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Finitely generated mixed modules of Warfield type

Paolo Zanardo (�)

Abstract – Let R be a local one-dimensional domain, with maximal ideal M, which is not

a valuation domain. We investigate the class of the finitely generated mixed R-modules

of Warfield type, so called since their construction goes back to R. B. Warfield. We

prove that these R-modules have local endomorphism rings, hence they are indecom-

posable. We examine the torsion part t .M/ of a Warfield type module M , investigating

the natural property t .M/ � MM . This property is related to b=a being integral over

R, where a and b are elements of R that define M . We also investigate M=t.M/ and

determine its minimum number of generators.
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Introduction

The main motivation and the starting point for the present paper is an important

result proved by R. B. Warfield in [7]. Namely, Warfield in Theorem 2 of [7]

proved that every local commutative ring R that is not a generalized valuation

ring admits indecomposable finitely presented n-generated modules, for every

n � 2; recall that a generalized valuation ring, often called also chain ring, is

a ring whose ideals are totally ordered by inclusion. Somehow surprisingly, in

the preliminary section we will see that some reductions made by Warfield in the

proof may lead to an indecomposable R-module that fails to be finitely presented

(Example 1.1). Thus the proof of this result is not strictly correct. Nonetheless,

we will see (Corollary 2.2) that Warfield’s idea was correct: eliminating the

misleading reductions, the module he constructed enjoys the desired properties.
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The present paper mainly deals with a class of finitely generated mixed mod-

ules over a local one-dimensional domain R. Recall that every finitely generated

mixed module over a valuation domain splits into the direct sum of its torsion part

and a free module. So we assume that R is not a valuation domain, hence there

exist nonzero elements a; b 2 R such that both b=a and a=b do not lie in R.

We use a and b in a similar way as in [7] to define a finitely presented

n-generated R-module M . As a matter of fact, our definition is simpler than

Warfield’s one, since it avoids the reductions made in the proof of Theorem 2

of [7]. We say that M is a mixed module of Warfield type. We will see that M

is indeed a mixed module, since R is one-dimensional. In Theorem 2.1 we prove

that mixed modules of Warfield type have local endomorphism rings, hence, in

particular, they are indecomposable. Since, when needed, the arguments work also

for a general commutative local ring R, we get Theorem 2 of [7] as Corollary 2.2.

In the third section we investigate the torsion part t .M/ of a mixed module M

of Warfield type. In Theorem 3.1 we give a characterization of torsion elements

of M that is crucial for our discussion. Then we focus on the natural property

t .M/ � MM , where M is the maximal ideal of R. Interestingly, this property

is related to either b=a or a=b being integral over R, where a and b define M .

We show that if M is an n-generated mixed module of Warfield type defined by

a and b, and either b=a or a=b is an integral element over R of degree � n � 1,

then t .M/ is not contained in MM . Further results are achieved using the fact

that every one-dimensional local domain R is dominated by an Archimedean

valuation domain V of its field of quotients (see [6] and [9]). For instance, in

Proposition 3.4 and Corollary 3.5 we use properties of an Archimedean valuation

domain V dominating R to ensure t .M/ � MM . In general, when R is dominated

by finitely many Archimedean valuation domains, Proposition 3.6 shows that all

the R-modules of Warfield type satisfy t .M/ � MM if and only if R is integrally

closed.

The knowledge of t .M/ allows one to get information on M=t.M/. In the final

section we show that M=t.M/ is isomorphic to an ideal of R (Proposition 4.1).

The minimum number of generators of M and of M=t.M/ coincide when t .M/ �

MM . Otherwise, if M is defined by a; b and either b=a or a=b is integral over

R of degree �, say, then � is the minimum number of generators of M=t.M/

(Theorem 4.3).

1. Preliminaries

In what follows R will usually denote a local one-dimensional integral domain,

with maximal ideal M. We denote by Q the field of fractions and by R� the set of
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the units of R. We will assume that R is not a valuation domain. Then R contains

two nonzero elements a and b such that both b=a and a=b do not lie in R. Note that

necessarily a; b 2 M. For the standard facts on Valuation Theory used throughout,

we refer to [2] or [4, 5].

If C is a class of R-modules, we say that the Krull–Schmidt theorem holds for

C if every M 2 C decomposes into a direct sum of indecomposable objects of C

in a unique way, up to isomorphism.

If M is a finitely generated R-module, with a slight abuse of language we

will say that M is n-generated if n is the minimum number of generators of M ;

equivalently, n D dimR=M M=MM . We denote by gen.M/ the minimum number

of generators of M .

Warfield in Theorem 2 of [7] proved that every local commutative ring R that

is not a valuation domain admits indecomposable finitely presented n-generated

modules, for every n � 2. We will see in the next section that Warfield’s idea

was correct. However, some reductions made by Warfield in the proof (which, by

the way, force the involved modules to be torsion) may unexpectedly lead to an

R-module which, although indecomposable, fails to be finitely presented.

In fact, in the next example we show that, for a suitable choice of R, a strict

application of Warfield’s construction ends with a finitely generated module that

is not finitely presented. Here n D 2 and R is a one-dimensional local domain.

Example 1.1. Let L � K be an extension of fields of infinite degree. Let

R D L C XKŒŒX�� be the ring of formal power series with coefficients in K

and constant term in L. It is straightforward to verify that R is local and one-

dimensional, with maximal ideal M D XKŒŒX��. Note that M is not finitely

generated, since ŒK W L� D 1. Pick k 2 K n L and let a D X , b D kX . Since

k … L, it follows that a … bR and b … aR, whence we also get aR \ bR � M
2.

It is readily seen that aM D bM D XM D M
2, and therefore M

2 is not

finitely generated and aR\bR D M
2. Now we construct a 2-generated R-module,

following Warfield’s construction in [7] (see also Theorem 3.1, p. 157, of [5]). We

consider the ring S D R=.aR\bRCaMCbM/ D R=M2. Let F D Sz1˚Sz2 be

a free S -module and let H D . Naz1 � Nbz2/S � F where Na D aCM
2, Nb D b CM

2.

The S -module M D F=H is finitely presented, by definition, and it turns out to be

indecomposable, by the proof of Theorem 2 of [7]. Then M is indecomposable,

as well, when regarded as an R-module. But M is not finitely presented as an R-

module (this is the missing link in Warfield’s argument). In fact, regarding to F

and H as R-modules, we get

F D
Rz1 ˚ Rz2

M2z1 ˚ M2z2

; H D
.az1 � bz2/R C M2z1 C M2z2

M2z1 ˚ M2z2

:
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Therefore we have the following isomorphism of R-modules

M Š
Rz1 ˚ Rz2

.az1 � bz2/R C M2z1 C M2z2

:

To see that M is not finitely presented, it suffices to prove that the R-module

.az1 �bz2/RCM
2z1CM

2z2 is not finitely generated (see Proposition 2.1, p. 152,

of [5]). Using aM D bM D M
2, we easily verify that

.az1 � bz2/R C M
2z1 C M

2z2 D .az1 � bz2/R ˚ M
2z2

fails to be finitely generated, since M
2 is not finitely generated.

2. Mixed modules of Warfield type

We give the definition of modules of Warfield type. We firstly recall the core of

the construction given by Warfield in [7] (for our convenience we make some

minor changes in the notation). The starting point is a local commutative ring

R, with maximal ideal M, that is not a generalized valuation ring (so R could

contain zero-divisors, and we do not make assumptions on its dimension). Then

M contains two nonzero elements a and b such that a … bR and b … aR. For

any n � 2 we define the R-module M D F=H , where F D Rz1 ˚ � � � ˚ Rzn

is free and H D hazi C bziC1W 1 � i < ni. Then M D hxi W 1 � i � ni, where

xi D zi C H . The module M is finitely presented by definition, and we readily

get dimR=M M=MM D n, hence M is n-generated.

A module defined in this way will be called n-generated module of Warfield

type. When it is convenient to emphasize the role of the elements a and b, we say

that M is defined by a; b.

We remark again that, in spite of the similarities, the modules defined above

do not coincide with those defined by Warfield in [7]. In fact the reductions made

by Warfield when R is a domain forced his modules to be torsion, although not

necessarily finitely presented, as shown in Example 1.1.

Let R be a local one-dimensional integral domain. This is the case we are

mostly interested in. We consider the n-generated R-module M constructed above.

We prove that x1; : : : ; xn are torsion-free elements. Fix j � n and assume that

rxj D 0, or, equivalently, rzj 2 H for some r 2 R. It follows that

rzj D

n
X

iD2

si .azi�1 C bzi /

for suitable s2; s3; : : : ; sn 2 R. We firstly examine the case where 1 < j < n.

From the preceding relation we get 0 D s2a D s2b C s3a D � � � D sj �1b C sj a,
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r D sj b C sj C1a and sj C1b C sj C2a D � � � D sn�1b C sna D snb D 0. Now from

the first equality we get s2 D 0, hence from the second s3 D 0, and so on, finally

getting sj D 0. In a similar way from the last equality we get sn D 0, whence

sn�1 D � � � D sj C1 D 0. It follows that r D 0, and so xj is torsion-free. A simpler

argument shows that r D 0 also when either j D 1 or j D n.

We shall examine the torsion elements in details later. Now we just show

the existence in M of nonzero torsion elements. Since R is one-dimensional,

the multiplicative set ¹anºn2N must intersect the non-zero ideal bR, therefore

there exists a minimum m � 2 such that am 2 bR, say am D bt , where,

necessarily, t 2 M since b=a … R. We show that u D tx1 C am�1x2 2 M

is nonzero torsion. Since au D 0, it suffices to show that u ¤ 0 or, equivalently,

tz1Cam�1z2 … H . In fact, tz1Cam�1z2 D
Pn

iD2 si .azi�1Cbzi/ implies t D s2a,

hence am�1 D .t=a/b D s2b 2 bR, and this is impossible, since m was minimum.

We conclude that M is a mixed module. Then we will say that M is an n-

generated mixed module of Warfield type.

Theorem 2.1. Let R be a local one-dimensional domain and let M be an n-

generated R-module of Warfield type. Then the endomorphism ring of M is local.

Consequently, M is indecomposable.

Proof. Throughout the proof we keep the same notation used above in the

definition of M D hx1; : : : ; xni. Pick any � 2 EndR.M/. Then yi D �.xi/ D
Pn

j D1 aij xj , for a suitable n�n matrix T D .aij / with entries in R. We will show

that T is necessarily congruent to a scalar matrix modulo M. Since R is local,

it follows that either T or T � I is invertible (where I is the identity matrix).

Therefore either � or � � 1 is a unit, and therefore EndR.M/ is a local ring (see

Proposition 15.15 in [1]).

Since � is an endomorphism, we get ayi C byiC1 D 0, for 1 � i < n.

Equivalently, for any assigned 1 � i < n there exist elements si
2; si

3; : : : ; si
n 2 R

such that

a

n
X

j D1

aij zj C b

n
X

j D1

aiC1;j zj D

n�1
X

j D1

si
j C1.azj C bzj C1/ 2 H:

Equating the coefficients of the zj we see that si
2; si

3; : : : ; si
n satisfy the following

system of equalities

Si D

8

ˆ

ˆ

<

ˆ

ˆ

:

aai1 C baiC1;1 D si
2a

aaij C baiC1;j D si
j C1a C si

j b .2 � j � n � 1/:

aain C baiC1;n D si
nb
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We denote by †n the system of equalities obtained by the juxtaposition of the

systems Si , for 1 � i < n. With a little abuse of language, we say that the elements

si
2; si

3; : : : ; si
n, for 1 � i < n, form a solution of †n.

Our aim is to show that †n may have a solution only if aij � 0 modulo M, for

all i ¤ j , and there exists d 2 R such that ai i � d modulo M, for 1 � i � n. For

the remainder of the proof we assume that all the congruences are modulo M.

We examine the system Si . The first equality yields

(1) ai1 � si
2; aiC1;1 � 0:

In fact, aiC1;1 2 M, since otherwise b 2 aR, and ai1 � si
2 2 M, since otherwise

a 2 bR. In a similar way, we readily see that the last equality implies

(2) ain � 0; aiC1;n � si
n;

while the intermediate equalities imply

(3) aij � si
j C1; aiC1;j � si

j :

for 1 < j < n. From (1) we get

(4) a21 � a31 � � � � � an1 � 0;

and from (2) we get

(5) a1n � a2n � � � � � an�1;n � 0:

Now from the equalities (3) we get aij � si
j C1 � aiC1;j C1. Hence for any k � 1

we have ai;iCk � an�k;n � 0 by (5), and akCi;i � akC1;1 � 0 by (4). Therefore

T is congruent to a diagonal matrix modulo M.

It remains to show that a11 � a22 � � � � � ann. Again using (3), we get

ai i � si
iC1 � aiC1;iC1, for 2 � i � n � 2. Moreover, (1) and (3) imply

a11 � s1
2 � a22, and (2) and (3) imply ann � sn�1

n � an�1;n�1. �

We point out that in the following corollary, which is Warfield’s result in [7],

the ring R is neither assumed to be an integral domain, nor to be one-dimensional.

Corollary 2.2 (Warfield [7]). Let R be a commutative local ring which is not

a valuation ring. Then for every n > 0 there exists a finitely presented R-module

M which is n-generated and indecomposable.

Proof. The proof of Theorem 2.1 works verbatim when R contains zero-

divisors and has any dimension. �
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Since the modules of Warfield type have local endomorphism rings, we get the

following corollary, by Azumaya’s theorem (see Theorem 9.8, p. 51, of [5]).

Corollary 2.3. The Krull–Schmidt theorem holds for the class of finite direct

sums of finitely generated modules of Warfield type.

It is important to remark that, in general, the Krull–Schmidt theorem does not

hold for the class of finitely generated R-modules. For results showing dramatic

failure of the Krull–Schmidt theorem for finitely generated modules over one-

dimensional Noetherian domains, we refer to Roger Wiegand’s paper [8].

Example 2.4. It is worth noting that if R is a local domain that is not one-

dimensional, the R-modules of Warfield type may be torsion-free. For instance,

let R be a local unique factorization domain that contains two non-associate prime

elements a and b (thus R cannot be one-dimensional). Then the 2-generated

module M of Warfield type defined by a; b is torsion-free. In fact, in the above

notation, suppose for a contradiction that u D c1x1 C c2x2 2 M is a nonzero

torsion element. Then r.c1x1 C c2x2/ D 0 for some 0 ¤ r 2 R. Equivalently,

r.c1z1 C c2z2/ D s.az1 C bz2/, for some s 2 R. We get rc1 D sa, rc2 D sb,

where we may assume r; s coprime. If r is a unit, we get u D .s=r/.ax1Cbx2/ D 0,

a contradiction. Otherwise we get rc1 D sa, rc2 D sb, where r 2 M is coprime

to s. Since a and b are prime elements, it follows that r is a prime associated to

both a and b, another contradiction.

Mixed modules of Warfield type may be constructed over any local integral

domain R which is not a valuation domain, independently of its dimension. Given

such a domain R, it is clear that we may choose a; b such that b=a; a=b … R an

a; b 2 tR, for some t 2 M. Then we consider the n-generated module M of

Warfield type, defined by the elements a and b. It is straightforward to check that

u D .a=t/x1 C .b=t/x2 ¤ 0. Since tu D ax1 C bx2 D 0, we conclude that u is a

nonzero torsion element of M , which is therefore a mixed module.

However, we prefer to focus on one-dimensional domains, since in that case

the class of Warfield modules is contained in the class of mixed R-modules.

3. The torsion part of a module of Warfield type

In this section we always assume that R is a one-dimensional local domain and

we examine the torsion elements of a module M of Warfield type. We denote

by t .M/ the torsion submodule of M . We will investigate the natural problem of
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establishing when M satisfies the property t .M/ � MM . Of course, t .M/ ¤

MM , since M=MM is torsion and M=t.M/ is torsion-free.

The following result gives a characterization of torsion elements that will be

crucial for our discussion.

Theorem 3.1. Let M D hx1; : : : ; xni be an n-generated mixed module of

Warfield type, defined by a; b 2 R. Then a nonzero element u D
Pn

iD1 �ixi 2 M

is torsion if and only if b=a is a root of �1Xn�1 � �2Xn�2 C � � � ˙ �n�1X � �n 2

RŒX�.

Proof. Let 0 ¤ u D
Pn

iD1 �ixi be an element of M . Then u is torsion if and

only if

r

n
X

iD1

�izi D

n�1
X

j D1

sj C1.azj C bzj C1/ 2 H;

for suitable 0 ¤ r 2 R and s2; : : : ; sn 2 R. Equating the coefficients of the zi , we

see that u is torsion if and only if the following system of equations

(6)

8

ˆ

ˆ

<

ˆ

ˆ

:

�t1�1 C t2a D 0

�t1�j C tj b C tj C1a D 0 .2 � j � n � 1/

�t1�n C tnb D 0

has a nontrivial solution 0 ¤ r D t1; s2 D t2; : : : ; sn D tn in R. The linear

system (6) has a nontrivial solution in Q if and only if the determinant of the

associate matrix is zero. In that case, it also has a nontrivial solution in R, since

the system is homogeneous. It is easy to verify that the matrix of the system has

determinant

��1bn�1 C �2bn�2a C � � � � �n�1ban�1 ˙ �nan;

that is zero if and only if b=a is a root of �1Xn�1��2Xn�2C� � �˙�n�1X��n. �

The case where n D 2 is somehow special.

Theorem 3.2. Let M be a 2-generated mixed module of Warfield type. Then

t .M/ � MM .

Proof. Assume for a contradiction that u D �1x1C�2x2 2 t .M/, where some

�i is a unit of R. Condition of Theorem 3.1 presently becomes �1.b=a/ � �2 D 0.

Then if �1 2 R� we get b=a D �2=�1 2 R, impossible. In a similar way, if

�2 2 R� we get a=b 2 R, another contradiction. �
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If � 2 Q is an integral element over R, we define the degree of � to be the

minimum k > 0 that is the degree of a monic polynomial f .X/ 2 RŒX� such that

f .�/ D 0 (recall that f .X/ is not uniquely determined).

When n � 3 it may happen that either b=a or a=b is integral over R of degree

� n�1. In such case we are provided with a sufficient condition for t .M/ 6� MM .

Theorem 3.3. Let M be an n-generated mixed module of Warfield type,

defined by a and b. If either b=a or a=b is an integral element over R of degree

� n � 1, then t .M/ is not contained in MM .

Proof. Assume that b=a is integral of degree � n � 1 over R. Since b=a … R,

we must have n � 3. Multiplying by a suitable power of X , we get a monic

polynomial

f .X/ D Xn�1 � �2Xn�2 C �3Xn�3 � � � � ˙ �n�1X � �n 2 RŒX�

having b=a as a root. Then u D x1 C
Pn

iD2 �ixi 2 M nMM is a torsion element

of M , by Theorem 3.1.

When a=b is integral of degree � n�1 we may argue in a symmetric way. �

We remark that Theorem 3.3 is not reversible, not even for n D 3, as shown by

technical examples.

Recall that a valuation domain V with maximal ideal P is said to be Archi-

medean if it is one-dimensional. If V is a valuation domain of the field of quotients

of R, we say that V dominates R if M D P \ R. We recall that every local

one-dimensional domain R is dominated by at least one Archimedean valuation

domain V (see [6]; see also Theorems 3.2 and 4.1 of [9]).

We give conditions that ensure t .M/ � MM . They are based on the Archi-

medean valuation domains V dominating R. For V an Archimedean valuation

domain dominating R, we introduce the notation v.M/ D inf¹v.�/W � 2 Mº,

where v is the valuation determined by V .

Proposition 3.4. Let V be an archimedean valuation domain that dominates

R. Let M be an n-generated mixed R-module of Warfield type, defined by a and

b. Then t .M/ is contained in MM if either 0 < .n � 1/v.b=a/ < v.M/ or

0 < .n � 1/v.a=b/ < v.M/.

Proof. Pick any element u D
Pn

iD1 �ixi 2 t .M/. We know that

(7) �1.b=a/n�1 � �2.b=a/n�2 C � � � ˙ �n�1.b=a/ � �n D 0:
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Say 0 < .n � 1/v.b=a/ < v.M/. Assume, for a contradiction, that u … MM , and

let j be the maximum index such that �j is a unit of R. Note that j < n, otherwise

�n is a unit of V , and v.�i.b=a/n�i / � v.b=a/ > 0 for all i < n contradicts (7).

Now, since v.b=a/ > 0, for every i < j we get v.�j .b=a/n�j / D .n�j /v.b=a/ <

.n � i/v.b=a/ � v.�i.b=a/n�i /. Moreover, for j < i � n we get �i 2 M, and

therefore v.�j .b=a/n�j / � .n � 1/v.b=a/ < v.M/ � v.�i/ � v.�i.b=a/n�i /. We

conclude that .n � j /v.b=a/ is the value of the first member in the equality (7),

contradicting v.0/ D 1. A symmetric argument works when 0 < .n�1/v.a=b/ <

v.M/. �

Corollary 3.5. Let R be a local one-dimensional domain which is dominated

by an Archimedean non-discrete valuation domain V such that v.M/ > 0. Then

for every n � 2 there exists an n-generated mixed R-module M of Warfield type

such that t .M/ � MM .

Proof. Since v.M/ > 0 and V is not discrete, there exists ˛ > 0 in its value

group such that ˛ < v.M/=.n � 1/. Let z 2 V be such that v.z/ D ˛. We have

z D b=a, for suitable a; b 2 M. In view of Proposition 3.4, the n-generated mixed

module M of Warfield type, defined by a and b, satisfies our requirement. �

Consider the valuation domain V D KŒŒX�� (K a field, X an indeterminate),

and let R D K C XnKŒŒX��, where n � 2. Then R is local and Noetherian,

since M D XnKŒŒX�� is generated by Xn; XnC1; : : : ; X2n�1. If we set a D Xn,

b D XnC1, the hypothesis of Proposition 3.4 is satisfied.

Let V be a valuation domain with value group Q and containing a field K.

Let us consider the non-Noetherian one-dimensional domain R D K C M where

M D ¹z 2 V W v.z/ > 1º. Then R satisfies the hypothesis of Corollary 3.5.

We remark that a local one-dimensional domain R can be dominated by exactly

two Archimedean valuation domains V1, V2, where V1 is discrete and V2 is not.

See, for instance, Example 4.1 of [9].

Our next result shows that a strong condition is required to ensure that t .M/ �

MM , for every mixed module M of Warfield type.

Proposition 3.6. Let R be a local one-dimensional non-valuation domain,

dominated by only finitely many distinct Archimedean valuation domains. Then

every R-module of Warfield type satisfies t .M/ � MM if and only if R is

integrally closed.
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Proof. If R is not integrally closed, then Theorem 3.3 implies that there exist

n � 3 and a; b 2 R such that the n-generated mixed module M defined by a and

b satisfies t .M/ 6� MM .

Conversely, assume that R is integrally closed. Then, by Propositions 3.1

and 3.2 of [9], R is dominated by a unique Archimedean valuation domain V , and

the maximal ideal M of R coincides with the maximal ideal P of V . We assume,

for a contradiction, that there exist n � 3 and a; b 2 R such that the n-generated

mixed module M , defined by a and b, satisfies t .M/ 6� MM . Then Theorem 3.1

shows that

�1.b=a/n�1 � �2.b=a/n�2 C � � � ˙ �n�1.b=a/ � �n D 0;

for suitable �1; : : : ; �n 2 R, not all lying in M. We firstly examine the case where

b=a 2 V . Let j be the minimum index such that �j … M D P . Note that �1 2 M,

otherwise b=a should be integral over R, so b=a 2 R, impossible. Hence j > 1,

and we have �i .b=a/n�i 2 P D M, for 1 � i � j � 1. It follows that ˇ D
P

i<j �i .b=a/n�i 2 M, and so �j .b=a/n�j ��j C1.b=a/n�j �1 C� � �˙�n Cˇ D 0.

Since �j 2 R�, the preceding equation shows that b=a is integral over R, hence

b=a 2 R, a contradiction. The case where a=b 2 V is symmetric. �

A typical example of a local integrally closed one-dimensional domain that is

not a valuation domain, is provided by the ring R D F CXKŒŒX��, where the field

K D F.z/ is a purely transcendental extension of the field F (see the examples

in [3]). Note that R is not Noetherian.

The situation described in the following proposition is the opposite to that in

Proposition 3.6.

Proposition 3.7. Let R be a local one-dimensional domain, and assume that

the integral closure xR of R is a valuation domain. If every element of xR has degree

� 2, then every n-generated R-module of Warfield type, with n � 3, satisfies

t .M/ 6� MM .

Proof. Let M be defined by a; b. Since xR is a valuation domain, then either

b=a or a=b lies in xR. Thus either b=a or a=b is an integral element of degree

2 � n � 1. The conclusion follows from Theorem 3.3. �

Let R D K C X2KŒŒX�� (see the above example). Then xR D KŒŒX�� is a

valuation domain, and it is easy to check that R and xR satisfy the hypotheses of

the preceding proposition.
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4. M=t.M/ and its minimal number of generators

Also in this section we keep the standing assumption that R is a one-dimensional

local domain.

The study of the torsion part t .M/ of a module of Warfield type M allows us

to get information on M=t.M/, specifically on its minimal number of generators

gen.M=t.M//.

Proposition 4.1. Let M be a mixed R-module of Warfield type. Then M=t.M/

is isomorphic to an ideal of R. If t .M/ � MM we also have gen.M=t.M// D

gen.M/.

Proof. Let M D hx1; : : : ; xni. Since M=t.M/ is a torsion-free R-module,

we know that M=t.M/ is isomorphic to an ideal of R if and only if it has

rank one. We will show that R.y C t .M// \ R.x1 C t .M// ¤ 0 for every

0 ¤ y C t .M/ 2 M=t.M/. It suffices to verify that Ry \ Rx1 ¤ 0 for any

0 ¤ y … t .M/. Say y D
Pn

iD1 rixi . Since bxi D �axi�1 for 2 � i � n it readily

follows that bny 2 Rx1. Moreover bny ¤ 0, since y … t .M/.

If t .M/ � MM we have M.M=t.M// D .MM/=t.M/. Therefore

gen.M=t.M// D dimR=M M=t.M/=M.M=t.M// D dimR=M M=MM D n:

�

In general, to calculate gen.M=t.M// we need to know how many elements in

t .M/ are linearly independent modulo MM . This information will be provided if

either b=a or a=b is integral over R.

We will need the following lemma, whose proof is straightforward.

Lemma 4.2. Let R be a local domain and let � 2 Q be integral over R of

degree m. Let g.X/ 2 RŒX� be a polynomial of degree < m such that g.�/ D 0.

Then all the coefficients of g.X/ lie in M.

We introduce some terminology, useful in the proof of the next theorem. In

view of Theorem 3.1, 0 ¤ w D
Pn

iD1 �ixi 2 t .M/ if and only if b=a is a root of

the polynomial gw.X/ D �1Xn�1 ��2Xn�2 C� � �˙�n�1X ��n. We will say that

the torsion element w and the polynomial gw.X/ are associated; for convenience,

we define gw D 0 if w D 0. Obviously, if gw1
; gw2

2 RŒX� are associated to

the torsion elements w1; w2, then c1gw1
C c2gw2

is associated to c1w1 C c2w2

(c1; c2 2 R).
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Theorem 4.3. Let M be an n-generated mixed R-module of Warfield type,

defined by a; b 2 R, where either b=a or a=b is integral over R of degree m � 1.

i. If m � n, then gen.M=t.M// D m � 1.

ii. If m > n, then t .M/ � MM and gen.M=t.M// D n.

Proof. (i) Under the present circumstances, Theorem 3.3 shows that t .M/ 6�

MM . Also note that if b=a and a=b are both integral, then they have the same

degree m � 1. We firstly assume that b=a is integral. Let f .X/ D Xm�1 C

am�2Xm�2 C � � � C a0 2 RŒX� be such that f .b=a/ D 0. Say n D m C k, where

k � 0. Then b=a is a root of the polynomial X if .X/, for 0 � i � k. It follows

that X if .X/ is associated to the torsion element

ui D .�1/k�i .xk�iC1 � am�2xk�iC2 C � � � ˙ a0xn�i /; 0 � i � k:

(Note that n � .m � 1 C i/ D k � i C 1.) Let us pick an arbitrary w 2 t .M/.

Then w is associated to a unique g.X/ 2 RŒX� of degree � n � 1 such that

g.b=a/ D 0. Since f .X/ is monic, we can make the division of polynomials

g.X/ D f .X/q.X/C r.X/ in RŒX�. Then Lemma 4.2 implies that r.X/ 2 MŒX�,

since deg r.X/ < deg f .X/. We conclude that g.X/ � f .X/q.X/ modulo M.

Note that deg q.X/ � k, since deg f .X/ D m�1, deg g.X/ � n�1 and n D mCk.

Let q.X/ D ckXk C ck�1Xk�1 C � � � C c0, where ci 2 R (it is possible that

deg q.X/ < k). Then f .X/q.X/ D
Pk

iD0 ci X
if .X/ and therefore f .X/q.X/ is

associated to c0u0 C c1u1 C � � � C ckuk 2 t .M/. Since w 2 t .M/ is associated to

g.X/, and g.X/ � f .X/q.X/ modulo M, we get

w D c0u0 C c1u1 C � � � C ckuk C y;

for a suitable y 2 MM \ t .M/. It follows that the arbitrary vector w C MM 2

.t .M/CMM/=MM lies in the R=M-vector space W spanned by u0 CMM; u1C

MM; : : : ; uk C MM . Moreover these vectors are readily seen to be linearly

independent, hence W has dimension k C 1. Let us choose y1; : : : ; ym�1 2 M

such that

M=MM D hu0 CMM; u1 CMM; : : : ; uk CMM; y1 CMM; : : : ; ym�1 CMM i

(recall that n D k C m). Then M D hu0; u1; : : : ; uk; y1; : : : ; ym�1i and there-

fore M=t.M/ D hy1 C t .M/; : : : ; ym�1 C t .M/i. It is straightforward to check

that y1 C t .M/; : : : ; ym�1 C t .M/ are linearly independent modulo M, and so

gen.M=t.M// D m � 1, as required. Note that the argument works in case k D 0,

as well.
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With a similar discussion we can treat the case when a=b is integral and b=a

is not.

(ii) Let 0 ¤ u D
Pn

iD1 �ixi be an arbitrary element of t .M/. Then b=a is

a root of �1Xn�1 � �2Xn�2 C � � � ˙ �n and, symmetrically, a=b is a root of

�nXn�1 � �n�1Xn�2 C � � � ˙ �1. Since n � 1 < m � 1, from Lemma 4.2 we

derive that all the �i are in M. We conclude that t .M/ � MM , and therefore

gen.M=t.M// D n, by Proposition 4.1. �
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