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Abstract – Let G be a torsion-free abelian group of finite rank. The orbits of the action of

Aut.G/ on the set of maximal independent subsets of G determine the indecomposable
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1. Introduction

Let G be a finite rank subgroup of V D QN. In the first part of this paper,

Sections 2–4, I study the action of Aut.G/ on the maximal independent subsets of

V contained in G. I show that the orbits of this action determine the isomorphism

classes of indecomposable direct decompositions of G.

In the second part, Sections 5 and 6, I study the action of Aut.G/ on the set of

strongly indecomposable quasi-decompositions of G. Each strongly indecompos-

able quasi-decomposition determines an isomorphism class of subgroups of G of

finite index which are direct sums of strongly indecomposable pure subgroups.

Finally, in Section 7, I initiate a programme to classify strongly indecompos-

able groups.
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Among other new results of this paper are a group theoretic proof of Lady’s

Theorem (Corollary 6.5) which states that G has only finitely many non-isomor-

phic summands, and an extension of the notion of regulating subgroup from acd

groups to all finite rank groups, (Remark 6.11(2)).

2. Notation

Let V D QN and denote by V the set of finite rank additive subgroups of V . Given

G 2 V and S � V , let hSi be the subgroup of V generated by S , ŒS� the subspace

of V generated by S and S� D ŒS� \ G. If S � G; S� is just the pure subgroup of

G generated by S , but in general we do not insist that S � G.

Note that hSi is the group of all finite integral combinations of S , and ŒS� is

the vector space of all finite rational combinations of S . Since S � V is integrally

independent if and only if S is rationally independent, we generally omit the

adjective.

We identify endomorphisms and automorphisms of G with their unique exten-

sions to the vector space ŒG�.

If r 2 Q�, the non-zero rationals, the statement r D a=b will imply that a 2 Z�,

the non-zero integers, b 2 N, the natural numbers and gcd.a; b/ D 1.

A type is a group � satisfying Z 6 � 6 Q. Since �=Z 6 Q=Z Š
Q

p2P
Z.p1/,

�=Z is a torsion group of p-rank at most 1 for each prime p.

Let a 2 G 2 V. The type of a in G,

typeG.a/ D ¹r 2 QW ra 2 Gº

which is clearly a type.1 When there is no ambiguity, we omit the subscript G.

A maximal independent subset of G 2 V is called a basis of G. Let Bases.G/

denote the set of bases of G. In particular, Bases.G/ � Bases.ŒG�/, the set of

vector space bases of ŒG�. It is well known, see for example [2, Theorem 16.3],

that rank.G/ is the cardinality of any basis. so rank.G/ D dim.ŒG�/. The following

proposition shows how the groups hBi; B� and ŒB�, where B 2 Bases.G/, are

related.

Proposition 2.1. Let G 2 V with rank.G/ D k and let B 2 Bases.G/.

1. hBi is a free subgroup of G of rank k;

2. ŒB� D ŒG� is a subspace of V of dimension k;

1 This definition of typeG.a/ is not the standard one, [3, §85], but is equivalent to it, as shown

in [8, §2.2].
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3. B� D G;

4. G=hBi and ŒB�=G are torsion groups, the latter being divisible.

Proof. (1) Each a 2 hBi has a unique representation as

a D
P

b2B nbb; nb 2 Z.

(2) B is maximally independent in ŒG�.

(3) By definition, B� 6 G. Since ŒG� D ŒB�; G 6 ŒB� \ G D B�.

(4) ŒB�=hBi Š .Q=Z/k is a torsion group; G=hBi is a subgroup and ŒB�=G a

factor group. �

To justify the name basis, we note that bases of groups share several properties

with bases of vector spaces. In particular, they are independent spanning sets in

the following sense:

Proposition 2.2. Let G 2 V and 0 ¤ H 2 Subgroups.G/. Then,

1. every basis of G is a basis of ŒG�;

2. for every B 2 Bases.ŒG�/, there is a minimum m 2 N such that mB D

¹mbW b 2 Bº 2 Bases.G/;

3. H has a basis of cardinality ` 6 rank.G/;

4. every basis of H extends to a basis of G;

5. if B 2 Bases.G/, then every a 2 G has a unique representation as

k�1
P

b2B nbb where nb 2 Z; k 2 N and gcd¹k; nbW b 2 Bº D 1.

Proof. (1) If B 2 Bases.G/, then B is a maximal independent subset of ŒG�.

(2) Since ŒG�=G is torsion, each b 2 B has finite order, say mb , modulo G. Let

m D lcm¹mbW b 2 Bº. Then m is minimal such that mB 2 Bases.G/.

(3) ŒH � 6 ŒG� and (1) imply ` 6 rank.G/.

(4) Let C be a basis of H . Then C is independent in G and hence extends to a

basis B D C [ D. Hence there is a least m 2 N such that B D C [ mD is a basis

of G.

(5) Let a 2 G. Since B [ ¹aº is integrally dependent, there exists a least

k 2 N such that ka D
P

b2B nbbW nb 2 Z. Hence a D k�1
P

b2B nbb 2 V

and gcd¹k; nbW b 2 Bº D 1. �

We call the expression k�1
P

b2B nbb the B-representation of a.
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3. Bases and decompositions

To simplify the notation, from now on ‘decomposition’ of a group means non-

trivial direct decomposition and ‘partition’ of a set means partition into non-empty

subsets.

Let B 2 Bases.G/ and let C P[ D be a partition of B . We say that C P[ D is a

splitting partition of B , and B is a splitting basis, if G D C� ˚ D�, while B is an

indecomposable basis if B has no splitting partition.

For clarification, note that G can have both splitting and non-splitting bases.

For example, let G D Z ˚ Q. Then B1 D ¹.1; 0/; .0; 1/º is a splitting basis but

B2 D ¹.1; 0/; .1; 1/º is a basis that is not splitting. However, Proposition 3.1 shows

that if G is indecomposable then all bases are indecomposable.

Proposition 3.1. Let G 2 V and B 2 Bases.G/. Then,

1. for any partition B D C P[ D; C� \ D� D ¹0º, and C P[ D is a splitting

partition of B if and only if C� C D� is pure in G;

2. G D H ˚ K if and only if B has a splitting partition B D C P[ D with

H D C� and K D D�.

Proof. (1) If B D C P[ D is any partition of B , then ŒC � \ ŒD� D 0, so

C� \ D� D 0. Since rank C� C rank D� D rank.G/; C� ˚ D� D G if and

only if C� C D� is pure in G.

(2) .H)/ Let C 2 Bases.H/ and D 2 Bases.K/. Then H D C� and K D D�

so B D C P[ D is a splitting basis for G.

.(H/ Since C� ˚ D� D G with C 2 Bases.H/ and D 2 Bases.K/; G D

H ˚ K. �

Proposition 3.1 is most useful in the contrapositive, which we state for future

reference.

Corollary 3.2. Let G 2 V. Then G is indecomposable if and only if for all

B 2 Bases.G/ and for all partitions B D C P[ D; C� ˚ D� is a subgroup of G

with non-zero torsion quotient. �

It is now routine to extend these results to complete decompositions of G. Let

B 2 Bases.G/, and let B D PS
i2Œt�Bi be a splitting partition of B . Denote the

corresponding decomposition
L

i2Œt�.Bi /� of G by G.B/.

Splitting partitions B D PS
i2Œt�Bi and C D PS

j 2Œs�Cj of B 2 Bases.G/ are

isomorphic, denoted B Š C, if t D s and there is a permutation � of t and

isomorphisms ˛i such that each .Ci�/˛i D .Bi�/�.
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Let G 2 V and B 2 Bases.G/. A decomposition G D
L

i2Œt� Ai is complete if

each Ai is indecomposable. A partition B D PS
i2Œt�Bi of B is a complete splitting

partition if G.B/ D
L

i2Œt�.Bi/� is a complete decomposition of G.

Proposition 3.3. Let G; Ai W i 2 Œt � 2 V. The following are equivalent:

1. G D
L

i2Œt� Ai is a complete decomposition;

2. for each Bi 2 Bases.Ai/; B D P
S

i2Œt�Bi is a complete splitting partition

such that for all i 2 Œt �; Ai D Bi�;

3. G has a basis B D PS
i2Œt�Bi such that

L

i2Œt�.Bi /� is a complete decompo-

sition which is pure in G.

Proof. By Proposition 3.1, for all parts of the proposition, the statement holds

if t D 2.

Assume that each statement holds if t D k and let t D kC1. Let H D
L

i>1 Ai ,

so G D A1 ˚ H . Then all parts hold with G replaced by H , and hence by

Proposition 3.1, all parts hold for G. �

4. Automorphisms of G

We first note without proof some well known properties of Aut.G/. For any

˛ 2 Aut.G/ and any set S � G; S˛ denotes the set ¹s˛W s 2 Sº.

Lemma 4.1. Let ˛ 2 Aut.G/; a 2 G; S � G; H and K 2 Subgroups.G/

and B 2 Bases.G/.

1. S�˛ D .S˛/�.

2. H \ K D 0 if and only if H˛ \ K˛ D 0.

3. type.a/ D type.a˛/.

4. Let r 2 Q; nb 2 Z for all b 2 B . Whenever either side is defined, so is the

other and
�

r
P

b2B nbb
�

˛ D r
P

b2B nb.b˛/. �

Proposition 4.2. Aut.G/ acts on Bases.G/. This action preserves splitting

partitions, indecomposable bases, and complete splitting partitions.

Proof. Let B 2 Bases.G/, and ˛ 2 Aut.G/. Then Lemma 4.1 (4) implies that

B˛ 2 Bases.G/. Clearly, B1G D B and for all ˛; ˇ 2 Aut.G/; .B˛/ˇ D B.˛ˇ/.

If B D C P[ D and G D C� ˚D�, then B˛ D C˛ P[ D˛ and G D C�˛ ˚D�˛.

Conversely, if B has no splitting partition, then B˛ has no splitting partition.
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Let B D P
S

i2Œt�Bi be a complete splitting partition of B , so G.B/ is a complete

decomposition. Then G D
L

i2Œt�.Bi˛/� is also a complete decomposition, so

B˛ D PS
i2Œt�Bi˛ is a complete splitting partition of B˛. �

Corollary 4.3. Let G 2 V. The following are equivalent:

1.
L

i2Œt� Ai is a complete decomposition of G;

2. G has a basis with complete splitting partition B D PS
i2Œt�Bi with Bi 2

Bases.Ai /;

3. for all ˛ 2 Aut.G/; PS
i2Œt�Bi˛ is a complete splitting partition of a basis

of G.

The action of Aut.G/ on Bases.G/, unlike that of Aut.ŒG�/ on Bases.ŒG�/,

may be far from transitive; in fact its orbits determine the isomorphism classes of

direct decompositions of G.

We say that complete decompositions DW
L

i2Œt� Ai and EW
L

j 2Œs� Cj of G are

isomorphic, denoted D Š E, if their indecomposable summands are pairwise

isomorphic, i.e. t D s and there is a permutation � of Œt � such that for all

i 2 Œt �; Ci� Š Bi .

Proposition 4.4. Let B D PS
i2Œt�Bi ; C D PS

j 2Œs�Cj be complete partitions

of B 2 Bases.G/. There exists ˛ 2 Aut.G/ such that B˛ D C if and only if

G.B/ Š G.C/.

Proof. Assume there exists such ˛ 2 Aut.G/. Proposition 4.4 implies that for

each i 2 Œt �, there is a j 2 Œs� such that .Cj /� D .Bi˛/� and this correspondence

is 1–1. Hence G.B/ Š G.C /.

Conversely, if for all i 2 Œt �; ˛i W .Bi/� ! .Ci�/� are isomorphisms, then

˛ D .˛i W i 2 Œt �/ 2 Aut.G/. �

Theorem 4.5. The orbits of Aut.G/ acting on the complete decompositions of

G are the isomorphic complete decompositions.

Proof. Let D; E be complete decompositions of G. Then by Proposition 4.4

D Š E if and only if there exists ˛ 2 Aut.G/ such that D˛ D E.

Thus every orbit consists of isomorphism classes of complete decompositions,

and every isomorphic pair of complete decompositions are in the same orbit. �

To clarify Theorem 4.5, note that in general, G may have several non-isomor-

phic complete decompositions, each of which determines several complete split-

ting partitions of bases of G. For each isomorphic pair B; C of complete splitting

partitions of bases, there may be several ˛ 2 Aut.ŒG�/ such that B˛ D C.
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5. The quasi category of V

Let G 2 V. There is a class of subgroups of V which shed light on the structure

of G.

Definition 5.1. Let H; G 2 V. H is

� quasi-equal to G, written H PDG, if there exists r 2 Q� such that2 rH D G;

� quasi-isomorphic to G, written H � G, if H and G are isomorphic to quasi-

equal subgroups of V .

Quasi-equal groups may have very different structures. Fuchs [3, Example 2,

§88] presents examples of groups G PDH of arbitrary finite rank n > 2 such that

G is completely decomposable and H is indecomposable.

The properties of these relations are summarised in the following proposition,

whose proof is routine.

Proposition 5.2. (1) Quasi-equality and quasi-isomorphism are equivalences

on V which extend equality and isomorphism respectively.

(2) .a=b/H D G if and only if aH D bG 6 H \ G PDG.

(3) H PDG implies that ŒH � D ŒG� and H � G implies ŒH � Š ŒG�.

(4) If A and B are pure subgroups of G with A PDB , then A D B .

Notation 5.3. Let G 2 V.

� A quasi-decomposition G is a quasi-equality G PD
L

i Ai ; the groups Ai are

called quasi-summands of G.

� G is strongly indecomposable if it has no proper quasi-decompositions.

� A strong decomposition is a direct sum of strongly indecomposable groups,

and a strong quasi-decomposition of G is a strong decomposition quasi-equal

to G.

Completely decomposable groups are the type examples of strong decom-

positions, and almost completely decomposable (acd) groups of strong quasi-

decompositions. In these cases, the direct summands of a strong (quasi-)decom-

position are rank 1 groups.

2 This definition, as well as the notation, differs from that in [3, §92]. However, it is more

suited to our context.
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Definition 5.4. The quasi-automorphism group of G

Q� Aut.G/ WD ¹r˛W r 2 Q�; ˛ 2 Aut.G/º:

The properties of Q� Aut.G/ are summarised in the following proposition,

whose proof follows immediately from the definitions:

Proposition 5.5. For all G 2 V,

1. Aut.G/ 6 Q� Aut.G/ 6 Aut.ŒG�/;

2. Aut.G/ is a normal subgroup of Q� Aut.G/;

3. H PDG if and only if there exists r˛ 2 Q� Aut.ŒG�/ such that rG˛ D H ;

4. Q� Aut.G/ acts on the following sets: strongly indecomposable subgroups

of G, quasi-decompositions of G, strong quasi-decompositions of G. �

The notions of quasi-equality and quasi-isomorphism are due to [5] and [6]

and were put into a categorical context by [9]. The properties of this category are

outlined in [1, §7].

The most important such property is the existence and uniqueness of strong

quasi-decompositions.

Theorem 5.6 (Jónsson’s Theorem, [3, Theorem 92.5]). Let G 2 V. Then G

has strong quasi-decompositions.

If
L

i2Œt� Ai and
L

j 2Œm� Cj are strong quasi-decompositions of G, then t D m

and there is a permutation � of Œt � such that for all i; Ai � Ci� .

6. Jónsson bases

Throughout this section, 0 ¤ G 2 V. Let J be a set of representatives in V of

the isomorphism classes of the strongly indecomposable quasi-summands of G.

Jónsson’s Theorem implies that J is finite. Let Rep.G/ be the set of all such J.

Recall that endomorphisms of G are identified with their extensions to ŒG�

and that for each J 2 J; J� D ŒJ � \ G. Recall too that set partitions and group

decompositions are assumed to be non-trivial.

Notation 6.1. (1) A Jónsson basis of G is a strong decomposition
L

i Ai of

finite index in G such that each Ai is pure in G.

(2) Jon.G/ is the set of all Jónsson bases of G.

(3) If A 2 Jon.G/, the finite group G=A is a Jónsson quotient of G.
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Remark 6.2. (1) If G is acd, Jon.G/ consists of full completely decomposable

subgroups.

(2) By Proposition 5.5 (4), Aut.G/ acts on ((strongly) indecomposable) sum-

mands. The following proposition shows that Aut.G/ acts on Jónsson bases.

Proposition 6.3. Let J 2 Rep.G/.

1. For all J 2 J, there exists a maximum nJ 2 N such that
L

J 2J.J�/nJ 2

Jon.G/;

2. for all A 2 Jon.G/ and all ˛ 2 Aut.G/; A˛ 2 Jon.G/;

3. for all A 2 Jon.G/, there exists ˛ 2 Aut.G/ such that A˛ D
L

J 2J.J�/nJ .

Proof. (1) Let nJ be the number of isomorphic copies of J which occur in

some strong decomposition of finite index in G. By Jónsson’s Theorem, nJ is

uniquely determined. The group
L

J 2J.J�/nJ is a strong decomposition of finite

index in G in which each summand J� is a pure subgroup of G.

(2) If A D
L

i2Œt� Ai , then A˛ D
L

i2Œt�.Ai˛/, a strong decomposition of finite

index in G.

(3) For all A D
L

i2Œt� Ai 2 Jon.G/, there exists ˛i 2 Aut.Ai/, a partition

J D PSJi and mJ 2 Œ0; nJ � with
P

mj D nj , such that Ai˛i D
L

J 2Ji
.J�/mJ .

Take ˛ D
P

i ˛i . Then A˛ D
L

J 2J.J�/nJ �

We now show the relation between decompositions of G and Jon.G/. To clar-

ify the notation, the decompositions of A 2 Jon.G/ in the following proposition,

are not necessarily their decompositions into pure strongly indecomposable sum-

mands described in Notation 6.1(1).

Proposition 6.4. (1) If G D
L

i2Œt� Hi and Ai 2 Jon.Hi /, then
L

i2Œt� Ai 2

Jon.G/.

(2) Let A D
L

i2Œt� Bi 2 Jon.G/, then
L

i2Œt� Bi� PDG and
L

i2Œt� Bi� D G if

and only if
P

i2Œt� Bi� is pure in G.

(3) If A D
L

i2Œt� Bi 2 Jon.G/, then for all J 2 J, there exists a partition

nJ D
P

i2Œt�.mi /J (where we allow some terms to be 0), such that Bi� Š
�L

J 2J.J�/.mi /J
�

�
.

Proof. (1)
L

i2Œt� Ai is a strong decomposition of finite index in G whose

summands are pure in Hi and hence in G.

(2) The groups Bi� are disjoint pure subgroups of G whose sum has finite

index in G. Hence
P

i2Œt� Bi� is pure in G if and only if G D
L

i2Œt� Bi�.
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(3) By Jónsson’s Theorem, each Bi is isomorphic to a direct sum of elements of

the set J and their sum accounts for all of them. Hence by and Proposition 5.2 (3),

Bi� Š
�
L

J 2J.J�/.mi /J
�

�
for some .mi /J 2 Œ0; nJ � with

P

i2Œt�.mi /J D nJ . �

Corollary 6.5 (Lady’s Theorem, [4, Theorem 6.9]). Let G 2 V. Then G has

only finitely many non-isomorphic summands.3

Proof. If H is a summand of G and J 2 Rep.G/, then By Proposition 6.4,

H D A� for some A Š
L

J 2J.J�/mj ; mj 2 Œ0; nj �. There are only finitely many

choices for J and mJ . �

Notation 6.6. Let A 2 Jon.G/.

� A decomposition A D
L

i2Œt� Ai is a splitting decomposition of A if G D
L

i2Œt� Ai�;

� A is non-split if A has no splitting decomposition;

� A D
L

i2Œt� Ai is a complete splitting decomposition if it is a splitting

decomposition and each Ai is non-split.

Propositions 6.3 and 6.4 have the following immediate corollaries:

Corollary 6.7. (1) G is indecomposable if and only if every A 2 Jon.G/ is

non-split.

(2) If G D
L

i2Œt� Hi then for all Ai 2 Jon.Hi/;
L

i2Œt� Ai is a splitting

decomposition of A 2 Jon.A/. The decomposition of G is complete if and only

if the splitting decomposition of A is.

Theorem 6.8. Aut.G/ acts on complete decompositions of G and on complete

splitting Jónsson bases. In both cases, the orbits are the isomorphism classes of

complete decompositions and complete splitting Jónsson bases.

Proof. Let DW
L

i2Œt� Hi be an indecomposable decomposition of G and
L

i2Œt� Ai a corresponding complete splitting Jónsson basis. Let ˛ 2 Aut.G/.

Then
L

i2Œt� Hi˛ is also an indecomposable decomposition and
L

i2Œt� Ai˛ the

corresponding complete splitting Jónsson basis.

3 In his recent edition of Abelian groups [4, Lemma 6.8] Fuchs states that since Lady’s

Theorem is one of the most important results in torsion-free abelian group theory, a group-

theoretical proof would be most welcome. Our proof replaces the Jordan–Zassenhaus Lemma

in Lady’s proof by Jónsson’s Theorem, whose proof, while still ring theoretical, is rather more

transparent.
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On the other hand, let EW
L

i2Œt� Ki be an indecomposable decomposition of

G with each Ki isomorphic to a unique Hi by some isomorphism ˛i . Then

˛ D .˛i W i 2 Œt �/ 2 Aut.G/, so E is in the orbit of D. Thus the orbit of D under

Aut.G/ consists of isomorphic indecomposable decomposition.

The argument extends to the corresponding Jónsson bases. �

Remark 6.9. It is clear that each decomposition of G refines to a complete

decomposition, and each splitting decomposition of A 2 Jon.G/ refines to a

complete splitting decomposition. In neither case is the refinement necessarily

unique.

6.1 – Jónsson quotients

Let G 2 V and A 2 Jon.G/. Let �W G ! G=A be the natural surjection, and let

U ˚ W be a decomposition of G=A. We say U ˚ W lifts to G if there exists a

decomposition G D K ˚ L such that U D K� and W D L�.

Proposition 6.10. G=A D U ˚ W is a decomposition lifting to G D K ˚ L

if and only if A has a splitting decomposition B ˚ C such that U Š B�=B and

W D C�=C .

Proof. .(H/ If such a splitting decomposition exists, then G D B� ˚ C� by

Proposition 6.4(2), so G=A D B�=B ˚ C�=C .

.H)/ Suppose G D K ˚ L with U D K� and W D L�. Let B D K \ A and

C D L \ A, so B \ C D 0. Let a 2 A, say a D k C ` with k 2 K and ` 2 L.

Since a� D 0, if k� ¤ 0, then 0 ¤ `� D �k� 2 U \ W , a contradiction. Hence

B C C D A. Thus B ˚ C is a splitting decomposition of A and G=A D U ˚ W

lifts to B� ˚ C� D G. �

Remark 6.11. (1) If G is indecomposable, then [8, Example 16.8.11] shows

that G� need not be. However, if U is an indecomposable summand of G� then

U��1 is indecomposable in G.

(2) Since Jónsson quotients are finite, there is a least index e 2 N and

A 2 Jon.G/ such that jG=Aj D e. Such A are called regulating Jónsson bases

since in the case that G is almost completely decomposable, they are regulating

subgroups as defined in a different way in [8, §4.2]. Thus regulating Jónsson bases

are an extension to V of regulating subgroups of acd groups. Their properties

remain to be investigated.
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Proposition 6.12. Let G 2 V; A 2 Jon.G/ and T D G=A. Then T D
L

i Si

is a decomposition which lifts to a complete decomposition
L

i Hi of G if and

only if A D
L

i Ci is a complete splitting decomposition of A with Ci� Š Hi and

each Si has no decomposition which lifts to G.

Proof. The statement follows Proposition 6.10 and a routine induction on the

number of summands. �

We turn now to the action of Aut.G/ on the set of Jónsson quotients of G. The

proof of the following lemma is a routine application of the definitions.

Lemma 6.13. Let A 2 Jon.G/ and ˛ 2 Aut.G/. Define N̨ W G=A ! G=.A˛/

by N̨ W g C A ! g˛ C A˛. Then N̨ is an isomorphism and .G=A/˛ D .G=A/ N̨ is a

group action. �

Proposition 6.14. (1) If �W G ! G=A is the natural epimorphism, then

˛�1�˛W G ! G=A˛ is the natural epimorphism.

(2) If G=A D S ˚ T and this decomposition lifts to G, then G=A˛ D S N̨ ˚ T N̨

and this decomposition also lifts to G.

(3) The map ˛ ! N̨ is a (non-abelian) group homomorphism. Its image

is the group of automorphisms of G=A which lift to G, and its kernel is ¹˛ 2

Aut.G/W ˛ � 1 2 n End.G/º where n D exp.G=A/.

Proof. (1) follows from the definition of the group action.

(2) Let �W G=A ! S be the projection determined by the first decomposition.

Then �0 D N̨ �1� N̨ W G=A˛ ! S N̨ is the projection determined by the second

decomposition. Since � lifts to G, say G D B� ˚ C� and A D B ˚ C , then

A˛ D B˛˚C˛ and G D .B˛/�˚.C˛/�, so �0 is the projection which determines

the second decomposition.

(3) This is a routine calculation. �

Being finite, G=A has, up to isomorphism, a unique complete decomposition,

which in general does not lift to G. We define a decomposition of G=A which lifts

to G to be unrefinable if it has no refinement lifting to G.

Theorem 6.15. Let G 2 V and let A be the set of unrefinable decompositions

of Jónsson quotients of G. Aut.G/ acts on A and the finitely many orbits of this

action consist of isomorphic unrefinable decompositions.
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Proof. Let D 2 A, so D D
L

I2Œt� Di an unrefinable decomposition of

G=A for some A 2 Jon.G/. Then for all ˛ 2 Aut.G/; D is isomorphic to

D˛ WD
L

I2Œt� Di N̨ as described in Lemma 6.13, so all elements of the orbit

containing D are isomorphic. �

If A0 2 Jon.G/ it is possible that G=A Š G=A0 even if A and A0 are in different

orbits of Aut.G/. In any case, the number of isomorphism classes of unrefinable

Jónsson quotients of G is no greater than the finite number of orbits of Aut.G/

acting on complete decompositions of G

7. Strongly indecomposable groups

Strongly indecomposable groups play a crucial rôle in this paper. I am not aware

of any published classification, but several important properties and examples can

be found in [3, §92] and [4, §9]. In this section, I present a new characterisation

of strongly indecomposable groups. Without loss of generality, we assume G is

reduced and rank.G/ > 1. Recall that a strong decomposition in V is a direct sum

of strongly indecomposable groups.

Notation 7.1. Let R 6 G 2 V.

� The pair .R; G/ has Property SI if R is a strong decomposition such that

G=R is an infinite torsion group with no decomposition lifting to G.

� If B 2 Bases.G/ then .B/� D
L

b2B b�.

A routine calculation shows that Property SI is invariant under Q� Aut.G/.

Theorem 7.2. Let G 2 V. Then G is strongly indecomposable if and only if

for all B 2 Bases.G/; ..B/�; G/ has property SI.

Proof. .H)/ Let B 2 Bases.G/, so .B/� is a strong decomposition and

G=.B/� is torsion. If G=.B/� is finite, then for some m 2 N; mG D .B/�, a

contradiction, so G=.B/� is infinite. If some summand of G=.B/� lifts to G then

G is decomposable, another contradiction. Hence ..B/� ; G/ has Property SI.

.(H/ Suppose that for all B 2 Bases.G/; ..B/�; G/ has property SI, but that

for some m 2 N; mG D H ˚ K. Let C 2 Bases.H/ and D 2 Bases.K/, so

that by Proposition 3.1, mG D C� ˚ D�. Let B D C [ D. Then mG=.B/� has a

summand C�=B� lifting to the summand C� of G, a contradiction. Hence no basis

of mG has a splitting partition, so G is strongly indecomposable. �
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A generalisation of Theorem 7.2, with essentially the same proof can be

obtained by replacing the strong decomposition .B/� by an arbitrary full strong

decomposition contained in G.

Theorem 7.3. Let G 2 V. Then G is strongly indecomposable if and only if

for all full strong decompositions D contained in G; .D; G/ has property SI.
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