A3 Ao+ N\ 1—)\3.

Density on A*(3,2,4,1), Ay > A3 is equal to:

frn) = 3 1 : :
B T ML M+ A2 AaF Az +ha A+ da+ Azt
1 1 1

A A+ 1=X°

The densities on the simplices A~ (7), m € R, are obtained from
ones on the corresponding simplices A*(7~!) by means of the change of
coordinates dictated by the corresponding permutation.

The highest Lyapunov exponent 6;(R4) is equal to the ratio

1

01(%4) = 5
¢(3) + 5772 log 2

3

2

+ / Fa132(0) (Tog(L — Ay) — log(1 — Ayg)) dA
A+(4132)

(/ faz21(A) (log(1 — A1) —log(1 — Ag)) dA
A+(4321)

+/ f2431(X) (log(1 — A2) —log(1 — Ag)) dX

A+(2431)

+ / f3122(X) (log(1 — A3) — log(1 — Ag)) dA
A+(3142)

+/ f2413()\)( log(l - )\2) - log(l - )\4)) dA
A+(2413)

+/ fa213(A) (log(1 — A1) — log(1 — Ag)) dA
A+(4213)

+ / faza1 () (log(1 = As) — log(1 = y)) dA).
A+(3241)
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The approximate value of this exponent is as follows : 6;(R4) =~
0.48679. Presumably

24
—£(4
pi_ T

3£(3) + gﬂ'z log 2

Actually we have the approximate values for Lyapunov exponents for all
Rauzy classes up to m = 10. These values are obtained by computer
experiments ; presumably precision is four significant digits. We will discuss
these experiments in another paper.
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