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Iterated blowups of two-dimensional regular local rings

Roger Wiegand (�) – Sylvia Wiegand (��)

Abstract – We explore sequences of iterated blowups of two-dimensional regular local

rings. Classical results of Zariski and Abhyankar show that the directed union of

blowups of this type is a valuation ring. We show that the value group of such a valuation

ring is determined by the irrational number 
 that is the value of an infinite continued

fraction associated to the sequence of blowups.
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1. Introduction

The study of two-dimensional iterated blowups of algebraic surfaces has a long

history, going back to Zariski’s 1939 paper [15] and Abhyankar’s 1956 paper [1].

Their work showed that the directed union of these blowups is a valuation domain

[1, Lemma 12]. For higher dimensions, this is not necessarily the case: see Shan-

non, Granja, and Cutkosky [13, 6, 3]. On the other hand, Heinzer, Rotthaus, and

S Wiegand show that many rank-one discrete valuation domains can be realized

as directed unions of regular local rings of various dimensions [12].

In the past few years there has been renewed interest in the two-dimen-

sional case, yielding new results by Guerrieri, Heinzer, Kim, Loper, Olberding,

Schoutens, Toeniskoetter, and others. See, for example, [5, 8, 9, 10].
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The results in this note stem from conversations in 1996, when Karen Smith

visited the University of Nebraska. We thank her for her insights and interest,

which led to consideration of iterated blowups.

Our results will not be surprising to the experts. In particular, papers by

Spivakovsky [14] and by Bruce, Logue, and Walker [2] discuss the connections

among quadratic transforms, continued fractions, and valuations. Our purpose

in this note is to describe a concrete situation where these connections become

quite transparent. It is possible that one could obtain some of our results from the

much more general constructions in these papers. Indeed, the valuation tree of

[2, Figure 1] is another way of encoding the procedure we describe in Sections 2

and 3 of this paper.

1.1 – Definitions and notation

Let k be an algebraically closed field, and consider the sequence

X0

�1
 � X1

�2
 � X2

�3
 � X3  � � � � ;

where X0 D P
2
k
, each �i is the blowup (quadratic transform) at a point xi 2 Xi ,

and �i .xi / D xi�1 for each i � 1. The local rings Ri WD OXi ;xi
form an increasing

chain, and we put V D
S

i Ri . All of the domains Ri and V have the same quotient

field, namely k.x; y/, where x and y are indeterminates. Then V is a valuation

domain [1, Lemma 12]. See also [7, II, Exercise 4.12 and V, Exercise 5.6]. We

are interested here in the structure of the valuation ring V , in particular its value

group.

Notation 1.1. If a and b are algebraically independent elements over k,

we write kŒa; b�.�/ for the local ring kŒa; b�.a;b/. This notation is convenient,

particularly when a and b are complicated expressions. The local rings Ri are

all of the form kŒa; b�.�/.

In X0, choose affine coordinates x and y in an affine neighborhood A
2
k

of x0,

and assume x0 is at the origin of A2. The blowup of this affine neighborhood at

the point x0 is then

S WD ¹.x; y; u; v/ 2 A
2
k � P

1
k j xv D yuº:

Here u; v are homogeneous coordinates, and �1.x; y; u; v/ D .x; y/. The excep-

tional fiber, from which the point x1 must be chosen, is

E D ��1
1 .0; 0/ D ¹.0; 0; u; v/º Š P

1
k:
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Points of E are of the form .0; 0; 1; ˛/, where ˛ 2 k, together with the “point at

infinity” .0; 0; 0; 1/. In this paper, we consider only two choices:

1. Choice A: x1 D .0; 0; 1; 0/;

2. Choice B: x1 D .0; 0; 0; 1/.

In Choice A, choose the affine neighborhood

¹.x; y; 1; v/ j xv D yº Š A
2
k;

and then

R1 D k
h

x;
y

x

i

.�/
:

In Choice B, take the affine neighborhood

¹.x; y; u; 1/ j yu D xº Š A
2
k;

and then

R1 D k
hx

y
; y

i

.�/
:

The same two choices are available at each stage. If Rn D kŒa; b�.�/, then

RnC1 D k
�

a; b
a

�

.�/
with Choice A, and RnC1 D k

�

a
b
; b

�

.�/
with Choice B.

2. Examples

Suppose we do Choice A three times, indicated here by “AAA” or “A3 ”:

(A3) R1 D k
h

x;
y

x

i

.�/
� R2 D k

h

x;
y

x2

i

.�/
� R3 D k

h

x;
y

x3

i

.�/
:

More generally, Am changes kŒa; b�.�/ to k
�

a; b
am

�

.�/
, and Bm changes kŒa; b�.�/

to k
�

a
bm ; b

�

.�/
. For another example, do A twice, then B thrice, and then A once.

The inclusions R0 � R2 � R5 � R6 look like this:

(A2B3A) kŒx; y�.�/ � k
h

x;
y

x2

i

.�/
� k

hx7

y3
;

y

x2

i

.�/
� k

hx7

y3
;

y4

x9

i

.�/
:

Now consider infinite sequences of A’s and B’s. If the sequence consists

entirely of A’s, the valuation ring V D
S

n k
�

x; y
xn

�

.�/
is not Archimedean. To

see this, let v be a valuation of k.x; y/, whose valuation ring is V . For every

n � 1, one has v
�

y
xn

�

> 0, and hence v.y/ > nv.x/ for all n � 1. Similarly, if

the sequence has all A’s eventually, or if the sequence has all B’s eventually, the

resulting valuation ring is non-Archimedean.
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3. Main results

Consider an infinite sequence of A’s and B’s in some order. We want to describe

the valuation ring V D
S

n Rn. The valuation ring is non-Archimedean if A occurs

only finitely many times, or if B occurs only finitely many times. Therefore assume

henceforth that each occurs infinitely often. In this case V is Archimedean, and

we describe the value group explicitly. By interchanging x and y at each stage,

one sees that the infinite sequences

Aa0Ba1Aa2 � � � and Ba0Aa1Ba2 � � �

result in isomorphic valuation rings. Therefore we may assume that A is the first

operation. We set things up so that we can apply the results on continued fractions

in the number theory book [11] by Hardy and Wright, using notation in keeping

with that in Chapter 10 of that book. Consider the sequence

Aa0Ba1Aa2Ba3 � � � ;

where each ai is a positive integer. We encode the process with the sequence

a D Œa0; a1; a2; : : : �:

Let Va denote the valuation ring obtained as the union of the resulting Ri , and let

�a be its value group. Choose a valuation va of k.x; y/ whose valuation ring is Va.

Lemma 3.1. Given a sequence a D Œa0; a1; a2; : : : � of positive integers, let

b D Œan; anC1; anC2; : : : �, the sequence obtained by deleting terms a0; : : : ; an�1.

Then Va and Vb are isomorphic valuation rings.

Proof. Let kŒa; b�.�/ be the ring resulting from applying the sequence

Aa0Ba1Aa2Ba3 � � �Ban�1

to the ring kŒx; y�.�/. The map x 7! a; y 7! b yields an isomorphism from

kŒx; y�.�/ onto kŒa; b�.�/. Assuming n is even, we apply AanBanC1AanC1 � � � to

both rings, take unions, and obtain an isomorphism from Vb onto Va. If n is odd,

we apply BanAanC1BanC2 � � � to both rings, to get an isomorphism from V 0 onto

Va, where V 0 is the valuation ring obtained by applying the sequence

BanAanC1BanC2 � � �

to kŒx; y�.�/: But, as pointed out above, V and V 0 are isomorphic valuation

rings. �



Iterated blowups of two-dimensional regular local rings 285

Notation 3.2. Two sequences a D Œa0; a1; a2; : : : � and b D Œb0; b1; b2; � � � �

agree eventually provided there are positive integers m and n such that amCr D

bnCr for all r � 0. Recall that two positive irrational numbers 
 and ı are said to

be equivalent provided there is an integer matrix
�

a b
c d

�

with determinant˙1 such

that ı D a
Cb
c
Cd

.

The next three theorems are the main results of this note:

Theorem 3.3. Let a D Œa0; a1; a2; : : : � be a sequence of positive integers. Then

the value group �a is order-isomorphic to Z ˚ Z
 � R, where the irrational

number 
 is the value of the infinite continued fraction

a0 C
1

a1 C
1

a2 C
1

a3 C � � �

:

Proof. For each n � 1 let cn D Œa0; a1; : : : ; an� be the value of the following

finite continued fraction

(1)

a0 C
1

a1 C
1

a2 C
1

a3 C � � �

C
1

an

By [11, Theorem 149], one has

(2) cn D
pn

qn

;

where the pi and qi are defined recursively by

(3)
p�2 D 0; p�1 D 1; pi D aipi�1 C pi�2 for 0 � i � n;

q�1 D 0; q0 D 1; qi D aiqi�1 C qi�2 for 1 � i � n;

We claim that

(4) Ran
D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

k
hxpn�1

yqn�1
;

yqn

xpn

i

.�/
if n is even,

k
hxpn

yqn
;

yqn�1

xpn�1

i

.�/
if n is odd.
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A direct check, using (3), shows that the right-hand side is k
�

x; y
xa0

�

.�/
when

n D 0 and is k
�

xa0a1C1

ya1
; y

xa0

�

.�/
when n D 1, in agreement with the rings Ra0

and Ra1
, respectively. Suppose now that the claimed formula is valid for some

integer n � 1. If n is even, move to RanC1
by performing the operation BanC1 .

This operation converts the top expression on the right-hand side of (4) to

k
hxpn�1

yqn�1

�xpn

yqn

�anC1

;
yqn

xpn

i

.�/
D k

hxpn�1CanC1pn

yqn�1CanC1qn
;

yqn

xpn

i

.�/
:

By the recursion in (3), the last expression above amounts to k
�

xpnC1

yqnC1
; yqn

xpn

�

.�/
,

which is indeed the desired formula for RanC1
, since n C 1 is odd. A similar

calculation, using the operation AanC1 , verifies the claim in the case when n is

odd.

The real number 
 is the limit of the cn and is irrational (see the comment after

[11, Theorem 170]). Moreover, by [11, Theorem 167], 
 is the unique real number

ı satisfying

cn < ı < cn�1 for every even positive integer n:

Put ˛ D va.x/ and ˇ D va.y/. Let n be an arbitrary even positive integer. From (4)

we see that xpn�1

yqn�1
and yqn

xpn both have positive value, and hence pn�1˛ � qn�1ˇ

and qnˇ � pn˛ are both positive. Combining this observation with equation (2),

one obtains the inequalities

cn <
ˇ

˛
< cn�1:

Since this holds for every even positive integer n, we must have ˇ
˛
D 
 .

Finally, we show that �a D Z˛ ˚ Zˇ. (The sum, inside R, is direct, since ˇ
˛

is irrational.) Since this group is order-isomorphic to Z˚ Z
 (via multiplication

by the positive element 1
˛
), this will complete the proof. Since �a contains ˛ and

ˇ, we have Z˛ ˚ Zˇ � �a. For the reverse inclusion, let h be an arbitrary non-

zero element of k.x; y/. To show va.h/ belongs to Z˚Z, assume harmlessly that

h 2 kŒx; y�. The value of a non-zero term cxiyj of h, where c 2 kn¹0º, is i˛Cjˇ.

The irrationality of ˇ
˛

now implies that distinct terms have distinct values, and now

[16, Chapter VI, §8, item (5)] shows that va.h/ is the smallest of the values of the

terms. �

Theorem 3.4. Let 
 be a positive irrational number. Then there is a sequence

a of positive integers such that �.a/ is order-isomorphic to Z˚ Z
 .

Proof. By [11, Theorem 170] there is a sequence a D Œa0; a1; a2; : : : � for

which the infinite continued fraction in Theorem 3.3 has value 
 . Now Theo-

rem 3.3 guarantees that the value group of �.a/ is order-isomorphic toZ˚Z
 . �
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Theorem 3.5. Let a and b be sequences of positive integers, and write �a D

Z˚Z
 and �b D Z˚Zı, where 
 and ı are the positive irrational numbers from

Theorem 3.3. Consider the following four statements:

i. Va and Vb are isomorphic rings;

ii. �a and �b are isomorphic as ordered groups;

iii. a and b agree eventually;

iv. the irrational numbers 
 and ı are equivalent.

These implications hold: (iv) () (iii) H) (i) H) (ii).

Proof. The implication (iii) H) (i) follows from Lemma 3.1, and clearly

(i) H) (ii). The equivalence of (iii) and (iv) is [11, Theorem 175]. �

Theorem 3.5 raises an obvious question: Does (ii) imply (iv), that is, are the

four conditions equivalent? Another question is whether one can find a direct proof

of the implication (iv) H) (ii). A direct proof might well give a clue to proving

the converse.
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