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Iterated blowups of two-dimensional regular local rings

ROGER WIEGAND (%) — SYLVIA WIEGAND ()

ABsTrRACT — We explore sequences of iterated blowups of two-dimensional regular local
rings. Classical results of Zariski and Abhyankar show that the directed union of
blowups of this type is a valuation ring. We show that the value group of such a valuation
ring is determined by the irrational number y that is the value of an infinite continued
fraction associated to the sequence of blowups.
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1. Introduction

The study of two-dimensional iterated blowups of algebraic surfaces has a long
history, going back to Zariski’s 1939 paper [15] and Abhyankar’s 1956 paper [1].
Their work showed that the directed union of these blowups is a valuation domain
[1, Lemma 12]. For higher dimensions, this is not necessarily the case: see Shan-
non, Granja, and Cutkosky [13, 6, 3]. On the other hand, Heinzer, Rotthaus, and
S Wiegand show that many rank-one discrete valuation domains can be realized
as directed unions of regular local rings of various dimensions [12].

In the past few years there has been renewed interest in the two-dimen-
sional case, yielding new results by Guerrieri, Heinzer, Kim, Loper, Olberding,
Schoutens, Toeniskoetter, and others. See, for example, [5, 8, 9, 10].
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The results in this note stem from conversations in 1996, when Karen Smith
visited the University of Nebraska. We thank her for her insights and interest,
which led to consideration of iterated blowups.

Our results will not be surprising to the experts. In particular, papers by
Spivakovsky [14] and by Bruce, Logue, and Walker [2] discuss the connections
among quadratic transforms, continued fractions, and valuations. Our purpose
in this note is to describe a concrete situation where these connections become
quite transparent. It is possible that one could obtain some of our results from the
much more general constructions in these papers. Indeed, the valuation tree of
[2, Figure 1] is another way of encoding the procedure we describe in Sections 2
and 3 of this paper.

1.1 — Definitions and notation
Let k be an algebraically closed field, and consider the sequence
T k5 w3
X0<—X1 (—X2<—X3(—---,

where Xy = IP,%, each 7; is the blowup (quadratic transform) at a point x; € X;,
and 7r; (x;) = x;—1 foreachi > 1. The local rings R; := Oy, x, form an increasing
chain, and we put V = | J; R;. All of the domains R; and V have the same quotient
field, namely k(x, y), where x and y are indeterminates. Then V' is a valuation
domain [1, Lemma 12]. See also [7, II, Exercise 4.12 and V, Exercise 5.6]. We
are interested here in the structure of the valuation ring V, in particular its value

group.

Nortation 1.1. If a and b are algebraically independent elements over &,
we write k[a, b]—) for the local ring k[a, b](,»). This notation is convenient,
particularly when a and b are complicated expressions. The local rings R; are
all of the form kfa, b](—).

In Xy, choose affine coordinates x and y in an affine neighborhood Ai of xy,
and assume xg is at the origin of A2. The blowup of this affine neighborhood at
the point x¢ is then

S :={(x,y,u,v) EAIZC ><IP]1C | xv = yu}.

Here u, v are homogeneous coordinates, and 71 (x, y, u,v) = (x, y). The excep-
tional fiber, from which the point x; must be chosen, is

E =77'0,0) = {(0,0,u,v)} = P}.
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Points of E are of the form (0,0, 1, «), where @ € k, together with the “point at
infinity” (0, 0,0, 1). In this paper, we consider only two choices:
1. Choice A: x; = (0,0, 1,0);
2. Choice B: x; = (0,0,0, 1).
In Choice A, choose the affine neighborhood

~ 2
{(x,y.1,v) | xv =y} = Ay,

and then
R=k[x2]
xd(=)

In Choice B, take the affine neighborhood
{((x,y,u, 1) | yu = x} = A2,

and then .
R, = k[; y](_).

The same two choices are available at each stage. If R, = k[a,b]), then

Rny1 = ka, %](_) with Choice A, and R,41 = k[%, b](_) with Choice B.

2. Examples

Suppose we do Choice A three times, indicated here by “AAA” or “A3 *:

3 _ Y _ Y _ Y
(A%) R, = k[x, x](_) C R, = k[x, xz](_) C Ry = k[x, x3](_).
More generally, A” changes k[a, b)) to k[a, 2] (y» and B™ changes k[a, b] -
to k[bim, b] ) For another example, do A twice, then B thrice, and then A once.
The inclusions Ry C R, C R5 C Rg look like this:

(A’B°A)  k[x. )] C k[x’ %](_) < k[;_z %L—) “ k[;_z i_:](—)'

Now consider infinite sequences of A’s and B’s. If the sequence consists
entirely of A’s, the valuation ring V = |, k[x, xl,,](_) is not Archimedean. To
see this, let v be a valuation of k(x, y), whose valuation ring is V. For every
n > 1, one has v(;) > 0, and hence v(y) > nv(x) for all n > 1. Similarly, if
the sequence has all A’s eventually, or if the sequence has all B’s eventually, the
resulting valuation ring is non-Archimedean.
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3. Main results

Consider an infinite sequence of A’s and B’s in some order. We want to describe
the valuationring V' = | J, R,. The valuation ring is non-Archimedean if A occurs
only finitely many times, or if B occurs only finitely many times. Therefore assume
henceforth that each occurs infinitely often. In this case V is Archimedean, and
we describe the value group explicitly. By interchanging x and y at each stage,
one sees that the infinite sequences

AYB A% ... and BYA“B%*...

result in isomorphic valuation rings. Therefore we may assume that A is the first
operation. We set things up so that we can apply the results on continued fractions
in the number theory book [11] by Hardy and Wright, using notation in keeping
with that in Chapter 10 of that book. Consider the sequence

AYBITAB ...
where each a; is a positive integer. We encode the process with the sequence
a= [ao,al,az, .. ]

Let V, denote the valuation ring obtained as the union of the resulting R;, and let
'y be its value group. Choose a valuation v, of k(x, y) whose valuation ring is Vj.

Lemma 3.1. Given a sequence a = [ag,a1,as,...] of positive integers, let
b = [an, ant1, an+2,...], the sequence obtained by deleting terms ay, .. ., ap—1.
Then V, and W, are isomorphic valuation rings.

Proor. Let k[a, b](—) be the ring resulting from applying the sequence
AR AG2B43 ., Bén—1

to the ring k[x, y](—). The map x — a,y +— b yields an isomorphism from
k[x, y]) onto k[a,b]—). Assuming n is even, we apply A*"B+1A%+1... to
both rings, take unions, and obtain an isomorphism from V3 onto V. If # is odd,
we apply B4 A%"+1B%+2 ... to both rings, to get an isomorphism from V' onto
Va, where V’ is the valuation ring obtained by applying the sequence

BanAan-i-l Ban+2 ..

to k[x, y](—). But, as pointed out above, V' and V' are isomorphic valuation
rings. O
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Notation 3.2. Two sequences a = [ag,d1,dz,...] and b = [bg, by, ba,--+]
agree eventually provided there are positive integers m and n such that a4, =
by +r for all r > 0. Recall that two positive irrational numbers y and ¢ are said to
be equivalent provided there is an integer matrix [ ¢ § ] with determinant +1 such

__ay+b
that § = otd-

The next three theorems are the main results of this note:

THeEOREM 3.3. Leta = [ag, a1, az, .. .| be a sequence of positive integers. Then
the value group Ty is order-isomorphic to 7, & Zy C R, where the irrational
number 'y is the value of the infinite continued fraction

1
ap +
1
ap +
1
ar +
2 as +---
Proor. Foreachn > 1letc, = [ag,a,...,an] be the value of the following
finite continued fraction
1
ap +
1
ap + 1
(@ a +
as +---
1
+_
dp
By [11, Theorem 149], one has
2) o =1
4n
where the p; and ¢; are defined recursively by
3) p—2=0, p1=1 pi=aipi-1+ pi—2 for0=<i <n,

4-1=0, qo=1, ¢ =aiqi-1+qi— forl<i=<n,

We claim that

xpn—l dn
[ p l,yp ]( ) if n is even,
y n— _x n —

4) Rg, =

[xpn yo! ](_) if 1 is odd.

an ’ xPn—1
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A direct check, using (3), shows that the right-hand side is k[ when

5]
n = 0 and is k[M, xZO ](_) when n = 1, in agreement with the rings R,
and Ry, respectlvely Suppose now that the claimed formula is valid for some
integer n > 1. If n is even, move to R, , by performing the operation B4n+1.
This operation converts the top expression on the right-hand side of (4) to
X XPn=1  xPn\antr ydn xPn—1+an+1pn yin
[an—l (an) ]( ) - [m’xj]( )’

’ xPn

By the recursion in (3), the last expression above amounts to k[quj: pa ]( y

which is indeed the desired formula for R,,,, since n + 1 is odd. A similar
calculation, using the operation A?"+!, verifies the claim in the case when n is
odd.

The real number y is the limit of the ¢, and is irrational (see the comment after
[11, Theorem 170]). Moreover, by [11, Theorem 167], y is the unique real number
4 satisfying

¢n <8 <cp—q forevery even positive integer n.

Puta = va(x)and 8 = va ( y). Let n be an arbitrary even positive integer. From (4)
we see that xq;’ } and ){ —— both have positive value, and hence p,—1a — gn—18
and ¢, 8 — pno are both positive. Combining this observation with equation (2),

one obtains the inequalities

Cp < — < Cp-—1.
o

Since this holds for every even positive integer n, we must have =y.

Finally, we show that Iy, = Za & Zf. (The sum, inside R, is direct, since g
is irrational.) Since this group is order-isomorphic to Z & Zy (via multiplication
by the positive element é), this will complete the proof. Since I'y contains « and
B, we have Za @ Z C Iy. For the reverse inclusion, let . be an arbitrary non-
zero element of k(x, y). To show v,(h) belongs to Z & Z, assume harmlessly that
h € k[x, y]. The value of a non-zero term cx’ y/ of h, where ¢ € k\{0},isia+ jB.
The irrationality of g now implies that distinct terms have distinct values, and now
[16, Chapter VI, §8, item (5)] shows that v, (%) is the smallest of the values of the
terms. O

THEOREM 3.4. Let y be a positive irrational number. Then there is a sequence
a of positive integers such that I'(a) is order-isomorphic to 7. ® Z.y.

Proor. By [11, Theorem 170] there is a sequence a = [ag,a;,ds,...]| for
which the infinite continued fraction in Theorem 3.3 has value y. Now Theo-
rem 3.3 guarantees that the value group of I"(a) is order-isomorphic to Z&Zy. O
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THEOREM 3.5. Let a and b be sequences of positive integers, and write 'y =
7Z.®7Zy and Ty, = Z.® 73, where y and § are the positive irrational numbers from
Theorem 3.3. Consider the following four statements:

i. Va and Wy are isomorphic rings;

ii. Ty and 'y are isomorphic as ordered groups;
iii. a and b agree eventually;
iv. the irrational numbers y and § are equivalent.

These implications hold: (iv) < (iii) = (i) = (i).

Proor. The implication (iii) = (i) follows from Lemma 3.1, and clearly
(i) = (ii). The equivalence of (iii) and (iv) is [11, Theorem 175]. O

Theorem 3.5 raises an obvious question: Does (ii) imply (iv), that is, are the
four conditions equivalent? Another question is whether one can find a direct proof
of the implication (iv) = (ii). A direct proof might well give a clue to proving
the converse.
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