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Quasibases for nonseparable p-groups
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Dedicated to László Fuchs on his 95th birthday

Abstract – This paper is an extension of the work developed in [4] on quasibases of abelian

p-groups and based on the doctoral dissertation of Andrija Vodopivec [5]. We introduce

the ideas of a ı-combination and height of an inductive quasibasis and show that the

height of a quasibasis is invariant for related inductive quasibases. Moreover, an abelian

p-group is separable if and only if the heights of all ı-combinations are zero. Finally, we

show that an abelian p-group is not reduced if and only if there exists a ı-combination

with infinite height.
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1. Introduction

We deal with abelian groups and we use all definitions and conventions in [3]. For

some few classes of torsion-free groups there is a description by cardinals. For all

other torsion-free groups there exists basically only a presentation by generators

and relations, unavoidably. In view of the convenient description of (simply pre-

sented) torsion groups by Ulm–Kaplansky invariants, the use of generators and
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relations seems to be disadvantageous for torsion groups. But often groups are

considered as extensions, and then things change. An explicit description of a

mixed group as an extension of a torsion by a torsion-free group is impossible if

the torsion group is given by Ulm–Kaplansky invariants. The torsion group has to

be presented by generators and relations, the same way as the torsion-free group.

Here the concept of a quasibasis [3, 33.5] comes into the game.

Investigating mixed groups we recognized that the concept of a quasibasis was

not developed far enough for our needs. In [4] the concept of a quasibasis was

reduced to that of an inductive quasibasis and p-groups are explicitly described

by the corresponding diagonal relation arrays ˛. In particular, we showed that

smallness of ˛ is equivalent to splitting and independent diagonal relation arrays

were shown to correspond uniquely to reduced, separable groups.

In this paper we determine a relation array of the generalized Prüfer group

H2!C1, Theorem 4.3. We define a height of an inductive quasibasis and show

that this is an invariant for related inductive quasibases, Theorem 5.8. Further, we

define ı-combinations and characterize “separable” by the heights of ı-combina-

tions, Theorem 6.3. Finally we establish a criterion for “nonreduced” in terms of

heights, Theorem 6.6.

Our concept, for sure, needs additional development for promising applications

in the theory of torsion groups. For more results see [5].

2. Preliminaries

We denote the ring of p-adic integers byZp. As customary, define the p-adic norm

of � 2 Zp by k�k D p�n if � 2 pn
Zp n pnC1

Zp. Moreover, � D
P

i2N0
�ip

i will

denote the standard representation of a p-adic integer � 2 Zp.

We consider subgroups of
Q

jI j Zp , the additive group of all tuples .�k j k 2 I /

of p-adic integers, where �k 2 Zp, over some index set I . A tuple 0 ¤ .�k j

k 2 I / 2
Q

jI j Zp is called a zero tuple if for every natural number n the norm of

almost all �k is less than p�n. A zero tuple is called normed, if there is at least one

unit among the entries �k. The zero tuples (together with the trivial tuple 0) form

a subgroup
� Q

jI j Zp

��
of

Q
jI j Zp, which clearly contains

L
jI j Zp. Moreover,� Q

jI j Zp

��
=

L
jI j Zp is the maximal divisible subgroup of

Q
jI j Zp=

L
jI j Zp.

Proposition 2.1. Let G D
L

k2I hgk
i j i 2 Ni Š

L
jI j Z.p1/, where

pgk
1 D 0, pgk

iC1 D gk
i for all k 2 I; i 2 N. Then D D hhi 2 G j i 2 Ni Š Z.p1/

is a subgroup of G, where ph1 D 0; phiC1 D hi for all i 2 N, if and only if there

is a normed zero tuple .�k j k 2 I /, such that hi D
P

k2I �kgk
i for all i 2 N.
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Proof. For each i 2 N, the element 0 ¤ hi 2
L

k2I hgk
i j i 2 Ni can be

written in the form hi D
P

k2I �k
i gk

i , where 0 � �k
i < pi , �k

i D 0 for almost all

k 2 I , and p − �k
i for at least one k 2 I , by order considerations. Furthermore,

we have for each i 2 N,

0 D hi � phiC1 D
X

k2I

�k
i gk

i �
X

k2I

�k
iC1pgk

iC1 D
X

k2I

.�k
i � �k

iC1/gk
i :

Hence, .�k
i � �k

iC1/gk
i D 0, i.e., pi j .�k

i � �k
iC1/ for all k 2 I . For each k 2 I let

�k D �k
i C

X

j �i

.�k
j C1 � �k

j / 2 Zp;

where the equation holds for arbitrary i 2 N.

For a fixed i 2 N, pi j �k for almost all k 2 I , because �k
i D 0 for almost all k.

Therefore .�k j k 2 I / is a zero tuple. Moreover, p − �k for at least one k 2 I ,

because p − �k
i for at least one i 2 N, i.e., .�k j k 2 I / is normed. In particular,

�kgk
i D �k

i gk
i . Thus hi D

P
k2I �k

i gk
i D

P
k2I �kgk

i for all i 2 N.

Conversely, let .�k j k 2 I / be a normed zero tuple and hi D
P

k2I �kgk
i

for each i 2 N. Note ph1 D
P

k2I p�kgk
1 D 0 and

phiC1 D
X

k2I

�kpgk
iC1 D

X

k2I

�kgk
i D hi

for all i 2 N. In particular, the order o.hi / D pi , because .�k j k 2 I / is a normed

zero tuple. Hence, hhi 2 G j i 2 Ni Š Z.p1/. �

Following [4] the set

Q D ¹ak
i ; xu

j º D ¹ak
i ; xu

j j i; j 2 N; k 2 I; u 2 Ij º � G

is called a quasibasis of G, if

i. ¹xu
j j j 2 N; u 2 Ij º is a basis of the basic subgroup B D

L
Bj , where

o.xu
j / D pj for all j 2 N; u 2 Ij ;

ii. G=B D
L

k2I Ak, where Ak D hak
i C B j i 2 Ni Š Z.p1/; k 2 I , and

pak
iC1 C B D ak

i C B for all i 2 N; k 2 I , with pa1 C B D 0 C B;

iii. o.ak
i / D pi for all i 2 N; k 2 I .

Note that

G D hak
i ; xu

j j i; j 2 N; k 2 I; u 2 Ij i:
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By [3, 33.5] every p-group has a quasibasis with corresponding relations

pak
iC1 D ak

i �
X

j 2N

X

u2Ij

˛
k;u
i;j xu

j .i 2 N; k 2 I; ˛
k;u
i;j 2 Z/:

Given a quasibasis Q D ¹ak
i ; xu

j º the array ˛ D .˛
k;u
i;j / is called a correspond-

ing relation array, B the corresponding basic subgroup. Note that we may also

assume ˛
k;u
i;j 2 Zp . For n 2 N let pnQ D ¹ck

i ; yu
j j i; j 2 N; k 2 I; u 2 Ij Cnº,

where yu
j D pnxu

j Cn and ck
i D pnak

iCn.

Lemma 2.2. Let Q D ¹ak
i ; xu

j º be a quasibasis of G with relation array

˛ D .˛
k;u
i;j /. Then for any n 2 N the set pnQ is a quasibasis of pnG with

corresponding array .˛
k;u
iCn;j Cn/.

Proof. Since pnB D
L

j 2N

L
u2Ij Cn

hpnxu
j Cni is a basic subgroup of pnG

and o.pnxu
j Cn/ D pj , o.pnak

iCn/ D pi , the conditions (i) and (iii) hold. Since

pnG=pnB Š G=B Š
L

jI j Z.p1/ condition (ii) follows. The relations

pnC1ak
iCnC1 D pnak

iCn �
X

j 2N

X

u2Ij Cn

˛
k;u
iCn;j Cnpnxu

j Cn

give rise to the indicated array. �

3. Inductive quasibases

A quasibasis ¹ak
i ; xu

j º is called an inductive quasibasis, see [4], if the corre-

sponding relations are of the form pak
iC1 D ak

i � bk
i for i 2 N; k 2 I , where

bk
i 2 Bi D

L
u2Ii

hxu
i i, cf. also [1]. Furthermore, a relation array ˛ D .˛

k;u
i;j /

is called diagonal, if ˛
k;u
i;j D 0 for i 6D j . A diagonal array is denoted by

˛ D .˛
k;u
i / D .˛

k;u
i;i /. By [4, Theorem 4 and Corollary 5], every p-group has

an inductive quasibasis, and the corresponding relation array is diagonal. Note

that an inductive quasibasis is based on a fixed decomposition B D
L

Bi of the

basic subgroup, and we write Q D ¹ak
i ;

L
Biº or Q D ¹ak

i ; Bº to suppress the

generators of the basic subgroup.

Lemma 3.1. Let Q D ¹ak
i ;

L
Biº be an inductive quasibasis of G with

corresponding relations pak
iC1 D ak

i � bk
i , i 2 N; k 2 I . Then pnak

iCn D

ak
i �

Pn�1
rD0 prbk

iCr for all n 2 N.
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Proof. We induct on n. Clearly, pak
iC1 D ak

i � bk
i . By hypothesis

pnC1ak
iCnC1 D pnak

iCn � pnbk
iCn

D ak
i �

n�1X

rD0

prbk
iCr � pnbk

iCn

D ak
i �

nX

rD0

prbk
iCr : �

Let G; H be groups with isomorphic basic subgroups B D
L

Bi � G and

C D
L

Ci � H , and G=B Š H=C , i.e., in particular, for all i ,Bi Š Ci

are isomorphic homocyclic groups of exponent pi . Let, assuming equal index

sets, the corresponding quasibases be Q D ¹ak
i ; xu

j º; P D ¹ck
i ; yu

j º, and the

corresponding relation arrays be ˛ D .˛
k;u
i;j /; ˇ D .ˇ

k;u
i;j /, respectively. Then the

groups G; H , the quasibases P; Q and the relation arrays ˛; ˇ are called related,

respectively. In particular, if G D H and B D C we call the two quasibases

Q D ¹ak
i ; xu

j º; P D ¹ck
i ; yu

j º and the two corresponding relation arrays ˛; ˇ of G

related, respectively. The point for related relation arrays is that the respective

index sets are equal. We tacitly assume this setting for those related pairs G; H ,

or for a single group G with fixed basic subgroup B .

Let H D 'G with isomorphism ', then by choice C D 'B for some basic

subgroup B � G the groups G; H are related. In other words, related groups

coincide in some invariants that are kept by isomorphism.

Otherwise, let G; H be related with related quasibases Q D ¹ak
i ; xu

j º; P D

¹ck
i ; yu

j º and related relation arrays ˛; ˇ. If there is another quasibasis P 0 of H such

that the relation array ˇ0 corresponding to P 0 is equal to ˛, then G Š H . This is a

consequence of [4, Theorem 1], because the relations given by the relation array

of a group are defining. Thus all results on changing the quasibasis, respectively

changing the relation array, of a group include statements on isomorphism.

There is a strong relationship between two related inductive quasibases of a

group.

Lemma 3.2. Let Q D ¹ak
i ;

L
Biº and P D ¹ck

i ;
L

Biº be related, inductive

quasibases of G with corresponding relations ak
i �pak

iC1 D bk
i and ck

i �pck
iC1 D

d k
i . Then for each k0 2 I there is a normed zero tuple .�k j k 2 I / (depending

on k0), such that for all n 2 N,

d
k0

i �
X

k2I

�kbk
i 2 pnBi

for almost all i 2 N.
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Proof. Since

G=B D
M

k2I

hak
i C B j i 2 Ni D

M

k2I

hck
i C B j i 2 Ni Š

M

jI j

Z.p1/

by Proposition 2.1, there is, for a fixed k0 2 I , a normed zero tuple .�k j k 2 I /

(depending on k0), such that c
k0
n D

P
k2I �kak

n Cbn; bn 2 B for all n 2 N. Hence

for all n 2 N,

d k0
n �

X

k2I

�kbk
n D ck0

n � pc
k0

nC1 �
X

k2I

�k.ak
n � pak

nC1/ D bn � pbnC1 2 Bn;

because Q and P are inductive and related. The elements bn 2 B are of the form

bn D
P

i2N bn;i , where bn;i 2 Bi . Thus for each n 2 N

bn � pbnC1 D
X

i2N

.bn;i � pbnC1;i / 2 Bn;

i.e., bn;i � pbnC1;i D 0 for all i 2 N with i ¤ n. Consequently, for all n 2 N,

bn;i D pbnC1;i D p2bnC2;i D � � � D 0 if i < n;

bn;i D pbnC1;i D p2bnC2;i D � � � D pi�nbi;i if i � n;

and the first part of the following sum is 0, hence

bn D bn;1 C � � � C bn;n�1 C bn;n C bn;nC1 C bn;nC2 C � � �

D bn;n C pbnC1;nC1 C p2bnC2;nC2 C � � � C prbnCr;nCr C � � �

This is a finite sum, thus we have the equality prbnCr;nCr D 0 for all n 2 N, or

pn j bnCr;nCr for almost all r 2 N0. This implies for all n 2 N,

d
k0

nCr �
X

k2I

�kbk
nCr D bnCr � pbnCrC1

D
X

m2N0

pmbnCrCm;nCrCm �
X

m2N0

pmC1bnCrCmC1;nCrCmC1

D bnCr;nCr 2 pnBnCr

for almost all r 2 N0, as claimed. �

Let Q D ¹ak
i ; xu

j º be an inductive quasibasis of G with corresponding relations

(1) ak
i � pak

iC1 D
X

u2Ii

˛
k;u
i xu

i D bk
i 2 Bi :
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We write the corresponding diagonal relation array ˛ D .˛
k;u
i / in the following

form:

˛ D .˛k/k2I ;(2a)

˛k D diag.˛k
1 ; ˛k

2 ; : : :/;(2b)

˛k
i D .˛

k;u
i /u2Ii

with i 2 N; ˛
k;u
i 2 Z;(2c)

where ˛k
i 2 Z

jIi j is a tuple, with only finitely many nonzero entries, and ˛ can be

considered as a tuple of (infinite) diagonal matrices ˛k.

Two related diagonal relation arrays ˛ D .˛
k;u
i / and ˇ D .ˇ

k;u
i /, i.e., with

equal index sets, are called almost equal, if for each k the equation ˛k
i D ˇk

i holds

for almost all i 2 N.

The following proposition shows that a group allows a whole class of almost

equal relation arrays, and, moreover, that almost equal relation arrays of groups

imply isomorphism.

Proposition 3.3. Let Q D ¹ak
i ; xu

j º be an inductive quasibasis of G with

relation array ˛ D .˛
k;u
i / and let ˇ be an array almost equal to ˛. Then there is

an inductive quasibasis P D ¹ck
i ; xu

j º of G with relation array ˇ and ck
i D ak

i

for each k 2 I , and for almost all i 2 N.

Related groups G; H with almost equal (related) relation arrays are isomor-

phic.

Proof. Since ˛ and ˇ are almost equal we need to show that we can make

finitely many changes for each k. Thus it suffices to construct a new inductive

quasibasis P of G which differs from Q only for one fixed k and a fixed ik . Let

ˇ D .ˇk
i / be given by

ˇk
i D

´
.˛

k;u
i /u2Ii

if i ¤ ik;

.zk;u/u2Ii
if i D ik;

where .zk;u j u 2 Iik / 2 Z
jIik

j is an arbitrary tuple with only finitely many

nonzero entries. We show that P D ¹ck
i ; xu

j j i; j 2 N; k 2 I; u 2 Ij º � G with

ck
i D

8
<̂

:̂

ak
i C pik�i

X

u2Iik

.zk;u � ˛
k;u
ik

/xu
ik

if i � ik;

ak
i if i > ik;

for all k 2 I , is an inductive quasibasis of G. The conditions (i) and (iii) of the

definition of a quasibasis are obviously satisfied. Since ck
i C B D ak

i C B for all
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k 2 I; i 2 N, condition (ii) is also satisfied. Furthermore, for all k 2 I ,

pck
iC1 D p

�
ak

iC1 C pik�i�1
X

u2Iik

.zk;u � ˛
k;u
ik

/xu
ik

�

D ak
i �

X

u2Ii

˛
k;u
i xu

i C pik�i
X

u2Iik

.zk;u � ˛
k;u
ik

/xu
ik

D ck
i �

X

u2Ii

˛
k;u
i xu

i if i < ik ;

pck
ikC1 D pak

ikC1

D ak
ik

�
X

u2Iik

˛
k;u
ik

xu
ik

D ck
ik

�
X

u2Iik

.zk;u � ˛
k;u
ik

/xu
ik

�
X

u2Iik

˛
k;u
ik

xu
ik

D ck
ik

�
X

u2Iik

zk;uxu
ik

;

pck
iC1 D pak

iC1

D ak
i �

X

u2Ii

˛
k;u
i xu

i

D ck
i �

X

u2Ii

˛
k;u
i xu

i if i > ik :

Hence ˇ is the desired relation array.

By the argument above and because relation arrays provide defining relations,

see [4, Theorem 1], the groups G; H are isomorphic. �

4. Construction of a quasibasis for H2!C1

Well known examples for nonseparable reduced p-groups are the generalized

Prüfer groups H� for ordinals � . For a definition see [3, Section 81]. By [3, 83.1]

all generalized Prüfer groups are simply presented.

In [4] for the generalized Prüfer group H!Cn of length ! C n for natural n an

inductive quasibasis was given with a corresponding relation array. Our next goal

is to determine an inductive quasibasis of the generalized Prüfer group H2!C1 of

length 2! C 1. Note that the Ulm–Kaplansky-invariants of H2!C1 are

f� .H2!C1/ D

´
@0 for 0 � � < !;

1 for ! � � � 2!:
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We construct a simply presented group G that has the same Ulm–Kaplansky-

invariants as H2!C1. Hence G Š H2!C1, because simply presented groups with

equal Ulm–Kaplansky-invariants are isomorphic, see [3, 83.3]. Further we use the

presentation of this group G to obtain an inductive quasibasis.

We begin by developing some notation. Let H D hh0
0i ˚

L
k2N;i2N0

hhk
i i be a

free abelian group and L D hph0
0; pkhk

0 � h0
0; pihk

i � hk
0 j i; k 2 Ni a subgroup

of H . We denote G D H=L D hg0
0 ; gk

i j k 2 N; i 2 N0i with g0
0 D h0

0 C L and

gk
i D hk

i C L. The group G is given by the relations

pg0
0 D 0; pkgk

0 D g0
0

and

pigk
i D gk

0 for i; k 2 N:

In particular, G is simply presented. It is straightforward to show that the

following hold for the groups L and G as described above.

i. Every l 2 L has the form l D �0
0h0

0 C
P

k2N;i2N0
�k

i hk
i , where �k

i 2 pi
Z

for i; k 2 N. Moreover, h0
0 … L and for l D

P
k2N �k

0hk
0 , �k

0 2 pk
Z for all

k 2 N.

ii. For r 2 N each g 2 prG has the form g D
P

k2N

�
�k

0gk
0 C

P
i>r �k

i gk
i

�
with

�k
0 2 Z and �k

i 2 pr
Z for i > r .

We determine a basic subgroup of G and construct an inductive quasibasis. Let

xk
i D gk

i � pgk
iC1 2 G for all i; k 2 N and let B D hxk

i j k; i 2 Ni.

Lemma 4.1. The subgroup B of G defined above is a direct sum, B DL
i;k2Nhxk

i i, with o.xk
i / D pi for all i; k 2 N. Moreover, B is a basic subgroup

of G.

Proof. Similar to the arguments for the generalized Prüfer group H!C1,

see [3, Section 35, Example], it is easy to verify that ¹xk
i j i; k 2 Nº is a

p-independent system of G with each b 2 B of the form b D
P

i;k2N �k
i xk

i DP
i;k2N.�k

i � p�k
i�1/gk

i , where 0 � �k
i < pi and agreeing �k

0 D 0. Moreover,

G=B is divisible with a decomposition into the Z.p1/ summands given by h Ng1
i j

i 2 N0i and hpk�1 Ngk
i � pk NgkC1

i j i 2 N0i for k 2 N and where Ng D g C B. �

Lemma 4.2. G Š H2!C1.

Proof. Since B D
L

i;k2Nhxk
i i and p!G D hg0

0 ; gk
0 j pg0

0 D 0; pkgk
0 D

g0
0 for k 2 Ni, we have p!G D H!C1, see [3, Section 83, Example 3]. So the

the Ulm–Kaplansky invariants of the simply presented group G are equal to those

of H2!C1. Thus G Š H2!C1 by the consideration above. �
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Now we use the presentation of G to obtain an inductive quasibasis of H2!C1.

In Lemma 4.1 we defined B, the basic subgroup of G, by B D
L

i;k2Nhxk
i i.

This shows that condition (i) of an inductive quasibasis holds. Now we show

conditions (ii) and (iii). Define the generators ak
i as follows a0

i D p2g1
i and ak

i D

�pkgk
i C pkC1gkC1

i for i; k 2 N. In particular, a0
i � pa0

iC1 D p2g1
i � p3g1

iC1 D

p2x1
i 2 Bi and for all i; k 2 N

ak
i � pak

iC1 D �pkgk
i C pkC1gkC1

i C pkC1gk
iC1 � pkC2gkC1

iC1

D �pkxk
i C pkC1xkC1

i 2 Bi :

Define Ak by Ak D hak
i C B j i 2 Ni � G=B for all k 2 N0. Note

that the subgroups Ak are precisely the Z.p1/ summands given in Lemma 4.1

by the generators h Ng1
i j i 2 N0i and hpk�1 Ngk

i � pk NgkC1
i j i 2 N0i. Hence

condition (ii) holds. Finally we show condition (iii), that o.ak
i / D pi . This follows

from pia0
i D piC2g1

i D p2g1
0 D 0, piak

i D pi.�pkgk
i C pkC1gkC1

i / D

�pkgk
0 C pkC1gkC1

0 D �g0
0 C g0

0 D 0 and the defining relations for the groups G

and L. We summarize the above results in the following theorem.

Theorem 4.3. Q D ¹ak
i ; xk

i j i 2 N; k 2 N0º with ak
i and xk

i as de-

fined above is an inductive quasibasis of G Š H2!C1 with the correspond-

ing relation array ˛k D diag.˛k
1 ; ˛k

2 ; : : :/; where ˛0
i D .p2; 0; : : :/ and ˛k

i D

.0; : : : ; 0„ ƒ‚ …
k�1

; �pk; pkC1; 0; : : :/ for all i; k 2 N.

5. Invariance of height for quasibases

Let B D
L

i2N Bi be a basic subgroup of G, and let B… D
Q

i2N Bi . The elements

ı 2 B… are written in the form ı D .b1; b2; : : : /, where bi 2 Bi for all i 2 N.

Let h. Nı/ denote the height of Nı D ıCB in B…=B . If hB.bi / denotes the height of bi

in B then it is easy to see, that h. Nı/ D lim infi!1

�
hB.bi /

�
. Note that hB.bi / D 1

if and only if bi D 0 and hB.bi / 2 ¹0; 1; : : : ; i � 1º for bi ¤ 0.

Let B…
0 D ¹ı 2 B… j h. Nı/ is not finiteº. Note that B…

0 D bB , the completion

of B in the p-adic topology, cf. also [2]. Then B � B…
0 � B… and B…

0 =B is

the first Ulm subgroup of B…=B . Clearly, ı D .bi j i/ 2 B…
0 if and only if

limi!1.hB.bi // D 1.

Lemma 5.1. B…
0 =B D p!

�
B…=B

�
is the maximal divisible subgroup of

B…=B . In particular, h. Nı/ 2 N0 [ ¹1º for Nı 2 B…=B . Moreover, tor
�
B…=B

�
�

B…
0 =B .
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Proof. We show that B…
0 =B is divisible. If ı D .bi j i/ and ı C B 2 B…

0 =B ,

then there is a j 2 N such that h.bi / � 1 for all i � j , i.e., ıCB D .pci j i/CB D

p.ci j i/CB , where bi D pci for all i � j . Consequently B…
0 =B D p

�
B…

0 =B
�
, as

desired. In particular, h. Nı/ 2 N0 [ ¹1º for Nı 2 B…=B . Moreover, it follows from

i D h.bi / C ni , if the element bi 2 Bi is of order pni , that the torsion subgroup

of B…=B is contained in B…
0 =B . �

Recall the following rules for heights [3, Section 37].

Lemma 5.2. The following properties hold for ı; ı1; ı2 2 B… and � 2 Zp with

k�k D p�n:

i. h. Nı1 C Nı2/ � min¹h. Nı1/; h. Nı2/º,

ii. h. Nı1 C Nı2/ D h. Nı1/, if h. Nı1/ < h. Nı2/,

iii. h.� Nı/ D h. Nı/ C n.

Proof. (i) and (ii) are obvious, cf. [3, Section 37]. Condition (iii) follows

from h.� Nı/ D h.pn�0 Nı/ D h.�0 Nı/ C n D h. Nı/ C n, where �0 2 Zp n pZp with

� D pn�0. �

Notation 5.3. Let Q D ¹ak
i ;

L
Biº be an inductive quasibasis of G with cor-

responding relations ak
i �pak

iC1 D bk
i 2 Bi . Define ık D ık.Q/ D .bk

1 ; bk
2 ; : : : / 2

B…, then the Q-tuple �.Q/ D .ık.Q/ j k 2 I / describes the corresponding re-

lations of G. An important property of these relations can be formulated by the

height function h given by h.Q/ D min¹h. Nık.Q// j k 2 I º 2 N0 [ ¹1º. We will

refer to it as the height of Q in G. For a zero tuple .�k j k 2 I / ¤ 0 and the Q-tu-

ple �.Q/ we define the sum ı D
P

k2I �kık.Q/ D .
P

k2I �kbk
i j i 2 N/ 2 B…

and call it a Q-combination. Note that ı is a well defined element of B…, because

the sum in each component is finite. A Q-combination is called normed if the zero

tuple .�k j k 2 I / is normed.

If ˛ D .˛
k;u
i / is the diagonal relation array corresponding to the inductive

quasibasis Q, then we write the relation array as in the Equations (1) and (2).

Thus

ık.Q/ D .bk
1 ; bk

2 ; : : : / D
� X

u2Ii

˛
k;u
i xu

i

ˇ̌
ˇ i 2 N

�
;

and �.Q/ D .ık j k/ is the Q-tuple. In particular, the heights h. Nık.Q// are pre-

cisely determined by the p-powers dividing the entries ˛
k;u
i . Hence also h.Q/ D

min¹h. Nık.Q// j k 2 I º can be read off the entries ˛
k;u
i .



208 O. Mutzbauer – E. Toubassi – A. Vodopivec

We now determine the heights of some quasibases that have been studied

previously.

Example 5.4. Let Q D ¹ak
i ; xu

i º where jI j D jIi j D 1 for all i 2 N,

i.e., B D
L

i2NZ.pi /, and G=B Š Z.p1/. Thus �.Q/ D .b1; b2; : : :/, i.e.,

h.Q/ D lim infi!1

�
hB.bi /

�
. We now give the heights of three quasibases that

appeared in [4, Section 2 and 5] together with their relation arrays:

H!CnW ˛ D diag.pn; pn; : : :/;

ı D .pnx1; pnx2; : : : /;

h. Nı/ D n;

B W ˛ D diag.1; 0; 1; 0; : : :/

ı D .x1; 0; x3; 0; : : : /;

h. Nı/ D 1;

Z.p1/ ˚ B W ˛ D diag.1; p; p2; p3; : : :/;

ı D .x1; px2; p2x3; : : : /;

h. Nı/ D 1:

In the next example we consider the generalized Prüfer group G Š H2!C1

and determine the Q-tuple �.Q/, the heights h. Nık.Q//, and the height h.Q/ of the

quasibasis Q D ¹ak
i ; xk

i º for the generalized Prüfer group H2!C1.

Example 5.5. By Theorem 4.3 the generalized Prüfer group H2!C1 has the

quasibasis Q D ¹ak
i ; xk

i j i 2 N; k 2 N0º and the corresponding relation array is

˛ D .˛k/k2I with ˛k D diag.˛k
1 ; ˛k

2 ; : : :/, where

˛0
i D .p2; 0; : : :/

and

˛k
i D .0; : : : ; 0„ ƒ‚ …

k�1

; �pk; pkC1; 0; : : :/ for all i; k 2 N:

Thus

�.Q/ D .ık j k 2 N0/; where ı0 D .p2x1
i j i/;

and

ık D .�pk.xk
i � pxkC1

i / j i/ for k 2 N:

So the heights of the Nık are h. Nı0/ D 2 and h. Nık/ D k for k 2 N, hence

h.Q/ D h. Nı1/ D 1.
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Our next objective is to show that the height is invariant for related inductive

quasibases. Let Q be a quasibasis of a group G with Q-tuple �.Q/ D .ık.Q/ j k/.

We begin with Proposition 5.6 by showing that for some fixed k0 2 I we may

switch to a related quasibasis of G such that only the entry ık0.Q/ is changed and

this in a quite arbitrary way.

Proposition 5.6. Let Q D ¹ak
i ;

L
Biº be an inductive quasibasis of G with

Q-tuple �.Q/ D .ık.Q/ j k/. Let k0 2 I be fixed and let ı D
P

k2I �kık.Q/ be a

(normed) Q-combination with p − �k0
. Then there is an inductive quasibasis P D

¹ck
i ;

L
Biº of G, related to Q, with P -tuple �.P / D .ık.P / j k/ such that

ık.P / D

´
ı if k D k0;

ık.Q/ if k ¤ k0:

Proof. For

ck
i D

8
<̂

:̂

X

l2I

�la
l
i if k D k0;

ak
i if k ¤ k0;

we show that P D ¹ck
i ;

L
Biº is an inductive quasibasis of G. The conditions (i)

and (iii) in the definition are obvious and it remains to show (ii). Since

�k0
a

k0

i D c
k0

i �
X

k2In¹k0º

�kck
i 2 hck

i j k 2 I; i 2 Ni

and p − �k0
, we get

hak
i j k 2 I; i 2 Ni D hck

i j k 2 I; i 2 Ni:

Hence

G=B D
M

k2I

hak
i C B j i 2 Ni D

X

k2I

hck
i C B j i 2 Ni:

Define C k D hck
i CB j i 2 Ni. We now prove that

P
k2I C k is a direct sum. Since

C k Š Z.p1/ for all k 2 I , we may write an arbitrary element c 2
P

k2I C k in

the form c D
P

k2I �kck
i C B , �k 2 Z for some i 2 N. Then

c D
X

l2I

�k0
�la

l
i C

X

k2In¹k0º

�kak
i C B

D �k0
�k0

a
k0

i C
X

k2In¹k0º

.�k0
�k C �k/ak

i C B:
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If c D 0 2 G=B , then pi j �k0
�k0

and pi j .�k0
�k C �k/ for all k 2 I n ¹k0º,

because Q is a quasibasis. Thus, pi j �k for all k 2 I , because p − �k0
.

This shows that c D 0 2 G=B implies �kck
i 2 B , and the sum

P
k2I C k is

direct. Consequently, P is a quasibasis of G. Moreover, it is inductive, because

ck
i � pck

iC1 2 Bi for all k 2 I .

In particular, ık.P / D ık.Q/ for k ¤ k0, and

ık0.P / D
�
c

k0

i � pc
k0

iC1

ˇ̌
i 2 N

�
D

�X

l2I

�la
l
i � p

X

l2I

�la
l
iC1

ˇ̌
i 2 N

�

D
�X

l2I

�lb
l
i

ˇ̌
i 2 N

�
D

X

k2I

�kık.Q/ D ı: �

An inductive quasibasis Q of G is called normed, if h. Nık/ D h.Q/ for every

k 2 I . Now we show that the group G has a normed, related inductive quasibasis P

with h.P / D h.Q/.

Lemma 5.7. For every inductive quasibasis Q of G there is a normed, related

inductive quasibasis P of G with h.P / D h.Q/.

Proof. Let Q D ¹ak
i ;

L
Bi j k 2 I º be an inductive quasibasis of G. Recall

the notation in Equation (1). Let ık D ık.Q/ for all k 2 I . To construct P ,

we choose some k0 2 I with h. Nık0/ D h.Q/ and define the subset J D ¹k 2

I j h. Nık/ ¤ h.Q/º � I . We use the idea of Proposition 5.6 and show that

P D ¹ck
i ;

L
Biº with

ck
i D

´
ak

i for k 2 I n J;

ak
i C a

k0

i for k 2 J;

is a normed, related inductive quasibasis of G with h.P / D h.Q/. The set P

clearly satisfies the conditions (i) and (iii) of the definition. Condition (ii) is also

satisfied from the following. Note that for k 2 J

ck
i � pck

iC1 D ak
i � pak

iC1 C a
k0

i � pa
k0

iC1 D bk
i C b

k0

i 2 Bi :

Thus
M

k2I

hck
i C B j i 2 Ni

D
� M

k2J

hak
i C a

k0

i C B j i 2 Ni
�

˚
� M

k2InJ

hak
i C B j i 2 Ni

�

D
M

k2I

hak
i C B j i 2 Ni:
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Hence, P is an inductive quasibasis of G which is related to Q and given by

ık.P / D

´
ık for k 2 I n J;

ık C ık0 for k 2 J:

By Lemma 5.2,

h. Nık.P // D h. Nık C Nık0/ D h. Nık0/ D h.Q/

for all k 2 J , because h. Nık0/ < h. Nık/. Thus h. Nık/ D h.Q/ for all k 2 I and

hence, P is normed with h.P / D h.Q/. �

We are now ready to prove the main result in this section on the invariance of

height for related inductive quasibases.

Theorem 5.8. Related inductive quasibases of G have the same height.

Proof. By Lemma 5.7 it suffices to show that h.Q/ D h.P / for two normed,

related inductive quasibases Q D ¹ak
i ;

L
Biº and P D ¹ck

i ;
L

Biº of G. Assume

h.Q/ > h.P / and let h D h.P /. Also, let bk
i D ak

i � pak
iC1 and d k

i D ck
i � pck

iC1

for all i 2 N, k 2 I . By Lemma 3.2, let k0 2 I and let .�k j k 2 I / be a normed

zero tuple such that

(3) d
k0

i �
X

k2I

�kbk
i 2 pnBi ;

for each n 2 N and almost all i 2 N. Let ık0 D ık0.P / D .d
k0

i j i 2 N/

and ı D
P

k2I �kık.Q/ D .
P

k2I �kbk
i j i 2 N/. From (3) it follows that

h. Nık0 � Nı/ D 1. By Lemma 5.2 we get h. Nı/ D h. Nık0/ D h. Thus the set

J D ¹k 2 I j phC1 − �kº must be finite and nonempty. Write ı D ı1 C ı2

where ı1 D
P

k2J �kık.Q/ and ı2 D
P

k2InJ �kık.Q/. Thus,

h. Nı1/ � min¹h.�kık.Q// j k 2 J º > h;

because of h.�k
Nık.Q// � h. Nık.Q// D h.Q/ > h for all k 2 J . On the other hand

h. Nı2/ > h, because ı2 2 phC1B…. Moreover, h. Nı1/; h. Nı2/ > h , and

h D h. Nı/ D h. Nı1 C Nı2/ � min¹h. Nı1/; h. Nı2/º > h;

a contradiction. Hence, h.Q/ D h.P /. �
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6. Quasibases of reduced groups

In this section we characterize separable and nonreduced groups in terms of the

height of an inductive quasibasis. We begin with a lemma which describes the

Ulm subgroup.

Lemma 6.1. Let Q D ¹ak
i ;

L
Biº be an inductive quasibasis of G. Let 0 ¤

g 2 G be of order pj . Then g 2 p!G if and only if there is a normed zero tuple

.�k j k 2 I /, such that g D
P

k2I �kak
j C b, b 2 B , and there is a natural

number n such that

g D pn
X

k2I

�kak
j Cn D pnC1

X

k2I

�kak
j CnC1 D pnC2

X

k2I

�kak
j CnC2 D � � �

In particular, h
�P

k2I �k
Nık

�
� j .

Proof. Since G=B D
L

k2I hak
i C B j i 2 Ni Š

L
jI j Z.p1/, there is, by

Proposition 2.1, a normed zero tuple .�k j k 2 I / such that g 2
P

k2I �kak
j C B

and the set ¹
P

k2I �kak
i C B j i 2 Nº generates a Z.p1/. Now let g DP

k2I �kak
j C b 2 p!G with b 2

L
i<l Bi for some l 2 N. Then by Lemma 3.1

g D
X

k2I

�kak
j C b D

X

k2I

�k

�
pnak

j Cn C

n�1X

rD0

prbk
j Cr

�
C b 2 pnG;

for all n 2 N. Hence for all n � l

g � pn
X

k2I

�kak
j Cn D

n�1X

rD0

X

k2I

�kprbk
j Cr C b

D

nCj �1X

rDj

X

k2I

�kpr�j bk
r C b

D

l�1X

rDj

X

k2I

�kpr�j bk
r C b C

nCj �1X

rDl

X

k2I

�kpr�j bk
r 2 pnB:

Let br D
P

k2I �kpr�j bk
r 2 Br . In view of height and order considerations we

conclude that
Pl�1

rDj br Cb D 0. Thus
PnCj �1

rDl
br 2 pnB for all n � l , i.e., br D 0

for all r � l . It follows that g D pn
P

k2I �kak
j Cn for all n � l . Consequently

g 2 p!G has the indicated form. Moreover, br D
P

k2I �kpr�j bk
r D 0 implies

that pj j
P

k2I �kbk
r , for all r � l , and h.

P
k2I �k

Nık/ � j . �
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Corollary 6.2. Let Q D ¹ak
i ;

L
Biº be an inductive quasibasis of G. If

j > h. Nık0/, then a
k0

j … p!G.

Proof. If a
k0

j 2 p!G, then by Lemma 6.1 there is a normed zero tuple

.�k j k 2 I /, such that a
k0

j D
P

k2I �kak
j C b and a

k0

j D pn
P

k2I �kak
j Cn

for all n. Thus b D 0, pj j�k for all k ¤ k0, and consequently a
k0

j D pna
k0

j Cn

for all n.

Now, let j > h D h. Nık0/. So there are infinitely many i 2 N where

phC1 − b
k0

i D a
k0

i � pa
k0

iC1 2 Bi . Hence we may select an n with phC1 − b
k0

j Cn.

We assume a
k0

j 2 p!G and apply Lemma 3.1, i.e.,

nX

rD0

prb
k0

j Cr D a
k0

j � pnC1a
k0

j CnC1 D 0:

Using B D
L

Bi we get prb
k0

j Cr D 0 for all 0 � r � n. In particular, pnb
k0

j Cn D 0

implies pj j b
k0

j Cn. But j > h further implies that phC1jb
k0

j Cn, a contradiction.

Thus a
k0

j … p!G. �

Our next theorem describes separable groups in terms of the height of a

quasibasis.

Theorem 6.3. Let Q D ¹ak
i ;

L
Biº be an inductive quasibasis of the reduced

group G. Then G is separable if and only if h. Nı/ D 0 for all Q-combinations ı.

Proof. Suppose G is separable and let ı D
P

k2I �kık.Q/ be a Q-combina-

tion. If h. Nı/ > 0, then there is a j 2 N, such that
P

k2I �kbk
i 2 pBi for all i � j .

By this fact combined with Lemma 3.1 we get for all n 2 N

X

k2I

�kpj �1ak
j D

X

k2I

�kpj �1
�
pnak

j Cn C

n�1X

rD0

prbk
j Cr

�

D pj Cn�1
X

k2I

�kak
j Cn C

n�1X

rD0

pj Cr�1
X

k2I

�kbk
j Cr

D pj Cn�1
X

k2I

�kak
j Cn:

This holds for all n, thus
P

k2I �kpj �1ak
j ¤ 0 has infinite height, a contradiction,

by [3, 65.1].
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Conversely, assume that G is nonseparable, i.e., there is a 0 ¤ g 2 G of infinite

height and order pj . By Lemma 6.1 there is a normed zero tuple .�k j k 2 I /

with h.
P

k2I �k
Nık/ � j > 0, contradicting the hypothesis that h. Nı/ D 0 for all

normed Q-combinations ı. �

The following lemma shows, that a Q-combination ı with h. Nı/ D 1 allows to

find a divisible subgroup of G.

Lemma 6.4. Let Q D ¹ak
i ;

L
Biº be an inductive quasibasis of G. If ı DP

k2I �kık.Q/ is a Q-combination with h. Nı/ D 1, then there is a strictly

increasing sequence .ni /i2N of natural numbers, such that hdi 2 G j i 2 Ni Š

Z.p1/ with pd1 D 0 and di D pdiC1 D pni
P

k2I �kak
iCni

for i 2 N.

Proof. Since h. Nı/ D 1, there is a strictly increasing sequence .ni /i2N

of natural numbers, such that pi j
P

k2I �kbk
n for all n � ni . Define di D

pni
P

k2I �kak
iCni

for all i 2 N. Clearly pd1 D pn1C1
P

k2I �kak
n1C1 D 0. More-

over, for all i 2 N

pdiC1 D pniC1C1
X

k2I

�kak
iCniC1C1

D pni C.niC1�ni C1/
X

k2I

�kak
iCni C.niC1�ni C1/

D pni

X

k2I

�kak
iCni

�

niC1�niX

rD0

pni Cr
X

k2I

�kbk
iCni Cr

D di ;

by Lemma 3.1 and the height condition above. Since .�k j k 2 I / ¤ 0, we have

di ¤ 0, for almost all i 2 N. Hence hdi 2 G j i 2 Ni Š Z.p1/. �

Lemma 6.5. Let Q D ¹ak
i ;

L
Biº be an inductive quasibasis of G. If D

is a divisible subgroup of G of rank 1, then there is a Q-combination ı DP
k2I �kık.Q/ such that h. Nı/ D 1, and D � h

P
k2I �kak

i j i 2 Ni.

Proof. Let D D hgi 2 G j i 2 Ni Š Z.p1/ be a divisible subgroup of G

with pg1 D 0, pgiC1 D gi ¤ 0 for i 2 N. Since Z.p1/ Š hgi C B j i 2 Ni �

G=B , there is a normed zero tuple .�k j k 2 I /, such that gi 2
P

k2I �kak
i C B ,

for all i 2 N, by Proposition 2.1. Hence by Lemma 6.1

gi D pn
X

k2I

�kak
iCn for almost all n 2 N and all i 2 N:
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Thus for each i 2 N and for almost all n 2 N

0 D gi � pgiC1 D pn
X

k2I

�k.ak
iCn � pak

iCnC1/ D pn
X

k2I

�kbk
iCn;

i.e., pi j
P

k2I �kbk
iCn. Consequently, h.

P
k2I �k

Nık/ D 1, and, in particular,

D D hgi 2 G j i 2 Ni � h
P

k2I �kak
i j i 2 Ni. �

The Lemmata 6.4 and 6.5 lead to the main result in this section.

Theorem 6.6. Let Q D ¹ak
i ;

L
Biº be an inductive quasibasis of G. Then G

is not reduced if and only if there is a Q-combination ı with h. Nı/ D 1.

The Theorems 6.3 and 6.6 characterize also the reduced nonseparable groups.
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