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Linear forms in a playful universe

Burkhard Wald (�)

Abstract – Instead of the axiom of choice, we assume that every set of reals has the Baire

property. It is shown that under this condition the concept of slenderness known from

the theory of abelian groups becomes meaningful for vector spaces.
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1. Introduction

Usually in mathematics the axiom of choice AC is assumed. One consequence

of this axiom is that every vector space has a base. This means that each vector

space is a direct sum of a number of copies of the underlying field. Thus all vector

spaces have the same algebraic structure. This is the reason why the special case

of vector spaces is uninteresting from a module-theoretical point of view.

In the theory of abelian groups there is a lot of structural diversity instead. An

example is that for abelian groups infinite cartesian products on the one hand and

infinite direct sums on the other hand are two fundamentally different structures. In

particular, infinite cartesian products of abelian groups are far from being free, i.e.

from having a basis. This is related to the concept of slenderness for abelian groups

(cf. [3, 159ff]) and the fact that the ring Z is a slender abelian group, discovered

by Specker [12]. Slenderness for modules over arbitrary rings was studied by

Lady [7]. A ring R is called slender if R is slender as R-module. We give the

definition for slenderness in Section 2.
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The basis theorem for vector spaces is the reason why fields fail to be slender.

One can ask what the situation is in a set theory in which the axiom of choice

does not apply. As an alternative to the axiom of choice, we focus our attention

on the axiom of determinacy AD or its weaker variants. This was inspired by a

paper by Felgner and Schulz [1]. The axiom AD was introduced by Mycielski

and Steinhaus [8]. A well-known conclusion is that every set of reals has the

Baire property. Shelah proved that the theory ZF C DC C BP is equiconsistent

to ZFC [11]. Here ZF is the Zermelo–Fränkel set theory, ZFC is the Zermelo–

Fränkel set theory together with the axiom of choice, DC is the axiom of dependent

choice and BP means that every set of reals has the Baire property. AD is more

stringent than BP because AD implies the existence of measurable cardinals. For

our purposes it is sufficient to assume BP. Our result is that under this assumption,

fields like R, Q and also at most countable fields are slender rings.

The fact that a set of reals has the Baire property is related to the determinacy

of so-called “Bannach–Masur games.” The definition of this infinite games was

first given by Oxtoby [10]. We give a short outline in Section 3 and refer to the

explanations in the book of Jech [5, pp. 553–555].

The last section deals with the subgroup B of the Bear–Specker group, which

consists of all bounded functions. Nöbeling has shown that B is a free abelian

group [9], while Specker previously came to the same result by assuming the

continuum hypothesis [12]. In both articles, ZFC is assumed as usual. Felgner and

Schulz showed that under the assumption of AD the group B fails to be free [1].

In Section 5 we give results which indicate that under ZFCDCCBP the structure

of B is more similar to that of the complete Bear–Specker group than that of a

direct sum.

We use notations that are common in set theory. The set of natural numbers is

denoted by !.

2. On slenderness

Let R be a ring. Then R! is the R-module consisting of all functions from !

into R. For i 2 ! let ei be the element of R! for which ei .j / D 1 if i D j

and ei .j / D 0 otherwise. It’s common to write some a 2 R! as the infinite sum
P

i2! a.i/ei . AR-moduleM is called slender if for every homomorphism ' from

R! into M it is '.ei/ D 0 for almost all i 2 !. It is not difficult to see that ' D 0

in the case that '.ei / D 0 for all i 2 !. This implies that every homomorphism '

from R! into a slender module M is induced by a finite sequence x0; : : : ; xn�1 in

M such that '.a/ D
P

i<n a.i/xi . Hence hom.R!;M/ Š M<! , where M<! is

the direct sum of countable many copies of M . For a module M the dual module
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M? is the module hom.M;R/. Is is easy to see that .R<!/? Š R! . If R is slender

we also have the converse .R!/? Š R<! .

If
Q

i2! Ai is an arbitrary product of R-modules Ai and ' a homomorphism

from
Q

i2! Ai into a slender R-module M , then there exists some n 2 ! and

homomorphisms 'i from Ai into M for i < n such that '.a/ D
P

i<n 'i .ai / for

all a 2
Q

i2! Ai . It is a conclusion that a R-module is slender as a R-module, if it

is slender as an abelian group. In Section 4 we show that under our set theoretical

assumption Q and R are slender abelian groups. Hence Q and R are also slender

as rings.

3. On games

For a setX and natural numbern 2 ! we denote byXn the set of all functions from

n to X . Furthermore X<! is the union
S

n2! X
n. Functions are identified with

their graphs and hence for functions f and g notations like f � g and f [gmake

sense. An element s ofX<! is also viewed as the sequence s D hs.0/; : : : ; s.n�1/i.

For two sequences s and t the concatenation s_t is defined in the natural way. If we

have a sequence sn 2 X<! for each n 2 ! we can build an infinite concatenation

(1) a D s0
_s1

_s2
_ : : :

Here a 2 X! is the union
S

n2! an where a0 D s0 and an D an�1
_sn.

It is common to regard X! also from a topological point of view. To do this,

take the discrete topology on X and build the product topology on X! . In this

topology the set ¹UsW s 2 X<! ^ s � aº build an neighbour basis for an element

a 2 X! , where Us is defined by ¹b 2 X! W s � bº for s 2 X<! . Let us look

again at the infinite concatenation a we built above. In this situation we have

¹aº D
T

n2! Uan
where an is defined as before.

From now on we assume that X has at least two elements. For a set A � X!

we define an infinite game G��
X .A/ for two players as follows. The two players

alternately choose finite sequences sn from X<! at step n 2 !. Player I wins the

game if the concatenation a build like (1) is an element of A. Otherwise player II

wins the game. Of course, if A is small in a certain way, player II has a good

change to win the game. For example, it is not difficult to see that there is a winning

strategy for player II ifA is at most countable. The game is determined when there

is a winning strategy either for player I or for player II.

You can easily modify a winning strategy for player I in the game G��
X .A/ and

get a winning strategy for player II in game G��
X .Us n A/ when s is the starting

sequence of player I in the first game. Here Us is defined by ¹a 2 X! W s � aº.
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Similarly, a winning strategy for player II for a game G��
X .Us n A/ results in a

winning strategy for player I for the game G��
X .A/.

In a topological space a subset A is called nowhere dense if the interior of the

closure of the set is empty.A is called meager ifA is a countable union of nowhere

dense subsets. We say that A has the Baire property if there is an open set B such

that A4B D .A n B/ [ .B n A/ is meager. Of course meager sets has the Baire

property. If A has the Baire property and is not meager, then there is an s such that

Us n A is meager.

It is known that player II has a winning strategy for the game G��
X .A/ exactly

when A is meager and Player I has a winning strategie for G��
X .A/ if Us n A is

meager. Hence if A has the Baire property, then G��
X .A/ is determined.

We are especially interested in the two cases in which X is ¹0; 1º or !. Then

X! is the Cantor space respectively Baire space. Both cases can be viewed as

topological subspaces of the real line. So if we assume that every set of reals has

the Baire property, all games G��
X .A/ for our two cases of X are determined. Our

proofs in the further course of this paper follow the same pattern. We begin with

a decomposition
S

n2! An of the base set X! . Then one of the subsets An fails to

be meager. Then for this An, player I has a winning strategy.

4. The main result

Our first Theorem is about slenderness of abelian groups.

Theorem 4.1. In the set theoretical setting ZFCDCCBP the following holds:

a. every lineary ordered abelian group is slender;

b. every at most countable abelian group is slender.

Proof. (a) We start with a homomorphism ' from Z! to a lineary ordered

abelian group G. The domain Z! of ' is divided in the subsets

A1 D ¹x 2 Z! W '.x/ < 0º;

A2 D ¹x 2 Z! W '.x/ D 0º;

A3 D ¹x 2 Z! W�.x/ > 0º:

By Lemma 2.1 player I has a winning strategy for one of the three sets. Let us start

with a winning strategy for A1. The strategy gives the first move s D hx0; : : : ; xki

for player I. We will show that '.ei / D 0 for all i > k. Assuming '.em/ ¤ 0 for

some m > k we choose c 2 Z such that

(2)

k
X

iD0

si'.ei/ < c'.em/
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Now we play two games, both opened by player I with move s0. In the first game we

take as the first move of player II the sequence s1 D h0; : : : ; 0;�ci just with length

m�k. After this player I makes his second move s2 in the first game concordantly

with the strategy. Unlike in the first game, player II responds in the second game

with the concatenation of s1 and �s2, where �s2 is formed from s2 by changing

the sign. From now on player II always plays the sequence �s if player I has played

s in the other game before. So as a result of the two games we get two elements

of Z!

a D s0
_s1

_s2
_s3

_�s4
_ : : : ;

b D s0
_.s1

_s2/
_�s3

_s4
_ : : : ;

which are in A1 because player I used his winning strategy for A1. Thus

0 > '.a/C '.b/ D '.aC b/ D

k
X

iD0

si'.ei / � c'.em/

This is a contradiction to equation (2).

The proof for the cases that player I has a winning strategy for A2 or for A3

works analogously with the correct choice of c.

(b) Let ' be an homomorphism from Z! to a abelian groupG andG is at most

countable. For one of the subsets Ag D ¹x 2 Z! W '.x/ D gº player I must have a

winning strategy. As above we construct two sequences

a D s0
_s1

_s2
_s3

_s4
_ : : : ;

b D s0
_.s0

1
_
s2/

_s3
_s4

_ : : : ;

where s1 D h0; : : : ; 0; 1i and s0
1 D h0; : : : ; 0; 0i are of the same length m C 1. In

the construction of a the part s1 is the move of player II and s2 the second move

of player I. In the construction of b the first move of player II is s0
1

_
s2 and s3 is

the second move of player I. We get

0 D g � g D '.a/ � '.b/ D '.a � b/ D '.ekCm/

where k is the length of s0. Because we can choose m arbitrarily '.ei/ D 0 for

almost all i 2 !. �

Because subgroups of slender groups are slender and because exact sums

of slender groups are slender, the arguments we have noted in 3 results in the

following corollary.
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Corollary 4.2. In the set theoretical setting ZF CDC C BP the following

holds:

a. every subfield of the field of complex numbers is a slender ring;

b. every at most countable field is a slender ring.

5. A further result

Let B be the subgroup of Z! which contains all functions aW! ! Z for which

a.!/ is finite. An abelian group is called B-slender if for every homomorphism

from B into G we have '.ei / D 0 for almost all i 2 !.

Theorem 5.1. The assumption ZF C DC C BP implies that every at most

countable abelian group is B-slender.

Proof. Unlike in the proof of Theorem 4.1(b), we define the sets Ag by

¹x 2 ¹0; 1º!W '.x/ D gº:

We can then proceed in the same way, since the construction of a and b does not

leave the set ¹0; 1º!. �

The subgroup B is a special case of the so-called “monotonic subgroups”

of Z! . M -slenderness for monotonic subgroups M of Z! has been studied in

detail by Fuchs and the author together with Göbel and Kolman [2, 4, 6, 13].

However, ZFC has always been assumed and consequently, because of Nöbeling’s

theorem, the trivial group 0 was the only B-slender group.

Now we ask whether we can extend Theorem 5.1 analogous to Theorem 4.1(a)

to linearly ordered groups. The answer is no. For this we define a homomorphism

from B to R as follows. We take a absolute convergent series
P

i2! ci in R and

define ' from B to R by '.a/ D
P

i2! a.i/ci for all a 2 B .

Theorem 5.2. We assume ZF C DC C BP. If G is a B-slender abelian group

an ' an homomorphism from B into G with '.ei / D 0 for all i 2 !, the ' D 0.

Proof. Note that the simple proof of the analogous statement for slenderness

does not work for B-slenderness. Nevertheless the theorem is valid in our universe.

We use the known fact that underZFCDCCBP every ultrafilter of! is principal.

Because this can be proven with the same method we have applied here, we will

give a sketch of the proof. In a well-known way, we understand subsets of ! as

elements of ¹0; 1º!. Hence an ultrafilter F can viewed as a subset of ¹0; 1º! and
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thus player I has a winning strategy either for the game G��
X .F/ or for the game

G��
X .¹0; 1º! n F/. As in the previous proofs, we can use the winning strategy to

construct two functions a and b in ¹0; 1º! that differ in almost all places. This

defines two sets A and B for which A\B and .! nA/\ .! nB/ are finite. Because

A and B are based on the winning strategy for the same of the two games, either

A and B belong to F or A and B belong not to F. But if A and B are not in F then

! n A and ! n B are in F. Hence in both cases F contains a finite element. This

shows that F must be a principal filter.

Now we start with the proof of the theorem and assume that '.a/ ¤ 0 for some

a 2 B . For any W � ! we define ajW D
P

i2W a.i/ei . First we assume

.8W � !/.'.ajW / ¤ 0

H) .9U; V � W /.U \ V D ; ^ '.ajU / ¤ 0 ^ '.ajV / ¤ 0//

and lead this to a contradiction.

From this assumption we can use DC to get a family .Uj ; Vj /j 2! of pairs of

subsets of ! such that Uj \ Vj D ;, '.ajUj
/ ¤ 0, '.ajVj

/ ¤ 0 and furthermore

Uj C1 � Uj and Vj C1 � Uj for all j 2 !. Notice that the family .Vj /j 2!

is pairwise disjoint. Hereby we can construct a new homomorphism  from B

into G by defining  .x/ D '
�

P

j 2! x.i/ajVj

�

for x 2 B . Because all ajVj

are parts of the same bounded function a and x also is a bounded function, the

construction
P

j 2! x.i/ajVj
is bounded as well. But now we have a contradiction

to the B-slenderness of G, because  .ej / D '.ajVj
/ ¤ 0 for all j 2 !.

Consequently there must be some W � ! with '.ajW / ¤ 0 and

(3) .8U; V � W /.U \ V D ; H) .'.ajU / D 0 _ '.ajV / D 0//:

Next we show that the set

F D ¹U � !W '.ajW \U / ¤ 0º

is an ultrafilter. Therefore we have to prove:

a. ; 62 F;

b. if U � V � ! and U 2 F, then V 2 F;

c. if U 2 F and V 2 F, then U \ V 2 F;

d. for every U � ! either U 2 F or ! n U 2 F.

(a) is obvious.

For (b), notice that .W \U/\ .W \ .V nU// D ; and '.ajW \U / ¤ 0. Hence

'.ajW \.V nU // D 0 by (3). Because

ajW \V D ajW \U C ajW \.V nU /

we get '.ajW \V / ¤ 0 and therefore V 2 F.
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For (c), we get '.ajW \.V nU // D 0 in the same way. Now we have

ajW \V D ajW \U \V C ajW \.V nU /

and hence '.ajW \U \V / D '.ajW \V / ¤ 0. This means that U \ V 2 F.

At least (d) is a direct consequence of '.ajW / ¤ 0.

The assumption that '.ei / D 0 for all i 2 ! implies that F fails to principal.

�

A consequence of this theorem is that images of homomorphisms of B into

B-slender abelian groups are finitely generated as we know it from slenderness

too. This is required for the next corollary.

Corollary 5.3. Direct sums of B-slender groups are B-slender.

Proof. The proof is identical to that given in [3, p. 160] for slenderness. Let

' be a homomorphism into a sum
L

i2I Gi of B-slender abelian groupsGi . Then

the image of ' is contained in a subgroup
L

i2I 0 G0
i of the full sum, where G0

i is

a finitely generated subgroup of Gi and I 0 is at most countable. Thus the image

of ' is countable and therefore also B-slender. Hence '.ei / D 0 for almost all

i 2 !. �

In conclusion, it remains the open question whether any of the statements we

have proved with the axiom BP is equivalent to BP.
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