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ABSTRACT — Let G be a torsion-free abelian group of finite rank. The orbits of the action of
Aut(G) on the set of maximal independent subsets of G determine the indecomposable
decompositions. G contains a direct sum of pure strongly indecomposable groups as a
subgroup of finite index.
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1. Introduction

Let G be a finite rank subgroup of V' = QN. In the first part of this paper,
Sections 2—4, I study the action of Aut(G) on the maximal independent subsets of
V contained in G. I show that the orbits of this action determine the isomorphism
classes of indecomposable direct decompositions of G.

In the second part, Sections 5 and 6, I study the action of Aut(G) on the set of
strongly indecomposable quasi-decompositions of G. Each strongly indecompos-
able quasi-decomposition determines an isomorphism class of subgroups of G of
finite index which are direct sums of strongly indecomposable pure subgroups.

Finally, in Section 7, I initiate a programme to classify strongly indecompos-
able groups.
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Among other new results of this paper are a group theoretic proof of Lady’s
Theorem (Corollary 6.5) which states that G has only finitely many non-isomor-
phic summands, and an extension of the notion of regulating subgroup from acd
groups to all finite rank groups, (Remark 6.11(2)).

2. Notation

Let V = Q™ and denote by V the set of finite rank additive subgroups of V. Given
G €Vand S C V,let (S) be the subgroup of V' generated by S, [S] the subspace
of V generated by S and Sx = [S]NG.If S C G, S is just the pure subgroup of
G generated by S, but in general we do not insist that S € G.

Note that (S) is the group of all finite integral combinations of S, and [S] is
the vector space of all finite rational combinations of S. Since S C V is integrally
independent if and only if S is rationally independent, we generally omit the
adjective.

We identify endomorphisms and automorphisms of G with their unique exten-
sions to the vector space [G].

If r € Q*, the non-zero rationals, the statement r = a/b will imply thata € Z*,
the non-zero integers, b € IN, the natural numbers and gcd(a, b) = 1.

A typeis a group 7 satisfying Z < v < Q. Since 1/Z < Q/Z = [[ep Z(p*),
7/7 is a torsion group of p-rank at most 1 for each prime p.

Leta € G € V. The type of a in G,

typeg(a) ={r € Q:ra € G}

which is clearly a type.! When there is no ambiguity, we omit the subscript G.

A maximal independent subset of G € 'V is called a basis of G. Let Bases(G)
denote the set of bases of G. In particular, Bases(G) < Bases([G]), the set of
vector space bases of [G]. It is well known, see for example [2, Theorem 16.3],
that rank(G) is the cardinality of any basis. so rank(G) = dim([G]). The following
proposition shows how the groups (B), B« and [B], where B € Bases(G), are
related.

ProrosiTioN 2.1. Let G € V with rank(G) = k and let B € Bases(G).
1. (B) is a free subgroup of G of rank k;
2. [B] = [G] is a subspace of V of dimension k;

1 This definition of type; (@) is not the standard one, [3, §85], but is equivalent to it, as shown
in [8, §2.2].
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4. G/{(B) and [B]/ G are torsion groups, the latter being divisible.

Proor. (1) Each a € (B) has a unique representation as
a=7y pcphpb, np € Z.
(2) B is maximally independent in [G].
(3) By definition, B« < G. Since [G] = [B], G < [B]N G = B..

(4) [B]/(B) = (Q/Z)* is a torsion group; G/(B) is a subgroup and [B]/G a
factor group. O

To justify the name basis, we note that bases of groups share several properties
with bases of vector spaces. In particular, they are independent spanning sets in
the following sense:

ProrosiTioN 2.2. Let G € V and 0 # H € Subgroups(G). Then,
1. every basis of G is a basis of [G];

2. for every B € Bases(|G]), there is a minimum m € N such that mB =
{mb:b € B} € Bases(G);

3. H has a basis of cardinality £ < rank(G);
4. every basis of H extends to a basis of G;

5. if B € Bases(G), then every a € G has a unique representation as
k=1 cpnpb where np € Z, k € N and ged{k, np:b € B} = 1.

Proor. (1) If B € Bases(G), then B is a maximal independent subset of [G].

(2) Since [G]/ G is torsion, each b € B has finite order, say m;, modulo G. Let
m = lcm{my:b € B}. Then m is minimal such that m B € Bases(G).

(3) [H] £ [G] and (1) imply £ < rank(G).

(4) Let C be a basis of H. Then C is independent in G and hence extends to a
basis B = C U D. Hence there is a least m € IN such that B = C Um D is a basis
of G.

(5) Let a € G. Since B U {a} is integrally dependent, there exists a least

k € N such that ka = Y ,cpnphb:ny € Z.Hencea = k™'Y, pgnpb € V
and ged{k, np:b € B} = 1. |

We call the expression k=1 Y, g npb the B-representation of a.
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3. Bases and decompositions

To simplify the notation, from now on ‘decomposition’ of a group means non-
trivial direct decomposition and ‘partition’ of a set means partition into non-empty
subsets.

Let B € Bases(G) and let C U D be a partition of B. We say that C U D is a
splitting partition of B, and B is a splitting basis, if G = Cx & D, while B is an
indecomposable basis if B has no splitting partition.

For clarification, note that G can have both splitting and non-splitting bases.
For example, let G = Z & Q. Then B; = {(1,0), (0, 1)} is a splitting basis but
B, = {(1,0), (1, 1)} is a basis that is not splitting. However, Proposition 3.1 shows
that if G is indecomposable then all bases are indecomposable.

ProrosiTion 3.1. Let G € V and B € Bases(G). Then,
1. for any partition B = C U D, Cx N Dy = {0}, and C U D is a splitting
partition of B if and only if Cx + D is pure in G,
2. G = H @ K if and only if B has a splitting partition B = C U D with
H =Cyand K = D..

Proor. (1) If B = C U D is any partition of B, then [C] N [D] = 0, so
C« N D, = 0. Since rank Cyx + rank D, = rank(G), C« & D, = G if and
only if Cyx + Dy is pure in G.

(2) (=) Let C € Bases(H)and D € Bases(K).Then H = C, and K = D.
so B = C U D is a splitting basis for G.

(<) Since C« & D« = G with C € Bases(H) and D € Bases(K), G =
HoK. O

Proposition 3.1 is most useful in the contrapositive, which we state for future
reference.

CoroLLARY 3.2. Let G € V. Then G is indecomposable if and only if for all
B € Bases(G) and for all partitions B = C U D, Cx ® Dy is a subgroup of G
with non-zero torsion quotient. O

It is now routine to extend these results to complete decompositions of G. Let
B € Bases(G), and let B = Uie[z]Bi be a splitting partition of B. Denote the
corresponding decomposition P; [, (Bi)« of G by G(B).

Splitting partitions B = Uie[z]Bi and C = Uje[s]Cj of B € Bases(G) are
isomorphic, denoted B =~ C, if t+ = s and there is a permutation = of ¢ and
isomorphisms ¢; such that each (Cjx)o; = (Bix)x-
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Let G € Vand B € Bases(G). A decomposition G = (P, ¢[;; 4i is complete if
each A; is indecomposable. A partition B = Uie[t]Bi of B is a complete splitting
partition it G(B) = P; efr](Bi)« is a complete decomposition of G.

ProvrosiTion 3.3. Let G, A;:i € [t] € V. The following are equivalent:

1. G = ;¢ Ai is a complete decomposition;,

2. for each B; € Bases(4;), B = Uie[,]Bi is a complete splitting partition
such that for all i € [t], A;i = Bix;

3. G has a basis B = Uie[t]Bi such that @ie[z](Bi)* is a complete decompo-
sition which is pure in G.

Proor. By Proposition 3.1, for all parts of the proposition, the statement holds
ifr = 2.

Assume thateach statement holds if = k andletr = k+1.Let H = @, Ai,
so G = A; & H. Then all parts hold with G replaced by H, and hence by
Proposition 3.1, all parts hold for G. O

4. Automorphisms of G

We first note without proof some well known properties of Aut(G). For any
a € Aut(G) and any set S € G, So denotes the set {sa:s € S}.

LemMma 4.1. Let @ € Aut(G), a € G, S € G, H and K € Subgroups(G)
and B € Bases(G).

1. S*Ol = (SO[)*.

2. HNK =0ifandonly if He N Ka = 0.
3. type(a) = type(aw).
4

. Letr € Q, np € Z for all b € B. Whenever either side is defined, so is the
other and (r Y_pcgnpb)o = rY g np(ba). a

ProposiTion 4.2. Aut(G) acts on Bases(G). This action preserves splitting
partitions, indecomposable bases, and complete splitting partitions.

Proor. Let B € Bases(G),and ¢ € Aut(G). Then Lemma 4.1 (4) implies that
Ba € Bases(G). Clearly, Blg = B and for all @, 8 € Aut(G), (Ba)B = B(ap).

IfB=CUDandG = Cy® Dy, then Ba = CaUDa and G = Cxa & Dyc.
Conversely, if B has no splitting partition, then Bo has no splitting partition.
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LetB = Uie[t] B; be a complete splitting partition of B, so G(B) is a complete
decomposition. Then G = (P;¢[;(Bia)« is also a complete decomposition, so
Ba = Uie[z]Bi“ is a complete splitting partition of Ba. |

CoroLLARY 4.3. Let G € V. The following are equivalent:
1. @ie[z] A; is a complete decomposition of G;

2. G has a basis with complete splitting partition B = Uie[z]Bi with B; €
Bases(4;);

3. for all @ € Aut(G), Uie[z]Bia is a complete splitting partition of a basis
of G.

The action of Aut(G) on Bases(G), unlike that of Aut([G]) on Bases([G]),
may be far from transitive; in fact its orbits determine the isomorphism classes of
direct decompositions of G.

We say that complete decompositions D: (P, ¢, Ai and €: (P ) C; of G are
isomorphic, denoted D =~ &, if their indecomposable summands are pairwise
isomorphic, i.e. t = s and there is a permutation 7 of [¢] such that for all

i€ [l], Cir = B;.

ProrosiTION 4.4. Let B = Uie[t]Bi’ C = UjE[S]C,- be complete partitions
of B € Bases(G). There exists o € Aut(G) such that Ba = C if and only if
G(B) = G(C).

Proor. Assume there exists such « € Aut(G). Proposition 4.4 implies that for
eachi € [t], there is a j € [s] such that (Cj)« = (B;a)« and this correspondence
is 1-1. Hence G(B) = G(C).

Conversely, if for all i € [t], «;:(Bi)« — (Cir)s are isomorphisms, then
a = (a;:i € [t]) € Aut(G). O

THeEOREM 4.5. The orbits of Aut(G) acting on the complete decompositions of
G are the isomorphic complete decompositions.

Proor. Let D, & be complete decompositions of G. Then by Proposition 4.4
D =~ € if and only if there exists « € Aut(G) such that Do = €.

Thus every orbit consists of isomorphism classes of complete decompositions,
and every isomorphic pair of complete decompositions are in the same orbit. [

To clarify Theorem 4.5, note that in general, G may have several non-isomor-
phic complete decompositions, each of which determines several complete split-
ting partitions of bases of G. For each isomorphic pair B, € of complete splitting
partitions of bases, there may be several « € Aut([G]) such that Ba = C.
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5. The quasi category of V

Let G € V. There is a class of subgroups of V' which shed light on the structure
of G.

DeriNtTION 5.1. Let H, G € V. H is
e quasi-equal to G, written H =G, if there exists r € Q* such that? rH = G;

e quasi-isomorphic to G, written H ~ G, if H and G are isomorphic to quasi-
equal subgroups of V.

Quasi-equal groups may have very different structures. Fuchs [3, Example 2,
§88] presents examples of groups G=H of arbitrary finite rank n > 2 such that
G is completely decomposable and H is indecomposable.

The properties of these relations are summarised in the following proposition,
whose proof is routine.

ProrosiTion 5.2. (1) Quasi-equality and quasi-isomorphism are equivalences
on V which extend equality and isomorphism respectively.

2)(a/b)H = G ifandonlyifaH = bG < H N G=G.
(3) H=G implies that [H] = [G] and H ~ G implies [H] =~ [G].
(4) If A and B are pure subgroups of G with A=B, then A = B.

NotaTiON 5.3. Let G € V.

e A quasi-decomposition G is a quasi-equality G= €D, A;; the groups A; are
called quasi-summands of G.

e G is strongly indecomposable if it has no proper quasi-decompositions.

e A strong decomposition is a direct sum of strongly indecomposable groups,
and a strong quasi-decomposition of G is a strong decomposition quasi-equal
to G.

Completely decomposable groups are the type examples of strong decom-
positions, and almost completely decomposable (acd) groups of strong quasi-
decompositions. In these cases, the direct summands of a strong (quasi-)decom-
position are rank 1 groups.

2This definition, as well as the notation, differs from that in [3, §92]. However, it is more
suited to our context.
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DEerintTION 5.4. The quasi-automorphism group of G
Q* Aut(G) :={ra:r € Q*, a € Aut(G)}.

The properties of Q* Aut(G) are summarised in the following proposition,
whose proof follows immediately from the definitions:

ProrosITION 5.5. Forall G €V,
1. Aut(G) < Q* Aut(G) < Aut([G]);
2. Aut(G) is a normal subgroup of Q* Aut(G);
3. H=G if and only if there exists ra € Q* Aut([G]) such that rGo = H;
4.

Q* Aut(G) acts on the following sets: strongly indecomposable subgroups
of G, quasi-decompositions of G, strong quasi-decompositions of G. |

The notions of quasi-equality and quasi-isomorphism are due to [5] and [6]
and were put into a categorical context by [9]. The properties of this category are
outlined in [1, §7].

The most important such property is the existence and uniqueness of strong
quasi-decompositions.

TraEOREM 5.6 (Jonsson’s Theorem, [3, Theorem 92.5]). Let G € V. Then G
has strong quasi-decompositions.

If Djep) Ai and @ ey C; are strong quasi-decompositions of G, thent = m
and there is a permutation v of [t] such that for all i, A; ~ Ciy.

6. Jonsson bases

Throughout this section, 0 # G € V. Let J be a set of representatives in V of
the isomorphism classes of the strongly indecomposable quasi-summands of G.
Jonsson’s Theorem implies that J is finite. Let Rep(G) be the set of all such J.

Recall that endomorphisms of G are identified with their extensions to [G]
and that for each J € J, J« = [J] N G. Recall too that set partitions and group
decompositions are assumed to be non-trivial.

NotartioN 6.1. (1) A Jonsson basis of G is a strong decomposition €; A4; of
finite index in G such that each A; is pure in G.

(2) Jon(G) is the set of all Jénsson bases of G.
(3) If A € Jon(G), the finite group G/ A is a Jonsson quotient of G.
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RemMaRrk 6.2. (1) If G is acd, Jon(G) consists of full completely decomposable
subgroups.

(2) By Proposition 5.5 (4), Aut(G) acts on ((strongly) indecomposable) sum-
mands. The following proposition shows that Aut(G) acts on J6nsson bases.

Prorosition 6.3. Let J € Rep(G).
1. Forall J € J, there exists a maximum ny € IN such that @Jeg(J*)”J €
Jon(G);
2. forall A € Jon(G) and all o € Aut(G), Ax € Jon(G);
3. for all A € Jon(G), there exists a € Aut(G) such that Aa = @ jc5(Jx)".

Proor. (1) Let ny be the number of isomorphic copies of J which occur in
some strong decomposition of finite index in G. By Jonsson’s Theorem, n; is
uniquely determined. The group P ;. 4(J«)"” is a strong decomposition of finite
index in G in which each summand J, is a pure subgroup of G.

() If A = @ ¢ Ai» then Ao = P, ¢[;)(4i@), a strong decomposition of finite
index in G.

(3) Forall A = @ie[z] A; € Jon(G), there exists a; € Aut(4;), a partition
J = UH,- and my € [0,ny] with ) m; = nj, such that 4;o; = @Jegi(J*)mf.
Take @ = ), ;. Then Aa = @ ;4(J)"/ O

We now show the relation between decompositions of G and Jon(G). To clar-
ify the notation, the decompositions of A € Jon(G) in the following proposition,
are not necessarily their decompositions into pure strongly indecomposable sum-
mands described in Notation 6.1(1).

Prorosition 6.4. (1) If G = @ie[z] H; and A; € Jon(H;), then @ie[z] A; €
Jon(G).

(2) Let A = @D;cpyy Bi € Jon(G), then @ ¢y Bix=G and P,y Bix = G if
and only if 3 ; (s Bix is pure in G.

B IfA = @ie[r] B; € Jon(G), then for all J € {, there exists a partition
ny = Zie[z](m,-)J (where we allow some terms to be 0), such that Bj, =

(@Jeg(']*)(mi)])*'

Proor. (1) ;¢ 4i is a strong decomposition of finite index in G whose
summands are pure in H; and hence in G.

(2) The groups B;. are disjoint pure subgroups of G whose sum has finite
index in G. Hence Zie[z] Bj is pure in G if and only if G = @ie[z] Bi .
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(3) By Jonsson’s Theorem, each B; is isomorphic to a direct sum of elements of
the set J and their sum accounts for all of them. Hence by and Proposition 5.2 (3),
Bjy =~ (GB‘,eg(J*)(’”i)J)gk for some (m;)y € [0, n ;] with Zie[t](mi)J =ny. O

CoroLLARY 6.5 (Lady’s Theorem, [4, Theorem 6.9]). Let G € V. Then G has
only finitely many non-isomorphic summands.>

Proor. If H is a summand of G and J € Rep(G), then By Proposition 6.4,
H = A, for some 4 = P ;4(Jx)™ , m; € [0,n;]. There are only finitely many
choices for J and m . O

NortaTion 6.6. Let A € Jon(G).

o A decomposition A = P, [, Ai is a splitting decomposition of A if G =
Dicpr Aix

o A is non-split if A has no splitting decomposition;

o A = Dy Ai is a complete splitting decomposition if it is a splitting
decomposition and each A; is non-split.

Propositions 6.3 and 6.4 have the following immediate corollaries:

CoroLLARY 6.7. (1) G is indecomposable if and only if every A € Jon(G) is
non-split.

() If G = Dy Hi then for all A; € Jon(H;), D;eiAi is a splitting
decomposition of A € Jon(A). The decomposition of G is complete if and only
if the splitting decomposition of A is.

THEOREM 6.8. Aut(G) acts on complete decompositions of G and on complete
splitting Jonsson bases. In both cases, the orbits are the isomorphism classes of
complete decompositions and complete splitting Jonsson bases.

Proor. Let D:(P;¢,) Hi be an indecomposable decomposition of G and
Dicp Ai a corresponding complete splitting Jonsson basis. Let & € Aut(G).
Then P, ¢,y Hia is also an indecomposable decomposition and P; ¢, 4i« the
corresponding complete splitting Jonsson basis.

3In his recent edition of Abelian groups [4, Lemma 6.8] Fuchs states that since Lady’s
Theorem is one of the most important results in torsion-free abelian group theory, a group-
theoretical proof would be most welcome. Our proof replaces the Jordan—Zassenhaus Lemma
in Lady’s proof by Jénsson’s Theorem, whose proof, while still ring theoretical, is rather more
transparent.
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On the other hand, let &: P, [, Ki be an indecomposable decomposition of
G with each K; isomorphic to a unique H; by some isomorphism «;. Then
a = (a;:1 € [t]) € Aut(G), so € is in the orbit of D. Thus the orbit of D under
Aut(G) consists of isomorphic indecomposable decomposition.

The argument extends to the corresponding Jénsson bases. |

RemARKk 6.9. It is clear that each decomposition of G refines to a complete
decomposition, and each splitting decomposition of A € Jon(G) refines to a
complete splitting decomposition. In neither case is the refinement necessarily
unique.

6.1 — Jonsson quotients

Let G € Vand A € Jon(G). Let 5: G — G/A be the natural surjection, and let
U @& W be a decomposition of G/A. We say U & W lifts to G if there exists a
decomposition G = K @ L suchthat U = Knpand W = Ln.

ProrosiTion 6.10. G/A = U @& W is a decomposition lifting to G = K & L
if and only if A has a splitting decomposition B @ C such that U =~ B./B and
W - C*/C.

Proor. (=) If such a splitting decomposition exists, then G = B, @ Cy by
Proposition 6.4(2), so G/A = B«/B & C«/C.

(=) Suppose G = K® LwithU = Knand W = Ln.Let B= KN A and
C=LNA,soBNC =0.Leta € A,saya =k +{ withk € Kand{ € L.
Since an = 0, if kn # 0, then 0 # £n = —kn € U N W, a contradiction. Hence
B + C = A. Thus B & C is a splitting decomposition of 4 and G/A = U @ W
lifts to B« @& Cx = G. O

Remark 6.11. (1) If G is indecomposable, then [8, Example 16.8.11] shows
that G7n need not be. However, if U is an indecomposable summand of G then
Un~! is indecomposable in G.

(2) Since Jonsson quotients are finite, there is a least index ¢ € IN and
A € Jon(G) such that |G/A| = e. Such A are called regulating Jonsson bases
since in the case that G is almost completely decomposable, they are regulating
subgroups as defined in a different way in [8, §4.2]. Thus regulating J6nsson bases
are an extension to V of regulating subgroups of acd groups. Their properties
remain to be investigated.



250 Ph. Schultz

ProposiTiON 6.12. Let G € V, A € Jon(G) and T = G/A. Then T = P; S;
is a decomposition which lifts to a complete decomposition @; H; of G if and
only if A = @; C; is a complete splitting decomposition of A with Ci« = H; and
each S; has no decomposition which lifts to G.

Proor. The statement follows Proposition 6.10 and a routine induction on the
number of summands. O

We turn now to the action of Aut(G) on the set of Jénsson quotients of G. The
proof of the following lemma is a routine application of the definitions.

LemMma 6.13. Let A € Jon(G) and o € Aut(G). Define a:G/A — G/(Ax)
bya:g + A — ga + Aa. Then & is an isomorphism and (G/A)* = (G/A)a is a
group action. O

Prorosition 6.14. (1) If n: G — G/A is the natural epimorphism, then
a~'na: G — G/Aa is the natural epimorphism.

Q) IfG/A = S@ T and this decomposition lifts to G, then G/Ae = Sa d Ta
and this decomposition also lifts to G.

(3) The map @ — & is a (non-abelian) group homomorphism. Its image
is the group of automorphisms of G/A which lift to G, and its kernel is {o €
Aut(G):a — 1 € n End(G)} where n = exp(G/A).

Proor. (1) follows from the definition of the group action.

(2) Let u: G/A — S be the projection determined by the first decomposition.
Then ' = a 'ua:G/Aa — Sa is the projection determined by the second
decomposition. Since u lifts to G, say G = B, @ Cx and A = B & C, then
Aa = Ba®dCaand G = (Ba)«®(Ca)x, so ' is the projection which determines
the second decomposition.

(3) This is a routine calculation. O

Being finite, G/ A has, up to isomorphism, a unique complete decomposition,
which in general does not lift to G. We define a decomposition of G/A which lifts
to G to be unrefinable if it has no refinement lifting to G.

THEOREM 6.15. Let G € V and let A be the set of unrefinable decompositions
of Jonsson quotients of G. Aut(G) acts on A and the finitely many orbits of this
action consist of isomorphic unrefinable decompositions.
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Proor. Let D € A, s0 D = (P;cp Di an unrefinable decomposition of
G/A for some A € Jon(G). Then for all « € Aut(G), D is isomorphic to
Da := Djepy Di@ as described in Lemma 6.13, so all elements of the orbit
containing D are isomorphic. |

If A’ € Jon(G) it is possible that G/A =~ G/ A’ even if A and A’ are in different
orbits of Aut(G). In any case, the number of isomorphism classes of unrefinable
Jénsson quotients of G is no greater than the finite number of orbits of Aut(G)
acting on complete decompositions of G

7. Strongly indecomposable groups

Strongly indecomposable groups play a crucial rdle in this paper. I am not aware
of any published classification, but several important properties and examples can
be found in [3, §92] and [4, §9]. In this section, I present a new characterisation
of strongly indecomposable groups. Without loss of generality, we assume G is
reduced and rank(G) > 1. Recall that a strong decomposition in V is a direct sum
of strongly indecomposable groups.

NotatioN 7.1. Let R< G € V.

e The pair (R, G) has Property SI if R is a strong decomposition such that
G/R is an infinite torsion group with no decomposition lifting to G.

e If B € Bases(G) then (B)« = @pcp b«
A routine calculation shows that Property SI is invariant under Q* Aut(G).

THeOREM 7.2. Let G € V. Then G is strongly indecomposable if and only if
for all B € Bases(G), ((B)«, G) has property SI.

Proor. (=) Let B € Bases(G), so (B)« is a strong decomposition and
G/(B)« is torsion. If G/(B)y is finite, then for some m € N, mG = (B)«, a
contradiction, so G/(B)x is infinite. If some summand of G/(B)« lifts to G then
G is decomposable, another contradiction. Hence ((B)« , G) has Property SI.

(<) Suppose that for all B € Bases(G), ((B)x, G) has property SI, but that
for some m € N, mG = H @ K. Let C € Bases(H) and D € Bases(K), so
that by Proposition 3.1, mG = C. @ D«.Let B =C U D. Then mG/(B)« has a
summand C /By lifting to the summand C.. of G, a contradiction. Hence no basis
of mG has a splitting partition, so G is strongly indecomposable. |
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A generalisation of Theorem 7.2, with essentially the same proof can be
obtained by replacing the strong decomposition (B) by an arbitrary full strong
decomposition contained in G.

THeEOREM 7.3. Let G € V. Then G is strongly indecomposable if and only if
Jor all full strong decompositions D contained in G, (D, G) has property SI.
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