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Linear forms in a playful universe

BURKHARD WALD ()

ABsTRACT — Instead of the axiom of choice, we assume that every set of reals has the Baire
property. It is shown that under this condition the concept of slenderness known from
the theory of abelian groups becomes meaningful for vector spaces.
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1. Introduction

Usually in mathematics the axiom of choice AC is assumed. One consequence
of this axiom is that every vector space has a base. This means that each vector
space is a direct sum of a number of copies of the underlying field. Thus all vector
spaces have the same algebraic structure. This is the reason why the special case
of vector spaces is uninteresting from a module-theoretical point of view.

In the theory of abelian groups there is a lot of structural diversity instead. An
example is that for abelian groups infinite cartesian products on the one hand and
infinite direct sums on the other hand are two fundamentally different structures. In
particular, infinite cartesian products of abelian groups are far from being free, i.e.
from having a basis. This is related to the concept of slenderness for abelian groups
(cf. [3, 1591f]) and the fact that the ring Z is a slender abelian group, discovered
by Specker [12]. Slenderness for modules over arbitrary rings was studied by
Lady [7]. A ring R is called slender if R is slender as R-module. We give the
definition for slenderness in Section 2.
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The basis theorem for vector spaces is the reason why fields fail to be slender.
One can ask what the situation is in a set theory in which the axiom of choice
does not apply. As an alternative to the axiom of choice, we focus our attention
on the axiom of determinacy AD or its weaker variants. This was inspired by a
paper by Felgner and Schulz [1]. The axiom AD was introduced by Mycielski
and Steinhaus [8]. A well-known conclusion is that every set of reals has the
Baire property. Shelah proved that the theory ZF + DC + BP is equiconsistent
to ZFC [11]. Here ZF is the Zermelo—Frinkel set theory, ZFC is the Zermelo—
Frinkel set theory together with the axiom of choice, DC is the axiom of dependent
choice and BP means that every set of reals has the Baire property. AD is more
stringent than BP because AD implies the existence of measurable cardinals. For
our purposes it is sufficient to assume BP. Our result is that under this assumption,
fields like R, @ and also at most countable fields are slender rings.

The fact that a set of reals has the Baire property is related to the determinacy
of so-called “Bannach—Masur games.” The definition of this infinite games was
first given by Oxtoby [10]. We give a short outline in Section 3 and refer to the
explanations in the book of Jech [5, pp. 553-555].

The last section deals with the subgroup B of the Bear—Specker group, which
consists of all bounded functions. Nobeling has shown that B is a free abelian
group [9], while Specker previously came to the same result by assuming the
continuum hypothesis [12]. In both articles, ZFC is assumed as usual. Felgner and
Schulz showed that under the assumption of AD the group B fails to be free [1].
In Section 5 we give results which indicate that under ZF + DC + BP the structure
of B is more similar to that of the complete Bear—Specker group than that of a
direct sum.

We use notations that are common in set theory. The set of natural numbers is
denoted by w.

2. On slenderness

Let R be a ring. Then R® is the R-module consisting of all functions from w
into R. For i € w let ¢; be the element of R® for which ¢;(j) = 1ifi = j
and ¢; (j) = 0 otherwise. It’'s common to write some a € R® as the infinite sum
Y icw @li)ei. A R-module M is called slender if for every homomorphism ¢ from
R? into M itis p(e;) = 0 for almost all i € w. It is not difficult to see that ¢ = 0
in the case that ¢(e;) = 0 for all i € w. This implies that every homomorphism ¢
from R® into a slender module M is induced by a finite sequence xy, ..., X,—1 in
M such that ¢(a) = >, _, a(i)x;. Hence hom(R®, M) = M=®, where M =% is
the direct sum of countable many copies of M. For a module M the dual module
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M* is the module hom(M, R). Is is easy to see that (R<?)* =~ R®. If R is slender
we also have the converse (R®)* =~ R=®.

If [ ], Ai is an arbitrary product of R-modules 4; and ¢ a homomorphism
from [];¢, 4; into a slender R-module M, then there exists some n € w and
homomorphisms ¢; from A; into M for i < n such that p(a) = >, _, ¢i(a;) for
all a € [];¢, Ai.Itis a conclusion that a R-module is slender as a R-module, if it
is slender as an abelian group. In Section 4 we show that under our set theoretical
assumption @ and R are slender abelian groups. Hence @ and R are also slender
as rings.

3. On games

For a set X and natural numbern € w we denote by X” the set of all functions from
n to X. Furthermore X =* is the union | J,.,, X”. Functions are identified with
their graphs and hence for functions f and g notations like f C g and f U g make
sense. An element s of X =% is also viewed as the sequence s = (s(0),...,s(m—1)).
For two sequences s and ¢ the concatenation s ¢ is defined in the natural way. If we
have a sequence s, € X =“ for each n € w we can build an infinite concatenation

(1) a =S0AS1AS2A...

Here a € X is the union |, ¢, an Where ag = 5o and a, = a,—1 7 sy.

It is common to regard X also from a topological point of view. To do this,
take the discrete topology on X and build the product topology on X®. In this
topology the set {Us:s € X=? A's C a} build an neighbour basis for an element
a € X?, where Us is defined by {b € X®:s C b} for s € X=?. Let us look
again at the infinite concatenation a we built above. In this situation we have
{a} = N, e Uan Where a, is defined as before.

From now on we assume that X has at least two elements. For a set A C X®
we define an infinite game Gy*(A) for two players as follows. The two players
alternately choose finite sequences s, from X =% at step n € w. Player I wins the
game if the concatenation a build like (1) is an element of A. Otherwise player II
wins the game. Of course, if A is small in a certain way, player II has a good
change to win the game. For example, it is not difficult to see that there is a winning
strategy for player Il if 4 is at most countable. The game is determined when there
is a winning strategy either for player I or for player II.

You can easily modify a winning strategy for player I in the game Gy*(A) and
get a winning strategy for player II in game G3*(Us \ A) when s is the starting
sequence of player I in the first game. Here Uy is defined by {a € X®:s5 C a}.
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Similarly, a winning strategy for player II for a game G3*(Us \ A) results in a
winning strategy for player I for the game Gy*(A).

In a topological space a subset A is called nowhere dense if the interior of the
closure of the set is empty. A is called meager if A is a countable union of nowhere
dense subsets. We say that A has the Baire property if there is an open set B such
that AA B = (A\ B) U (B \ A) is meager. Of course meager sets has the Baire
property. If A has the Baire property and is not meager, then there is an s such that
Us \ A is meager.

It is known that player II has a winning strategy for the game Gy*(A) exactly
when A is meager and Player I has a winning strategie for G3*(A) if Us \ 4 is
meager. Hence if A has the Baire property, then Gg*(A) is determined.

We are especially interested in the two cases in which X is {0, 1} or . Then
X is the Cantor space respectively Baire space. Both cases can be viewed as
topological subspaces of the real line. So if we assume that every set of reals has
the Baire property, all games Gg*(A) for our two cases of X are determined. Our
proofs in the further course of this paper follow the same pattern. We begin with
a decomposition | ,,,, 4» of the base set X“. Then one of the subsets A4, fails to
be meager. Then for this 4,, player I has a winning strategy.

4. The main result

Our first Theorem is about slenderness of abelian groups.

THEOREM 4.1. In the set theoretical setting ZF + DC + BP the following holds:
a. every lineary ordered abelian group is slender;
b. every at most countable abelian group is slender.

Proor. (a) We start with a homomorphism ¢ from Z® to a lineary ordered
abelian group G. The domain Z* of ¢ is divided in the subsets

Ay ={x € Z?: ¢p(x) < 0},

Ay = {x € Z?: ¢p(x) = 0},

Az = {x € Z°: ¢(x) > O}.
By Lemma 2.1 player I has a winning strategy for one of the three sets. Let us start
with a winning strategy for A;. The strategy gives the first move s = (xo, ..., Xk)

for player I. We will show that ¢(e;) = O for all i > k. Assuming ¢(e;,) # 0 for
some m > k we choose ¢ € Z such that

k
) > siplei) < colem)
i=0
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Now we play two games, both opened by player I with move s¢. In the first game we
take as the first move of player II the sequence s; = (0, ..., 0, —c) just with length
m — k. After this player I makes his second move s, in the first game concordantly
with the strategy. Unlike in the first game, player II responds in the second game
with the concatenation of s; and —s,, where —s, is formed from s, by changing
the sign. From now on player Il always plays the sequence —s if player I has played
s in the other game before. So as a result of the two games we get two elements
of Z

a=So S1° 82 853 —s4 ...,

b= S()A(SlAS2)A—S3AS4A ey

which are in A; because player I used his winning strategy for A;. Thus

k
0> ga)+ob) =pa+b) =) siple) — cplen)
i=0

This is a contradiction to equation (2).
The proof for the cases that player I has a winning strategy for A, or for A3
works analogously with the correct choice of c.

(b) Let ¢ be an homomorphism from Z¢ to a abelian group G and G is at most
countable. For one of the subsets A, = {x € Z”: ¢(x) = g} player I must have a
winning strategy. As above we construct two sequences

a=sog S1° 852 83 847 ...,

b=s0"(sy s2) 783784,

where s; = (0,...,0,1) and s7 = (0,...,0,0) are of the same length m + 1. In
the construction of a the part s; is the move of player II and s, the second move
of player I. In the construction of b the first move of player II is s} s, and s3 is
the second move of player I. We get

0=g—-g=v9(a)—ob) =¢la—>)=glex+m)

where k is the length of so. Because we can choose m arbitrarily ¢(e;) = 0 for
almost all i € w. O

Because subgroups of slender groups are slender and because exact sums
of slender groups are slender, the arguments we have noted in 3 results in the
following corollary.



276 B. Wald

CoroLLARY 4.2. In the set theoretical setting ZF + DC + BP the following
holds:

a. every subfield of the field of complex numbers is a slender ring;

b. every at most countable field is a slender ring.

5. A further result

Let B be the subgroup of Z® which contains all functions a: w — Z for which
a(w) is finite. An abelian group is called B-slender if for every homomorphism
from B into G we have ¢(e;) = 0 for almost all i € w.

THEOREM 5.1. The assumption ZF + DC + BP implies that every at most
countable abelian group is B-slender.

Proor. Unlike in the proof of Theorem 4.1(b), we define the sets Ag by

{x €{0. 1}*:90(x) = g}.

We can then proceed in the same way, since the construction of a and » does not
leave the set {0, 1}®. O

The subgroup B is a special case of the so-called “monotonic subgroups”
of Z®. M-slenderness for monotonic subgroups M of Z® has been studied in
detail by Fuchs and the author together with Gobel and Kolman [2, 4, 6, 13].
However, ZFC has always been assumed and consequently, because of Nobeling’s
theorem, the trivial group 0 was the only B-slender group.

Now we ask whether we can extend Theorem 5.1 analogous to Theorem 4.1(a)
to linearly ordered groups. The answer is no. For this we define a homomorphism
from B to R as follows. We take a absolute convergent series » ;. ¢; in R and
define ¢ from B to R by ¢(a) = Y ;¢ a(i)c; foralla € B.

icw

THeOREM 5.2. We assume ZF + DC + BP. If G is a B-slender abelian group
an ¢ an homomorphism from B into G with ¢(e;) = 0 foralli € w, the ¢ = 0.

Proor. Note that the simple proof of the analogous statement for slenderness
does not work for B-slenderness. Nevertheless the theorem is valid in our universe.
We use the known fact that under Z F + D C + BP every ultrafilter of w is principal.
Because this can be proven with the same method we have applied here, we will
give a sketch of the proof. In a well-known way, we understand subsets of @ as
elements of {0, 1}“. Hence an ultrafilter F can viewed as a subset of {0, 1}* and
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thus player I has a winning strategy either for the game G¢*(J) or for the game
G3*({0, 1} \ F). As in the previous proofs, we can use the winning strategy to
construct two functions a and b in {0, 1}* that differ in almost all places. This
defines two sets A and B for which AN B and (w \ A) N (w\ B) are finite. Because
A and B are based on the winning strategy for the same of the two games, either
A and B belong to F or A and B belong not to F. But if A and B are not in F then
o \ A and w \ B are in F. Hence in both cases F contains a finite element. This
shows that & must be a principal filter.

Now we start with the proof of the theorem and assume that ¢(a) # 0 for some
a € B.Forany W C w we define a|lw = Y,y a(i)e;. First we assume

(YW S w)(¢lalw) # 0
= AUV cW)UNV =0Arg¢laly) #0Aealy) #0)
and lead this to a contradiction.

From this assumption we can use DC to get a family (U;, V) e of pairs of
subsets of w such that U; N V; = 0, p(aly;) # 0, p(aly;) # 0 and furthermore
Uiv1 € Uj and Vj4 C U; for all j € . Notice that the family (V) e0
is pairwise disjoint. Hereby we can construct a new homomorphism ¥ from B
into G by defining ¥ (x) = @(Zjewx(i)ah/j) for x € B. Because all a|y,
are parts of the same bounded function a and x also is a bounded function, the
construction ) jew X()aly; is bounded as well. But now we have a contradiction
to the B-slenderness of G, because ¥ (e;) = ¢(aly;) # O forall j € w.

Consequently there must be some W C o with ¢(a|w) # 0 and

3) VU,VCWMUNV =0 = (paly) =0V ealy) = 0)).
Next we show that the set

F={U C w:p(alwnv) # 0}
is an ultrafilter. Therefore we have to prove:
a. 047,
b.ifUCV CwandU € F, then V € F;
c.ifUeFandV e F,thenU NV €TF;
d. forevery U C weitherU e Forw \ U € F.
(a) is obvious.
For (b), notice that (W NU)N(W N(V\U)) = @ and p(a|lwnr) # 0. Hence
¢(alwnw\vy) = 0 by (3). Because
alwnv = alwnv + alwnonv)

we get p(alwny) # 0 and therefore V € F.
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For (c), we get ¢(a|lwn\v)) = 0 in the same way. Now we have

alwnv = alwnunv + alwnw\v)

and hence ¢(a|wnunyv) = ¢(alwny) # 0. This means that U NV € F.
At least (d) is a direct consequence of ¢(a|w) # 0.

The assumption that ¢(e;) = O for all i € w implies that F fails to principal.
O

A consequence of this theorem is that images of homomorphisms of B into
B-slender abelian groups are finitely generated as we know it from slenderness
too. This is required for the next corollary.

CoroLLARY 5.3. Direct sums of B-slender groups are B-slender.

Proor. The proof is identical to that given in [3, p. 160] for slenderness. Let
¢ be a homomorphism into a sum €, ; G; of B-slender abelian groups G;. Then
the image of ¢ is contained in a subgroup @, ., G of the full sum, where G; is
a finitely generated subgroup of G; and I’ is at most countable. Thus the image
of ¢ is countable and therefore also B-slender. Hence ¢(e;) = 0 for almost all
I €w. O

In conclusion, it remains the open question whether any of the statements we
have proved with the axiom BP is equivalent to BP.
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