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Quasibases for nonseparable p-groups

Ot1T1Oo MUTZBAUER (*) — ELIAS TOUBASSI (%) — ANDRIJA VODOPIVEC (%)

Dedicated to Ldszlé Fuchs on his 95™ birthday

AssTrACT — This paper is an extension of the work developed in [4] on quasibases of abelian
p-groups and based on the doctoral dissertation of Andrija Vodopivec [5]. We introduce
the ideas of a §-combination and height of an inductive quasibasis and show that the
height of a quasibasis is invariant for related inductive quasibases. Moreover, an abelian
p-group is separable if and only if the heights of all §-combinations are zero. Finally, we
show that an abelian p-group is not reduced if and only if there exists a §-combination
with infinite height.
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1. Introduction

We deal with abelian groups and we use all definitions and conventions in [3]. For
some few classes of torsion-free groups there is a description by cardinals. For all
other torsion-free groups there exists basically only a presentation by generators
and relations, unavoidably. In view of the convenient description of (simply pre-
sented) torsion groups by Ulm—Kaplansky invariants, the use of generators and
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relations seems to be disadvantageous for torsion groups. But often groups are
considered as extensions, and then things change. An explicit description of a
mixed group as an extension of a torsion by a torsion-free group is impossible if
the torsion group is given by Ulm—Kaplansky invariants. The torsion group has to
be presented by generators and relations, the same way as the torsion-free group.
Here the concept of a quasibasis [3, 33.5] comes into the game.

Investigating mixed groups we recognized that the concept of a quasibasis was
not developed far enough for our needs. In [4] the concept of a quasibasis was
reduced to that of an inductive quasibasis and p-groups are explicitly described
by the corresponding diagonal relation arrays «. In particular, we showed that
smallness of « is equivalent to splitting and independent diagonal relation arrays
were shown to correspond uniquely to reduced, separable groups.

In this paper we determine a relation array of the generalized Priifer group
Horw+1, Theorem 4.3. We define a height of an inductive quasibasis and show
that this is an invariant for related inductive quasibases, Theorem 5.8. Further, we
define §-combinations and characterize “separable” by the heights of §-combina-
tions, Theorem 6.3. Finally we establish a criterion for “nonreduced” in terms of
heights, Theorem 6.6.

Our concept, for sure, needs additional development for promising applications
in the theory of torsion groups. For more results see [5].

2. Preliminaries

We denote the ring of p-adic integers by Z,,. As customary, define the p-adic norm
of A € Z, by ||A|| = p"if A € p"Z, \ p" ' Z,. Moreover, A = Y Ai ptowill
denote the standard representation of a p-adic integer A € Z,,.

We consider subgroups of [ [, Zj, the additive group of all tuples (Ax | k € 1)
of p-adic integers, where Ay € Z,, over some index set /. A tuple 0 # (A |
k € 1) € [17)Zp is called a zero tuple if for every natural number n the norm of
almost all Ay, is less than p™. A zero tuple is called normed, if there is at least one
unit among the entries Ax. The zero tuples (together with the trivial tuple 0) form
a subgroup ([T, Zp,)" of [ 11/ Zp, which clearly contains P, Z,. Moreover,
(T1,11Z»)"/ D)1, Zp is the maximal divisible subgroup of [, Z,/ B, Zp-

i€Ng

ProrosiTionN 2.1. Let G = EBkel(glk | i € N) = D, Z(p*>), where
pg'f =0, pgl].‘H = gl].‘forallk €l,i e NThenD = (h; e G |i € N) = Z(p™>)
is a subgroup of G, where phy = 0, phi11 = h; for all i € N, if and only if there
is a normed zero tuple (Ax | k € I), suchthat h; =) ;; Akgl].‘for alli € IN.
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Proor. For each i € IN, the element 0 # h; € @kel(gzk | i € IN) can be
written in the form h; = 3", ; A¥g¥, where 0 < A% < pi, ¥ = 0 for almost all
kel,and p ¢} )Lf.‘ for at least one k € I, by order considerations. Furthermore,
we have for eachi € IN,

0=hi = phit1 = Zkf&k - Zkf-i-lpgzk-f—l = Z(MC _M'Cﬂ)gzk-
kel kel kel

Hence, ()Lf.‘ —)Lf.‘ﬂ)gll‘ =0,ie., p'| ()Lf.‘ —)Lf.‘ﬂ) forall k € I.Foreachk € I let

Me=AF+> (k-2 ez,,
J=zi

where the equation holds for arbitrary i € IN.

Forafixedi € IN, p' | A for almostall k € I, because /\{.‘ = 0 for almost all k.
Therefore (A | k € I) is a zero tuple. Moreover, p + Ay for at least one k € 1,
because p } )Lf.‘ for at least one i € N, i.e., (A | k € I) is normed. In particular,
Aigk = 2kgk Thus hy = 3 4o  AFgl =3 cp Angk foralli e IN.

Conversely, let (Ax | k € I) be a normed zero tuple and h; = ) ;o7 Ak gl’-‘
for each i € N. Note phy = Y c; pArgk = 0and

phiy1 = Z/\kpg,k+1 = Zkkglk = hi
kel kel

forall i € IN. In particular, the order o(h;) = p’, because (A | k € I) is a normed
zero tuple. Hence, (h; € G | i € N) = Z(p*°). O

Following [4] the set
0 ={af x¥y={af x¥|i.jeNkelueli}CG
is called a quasibasis of G, if

i. {x} | j € N,u € I;} is a basis of the basic subgroup B = (P B;, where
o(x¥) = p’ forall j € N,u € I;
ii. G/B = @y A*, where A¥ = (a¥ + B | i € N) = Z(p™), k € I, and
pak  + B =af+ Bforalli € Nk € I, with pa; + B =0+ B;
iii. o(a¥) = p'foralli e N,k € I.
Note that
G=(af.x¥|i.jeNkeluel).
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By [3, 33.5] every p-group has a quasibasis with corresponding relations

ku_u . k,u
palH—a ZZauxJ (ieNkel o) €Z).
JEN uel;

Given a quasibasis Q = {al . x}'} the array o = (a " is called a correspond-
ing relation array, B the correspondmg basic subgroup Note that we may also
assumeozk’“ € Zp.Forn € Nlet p"Q = {Cz ,yl |i,j e Nk € L,u € Ijyn},

where y} = p"x{,, andc = p”af‘+n
LemMa 2.2. Let Q = {a{‘,x}‘} be a quasibasis of G with relation array

o = (ak’u) Then for any n € N the set p"Q is a quasibasis of p"G with

corresponding array (0‘1 njtn)-

Proor. Since p"B = @y EBME[H” (p"x},,) is a basic subgroup of p"G
and o(p"x; Xt = pl, o(pta ; +n) = p', the conditions (i) and (iii) hold. Since
p"G/p"B =~ G/B = EBl 11 Z(p*) condition (ii) follows. The relations

n+1 k
P iy = P a Z Zal+n1+np X'y
JEN uel;,

give rise to the indicated array. O

3. Inductive quasibases

A quasibasis {ak xi} is called an inductive quasibasis see [4], if the corre-
sponding relations are of the form pa = a bk fori € N,k € I, where
bk € Bi = De; | I , cf. also [1]. Furthermore, a relation array o = (ai, j)
is called dzagonal, 1f ozl., j = 0 fori # j. A diagonal array is denoted by
a = (af’") = (af’;.“). By [4, Theorem 4 and Corollary 5], every p-group has
an inductive quasibasis, and the corresponding relation array is diagonal. Note
that an inductive quasibasis is based on a fixed decomposition B = & B; of the
basic subgroup, and we write 0 = {al’.‘, @D Bi}or Q = {al’.‘, B} to suppress the
generators of the basic subgroup.

LemMma 3.1. Let Q = ’.‘ . Bi} be an inductive quasibasis of G with

correspondmg relations paH_1 = al’.c — b{‘, i € Nk € I. Then p”al+n =

> Op’bl"+rf0r alln € IN.
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Proor. We induct on n. Clearly, pal’.‘ = al’.‘ — b{‘. By hypothesis

n+1 _k _ . n_k nrk
P ey = P i, — P by,

n—1
k rpk k
=4a; — ZP bitr — P"bit,
r=0

n
—aE =Y prbh,. 0
r=0

Let G, H be groups with isomorphic basic subgroups B = ¢ B; C G and
C = C C H,and G/B ~ H/C, i.e., in particular, for all i,B; =~ C;
are isomorphic homocyclic groups of exponent p’. Let, assuming equal index
sets, the corresponding quasibases be Q = {a{‘,x}‘}, P = {cl.k .y;'}, and the
corresponding relation arrays be o = (O‘f, f}‘), B = (,Bf, ’;‘), respectively. Then the
groups G, H, the quasibases P, Q and the relation arrays «, 8 are called related,
respectively. In particular, if G = H and B = C we call the two quasibases
0= {al’.‘, xi} P = {cl.k, v} and the two corresponding relation arrays «,  of G
related, respectively. The point for related relation arrays is that the respective
index sets are equal. We tacitly assume this setting for those related pairs G, H,
or for a single group G with fixed basic subgroup B.

Let H = ¢G with isomorphism ¢, then by choice C = ¢B for some basic
subgroup B C G the groups G, H are related. In other words, related groups
coincide in some invariants that are kept by isomorphism.

Otherwise, let G, H be related with related quasibases 0 = {al’.‘, xip P o=
{c{‘, vy} } andrelated relation arrays «, . If there is another quasibasis P’ of H such
that the relation array B’ corresponding to P’ is equal to &, then G =~ H. This is a
consequence of [4, Theorem 1], because the relations given by the relation array
of a group are defining. Thus all results on changing the quasibasis, respectively
changing the relation array, of a group include statements on isomorphism.

There is a strong relationship between two related inductive quasibases of a

group.

Lemma 3.2, Let Q = {a¥, @ B;} and P = {c¥, @ B;} be related, inductive
quasibases of G with corresponding relations al’-‘ — pal’.C = blk and clk — pclk =
dik . Then for each ko € I there is a normed zero tuple (A, | k € I) (depending
on ko), such that for alln € N,

dfo -3 " abF e p"B;
kel
for almost all i € IN.
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Proor. Since
G/B=ak+BlieN)=@F+B|ieN)=Pzp™
kel kel | 7]

by Proposition 2.1, there is, for a fixed ko € I, a normed zero tuple (A | k € I)
(depending on k), such that c,’fo =) kel )Lka’,j +b,,b, € B foralln € N. Hence
foralln € N,

k
dyo =" Ay = k0 — pe,%y = Y Ax(ak — pajyy) = by — pbpy1 € By,
kel kel

because Q and P are inductive and related. The elements b,, € B are of the form
bn =Y ;en bn,i, where b, ; € B;. Thus for eachn € N

by = pbut1 = Y _(bni — Pbnt1,) € Bu,
ieN

i.., byi — pbyy1,; = 0foralli € N with i # n. Consequently, for all n € IN,

bn,i = pbn+1,i = pzbn_;_z’i =...=0 ifi < n,
bni = pbut1i = p*butz;i == p "bi; ifi >n,

and the first part of the following sum is 0, hence

bn = bn,l + -+ bn,n—l + bn,n + bn,n+1 + bn,n+2 +---
=bun + Pbutint1 + PPbutontr + o+ P bngratr + o

This is a finite sum, thus we have the equality p"b,4,n+r = O foralln € N, or
P" | butr.n+r for almost all » € INy. This implies for all n € IN,

ki
dnfi)-r - Z Akb;];-i-r = bntr — Pbntrs1

kel
m m+1
= Z P bntrtmntr+m — Z P bntrtm+1ntr+mt1
meNg meNg
= butrn+r € p" Butr
for almost all » € INg, as claimed. O

LetQ = {al’.‘, x}'} be an inductive quasibasis of G with corresponding relations

(1) a¥ — pa¥,, = Z aktx¥ = bk e B;.

uel;
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We write the corresponding diagonal relation array o = (oefC ) in the following
form:

(2a) o« = (@F)er,
(2b) O[k = diag(a{" (X;‘, ),
(20) O‘zk = (alk’u)ueli withi € NN, (xlk’" VA

where o € Z!!il is a tuple, with only finitely many nonzero entries, and « can be
considered as a tuple of (infinite) diagonal matrices ok,

Two related diagonal relation arrays o = (ozfC "yand B = (,BfC ", i.e., with
equal index sets, are called almost equal, if for each k the equation (xlk = ,Blk holds
for almost all i € IN.

The following proposition shows that a group allows a whole class of almost
equal relation arrays, and, moreover, that almost equal relation arrays of groups

imply isomorphism.

ProrosiTioN 3.3. Let Q = {al’-C , X'} be an inductive quasibasis of G with

relation array o = (ozfC "y and let B be an array almost equal to . Then there is
an inductive quasibasis P = {c{‘, xi'} of G with relation array B and clk = al’-‘
for each k € I, and for almost all i € IN.

Related groups G, H with almost equal (related) relation arrays are isomor-

phic.

Proor. Since o and B are almost equal we need to show that we can make
finitely many changes for each k. Thus it suffices to construct a new inductive
quasibasis P of G which differs from Q only for one fixed k and a fixed if. Let

B = (,Bf‘) be given by

i

o {(af"“)ueli if i # iy,

(ZFW)yer, ifi =iy,

where (5% | u € I;) € 7! is an arbitrary tuple with only finitely many
nonzero entries. We show that P = {c{‘,x]’-‘ li,j e Nkeluel;j} CG with
ak + piki Z(zk’“ —o¢fk’“)xl’~jc ifi <ip,
Cc; = uEIik
ak ifi > i,

for all k € I, is an inductive quasibasis of G. The conditions (i) and (iii) of the
definition of a quasibasis are obviously satisfied. Since c{‘ + B = al’.‘ + B for all
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k € 1,i € IN, condition (ii) is also satisfied. Furthermore, for all k € I,

Kk _ k ie—i—1 k,u kuy _u
PCiyy = P(ai+1 + p Z(z — oG, )xik)

ueI,—k

= Zak"x“—i—p”‘ ’Z(zk“— ko )X,
uel; ueI

_ .k kw u oo

= —Zai x;ifi <y,

uel;

kK _ _k
PCi+1 = Paik+1

k,u x4
—a,k E ol X

uEI

—ZW— Uty =D e

ueI- ueI

k,u XU
DB

uEI

kK
PCitv1 = P4i+q

= b Y e
uel;
— Z(xk’"x“ ifi > i
1 1 °
uel;
Hence p is the desired relation array.
By the argument above and because relation arrays provide defining relations,
see [4, Theorem 1], the groups G, H are isomorphic. |

4. Construction of a quasibasis for H3, +1

Well known examples for nonseparable reduced p-groups are the generalized
Priifer groups H, for ordinals o. For a definition see [3, Section 81]. By [3, 83.1]
all generalized Priifer groups are simply presented.

In [4] for the generalized Priifer group H, 4+, of length w + » for natural » an
inductive quasibasis was given with a corresponding relation array. Our next goal
is to determine an inductive quasibasis of the generalized Priifer group H,4 4+ of
length 2w + 1. Note that the Ulm—Kaplansky-invariants of 5,1 are

RNy for0 <o <w,

Jo(Haw1) = {

1 forw <o <2w.
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We construct a simply presented group G that has the same Ulm—Kaplansky-
invariants as Hp,+1. Hence § =~ H,4 41, because simply presented groups with
equal Ulm—Kaplansky-invariants are isomorphic, see [3, 83.3]. Further we use the
presentation of this group G to obtain an inductive quasibasis.

We begin by developing some notation. Let H = (h{) ® Dpc jen, (hF) bea
free abelian group and L = (phQ, p*hk — Y, p'h* — hk | i,k € IN) a subgroup
of H. We denote § = H/L = (g3,g¥ | k € N,i € No) with g = 43 + L and
g{‘ = hf.‘ + L. The group G is given by the relations

pgy =0, pres=g§
and

pigf‘ = glg fori,k € IN.

In particular, G is simply presented. It is straightforward to show that the
following hold for the groups L and § as described above.

i. Bvery [ € L has the form [ = AhQ + Y i cn e, AFAY, where A¥ € p'Z
for i,k € IN. Moreover, h) ¢ L and for | = Y, . AKRE, Ak € pk7Z for all
k e IN.

ii. Forr € Neachg € p"Ghasthe form g = >, o (nkgk + 3., ukgk) with
pk € Z and uk e p*Zfori > r.
We determine a basic subgroup of § and construct an inductive quasibasis. Let
xf‘ = gl’.‘ —pg{‘H € Gforalli,k e Nandlet B = (x{C | k,i € IN).

LemMma 4.1. The subgroup B of G defined above is a direct sum, B =
EBl-,kE]N(x{‘), with o(x{‘) = p' forall i,k € IN. Moreover, B is a basic subgroup

of S.

Proor. Similar to the arguments for the generalized Priifer group H,+1,
see [3, Section 35, Example], it is easy to verify that {xf‘ | i,k € N} is a
p-independent system of § with each b € B of the form b = }_; ;o Arxk =
> ikew(AF — pA¥_ gk, where 0 < A¥ < p' and agreeing A5 = 0. Moreover,
G/B is divisible with a decomposition into the Z(p>) summands given by (g} |
i € No) and (p¥~1gk — pkgk+1 | i € Ny) for k € N and where g = g + B. O

LemMma 4.2, G x>~ 5‘(2«,4.1.

Proor. Since B = @, sen(x¥) and p©S = (0. gk | pgb = 0.pkgk =
gg for k € IN), we have p®G = H,+1, see [3, Section 83, Example 3]. So the
the Ulm—Kaplansky invariants of the simply presented group § are equal to those
of Hyp+41. Thus § = H,, 41 by the consideration above. O
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Now we use the presentation of G to obtain an inductive quasibasis of Hz4+1-
In Lemma 4.1 we defined B, the basic subgroup of G, by B = EBi,kelN(xlk ).
This shows that condition (i) of an inductive quasibasis holds Now we show
COIldlthIlS (ii) and (iii). Define the generators a as follows a = p? gl and a
—pkgk + pF+1gk+! for i k € N. In particular, a? — pa?, | = p2g! — pgl., =
p*x} € B; and for alli,k e N

al/_c —pa,kﬂ _ _pkgl{c + pk+1glk+1 n pk+1glk pk+2glk:11
— _pF Py +pk+1 k+1 ¢ g

Define A% by 4% = (al’-‘ + B | i e N) Cc §/B for all k € INy. Note
that the subgroups A* are precisely the Z(p>) summands given in Lemma 4.1
by the generators (g} | i € INo) and (pF~'gk — pkgk*! | i € No). Hence

condition (ii) holds. Finally we show condition (iii), that o(ak ) = p'. This follows
from pla) = p'*2gl = p’gy = 0, plaf = pi(—pFgf + pFHglt) =
—pkgk 4 pkt1gktl — _ o0 1 40 — ( and the defining relatlons for the groups G

and L. We summarize the above results in the following theorem.

THEOREM 4.3. Q = {al’.‘,x{‘ | i € N,k € WNo} with al]-‘ and xf‘ as de-
fined above is an inductive quasibasis of § = 5‘52w+1 with the correspond-
ing relation array o* = dlag((xl,(xz,. .), where a = (p2,0,...) and ozlk =
0,...,0,—pk, p*¥*t1.0,..) foralli,k € N.

e

5. Invariance of height for quasibases

Let B = ;< Bi be abasic subgroup of G, and let B = [, Bi. The elements
§ € B™ are written in the form § = (b1, b,,...), where b; € B; forall i € IN.
Let /1(§) denote the height of § = §+ B in B™/B.If h® (b;) denotes the height of b;
in B then it is easy to see, that h(§) = liminf; o0 (% (b;)). Note that 18 (b;) = oo
if and only if b; = 0 and hB(b;) € {0,1,...,i — 1} for b; # 0.

Let BI' = {§ € BT | h(§) is not finite}. Note that BJ' = B, the completion
of B in the p-adic topology, cf. also [2]. Then B C B! c B™ and BJ'/B is
the first Ulm subgroup of B™/B. Clearly, § = (b; | i) € B! if and only if
lim; 00 (A (bi)) = o0

Lemma 5.1. B/B = p® (BH / B) is_the maximal divisible subgroup of
BY/B. In particular, h(§) € No U {oo} for § € B/ B. Moreover, tor(BH/B) C
BJl/B.
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Proor. We show that B!/ B is divisible. If § = (b; | i) and § + B € BJ!/B,
then thereisa j € INsuchthath(b;) > 1foralli > j,i.e.,6+B = (pc; | i)+ B =
p(ci | i)+ B, where b; = pc; foralli > j. Consequently B)!/B = p(B}'/B), as
desired. In particular, (8) € Ny U {oo} for § € BT /B. Moreover, it follows from
i = h(b;) + n;, if the element b; € B; is of order p”i, that the torsion subgroup
of B/B is contained in B!/ B. O

Recall the following rules for heights [3, Section 37].

LemMA 5.2. The following properties hold for §,81,8, € B™ and A € Z,, with
Al = p™"

i. h(§1 + 82) = min{h(81). h(82)},
ii. h(8y + 82) = h(8y), if h(81) < h(52),
iii. A(A8) = h(§) + n.

PrOOF. (i) and (ii)_ are obviqus, cf. [3, S_ection 37]. Condition (iii) follows
from h(A8) = h(p"A'8) = h(X8) +n = h(8) + n, where A" € Z, \ pZ, with
A=p"). O

NortaTion 5.3. Let Q = {al’.‘, @D B;} be an inductive quasibasis of G with cor-
responding relations al’.‘—paﬁ_1 = b{‘ € B;.Define §¥ = §%(Q) = (b*, b’2‘, ...)E
B then the Q-tuple A(Q) = (8¥(Q) | k € I) describes the corresponding re-
lations of G. An important property of these relations can be formulated by the
height function & given by h(Q) = min{h(5¥(Q)) | k € I} € Ny U {oo}. We will
refer to it as the height of Q in G. For a zero tuple (A | kK € I) # 0 and the Q-tu-
ple A(Q) we define the sum § = Y, c; A8%(Q) = (XCpes Akb¥ | i € N) € BT
and call it a Q-combination. Note that § is a well defined element of B!, because
the sum in each component is finite. A Q-combination is called normed if the zero
tuple (Ax | k € I) is normed.

Ifa = (ozfC ") is the diagonal relation array corresponding to the inductive
quasibasis Q, then we write the relation array as in the Equations (1) and (2).
Thus

84(0) = (k. 0k, = (D abx

uel;

ie]N),

and A(Q) = (8% | k) is the Q-tuple. In particular, the heights 2 (5%(Q)) are pre-
cisely determined by the p-powers dividing the entries af . Hence also h(Q) =
min{1(8¥(Q)) | k € I} can be read off the entries af’".
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We now determine the heights of some quasibases that have been studied
previously.

ExampLE 5.4. Let 0 = {al’.‘,x}‘} where || = |[;| = 1foralli € N,
ie, B = @;cnZ(p"), and G/B = Z(p>). Thus A(Q) = (b1,bs,...), ie.,
h(Q) = liminf;_ (hB (bi)). We now give the heights of three quasibases that
appeared in [4, Section 2 and 5] together with their relation arrays:

Hgyyn: o = diag(p”, p”,...),
§=(p"x1,p"x2,...),
h(§) =n,
B:«a = diag(1,0,1,0,..))
8 = (x1,0,x3,0,...),
h() =1,

Z(p™®) @ B:a = diag(1, p, p2, p>,...),
§ = (x1, px2. p°x3,...),
h(8) = oo.

In the next example we consider the generalized Priifer group § = Hap+1
and determine the Q-tuple A(Q), the heights /2(5%(Q)), and the height 4(Q) of the
quasibasis Q = {al’.‘ , x{‘} for the generalized Priifer group Hop+1-

ExampLE 5.5. By Theorem 4.3 the generalized Priifer group H,,+1 has the
quasibasis Q = {al’.‘, xlk | i € N,k € Ny} and the corresponding relation array is
o = (F)rer with o* = diag(a’f,a’z‘, ...), where

a? = (pz,O,...)
and
af =(0,...,0,—pk, pkt10,..) foralli k € IN.
k—1
Thus
A(Q) = (8% | k € Ng), where §° = (p2x} | i),
and

8 = (—p*F(F — pxEtNy 1i) fork e IN.

So the heights of the 8% are h(5°) = 2 and h(5¥) = k for k € NN, hence
h(Q) = h(8') = 1.
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Our next objective is to show that the height is invariant for related inductive
quasibases. Let Q be a quasibasis of a group G with Q-tuple A(Q) = (§¥(Q) | k).
We begin with Proposition 5.6 by showing that for some fixed k9 € / we may
switch to a related quasibasis of G such that only the entry §%0(Q) is changed and
this in a quite arbitrary way.

ProposiTiON 5.6. Let Q = {al’-‘, €D B;} be an inductive quasibasis of G with
O-tuple A(Q) = (8¥(Q) | k). Let kg € I be fixed and let § = Y kel A8%(0) bea
(normed) Q-combination with p t Ay,. Then there is an inductive quasibasis P =
{c{‘, @ B;} of G, related to Q, with P-tuple A(P) = (8¥(P) | k) such that

Sk(P):{8 ifk=k0,
85(Q) ifk # ko.
Proor. For
> dal ik = ko,
C{c = q lel
ak if k # ko,

we show that P = {cfC , P B;} is an inductive quasibasis of G. The conditions (i)
and (iii) in the definition are obvious and it remains to show (ii). Since

k k .
Meg@i® = ¢ = Al € (cf |k elieN)
kel\{ko}

and p ¢t Ag,, we get
@ lkelieNy=(F|keliecN).

Hence

G/B=@Paf +BlieN) =) (cf+B|ieN).
kel kel

Define C¥ = (c¥ + B | i € N). We now prove that Y, ., C* is a direct sum. Since
C* =~ 7Z(p>) for all k € I, we may write an arbitrary element ¢ € Y, ; C¥ in
the formec = ) o, ukc{‘ + B, ux € Z for some i € IN. Then

c = Zﬂkollaf + Z/Lkdlk + B
lel kel\{ko}

k
= Lk M@ + Y (kghk + pi)af + B.
kel \{ko}
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Ifc =0 € G/B, then p' | g Ak, and p' | (ugoAx + p) forall k € I\ {ko},
because Q is a quasibasis. Thus, p’ | ug for all k € I, because p | Ag,.
This shows that ¢ = 0 € G/B implies uxck € B, and the sum Y, , C* is
direct. Consequently, P is a quasibasis of G. Moreover, it is inductive, because
clk — pcikJrl € Bjforallk e 1.

In particular, §5(P) = §%(Q) for k # ko, and

5k0(P) = (cfo _pcf_?_l |i € ]N) = (Z)Llall- —pZ)Llal{_H |i € ]N)

= (X abl|ienN) =Y nsk0) =4 O

lel kel

An inductive quasibasis Q of G is called normed, if h(8%) = h(Q) for every
k € I.Now we show that the group G has a normed, related inductive quasibasis P
with h(P) = h(Q).

LemMma 5.7. For every inductive quasibasis Q of G there is a normed, related
inductive quasibasis P of G with h(P) = h(Q).

Proor. Let Q = {al’.‘, @ B; | k € I} be an inductive quasibasis of G. Recall
the notation in Equation (1). Let 6 = §%(Q) for all k € I. To construct P,
we choose some ko € I with h(§%0) = h(Q) and define the subset J = {k €
I | h(§¥) # h(Q)} C I.We use the idea of Proposition 5.6 and show that
P = {ck, @ B;} with

v |aF fork eI\ J,
ak +a¥ fork e J,
is a normed, related inductive quasibasis of G with 2(P) = h(Q). The set P

clearly satisfies the conditions (i) and (iii) of the definition. Condition (ii) is also
satisfied from the following. Note that for k € J

k k k
cf = pefyy = af — pafy, +a° —pa;y, = bf +b;° € B;.
Thus
Pk +BieN)

kel

:(@(af+al’.‘°+3|iem))@( @(a,’.‘+B|i€1N>)

keJ kel\J

=Plaf + B lieN).

kel
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Hence, P is an inductive quasibasis of G which is related to Q and given by

sk forkel\J,

§5(P) =
) {5k+5k0 fork € J.

By Lemma 5.2,
h(E*(P)) = h(§* + 80) = n(8*0) = h(Q)

for all k € J, because h(§%0) < h(5¥). Thus h(§¥) = h(Q) for all k € I and
hence, P is normed with A(P) = h(Q). |

We are now ready to prove the main result in this section on the invariance of
height for related inductive quasibases.

THEOREM 5.8. Related inductive quasibases of G have the same height.

Proor. By Lemma 5.7 it suffices to show that 2(Q) = h(P) for two normed,
related inductive quasibases Q = {al’.‘ ., Bi}and P = {clk, P B;} of G. Assume
h(Q) > h(P) and let h = h(P). Also, let b{‘ = al’.C —paﬁ_1 and dik = c{‘ —pc{‘+1
foralli e N,k € I. By Lemma 3.2, let kg € [ and let (A4 | kK € I) be a normed
zero tuple such that

3) dfo =" aebF € p" B,
kel

for each n € IN and almost all i € IN. Let §k0 = §ko(p) = (dik0 | i € IN)
and § = Y oy MSK(Q) = (Cpes AcbF | i € N). From (3) it follows that
h(§k0 — §) = oo. By Lemma 5.2 we get h(8§) = h(§¥0) = h. Thus the set
J = {k € I | p"*' } A4} must be finite and nonempty. Write § = 8§, + &,
where §; = Y ;o Ax8%(Q) and 8§, = D kel\J Ax8%(0Q). Thus,

h(81) = min{h(Ax85(Q)) | k € J} > h,

because of 2(Ax5¥(Q)) = h(8¥(Q)) = h(Q) > h forall k € J. On the other hand
h(8,) > h, because 8, € p"t1B™. Moreover, h(8;), h(8,) > h , and

h = h(8) = h(8 + 82) = min{h(81), h(82)} > h,

a contradiction. Hence, h(Q) = h(P). O
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6. Quasibases of reduced groups

In this section we characterize separable and nonreduced groups in terms of the
height of an inductive quasibasis. We begin with a lemma which describes the
Ulm subgroup.

LemMma 6.1. Let Q = {a , P Bi} be an inductive quasibasis of G. Let 0 #
g € G be of order p’. Then g € p®G if and only if there is a normed zero tuple
Ak | k € I), such that g = ) ;¢ )Lkaj-‘ + b, b € B, and there is a natural
number n such that

_ .n k _ n+1 _ . n+2 k _
§=7r Zkkaj-f—n = Zkka]+n+1 = Zkkaj+n+2 =
kel kel kel

In particular, h(Y ze; Mi6*) > j

Proor. Since G/B = @kel(af + B | i € N) = P, Z(p™), there is, by
Proposition 2.1, a normed zero tuple (Ag | k € I) suchthat g € } ., )Lka;‘ +B
and the set {} ., )Lkal’.‘ + B | i € IN} generates a Z(p™). Now let g =
D kel )Lka}‘ +b € p®G withb € @, _; B; for some [ € N. Then by Lemma 3.1

n—1
g = Zkk(lf + b= Z)&k(p”a;:_n + Zprb]k-i-r) +bhe pnG’
kel kel r=0

for all n € IN. Hence for alln > [

n—1
g_PnZAka;-c_i_n = ZZAkprb]k_H +b

kel r=0kel
n+j—1
=> > hp B+
r—i kel
n+j—1
= ZZAkpr ¥ -I-b—i-z Zkkpr ‘¥ e p"B
r=j kel r=I kel

Let by = ) 4eg )Lk p" /b € B,.In view of height and order considerations we
conclude that Z, ! b, +b = 0. Thus Z"+j_1 b, € p"Bforalln >1,ie..,b, =0
forall r > [. It follows that g = p" > 1 e/ Aka] 4 for all n > [. Consequently
g € p®G has the indicated form. Moreover, b, = Y, ; Ak p"~/b¥ = 0 implies
that p/ | Y pc; Axb¥, forall r > [, and h(¥ s Ai8%) > J. O



Quasibases for nonseparable p-groups 213

CoRrOLLARY 6.2. Let Q = {al].‘ . Bi} be an inductive quasibasis of G. If
j > h(8k0), then afo ¢ p°G.

Proor. If a;.“’ € p®G, then by Lemma 6.1 there is a normed zero tuple

(A | k € I), such that a° = Yp; Aea® + b and af° = p" 37 ) Aeab,
ko

for all n. Thus b = 0, p/|Ax for all k # ko, and consequently a;.‘ = p'a;l,

for all n.

Now, let j > h = h(§k0). So there are infinitely many i € IN where
phtty b(‘o = ak" — paki1 € B;. Hence we may select an n with p"*1 } bjkj)rn

We assume a 9 € p®G and apply Lemma 3.1, i.e.,

k k

Zprbj-(i)-r = 4; pn+laj3—n+1 = 0.
Using B = P B- we get p’bjkj)rr = 0 forall 0 <r < n.In particular, p"b; -(‘?-n =0
1mp11es P b; +n But j > h further implies that ph+1|b]kj’rn, a contradiction.
Thus a 0 ¢ p?G. O

Our next theorem describes separable groups in terms of the height of a
quasibasis.

THEOREM 6.3. Let Q = {al’.C . Bi} be an il_@ductive quasibasis of the reduced
group G. Then G is separable if and only if h(§) = 0 for all Q-combinations §.

Proor. Suppose G is separable and let§ = > ;. Ax8%(Q) be a Q-combina-

tion. If (§) > 0, then there is a j € IN, such that Y kel )Lkbf‘ € pB; foralli > j.
By this fact combined with Lemma 3.1 we get for alln € IN

n—1
S ep’lal = dep?” 1<P"a,?+n+zprb;€+r>

kel kel
]+n 1 j+r—1 k
IS WA RS
kel kel
— pitn—1
p‘] " Zkka./#n'
kel

This holds for all n, thus > ", .; Ak p’ _laj.‘ # 0 has infinite height, a contradiction,
by [3, 65.1].
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Conversely, assume that G is nonseparable, i.e., thereisa0 # g € G of infinite
height and order p/. By Lemma 6.1 there is a normed zero tuple (Ax | k € I)
with 71(Q s e; 1K) > j >0, contradicting the hypothesis that h(§) = 0 for all
normed Q-combinations §. |

The following lemma shows, that a Q-combination § with /(§) = oo allows to
find a divisible subgroup of G.

LEMMA 6.4. Let Q = {al’.‘, @ Bi} be an inductive quasibasis of G. If § =
D kel Ae8%(Q) is a Q-combination with h(5) = oo, then there is a strictly
increasing sequence (n;)ien of natural numbers, such that (d; € G | i € N) =
Z(p™) with pdy = 0and d; = pdiy1 = p™ ) i1e; Akaﬁn,- fori € .

Proor. Since h(§) = oo, there is a strictly increasing sequence (n;);e
of natural numbers, such that p’ | Y ; Axb¥ for all n > n;. Define d; =
P" Yker Akaly, foralli € N. Clearly pdy = p™*' Y7 of Axak ., = 0. More-
over, foralli € N

— i1+l k
pdit1 = ptitl Zkkai+ni+1+l
kel

_ n~+(n-+1—n~+l)2 k
=p' ' Al 4y =i +1)
kel
nj41—n;
_n; k n;+r k
=" Y My, = D P Y by,
kel r=0 kel
=d;,

by Lemma 3.1 and the height condition above. Since (A | k € 1) # 0, we have
d; # 0, for almost all i € IN. Hence (d; € G | i € N) =~ Z(p*). O

LemMma 6.5. Let Q = {af.‘, @ B;} be an inductive quasibasis of G. If D
is a divisible subgroup of G of rank 1, then there is a Q-combination § =
D kel A.8%(Q) such that h(§) = oo, and D C (> ker )Lkal’.‘ | i € IN).

Proor. Let D = (g; € G | i € IN) = Z(p*) be a divisible subgroup of G
with pg; =0, pgi+1 = gi # O0fori € IN. Since Z(p*>°) =~ (g; + B |i € N) C
G/ B, there is a normed zero tuple (Ax | k € I),suchthat g; € Y, , Akal’.‘ + B,
for all i € IN, by Proposition 2.1. Hence by Lemma 6.1

gi=p" Z)Lkal’.‘+n for almost all » e Nand all i € IN.
kel
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Thus for each i € IN and for almost all # € IN

0=gi — pgi+1="7p" Zkk(alk-f-n - Pazk+n+1) =p" Zkkblk-f—n’
kel kel

ie., p' | Yrer McbF,,. Consequently, h(} c; Ak8%) = oo, and, in particular,
D=(gieG|ieN)C (Xresteak|ie). O

The Lemmata 6.4 and 6.5 lead to the main result in this section.

THEOREM 6.6. Let Q = {al]-‘, D B;} be an inductive quasibqsis of G. Then G
is not reduced if and only if there is a Q-combination § with h(§) = oo.

The Theorems 6.3 and 6.6 characterize also the reduced nonseparable groups.
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