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ABSTRACT. — We develop a calculus based on zonoids — a special class of convex bodies —
for the expectation of functionals related to a random submanifold Z defined as the zero set of
a smooth vector valued random field on a Riemannian manifold. We identify a convenient set
of hypotheses on the random field under which we define its zonoid section, an assignment of a
zonoid ((p) in the exterior algebra of the cotangent space at each point p of the manifold. We
prove that the first intrinsic volume of ((p) is the Kac—Rice density of the expected volume
of Z, while its center computes the expected current of integration over Z. We show that the
intersection of random submanifolds corresponds to the wedge product of the zonoid sections
and that the preimage corresponds to the pull-back.

Combining this with the recently developed zonoid algebra, it allows to give a multiplication
structure to the Kac—Rice formulas, resembling that of the cohomology ring of a manifold.
Moreover, it establishes a connection with the theory of convex bodies and valuations, which
includes deep results such as the Alexandrov—Fenchel inequality and the Brunn—Minkowski
inequality. We export them to this context to prove two analogous new inequalities for random
submanifolds. Applying our results in the context of Finsler geometry, we prove some new

Keywords: Kac—Rice Formula, zonoids, random fields, convex bodies.

DOI: https://doi.org/10.5802/ahl.214

(*) This work is partially supported by the grant TROPICOUNT of Région Pays de la Loire, and
the ANR project ENUMGEOM NR-18-CE40-0009-02 and by the Luxembourg National Research
Fund (Grant: 021/16236290/HDSA).


https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.214
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Crofton formulas for the length of curves and the Holmes-Thompson volumes of submanifolds
in a Finsler manifold.

RESUME. — Nous développons un calcul basé sur les zonoides — une classe particuliére
de corps convexes — pour ’espérance de fonctionnelles liées & une sous variété aléatoire Z
définie comme I’ensemble des zéros d’un champ aléatoire lisse a valeurs vectorielles dans une
variété riemannienne. Nous identifions un ensemble d’hypothéses pour le champ aléatoire sous
lesquelles nous pouvons définir sa section en zonoides, 'attribution d’un zonoide ((p) dans
I’algébre externe de I'espace cotangent a chaque point p de la variété. Nous démontrons que
le premier volume intrinséque de ((p) est la densité de Kac—Rice du volume moyen de Z,
tandis que son centre correspond au courant moyen d’intégration sur Z. Nous prouvons que
I'intersection de sous variétés indépendantes correspond au produit extérieur des sections en
zonoides et que la préimage correspond au pull back.

La combinaison de ces résultats avec ’algebre des zonoides récemment développée, permet
de donner une structure multiplicative aux formules de Kac—Rice qui évoque celle d’'un anneau
de cohomologie d’une variété. En outre, cela permet d’établir une connection avec la théorie
des corps convexes et des valuations, qui contiend des résultats profonds tels que l'inéga-
lité d’Alexandrov—Fenchel ou de Brunn—Minkowski. Nous exportons ces résultats dans notre
contexte pour produire deux nouvelles inégalités analogues pour les sous variétés aléatoires. En
appliquant nos résultats dans le contexte de la géométrie Finsler, nous prouvons des nouvelles
formules de Crofton bour la longueurs de courbes et le volume de Holmes-Thompson des sous
variétés d’une variété finslerienne.

1. Introduction
1.1. Overview

Let X: M — RF be a random smooth function on a smooth Riemannian manifold
M of dimension m. Under the hypothesis that the random subset Z := X~1(0) is
almost surely a submanifold, we study the following functionals:

(1.1) AHE{VOl(m_k)(ZﬂA)}, wr—>E{/Zw},

where A C M is any Borel subset and w is any smooth differential (m — k)-form
with compact support, that is, w € Q™ *(M). In more fancy words, the former is
the measure obtained by taking the expectation of the random measure “(m — k)-
volume of the intersection with Z”; while the latter, which is defined whenever Z is
oriented, is the current obtained by taking the expectation of the random current
[, € Qn=k(M)*. Our aim is not just to find formulas for them two, but to establish
a framework to understand the relations among them for multiple instances of Z.

1.1.1. The examples that we have in mind

There is a vast literature dedicated to the study of nodal sets of random fields [AT07,
AWO09, Bog98, MP11]. The first example in our mind is Kostlan polynomials [Kos93],
studied in relation with real algebraic geometry [SS93a, SS93b, SS93c|, [GW14,
GW15, GW16], [NS09, NS16a], [BKL18, BLLP19, FLL15, K120, LL16a, LL16b,
LS19a]; then, random submanifolds in homogenous spaces and integral geome-
try [BFS14, BL20, LM21]; random eigenfunctions and Riemannian random waves
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Expectation of a random submanifold 905

[Ber77, Zel09], a topic that in the current years is at the center of a lot of attention,
see [CH20, CM15, CM18, Gas20, KKW13, KWY21, Mafl7, MPRW15, MRW20,
MRV21, MW1la, MW11b, MW14, NPR19, RW16, SW19, Wigl0] and the sur-
veys [CCJ19, Mar21, Wigll, Wig22]. The vast majority of these works deals with
Gaussian random fields [Bog98, LS19b, Nic16, NS16a, NS16b, Not21]|. The methods
and the results proposed in this paper are aimed to a general study of random fields
including non-Gaussian situations, see for instance [KSW21, Ste21].

Our results are also to be compared with the work of Akhiezer and Kazarnovskii
[AK18]. Their average number of zeros, corresponds, in our case, to the average
number of zeroes of a system of independent scalar Gaussian random fields in finite
dimensional function spaces. In [Kaz20], a more general distribution than Gaussian
is covered although it remains in the setting of scalar fields in finite dimensional
function spaces. It is yet unclear for us if Kazarnovskii’s “B-bodies” correspond to
our zonoid section.

1.2. Main results
1.2.1. Expected length and currents

We propose to study the functionals in (1.1) using zonoids - a special family of
convex bodies (see § 3). A convex body is a zonoid if it can be approximated, in the
Hausdorff topology, by a finite Minkowski sums of segments. To any regular enough
random function X : M — R we associate a field of convex bodies in the exterior
algebra of the cotangent space:

M > p— Cx(p) C ATIM.

For any p € M, the convex body (x(p) is a zonoid defined as the expectation of a
random segment, via the following formula (Definition 5.1):

(1.2) Ce(p) = E{[0,dp XA A d XM | X (p) = 0} pxp (0),

where px(y) : RF — [0, 400] is the density of the random vector X (p). Every convex
body K has a well defined length ¢(K), that is, the first intrinsic volume (Defini-
tion 3.9) of K, also called the first Lipschitz—Killing curvature [AT07]. Moreover,
a zonoid K always has a center of symmetry ¢(K). For technical reasons we will
have to consider the point e(K) := 2¢(K), which we named nigiro, see Definition 3.3.
Finally, we identify a set of desired condition on the random field X under which
we can apply a Kac—Rice formula. We call those the z-KROK conditions, see below
after Theorem A. The first main result of the paper is the following theorem.

THEOREM A. — Let X: M — R¥ be a zKROK random field and let Z :=
X~1(0). Then there is a continuous section of zonoids (x as in (1.2) such that:

(1.3) E {volpn_1(Z N A)} :/AéZdM, E{/Zw} :/Mez/\w,

where 07(p) = (((x(p)) € R and ez(p) = e(Cx(p)) € A*TrM are a continuous
function and a continuous k-form, respectively, and where [, fdM denotes the
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906 L. MATHIS & M. STECCONI

integral of a function f on the subset A C M, with respect to the Riemannian
volume measure of M. We call (x the zonoid section of X.

In the main body of the paper, Theorem A is divided into Theorem 7.1 and
Theorem 7.7.

The description of the 2-KROK hypotheses (Definition 4.1) is an important part
of this work (see § 4) in that they are the conditions that are required to employ our
version of the Kac—Rice formula (Theorem 6.2), on which Theorem A is ultimately
based. Roughly speaking, a random field X: M — R* is 2-KROK if (Compare
with [Ste22, 2.1]):

(1) X is almost surely of class C'.

(2) 0is a regular value of X, almost surely. This is to guarantee that Z = X~1(0)
is almost surely a submanifold.

(3) The law of X (p) on R¥ is absolutely continuous and . ..

(4) ...its density px(y)(z) is continuous in both variables at (p,0).

(5) The conditional expectation E{J,X|X (p) = 0} makes sense and it is regular
enough, where for every f = (f1, ..., f*) € CY(M,RF), we write J,f =
Hdpfl ARRRNA dpka~

If X is Gaussian, then it is very easy to check the z-KROK conditions (see Proposi-

tion 4.9 and Proposition 4.10) and in this case the zonoids (x(p) are ellipsoids.
We can express the length and the nigiro of the zonoid section as follows.

((Cx(p)) = E{JpX [ X(p) = 0} pxr)(0),

Y (Cx (1) = E{d, X" A+ A dyX* | X(p) = 0} pxn(0),

where X = (X!, ..., X*) and J,X denotes the Jacobian determinant of X, that
is, J,X = ||[d, X' A -+ Ad,X*|. From the first equation in (1.4), the reader that is
familiar with Kac—Rice formulas, can recognize that the first identity in (1.3) is in
fact a translation of the most common version of it (see [AW09]). On the contrary,
the formula obtained by combining the second identities in (1.3) and (1.4) is new.

(1.5) E{/Zw} - /M (E{d, X" A~ Ad, X5 | X (p) = 0} pxi (0)) A,

Although it is based on Kac—Rice formula, to the authors” knowledge such a general
result for the expected current was not available in the literature. In particular, under
our hypotheses, the resulting current is represented by a continuous differential
form. Other works which study the expected current of a random submanifold
are [Anc20, DMS12, DRI18, Let16, Nic16, NS16b, SZ99, SZ08].

Remark 1.1. — If X(p) and d, X are stochastically independent, then the condi-
tioning disappears:

Cx(p) = E{{Oadel ARRRRA dek”PX(p)(O)a

see Remark 4.4.
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1.2.2. The wedge and pull-back properties

Given two independent random fields X, X, with zero sets Z; := X; 1(0),i = 1,2,
one can study the intersection Z, := Z; N Zy as the zero set of the random field

Xo := (X1, X3). The idea behind this paper is to answer to the following questions:

QUESTION 1.2. — Suppose that you are given X; and you know that tomorrow
you will have to compute 0z,nz, Or €z, nz, for some yet unknown X,. What can you
do today to start simplifying tomorrow’s work?

In more formal terms, we want to identify some objects associated to X; and X,
that are sufficient to determine the density 0z, 2, and the form ez 2, and a set of
rules to compute them.

In the case of the expected current the answer is pretty simple since, by linearity,
we have ez ,nz, = ez, AN ez, so the answer to Question 1.2 is that one needs to
compute the form ez, in this case.

In the volume case things are more subtle in that the couple (dz,,0z,) is not a
sufficient data to determine 0y, rz,. This is where the zonoid section really comes
into play as an elegant answer to Question 1.2.

For example, if S C M is a submanifold and the field Y = X|g is 2-KROK, then
ey = ex|s, but the density of expected volume dy is not determined by dy. However,
the zonoid section of Y is determined by that of X, via pull-back.

THEOREM B (Pull-back property). — Let X: M — RF be z-KROK. Let S be a
smooth manifold and let p: S — M be a smooth map such that ¢ i X ~(0) almost
surely. Then X o ¢: S — R* is z-KROK and

(1.6) Cxop(q) = dg™ (Cx (0(q))), VqeS.

Recently in [BBLM22] a framework was developed by the first author together
with Breiding, Birgisser and Lerario to build multilinear maps on zonoids from
multilinear maps on the underlying vector spaces, see Proposition 3.13 or [BBLM22,
Theorem 4.1] In particular, the wedge product of two zonoids (; C A’“T; M and

G2 C A’”T;M is defined and lives in Ak1+k2T;M.

THEOREM C (Wedge property). — Let X;: M — R* be independent z-KROK
random fields. Let Xy := (X, X5): M — R¥**2 and assume that X, i 0 almost
surely. Then, X is z-KROK and

Cxo = Cxy N Cxo-

In other words, an answer to (1.2) above is to compute the zonoid section of Xj,
so that tomorrow it will be sufficient to apply Theorem A and Theorem C to get
8z:n2, = £(Cx, N Cx,). The passage from X, a probability law on C'(M,R¥), to (x is
a big reduction of data since the zonoid (x(p) is defined pointwise (Definition 5.1)
and depends only on the law of

(X(p), dy XA A dek> random vector in R¥ x AkT;M,

hence the zonoid section does not remember the whole correlation structure of the
field X. This is the same spirit as that of Kac-Rice formula.
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Remark 1.3. — It is important that the z-KROK hypotheses are stable enough to
allow the operations in both Theorem C and Theorem B, while keeping Theorem A
true. The transversality hypothesis in Theorem B and in Theorem C cannot be
avoided, as shown in Example 10.6. Nevertheless, in many cases it is automatically
satisfied, for instance when the fields are Gaussian and smooth (see Proposition 4.10),
or when the fields are of the form X =Y — X discussed in § 1.3.6, see Corollary 10.4.

1.2.3. Alexandrov—Fenchel and Brunn—Minkowski

The results just discussed create a bridge between random fields and the very rich
theory of convex bodies. Such connection allows to draw on deep results such as
the Alexandrov-Fenchel inequality (Proposition 3.19 and [Sch14, Theorem 7.3.1])
and the Brunn—Minkowski inequality (Proposition 3.20 and [Sch14, p. 372(e)]) to
obtain relations between different instances of d;. The former allows to deduce
Theorem D which, in the case M is a surface, says the following. Let us say that a
2-KROK field X is self-transverse if given X’ an independent copy of it, we have
that (X, X’) A (0,0) almost surely.

THEOREM D (KRAF for surfaces). — Let dim M = 2 and let Z,, Zs be random
curves defined by independent self-transverse z-KROK fields, then, for all p € M,

(1.7) 0mnz(p) 2 \/0z,02(D) - 62,02(D),

where Z! is an independent copy of Z;.

Similarly, from the Brunn—Minkowski inequality we deduce Theorem E.

THEOREM E (KRBM for surfaces). — Let dim M = 2 and let Z,, Zy be random
curves defined by independent self-transverse z-KROK fields. For t € [0, 1], let Z,
be the random curve such that Z, = Z, with probability t and Z, = Z, otherwise.
Then, for all p € M,

1—
(1.8) 52002 (P) 2 05, (9)8%, 02 ()
where Z! is an independent copy of Z;.

This result is based on the observation that Z; is the zero set of another field
X; that, if »-KROK, has for zonoid section the Minkowski sum of the other two:
Cx, = (1 —t)Cx, + tCx,, see Proposition 5.3.

Remark 1.4. — The inequality (1.8) actually involves the same three terms as (1.7).
Indeed from the definition of Z; it is immediate to deduce that:

(SZtﬂZé == (1 —t>25zlmzi +t2522rjzé +2t(1 —t)(SZmZQ.

In the full statements of Theorem D and Theorem E (see Subsection 7.2) there is
no assumption on the dimension of M and the notion of self-transverse is replaced
by multi-transverse (Definition 7.2).
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1.2.4. Comment on the proof of Theorem A

The main technical result that we need and that is the content of Theorem 6.2 is
the following version of Kac—Rice formula expressing the expectation of the integral
of some functional a: C'(M,R¥) x M — R over the submanifold Z = X ~1(0) defined
by a random field X € C'(M, RF):

(19 E{[ alX.pdz()| = [ E{a(X.p)5X | X(2) = 0} pxin (0)dM ()

where again [, adZ denotes the integral with respect to the Riemannian volume
measure of Z, considered with the Riemannian metric induced by Z C M. We don’t
consider this an original result, since this formula is essentially known as one of the
many variations of Kac—Rice. Nevertheless, we remark that we couldn’t find any
reference in the literature for a statement equivalent to Theorem 6.2, which is crucial
for us since it shows the validity of (1.9) under the hypothesis that X is a z-KROK
random field, except for the case when k = dim M, that is Proposition 6.1 and for
which we refer to [Ste22] (see also Appendix A).

We also remark that to obtain Theorem 6.2 we use an argument that is new in
this context and which shows that the validity of Formula (1.9) just in the case
k = dim M, when Z is discrete, implies its validity for all cases. For this we exploit
the properties of a class of Gaussian random fields on a Riemannian manifold (M, g),
that we call normal, defined as those for which g is the associated metric in the sense
of [AT07], see Subsection 6.1. This strategy reflects the philosophy of this paper in
that it exploits the interplay between different instances of the Kac—Rice formula.

1.3. Other results
1.3.1. Density of intersection in terms of mixed volumes

To a convex body K C RY one can associate d + 1 numbers Vo(K), ..., Vi(K)
called the intrinsic volumes of K (also called Lipschitz—Killing curvatures in more
general contexts [AT07]). They are the coefficients in Steiner’s formula [Sch14]:
voly(K 4+ tBy) = 2%, V4_i(K) vol;(tB;), where B; C R’ is the unit ball. The length
V) (K) = ((K) is the one appearing in Theorem A. Then, the Euler characteristic
Vo(K) = x(K) € {0,1} only tells if K is empty or not and V;(K) = voly(K) is the
usual volume.

The role of the intrinsic volumes in our picture is clarified by the wedge product
of zonoids [BBLM22|. In particular, if K = ¢ is a zonoid, we have i!V;(¢) = £(¢"),
see Proposition 3.17. Combining it with Theorem A and Theorem C, this yields
Corollary 7.3:

E {voly(Zi N --- N Zy)} = k! /M Vi(Cx)dM,

whenever Z; are i.i.d. zero sets of a scalar z-KROK random field X: M — R. The
notion of intrinsic volume for zonoids is related to that of mized volume. The mixed

volume of m convex bodies K1, ..., K,,, C R™, denoted MV (K7, ..., K,,), is defined
as the coefficient of t; - - - ¢, in the polynomial voly(t; K + ..., K,,), see [Schl4,
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Theorem 5.1.7]. If Z3, ..., Z,, are random level sets of m independent scalar z-KROK
field X1, ..., X,, respectively, on a m dimensional manifold M, then, provided that
Z; are almost surely transverse to each other, Corollary 7.3 states also that

E{#(Z10- -0 Zpn)} = m! /M MV (Cy,s ..., Cx, JAM.

1.3.2. What does the zonoid section know?

The zonoid section can be separated into two parts as follows, see Definition 3.3.

(110 Cx(p) = e(Cxp) + Ex o)

where (x(p) has its center of symmetry at the origin. The length, and thus the
density of expected volume, depends only the centered zonoid, that is, on (x(p). In
general, the centered zonoid is a sufficient data to compute the expectation of all

quantities of the form [, F(7,Z)dZ. More precisely, given a measurable function
F:Gim—k,TM)— R, we have

(1.11) ]E{/ZF(T,,Z) dZ(p)} :/G(mk’TM)deQ{,

where V, is a measure on G(m — k, T'M) associated to the centered zonoid section
(x via the cosine transform, see § 3.3. The function (x — V¢, is, in fact, injective

~ We will discuss this in more details in § 7.4. In particular, we will show that the
centered zonoid section (x depends only on the law of the random submanifold

Z = X7Y0), see Proposition 7.14.

1.3.3. The zonoid section as the expectation of a random varifold

A d-Varifold in M is a positive Borel measure on the total space of the Grassmann

bundle
G(d, TM)={V CT,M :pe M,V is a linear subspace of dimension d} .

We thus can think of a d-varifold V' as a linear continuous functional F' — V(F),
defined for every bounded continuous function F' : G(d,TM) — R and such that
V(F) < Csup |F| for some constant C' € [0, +00). Traditionally, varifold are in-
troduced as a non-oriented variant of the concept of currents. Indeed, any non-
necessarily-oriented d dimensional compact submanifold Z C M of a Riemannian
manifold M canonically defines a varifold Vz(F) := [, F(1,Z)dM (p).

On the other hand, a classical result in the theory of zonoids (see [Schl4]) is
that centered zonoids in a Fuclidean space V' are in 1 — 1 correspondence with
even measures on the sphere S(V). In our case, the zonoid (x(p) of a z-KROK
field X : M—2R*, lives in V. = A*I*M and it is special in that the associated
measure is supported on the space of simple vectors, which can be identified with
Gk, TyM) = G(d,T,M), where we set d = m — k. Because of this observation,

a zonoid section ¢ = {((p)},em, is uniquely associated to a section of measures
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{kcp) }pe m and we can use this data to construct a d-varifold V; via the formula

(see (7.15)).
Vo(F) = / / FOV)dpen (V)M (p).
()= - (V)dpe ) (V)dM (p)
We have the following.

THEOREM F (Expectation of a random varifold). — Let X € C*(M,R*) be a z-
KROK random field, and let d = m — k be the dimension of the random submanifold
Z := X~Y0). Then

EVy, =Ve,.

We will prove that (see Lemma 7.12), in the case in which ( = (x is the zonoid
section of a 2-KROK field, one can recover the zonoid section (x from the varifold
Ve and viceversa. In this sense, Theorem F explains the title of the paper.

1.3.4. Many representatives of the Fuler class

All the previous results extend naturally to random sections of vector bundles
(Theorem 8.6); if m: E — M is a smooth vector bundle of rank k and X: M — E
is a random section that is z-KROK in any local trivialization (in this case we say
that it is locally z-KROK, see Definition 8.1) then the zonoid section is defined
(Definition 8.5) as a function of the form:

M>p—(x(p) C AkT;M®detEp,

where we recall that det £ := A*E is a real line bundle, trivial if and only if E is
orientable. The reader who is familiar with algebraic topology will recognize a strong
analogy between such extensions of Theorem C and Theorem B with the axiomatic
properties of characteristic classes of vector bundles. Indeed, in the case in which
both M and E are orientable the expected current e((x) = E [,, if smooth, is in
fact a closed k-form representing the De Rham-FEuler class of E:

(1.12) le(¢x)] = e(E) € Hpp(M),

see Theorem 8.6 (4). A more subtle version of this fact holds without any orientability
assumption, see Corollary 8.8 and Remark 8.9. (1.12) can be regarded as a generalized
Gauss—Bonnet—Chern theorem (see [Nic20, Spi79]) in that on the left there is a local
object that depends on the structure of the random field, while on the right hand
side we have a global topological quantity depending only on the bundle. In other
words, a random section specifies a way to distribute the Euler class of E over the

manifold M. For instance in the case when k& = m the Euler class becomes a number:
the Euler characteristic x(F) € Z and (1.12) reads

(1.13) | (¢ = x(®).

The classical statement of Gauss—Bonnet—Chern Theorem for a vector bundle
E endowed with a metric h and a connection V can be recovered from (1.12) by
taking X to be a suitable Gaussian random section. This has been proved, by direct
computations, in [Nic16].
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1.3.5. Finsler Crofton formula

In § 9 we give an interpretation of our results in the context of Finsler Geom-
etry [BCS00]. Given a scalar 2-KROK random field X € C*(M) on M, the convex
body ((p) := (x(p), if full dimensional, defines a norm F, := h¢q) : T,M — R, that
is continuous with respect to p € M. This norm is such that the convex body ((p) is
the dual of the unit ball, see Definition 9.3. Such an assignment is called a Finsler
structure™™) . In our case the convex body ¢(p) always contains the origin and depends
continuously on p but may not be full dimensional, thus h¢(,) only defines a semi
norm. We will call a semi Finsler structure the choice of a semi norm F), : T,M — R
that depends continuously on p € M. Then we have that a scalar z-KROK random
field X € C'(M,R) defines a semi Finsler structure FX, see Definition 9.3.

Given a (semi) Finsler structure F' on M, the usual definition of the length of a
curve as the integral of the norm of the velocity still makes sense, see (9.1). Combining
the pull-back property (Theorem B) with Theorem A we are able to produce a
Crofton formula, that is, to relate the length of a curve with the expectation of the
number of points of intersection with an hypersurface. More precisely, if X : M — R
is 2-KROK, Z = X7(0) and ~ is a C'' curve in M almost surely transversal to Z,
then we have, see Proposition 9.4:

E#(yNZ) =207 (v).

Unlike for the length, there are several notions of the volume of a k dimensional
submanifold S C M in Finsler geometry, sece [APT04]. One of the most common is
the Holmes—Thompson volume, which is still defined in the semi Finsler case and we
denote it as volf, (S). It turns out that in the case in which the semi Finsler structure
F*X is defined by a scalar self-transverse z-KROK field X we can also prove a Crofton
formula for the Holmes-Thompson volume (Theorem 9.9):

E{#(SNZ NN Z)} = klbgvoll ™ (S),

where Z; are independent copies of Z = X~1(0) and S C M is any k dimensional
submanifold almost surely transversal to Z. Constructions of Finsler structures that
admit a Crofton formula are known for random hyperplanes in projective space,
see [Ber07, PF08, Sch01]. Moreover, a more general result very similar to Proposi-
tion 9.4 can be found in [APBlO, Theorem A] although the z-KROK hypotheses are
significantly less restrictive and the construction of the metric F'X is explicit (see

(9.2)).

1.3.6. Examples

With Theorem 10.1 we show that any random field Y €C>(M,R*) can be ap-
prozimated by a z-KROK random field, with the only condition being that E{.J,Y}
should be finite and continuous with respect to p € M. Such operation is obtained
by means of what can be described as a convolution with a constant field, that is, a

W 1n general the norm of a Finsler structure is also assumed to have some C? regularity that we
won’t assume here.
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random vector A € R*, provided that the latter has a continuous, bounded and non
vanishing density. In this case,

(1.14) X =Y — \is 2-KROK.

This result, while demonstrating the abundance of z-KROK fields, suggests that
they could be used to study more wild random fields via perturbative techniques.
The study of the behavior of the results obtained in this paper when A — 0 in (1.14)
will be object of future work by the authors.

A particular case of (1.14) is when Y = f is a deterministic smooth function, so
that Z = Y ~!()\) is a random level set of f. We discuss this example in § 10.1.

In § 10.3 we discuss the case when the law of the random field X is supported on
a finite dimensional linear subspace F C C*(M,R*) and has a density px: F —
[0, +00). This is the most typical situation in the existing literature (see § 1.1.1). It
includes especially the case of random eigenfunctions of elliptic operators, Riemann-
ian random waves and random band limited functions, not necessarily Gaussian. It
also naturally applies to random polynomials.

We show (see Proposition 10.7 and Proposition 10.8) that such X is always z-
KROK as long as F is ample, meaning that for any p € M the set {f(p): f € F}
spans the whole R¥ (i.e., F generates C*°(M,R*) as a C>(M)-module), and if the
density satisfies the integrability condition px(f) = O(||f||=4™%) as ¢ — oco.

1.4. Structure of the paper

§ 3 contains a brief survey on the theory of convex bodies and zonoids, with
emphasis on the formulas and the notations that are needed in the following sec-
tions. This section is essentially based on the monograph [Sch14] and on the recent
paper [BBLM22]. In § 4 we define the z-KROK hypotheses in details, discussing
alternative formulations and special cases. We give the definition of the zonoid sec-
tion in § 5 and the proof of Theorem C and Theorem B. In § 6.2 we establish the
Kac-Rice formula (Theorem 6.2) that we need to prove Theorem A. The latter is
divided into two statements, Theorem 7.1 and Theorem 7.7, both proved in § 7. In
§ 7.2 we report the full statements of Theorem D and Theorem E, which are obtained
as corollaries of Theorem 7.1. The subsequent sections cover the material discussed
in § 1.3 above, in particular, the proof of Theorem F is given in § 7.4.
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2. Notations

Here below, a list of the main notations used in this paper, for the reader’s
convenience.
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e We say that X is a random element (see [Bil99]) of the topological space

T if X is a measurable map X: Q — T, defined on some probability space
(Q, 6, P). In this case we will write

XET

and we denote by [X] = PX ! the Borel probability measure on T induced
by pushforward. We will use the following notation:

P{X € U} :=PX *(U)
to denote the probability that X € U, for some measurable subset U C T,

and
E{f(X)} = [ fnalx)).

to denote the integral of a measurable function f: T — R. Here, the integral
is meant in the usual sense of measure theory, for which we refer to [Bil95,
section 15], and takes value in R U {400, —00, 00 — 00}.

We call X a random variable, random vector or random map if T' is the real
line, a vector space or a space of continuous functions C(M, N), respectively.
Given topological spaces M and N, we write

X: M—23N,

to say that X is a random map, i.e., a random element of C(M, N). The
symbol winks at the fact that X can be seen as a function X: M x Q@ — N.
The sentence: “X has the property P almost surely” (abbreviated “a.s.”)
means that the set S = {t € T|t has the property P} contains a Borel set
of [X]-measure 1. It follows, in particular, that the set S is [X]-measurable,
i.e. it belongs to the o-algebra obtained from the completion of the measure
space (T, B(T), [X]).

o We write #(5) for the cardinality of the set S.

We use the symbol A @ B to say that objects A and B are in transverse
position, in the usual sense of differential topology (as in [Hir76]).

The space of C" functions between two manifolds M and N is denoted by
C"(M,N). We just write C"(M) in the case N = R. If £ — M is a vector
bundle, we denote the space of its C" sections by C"(M|E). In both cases,
we consider it to be a topological space endowed with the weak Whitney’s
topology (see [Hir76]).

We use I'(Z) for the space of continuous sections of a continuous fiber bundle
Z — M.

Given a topological space T', we denote by M(T') the topological vector space
of finite signed Borel measures, endowed with the weak-* topology induced
by the inclusion M(T') C Cy(T')*. We write M™(T') for the subset of positive
finite measures and Z(T) for that of probability measures, both considered
with the subspace topology, if not otherwise specified.

e If Visa vector space and z,y € V, we write [z,y] := {(1 — t)x + ty |t € [0, 1]}.

Moreover, we abbreviate

1
x = 5[—1‘,:6].
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2k+17.(.k

e We use by, for the k& dimensional volume of the unit ball in R* and s;, = o

for the k& dimensional volume of the unit sphere in R¥+1,

3. Zonoids

Throughout this section (V, (-,-)) is a (real) Euclidean space of dimension m, V*
its dual and S(V) is the unit sphere of V.

3.1. Basic definitions

A subset K of V' is convez if for every z,y € K, the segment [z,y] = {(1 — t)x +
ty|t € [0,1]} is contained in K. A convex body is a non empty compact convex subset.
If K C V is a convex body, its support function is the positively homogeneous
function hg : V* — R given by

hi(u) :=sup {{u,z) |z € K}.
The support function determines the convex body K, meaning that two convex
bodies K and K’ are equal if and only if hx = hgs, see [Schl4, Section 1.7.1].
Moreover, a function h : V* — R is the support function of a convex body in V
if and only if it is sublinear, that is if h(Au) = Ah(u) for all uw € V*, A > 0 and
h(u +v) < h(u) + h(v) for all u,v € V*; see [Sch14, Theorem 1.7.1].

The norm on V* induces a complete distance on the space of convex bodies of V'
called the Hausdorff distance [Haul4]. This is equivalent to the supremum distance

of the support functions, given for all K;, Ky C V convex bodies by (see[Schl4,
Lemma 1.8.14]):

(3.1) d(K1, K3) = sup {|hk, (u) = b, (u)] | [|u] =1}
The Minkowski sum of two convex bodies Ky, Ky C V is the convex body defined
as:
K+ Ky :={x; + 22|21 € Ky, 25 € Ko}
Finally we define for every A € R and convex body K, the convex body AK :=
{\z |z € K}.
The support function satisfy some useful properties that we summarize in the next

proposition. Those are direct consequences of the definition and for this reason we
omit the proof.

ProPOSITION 3.1. — Let K, L be convex bodies in a vector space V and let hg,
respectively hy be their support functions. We have the following.

(1) For allt,s > 0 we have hyxys;, = thx + shyp.
(2) If W is a vector space and T : V. — W is a linear map then hy k) = hy o T"
where T" : W* — V* is the transpose (or adjoint) of the map T.

We are interested in a particular class of convex bodies.

DEFINITION 3.2. — A zonotope is a finite Minkowski sum of segments. A zonoid
is a limit, in the Hausdortft distance, of zonotopes.
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Segments are always centrally symmetric and we can write [z,y] =z — y+3{z+y}
where we recall the notation defined in (2.1). It follows that zonotopes, and thus
zonoids are centrally symmetric. Moreover K is a zonotope if and only if there exist
T1, ..., Tn,e € V such that K = 1 4+ -+ + xy + 3{e}. This implies that for every
zonoid K there is a zonoid K with (—1)K = K and a vector e such that

1

DEFINITION 3.3. — The point e will be called the nigiro® of K and denoted
e(K). Moreover, for every zonoid K, we write K for the unique zonoid such that

K = K+ 3{e(K)}.
We write Z (V) for the space of zonoids of V' and Z,(V') for the space of centered
zonoids, i.e. ZH(V) :={K € Z(V)|(—1)K = K}. By the discussion above we have
ZV)=2%V)sV

In the sense of the monoid structure given by the Minkowski sum. Elements of Z4(V)
are called centered zonoids.

3.2. Zonoids and random vectors

If A is a random zonoid in V| that is a map from some probability space to Z(V'),
such that E|d(0,A)| < oo then we define the expected zonoid EA to be the convex
body with support function given for all u € V* by

It follows from a strong law of large number for compact sets from [AV75] that if
Ay, ..., A, areii.d. copies of A, then the random zonoid %(Al +---+A,) converges
almost surely as n — oo to EA. In particular the expected zonoid EA is indeed a
zonoid.

We will, in the following, consider mostly two examples. Let X €V be a random
vector such that E||X|| < co. We say that X is integrable and we consider E[0, X]
and EX. Their support function is given for all u € V* by

1
(3.2) hep,x)(w) = Emax{0, (u, X)}; hex(u) = §E\(u,X)]
Next, we show that they are translate of one another.

LEMMA 3.4. — Let X €V be integrable. We have
E[0, X] =EX + ; {EX}.

With the notation introduced above, this means that e(E[0, X]) = EX. In particular
E[0, X] = EX if and only if EX = 0.

(2) The nigiro e(K) is symmetric to the origin with respect to the center of K. In other words, as a
vector, it is twice the center of K.
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Proof. — It is enough to see that for every t € R we have max{0,¢} = (|t| + ¢).
Then use the expressions in (3.2) and the fact that kg = (-, ¢). O

These constructions behave well under linear mappings.
LEMMA 3.5. — Let X €V be integrable, let W be a finite dimensional Euclidean

space and let T : V. — W be a linear map. Then T(X) €W is integrable and we
have

E[0, T(X)] = TE[0, X] ET(X) = TEX

Proof. — By (3.2) we have hgprx)(u) = Emax{0, (u,T(X))} = hgpx)(T"(u)).
By Proposition 3.1-2 this is the support function of TE[0, X]. The other case is done

similarly. 0
Example 3.6. — Let xq, ..., zy € R™ and let X ER™ be the random vector
that is equal to Nx; with probability 1/N for ¢ = 1, ..., N. Then computing the
expression in (3.2), we find,
N N

i=1 i=1

Example 3.7. — Let £ ER™ be a standard Gaussian vector and let B,, be the

unit ball of R™. Then we have
1
E{ = —B,,.

3 V2
Indeed, since £ is O(m)-invariant, by Lemma 3.5, E{ must also be O(m)-invariant
and thus is a ball. To compute its radius, it is enough to compute the support

function at e;, the first vector of the standard basis of R™. Since (£,e;) ER is a
standard Gaussian variable, we obtain

hIEJ£<€1) IE| ¢, e1 2 \/—

Vitale in [Vit91, Theorem 3.1] shows that every zonoid can be obtained via the
above construction, i.e. for every K € Z(V) there is an integrable X €V and a
vector e € V such that K = EX + ${e}. However, the integrable random vector X
defining the zonoid K := EX is not unique. This defines an equivalence relation on
the integrable random vectors of a vector space known as the zonoid equivalence,
see [MSS14]. The following is [MSS14, Corollary 3.

PRrOPOSITION 3.8. — Let X,Y €V be integrable. Then EX = EY if and only if
for every one-homogeneous even measurable function f :V — R, we have:

Elf(X)]=E[fY)].
This shows that the following is well defined.

DEFINITION 3.9. — Let X € V be an integrable random vector and let K := EX.
Then the length of K is defined to be

U(K) :=E|X]|.
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This functional is actually something very well known, see [BBLM22, Theorem 5.2].

LEMMA 3.10. — The length of a zonoid is equal to its first intrinsic volume
(see (3.9) below).

Despite this result, we will continue to use the name length and the notation ¢
to emphasize that we are thinking of Definition 3.9. Since the first intrinsic vol-
ume is Minkowski linear and vanishes on zero dimensional bodies we also have,
by Lemma 3.4,

(3.3) ((E[0, X]) = E[|.X][.

Finally, there is a simple trick to express the Minkowski sum of two zonoids in
terms of random vectors. The proof is straightforward and thus omitted.

LEMMA 3.11 (Bernoulli trick). — Let X,, X1 ER™ be integrable and let € € {0, 1}
be a Bernoulli random variable of parameter t € [0, 1] independent of Xy and X7, that
is € = 0 with probability t and € = 1 with probability 1 —t. Let X; := eXo+ (1 —¢€) X;.
Then we have

E[0, X] = (1 — t)E[0, Xo] + tE[0, X1]; EX, = (1 - t)EX, + tEX).

3.3. Zonoids and measures: the classical viewpoint

It is most common to approach centered zonoids with even measures on the sphere.
We recall here this point of view and describe how this approach relates to Vitale’s
construction. The space of even signed measures on the unit sphere S(V') is denoted
by Meyen(S(V)) and the cone of non negative even measures by M7 (S(V)).

It is a classical result (see [Sch14, Theorem 3.5.3]) that for every centered zonoid
K € Z4(V) there is a unique px € M7, ., (S(V)) such that

even

(3.4) 2/ (u, 7)| dpge ().

The function hg is also called the cosine transform of py. We also denote by px the
measure on S(V*) defined by (3.4) with the scalar product replaced by the duality
pairing. If a centered zonoid is given by a random vector, it is possible to retrieve
the corresponding measure on the sphere.

PROPOSITION 3.12. — Let X €V be integrable and let K := EX. Then py is
the measure such that for every continuous function f : S(V) — R we have

35 [, fai =2 {1307 (57 ) L

Proof. — The function = — ||z||f( ‘x”) z+£0 1 a one homogeneous continuous

function on V. Thus by Proposition 3.8 the term on the right only depends on K.
To see that it satisfies (3.4) apply it to f = |(u, )| for any u € V*. O
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In particular, note that we have pg(S(V)) = ¢(K). More generally, if f:V — Ry
is measurable and one homogeneous, we get

(3.6) Ef(X)= [ fdux
S(V)
where X €V is integrable and K :=EX.

3.4. Zonoid calculus

In the recent paper [BBLM22] the first author together with P. Breiding P. Biir-
gisser and A. Lerario proved that multilinear maps between vector spaces give rise

to multilinear maps on the corresponding spaces of centered zonoids. The following
is [BBLM22, Theorem 4.1].

PROPOSITION 3.13. — Let M : Vi X --- x Vi, — W be a multilinear map between
finite dimensional vector spaces. There is a unique Minkowski multilinear continuous
map N

W= 25(Vi) x - x Z(Vy) = Z(V)
such that for all vy € Vi, ..., v, € V}, we have

—~

M(ﬂ,...,%):]\/l(vl,...,vk).

We extend the map M to general zonoids by setting for all K € Z5(V1), ...,
Ky € Z(Vy) and every ¢; € Vi, -+, ¢ € Vi

3.7) M (m + ;{01}, o Kt ;{ck}) — M (K, ..., Kk)+; (M(cr, ..., ).

One can check that this map is still Minkowski multilinear. Moreover, it behaves
well under the Vitale construction.

ProrPoOSITION 3.14. — Let M : Vi x --- x V), =& W be a multilinear map be-

tween finite dimensional vector spaces and let X; EVy, ..., Xy, €V} be integrable
and independents. We have
M (E&, ]E&) = IEM(Xl,...,Xk);M<E[O,X1], E[O,Xk])

=E[0, M (X, ..., Xp)].
Proof. — The first statement about centered zonoids is [BBLM22, Corollary 4.3].
The second one follows from it, Lemma 3.4 and (3.7). O
Consider the exterior powers A*V, 0 < k < m, where we recall that m = dim V.
There is a collection of bilinear maps By; : AFV x AV — AFTV given for all
w e AV, w' € AV by Bi(w,w') :=w A w'. We consider the bilinear map induced
on zonoids and if A € Z(A*V), A’ € Z(AV) we write
ANA = Bry(A A,

We will call this operation the wedge product of zonoids. Using Proposition 3.14 we
have for X and Y independent integrable random vectors:

(38) EXAEY =EXAY; E[0, X] AE[0,Y] = E[0, X AY].
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Remark 3.15. — Note that the wedge product on centered zonoids is commutative,
this follows from (3.8) and the fact that z = —z.

Finally, in the notation introduced in Definition 3.3, and using (3.7), we get that
for every zonoids K € Z(A*V), L € Z(A'V), we have

KANL=KANLe 2% (M) and (KAL) =e(K)Ae(L) € AV,

3.5. Mixed volume and inequalities

A fundamental result by Minkowski [Sch14, Theorem 5.1.7] states that, given
convex bodies K, ..., K,, C V, the function (¢1, ..., t;) = vol, (t1 K1+ - -+, K,y,)
is a polynomial in tq, ...%,, > 0. The coefficient of t; - - - t,,, is called the mized volume
of Ky, ..., K,, and will be denoted here by MV (K7, ..., K,,). It relates to the wedge
product of zonoids as follows.

ProposITION 3.16 ([BBLM22, Theorem 5.1]). — Let Ky, ..., K, € Z(V). We
have the following.

1

From Minkowski’s result, one can also build the intrinsic volumes of a convex body
K C V which are the coefficient (suitably normalized) of the Steiner polynomial
t — vol,,(K +tB(V)) where B(V) C V is the unit ball. In our context we define
the k™ intrinsic volume to be

(3:9) () = v (], ) — 4
m—k
where K k] denotes the convex body K repeated k times in the argument.
From the previous Proposition, one can deduce the following, which is [BBLM22,
Theorem 5.2] and will be used later in the proof of Corollary 7.3.

PROPOSITION 3.17. — Let K € Z(V). We have the following.

;le (K™) = Vi(K)

Moreover for all k > dim(K), K"t = 0.

Moreover the support function on simple vectors takes the following form which
will be used in Lemma 9.8 to link zonoid calculus to the notion of Holmes-Thompson
volume.

LEMMA 3.18. — Let K € Z,(V) be a centered zonoid and let uw = uy A--- Ay, €

A*V. We have
hK/\k(ul VANRIERIVA uk) = HUI A 2 A UkH k'VOlk(’/Tu<K))

where T, : V' — Span(uy, ..., u) denotes the orthogonal projection.
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Proof. — Let X €V be such that K = EX and let Xy, ..., X} be iid copies of X.
Then we have

1
A A

Eljma(X) A= A (Xl

2
_ A A Ak
= 5 14 (ﬂ'u(K) ) :
Finally, by Proposition 3.16, we have £(m,(K)"*) = k!vol(r,(K)) which concludes
the proof. O

3.5.1. Alexandrov—Fenchel and Brunn—Minkowski inequalities

One of the most important inequality of convex geometry (if not the most impor-
tant) involves the mixed volume and is known as the Alexandrov—Fenchel inequality
(AF), see [Sch14, Theorem 7.3.1].

PROPOSITION 3.19 (AF). — Let K3, ..., K,, CV be convex bodies and let us
denote by R, the tuple (K3, ..., K,,). For all convex bodies K, L C V we have

MV(K, L, &) > /MV(K, K, &) MV(L, L, R).

Another inequality bounds from below the volume of the Minkowski sum of two
convex bodies and is known as the Brunn—Minkowski inequality (BM). It has many
equivalent form and we chose to present here the multiplicative one, see [Schl4,

p. 372 (e)].

PROPOSITION 3.20 (BM). — Let Ky, K; C V' be convex bodies. For all t € [0, 1],
we have
vol,, (1 — ) Ko + tKy) = vol,,(Ko) " vol,,(K1)".

3.6. Grassmannian zonoids

The zonoids that will appear in the construction of the zonoid section below
(see Definition 5.1) belong to a particular subset of Z°(A*V). Recall that if V is
Euclidean then A*V inherits an Euclidean structure given for all v; A - -+ A vy, wy A
- Awy € ARV by

(U1 A= Avg,wy A -+ ANwg) = det ((v;, w;))

1<i,j<k"
Vectors of the form vy A --- A v, € APV are said to be simple.

We write G(k, V') for the Grassmannian of k—dimensional subspaces of V. Recall
that the Grassmannian embeds in the projective space of AFV via the Pliicker
embedding that sends £ € G(k,V) to [e; A -+ Aeg] € P(AFV) where ey, ..., e is a
basis of E. In particular the set of simple vectors in A*V can be viewed as the cone
over the Grassmannian and a measure on G(k, V) can be identified with an even
measure on S(V') supported on the simple vectors.
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For every E € G(k,V) we define the segment
E:=e A ANep C AV

where eq, ..., e, is an orthonormal basis of E.
DEFINITION 3.21. — A zonoid K € Z(A*V) is a Grassmannian zonotope if there
exists subspaces E, ..., E, € G(k,V) scalars A\, ..., \, = 0 and a simple vector

c=ci A+ ANy € ARV such that K = \MEy + -+ + M\ E, + %{c} A Grassmannian
zonoid is a limit of Grassmannian zonotopes. We denote the set of Grassmannian
zonoids in A¥V by G(k,V) C Z(A*V) and centered Grassmannian zonoids by
Go(k, V) :=G(k, V)N ZH(A*V).

Remark 3.22. — For k € {0,1,m — 1,m} where m := dimV, all zonoids are
Grassmannian.

The following lemma clarifies how to recognize Grassmannian zonoids when rep-
resented by random vectors or by measures. In particular, centered Grassmannian
zonoids in A*V correspond to positive measures on G(k, V).

LEMMA 3.23. — Let K € Zy(A*V). The following are equivalent.

(i) K € Go(k,V);

(ii) There is an integrable random vector X € A*V that is almost surely simple,
i.e. such that almost surely X = X1 A -+- A X}, (the vectors Xy, ..., Xy can
be dependent ), such that K = EX

(iii) The support of the measure ur € M (S(A*V)) is contained in the inter-

even

section of S(A*V') with the set of simple vectors, i.e. ux € MT(G(k,V)).

Proof. — The equivalence (ii) <= (iii) follows from Proposition 3.12. The equiv-
alence (i) <= (iii) follows from the fact that Hausdorff convergence of zonoids
corresponds to weak—k convergence of measures [BBLM22, Theorem 2.26(5)]. O

Remark 3.24. — As it will be clear from Definition 5.1, Lemma 3.23 (ii) implies
that the value at p € M of the zonoid section (x of a 2-KROK field X € CY(M,R¥)
is a Grassmannian zonoids: (x(p) € G(k,T,M) for all p € M.

Remark 3.25. — From (iii) we see that Go(k,V) = M*(G(k,V)).

It is not difficult, using (iii), to see that the Grassmannian zonoids are closed under
the Minkowski sum. Similarly, one can see using (ii) that they are also closed under
the wedge product.

LEMMA 3.26. — The wedge product, respectively the Minkowski sum, of two
Grassmannian zonoids is a Grassmannian zonoid.

The next lemma makes computations easier for Grassmannian zonoids and, for
instance, it can be used to compute directly the constant in the proof of Theorem 6.2.
We will use it in the proof of Lemma 6.6.

LEMMA 3.27. — Let C € G(k,R™) and let B, :== Brm be the unit ball of R™.

Then we have ]

“e) = (m — k)b

¢(CnBpm)

where by := voly(By).
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Proof. — Since the length is translation invariant, we can assume C'is centered. Let
C=EX;A---AXy, let Y ER™ be a Gaussian vector of mean 0 and variance /27
in such a way that B,, = EY and let Y, ..., Y}, be iid copies of Y independents
of Xy A--+ A Xg. Then using the independence of the random variables and the fact
that Y7 A --- AY,,_ is orthogonal invariant we have

C(CABY ™) =R Xy A AXp AYE A A Yok
=E[|XiA- - AXi||-Elles A ANexg AYT A= A Ykl
where eq, ..., e, denotes the standard basis of R™. We obtain
£(C A BYmH) = C) BIw(Yi) A A (V)

where 7 : R™ — R™~* is the orthogonal projection onto Span(egy1, ..., €,). Then
it remains only to see, using Proposition 3.17, that

Elxn(YD) A Ar(Yo_)| = ¢ (W(Bm)/\(mfk)>

=/ ((Bm_k)“m—’“))
= (m — k))'bm_k L]

Finally, we observe the following. Let f : G(k,V) — R be a measurable function
and denote also by f its (even and) homogeneous extension on the cone of simple
vectors. Then if K = EX; A--- A X is a Grassmannian zonoid with generating
measure pux € MT(G(k,V)), we get that (3.6) becomes:

(3.10) Ef(X0 A AXy) = /G(kv)fdm(.

3.7. Topology of zonoids

We conclude this introduction to zonoids with a short comment on zonoid bundles.
It will be useful to keep in mind this section in what follows, to understand the
continuity of the zonoid section (Definition 5.1). Let M be a manifold of dimension
m and let 7 : E — M be a topological vector bundle of rank k. The structure of
vector bundle is given by the trivialization maps xy : E|ly — U x R* which are
homeomorphisms that are linear isomorphism on the fibers.

We can define the zonoid bundle Z(E) whose fiber at a point p € M is defined
to be Z(E), := Z(E,) where E,, is the fiber of E at p, and whose bundle structure
is given by the collection of maps Xi : Z(FE)|ly — U x Z(RF¥) in particular the
topology on Z(F) is the smallest topology that makes all Yy homeomorphisms.
Recall that the space of zonoids 2°(R¥) is topologized by the Hausdorff distance,
see (3.1). Similarly one can define Z4(F), G(k, E), Go(k, E).

Given a fiber bundle 7 : F' — M we denote by I'(F) the space of continuous
sections of F, that is v € I'(F) if and only if v : M — F' is a continuous map such
that for every p € M, n(y(p)) = p. In particular a section ¢ € I'(Z(E)) is the choice
of a zonoid at each point p of the manifold M in the vector space £, such that this
zonoid depends continuously on the point p. We will call ¢ a zonoid section.
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We observe then that a section ¢ of the bundle Z(E) — M defines at each point
p € M a continuous positively homogeneous sublinear function h¢,) @ £, — R.

LEMMA 3.28. — ( is continuous if and only if the map h¢ : E* — R, (p,u) —
h¢y(u) is a continuous function on E*.

Proof. — 1t is sufficient to prove the statement locally, thus we assume F =
R™ x R*. Consider the space C(R¥) endowed with the compact-open topology. This
has the property that: h € C(R™ x RF) if and only if h; € C(R™,C(RF)), where
hy @ p — h(p,-). Therefore, the statement translates into proving that a sequence
of zonoids ¢,, C R¥ converges to a limit ¢ if and only if the corresponding sequence
of support functions h,,: R¥ — R converges to h := h¢ in C(R*) with respect to the
compact-open topology. Now, we recall that h, and h are positively homogeneous
functions, which implies that h,, — h if and only if the same convergence holds for
the restrictions to the sphere S¥~1. The compact-open topology of C(S*~1) coincides
with the one induced by the supremum norm, hence we conclude by (3.1). 0J

Lemma 3.28 will be used in § 5 to show the continuity of the zonoid section.

We conclude this section with some observations regarding the space of zonoid
sections, with the only scope of giving a more complete picture. In fact, it is easy to
turn the latter proof into a proof of the following statement. Linearity is meant with
respect to the Minkowski sum on the left and follows from Proposition 3.1.

PROPOSITION 3.29. — The assignment ¢ — h¢ defines a linear topological em-
bedding
h.:T(Z(FE)) — C(E"),
Remark 3.30. — The exact image of h. is not easy to determine, but it is certainly
contained in the subset of functions that are sublinear on fibers, see Section 3.

A further observation is that, as fiber bundles, we have Z(F) = Z,(F) @ E and
thus
(3.11) N(Z(E) 2T(Z(E) aT(E).

Therefore we can, as before, treat the nigiro (see Definition 3.3) of a zonoid and the
centered zonoid as separate continuous sections.

4. z-KROK hypotheses

Let (M,g) be a smooth Riemannian manifold of dimension m € N, possibly
non-compact. In this section we are going to describe a class of random functions
X : M—25RF for which Kac-Rice formula works well and it can be written in terms
of a field of zonoids as explained in Section 1.

DEFINITION 4.1 (2-KROK hypotheses). — Let X : M —<5RF be a random map.
We say that X is z-KROK if the following properties hold.

(1) X ECH(M,RF).
(2) Almost surely, 0 is a regular value of X.
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(3) For any p € M the probability [X(p)] on R¥ is absolutely continuous with
density denoted as px ) : RF — [0, +00).

(4) The function px: M x R — R given by px(p, ) = px()(x) is continuous at
(p,0) for all p € M.

(5) There exists a regular conditional probability u(p,z) € Z2(C*(M,RF)) of X
given X (p) (see § 4.1 below) such that the following holds. Let J, - u(p, x) €
MT(CY(M,RF)) be the measure defined by

By 1p.2)(B) = [ Jpf -d(plp.x)) ().
Then we ask that J, - u(p, z) is a finite measure and that the function
Ja- s M OxRY = MT(CH(M,RY))
(p,2) = Jp - p(p, @)
is continuous at (p,0) for all p € M.

These hypotheses are exactly what we need to apply the Kac—Rice formula to
express the expectation of quantities of the form:

(X) = [, ol X)dM(p)

where a: M x C'(M,R*) — R is a measurable function, see Theorem 6.2. They
are a variation of the KROK hypotheses introduced in [Ste22]: a series of hy-
potheses on pairs (X, W), where X: M — N is a random map and W C N is
a submanifold of codimension m = dim M. If (X, W) is KROK, then the measure
p(A) = E#(XH(W)NA) is computed by a generalized Kac-Rice formula, see [Ste22,
Theorem 2.2]. In this paper, we only consider the case when W = {0} ¢ N = R*
but we do not impose conditions on its codimension k.

The precise relation between the KROK hypotheses of [Ste22] and the z-KROK
hypotheses of Definition 4.1 is that X is z-KROK if and only if the pair (X, {0}) sat-
isfies all conditions KROK.(¢) for all £ € {i, ..., vii} \ {v} in [Ste22, Definition 2.1].
Indeed KROK (v) is a codimension assumption and it translates to our setting as
the condition: k = m, which is not required for X to be 2-KROK. The hypothesis
KROK (vii) is equivalent to z-KROK (5) by point (3) of Proposition 4.6 below, that
is a more precise version of [Ste22, Prop. 2.4]. See also Appendix A to compare with
the hypotheses that appear in the more standard statements of Kac-Rice formulas,

[AT07, AWO09].

Remark 4.2. — Although having a Riemannian metric g on M is useful to state
2-KROK .5, the notion does not depend on ¢: If X is 2-KROK on (M, g) then it is
2-KROK on (M, g) for any Riemannian metric g. This is easily seen by the fact that
the functions J, and J, » corresponding to the two metrics are related by an identity:
J, = @(p)J, for some smooth function ¢ € C>(M, (0, +00)).

(3)In the distributional sense, it is the multiplication of the measure u(p,x) with the function
Tyt f s Jof.
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Remark 4.3. — The hypothesis 2-KROK (2) can be verified in some cases using
the generalization of Bulinskaya Lemma proved in [AW09, Prop. 6.12]. This says that
if X €C?(M,R*) and the triple (p, X (p), d,X) has a joint density p: J*(M,R*) — R,
where J*(M,RF) is the first jet bundle, that is bounded on a compact neighborhood
of each point (p,0, A) € JY(M,R¥), then 2-KROK (2) holds.

4.0.1. A comment about the notation

The notation KROK, introduced in [Ste22], stands for Kac-Rice OK. Here, we add
the letter z for two reasons: to remind that we only care about the zeroes and to
indicate that some zonoid will appear. z-KROK is pronounced “skrok”; “zkrok” or
“zee krok”.

4.1. Remarks on 2-KROK (5)

Given a random element X €C!(M,R*) and a point p € M, a reqular conditional
probability™® of X given X (p) is a function

p(p, ) () RS x B(CH(M,RY)) — [0, 1],
(2, B) = n(p, 2)(B)

that satisfies the following two properties, see [Dud02] (The definition for any fixed
p as it depends only on the pair of random variables X and X (p)).
(a) For every B € B(C'(M,RF)), the function u(p,-)(B): R¥ — [0,1] is Borel
and for every V € B(RF), we have

(4.1) P{X € B;X(p) eV} = /Vu(p, ) (B)d[X (p)](x)

where recall that [X(p)] denotes the probability measure that is the law of
the random vector X (p) € R*.
(b) For all z € R¥, u(p, z) is a Borel probability measure on C!(M, R¥).

The fact that the space C'(M,R¥) is Polish ensures that, for every p € M, a
regular conditional probability measure p(p, -)(+) of X given X (p) exists (see [Dud02,
Theorem 10.2.2]) and it is unique up to [X(p)]-a.e. equivalence on R*. However,
strictly speaking, it is not a well defined function of p, although the notation can
mislead to think that.

According to the above definition, there are many different choices of measures
w(p,x) € P(CH(M,R¥)) with the property that u(p,-)(-) is a regular conditional
probability of X given X (p), for all fixed p € M. In our case such ambiguity may
be traumatic, since we will be interested in the value of u(p,z) at x = 0 which, by
2-KROK (3), is negligible for the measure [X (p)], i.e. P{X (p) = 0} = 0. Therefore,
it is essential to choose a family of regular conditional probabilities {f,}, e that
has at least some continuity property at (p, ) — (po,0). This is the motivation for
the hypothesis z-KROK (5).

1) See [Dud02] or [Cin1l]. In the latter the same object is called a regular version of the conditional
probability.
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4.2. Notation for conditioned random maps

We will use the notation of random elements, in the following sense. If X € C'(M,
R*) is 2-KROK, then for any (p,z) € M x R¥, we write

(X|X(p) = z)EC" (M, R¥)

for any random element representing the measure p(p, ), i.e. such that [X|X (p) = x|
= u(p, z). Hence (X|X(p) = x) is not a well defined random element but since in the
sequel everything will only depend on the law this will not be a problem. Moreover,
we will write

P(X € BIX(p) = r} = B{(X|X(p) = 1) € B} = u(p, )(B),
for every B C C'(M,RF) and

E{a(X)[X(p) = 2} := E{a((X[X(p) = 2))} = a(f)du(p, z)(f)-

C!(M,RF)

for every a: C'(M,R¥) — R measurable, whenever the integral, called expectation in

this context, makes sense. If X is z-KROK then the probability u(p,0) is unique, so

the notation [X|X(p) = ] is not ambiguous at = 0. More precisely, if u(p, z) and

i (p, x) are two regular conditional probabilities of X given X (p) satisfying z-KROK

(5) then pu(p,0) = 1/(p,0). For all the other x € R*, we will abuse the notation.
The following observation is often useful in computations.

Remark 4.4. — Let X €C*(M,R*) and let p € M. If d,X and X(p) are stochas-
tically independent, then the law of the random vector d,X is a regular conditional
probability of d,X given X (p), therefore we have that the two laws are equivalent:

[d,X] = [d,X|X(p) =], for [X(p)]-almost every = € R".
In particular, if X is 2-KROK, the continuity of u(p,z) at x = 0 yields
14,X] = [d, X| X (p) = 0]
Therefore, in this case the zonoid section at p is computed by:

Cx(p) =E{[0,d X" A+ AdyXF] b px) (0).
4.2.1. The notation makes sense

The Lemma below has the scope to clarify some doubts that often arise when
using the notation explained above.

LEMMA 4.5. — Let X ECY(M,R¥) and fix p € M. Let u(p,-)(-) be a regu-
lar conditional probability for X given X (p). Then pu(p,x) is supported on {f €
CY(M,R*): f(p) =z} for [X(p)]-a.e. x € R¥, that is, in the above notation,

]P’{X(p) =z

X(p) = w} =1, for[X(p)]-a.e xcR"
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Proof. — Let us fix p € M. Let V C R¥ be a Borel subset and define By := {f €
CY(M,R*)|f(p) € V}. Then, by Equation (4.1), we have that

| dX®)@) =P{X () € VY =F{X € By} = [ ulp.2)(Br)dlX(p)](a).

It follows that there is a Borel subset Ny C R*, with P{X (p) € Ny} = 1 such that
for every x € Ny, we have

ly(z) = p(p,=)(By) = P{X(p) € V|X(p) =z} .

Let {V,, },,en be a countable basis of the topology of N. Let B,, = By, C C'(M,R*) be
defined as above. Then N, Ny, := N’ C R” is still a full measure set for [X (p)]. Clearly,
we have that every singleton x € N, can be written as a countable intersection

{z} = ﬂ V..

{neN:zeV,}

Moreover, for every x € N’ and every n € N, we have that u(p, x)(B,) = 1y, ().
Therefore, if € N’, then we conclude by the continuity from above of the measure

p(p; x):
P{X(p) = o|X(p) =2} = p(p#) (B) = _inf  Ly(@)=1 O

{neN:zeV,}

4.3. Equivalent formulations of z-KROK (5)

We derive a more technical version of the hypothesis z-KROK (5). See also Ap-
pendix A.

PROPOSITION 4.6. — Let X : M—<R* be a random map satisfying z-KROK-
(1)-(4) and let u(p,-)(-) =: [X|X(p) = -|(:) be a regular conditional probability of X
given X (p) (See § 4.1). The following statements are equivalent:

(1) (z-KROK (5)) The function Jyr-p : M x RF — M+ (CH(M,R¥)) is continuous
at (p,0) for all p € M.

(2) For any bounded continuous function a € Cy(CH(M,R¥); R) and any conver-
gent sequence (p,,x,) — (p,0) in M x R* we have

E{a(X)J,, X | X(p,) = 2,} = E{a(X)J,X | X(p) =0}.
(3) For any bounded continuous function o € Cp(C*(M,R*) x M;R), the function
M xR* > (p,z) = E{a(X,p)J,X | X(p) = 0}

is finite and continuous at (p,0) for every p € M.

(4) For any sequence of continuous functions 3, — By € C(C*(M,R¥);R) that
converges in the compact-open topology and any sequence (py, x,) — (po,0)
converging in M x R* such that 3,(f) < CJ,, f for some C' > 0, we have that

(4.2) E {50 (X) [ X(pn) = 2n} = E{fo(X) [ X(po) = 0} .
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Proof. — (1) <= (2) by definition. Moreover, it is clear that (4) = (3) =
(2), so that it will be sufficient to show that (1) = (4). In [Ste22, Proposition 2.4]
it was proven that (1) = (3), but a slight modification of the same argument
allows to obtain the (apparently) stronger statement (4). We are going to repeat it
here, with some extra care, to prove the Proposition.

Assume (1) and let 3, pp, z, — 5o, Po, 0 as in the statement of (4). Observe that
for all g = 3, and p = py, if J,f =0, then B(f) = 0, so that

E{5(X) [ X(p) = «}

- C1(M,RF) B(f)du(p, x)(f)
Jpf

= B

C(M,RF)~{J,=0} Ipf
B(f)
e a2 de(Jp-u(p,w))(f)-

Notice that the last term makes sense because J, - pu(p, z)({J, = 0}) = 0.

Let E(p,z) == E{J,X|X(p) = x} be the total mass of the measure J, - u(p, z).
By z-KROK (5), the number E(p,0) > 0 is finite, though notice that it could be
zero (See Example 4.8). The hypothesis (1) implies that E(p,,x,) — E(p,0). If
E(po,0) = 0, then the limit (4.2) holds since

E{5.()| X(p) = 20 }| < CE ) > 0 =B {50(X) | X(on) = 0} .

Assume that E(pg,0) > 0, then we can assume that E(p,,x,) > 0 for all n € N. In
this case, the next sequence of probabilities converges:

Pn = E(pna l'n)ilejpn ’ N(pnal'n) — PO = E(p(), 0)71‘]100 ) ,U(po, O)

Thus by Skorohod’s Theorem (See [Bil99, Par05]) there exists a sequence of random
functions Y, Yy € C(M,R¥) defined on a common probability space such that Y, —
Yy in CH(M,R¥) almost surely. Then

B (X)X () = 2} = Blowss) [, 2 g)

du(p,z)(f) + B(f)du(p, z)(f)

/czl(M,Rk) N {J,=0}

C1(MR¥)
e [ B] s [0
_ o(f),
= 5o, 0) /CI(MRk) Jot )

=E{p(X) | X(p) = 0}.

Here the limit holds by dominated convergence, since 2 "( ; < C and 22! 7 Yf) — B E(Y;})
Pn PO
almost surely. O

To show that a given random field verifies z-KROK (5), it is often convenient to
check directly that it satisfies point (2) of Proposition 4.6 above, which is equivalent
to z-KROK-5 by definition. On the other hand, the apparently stronger formulation
given in point (4) is the one that we will refer to in the subsequent proofs, in order
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to deduce other properties of z-KROK fields. We also note that z-KROK (5) is
an equivalent formulation of property KROK (vii) of [Ste22, Definition 2.1], that is
point (3).

Remark 4.7. — Proposition 4.6 is based on the same principle as the theorem of
Banach—Steinhaus [Brell, Chapter 2].

Example 4.8. — There are examples of random maps X € C'(M,R) that are
2-KROK , thus in particular

P{X(p)=0 = J,X>0,Vpe M} =1,

but for which there are points p € M with E{J,X|X(p) =0} = 0. It is possible to
build such examples on any manifold M by generalizing the following construction.
Let 71,72 ~ N(0,1) be independent normal Gaussians. Define X €C*(R,R) as

X(u) = v’y + 7.
By Proposition 4.10, in the next subsection, the field X is z-KROK and the prob-

ability u(ug,0) is represented by the random field such that (X (u)|X(ug) = 0) =
(u? — ud)v;. Thus, E{JyX|X(0) =0} = 0. See also § 10.2.

4.4. The Gaussian case

Assume that the random map X: M—<3RF is Gaussian, see [AT07, LS19b]. As
it should be expected, in this case the z-KROK hypotheses are much simpler, in
particular z-KROK (5) is automatically satisfied.

PROPOSITION 4.9. — Let X be a Gaussian random field on M with values in RF
such that
(1) X CH(M,R¥);
(2) Almost surely, 0 is a regular value of X;
(3) For any p € M the Gaussian vector X (p) € R* is non-degenerate:

det E{X (p)X (p)" } # 0;
Then X is zKROK.

Proof. — In [Ste22, Section 9.1] the author uses [Ste22, Lemma 9.1] to prove the
validity of 2-KROK .5, in the equivalent form reported in Proposition 4.6, point (3).
U

Actually, the requirement that 0 is almost surely a regular value is, in many
cases, redundant. We already seen that when X € C?, one can use the generalized
Bulinskaya lemma, see Remark 4.3. However, in the Gaussian case, if the field is
smooth® then by [LS19b, Theorem 7] we have that (3) implies (2). This can be
thought as a manifestation of Sard’s theorem (see [Hir76]), so that it should not be
surprising that a regularity higher than C! is required® .

() The requirement that X € C” for r large enough would be sufficient, however, the authors do not
know precisely how large r should be.

(6)Sard’s theorem [Sard2] states that the set of critical values of a map f: R™ — RF of class C"
has measure zero, provided that r > 1 + max{0, m — k}.
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PROPOSITION 4.10. — Let X be a Gaussian random field on M with values in
R* such that
(1) X €C(M, RY);
(2) For any p € M the Gaussian vector X (p) € R* is non-degenerate:

det E{X (0)X(p)} #0;
Then X is z-KROK.

Proof. — Combine Proposition 4.9 with [LS19b, Theorem 7] as discussed above.
O

5. The zonoid section

We are now ready to define the main object of this paper. We recall, from § 3.7 that
a zonoid section ¢ € I'(Z°(A*T*M)) is the choice of a zonoid at each point p of the
manifold M in the vector space A*T » M such that this zonoid depends continuously
on the point p.

DEFINITION 5.1. — Let X = (X!, ..., X*)€CYM,R*) be z-KRoK. The associ-
ated zonoid section (x € I'(Z(A*T*M)) is defined for every p € M by

() =E { 0., X" A+ A d, XH] ‘X(p) — o} P (0).

The fact that this definition is well posed, i.e. that the section (x is indeed
continuous, is a consequence of Proposition 5.2 below. This definition has to be
intended in the following sense: let [X|X(p) = 0] = wu(p,0) be the probability
measure implied by the z-KROK condition and represented by a random map
(X|X(p) = 0)ECH(M,R¥), as explained in § 4.2. Then we consider the random
covector (d, X' A---Ad,X*| X (p) = 0) = Y €A*T* M and form the random segment
0,Y] C AkT;‘M . This is, in particular, a random zonoid and we can take its expec-
tation as explained in § 3.2 (we will see that E||Y|| < 400 in a moment), and build
the zonoid (x(p) C A’fTZ;k M having support function hey ) : A¥T,M — R given, for
every u € A*T,M, by

hex ) (1) = px(p)(0)Emax {0, (Y, u)} .

We denote by h¢, : A¥T'M — R the function given by (p,u) — hey(p)(w). The follow-
ing property is a useful consequence of the z-KROK hypotheses. (see equation (3.2)
and the precedent discussion.)

PROPOSITION 5.2. — h¢, : A"T'M — R is continuous.

Proof. — Let (pp,un) — (po,ug) be a converging sequence in A*T'M. Define
Bn: CH{M,R*) - R as

Bu(f) = max {0, (dp, ' A+ Adly, f5, 1) } () (0)-

TOME 7 (2024)



932 L. MATHIS & M. STECCONI

Clearly f,, is continuous and, by 2-KROK (3), it converges: (3, — [y in the compact-
open topology of C (Cl(M ,RF); R). Moreover, since u,, converges and p — px () (0)
is continuous, there exists a constant C' > 0 such that

Balf) < |px o) O [ £ A A d £5]| Nfuall < €, -
Applying Proposition 4.6, with z,, = 0, we obtain
i Do) = lim E{8,(X) | X () = 2.}
=E {fo(X) | X(po) = 0}
= h(x(Po)(uo)' U

By Lemma 3.28 this ensures that the function (x: M — Z(A*T*M) is indeed
continuous and that Definition 5.1 was well posed: (x € ['(Z°(A*T*M)).

5.1. The Pull-back property

We now establish a simple and very useful criteria for building z-KROK maps out
of others in a seemingly functorial way. This is also reminiscent of a property of the
characteristic classes of vector bundles.

THEOREM B. — Let X € CY(M,R*) be zKROK. Let S be a smooth manifold
and let ¢: S — M be a smooth map such that ¢ f X '(0) almost surely. Then
X o p€CY(S,R*) is z-KROK and

(5.1) Cxop(q) = dg*Cx(¢(q)), Yq€S.

Proof. — Assuming the first part of the statement, the formula (5.1) is obvious
from the definition of (x. To prove the theorem we have to show that the random
map X o ¢ satisfies all the five properties of Definition 4.1, with respect to any
Riemannian metric on S.

(1) X o p€CHM,R¥), by definition.

(2) The fact that 0 is a regular value of X o ¢ is completely equivalent (under
the condition that 0 is a regular value of X) to the hypothesis ¢ i X ~1(0).

(3) For ¢ € S, the probability [(X o ¢)(¢)] = [X(¢(¢))] on R* has density
pxop)(a) () RY = [0, +00], where pixop)(q) () 1= px(o(a)) ().

(4) Since ¢ is continuous and px is continuous at (p,0), it follows that py., is
continuous at (g,0) for any ¢ € S.

(5) Let u(p,z) = [X|X(p) = z] € Z(C'(M,R*)) be the regular conditional
probability on C'(M,R*) associated to the z-KROK random map X. By
assumption, the function

T M xRE — M* (! (M, RY))

is continuous at (p,0). Let ¢*: C*(M,R*) — C!(S,R¥) be the function given
by ¢*(f) := f o . This is continuous with respect to the C' topologies and
we define v(q, ) := ¢ u(p(q), ) to be the push-forward of u(p(q), z) via ¢*.
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So v(q, x) is the probability measure such that for every measurable function
F: CY{M,R*) — [0, +00], we have

/01<SVR'6> F(g)dv(g,z)(g9) = E{F(¢"(X)) | X (¢(p)) = z}.

From this, one can see that v(q,-)(:) is a regular conditional probability of
X o given (X o p)(q) (see § 4.1). Indeed, for every B € B(C'(M,R¥)), by
taking F' := 1p, we see that

v(q,z)(B) =P{X ope B|X(p(p) =z}

is Borel measurable with respect to x € R* and for any V € B(R*), by taking
F(g) :=15(9)1v(g(q)) we obtain

(5.2) P{XopeB;(Xop)(q) e VI =E{1p(X op)ly(X(x(q)))}
- /Rk E{15(X 0 )1y (X(v(q)) | X(p(p)) = 2} d[X (¢(p))](z)

= /Rk v(q,7)(B)d[(X o v)(p)](z),

so that Property (a) is proven. Moreover, it is obvious by the construction
that v(q,x) is a Borel probability, indeed it follows by the measurability of
the function f*, thus Property (b).

At this point, we proved that for any g € .S, we have the regular conditional
probability v(q, -)(-). To conclude the proof we have to show the continuity of
J,-v(gq,z) at (¢q,0). Let a: CY(S,R¥) — [0, 1] be continuous. Let (g, z,) —
(g,0) be a converging sequence in S x R¥. Then

53) [.1 150, 20 an0) (i, 7))

= E{a(X 0p) (Jg,(X 0 9)) [ X(0(qn)) = zn} = ...
Observe that the normal Jacobians satisfy the inequality

an(X o) < Jso(qn)X I < C- Jso(qn)X7

where the last inequality is due to the facts that the sequence ¢, is contained
in a compact subset of S and that J,¢ is continuous in ¢, because ¢ € C.

It follows that we can apply Proposition 4.6 to the sequence of points
(Pny n) == (¢(gn), x,) and the continuous functions f,, defined as

Bu(f) = a(fop)Jy,(fop) = al(fop)(fop)
The above sequence converges in the compact-open topology of C,(C'(M, R¥);
R). Indeed, since C*(M, R¥) is metrizable, this is equivalent to say that when-
ever f, — f in CY(M,R¥), then B,(f,) — B(f). Now, f, — f converges in
C'(M,RF) if and only if j! f, — jif in J'(M,R*) for every converging se-
quence ¢, — ¢, thus, in particular, J,, — J,f, since J, f depends continuously
on j, f. By Proposition 4.6 we get that (5.3) becomes

= E{Bu(X) [ X(pn) = 2} = E{a(X 0 p)Jy(X 0p), | X op(q) =0},
which proves the thesis. O
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5.2. Independent intersection and wedge product

If X; €CY(M,R*) and X, € C'(M,R!) are two 2-KROK fields, one can build an-
other random field Y = (X, X5) € C'(M, R*™!) whose zero set is the intersection of
the previous two zero sets: Y ~1(0) = X;(0) N X5 '(0). In the case where X; and
Xy are independent, we prove that the zonoid section of the new field is the wedge
product of the previous zonoid sections.

THEOREM C. — Let X, ECY(M,R*) and X,€C*(M,R!) be independent
z-KROK fields. Let Y := (X, X,) ECY(M,R*) and assume that Y @ 0 almost
surely. Then, Y is z-KROK and we have for all p € M

Gy (p) = Cx, (P) A G (D)

Proof. — Conditions z-KROK (1) to (4) are immediately satisfied, note that since
X, and X, are independent we have for all ; € R*, 2, € R! and all p € M:
Py () (Z1, T2) = pxy(p) (@1)Pxa(p) (2). To see that z-KROK (5) is satisfied it is enough
to see that if p;(-,-) is a regular conditional probability for X; then u(p, (x1,z2)) :=
p1(p, x1) ® pa(p, x2) is a regular conditional probability of Y given Y(p). With such
choice of i, one can prove that Y satisfies z-KROK (5), by repeating the reasoning
used in the proof of Theorem B. In particular, in the notation introduced in § 4.2,
we have that for all p € M, the random vectors (X;|X;(p) = 0) and (X3|Xo(p) = 0)
are independent.

Now it remains to observe that by definition of the field Y, we have for all p € M:

dpY' A dYE = (XA A XE) A (dp X A AdyXG)
Hence, using Equation (3.8), we have
(54) pyp(0) [0, dpY" A+ d,YFH] =
1 k 1 !
(pX1(p)(O) [0> R CRARRRRA de1D A (sz(P)(O) {07 dp Xy A-- A deQD :

The result then follows by taking expectations on both sides and from the indepen-
dence observed earlier. O

5.3. Bernoulli combination and Minkowski sum

Another simple operation on random fields allows to build the convex combination
of the zonoid sections.

PROPOSITION 5.3. — Let Xy, X; € CY(M,R¥) be z-KROK and let e €{0,1} be a
Bernoulli random variable of parameter t € [0, 1] independent of Xy and X, that is
e = 0 with probability t and e = 1 with probability 1 — t. Assume, in addition, that

(%) there is no point p € M such that px,(p,0) = 0 for both i = 0, 1.

Let X; := eXo + (1 — €)X;. Then X; € CY(M,R*) is zzKROK and we have for all
peM
Cx.(p) = (1 = £)Cxo (p) + 1Cx, (p)-
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Proof. — The properties 2-KROK (1) to (4) are satisfied by X; and observe that
for all p € M, we have px,;) = (1 — t),oXO( )y + tpx, (- Let pi(p,x) be a regular
conditional probability for X; given X;(p), i = 0,1. We prove that

(1 —t)pxo(p) (@) o (p, @) + tpx, () () pa (p, )
Px.(p)(T)

(5.5) pu(p; ) =

is a regular conditional probability for X; given X,(p). Indeed, let B C C'(M,R¥)
and V C R* be Borel subsets, then, by definition of X,, we have for all p € M,

P(X; € B; Xi(p) € V)
(1-t)P(Xy € B; Xo(p) eV)+1tP(X; € B; Xi(p)eV)

= / (1 = )10 (p, 2)(B)pxo) (@) + this (p, 2) (B)px, () ) d

where the first equality follows from the definition of X; and the second from the
property of conditional probabilities given in (4.1). And thus we obtain

P(X; € B; Xi(p) €V) = | mu(p.2)(B)pxp (@)da.

Moreover p;(p,z) is a probability measure for all p € M, z € R* thus it is a
regular conditional probability for X;. The hypothesis (x) guarantees that ju, satis-
fies z-KROK (5), since 9 and p; do. Finally, the result follows from the fact that

Px:() (0) (P, 0) = (1 — ) pxo () (0) o (P, 0) + tpx, () (0) 21 (p, 0) for all p € M. O

Remark 5.4. — The hypothesis (%) in Proposition 5.3 is what allows to avoid
the difficulties coming from the denominator in (5.5) when proving that X, satisfies
2-KROK (5). It is not a necessary condition, although in general the field X; may
fail to be z-KROK.

Remark 5.5. — We believe that the z-KROK Hypotheses, as stated in Defini-
tion 4.1, are a bit more restricting than necessary. Indeed, the continuity condi-
tion in (5) could probably be replaced by the weaker conditions that the product
(p,x) = pxp)Jp - 1(p, ) is continuous at (p,0) for all p € M and that E(p,z) =
E{J,X|X(p) = z} is locally bounded, without affecting the results of the paper
except for Proposition 5.3, in which the hypothesis (*) could be dropped, and Theo-
rem 10.1 which we will discuss in § 10 below.

6. The Alpha formula

We will use the following version of Kac—Rice formula to deduce all our results. This
is obtained as a particular case of [Ste22]. See Appendix A for a detailed comparison
with the standard statements of Kac—Rice formula in [AW09] and [AT07]. The only
differences are in the hypotheses, in particular the statement below is almost identical

to [AW09, Theorem 6.7].
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PROPOSITION 6.1 (a-Kac—Rice formula). — Let (M, g) be a Riemannian man-
ifold of dimension m € N. Let F: M—<5R™ be a z-KROK random field. Let
a: CY(M,R™) x M — R be a Borel measurable function. Then

(6.1) E{ > a(F,p)} :/M 05 (p)dM (p).

peF~1(0)
Where
0 (p) = E{a(F, p) [ F'| F(p) = 0} prp)(0),
and where both sides of (6.1) and §%(p) take values in R U {400, —00, 00 — o0}.

Proof. — In the language of [Ste22, Theorem 4.1}, if F' is 2-KROK with values in
RI™M “then the pair (F,{0}) is KROK. O

The name Kac—Rice formula is often used to denote also a more general version
of Proposition 6.1 which allows to deal with the case in which X ~1(0) is not zero
dimensional, see [AW09, Theorem 6.8]. The additional flexibility provided by The-
orem 6.2 below is crucial for us, since we want to be able to build a framework of
calculus for intersections of random submanifolds X ~!(0) of arbitrary codimension.

THEOREM 6.2 (Alpha Formula). — Let k < m € N. Let (M, g) be a Riemannian
manifold of dimension m. Let X : M—<RF be a z-KROK random field and define
the random submanifold Z := X~1(0). Let a: C}(M,R*) x M — R be a Borel
measurable function. Then

(62) E{ [ alX.niz()| = [ s m)am )
z M
Where
(63 5() == E{a(X,p)1,X | X(p) = 0] px 0),
and where both sides of (6.2) and §%(p) take values in R U {400, —00, 00 — 00}.

The proof will be given later, in § 6.2, after some preliminaries. In [AW09, Theo-
rem 6.10] the analogous statement for Gaussian fields is reported mentioning that
the proof follows the same lines as in the case m = k. Here, to prove its validity
under our z-KROK hypotheses, we are going to use a different strategy. We are
going to prove that, with little work and using the Pull-back property (Theorem B),
Theorem 6.2 is a natural consequence of Theorem 6.1. This method of proof is new
and interesting in that it shows how it’s always possible to reduce everything to
the zero dimensional case using the construction, by Adler and Taylor [ATO07], of
Gaussian fields that represent the Riemannian structure, see § 6.1. Moreover, it
is fully in the spirit of this work to investigate the relations between the various
Kac—Rice formulas.

6.1. The Adler—Taylor metric and normal fields

In [AT07, Section 12] Adler and Taylor introduced and developed the concept of
the Riemannian metric induced by a sufficiently regular random field y: M —<—R on
a smooth manifold:
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(6.4) gar(p)(v,w) = E{dyy (v) - dpy (w)} .

We will refer to ¢y as the Adler—Taylor metric induced by y. Given a Riemannian
manifold (M, g), it will be very useful for us to express ¢ as the Adler-Taylor metric
induced by some smooth Gaussian field with unit variance.

DEFINITION 6.3. — Let (M, g) be a Riemannian manifold and y € C>*(M) be a
smooth Gaussian random field. We will say that y is a normal field on (M, g) if
v(p) ~ N(0,1) for every p € M and g = ¢%yp. In this case we will writey ~ N (M, g).

Remark 6.4. — The law of the normal field y ~ N (M, g) is not uniquely deter-
mined. It depends exactly on the choice of an isometric immersion of (M, g) into the
sphere of an Hilbert space. By Nash’s isometric embedding theorem, every smooth

Riemannian manifold (M, g) admits a normal field y with finite dimensional support
supp(y) C C*(M,R). See also [AT07] and [Nic16].

By Definition 6.3, it is clear that if y ~ N (M, g) then for every smooth submanifold
Z C M with induced metric g|z we have y|; ~ N (Z, g|z). This property, together
with the following lemma makes the normal field a very good tool to express integrals
over the manifold.

LEMMA 6.5. — Let (M, g) be a Riemannian manifold of dimension m, let y ~
N(M,g) and let Y, ..., Y™ be iid. copies of y. Define the random discrete set
Yi={Y'=...=Y™=0}. Let a: M — R be Borel with compact support. Then
we have

Sm
/ alp) = 5Eq D ap)
M 2 {pez

where recall that s, := vol,,(S™).

Proof. — Let Y = (Y!, ..., Y™): M-2»R™. First note that, since Y (p) ~ N(0,
1,,) for all p € M, by differentiating E{|Y?(p)|?} = 1 with respect to p we see that
the random vectors Y (p) and d,Y" are independent. By Proposition 6.1, we have that

E { > a<p>} = [ a@ELLY 1Y (2) = 0} pyon (0)dM () = c(m) [ a(p)dM (p)
peEX

where the last equality is due to two facts: the first is that for any fixed p € M, the

random vectors Y (p) and d,Y" are independent; the second is that in an orthonormal

frame, all the rows of d,Y are identically distributed standard Gaussian vectors

in R™.

Now, the constant ¢(m) can be computed by writing more carefully the formula,
but there is a quicker way. The above identity should be true in the case when
M=S5" a=1andy: "R is a normal field on S™ defined as y(p) = (v, p)
for v ~ N(0, 1,,). In such case X is almost surely a pair of antipodal points, thus

1 2
c(m) = —E#X = —. O

m Sm
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6.2. Proof of the Alpha Formula (Theorem 6.2)

Let £ <m € N and let
X: MR
be a 2-KROK field. Let d :=m—k,let Y, ..., Y%~ N(M, g) be i.i.d. normal fields
independent of X and let Y := (Y, ... Y9): M-3R We write Z := X *(0) and
Y=Y 1(0) and we let F':= (X,Y): M—sR™.

6.2.1. Intersection with a normal field

By Theorem C, F'is 2-KROK. By integrating first with respect to Y, using the
independence of X and Y, we deduce the following identity from Proposition 6.1:

(6.5) E/Z&(X,p):sz{ 3 a(X,p)}z...

peEXNZ

Now, we apply Proposition 6.1 with a(F,p) := a(X,p) depending only on the first
factor and (6.5) becomes

(6:6) =3 )M p)

It remains only to show that % 0% = 0%.

6.2.2. The constant doesn’t matter

Once again, we don’t need to keep track of the constants as long as they depend
only on k£ and m. Indeed, we can argue as in the proof of Lemma 6.5 and observe
that if the identity

(6.7 E [ a(X.p) = clm.k) [ 65(p)dM(p)

holds under the hypotheses of Theorem 6.2, then we can check the constant in the
case when M = 8™, o =1and X = (X!, ..., X%) is such that X%(p) = (;,p) for
a family of k i.i.d. standard Gaussian vectors v; ~ N(0, 1,,41). Such random field
is invariant under orthogonal transformations, therefore % is a constant, hence we
can compute it at p = ey the first vector of the canonical basis of R™*!. Since, in
this case, Z is almost surely a unit sphere of dimension d, we obtain the identity

sq = c(m, k)s,dx(eo) = c(m, k)s,,E {‘Jo (71 e %)‘ ;

T O} (27r)§

Y

from which we deduce, using Lemma 6.6 below, that

c(m, k)" = Z’ZE{II& A A&}

(2m)s
where &, ..., & ~ N(0, 1,,) are i.i.d.
LEMMA 6.6. — Let &, ..., & €ER™ be i.id. standard Gaussian vectors. We have:
m!b,, k Sm—k
Ell&gA--- A& = = (2m)>2
& e Ty T L
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Proof. — We will prove the lemma using zonoid calculus, as discussed in Section 3.

1
First, by Example 3.7, we have that E§; = (2r)"2B™ foralli =1, ..., m. It follows
then from Definition 3.9 that

_k m
(6.8) B A A&l = (2m) 2 ((B™"™) = ...

Observe that B™ is a Grassmannian zonoid, hence, by using first Lemma 3.27 and
then Proposition 3.17, (6.8) becomes

=021 —— A ((B™M") = 27) 2 ————mlb,,
o) g (B = en)
which gives the first equality we wanted. The second follows from the identity
d'bd = (27’(’)de. O

Remark 6.7. — Proposition 3.17 implies that in the setting of Lemma 6.6 above
we have

(6.9) Ell&i A= A& = (27) 2KV (B™).

6.2.3. Computing the density

In virtue of the identities (6.5) and (6.6), to prove the identity (6.7), it is sufficient

to show that
0p(p) = c(m, k)o% (p),

for some constant ¢(m, k) depending only on m and k. (Since we already showed
that the constant doesn’t matter, we will keep calling it with the same letter c(m, k)
even though its value changes from line to line.) Since X and Y are independent, we
have that pr@)(0) = pxp)(0)py ) (0) = c(m, k)px () (0). Moreover, observe that d,Y
and Y (p) are independent. Therefore

(6.10) 0%(p) = E{a(X,p)J,F | F(p) = 0} pr(y)(0)
= c(m, )E{a(X,p) [d, X" A AdpXEAYT A A Y| X (p) = 0}

pX(p)(O) =...
Recall that taking coordinates with respect to an orthonormal basis of T M, we
have that d,Y',... d, Y% become i.i.d. standard Gaussian vectors in R™, so that,

by integrating first with respect to Y and using Lemma 6.8 below, we obtain that
(6.10) becomes

. =c(m, B)Ex {a(X, p)By {[d, X Ao AdXEAdY A A Y}
X(p) = 0} px(0)
= c(m, k)E {a(X,p) [dp X" A+ A dp XE|[| X (0) = 0f ) (0)

= 0% (p)

which is what we wanted.
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LEMMA 6.8. — Let &,...,§4ER™ be iid. standard Gaussian vectors and let
v1,...,v € R™. Then there exists a constant ¢(m, k) > 0 s.t.

Ellog A--- Ao A& A - ANl = e(my k)||or A=+ Ao

Proof. — Let eq,...,e,, be an orthonormal basis. We can assume that vy, ..., v
belong to the space generated by eq,...,er. Let us denote by 7: R™ — R™, the
orthogonal projection onto the space spanned by exy1,...,e,. Then

Eflog Ao Avpg AG A A&l = Ellor A Avg Am(§) A= A(Ea)|
= flos Ao Al Bl (&) A Am(Ea)ll -

This concludes the proof of the lemma, because 7(¢;) are now independent standard
Gaussian vectors in a space of dimension m — k. O

7. Main results
7.1. The density of expected volume

Taking a = 1 in Theorem 6.2, we obtain the formula for the expected volume of a
random submanifold Z = X ~1(0). In this case, abusing notation, we write

0z(p) = dx(p) = ox (p),
where 8% (p) is defined by (6.3), with o = 1.

THEOREM 7.1 (Expected volume). — Let k < m € N. Let (M, g) be a Riemann-
ian manifold of dimension m. Let X: M—<R* be a zzKROK random field and
define the random submanifold Z := X~*(0). Let A C M be a Borel subset. Then

(7.1) dz(p) = £ (Cx(p))
and thus
E {voly(Z N A)} = [ ¢(Cx(p) dM(p).

Proof. — By Theorem 6.2, we have that
02(p) = B {[[dp X" A+ A dp XH| [X () = 0} ) (0)

is the density of the measure A — E{vol;(ZNA)}. By definition of the zonoid section
(Definition 5.1) and by (3.3), this is precisely equal to ¢({x(p)), which is what we

wanted. 0
Notice that, since J,X = ||d, X' A---Ad,X*]||, (7.1) is the first of the two identities
in (1.4).

We introduce the following notion of transversality.
DEFINITION 7.2. — We say that a set of z-KROK fields X, ..., X} is multi-

transverse if, for any Iy, ..., l; € N, given independent fields X, withi € {1, ..., k}
and j € {1, ..., ;}, such that X;; ~ X;, we have that the field
(7.2) (Xat, ooy Xy ooy Xpety ooy Xiay)

satisfies z-KROK (2) (hence is z-KROK by Theorem C). in particular, a field X is
multi-transverse if the set formed by only X; = X itself is multi-transverse.
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Let us use the convention that vol, (@) := 0 for all n € Z and vol,,(Z) = +oo
if Z # () and n < 0. Using the expression for independent intersection described
in Theorem C we find the following.

COROLLARY 7.3. — Let X; ECY(M,R™), ..., X, € CY(M,R*") be independent
multi-transverse z-KROK fields, write k := ky + -+ + k, and let Z; := (X;)71(0),
t=1, ..., n. Then we have, for all p € M,

(7.3) 6z nnz,(P) = UCx, (P) A - A Cx, (D))

In other words, for all U C M measurable we have

(74)  Evolp s (ZiN---NZy,NU) = /U U (D) Ao A G ()M (p)

In the case where k; =1 for alli =1, ..., n and were n = m = dim M, we have
(75)  E#(ZN-NZu0U) =m! [ MV(Ce (). .- G, (p)dM(p)

where MV denotes the mixed volume, see § 3.5. In the case in which k; = 1 for all
t =1, ..., n and all the fields are identically distributed, we have

(7.6) Evoly, n (Zi0 N ZyNU) = n! /U VoG, (p))dM (p),

where we recall that V, denotes the n'* intrinsic volume defined in (3.9); if, in
addition, n = m = dim M, then

(7.7) E# (Z10-+ 1 Zy NU) = m! [ Vol (G (p))dM (p)

Proof. — As we mentioned above, (7.4) follows by combining Theorem 7.1 with
Theorem C. In the case where k; = 1 forall+ =1,...,n, and where n = m = dim M,
we have k = n, so that by Proposition 3.16, (7.4) specializes to (7.5). If all the fields
are identically distributed and scalar: k; = --- = k,, = 1, then their zonoid sections
coincide and thus (7.4) becomes (7.6) by Proposition 3.17. Finally, if n = m we
obtain (7.7) as a special case of either (7.5) or (7.6). O

7.2. Alexandrov—Fenchel and Brunn—Minkowski inequalities for random
submanifolds

Applying the inequalities (AF) and (BM) (Proposition 3.19 and 3.20) we obtain
lower bounds for the densities.

THEOREM D (KRAF). — Let Yy, ..., Yo, X1, X!, Xo, X, €C (M, R) be inde-
pendent multi-transverse z-KROK fields, such that X] ~ X; and X} ~ Xs. Let
3:=)0)N...N (Y2)"0), Z; :== (X;)71(0) and Z! := (X!)~*(0). Then we
have for all p € M

02,n2.03(P) = \/5zngm3(p) 02,0 2,n3(D)-
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Remark 7.4. — Note that Theorem D is an inequality on the densities and not
directly on the number of points of intersection. In fact, by Holder’s inequality, we
have that

VE# (LN Z) B (210 2) > | \fomnzas®) - zmnznsp).

THEOREM E (KRBM). — Let Xy, X; € C'(M,R) be multi-transverse z-KROK
fields, let e €{0,1} be a Bernoulli of parameter 0 < t < 1 independents of Xy, X7,
i.e. ¢ = 0 with probability (1 —t)and 1 with probability t. Let X; := (1 —¢;) Xo +€X3
be z-KROK'") . Finally, let Zy), ..., Z% be ii.d. copies of (X;)71(0), i =0,1,t. We
have for allp € M :

(1—t) t
5Z§t)m.--mszl) (p) > <5Z{O>m---mzﬁ,?) (p)) <§Z{1>m--~mzﬁj) (p)) :

7.3. The expected current

Assume that M is oriented. Then a z-KROK field X : M —<—R* defines a random
(m — k)-current, by integration over the random (co-oriented and thus oriented,
see Definition 7.5) submanifold Z = X ~1(0):

/ L QmP(M) 5 R

z

where recall that Q™% (M) is the space of smooth differential forms of degree m —k
with compact support.

DEFINITION 7.5. — The orientation of Z = X ~(0) is defined by declaring that
if X\ € A"7FTxM is such that AN dp X' A --- Adp X" >0, then Xz > 0.

In this subsection, we will prove that the expectation of this random current is the
current represented by the continuous k-form ex € T'(A¥T*M) C Q™ *(M)*, which
is the nigiro (see Definition 3.3) of the zonoid section:

ex(p) =E {del A AdpXE ’ X(p) = 0} Px(p)(0) = e(Cx).
PROPOSITION 7.6. — ey is a continuous k-form: ex € T'(AFT*M).

Proof. — Given a zonoid ( in a fixed vector space V| its nigiro e(() can be expressed
as

" he(vi) = he(—vi)
€<C) :Z C( z) 5 C( Z)Uz7
i=1
where vy, ..., vy, is a basis of V and v', ..., v™ is the dual basis. Indeed, one
can check that this formula is true for segments and is linear and continuous in
h¢. Hence, e(¢) depends continuously on the support function h¢. Thus, the thesis

follows from Proposition 5.2. 0

() For instance, this is true if the condition (%) of Proposition 5.3 holds.
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THEOREM 7.7 (Expected current). — Let k < m € N. Let (M, g) be an oriented
Riemannian manifold of dimension m. Let X : M—<=R* be a zzKROK random field
and consider the random submanifold Z := X~(0), oriented according to Defini-
tion 7.5. Let w € Q¥ (M). Then, the random variable [,w|, is integrable and

(7.8) E{/Zw|z} :/Mw/\eX.

Proof. — Let d = m — k. Let us define a: C'(M,R¥) x M — R as follows: if
f(p) # 0 or if p is a critical point of f, then a(f,p) = 0; otherwise we set

(7.9) alf,p) == (w(p),e1 A -+ Neg),

where ey, ..., eq is a positive orthonormal basis of T,(f~'(0)) = kerd, f. Let Q) be
the positive volume m-form of M, so that [,, h{2y = [, hdM, for any integrable
function h: M — R. An equivalent expression defining « is:

(7.10) alf,p) Lo fQu(p) = wp) Adpft A Adyf*.
We conclude by applying Theorem 6.2 as follows.

E{/Zw|z}=E{/Za(X,p)dZ(p)}
_ /M E{a(X,p)JpX | X(p) = 0} px(») (0)2s(p)

= | E{wndX! A ndXE[ X () = 0} px(0)

:/ wAex.
M

Therefore, both sides of Equation (7.8) take the same value in RU{+00, —00, co—00}.
Since the right hand side is the integral of a compactly supported continuous m-form
by Proposition 7.6, we conclude that both sides are in R and thus that the random
variable [, w|z is integrable. O

Together, Theorem 7.1 and Theorem 7.7 form the statement of Theorem A, whose
proof is thus now complete.

7.4. What does the Zonoid section know?

We have seen two cases of the Alpha formula (Theorem 6.2) where the density 6%
was a function of the zonoid section (x.
We can ask what are the conditions on the function « for this to be the case.

PROPOSITION 7.8. — Let a : C*(M,RF) x M — R be a measurable function
that is given for every (f,p) € CY(M,R*) x M by 0 if J,p = 0 and else by:

(711)  a(fp) = (L) T (dpf ' Ae - AdpfS) + (Lo f) T F (dpf A - AdyfY)

where T : A*T*M — R is linear on the fibers and F : A*T*M — R is positively
homogeneous on the fibers. Then for every z-KROK field X € C*(M,R*) and every
p € M, the density 6% (p) is a function of the zonoid (x(p).
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Proof. — Let X € C*(M,R¥) be 2-KROK and let p € M. By definition, see (6.3),
the density is given by

5%(p) = pxp(O) E [T (d, X A+ AdyXF) [ X(p) = 0]
+px(O)E [F (d, X" A+ AdXF) | X (p) = 0]

The first summand gives

(7.12) px(0)E [T (dp X" A - mLWﬂX@> 0]
( x(p) (0)E [d XA ’/\dek‘X(p)ZOD
—T(€X(p)

)-
For the second term, if we call Y := px,)(0)(d, X" AN d,X*| X (p) = 0) then we
have tautologically

pxip (OB [F (X" A+ AdyX*) [ X(p) = 0] = E[F(Y)]
But since F' is positively homogeneous, by Proposition 3.8, this does not depend

on the random vector Y but this is a function of the zonoid EY = (x(p) which is

the centered version of (x(p) (see Definition 3.3) and this concludes the proof of
Proposition 7.8. 0

Remark 7.9. — In particular, the above proof shows that if F' = 0, then 0% =
T(e(Cx)), while if T'= 0, then * depends on (x(p) only up to translations, i.e., on
Cx(p) (see Definition 3.3).

In the case of the density of expected volume (Theorem 7.1) we have that 7' = 0
and F' = || - || is the norm (given by the Riemannian structure).

In the case of the expected current (Theorem 7.7) we see from (7.10) that « is
given pointwise by a linear function evaluated on (J,f)~*(d,f* A -+ A d,f*). Since
Jof = ldpft Ao Ad,f*]|, the latter is a unit simple vector. Let us consider the
bundle G (k,T*M) — M whose fiber over p € M is the Grassmannian of oriented
k-dimensional vector subspaces of Ty M. The set of unit simple vector in AFT*M is
identified with G (k, T*M) via the Pliicker embedding:

M Gy (b, M) S {or A Avg € ATEM | flog A Ayl = 1}
V1N AU
lor A= A
where [v; A - -+ A vg] denotes the orientation of V' induced by the basis vy A -+ A vg.
We recall that, by Lemma 3.23(iii), we have that a centered Grassmannian zonoid
K in AkT;M is associated, via a one to one correspondence, with a positive measure
pr on G(k,T,M), given by (3.4).

Let us call linear those functions 07 : G (k,T*M) — R such that if vy, ..., vy is
an orthonormal basis of V' C T>M then

Or(Vi[oy Ao Awg]) =T (vg A=+ A wg)

for some linear function 7" : A¥T*M — R. Then, we can rewrite Proposition 7.8 in
the following way.

(V,[vl/\-~~/\vk])r—>
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PROPOSITION 7.10. — Let 07 : G (k,T*M) — R be a linear function and let F' :
G(k,TM) — R be measurable. Then for every z-KROK random field X : M — R¥,
we have

(7.13) IE{ /Z br (N2, [4,X7, ..., &, X*]) + F (N, 2) dz}

= [ (Telc) +d¥) dum,

where 67 : M — R is a function whose value at any p € M depends only on F and
on K := (x(p), and is given by

714 5F (p) = / Fdug.
( ) () (kT M) UK

Proof. — The only thing that does not directly derive from Proposition 7.8 is the
formula (7.14) for 6*. By Theorem 6.2, 6 is given by

67(p) = pxp (O E[F (d, X A= A, X") | X (p) = 0],

where we still denote by F' the even and homogeneous extension to the cone of simple
vectors in A*¥T'M. (7.14) now follows from (3.10). O

7.4.1. The zonoid section as a varifold

Let I'(Z5(A*T*M)) denote the subspace of the space of zonoid sections I'(Z°(A*T™*
M)), as defined in § 3.7, consisting of centered ones. For instance, the centered
zonoid section (x of a 2-KROK field X € C'(M,R¥) is an element of I'(ZH(A*T™M)).

Let ¢ € T(Z(A*T*M)). Following the discussion preceding Proposition 7.10,
for every p € M, the centered zonoid ((p) has an associated measure i) on
the Grassmannian G(k, T, M), which we identify with G/(m — k,T,M). Recall that
hg: A¥T,M — R denotes the support function of the zonoid K C AkT;M, in
particular, hjg y,a-ae] (2) = [{z, 01 A+ Avg)|, for vy, ..., v, € T,M and x € A*T,M.
Because of Lemma 3.23 (iii), the measure pic(,) is defined as the unique measure on
G(m — k,T,M) such that:

h - / R0 o ()t (V
¢ () Clmnzay 1OTAA (@) dpcp) (V)
= A Aoy Az||d V), forall x € A*T,M,
Loy 101 A= Ao A ldiac(V), - for all 2 € AT,
where for any V', we have chosen an orthonormal basis vy, ..., v, of T,M such that
V1, ..., U is a basis of V. Let d = m — k. We can put together such family of

measures, to define a d-varifold on M, that is, a positive measure on the total space

of the Grassmann bundle G(d, T'M), see [All72].

DEFINITION 7.11. — Let ¢ € ['(Z5(A*T*M)) and let d = m — k. We define the
d-varifold V; as the positive measure on G(d, T'M) such that

(7.15) VelA) = [ e (AN G (d.T,00)) dM (p).
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Notice that the underlying measure on M, usually denoted ||V¢|| in varifold theory
(see [All72]), is absolutely continuous with density ¢((), see Proposition 3.12. And
that, since ( is continuous, V; is always a Radon measure.

LEMMA 7.12. — The function ¢ — V, defined for all ¢ € T'(Z(A*T*M)), is
injective.

Proof. — (7.15) determines jic(,), and thus ((p), for almost every p € M; by the
continuity of the latter, this determines (. O

There exists another natural way of constructing a d-varifold. Let Z C M be C!
submanifold of dimension d, then TZ C G(d,TM) is a subset of the Grassmann
bundle®)

DEFINITION 7.13. — Let Z C M be C' submanifold of dimension d. We define
the d-varifold V; as the positive measure on G(d,T M), supported on T'Z, such that

Vy(A) = /M 14(T,2)dM (p).

The reason why we talk about varifolds is that they are the proper language to
understand Theorem E and also the title of the paper. Indeed, we have the following
theorem.

THEOREM F. — Let X € CY(M,R*) be a zKROK random field, and let d = m—k
be the dimension of the random submanifold Z := X ~*(0). Then

EVz = Ve,

Proof. — Let F': G(d,TM) = G(k,TM) — R be a bounded continuous function.
Then Proposition 7.10 yields the thesis as follows:

E(VAF)} =E{ [ FT2)aM()}
= | 8 )ant(p)

= Fd dM =V (F ]
/M /G(d,TpM) He)dM (p) <(F)

7.4.2. The zonoid section does not know the random field

The previous observations, combined with Proposition 7.10, yields that the zonoid
section depends only on the law of the zero set X ~1(0). In more technical terms, we
have the following.

PROPOSITION 7.14. — Let X1, X5 €ECY(M,R*) be z-KROK random fields and let
Z; = X;(0), fori = 1,2. Assume that

®)If Z is of class C2, then TZ C G(d,TM) is a C* submanifold of dimension d.
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for any family W of submanifolds of M such that the set {f € Q: f~1(0) € W} is
Borel in C*(M,R¥), where Q C C'(M,R¥) is the subset of functions for which 0 is a
regular value® . Then Cxy = Cxp-

Proof. — Since X; and X, satisfy z-KROK (2), we consider them as rand?m
elements of . For a family W of submanifolds of M, we write Ay = {f € Q :
f710) € W} C Q. Let A be the o-algebra on Q consisting of all Borel subsets
of the form Ay . By definition, A is contained in the Borel o-algebra of ) and a
Borel function is measurable for A if and only if it depends only on the zero set. In
particular, for any F': G(k,TM) — R measurable, the function Ir : f = [;-1) F
is measurable with respect to A.

Let us now consider the probability measure Py, respectively Py, on the measurable
space (€2, .A) obtained by restricting the laws of X7, respectively X5, to the o-algebra
A, respectively. By hypothesis we have that P; = P,. Therefore

(7.17) E{lp(X1)} =Ei{Ir} =E2 {Ir} = E{Ir(X2)}.

where E; denotes the integral with respect to the measure P;, for ¢ = 1,2. Propo-
sition 7.10 implies that if (7.17) holds for every F, then uyx, = px, and hence
Cx, (p) = Cx,(p), which is what we wanted. O

The nigiro e((x) of the zonoid section does not depend only on the law of the
random submanifold Z = X (0), but also on the orientation of its normal bundle
NZ induced by the isomorphism given by d,X : N,Z — R for all p € Z.

A pair (Z,0), where Z is a submanifold (of M) and o is an orientation of NZ
is called a cooriented submanifold (of M). By considering also the case F' = 0
in Proposition 7.10 and reasoning as in the proof of Proposition 7.14 above, we get
the following.

PROPOSITION 7.15. — Let X1, X5 €ECY(M,R*) be z-KROK random fields and let
Z; = X;Y(0), for i = 1,2. Let us denote by ox, the orientation of NZ; induced by
dX;, forv=1,2. Assume that

(7.18) P{(Zy,0x,) € W} =P{(Zs,0x,) € W}

for any family W of cooriented submanifolds of M such that the set {f € Q :
(f740),07) € W} is Borel in CY(M,R¥). Then (x, = (x,-

8. Vector bundles

The results of the previous section can be extended to the setting of random
sections of vector bundles.

DEFINITION 8.1. — Let m: E — M be a smooth vector bundles of rank k and
let X €CY(M|E) be a random section. We say that X is locally 2-KROK if for every
point p € M there is an open set p € U C M and a trivialization E|y = U x R*
such that the local random field X |y € CY(U,R¥) is z-KROK.

OV If M is compact, 2 is open. In general, it can be expressed as a countable intersection of open
and dense sets, thus it is always a Borel set, see [Hir76].
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We denote the zero section of the vector bundle £ — M by 05, C E. By apply-
ing Theorem 6.2 locally we get the following.

THEOREM 8.2 (Alpha Formula for vector bundles). — Let k < m € N. Let (M, g)
be a Riemannian manifold of dimension m. Let E — M be a C! real vector bundle of
rank k, endowed with a metric. Let V be any connection on E. Let X : M- FE be a
locally z-KROK random section and define the random submanifold Z := X~1(0y).
Let a: CY(M|E) x M — R be a Borel measurable function. Then

(8.) E{ [ a(Xpdz)} = [ o).
Where

52) 550) = E{ax0)| T3 | X0) =0} i 0,

and where both sides of (8.1) and 0% (p) take values in R U {400, —00, 00 — c0}.

Remark 8.3. — The value of (VX), at a point p such that X(p) = 0 doesn’t
depend on the choice of the connection (see also Lemma 4.5). It is a linear map
(VX),: T,M — E, between two Euclidean spaces, thus it has a well defined Jacobian
determinant J(VX), =: J,X, which we wrote in a more fancy way, using the
language of double forms, for which we refer to [AT07]. This language defines the
linear map (VX) : AMT,M — A*E, =: det E,, such that

p

(VX)/\k

(8.3) Vi A A = EIVX (o) Ao A VX (0g),

where the codomain can be identified as A*E, = e; A -+ A exR, for an orthonormal

basis ey, ..., e of E,. We interpret (VX);’“ as an element of AkT;M® det E. Thus,

choosing vy, ..., vy to be a orthonormal basis of (ker(VX),)" we have the equality:
(VX)/\k

(8.4) | = det (VX),p(v1), €)1 <i| = S X

Remark 8.4. — The function px(,): E, — [0,400) is the density of [X(p)] with
respect to the Euclidean metric on the fiber £,. This term depends on the choice of
the metric as well as the Jacobian of X (see (8.4)), but the product of the two does
not, so that 0% is independent on the choice of a metric on F.

Definition 5.1 can be extended to define the zonoid section in this setting.

DEFINITION 8.5. — Let k < m € N. Let (M, g) be a Riemannian manifold of
dimension m. Let E — M be a C! real vector bundle of rank k, endowed with a
metric. Let X €CY(M|E) be locally z-KRoK. The associated zonoid section (x €
[(Z(A*T*M @ det E)) is defined for every p € M by

et = B{ 0. S |x09 = o} 0.

We recall that an orientation of E corresponds to a trivialization of det E. In
general, the support function of (x is a continuous function h¢, : AFTM ®det E* — R
and the nigiro ex = e((y) is a continuous section of A¥T*M ® det E. Moreover, we
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compute the length ¢({x) and the other intrinsic volumes of (x in terms of the metric
on A¥T*M ® det E induced by the Riemannian metric and the metric on £, hence
they define continuous functions on M.

By applying locally the results of § 7 we extend them to the setting of vector
bundles. In particular, Proposition 5.2, Theorem B, Theorem C, Theorem 7.1, Propo-
sition 7.6, Theorem 7.7 hold with the obvious modifications of the statements.

THEOREM 8.6. — Let k < m € N. Let (M,g) be a Riemannian manifold of
dimension m. Let E — M be a C' real vector bundle of rank k, endowed with
a metric h. Let X: M= FE be a locally zzKROK random section and define the
random submanifold Z := X ~*(0y).

(1) (Pull-back property) Let ¢: S — M be a C' map such that ¢ i Z almost
surely. Then X o ¢ is a locally zzKROK random section of the pull-back
bundle p*E — S and

Cxop(P) = (dp” ® idaes 1) Cx (P)-

(2) If X1, X5 are independent locally z-KROK random sections of two vector
bundles E:, E5 over M, then Z1 N Zy is the zero set of X1 ®Xy: M3 FE; @ E»,
and there is a canonical identification det(E; @& E,) = det By ® det Ey. If
X1 ® Xo M 0y almost surely, then X, @ X, is zzKROK and

CX1EBX2 = <X1 A <X27
where this wedge operation is meant as a bilinear map AMT*M ® det E; x
AR T* M @ det By — AM+RT* M @ det By ® det E.
(3) For any Borel A C M Borel set, we have

E{vol,,_(Z N A)} = /A 0(Cx)dM.

(4) If E and M are oriented, then we identify det E = R and Z is oriented
according to Definition 7.5, then we have the equality of currents:

E/ :/ Nex € QIR (M),
Z M

THEOREM 8.7. — Under the hypotheses of Theorem 8.6 and assuming that E
and M are oriented, if moreover ex is smooth, then it is closed and the class [ex] €
HEY (M) is the (De Rham) Euler class of the vector bundle E.

Proof. — Observe that d [, = 0 in the sense of currents, that is, [, w = 0 for every
w closed. By linearity, the same holds for the current E [,. If ex is smooth, point (4)
above implies that then dex = 0. Let € Q¥(M) be a De Rham representative of
the Euler class of E. It is proved in [BT82, Chapter 12] that if w is a closed form,
then [,w|z = [i;w An holds for all X @ 0,,. By taking the expectation on both
sides and using point (4) we obtain the identity:

QUl i) = [ wAn=[ wnex=Qullex)), ¥l e HERY()

where @) denotes the (De Rham) intersection form of M. Since the latter is nonde-
generate by Poincaré duality (see [BT82, Chapter 3]) it follows that [n] = [ex]. O
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The latter statement can be expressed in a more general form using the language
of twisted forms. Given a real line bundle L — M, a i-form with values in L is a
section of A'T*M ® L — M and the space of such objects is denoted as Q'(M, L).
When L is the orientation bundle of the manifold, that we will denote as L, the
elements of Q™(M, L)) are called densities and there is a canonical integration
operator [y,: QI (M, Ly) — R, see [BT82, Chapter 7] or [Ste22, Appendix A].
Given e € QF(M,det E) and w € QU"® (M, Ly; ® det E*), their product w A e can
be canonically identified as a density, since Ly; @ det E* @ det E2 = L, and therefore
the number [;, w A e is well defined, regardless of orientability.

On the other hand, once the vector bundle E is endowed with a metric, if X d 0/
then the orientation line bundle Lz of the submanifold Z = X~!(0,/) is isomorphic
to Ly = Ly ® det E|z (the isomorphism depends on the euclidean structure of
det E). Therefore, given w € QMm=F (M, L), ® det E*), its restriction w|; can be seen
as a density on Z and thus the integral [, w|z is well defined.

COROLLARY 8.8. — Let k <m € N. Let M be a smooth manifold of dimension
m. Let E — M be a smooth real vector bundle of rank k, endowed with a metric. Let
X: M- FE bea locally z-KROK random section and define the random submanifold
7 = X"Y0y). Let w € Q0 (M, Ly; ® det E*). Then

o{ s = e

Remark 8.9. — The language of twisted forms allows to define a twisted version of
De Rham cohomology, see [BT82]. In this sense, it is easy to see that again we have
that dex = 0 and [ex] € HY3(M, det E) is the Euler class of the vector bundle E.

9. Crofton formula in Finsler manifolds

A Finsler structure on a manifold M is the choice of a norm F}, on each tangent
space T, M that depends continuously on the point p € M. This gives a well defined
notion of length of curves. Indeed, given « : [0, 1] — M a smooth curve, one defines

(0.1 )= [ FoGo).

The choice of a full dimensional convex body in each cotangent space induces
a norm in the tangent space. Indeed, if ((p) C T, M is a symmetric convex body
containing the origin in its interior, then the support function hew) @ T,M — R
defines a norm. In our case, the (centered) zonoid section of a 2-KROK scalar field
is not always full dimensional and defines only a semi norm.

DEFINITION 9.1. — We call a semi Finsler structure on M, the choice of a semi
norm F,, : T,M — R for each p € M depending continuously on p. Equivalently, this
is the choice of a continuous section p + ((p) C T,y M of centrally symmetric convex
bodies containing the origin.

Remark 9.2. — A centrally symmetric convex body ((p) C T;M is contained
in a hyperplane v* with v € T,M if and only if h¢wy(v) = 0. For the semi Finsler
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structure, it means that traveling from p along the direction v is free and curves that
pass at p tangent to v have locally length zero.

The zonoid section associated to a z-KROK scalar field (see Definition 5.1) provides
then a semi Finsler structure.

DEFINITION 9.3. — Let X € C'(M,R) be a z-KROK field. We denote by F*X
the semi Finsler structure induced by (x(-), where recall that (x(-) is the centered
zonoid of (x(+), i.e., for all p € M and all v € T,M

p

Px(p)(0)
(9.2) FY (o) = 2028 {10,X )] [X () = 0}
Our previous results interpret in this context as follows.

PROPOSITION 9.4 (Crofton formula for curves). — Let X € C'(M,R) be z-KROK
and let Z := X~ 1(0). Let v : [0,1] — M be a smooth curve such that v M Z almost
surely. Then

(9:3) E#(yN Z) =207 ().

Proof. — Consider the random field X o : [0,1] — R and apply the pull-back
property Theorem B. By (5.1), we have

(9.4) Pexar(O8) = ey (3 (7(2))

Since (xo(t) lives in a space of dimension 1 (formally the tangent to [0, 1]), its length
is given by

U(Cxoy (1) = hexo,(O0) + gy, 1y (=)
= P (v (V) + hex (ven (=7(2))
= 2hey () (F(1) = 2FX(7( ))-
Applying Theorem 7.1, we obtain

BA#(X 07) 7 0) = [ €(Cxer(t) de =2 [ FXGi(0))

We recognize on the right 205 (7). To conclude, note that (X o~)~1(0) = v *(yN Z)
and thus #(X ov)71(0) = #(yN 2). O

Formulas of the type of (9.3) are called Crofton formula from the original Crofton
formula with curves on the sphere and random hyperplanes.

Constructions of Finsler structures that admit a Crofton formula are known for
random hyperplanes in projective space, see [Ber07, PF08, Sch01]. Moreover, a more
general result very similar to Proposition 9.4 can be found in [APB 10, Theorem Al
although the 2-KROK hypothesis is significantly more general and the construction
of the metric FX explicit with (9.2).

Remark 9.5. — Note that the (semi) Finsler structure satisfying (9.3) is unique.
Indeed, if v € T,M is such that there exists a curve v : [0,1] — M almost
surely transversal to Z, such that v(0) = p and 4(0) = v, then, by (9.1), we
have %EFX (Yljo.q) = F¥(v) as ¢ = 0. Moreover, by Lemma 9.6 below, almost all
(p,v) € TM admit such a curve.
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Let (M, g) be a Riemannian manifold. For any (p,v) € TM, let r(p) € (0,+00)
denote the injective radius of p and let v,,: (—e(p,v),e(p,v)) — M be the curve
defined as

Yo (t) 1= expp(tv), V|t < e(p,v) = w

LEMMA 9.6. — Let X €EC'(M,R) be zzKROK and Z = X~'(0). Then for almost
every (p,v) € TM we have that P{v,, m Z} = 1.

Proof. — In fact, we are only going to use the assumption that 0 is a regular value
of X almost surely. Consider the open set U C T'M x R of triples (p,v,t) such that
|t| < e(p,v). By construction U is an open set and the function

¢:U — M, ¢(p,v,t) =p.(t)

is a smooth submersion, since the exponential map exp, is a local diffeomorphism
on the ball {v € T,M: |[v|| <r(p)}. Then, ¢ M S for any C" hypersurface S C M,
so that, by the parametric transversality theorem [Hir76, Theorem 2.7], we have that
Yo M S for almost every (p,v) € TM. The theorem can be applied whenever

r > max {0,dimR — (dim M — dim S)} = 0,
thus, in particular, for S = Z of class C!, as in the hypotheses. Therefore, we have
(9.5) P{fy(p,v) M Z for a.e. (p,v) € TM} =1.
Let us consider the set:
A= {((p,v),f) €TM x CY(M,R): v,, # f_l(O)}.

We need to show that P{((p,v), X) € A} = 0 for almost every (p,v) € TM. By
Tonelli’s theorem, since A is measurable, this is equivalent to show that A has measure
zero and this can be proven by sectioning in the opposite way (i.e., exchanging
the order of integration). For each f € C'(M,R) such that f m {0}, we have
by Equation (9.5) that Ay := {(p,v) € TM|((p,v), f) € A} has measure zero for
[X]-almost every f, hence A; has measure zero, which by Tonelli implies that A has
measure zero. U

Unlike for the length, there are several definitions of volume in Finsler manifolds.
One way to define k-dimensional volumes of submanifolds is to define a k-density,
that is, a nonnegative homogeneous function ¢y, on the simple vectors of A¥T'M. The
k-densities satisfy a pull-back property and thus, given an embedded submanifold
L:S — M, " defines a density (in the classical sense) and can be integrated. The
k-volume of S is then defined to be

vol,, (S) ::/Sb*gok..

See [APT04] for the possible choices of k-densities and more details. One of the most
common choices is the Holmes-Thompson density. To define it, it is convenient for
us to fix a Riemannian metric on our manifold M.
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DEFINITION 9.7. — Let F' be a semi Finsler structure on M and let ((p) C T, M
be the convex body such that F, = h¢(,). The k" Holmes-Thompson density ¢H7T is
given for all p € M, and all simple vectors v = vy A --+ A vy € A¥T,M

(S IANCERIAN /8
A0 A ) = I o )
where || - || is the norm on AT, M induced by the Riemannian structure, m, is the
orthogonal projection onto Span(vy, ..., vy) (identifying the space and its dual) and

vol, is the k-dimensional volume in the Riemannian structure in T, M.

The reader can refer to [APTO04, p. 19]. One can also show that this definition
doesn’t depend on the choice of the Riemannian metric, however, in our case, this
becomes clear with the next lemma.

LEMMA 9.8. — Let F' be a semi Finsler structure on M such that for each p € M,
there is a zonoid ((p) € Zo(T; M) such that I, = h¢(,). Then, the Holmes—Thompson
density is given by

or _ 2

P ]C'bk hc(p)/\k.

Proof. — This is a consequence of the definition and Lemma 3.18. O

Now with a proof very similar to the proof of Proposition 9.4 we obtain a Crofton
formula for higher dimensional volumes.

THEOREM 9.9 (Crofton formula). — Let 1 <k < m, let Xy, ..., X3 €C'(M,R)
be i.i.d. multi-transverse z-KROK fields and let Z® := (X;)7*(0) N --- N (X3)~1(0).
Let v : S < M be an embedded submanifold of dimension k such that S & Z®*)
almost surely, then we have

E# (S 1 2®) = kb volf ™ (S)

where vol; ' denotes the Holmes—Thompson volume for the semi Finsler structure
defined by Equation (9.2).

Proof. — The proof is almost identical to the proof of Proposition 9.4 but let us
repeat it, if only to compute the constant. Let X® := (X, ..., X;)EC*(M,R¥)
and consider X o 1€ C'(S,R¥). Since S is almost surely transversal to Z*) =
(X*))=1(0), by the pull-back property (Theorem B) it is 2-KROK and we have for
allg e S

Cxwa(9) = dgt" G0 (1(9)) = gt ((Cx, (@)™ = (dgt"Cx, ((@))™

where the second equality holds because X*) := (X, ..., X;) and X1, ..., X} are
i.i.d. and the third equality is by definition of the linear maps induced in the exterior
algebra. We fix a Riemannian structure on S such that ¢ is a Riemannian embedding
and we let w, € A*T%S be the choice of a volume form (if S is not orientable we can
work locally). Now we note that ()., (q) lives in the one dimensional space A*T,S
thus its length is given by:
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C(Cxma () = Py (@(Wa) +he_o (0)(—wg)
= he_ g i) (Aat(@g)) + he o e (dgt(—wy))
= 20¢ 1) (a)) (dgt(wy))
= 2hey (ot (dge(wy)) = klbgey™ (dge(wy)).

Where here ¢f/T denotes the Holmes Thompson density for the semi Finsler structure
defined by (x,. To conclude, we note that #(X® o1)71(0) = #(S N Z*)) and thus

applying Corollary 7.3 to the z-KROK field (X® o 1) we get
E# (SN Xx®W) = /S ((Cxwal9)) dS(q) = Kby /S i (dgulwy) ) dS(g)

which is what we wanted. U
If we consider the submanifold S in Theorem 9.9 to be again random, given by

2-KROK fields, we obtain the following funny formula.

COROLLARY 9.10. — Let Xy, ..., Xi, Y1, ..., Y €ECY(M,R) be independent
multi-transverse z-KROK fields with X, ..., X}, respectively Y1, ..., Y,,_, iden-

tically distributed. Consider ch) = (Xl)’l(O) N---N (Xk-)’l(()) and Z}(/m—k) —
(Y1)"H0)N--- N (Y,—x)*(0). Then we have

B [volf™ (20" ™)] = (m — k)b 4 [volfy” (21)]

where Volf X, respectively Volﬁik, denotes the Holmes-Thompson volume for the
semi Finsler structure defined by (x,, respectively by (y; .

Proof. — Applying the previous result Theorem 9.9 successively to Xy, ..., X,
fixing Zx(/mfk) and to Y, ..., Y, fixing ng), we get, using the independence as-
sumption, that both sides are equal to E#(Zgﬁ) N Zx(/m_k)). O

10. Examples
10.1. Abundance of 2-KROK fields

The following result shows that z-KROK random fields are dense in the family of
smooth random fields with integrable C! norm.

THEOREM 10.1. — Let Y €CY(M,R¥) be a random field, with ¢ > 1 + max{m —
k, 0319 such that E{J,Y'} is finite and continuous with respect top € M. Let A € R*
be an independent random vector with a continuous nowhere vanishing bounded

density px. Then X :=Y — X\ is z-KROK.
Proof. — Let us show the validity of the z-KROK hypotheses one by one.

(10)This is the minimal regularity required for Sard’s theorem [Sar42] to hold.
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(1) Clearly X €C.

(2) Observe that 0 is a critical value of Y — z if and only if z is a critical value
of Y. By Sard’s theorem, the set of such points has Lebesgue measure zero
and since the law of X is absolutely continuous with respect to Lebesgue, we
obtain 2-KROK (2) by integrating first with respect to A then with respect
to Y.

(3) We can express the density of the random vector X (p) € R* as follows:

pxiw(@) = [ pr(t=2)dY @](t) = E{pr (Y (p) =)}

The latter expectation is taken with respect to the randomness of Y. Notice
that px(,)(z) > 0 for all z € R¥ because py is assumed to have the same
property.

(4) The continuity of px(y) (z) can be shown using the Dominated Convergence
Theorem since p) is uniformly bounded.

(5) Let 1p be the characteristic function of a Borel set B C C*(M,R¥). For any
(p,r) € M x R* we define the probability measure

E{lg(Y —-Y(p) +=x Y(p) —x
Px () ()
To see that u(p,-)(+) is a regular conditional probability (see Subsection 4.1)
for X given X (p), let us take a Borel subset V' C R¥ and compute

P{X € B;X(p) € V}
_ (L, 1607 = 010 (/) — hpa(RH @) ) Y]

Cl(M,Rk)

- ([ 1607 = £0) + D)oa(£ () — 2)aR @) ) dIY(f)

Cl(M,R¥)

= [ B Y () + 202 (V) — )} 20 i

Px(p)()
= [ w2 B ) 0)

Finally, we prove 2-KROK (5) by showing point (2) of Proposition 4.6. Let «
be a bounded and continuous functional on C*(M, R¥) and let (p,, z,) — (p,0)
in M x R¥. Then

E{(/p.Y)a(Y = Y(pa) + zn)pr (Y(pn) — z0)}
pX(pn)(l‘n)
We already proved that the denominator is continuous and never vanishing. The

convergence of the numerator can be proved using the following version of the
Dominated Convergence Theorem, which is a corollary of Fatou’s lemma.

EA{(Jp, X)a(X)| X (pn) = 20} =

LEMMA 10.2. — Let 0 < f, < g, be random variables such that f, — f and
gn — g almost surely. Assume that E{g,} — E{g}, then E{f,} — E{f}.

To conclude, we apply Lemma 10.2 with f, = J, Yo(Y — Y(p,) + z,)pa
(Y(pn) — z,) and ¢, = (J,,Y)C, where C > 0 is a constant such that a(f)pa(x)
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< C for all f and . Here we are using the crucial hypothesis that E{J, Y} —
E{J,Y}. O

Remark 10.3. — If we used the alternative weaker version of z-KROK hypotheses
discussed in Remark 5.5, the requirement that p, is nonvanishing could be dropped.

If X is a random field obtained as in Theorem 10.1, let us say that X is super-z-
KROK. For such fields, the transversality hypothesis in Theorem B and Theorem C
are automatically satisfied, as well as the multi-transversality hypothesis in Theo-
rem D, Theorem E, Theorem 9.9, Corollary 9.10.

COROLLARY 10.4. — Let X; =Y; — A\, X5 := Y5 — Ay be independent random
fields on M, obtained as in Theorem 10.1. Then, (X1, Xs) is super-z-KROK. More-
over, for any S C M smooth submanifold, we have that X;|g is super-z-KROK on S,
for i = 1,2. Furthermore, any set X, ..., X} of independent super-z-KROK fields
is multi-transverse.

Proof. — Apply Theorem 10.1 to the random field Y := (Y7, Y3) and the random
vector A := (A1, A2) to deduce that (X7, X5) is 2-KROK. Apply Theorem 10.1 to the
random field Ys := Y;|s and the random vector \; to deduce that X;|g is 2-KROK.
In both cases, the difference of the dimensions (the number corresponding to m — k)
is smaller than that of the original field, and the regularity ¢ is preserved, thus the
hypotheses of Theorem 10.1 are satisfied. It follows, by induction, that a field X
obtained as in (7.2) of Definition 7.2 is super-z-KROK , whenever the starting set of
fields X1, ..., X} are super-z-KROK , hence we conclude. 0

Example 10.5. — With this example, we show the necessity of the regular-
ity requirement in Theorem 10.1. We only consider the simplest case: m = 2,
n = 1, and show that the theorem is false if ¢ = 1 (the statement requires
q > 2). Whitney [Whi35] showed the existence of a function f: R* — R of class
C! whose gradient vanishes identically on a connected curve K C R? and such that
flx: K — [0,1] is a homeomorphism. As a consequence, any number in [0, 1] is
a critical value of f. Set Y := f a constant random field in C*(R? R). Therefore,
for any absolutely continuous random variable A\, having a non-vanishing bounded
density py, the field X :=Y — X does not satisfy z-KROK (2), in that X @ 0 implies
A ¢ [0,1], which is an event of probability strictly smaller than 1.

Example 10.6. — Using the same function f of Example 10.5, we can justify the
transversality assumption in Theorem B and Theorem C. Starting with the latter,
we construct X; € C!'(R3 R) and X, €C*®°(R3? R), Gaussian and 2-KROK, but such
that (0,0) is not a regular value for Xy := (X7, X3), hence Xj is not a 2-KROK field.
Let 41,72 be two independent normal variables and define

Xi(z,y,2) =2 = flz,y) + 75 Xolz,y,2) = 2+ 72
Theorem 10.1 implies that X5 is z-KROK, but we cannot apply it to X5, since
g =1 < 3. To see that X7 is z-KROK, we can check directly that X; satisfies
2-KROK-2, by observing that dX; = (—df, 1) never vanishes, then argue as in the
proof of Theorem 10.1 for the other four conditions. We have that a point p = (z,y, 2)
is a critical zero of X if and only if p satisfies the following system of equations
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f@,y) =7 — 7,

Z= =72

d(a:,y)f = (07 0)
For the system to have no solution p, one must have that vy, —~, ¢ [0, 1], which is an
event of probability strictly smaller than one. Therefore, P{X, M (0,0)} < 1. Now

for Theorem B, let us set S = {z = 0}. If we repeat the same argument with v, = 0,
we conclude that P{X;|s 0} =P{Xo M (0,0)} < 1, thus X;|g is not z-KROK.

10.2. Random level sets

Let ¢ € C°(M,R*) be a fixed function and let A € R* be a random vector whose
law admits a continuous density py : R¥ — R. Then the random field

X == ¢ — ANEC™(M,RF)

is z-KROK . Indeed, this is a special case of Theorem 10.1 except for the fact that
we don’t need to assume nothing but the continuity of py. So, 2-KROK (2) follows
from Sard’s theorem; X (p) admits the continuous density given for every x € R¥ by
pxp)(®) = palp(p) — =) and this gives --KROK (3) and z-KROK (4).

Finally, to prove z-KROK (5), we let u(p, z) be the Dirac delta measure u(p, z) =
dp—p(p)+2> Which corresponds to (10.1) in this case. Reasoning as in the proof of The-
orem 10.1, one can check that this is a regular conditional probability for X given
X(p), but this time it is automatic to see that u satisfies 2-KROK (5), even if p, is
not bounded or if it has zeroes.

Note that in that case, we have

(10.2) (X" A AdXF[ X (p) = 0) = dpp' A - Ayt
almost surely. Thus, we obtain for all p € M:
Cx(p) = pale(p)) [0, dpp? A -+ A dyt] .

In particular, notice that the zonoid is {0} at critical points of ¢ and thus is {0}
everywhere if ¢ is constant.

In this setting, Theorem 7.1 translates into the coarea formula for the function
f(p) = Jpp - pale(p)), while Theorem 7.7 yields:

/Rk P </¢’1(t) Mkerd(p) de(t) B /M pA(SO(p))dpgal ARRERA dp@k Nw.

Moreover, in the case where k = 1, the semi Finsler structure defined by X (see § 9)
is given for all v € T,M by

B ) = 2D o)

Then, if v : [0, 1] — M is a smooth curve that is transversal to ¢, one can see that its

length for this semi Finsler structure is given by £7 (7) = P(X € [p(7(0)), p(v(1)))).
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10.3. Finite dimensional fields

Let us detail the case where the random field lives in a finite dimensional subspace
of C*>(M,RF). This example could help the reader to understand better the z-KROK
conditions and the construction of the zonoid section.

PROPOSITION 10.7. — Let F C C°°(M,R¥) be a subspace of dimension n < oo
endowed with a scalar product and such that for all p € M, the map ev, : F —
R* @ — o(p) is surjective. Let X € F be a random function whose law admits a
continuous density px : F — R such that px(0) > 0 and such that when ||| — oo,
we have px(¢) = O(||p]| =) for some o > n. Then X is z-KROK.

Proof. — Let us detail the z-KROK conditions one by one.

For 2-KROK (2), the trick is to use the parametric transversality theorem, see [Hir76,
Theorem 2.7]. Indeed, consider the function ® : F x M — R given by ®(¢,p) = ¢(p).
Then its differential at (¢, p) is given by ev, & d,p. By assumption this is surjective
and thus the map & is transversal to zero, i.e. 0 is a regular value of ®. The paramet-
ric transversality theorem then tells us that for almost all ¢ € F, the map ¢ — ¢(p)
is transversal to 0, i.e. for almost all ¢ € F, 0 is a regular value of ¢ which is what
we wanted.

The law of X (p) is the push forward of the law of X by the linear map ev, : F — R*.
Suppose B C R” is a Borel subset of measure 0. Then P(X(p) € B) = P(X €
ev, '(B)). Let us denote

Fp = ker(ev,) = {p € F|p(p) =0}.

Then the space ev, () is an affine subspace parallel to F, which, by the surjectivity
of evp, is of dimension n — k. Thus ev, ' (B) = B x F, is of Lebesgue measure zero
in F. Since the law of X is, by assumption, absolutely continuous with respect
to the Lebesgue measure on X, we obtain that P(X € ev,'(B)) = 0 and thus
P(X(p) € B) = 0. This proves that the law of X(p) is absolutely continuous with
respect to Lebesgue on R* and thus admits a density p X(p) R*¥ — R and this proves
the property z-KROK (3).

We can compute this density using the coarea formula for the evcaluation map
ev, = (ev), ..., evh) : F — RF. We obtain for all p € M and = € R*:

(103) IOX(P)<I> - H ! /evpl(x) px(go)dgo

1A ... k
evp/\ /\evp

where the norm is the Euclidean norm on A*F* induced by the scalar product on F.
To prove the continuity requirement z-KROK (4), we can use the assumption of the
behavior at infinity of px and dominated convergence. Indeed, with the Euclidean
structure, we can assume F = R". Let p € M, we can assume that F, = R"* Cc R"
is the space spanned by the n — k first coordinates. Then we write px(y,x) with
y € R and z € R*. Let now p; — p and z; — 0, let g; € O(n) be such that
g; "(Fp,) = F, = R"7* then we have
1

1 .. k
ey, A\ AN evy. H

PX(py) () = H /Rnfk px(9;(y), x;)dy.
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On R™*, the function y > |ly||=® is integrable at infinity if and only if o > n — k.
Thus under our assumption y — px(g;(y), z;) is dominated by an integrable function
uniformly on j and by dominated convergence we get z-KROK (4).

We define u(p, x) to be the probability measure on F with support on the affine
space evy ' () that admits the continuous density pxp. : ev, ' (z) — R that is 0 if
pxp)(r) = 0 and else is given by

1
PXx

(10.4) P — .
fevljl(m) PX evy (z)

Then u(p, x) defines a regular conditional probability for X given X (p). Now let us
note that for all p € M, there exists a constant ¢ = ¢(p) > 0 such that J, < ¢||¢]|*.
Thus the function ¢ +— J,opx () is at infinity an O(||p||~(*~®)) and this is integrable
on ev, ! (x) = R" ¥ if and only if o > n which is precisely our assumption and this
gives us the finiteness condition in z-KROK (5). To see the continuity, let ¥ : F — R
be a bounded continuous function. Let p; — p and z; — 0, we repeat the argument
of the previous item to write

1

Jup)x’\:[j _ @@
<P (] ]) > fevp()pX

Lo ) 2) Ig5(y), ) px (95(0), )y

for some sequence g; € O(n) converging to Id. Since px(0) > 0 we get from Equa-
tion (10.3) that px((0) > 0 for every p € M and we can argue similarly as before:

this is dominated by a O <||<p|| ) at infinity which is integrable and we conclude
by dominated convergence to obtain z-KROK (5). O

In that case we can compute explicitly the zonoid section.

PROPOSITION 10.8. — Let X € F C CY(M,R*) be zKROK and as in Proposi-
tion 10.7. For every p € M and every w € A*T,M we have

(10.5) hyp)(w)

g e AR IR RR T [ TR

1

(10.6) ex(p)(w) = Hevl A A eka

/f (dp" A+ A dpp®) (w)px (9)dep

where recall that F, = ker(ev,) = {¢ € F|¢(p) =0}, px : F — R is the density of
the law of X € F and ev, = (ev}, ..., evf) : F — RF; ¢ = ¢(p) is the evaluation
map.

Proof. — We already did all the work in the proof of Proposition 10.7. In particular
we computed the measure y(p, x) in (10.4). Letting = 0 and multiplying by px)(0)
gives the result. O
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Appendix A. Comparison with other typical sets of
hypotheses

We compare the z-KROK hypotheses (Definition 4.1) and Proposition 6.1 with
other versions of Kac—Rice formula reported in [AT07, Sec. 11.2] and [AW09, Sec.
6.1.2]. In the textbooks, a more general type of weight « is considered: when a =
a(F,Y, p) depends also on an additional random field Y (in [AW09], while it is called
g in [AT07]). Here, we will only discuss the case of Theorem 6.1, see also Remark A.2.

Remark A.1. — The passage from the simple Kac—Rice formula, with o = 1, to
the case when « is just a measurable function a: M — R that does not depend on
F, is automatic. This is explained in [Ste22, Remark 2.7].

Remark A.2. — The more general frameworks, i.e. when a = a(Y, F, p) depends
on an additional random field, can be all covered by assuming that a: C*(M, RF) x
M-3R is random. Under this perspective, the hypotheses on the additional field
Y (in [ATO07, Theorem 11.2.1] and in [AW09, Theorem 6.10]) can be viewed (and
perhaps simplified) as the conditions under which it is possible to separate the
randomness of o and that of X, by conditioning on the former and to make rigorous
the following line of identities:

E{ Z OK<F7P>} = EQE(X|O¢:a) { Z CL(F,p)}

peEF~1(0) pEF~1(0)

—E. [ E{a(F.p)J,F | F(p) = 0,0 = a} prpyaa(0)

— /M E{a(F,p)JpF" | F(p) = 0} pry)(0).

and to apply (6.1) in the inmost expectation, thinking of « as fixed.

A.0.1. Adler and Taylor’s Expectation Metatheorem

We compare the hypotheses (a), (b), (¢), (d), (e), (f) and (g) in [AT07, Theo-
rem 11.2.1] to the 2-KROK conditions.

(a) is equivalent to z-KROK-1

(b) is implied by 2-KROK-3 and 2-KROK-4, together. In the opposite direction,
2-KROK-4 requires continuity also with respect to the spacial variable p € M,
which corresponds to ¢ € T in [AT07]. Let us call (b+), this slightly stronger
version of hypothesis (b).

(c) We will only consider the case in which g = 1, thus (e) is always satisfied,
while (c) reduces to the condition that the conditional density p;(z|V f(t)) of
f(t) given V f(t) exists, it is bounded, and it is continuous at x = 0, uniformly
in t. There is no such requirement among the z-KROK conditions.

(d) Under finiteness of moments (f), condition (d) is comparable to z-KROK-
5, though none of the two possible implications hold. Indeed, condition (d)
concerns only the pointwise distributions of the jet j, X = (p, X(p),dX(p),
while 2-KROK-5 concerns the distribution of the pairs (X, X(p)), but it does
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not require the existence of the conditional density of det d.X (p) conditioned
to X (p). Moreover, it is shown in [AT07, Lemma 11.2.11] that (a), (b) and
(d) together imply z-KROK-2.(1Y

(e) Thus, (a),(b+),(d),(f) presumably imply z-KROK-1-5.

(f) We don’t see the role of hypothesis (g) (which can be roughly thought as the
requirement that dX is Holder-continuous in probability). Indeed, it does not
appear in the version of [AW09]. This might be due to the different argument
used in the proof to prove the inequality “>7. This is the difficult step in
all versions of the proof of Kac—Rice formula (the other inequality can be
deduced via the coarea formula and Fatou Lemma).

A.0.2. Azais and Wschebor’s version of Rice’s formula

In the case of zero dimensional submanifolds k = m and M C R* is an open subset,
the 2-KROK hypotheses (Definition 4.1) are almost identical to the hypotheses
of [AW09, Theorem 6.7] for the level u = 0.

(i) is equivalent to z-KROK-1.
(ii) is equivalent to the combination of z-KROK-3 and z-KROK-4.
(iii) is to be compared with the formulation of z-KROK-5 that is given in point (4)
of Proposition 4.6. In the language of the latter, (iii) says that:

AzZAISWSCHEBORBOOK. — There is a regular conditional probability of
X given X (p) such that for any continuous function 8 € C(C*(M,R*);R) and
any converging sequence (p,, x,) — (po, o) in a neighborhood of M x {0} in
M x R* we have that

(A1) E{B(X) | X(pn) = 2n} = E{B(X) | X(po) = 20} -

The differences between the condition above and ours are three:

(a) In Proposition 4.6.(4) the property should be valid for all sequences
Bn — Bo. From point (2) of Proposition 4.6 it is clear that this difference
is irrelevant.

(b) For Condition (4) of Proposition 4.6 to be true it is sufficient to ver-
ify (A.1) when z = 0.

(¢) In Proposition 4.6(4) a bound is assumed: 3(f) < CJ,, f, while in
(iii) there is no restriction on the class of functions 5 for which (A.1)
should hold. Because of this, condition (iii) seems ill posed in that the
expression (A.1) may take infinite values even for Gaussian fields, for
instance with 8(f) = exp(|f(p)|?), where p € M is a fixed point.

(iv) is equivalent to z-KROK.

In conclusion, we can say that z-KROK (5) is a weaker assumption than (iii), while all
other hypotheses are equivalent, thus Proposition 6.1 implies [AW09, Theorem 6.7].

(D1In the in the current version of the book [AT07], the statement of Lemma 11.2.11 includes
the hypothesis (g) from Theorem 11.2.1. However, in the document Correction and Commentary
(downloadable on the book’s first author’s website) this hypothesis is said to be removable.
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Appendix B. Source code for symbols

The symbol € used in this article was made out of two symbols C combined into
the command \randin with the following code

%\newcommand*\ ,\randin\, {

\mathchoice {\raisebox{-.35ex}{$\displaystyle{"\subset}$}\mkern-11.5mu\raisebox{+.45ex}
{$\displaystyle{_\subset}$}}

{\mkern+imu\raisebox{-.27ex}{$\textstyle{ \subset}$}\mkern-11.7mu\raisebox{+.45ex}
{$\textstyle{_\subset}$}{\raisebox{.35ex}{$\scriptstyle\subset$}
\mkern-14mu\raisebox{-.15ex}{$\scriptstyle\subset$}}{\raisebox{.3ex}{$\scriptscriptstyle\subset$}
\mkern-13.5mu\raisebox{-.10ex}{$\scriptscriptstyle\subset$}} }

The symbol -2 is the command \randto defined with the following code.

\newcommand{\maschera}{\textcolor{white}{\scalebox{0.3}{$\blacktriangle$}}}
\newcommand*\FlatOmega{

\mathchoice{
\displaystyle{\Omega}\mkern-14mu\raisebox{+.166ex}{$\displaystyle{\mascheral}$}
\mkern+7mu\raisebox{+.166ex}{$\displaystyle{\maschera}$}}{
\hbox{$\textstyle{\Omega}$}\mkern-14mu\raisebox{+.166ex}{\hbox{$\textstyle{\maschera}t$}}
\mkern+7mu\raisebox{+.166ex}{\hbox{$\textstyle{\maschera}$}}}{
\scriptstyle{\Omega}\mkern-14mu\raisebox{+.13ex}{$\scriptstyle{\maschera}$}
\mkern+5mu\raisebox{+.13ex}{$\scriptstyle{\maschera}$}}{
\scriptscriptstyle{\Omega}\mkern-14mu\raisebox{+.13ex}{$\scriptscriptstyle{\maschera}$}
\mkern+5mu\raisebox{+.13ex}{$\scriptscriptstyle{\maschera}$}}}
\newcommand{\scaledFlatOmega}{{\scalebox{0.8}{$_{\FlatOmega}$}}}

%\newcommand*\randto{

\mathchoice{

\raisebox{-.101lex}{$\displaystyle{-}$}\mkern-4.4mu\raisebox{.729%ex}
{$\displaystyle{\scaledFlatOmegal}$}
\mkern-5.2mu\raisebox{-.101ex}{$\displaystyle\to$}}{
\raisebox{-.101lex}{\hbox{$\textstyle{-}$}}\mkern-4.4mu\raisebox{.729ex}
{\hbox{$\textstyle{\scaledFlatOmegal}$}}
\mkern-5.2mu\raisebox{-.101ex}{\hbox{$\textstyle\to$}}}{
\raisebox{-.101lex}{$\scriptstyle{-}$}\mkern-4.4mu\raisebox{.729ex}{$\scriptstyle{\scaledFlatOmega}$}
\mkern-5.2mu\raisebox{-.101lex}{$\scriptstyle\to$}}{
\raisebox{-.101lex}{$\scriptscriptstyle{-}$}\mkern-4.4mu\raisebox{.729ex}
{$\scriptscriptstyle{\scaledFlatOmega}$}
\mkern-5.2mu\raisebox{-.101ex}{$\scriptscriptstyle\to$}}}
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