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Finitely generated mixed modules of Warfield type

PAoLO ZANARDO ()

ABSTRACT — Let R be a local one-dimensional domain, with maximal ideal 91, which is not
a valuation domain. We investigate the class of the finitely generated mixed R-modules
of Warfield type, so called since their construction goes back to R. B. Warfield. We
prove that these R-modules have local endomorphism rings, hence they are indecom-
posable. We examine the torsion part # (M) of a Warfield type module M, investigating
the natural property ¢(M) C 9tM. This property is related to b/a being integral over
R, where a and b are elements of R that define M. We also investigate M/¢(M) and
determine its minimum number of generators.
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Introduction

The main motivation and the starting point for the present paper is an important
result proved by R. B. Warfield in [7]. Namely, Warfield in Theorem 2 of [7]
proved that every local commutative ring R that is not a generalized valuation
ring admits indecomposable finitely presented n-generated modules, for every
n > 2; recall that a generalized valuation ring, often called also chain ring, is
a ring whose ideals are totally ordered by inclusion. Somehow surprisingly, in
the preliminary section we will see that some reductions made by Warfield in the
proof may lead to an indecomposable R-module that fails to be finitely presented
(Example 1.1). Thus the proof of this result is not strictly correct. Nonetheless,
we will see (Corollary 2.2) that Warfield’s idea was correct: eliminating the
misleading reductions, the module he constructed enjoys the desired properties.

(%) Indirizzo dell’A.: Dipartimento di Matematica “Tullio Levi-Civita”, Via Trieste 63,
35121 Padova, Italy.
E-mail: pzanardo@math.unipd.it


mailto:pzanardo@math.unipd.it

290 P. Zanardo

The present paper mainly deals with a class of finitely generated mixed mod-
ules over a local one-dimensional domain R. Recall that every finitely generated
mixed module over a valuation domain splits into the direct sum of its torsion part
and a free module. So we assume that R is not a valuation domain, hence there
exist nonzero elements a, b € R such that both b/a and a/b do not lie in R.

We use a and b in a similar way as in [7] to define a finitely presented
n-generated R-module M. As a matter of fact, our definition is simpler than
Warfield’s one, since it avoids the reductions made in the proof of Theorem 2
of [7]. We say that M is a mixed module of Warfield type. We will see that M
is indeed a mixed module, since R is one-dimensional. In Theorem 2.1 we prove
that mixed modules of Warfield type have local endomorphism rings, hence, in
particular, they are indecomposable. Since, when needed, the arguments work also
for a general commutative local ring R, we get Theorem 2 of [7] as Corollary 2.2.

In the third section we investigate the torsion part (M) of a mixed module M
of Warfield type. In Theorem 3.1 we give a characterization of torsion elements
of M that is crucial for our discussion. Then we focus on the natural property
t(M) C MM, where 9 is the maximal ideal of R. Interestingly, this property
is related to either b/a or a/b being integral over R, where a and b define M.
We show that if M is an n-generated mixed module of Warfield type defined by
a and b, and either b/a or a/b is an integral element over R of degree < n — 1,
then ¢(M) is not contained in 9tM . Further results are achieved using the fact
that every one-dimensional local domain R is dominated by an Archimedean
valuation domain V' of its field of quotients (see [6] and [9]). For instance, in
Proposition 3.4 and Corollary 3.5 we use properties of an Archimedean valuation
domain V dominating R to ensure t (M) C 9tM . In general, when R is dominated
by finitely many Archimedean valuation domains, Proposition 3.6 shows that all
the R-modules of Warfield type satisfy (M) C 9tM if and only if R is integrally
closed.

The knowledge of ¢ (M) allows one to get information on M/t (M). In the final
section we show that M/¢(M) is isomorphic to an ideal of R (Proposition 4.1).
The minimum number of generators of M and of M/t (M) coincide when ¢ (M) C
MM . Otherwise, if M is defined by a, b and either b/a or a/b is integral over
R of degree wu, say, then w is the minimum number of generators of M/t(M)
(Theorem 4.3).

1. Preliminaries

In what follows R will usually denote a local one-dimensional integral domain,
with maximal ideal 9Jt. We denote by Q the field of fractions and by R* the set of
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the units of R. We will assume that R is not a valuation domain. Then R contains
two nonzero elements ¢ and b such that both b/a and a/b do not lie in R. Note that
necessarily a, b € 9. For the standard facts on Valuation Theory used throughout,
we refer to [2] or [4, 5].

If C is a class of R-modules, we say that the Krull-Schmidt theorem holds for
Cif every M € C decomposes into a direct sum of indecomposable objects of C
in a unique way, up to isomorphism.

If M is a finitely generated R-module, with a slight abuse of language we
will say that M is n-generated if n is the minimum number of generators of M
equivalently, n = dimg/on M/9TM . We denote by gen(M ) the minimum number
of generators of M.

Warfield in Theorem 2 of [7] proved that every local commutative ring R that
is not a valuation domain admits indecomposable finitely presented n-generated
modules, for every n > 2. We will see in the next section that Warfield’s idea
was correct. However, some reductions made by Warfield in the proof (which, by
the way, force the involved modules to be torsion) may unexpectedly lead to an
R-module which, although indecomposable, fails to be finitely presented.

In fact, in the next example we show that, for a suitable choice of R, a strict
application of Warfield’s construction ends with a finitely generated module that
is not finitely presented. Here n = 2 and R is a one-dimensional local domain.

ExampLE 1.1. Let L C K be an extension of fields of infinite degree. Let
R = L + XK][[X]] be the ring of formal power series with coeflicients in K
and constant term in L. It is straightforward to verify that R is local and one-
dimensional, with maximal ideal 9t = XK][[X]]. Note that 9 is not finitely
generated, since [K : L] = oco. Pickk € K\ Landleta = X, b = kX. Since
k ¢ L, it follows that a ¢ bR and b ¢ aR, whence we also get aR N bR C IN2.
It is readily seen that a® = b = XM = M2, and therefore IM? is not
finitely generated and aRNbR = 2. Now we construct a 2-generated R-module,
following Warfield’s construction in [7] (see also Theorem 3.1, p. 157, of [5]). We
consider thering S = R/(@aRNbR+aM+bM) = R/M>. Let F = Sz;® Sz, be
afree S-module and let H = (az; —bz,)S C F wherea = a+9M2,b = b+ M2,
The S-module M = F/H is finitely presented, by definition, and it turns out to be
indecomposable, by the proof of Theorem 2 of [7]. Then M is indecomposable,
as well, when regarded as an R-module. But M is not finitely presented as an R-
module (this is the missing link in Warfield’s argument). In fact, regarding to F
and H as R-modules, we get

Rz ® Rz H— (azy —bzp)R + M?zy + M?z,
N M2z, B M2z, ’ B M2z, M2z, '
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Therefore we have the following isomorphism of R-modules

- Rz ® Rz,
T (azy —bzo)R + 9M2z; + M2z,

To see that M is not finitely presented, it suffices to prove that the R-module
(azy—bzo) R+9M?z1 +9M2 2z, is not finitely generated (see Proposition 2.1, p. 152,
of [5]). Using adt = b9 = M2, we easily verify that

(azy —bzp)R + M2z, + M2z, = (az1 —bz)R P M2z,

fails to be finitely generated, since 9t? is not finitely generated.

2. Mixed modules of Warfield type

We give the definition of modules of Warfield type. We firstly recall the core of
the construction given by Warfield in [7] (for our convenience we make some
minor changes in the notation). The starting point is a local commutative ring
R, with maximal ideal 91, that is not a generalized valuation ring (so R could
contain zero-divisors, and we do not make assumptions on its dimension). Then
M contains two nonzero elements ¢ and b such that @ ¢ bR and b ¢ aR. For
any n > 2 we define the R-module M = F/H, where F = Rz & --- & Rz,
isfreeand H = (az; + bz;+1:1 <i <n). Then M = (x;:1 < i < n), where
x; = z; + H. The module M is finitely presented by definition, and we readily
getdimg/on M/9MM = n, hence M is n-generated.

A module defined in this way will be called n-generated module of Warfield
type. When it is convenient to emphasize the role of the elements a and b, we say
that M is defined by a, b.

We remark again that, in spite of the similarities, the modules defined above
do not coincide with those defined by Warfield in [7]. In fact the reductions made
by Warfield when R is a domain forced his modules to be torsion, although not
necessarily finitely presented, as shown in Example 1.1.

Let R be a local one-dimensional integral domain. This is the case we are
mostly interested in. We consider the n-generated R-module M constructed above.
We prove that xy, ..., x, are torsion-free elements. Fix j < n and assume that
rx; = 0, or, equivalently, rz; € H for some r € R. It follows that

n
rzj = Zsi (azi—1 + bz;)
i=2

for suitable s,,s3,...,5, € R. We firstly examine the case where 1 < j < n.
From the preceding relation we get 0 = s,a = s3b + s3a = -+ = sj_1b + 554,
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r=sib+sjriaand sj b+ sj a0 =+ =5,1b + spa = s,b = 0. Now from
the first equality we get s, = 0, hence from the second s3 = 0, and so on, finally
getting s; = 0. In a similar way from the last equality we get s, = 0, whence
Sp—1 = -+ = §j41 = 0. It follows that r = 0, and so x; is torsion-free. A simpler
argument shows that r = 0 also when either j = 1 or j = n.

We shall examine the torsion elements in details later. Now we just show
the existence in M of nonzero torsion elements. Since R is one-dimensional,
the multiplicative set {a,},ev must intersect the non-zero ideal bR, therefore
there exists a minimum m > 2 such that a” € bR, say a™ = bt, where,
necessarily, 1 € 9 since b/a ¢ R. We show that u = tx; +a™ 'x, €¢ M
is nonzero torsion. Since au = 0, it suffices to show that u # 0 or, equivalently,
tzy+a™ 'z ¢ H.Infact, tz; +a™ zp = Z?:z si(azi—1+bz;)implies t = s»a,
hence a™~! = (t/a)b = s,b € bR, and this is impossible, since m was minimum.

We conclude that M is a mixed module. Then we will say that M is an n-
generated mixed module of Warfield type.

THEOREM 2.1. Let R be a local one-dimensional domain and let M be an n-
generated R-module of Warfield type. Then the endomorphism ring of M is local.
Consequently, M is indecomposable.

Proor. Throughout the proof we keep the same notation used above in the
definition of M = (x1,...,x,). Pick any ¢ € Endgr(M). Then y; = ¢(x;) =
i1 aijx;, for asuitable n x n matrix T = (a;;) with entries in R. We will show
that 7' is necessarily congruent to a scalar matrix modulo 2)t. Since R is local,
it follows that either 7 or T — [ is invertible (where [ is the identity matrix).
Therefore either ¢ or ¢ — 1 is a unit, and therefore Endg (M) is a local ring (see

Proposition 15.15 in [1]).

Since ¢ is an endomorphism, we get ay; + byi+1 = 0,for 1 < i < n.
Equivalently, for any assigned 1 < i < n there exist elements s, s5,...,s; € R
such that

n n n—1
a Zaijzj +b Zaiﬂ,jzj = Z;§+l(azj +bzjy1) € H.
j=1 j=1 j=1
Equating the coefficients of the z; we see that s5, 55, ..., s, satisfy the following

system of equalities
aaj1 +baj11,1 = séa
Si = Jaaij +baiy1,j = s}+1a + s}b Q<j<n-1).

adin + baiy1,n = s5,b
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We denote by ¥, the system of equalities obtained by the juxtaposition of the

systems S;, for 1 <i < n. With alittle abuse of language, we say that the elements

§5,8%,...,8,,for 1 <i < n, form a solution of X,.

Our aim is to show that X,, may have a solution only if @;; = 0 modulo ), for
alli # j, and there exists d € R such that a;; = d modulo 9, for | <i < n. For
the remainder of the proof we assume that all the congruences are modulo 90i.

We examine the system ;. The first equality yields

(N ai1 =55, ai+1,1 = 0.

In fact, a;+1,1 € 9N, since otherwise b € aR, and a;; — sé € I, since otherwise
a € bR. In a similar way, we readily see that the last equality implies

(2) ain =0, diy1n =S,
while the intermediate equalities imply

3) ajj = S§+1, aiy1,j = S;
for 1 < j < n. From (1) we get

4) a1y =az =---=dan =0,
and from (2) we get

%) Aipn =dop =--=dp—1n =0.

Now from the equalities (3) we get a;; = s]".+1 = a;+1,j+1. Hence for any k > 1

we have a; j 1k = ap—kn = 0by (5), and ax4i; = ax+1,1 = 0 by (4). Therefore
T is congruent to a diagonal matrix modulo 1.

It remains to show that a;; = az; = -+ = au,. Again using (3), we get
aj; = sl’f+1 = dijt+1,i+1, for 2 < i < n — 2. Moreover, (1) and (3) imply
aj; =5, = asp, and (2) and (3) imply ap, = "' = ay_14-1- O

We point out that in the following corollary, which is Warfield’s result in [7],
the ring R is neither assumed to be an integral domain, nor to be one-dimensional.

CoroLLARY 2.2 (Warfield [7]). Let R be a commutative local ring which is not
a valuation ring. Then for every n > 0 there exists a finitely presented R-module
M which is n-generated and indecomposable.

Proor. The proof of Theorem 2.1 works verbatim when R contains zero-
divisors and has any dimension. |
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Since the modules of Warfield type have local endomorphism rings, we get the
following corollary, by Azumaya’s theorem (see Theorem 9.8, p. 51, of [5]).

CoroLLARY 2.3. The Krull-Schmidt theorem holds for the class of finite direct
sums of finitely generated modules of Warfield type.

It is important to remark that, in general, the Krull-Schmidt theorem does not
hold for the class of finitely generated R-modules. For results showing dramatic
failure of the Krull-Schmidt theorem for finitely generated modules over one-
dimensional Noetherian domains, we refer to Roger Wiegand’s paper [8].

ExampLE 2.4. It is worth noting that if R is a local domain that is not one-
dimensional, the R-modules of Warfield type may be torsion-free. For instance,
let R be a local unique factorization domain that contains two non-associate prime
elements a and b (thus R cannot be one-dimensional). Then the 2-generated
module M of Warfield type defined by a, b is torsion-free. In fact, in the above
notation, suppose for a contradiction that ¥ = cyx; + c2x2 € M is a nonzero
torsion element. Then r(c;x; 4+ ¢2x3) = 0 for some 0 # r € R. Equivalently,
r(c1z1 + c222) = s(azy + bzp), for some s € R. We get rc; = sa, rca = sb,
where we may assume r, s coprime. If r is aunit, we getu = (s/r)(ax;+bx;) = 0,
a contradiction. Otherwise we get rc; = sa, rc, = sb, where r € 91 is coprime
to s. Since a and b are prime elements, it follows that r is a prime associated to
both a and b, another contradiction.

Mixed modules of Warfield type may be constructed over any local integral
domain R which is not a valuation domain, independently of its dimension. Given
such a domain R, it is clear that we may choose a, b such that b/a,a/b ¢ R an
a,b € tR, for some ¢t € M. Then we consider the n-generated module M of
Warfield type, defined by the elements a and b. It is straightforward to check that
u = (a/t)x; + (b/t)x, # 0. Since tu = ax; + bx, = 0, we conclude that u is a
nonzero torsion element of M, which is therefore a mixed module.

However, we prefer to focus on one-dimensional domains, since in that case
the class of Warfield modules is contained in the class of mixed R-modules.

3. The torsion part of a module of Warfield type

In this section we always assume that R is a one-dimensional local domain and
we examine the torsion elements of a module M of Warfield type. We denote
by ¢ (M) the torsion submodule of M. We will investigate the natural problem of



296 P. Zanardo

establishing when M satisfies the property (M) C 9tM. Of course, t (M) #
MM, since M /MM is torsion and M/t(M) is torsion-free.

The following result gives a characterization of torsion elements that will be
crucial for our discussion.

THeEOREM 3.1. Let M = (x1,...,x,) be an n-generated mixed module of
Warfield type, defined by a,b € R. Then a nonzero elementu =Y ;_, Aixi € M
is torsion if and only if b/a is a root of My X"V — A X" 2 4. £ X, X F A, €
R[X].

Proor. Let0 # u = Y ;_,; Ajx; be an element of M. Then u is torsion if and
only if

n n—1
rY dizi=Y_sjs1(azj + bzjy1) € H,
i=1 j=1
for suitable 0 # r € R and 55, ..., s, € R. Equating the coeflicients of the z;, we

see that u is torsion if and only if the following system of equations

—hA1+ta=0
©) —tidj+1ib+tipa=0 Q<j<n—1
has a nontrivial solution 0 # r = 1,52 = f2,...,5, = t, in R. The linear

system (6) has a nontrivial solution in @ if and only if the determinant of the
associate matrix is zero. In that case, it also has a nontrivial solution in R, since
the system is homogeneous. It is easy to verify that the matrix of the system has
determinant

_)len—l + Azb”_za + - F An_lba”_l + Ana”,
thatis zeroif and only if b/a isaroot of Ay X" 1=, X" 2 ... 44, 1 X FA,. O

The case where n = 2 is somehow special.

THEOREM 3.2. Let M be a 2-generated mixed module of Warfield type. Then
t(M) C M.

Proor. Assume for a contradiction thatu = A;x;+Ax, € 1 (M), where some
A; is a unit of R. Condition of Theorem 3.1 presently becomes A (b/a) — A, = 0.
Then if Ay € R* we get b/a = A,/A; € R, impossible. In a similar way, if
Ay € R* we geta/b € R, another contradiction. O



Finitely generated mixed modules of Warfield type 297

If » € Q is an integral element over R, we define the degree of 1 to be the
minimum k > 0 that is the degree of a monic polynomial f(X) € R[X] such that
f(n) = 0 (recall that f(X) is not uniquely determined).

When n > 3 it may happen that either /a or a/b is integral over R of degree
< n—1. In such case we are provided with a sufficient condition for t (M) ¢ M.

THeoREM 3.3. Let M be an n-generated mixed module of Warfield type,
defined by a and b. If either b/a or a/b is an integral element over R of degree
<n—1, then t (M) is not contained in MM .

Proor. Assume that b/a is integral of degree < n — 1 over R. Since b/a ¢ R,
we must have n > 3. Multiplying by a suitable power of X, we get a monic
polynomial

FX) = X" X" 2 4 A3 X" 3 — o+ A X F A, € RIX]

having b/a as aroot. Thenu = x1 + > ;_, A;x; € M \ MM is a torsion element
of M, by Theorem 3.1.
When a/b is integral of degree < n — 1 we may argue in a symmetric way. [

We remark that Theorem 3.3 is not reversible, not even for n = 3, as shown by
technical examples.

Recall that a valuation domain V' with maximal ideal P is said to be Archi-
medean if it is one-dimensional. If V' is a valuation domain of the field of quotients
of R, we say that V dominates R if 91 = P N R. We recall that every local
one-dimensional domain R is dominated by at least one Archimedean valuation
domain V (see [6]; see also Theorems 3.2 and 4.1 of [9]).

We give conditions that ensure 1 (M) C 99IM. They are based on the Archi-
medean valuation domains V' dominating R. For V' an Archimedean valuation
domain dominating R, we introduce the notation v(¥) = inf{v(n):n € M},
where v is the valuation determined by V.

ProrosiTioN 3.4. Let V be an archimedean valuation domain that dominates
R. Let M be an n-generated mixed R-module of Warfield type, defined by a and
b. Then t(M) is contained in MM if either 0 < (n — Dv(b/a) < v(IM) or
0<(n—1v(a/b) <v(M).

Proor. Pick any elementu = Y ', A;x; € 1(M). We know that

(7) Mb/a)" = Ay(b/a)" 2+ - £ Au_1(b/a) F A, = 0.
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Say 0 < (n — Dv(b/a) < v(IM). Assume, for a contradiction, that u ¢ 9tM, and
let j be the maximum index such that A; is a unit of R. Note that j < n, otherwise
An is a unit of V, and v(A;(b/a)"~*) > v(b/a) > 0 for all i < n contradicts (7).
Now, since v(b/a) > 0, foreveryi < j we getv(A;(b/a)"/) = (n—j)v(b/a) <
(n —i)v(b/a) < v(Ai(b/a)""). Moreover, for j <i < n we get A; € M, and
therefore v(A;(b/a)"7) < (n — Dv(b/a) < v(M) < v(A;) < v(A;(b/a)""). We
conclude that (n — j)v(b/a) is the value of the first member in the equality (7),
contradicting v(0) = co. A symmetric argument works when 0 < (n—1)v(a/b) <
v(OM). O

CoroLLARY 3.5. Let R be a local one-dimensional domain which is dominated
by an Archimedean non-discrete valuation domain V such that v(9) > 0. Then
for every n > 2 there exists an n-generated mixed R-module M of Warfield type
such that t (M) C IMM.

Proor. Since v(9%) > 0 and V is not discrete, there exists @ > 0 in its value
group such that « < v(9M)/(n — 1). Let z € V be such that v(z) = «. We have
z = b/a, for suitable a, b € M. In view of Proposition 3.4, the n-generated mixed
module M of Warfield type, defined by a and b, satisfies our requirement. O

Consider the valuation domain V = K[[X]] (K a field, X an indeterminate),
and let R = K + X"K[[X]], where n > 2. Then R is local and Noetherian,
since M = X"K[[X]] is generated by X", X"*1 . X2"~1 If we seta = X",
b = X"*1, the hypothesis of Proposition 3.4 is satisfied.

Let V be a valuation domain with value group @) and containing a field K.
Let us consider the non-Noetherian one-dimensional domain R = K + 9t where
M = {z € V:v(z) > 1}. Then R satisfies the hypothesis of Corollary 3.5.

We remark that a local one-dimensional domain R can be dominated by exactly
two Archimedean valuation domains V7, V5, where V; is discrete and V5 is not.
See, for instance, Example 4.1 of [9].

Our next result shows that a strong condition is required to ensure that 1 (M) C
MM , for every mixed module M of Warfield type.

ProrosITION 3.6. Let R be a local one-dimensional non-valuation domain,
dominated by only finitely many distinct Archimedean valuation domains. Then
every R-module of Warfield type satisfies t(M) C MM if and only if R is
integrally closed.
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Proor. If R is not integrally closed, then Theorem 3.3 implies that there exist
n > 3 and a,b € R such that the n-generated mixed module M defined by a and
b satisfies t (M) ¢ MM

Conversely, assume that R is integrally closed. Then, by Propositions 3.1
and 3.2 of [9], R is dominated by a unique Archimedean valuation domain V', and
the maximal ideal 9t of R coincides with the maximal ideal P of V. We assume,
for a contradiction, that there exist # > 3 and a, b € R such that the n-generated
mixed module M, defined by a and b, satisfies t (M) ¢ 9tM . Then Theorem 3.1
shows that

A(b/a)" ™t = Aa(b/a)" > + - A1 (b/a) F Ay =0,

for suitable A1, ..., A, € R, not all lying in 9t. We firstly examine the case where
b/a € V.Let j be the minimum index such that A; ¢ 9t = P. Note that A; € 91,
otherwise b/a should be integral over R, so b/a € R, impossible. Hence j > 1,
and we have A;(b/a)"* € P = 9, for 1 < i < j — 1. It follows that =
Di<y Li(b/a)"™ € M, andso Aj(b/a)"/ —Aji1(b/a)" /" 4+ £ X, +B = 0.
Since A; € R*, the preceding equation shows that b/a is integral over R, hence
b/a € R, a contradiction. The case where a/b € V is symmetric. |

A typical example of a local integrally closed one-dimensional domain that is
not a valuation domain, is provided by the ring R = F + XK|[[X]], where the field
K = F(z) is a purely transcendental extension of the field F (see the examples
in [3]). Note that R is not Noetherian.

The situation described in the following proposition is the opposite to that in
Proposition 3.6.

ProprosITION 3.7. Let R be a local one-dimensional domain, and assume that
the integral closure R of R is a valuation domain. If every element of R has degree
< 2, then every n-generated R-module of Warfield type, with n > 3, satisfies
t(M) ¢ IMM.

ProoF. Let M be defined by a, b. Since R is a valuation domain, then either
b/a or a/b lies in R. Thus either b/a or a/b is an integral element of degree
2 < n — 1. The conclusion follows from Theorem 3.3. O

Let R = K + X2K[[X]] (see the above example). Then R = K[[X]] is a
valuation domain, and it is easy to check that R and R satisfy the hypotheses of
the preceding proposition.
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4. M/t(M) and its minimal number of generators

Also in this section we keep the standing assumption that R is a one-dimensional
local domain.

The study of the torsion part (M) of a module of Warfield type M allows us
to get information on M/t (M), specifically on its minimal number of generators
gen(M/t(M)).

Prorosition 4.1. Let M be a mixed R-module of Warfield type. Then M/t (M)
is isomorphic to an ideal of R. If t(M) C IMM we also have gen(M/t(M)) =
gen(M).

Proor. Let M = (x1,...,x,). Since M/t(M) is a torsion-free R-module,
we know that M/¢(M) is isomorphic to an ideal of R if and only if it has
rank one. We will show that R(y + t(M)) N R(x; + t(M)) # 0 for every
0 #y+t(M) e M/t(M). It suffices to verify that Ry N Rx; # 0 for any
0#y¢t(M). Sayy =Y "_,rix;. Since bx; = —ax;—y for 2 <i < n it readily
follows that b"y € Rx;. Moreover b"y # 0, since y ¢ t(M).

Ift(M) C 9MM we have M(M/t(M)) = (OMM)/t(M). Therefore

gen(M/t(M)) = dimg/on M/t(M)/D(M/1(M)) = dimg oy M/IMM = n.
O

In general, to calculate gen(M/¢(M)) we need to know how many elements in
t(M) are linearly independent modulo 99tM . This information will be provided if
either b/a or a/b is integral over R.

We will need the following lemma, whose proof is straightforward.

LemMma 4.2. Let R be a local domain and let n € Q be integral over R of
degree m. Let g(X) € R[X] be a polynomial of degree < m such that g(n) = 0.
Then all the coefficients of g(X) lie in M.

We introduce some terminology, useful in the proof of the next theorem. In
view of Theorem 3.1, 0 # w = Y7, A;x; € t(M) if and only if b/a is a root of
the polynomial g, (X) = A1 X" 1 — A, X" 24 ...+ 1,1 X F A,. We will say that
the torsion element w and the polynomial g, (X) are associated; for convenience,
we define g,, = 0 if w = 0. Obviously, if gy,.gw, € R[X] are associated to
the torsion elements wy, wo, then ¢1gy, + c28w, is associated to ciyw; + crw»
(C1 ,Cp € R)
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THEOREM 4.3. Let M be an n-generated mixed R-module of Warfield type,
defined by a, b € R, where either b/a or a/b is integral over R of degree m — 1.

i. Ifm <n, thengen(M/t(M)) =m — 1.
ii. Ifm > n, thent(M) C MM and gen(M/t(M)) = n.

Proor. (i) Under the present circumstances, Theorem 3.3 shows that ¢ (M) ¢
MM . Also note that if b/a and a/b are both integral, then they have the same
degree m — 1. We firstly assume that b/a is integral. Let f(X) = X™ ! 4
am—2X™"2 + ...+ ag € R[X] be such that f(b/a) = 0. Say n = m + k, where
k > 0. Then b/a is a root of the polynomial X’ f(X), for 0 < i < k. It follows
that X’ £(X) is associated to the torsion element

ui = (=¥ (Xkmi1 — Gm-2Xk—it2 + - E aoxn—i), 0=<i <k.

(Note thatn — (m — 1 + i) = k —i + 1.) Let us pick an arbitrary w € t(M).
Then w is associated to a unique g(X) € R[X] of degree < n — 1 such that
g(b/a) = 0. Since f(X) is monic, we can make the division of polynomials
g(X) = f(X)q(X)+r(X)in R[X]. Then Lemma 4.2 implies that r(X) € 9[X],
since degr(X) < deg f(X). We conclude that g(X) = f(X)g(X) modulo 9.
Note thatdeg ¢ (X) < k, sincedeg f(X) = m—1,degg(X) <n—landn = m+k.

Let ¢(X) = cx X* + ck1 X*' + ... 4 ¢o, where ¢; € R (it is possible that
degq(X) < k). Then f(X)q(X) = Zf:o ¢; X' £(X) and therefore f(X)q(X) is
associated to coug + c1uy + -+ - + cpuy € t(M). Since w € ¢t (M) is associated to
g(X),and g(X) = f(X)g(X) modulo M, we get

w = coUp + cruy + -+ crugp +y,

for a suitable y € 9MM N t(M). It follows that the arbitrary vector w + 9M €
(M) +9MM)/OMM lies in the R /9-vector space W spanned by ug+ MM, u; +

MM, ..., ur + M. Moreover these vectors are readily seen to be linearly
independent, hence W has dimension k + 1. Let us choose y1,...,ym—1 € M
such that

M/IMM = (ug + MM, uy + MM, ..., up + MM, y1 + MM, ..., yp—1 + M)

(recall that n = k + m). Then M = (ug,uy1,...,Ug, ¥1,-.., Ym—1) and there-
fore M/t(M) = (y1 +t(M), ..., ym—1 + t(M)). It is straightforward to check
that y; + t(M),..., ym—1 + t(M) are linearly independent modulo 91, and so
gen(M/t(M)) = m — 1, as required. Note that the argument works in case k = 0,
as well.



302 P. Zanardo

With a similar discussion we can treat the case when «a/b is integral and b/a
is not.

(i) Let 0 # u = Y.'_, A;x; be an arbitrary element of #(M). Then b/a is
a root of A1 X"7! — A, X"2 4 ... £ A, and, symmetrically, a/b is a root of
Ap XV 2, X" 2 4 ...4 2. Sincen — 1 < m — 1, from Lemma 4.2 we
derive that all the A; are in 99t. We conclude that (M) C 9tM, and therefore
gen(M/t(M)) = n, by Proposition 4.1. O
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