

Quasibases for nonseparable p -groups

OTTO MUTZBAUER (*) – ELIAS TOUBASSI (**) – ANDRIJA VODOPIVEC (***)

Dedicated to László Fuchs on his 95th birthday

ABSTRACT – This paper is an extension of the work developed in [4] on quasibases of abelian p -groups and based on the doctoral dissertation of Andrija Vodopivec [5]. We introduce the ideas of a δ -combination and height of an inductive quasibasis and show that the height of a quasibasis is invariant for related inductive quasibases. Moreover, an abelian p -group is separable if and only if the heights of all δ -combinations are zero. Finally, we show that an abelian p -group is not reduced if and only if there exists a δ -combination with infinite height.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20K10.

KEYWORDS. p -group, quasibasis, separable, reduced.

1. Introduction

We deal with abelian groups and we use all definitions and conventions in [3]. For some few classes of torsion-free groups there is a description by cardinals. For all other torsion-free groups there exists basically only a presentation by generators and relations, unavoidably. In view of the convenient description of (simply presented) torsion groups by Ulm–Kaplansky invariants, the use of generators and

(*) *Indirizzo dell'A.*: Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 30, 97074 Würzburg, Germany

E-mail: mutzbauer@mathematik.uni-wuerzburg.de

(**) *Indirizzo dell'A.*: Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

E-mail: elias@math.arizona.edu

(***) *Indirizzo dell'A.*: Eberhard-Frohnmaier-Str. 11, 74354 Besigheim, Germany

E-mail: vodopivec72@yahoo.de

relations seems to be disadvantageous for torsion groups. But often groups are considered as extensions, and then things change. An explicit description of a mixed group as an extension of a torsion by a torsion-free group is impossible if the torsion group is given by Ulm–Kaplansky invariants. The torsion group has to be presented by generators and relations, the same way as the torsion-free group. Here the concept of a quasibasis [3, 33.5] comes into the game.

Investigating mixed groups we recognized that the concept of a quasibasis was not developed far enough for our needs. In [4] the concept of a quasibasis was reduced to that of an inductive quasibasis and p -groups are explicitly described by the corresponding diagonal relation arrays α . In particular, we showed that smallness of α is equivalent to splitting and independent diagonal relation arrays were shown to correspond uniquely to reduced, separable groups.

In this paper we determine a relation array of the generalized Prüfer group $\mathcal{H}_{2\omega+1}$, Theorem 4.3. We define a height of an inductive quasibasis and show that this is an invariant for related inductive quasibases, Theorem 5.8. Further, we define δ -combinations and characterize “separable” by the heights of δ -combinations, Theorem 6.3. Finally we establish a criterion for “nonreduced” in terms of heights, Theorem 6.6.

Our concept, for sure, needs additional development for promising applications in the theory of torsion groups. For more results see [5].

2. Preliminaries

We denote the ring of p -adic integers by \mathbb{Z}_p . As customary, define the p -adic norm of $\lambda \in \mathbb{Z}_p$ by $\|\lambda\| = p^{-n}$ if $\lambda \in p^n \mathbb{Z}_p \setminus p^{n+1} \mathbb{Z}_p$. Moreover, $\lambda = \sum_{i \in \mathbb{N}_0} \lambda_i p^i$ will denote the standard representation of a p -adic integer $\lambda \in \mathbb{Z}_p$.

We consider subgroups of $\prod_{|I|} \mathbb{Z}_p$, the additive group of all tuples $(\lambda_k \mid k \in I)$ of p -adic integers, where $\lambda_k \in \mathbb{Z}_p$, over some index set I . A tuple $0 \neq (\lambda_k \mid k \in I) \in \prod_{|I|} \mathbb{Z}_p$ is called a *zero tuple* if for every natural number n the norm of almost all λ_k is less than p^{-n} . A zero tuple is called *normed*, if there is at least one unit among the entries λ_k . The zero tuples (together with the trivial tuple 0) form a subgroup $(\prod_{|I|} \mathbb{Z}_p)^*$ of $\prod_{|I|} \mathbb{Z}_p$, which clearly contains $\bigoplus_{|I|} \mathbb{Z}_p$. Moreover, $(\prod_{|I|} \mathbb{Z}_p)^*/\bigoplus_{|I|} \mathbb{Z}_p$ is the maximal divisible subgroup of $\prod_{|I|} \mathbb{Z}_p/\bigoplus_{|I|} \mathbb{Z}_p$.

PROPOSITION 2.1. *Let $G = \bigoplus_{k \in I} \langle g_i^k \mid i \in \mathbb{N} \rangle \cong \bigoplus_{|I|} \mathbb{Z}(p^\infty)$, where $pg_1^k = 0$, $pg_{i+1}^k = g_i^k$ for all $k \in I, i \in \mathbb{N}$. Then $D = \langle h_i \in G \mid i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty)$ is a subgroup of G , where $ph_1 = 0$, $ph_{i+1} = h_i$ for all $i \in \mathbb{N}$, if and only if there is a normed zero tuple $(\lambda_k \mid k \in I)$, such that $h_i = \sum_{k \in I} \lambda_k g_i^k$ for all $i \in \mathbb{N}$.*

PROOF. For each $i \in \mathbb{N}$, the element $0 \neq h_i \in \bigoplus_{k \in I} \langle g_i^k \mid i \in \mathbb{N} \rangle$ can be written in the form $h_i = \sum_{k \in I} \lambda_i^k g_i^k$, where $0 \leq \lambda_i^k < p^i$, $\lambda_i^k = 0$ for almost all $k \in I$, and $p \nmid \lambda_i^k$ for at least one $k \in I$, by order considerations. Furthermore, we have for each $i \in \mathbb{N}$,

$$0 = h_i - ph_{i+1} = \sum_{k \in I} \lambda_i^k g_i^k - \sum_{k \in I} \lambda_{i+1}^k p g_{i+1}^k = \sum_{k \in I} (\lambda_i^k - \lambda_{i+1}^k) g_i^k.$$

Hence, $(\lambda_i^k - \lambda_{i+1}^k) g_i^k = 0$, i.e., $p^i \mid (\lambda_i^k - \lambda_{i+1}^k)$ for all $k \in I$. For each $k \in I$ let

$$\lambda_k = \lambda_i^k + \sum_{j \geq i} (\lambda_{j+1}^k - \lambda_j^k) \in \mathbb{Z}_p,$$

where the equation holds for arbitrary $i \in \mathbb{N}$.

For a fixed $i \in \mathbb{N}$, $p^i \mid \lambda_k$ for almost all $k \in I$, because $\lambda_i^k = 0$ for almost all k . Therefore $(\lambda_k \mid k \in I)$ is a zero tuple. Moreover, $p \nmid \lambda_k$ for at least one $k \in I$, because $p \nmid \lambda_i^k$ for at least one $i \in \mathbb{N}$, i.e., $(\lambda_k \mid k \in I)$ is normed. In particular, $\lambda_k g_i^k = \lambda_i^k g_i^k$. Thus $h_i = \sum_{k \in I} \lambda_i^k g_i^k = \sum_{k \in I} \lambda_k g_i^k$ for all $i \in \mathbb{N}$.

Conversely, let $(\lambda_k \mid k \in I)$ be a normed zero tuple and $h_i = \sum_{k \in I} \lambda_k g_i^k$ for each $i \in \mathbb{N}$. Note $ph_1 = \sum_{k \in I} p \lambda_k g_1^k = 0$ and

$$ph_{i+1} = \sum_{k \in I} \lambda_k p g_{i+1}^k = \sum_{k \in I} \lambda_k g_i^k = h_i$$

for all $i \in \mathbb{N}$. In particular, the order $o(h_i) = p^i$, because $(\lambda_k \mid k \in I)$ is a normed zero tuple. Hence, $\langle h_i \in G \mid i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty)$. \square

Following [4] the set

$$Q = \{a_i^k, x_j^u\} = \{a_i^k, x_j^u \mid i, j \in \mathbb{N}, k \in I, u \in I_j\} \subset G$$

is called a *quasibasis* of G , if

- i. $\{x_j^u \mid j \in \mathbb{N}, u \in I_j\}$ is a basis of the basic subgroup $B = \bigoplus B_j$, where $o(x_j^u) = p^j$ for all $j \in \mathbb{N}, u \in I_j$;
- ii. $G/B = \bigoplus_{k \in I} A^k$, where $A^k = \langle a_i^k + B \mid i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty)$, $k \in I$, and $pa_{i+1}^k + B = a_i^k + B$ for all $i \in \mathbb{N}, k \in I$, with $pa_1 + B = 0 + B$;
- iii. $o(a_i^k) = p^i$ for all $i \in \mathbb{N}, k \in I$.

Note that

$$G = \langle a_i^k, x_j^u \mid i, j \in \mathbb{N}, k \in I, u \in I_j \rangle.$$

By [3, 33.5] every p -group has a quasibasis with corresponding relations

$$pa_{i+1}^k = a_i^k - \sum_{j \in \mathbb{N}} \sum_{u \in I_j} \alpha_{i,j}^{k,u} x_j^u \quad (i \in \mathbb{N}, k \in I, \alpha_{i,j}^{k,u} \in \mathbb{Z}).$$

Given a quasibasis $Q = \{a_i^k, x_j^u\}$ the array $\alpha = (\alpha_{i,j}^{k,u})$ is called a *corresponding relation array*, B the *corresponding basic subgroup*. Note that we may also assume $\alpha_{i,j}^{k,u} \in \mathbb{Z}_p$. For $n \in \mathbb{N}$ let $p^n Q = \{c_i^k, y_j^u \mid i, j \in \mathbb{N}, k \in I, u \in I_{j+n}\}$, where $y_j^u = p^n x_{j+n}^u$ and $c_i^k = p^n a_{i+n}^k$.

LEMMA 2.2. *Let $Q = \{a_i^k, x_j^u\}$ be a quasibasis of G with relation array $\alpha = (\alpha_{i,j}^{k,u})$. Then for any $n \in \mathbb{N}$ the set $p^n Q$ is a quasibasis of $p^n G$ with corresponding array $(\alpha_{i+n,j+n}^{k,u})$.*

PROOF. Since $p^n B = \bigoplus_{j \in \mathbb{N}} \bigoplus_{u \in I_{j+n}} \langle p^n x_{j+n}^u \rangle$ is a basic subgroup of $p^n G$ and $o(p^n x_{j+n}^u) = p^j$, $o(p^n a_{i+n}^k) = p^i$, the conditions (i) and (iii) hold. Since $p^n G / p^n B \cong G / B \cong \bigoplus_{|I|} \mathbb{Z}(p^\infty)$ condition (ii) follows. The relations

$$p^{n+1} a_{i+n+1}^k = p^n a_{i+n}^k - \sum_{j \in \mathbb{N}} \sum_{u \in I_{j+n}} \alpha_{i+n,j+n}^{k,u} p^n x_{j+n}^u$$

give rise to the indicated array. \square

3. Inductive quasibases

A quasibasis $\{a_i^k, x_j^u\}$ is called an *inductive quasibasis*, see [4], if the corresponding relations are of the form $pa_{i+1}^k = a_i^k - b_i^k$ for $i \in \mathbb{N}, k \in I$, where $b_i^k \in B_i = \bigoplus_{u \in I_i} \langle x_i^u \rangle$, cf. also [1]. Furthermore, a relation array $\alpha = (\alpha_{i,j}^{k,u})$ is called *diagonal*, if $\alpha_{i,j}^{k,u} = 0$ for $i \neq j$. A diagonal array is denoted by $\alpha = (\alpha_i^{k,u}) = (\alpha_{i,i}^{k,u})$. By [4, Theorem 4 and Corollary 5], every p -group has an inductive quasibasis, and the corresponding relation array is diagonal. Note that an inductive quasibasis is based on a fixed decomposition $B = \bigoplus B_i$ of the basic subgroup, and we write $Q = \{a_i^k, \bigoplus B_i\}$ or $Q = \{a_i^k, B\}$ to suppress the generators of the basic subgroup.

LEMMA 3.1. *Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G with corresponding relations $pa_{i+1}^k = a_i^k - b_i^k$, $i \in \mathbb{N}, k \in I$. Then $p^n a_{i+n}^k = a_i^k - \sum_{r=0}^{n-1} p^r b_{i+r}^k$ for all $n \in \mathbb{N}$.*

PROOF. We induct on n . Clearly, $pa_{i+1}^k = a_i^k - b_i^k$. By hypothesis

$$\begin{aligned} p^{n+1}a_{i+n+1}^k &= p^n a_{i+n}^k - p^n b_{i+n}^k \\ &= a_i^k - \sum_{r=0}^{n-1} p^r b_{i+r}^k - p^n b_{i+n}^k \\ &= a_i^k - \sum_{r=0}^n p^r b_{i+r}^k. \end{aligned} \quad \square$$

Let G, H be groups with isomorphic basic subgroups $B = \bigoplus B_i \subset G$ and $C = \bigoplus C_i \subset H$, and $G/B \cong H/C$, i.e., in particular, for all $i, B_i \cong C_i$ are isomorphic homocyclic groups of exponent p^i . Let, assuming equal index sets, the corresponding quasibases be $Q = \{a_i^k, x_j^u\}$, $P = \{c_i^k, y_j^u\}$, and the corresponding relation arrays be $\alpha = (\alpha_{i,j}^{k,u})$, $\beta = (\beta_{i,j}^{k,u})$, respectively. Then the groups G, H , the quasibases P, Q and the relation arrays α, β are called *related*, respectively. In particular, if $G = H$ and $B = C$ we call the two quasibases $Q = \{a_i^k, x_j^u\}$, $P = \{c_i^k, y_j^u\}$ and the two corresponding relation arrays α, β of G *related*, respectively. The point for related relation arrays is that the respective index sets are equal. We tacitly assume this setting for those related pairs G, H , or for a single group G with fixed basic subgroup B .

Let $H = \varphi G$ with isomorphism φ , then by choice $C = \varphi B$ for some basic subgroup $B \subset G$ the groups G, H are related. In other words, related groups coincide in some invariants that are kept by isomorphism.

Otherwise, let G, H be related with related quasibases $Q = \{a_i^k, x_j^u\}$, $P = \{c_i^k, y_j^u\}$ and related relation arrays α, β . If there is another quasibasis P' of H such that the relation array β' corresponding to P' is equal to α , then $G \cong H$. This is a consequence of [4, Theorem 1], because the relations given by the relation array of a group are defining. Thus all results on changing the quasibasis, respectively changing the relation array, of a group include statements on isomorphism.

There is a strong relationship between two related inductive quasibases of a group.

LEMMA 3.2. *Let $Q = \{a_i^k, \bigoplus B_i\}$ and $P = \{c_i^k, \bigoplus B_i\}$ be related, inductive quasibases of G with corresponding relations $a_i^k - pa_{i+1}^k = b_i^k$ and $c_i^k - pc_{i+1}^k = d_i^k$. Then for each $k_0 \in I$ there is a normed zero tuple $(\lambda_k \mid k \in I)$ (depending on k_0), such that for all $n \in \mathbb{N}$,*

$$d_i^{k_0} - \sum_{k \in I} \lambda_k b_i^k \in p^n B_i$$

for almost all $i \in \mathbb{N}$.

PROOF. Since

$$G/B = \bigoplus_{k \in I} \langle a_i^k + B \mid i \in \mathbb{N} \rangle = \bigoplus_{k \in I} \langle c_i^k + B \mid i \in \mathbb{N} \rangle \cong \bigoplus_{|I|} \mathbb{Z}(p^\infty)$$

by Proposition 2.1, there is, for a fixed $k_0 \in I$, a normed zero tuple $(\lambda_k \mid k \in I)$ (depending on k_0), such that $c_n^{k_0} = \sum_{k \in I} \lambda_k a_n^k + b_n, b_n \in B$ for all $n \in \mathbb{N}$. Hence for all $n \in \mathbb{N}$,

$$d_n^{k_0} - \sum_{k \in I} \lambda_k b_n^k = c_n^{k_0} - p c_{n+1}^{k_0} - \sum_{k \in I} \lambda_k (a_n^k - p a_{n+1}^k) = b_n - p b_{n+1} \in B_n,$$

because Q and P are inductive and related. The elements $b_n \in B$ are of the form $b_n = \sum_{i \in \mathbb{N}} b_{n,i}$, where $b_{n,i} \in B_i$. Thus for each $n \in \mathbb{N}$

$$b_n - p b_{n+1} = \sum_{i \in \mathbb{N}} (b_{n,i} - p b_{n+1,i}) \in B_n,$$

i.e., $b_{n,i} - p b_{n+1,i} = 0$ for all $i \in \mathbb{N}$ with $i \neq n$. Consequently, for all $n \in \mathbb{N}$,

$$\begin{aligned} b_{n,i} &= p b_{n+1,i} = p^2 b_{n+2,i} = \cdots = 0 && \text{if } i < n, \\ b_{n,i} &= p b_{n+1,i} = p^2 b_{n+2,i} = \cdots = p^{i-n} b_{i,i} && \text{if } i \geq n, \end{aligned}$$

and the first part of the following sum is 0, hence

$$\begin{aligned} b_n &= b_{n,1} + \cdots + b_{n,n-1} + b_{n,n} + b_{n,n+1} + b_{n,n+2} + \cdots \\ &= b_{n,n} + p b_{n+1,n+1} + p^2 b_{n+2,n+2} + \cdots + p^r b_{n+r,n+r} + \cdots \end{aligned}$$

This is a finite sum, thus we have the equality $p^r b_{n+r,n+r} = 0$ for all $n \in \mathbb{N}$, or $p^n \mid b_{n+r,n+r}$ for almost all $r \in \mathbb{N}_0$. This implies for all $n \in \mathbb{N}$,

$$\begin{aligned} d_{n+r}^{k_0} - \sum_{k \in I} \lambda_k b_{n+r}^k &= b_{n+r} - p b_{n+r+1} \\ &= \sum_{m \in \mathbb{N}_0} p^m b_{n+r+m,n+r+m} - \sum_{m \in \mathbb{N}_0} p^{m+1} b_{n+r+m+1,n+r+m+1} \\ &= b_{n+r,n+r} \in p^n B_{n+r} \end{aligned}$$

for almost all $r \in \mathbb{N}_0$, as claimed. \square

Let $Q = \{a_i^k, x_j^u\}$ be an inductive quasibasis of G with corresponding relations

$$(1) \quad a_i^k - p a_{i+1}^k = \sum_{u \in I_i} \alpha_i^{k,u} x_i^u = b_i^k \in B_i.$$

We write the corresponding diagonal relation array $\alpha = (\alpha_i^{k,u})$ in the following form:

$$(2a) \quad \alpha = (\alpha^k)_{k \in I},$$

$$(2b) \quad \alpha^k = \text{diag}(\alpha_1^k, \alpha_2^k, \dots),$$

$$(2c) \quad \alpha_i^k = (\alpha_i^{k,u})_{u \in I_i} \quad \text{with } i \in \mathbb{N}, \alpha_i^{k,u} \in \mathbb{Z},$$

where $\alpha_i^k \in \mathbb{Z}^{|I_i|}$ is a tuple, with only finitely many nonzero entries, and α can be considered as a tuple of (infinite) diagonal matrices α^k .

Two related diagonal relation arrays $\alpha = (\alpha_i^{k,u})$ and $\beta = (\beta_i^{k,u})$, i.e., with equal index sets, are called *almost equal*, if for each k the equation $\alpha_i^k = \beta_i^k$ holds for almost all $i \in \mathbb{N}$.

The following proposition shows that a group allows a whole class of almost equal relation arrays, and, moreover, that almost equal relation arrays of groups imply isomorphism.

PROPOSITION 3.3. *Let $Q = \{a_i^k, x_j^u\}$ be an inductive quasibasis of G with relation array $\alpha = (\alpha_i^{k,u})$ and let β be an array almost equal to α . Then there is an inductive quasibasis $P = \{c_i^k, x_j^u\}$ of G with relation array β and $c_i^k = a_i^k$ for each $k \in I$, and for almost all $i \in \mathbb{N}$.*

Related groups G, H with almost equal (related) relation arrays are isomorphic.

PROOF. Since α and β are almost equal we need to show that we can make finitely many changes for each k . Thus it suffices to construct a new inductive quasibasis P of G which differs from Q only for one fixed k and a fixed i_k . Let $\beta = (\beta_i^k)$ be given by

$$\beta_i^k = \begin{cases} (\alpha_i^{k,u})_{u \in I_i} & \text{if } i \neq i_k, \\ (z^{k,u})_{u \in I_i} & \text{if } i = i_k, \end{cases}$$

where $(z^{k,u} \mid u \in I_{i_k}) \in \mathbb{Z}^{|I_{i_k}|}$ is an arbitrary tuple with only finitely many nonzero entries. We show that $P = \{c_i^k, x_j^u \mid i, j \in \mathbb{N}, k \in I, u \in I_j\} \subset G$ with

$$c_i^k = \begin{cases} a_i^k + p^{i_k-i} \sum_{u \in I_{i_k}} (z^{k,u} - \alpha_{i_k}^{k,u}) x_{i_k}^u & \text{if } i \leq i_k, \\ a_i^k & \text{if } i > i_k, \end{cases}$$

for all $k \in I$, is an inductive quasibasis of G . The conditions (i) and (iii) of the definition of a quasibasis are obviously satisfied. Since $c_i^k + B = a_i^k + B$ for all

$k \in I, i \in \mathbb{N}$, condition (ii) is also satisfied. Furthermore, for all $k \in I$,

$$\begin{aligned}
pc_{i+1}^k &= p \left(a_{i+1}^k + p^{i_k-i-1} \sum_{u \in I_{i_k}} (z^{k,u} - \alpha_{i_k}^{k,u}) x_{i_k}^u \right) \\
&= a_i^k - \sum_{u \in I_i} \alpha_i^{k,u} x_i^u + p^{i_k-i} \sum_{u \in I_{i_k}} (z^{k,u} - \alpha_{i_k}^{k,u}) x_{i_k}^u \\
&= c_i^k - \sum_{u \in I_i} \alpha_i^{k,u} x_i^u \quad \text{if } i < i_k, \\
pc_{i_k+1}^k &= pa_{i_k+1}^k \\
&= a_{i_k}^k - \sum_{u \in I_{i_k}} \alpha_{i_k}^{k,u} x_{i_k}^u \\
&= c_{i_k}^k - \sum_{u \in I_{i_k}} (z^{k,u} - \alpha_{i_k}^{k,u}) x_{i_k}^u - \sum_{u \in I_{i_k}} \alpha_{i_k}^{k,u} x_{i_k}^u \\
&= c_{i_k}^k - \sum_{u \in I_{i_k}} z^{k,u} x_{i_k}^u, \\
pc_{i+1}^k &= pa_{i+1}^k \\
&= a_i^k - \sum_{u \in I_i} \alpha_i^{k,u} x_i^u \\
&= c_i^k - \sum_{u \in I_i} \alpha_i^{k,u} x_i^u \quad \text{if } i > i_k.
\end{aligned}$$

Hence β is the desired relation array.

By the argument above and because relation arrays provide defining relations, see [4, Theorem 1], the groups G, H are isomorphic. \square

4. Construction of a quasibasis for $\mathcal{H}_{2\omega+1}$

Well known examples for nonseparable reduced p -groups are the generalized Prüfer groups H_σ for ordinals σ . For a definition see [3, Section 81]. By [3, 83.1] all generalized Prüfer groups are simply presented.

In [4] for the generalized Prüfer group $\mathcal{H}_{\omega+n}$ of length $\omega+n$ for natural n an inductive quasibasis was given with a corresponding relation array. Our next goal is to determine an inductive quasibasis of the generalized Prüfer group $\mathcal{H}_{2\omega+1}$ of length $2\omega+1$. Note that the Ulm–Kaplansky-invariants of $\mathcal{H}_{2\omega+1}$ are

$$f_\sigma(\mathcal{H}_{2\omega+1}) = \begin{cases} \aleph_0 & \text{for } 0 \leq \sigma < \omega, \\ 1 & \text{for } \omega \leq \sigma \leq 2\omega. \end{cases}$$

We construct a simply presented group \mathcal{G} that has the same Ulm–Kaplansky-invariants as $\mathcal{H}_{2\omega+1}$. Hence $\mathcal{G} \cong \mathcal{H}_{2\omega+1}$, because simply presented groups with equal Ulm–Kaplansky-invariants are isomorphic, see [3, 83.3]. Further we use the presentation of this group \mathcal{G} to obtain an inductive quasibasis.

We begin by developing some notation. Let $H = \langle h_0^0 \rangle \oplus \bigoplus_{k \in \mathbb{N}, i \in \mathbb{N}_0} \langle h_i^k \rangle$ be a free abelian group and $L = \langle ph_0^0, p^k h_0^k - h_0^0, p^i h_i^k - h_0^k \mid i, k \in \mathbb{N} \rangle$ a subgroup of H . We denote $\mathcal{G} = H/L = \langle g_0^0, g_i^k \mid k \in \mathbb{N}, i \in \mathbb{N}_0 \rangle$ with $g_0^0 = h_0^0 + L$ and $g_i^k = h_i^k + L$. The group \mathcal{G} is given by the relations

$$pg_0^0 = 0, \quad p^k g_0^k = g_0^0$$

and

$$p^i g_i^k = g_0^k \quad \text{for } i, k \in \mathbb{N}.$$

In particular, \mathcal{G} is simply presented. It is straightforward to show that the following hold for the groups L and \mathcal{G} as described above.

- i. Every $l \in L$ has the form $l = \lambda_0^0 h_0^0 + \sum_{k \in \mathbb{N}, i \in \mathbb{N}_0} \lambda_i^k h_i^k$, where $\lambda_i^k \in p^i \mathbb{Z}$ for $i, k \in \mathbb{N}$. Moreover, $h_0^0 \notin L$ and for $l = \sum_{k \in \mathbb{N}} \lambda_0^k h_0^k$, $\lambda_0^k \in p^k \mathbb{Z}$ for all $k \in \mathbb{N}$.
- ii. For $r \in \mathbb{N}$ each $g \in p^r \mathcal{G}$ has the form $g = \sum_{k \in \mathbb{N}} (\mu_0^k g_0^k + \sum_{i > r} \mu_i^k g_i^k)$ with $\mu_0^k \in \mathbb{Z}$ and $\mu_i^k \in p^r \mathbb{Z}$ for $i > r$.

We determine a basic subgroup of \mathcal{G} and construct an inductive quasibasis. Let $x_i^k = g_i^k - pg_{i+1}^k \in \mathcal{G}$ for all $i, k \in \mathbb{N}$ and let $\mathcal{B} = \langle x_i^k \mid k, i \in \mathbb{N} \rangle$.

LEMMA 4.1. *The subgroup \mathcal{B} of \mathcal{G} defined above is a direct sum, $\mathcal{B} = \bigoplus_{i, k \in \mathbb{N}} \langle x_i^k \rangle$, with $o(x_i^k) = p^i$ for all $i, k \in \mathbb{N}$. Moreover, \mathcal{B} is a basic subgroup of \mathcal{G} .*

PROOF. Similar to the arguments for the generalized Prüfer group $\mathcal{H}_{\omega+1}$, see [3, Section 35, Example], it is easy to verify that $\{x_i^k \mid i, k \in \mathbb{N}\}$ is a p -independent system of \mathcal{G} with each $b \in \mathcal{B}$ of the form $b = \sum_{i, k \in \mathbb{N}} \lambda_i^k x_i^k = \sum_{i, k \in \mathbb{N}} (\lambda_i^k - p\lambda_{i-1}^k) g_i^k$, where $0 \leq \lambda_i^k < p^i$ and agreeing $\lambda_0^k = 0$. Moreover, \mathcal{G}/\mathcal{B} is divisible with a decomposition into the $\mathbb{Z}(p^\infty)$ summands given by $\langle \bar{g}_i^1 \mid i \in \mathbb{N}_0 \rangle$ and $\langle p^{k-1} \bar{g}_i^k - p^k \bar{g}_i^{k+1} \mid i \in \mathbb{N}_0 \rangle$ for $k \in \mathbb{N}$ and where $\bar{g} = g + \mathcal{B}$. \square

LEMMA 4.2. $\mathcal{G} \cong \mathcal{H}_{2\omega+1}$.

PROOF. Since $\mathcal{B} = \bigoplus_{i, k \in \mathbb{N}} \langle x_i^k \rangle$ and $p^\omega \mathcal{G} = \langle g_0^0, g_0^k \mid pg_0^0 = 0, p^k g_0^k = g_0^0 \text{ for } k \in \mathbb{N} \rangle$, we have $p^\omega \mathcal{G} = \mathcal{H}_{\omega+1}$, see [3, Section 83, Example 3]. So the the Ulm–Kaplansky invariants of the simply presented group \mathcal{G} are equal to those of $\mathcal{H}_{2\omega+1}$. Thus $\mathcal{G} \cong \mathcal{H}_{2\omega+1}$ by the consideration above. \square

Now we use the presentation of \mathcal{G} to obtain an inductive quasibasis of $\mathcal{H}_{2\omega+1}$. In Lemma 4.1 we defined \mathcal{B} , the basic subgroup of \mathcal{G} , by $\mathcal{B} = \bigoplus_{i,k \in \mathbb{N}} \langle x_i^k \rangle$. This shows that condition (i) of an inductive quasibasis holds. Now we show conditions (ii) and (iii). Define the generators a_i^k as follows $a_i^0 = p^2 g_i^1$ and $a_i^k = -p^k g_i^k + p^{k+1} g_i^{k+1}$ for $i, k \in \mathbb{N}$. In particular, $a_i^0 - p a_{i+1}^0 = p^2 g_i^1 - p^3 g_{i+1}^1 = p^2 x_i^1 \in B_i$ and for all $i, k \in \mathbb{N}$

$$\begin{aligned} a_i^k - p a_{i+1}^k &= -p^k g_i^k + p^{k+1} g_i^{k+1} + p^{k+1} g_{i+1}^k - p^{k+2} g_{i+1}^{k+1} \\ &= -p^k x_i^k + p^{k+1} x_i^{k+1} \in B_i. \end{aligned}$$

Define A^k by $A^k = \langle a_i^k + \mathcal{B} \mid i \in \mathbb{N} \rangle \subset \mathcal{G}/\mathcal{B}$ for all $k \in \mathbb{N}_0$. Note that the subgroups A^k are precisely the $\mathbb{Z}(p^\infty)$ summands given in Lemma 4.1 by the generators $\langle \bar{g}_i^1 \mid i \in \mathbb{N}_0 \rangle$ and $\langle p^{k-1} \bar{g}_i^k - p^k \bar{g}_i^{k+1} \mid i \in \mathbb{N}_0 \rangle$. Hence condition (ii) holds. Finally we show condition (iii), that $o(a_i^k) = p^i$. This follows from $p^i a_i^0 = p^{i+2} g_i^1 = p^2 g_0^1 = 0$, $p^i a_i^k = p^i (-p^k g_i^k + p^{k+1} g_i^{k+1}) = -p^k g_0^k + p^{k+1} g_0^{k+1} = -g_0^0 + g_0^0 = 0$ and the defining relations for the groups \mathcal{G} and L . We summarize the above results in the following theorem.

THEOREM 4.3. $\mathcal{Q} = \{\underbrace{a_i^k, x_i^k}_{k-1} \mid i \in \mathbb{N}, k \in \mathbb{N}_0\}$ with a_i^k and x_i^k as defined above is an inductive quasibasis of $\mathcal{G} \cong \mathcal{H}_{2\omega+1}$ with the corresponding relation array $\alpha^k = \text{diag}(\alpha_1^k, \alpha_2^k, \dots)$, where $\alpha_i^0 = (p^2, 0, \dots)$ and $\alpha_i^k = (0, \dots, 0, -p^k, p^{k+1}, 0, \dots)$ for all $i, k \in \mathbb{N}$.

5. Invariance of height for quasibases

Let $B = \bigoplus_{i \in \mathbb{N}} B_i$ be a basic subgroup of G , and let $B^\Pi = \prod_{i \in \mathbb{N}} B_i$. The elements $\delta \in B^\Pi$ are written in the form $\delta = (b_1, b_2, \dots)$, where $b_i \in B_i$ for all $i \in \mathbb{N}$. Let $h(\bar{\delta})$ denote the height of $\bar{\delta} = \delta + B$ in B^Π/B . If $h^B(b_i)$ denotes the height of b_i in B then it is easy to see, that $h(\bar{\delta}) = \liminf_{i \rightarrow \infty} (h^B(b_i))$. Note that $h^B(b_i) = \infty$ if and only if $b_i = 0$ and $h^B(b_i) \in \{0, 1, \dots, i-1\}$ for $b_i \neq 0$.

Let $B_0^\Pi = \{\delta \in B^\Pi \mid h(\bar{\delta}) \text{ is not finite}\}$. Note that $B_0^\Pi = \widehat{B}$, the completion of B in the p -adic topology, cf. also [2]. Then $B \subset B_0^\Pi \subset B^\Pi$ and B_0^Π/B is the first Ulm subgroup of B^Π/B . Clearly, $\delta = (b_i \mid i) \in B_0^\Pi$ if and only if $\lim_{i \rightarrow \infty} (h^B(b_i)) = \infty$.

LEMMA 5.1. $B_0^\Pi/B = p^\omega(B^\Pi/B)$ is the maximal divisible subgroup of B^Π/B . In particular, $h(\bar{\delta}) \in \mathbb{N}_0 \cup \{\infty\}$ for $\bar{\delta} \in B^\Pi/B$. Moreover, $\text{tor}(B^\Pi/B) \subset B_0^\Pi/B$.

PROOF. We show that B_0^Π/B is divisible. If $\delta = (b_i \mid i)$ and $\delta + B \in B_0^\Pi/B$, then there is a $j \in \mathbb{N}$ such that $h(b_i) \geq 1$ for all $i \geq j$, i.e., $\delta + B = (pc_i \mid i) + B = p(c_i \mid i) + B$, where $b_i = pc_i$ for all $i \geq j$. Consequently $B_0^\Pi/B = p(B_0^\Pi/B)$, as desired. In particular, $h(\bar{\delta}) \in \mathbb{N}_0 \cup \{\infty\}$ for $\bar{\delta} \in B^\Pi/B$. Moreover, it follows from $i = h(b_i) + n_i$, if the element $b_i \in B_i$ is of order p^{n_i} , that the torsion subgroup of B^Π/B is contained in B_0^Π/B . \square

Recall the following rules for heights [3, Section 37].

LEMMA 5.2. *The following properties hold for $\delta, \delta_1, \delta_2 \in B^\Pi$ and $\lambda \in \mathbb{Z}_p$ with $\|\lambda\| = p^{-n}$:*

- i. $h(\bar{\delta}_1 + \bar{\delta}_2) \geq \min\{h(\bar{\delta}_1), h(\bar{\delta}_2)\}$,
- ii. $h(\bar{\delta}_1 + \bar{\delta}_2) = h(\bar{\delta}_1)$, if $h(\bar{\delta}_1) < h(\bar{\delta}_2)$,
- iii. $h(\lambda\bar{\delta}) = h(\bar{\delta}) + n$.

PROOF. (i) and (ii) are obvious, cf. [3, Section 37]. Condition (iii) follows from $h(\lambda\bar{\delta}) = h(p^n\lambda'\bar{\delta}) = h(\lambda'\bar{\delta}) + n = h(\bar{\delta}) + n$, where $\lambda' \in \mathbb{Z}_p \setminus p\mathbb{Z}_p$ with $\lambda = p^n\lambda'$. \square

NOTATION 5.3. Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G with corresponding relations $a_i^k - pa_{i+1}^k = b_i^k \in B_i$. Define $\delta^k = \delta^k(Q) = (b_1^k, b_2^k, \dots) \in B^\Pi$, then the Q -tuple $\Delta(Q) = (\delta^k(Q) \mid k \in I)$ describes the corresponding relations of G . An important property of these relations can be formulated by the height function h given by $h(Q) = \min\{h(\bar{\delta}^k(Q)) \mid k \in I\} \in \mathbb{N}_0 \cup \{\infty\}$. We will refer to it as the *height* of Q in G . For a zero tuple $(\lambda_k \mid k \in I) \neq 0$ and the Q -tuple $\Delta(Q)$ we define the sum $\delta = \sum_{k \in I} \lambda_k \delta^k(Q) = (\sum_{k \in I} \lambda_k b_i^k \mid i \in \mathbb{N}) \in B^\Pi$ and call it a Q -combination. Note that δ is a well defined element of B^Π , because the sum in each component is finite. A Q -combination is called *normed* if the zero tuple $(\lambda_k \mid k \in I)$ is normed.

If $\alpha = (\alpha_i^{k,u})$ is the diagonal relation array corresponding to the inductive quasibasis Q , then we write the relation array as in the Equations (1) and (2). Thus

$$\delta^k(Q) = (b_1^k, b_2^k, \dots) = \left(\sum_{u \in I_i} \alpha_i^{k,u} x_i^u \mid i \in \mathbb{N} \right),$$

and $\Delta(Q) = (\delta^k \mid k)$ is the Q -tuple. In particular, the heights $h(\bar{\delta}^k(Q))$ are precisely determined by the p -powers dividing the entries $\alpha_i^{k,u}$. Hence also $h(Q) = \min\{h(\bar{\delta}^k(Q)) \mid k \in I\}$ can be read off the entries $\alpha_i^{k,u}$.

We now determine the heights of some quasibases that have been studied previously.

EXAMPLE 5.4. Let $Q = \{a_i^k, x_i^u\}$ where $|I| = |I_i| = 1$ for all $i \in \mathbb{N}$, i.e., $B = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}(p^i)$, and $G/B \cong \mathbb{Z}(p^\infty)$. Thus $\Delta(Q) = (b_1, b_2, \dots)$, i.e., $h(Q) = \liminf_{i \rightarrow \infty} (h^B(b_i))$. We now give the heights of three quasibases that appeared in [4, Section 2 and 5] together with their relation arrays:

$$\begin{aligned} H_{\omega+n}: \alpha &= \text{diag}(p^n, p^n, \dots), \\ \delta &= (p^n x_1, p^n x_2, \dots), \\ h(\bar{\delta}) &= n, \end{aligned}$$

$$\begin{aligned} B: \alpha &= \text{diag}(1, 0, 1, 0, \dots) \\ \delta &= (x_1, 0, x_3, 0, \dots), \\ h(\bar{\delta}) &= 1, \end{aligned}$$

$$\begin{aligned} \mathbb{Z}(p^\infty) \oplus B: \alpha &= \text{diag}(1, p, p^2, p^3, \dots), \\ \delta &= (x_1, p x_2, p^2 x_3, \dots), \\ h(\bar{\delta}) &= \infty. \end{aligned}$$

In the next example we consider the generalized Prüfer group $\mathcal{G} \cong \mathcal{H}_{2\omega+1}$ and determine the Q -tuple $\Delta(Q)$, the heights $h(\bar{\delta}^k(Q))$, and the height $h(Q)$ of the quasibasis $Q = \{a_i^k, x_i^k\}$ for the generalized Prüfer group $\mathcal{H}_{2\omega+1}$.

EXAMPLE 5.5. By Theorem 4.3 the generalized Prüfer group $\mathcal{H}_{2\omega+1}$ has the quasibasis $Q = \{a_i^k, x_i^k \mid i \in \mathbb{N}, k \in \mathbb{N}_0\}$ and the corresponding relation array is $\alpha = (\alpha^k)_{k \in I}$ with $\alpha^k = \text{diag}(\alpha_1^k, \alpha_2^k, \dots)$, where

$$\alpha_i^0 = (p^2, 0, \dots)$$

and

$$\alpha_i^k = (\underbrace{0, \dots, 0}_{k-1}, -p^k, p^{k+1}, 0, \dots) \quad \text{for all } i, k \in \mathbb{N}.$$

Thus

$$\Delta(Q) = (\delta^k \mid k \in \mathbb{N}_0), \quad \text{where } \delta^0 = (p^2 x_i^1 \mid i),$$

and

$$\delta^k = (-p^k (x_i^k - p x_i^{k+1}) \mid i) \quad \text{for } k \in \mathbb{N}.$$

So the heights of the $\bar{\delta}^k$ are $h(\bar{\delta}^0) = 2$ and $h(\bar{\delta}^k) = k$ for $k \in \mathbb{N}$, hence $h(Q) = h(\bar{\delta}^1) = 1$.

Our next objective is to show that the height is invariant for related inductive quasibases. Let Q be a quasibasis of a group G with Q -tuple $\Delta(Q) = (\delta^k(Q) \mid k)$. We begin with Proposition 5.6 by showing that for some fixed $k_0 \in I$ we may switch to a related quasibasis of G such that only the entry $\delta^{k_0}(Q)$ is changed and this in a quite arbitrary way.

PROPOSITION 5.6. *Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G with Q -tuple $\Delta(Q) = (\delta^k(Q) \mid k)$. Let $k_0 \in I$ be fixed and let $\delta = \sum_{k \in I} \lambda_k \delta^k(Q)$ be a (normed) Q -combination with $p \nmid \lambda_{k_0}$. Then there is an inductive quasibasis $P = \{c_i^k, \bigoplus B_i\}$ of G , related to Q , with P -tuple $\Delta(P) = (\delta^k(P) \mid k)$ such that*

$$\delta^k(P) = \begin{cases} \delta & \text{if } k = k_0, \\ \delta^k(Q) & \text{if } k \neq k_0. \end{cases}$$

PROOF. For

$$c_i^k = \begin{cases} \sum_{l \in I} \lambda_l a_i^l & \text{if } k = k_0, \\ a_i^k & \text{if } k \neq k_0, \end{cases}$$

we show that $P = \{c_i^k, \bigoplus B_i\}$ is an inductive quasibasis of G . The conditions (i) and (iii) in the definition are obvious and it remains to show (ii). Since

$$\lambda_{k_0} a_i^{k_0} = c_i^{k_0} - \sum_{k \in I \setminus \{k_0\}} \lambda_k c_i^k \in \langle c_i^k \mid k \in I, i \in \mathbb{N} \rangle$$

and $p \nmid \lambda_{k_0}$, we get

$$\langle a_i^k \mid k \in I, i \in \mathbb{N} \rangle = \langle c_i^k \mid k \in I, i \in \mathbb{N} \rangle.$$

Hence

$$G/B = \bigoplus_{k \in I} \langle a_i^k + B \mid i \in \mathbb{N} \rangle = \sum_{k \in I} \langle c_i^k + B \mid i \in \mathbb{N} \rangle.$$

Define $C^k = \langle c_i^k + B \mid i \in \mathbb{N} \rangle$. We now prove that $\sum_{k \in I} C^k$ is a direct sum. Since $C^k \cong \mathbb{Z}(p^\infty)$ for all $k \in I$, we may write an arbitrary element $c \in \sum_{k \in I} C^k$ in the form $c = \sum_{k \in I} \mu_k c_i^k + B$, $\mu_k \in \mathbb{Z}$ for some $i \in \mathbb{N}$. Then

$$\begin{aligned} c &= \sum_{l \in I} \mu_{k_0} \lambda_l a_i^l + \sum_{k \in I \setminus \{k_0\}} \mu_k a_i^k + B \\ &= \mu_{k_0} \lambda_{k_0} a_i^{k_0} + \sum_{k \in I \setminus \{k_0\}} (\mu_{k_0} \lambda_k + \mu_k) a_i^k + B. \end{aligned}$$

If $c = 0 \in G/B$, then $p^i \mid \mu_{k_0} \lambda_{k_0}$ and $p^i \mid (\mu_{k_0} \lambda_k + \mu_k)$ for all $k \in I \setminus \{k_0\}$, because Q is a quasibasis. Thus, $p^i \mid \mu_k$ for all $k \in I$, because $p \nmid \lambda_{k_0}$. This shows that $c = 0 \in G/B$ implies $\mu_k c_i^k \in B$, and the sum $\sum_{k \in I} C^k$ is direct. Consequently, P is a quasibasis of G . Moreover, it is inductive, because $c_i^k - pc_{i+1}^k \in B_i$ for all $k \in I$.

In particular, $\delta^k(P) = \delta^k(Q)$ for $k \neq k_0$, and

$$\begin{aligned} \delta^{k_0}(P) &= \left(c_i^{k_0} - pc_{i+1}^{k_0} \mid i \in \mathbb{N} \right) = \left(\sum_{l \in I} \lambda_l a_i^l - p \sum_{l \in I} \lambda_l a_{i+1}^l \mid i \in \mathbb{N} \right) \\ &= \left(\sum_{l \in I} \lambda_l b_i^l \mid i \in \mathbb{N} \right) = \sum_{k \in I} \lambda_k \delta^k(Q) = \delta. \end{aligned}$$

□

An inductive quasibasis Q of G is called *normed*, if $h(\bar{\delta}^k) = h(Q)$ for every $k \in I$. Now we show that the group G has a normed, related inductive quasibasis P with $h(P) = h(Q)$.

LEMMA 5.7. *For every inductive quasibasis Q of G there is a normed, related inductive quasibasis P of G with $h(P) = h(Q)$.*

PROOF. Let $Q = \{a_i^k, \bigoplus B_i \mid k \in I\}$ be an inductive quasibasis of G . Recall the notation in Equation (1). Let $\delta^k = \delta^k(Q)$ for all $k \in I$. To construct P , we choose some $k_0 \in I$ with $h(\bar{\delta}^{k_0}) = h(Q)$ and define the subset $J = \{k \in I \mid h(\bar{\delta}^k) \neq h(Q)\} \subset I$. We use the idea of Proposition 5.6 and show that $P = \{c_i^k, \bigoplus B_i\}$ with

$$c_i^k = \begin{cases} a_i^k & \text{for } k \in I \setminus J, \\ a_i^k + a_i^{k_0} & \text{for } k \in J, \end{cases}$$

is a normed, related inductive quasibasis of G with $h(P) = h(Q)$. The set P clearly satisfies the conditions (i) and (iii) of the definition. Condition (ii) is also satisfied from the following. Note that for $k \in J$

$$c_i^k - pc_{i+1}^k = a_i^k - pa_{i+1}^k + a_i^{k_0} - pa_{i+1}^{k_0} = b_i^k + b_i^{k_0} \in B_i.$$

Thus

$$\begin{aligned} \bigoplus_{k \in I} \langle c_i^k + B \mid i \in \mathbb{N} \rangle &= \left(\bigoplus_{k \in J} \langle a_i^k + a_i^{k_0} + B \mid i \in \mathbb{N} \rangle \right) \oplus \left(\bigoplus_{k \in I \setminus J} \langle a_i^k + B \mid i \in \mathbb{N} \rangle \right) \\ &= \bigoplus_{k \in I} \langle a_i^k + B \mid i \in \mathbb{N} \rangle. \end{aligned}$$

Hence, P is an inductive quasibasis of G which is related to Q and given by

$$\delta^k(P) = \begin{cases} \delta^k & \text{for } k \in I \setminus J, \\ \delta^k + \delta^{k_0} & \text{for } k \in J. \end{cases}$$

By Lemma 5.2,

$$h(\bar{\delta}^k(P)) = h(\bar{\delta}^k + \bar{\delta}^{k_0}) = h(\bar{\delta}^{k_0}) = h(Q)$$

for all $k \in J$, because $h(\bar{\delta}^{k_0}) < h(\bar{\delta}^k)$. Thus $h(\bar{\delta}^k) = h(Q)$ for all $k \in I$ and hence, P is normed with $h(P) = h(Q)$. \square

We are now ready to prove the main result in this section on the invariance of height for related inductive quasibases.

THEOREM 5.8. *Related inductive quasibases of G have the same height.*

PROOF. By Lemma 5.7 it suffices to show that $h(Q) = h(P)$ for two normed, related inductive quasibases $Q = \{a_i^k, \bigoplus B_i\}$ and $P = \{c_i^k, \bigoplus B_i\}$ of G . Assume $h(Q) > h(P)$ and let $h = h(P)$. Also, let $b_i^k = a_i^k - pa_{i+1}^k$ and $d_i^k = c_i^k - pc_{i+1}^k$ for all $i \in \mathbb{N}$, $k \in I$. By Lemma 3.2, let $k_0 \in I$ and let $(\lambda_k \mid k \in I)$ be a normed zero tuple such that

$$(3) \quad d_i^{k_0} - \sum_{k \in I} \lambda_k b_i^k \in p^n B_i,$$

for each $n \in \mathbb{N}$ and almost all $i \in \mathbb{N}$. Let $\delta^{k_0} = \delta^{k_0}(P) = (d_i^{k_0} \mid i \in \mathbb{N})$ and $\delta = \sum_{k \in I} \lambda_k \delta^k(Q) = (\sum_{k \in I} \lambda_k b_i^k \mid i \in \mathbb{N})$. From (3) it follows that $h(\bar{\delta}^{k_0} - \bar{\delta}) = \infty$. By Lemma 5.2 we get $h(\bar{\delta}) = h(\bar{\delta}^{k_0}) = h$. Thus the set $J = \{k \in I \mid p^{h+1} \nmid \lambda_k\}$ must be finite and nonempty. Write $\delta = \delta_1 + \delta_2$ where $\delta_1 = \sum_{k \in J} \lambda_k \delta^k(Q)$ and $\delta_2 = \sum_{k \in I \setminus J} \lambda_k \delta^k(Q)$. Thus,

$$h(\bar{\delta}_1) \geq \min\{h(\lambda_k \delta^k(Q)) \mid k \in J\} > h,$$

because of $h(\lambda_k \bar{\delta}^k(Q)) \geq h(\bar{\delta}^k(Q)) = h(Q) > h$ for all $k \in J$. On the other hand $h(\bar{\delta}_2) > h$, because $\delta_2 \in p^{h+1} B^\Pi$. Moreover, $h(\bar{\delta}_1), h(\bar{\delta}_2) > h$, and

$$h = h(\bar{\delta}) = h(\bar{\delta}_1 + \bar{\delta}_2) \geq \min\{h(\bar{\delta}_1), h(\bar{\delta}_2)\} > h,$$

a contradiction. Hence, $h(Q) = h(P)$. \square

6. Quasibases of reduced groups

In this section we characterize separable and nonreduced groups in terms of the height of an inductive quasibasis. We begin with a lemma which describes the Ulm subgroup.

LEMMA 6.1. *Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G . Let $0 \neq g \in G$ be of order p^j . Then $g \in p^\omega G$ if and only if there is a normed zero tuple $(\lambda_k \mid k \in I)$, such that $g = \sum_{k \in I} \lambda_k a_j^k + b$, $b \in B$, and there is a natural number n such that*

$$g = p^n \sum_{k \in I} \lambda_k a_{j+n}^k = p^{n+1} \sum_{k \in I} \lambda_k a_{j+n+1}^k = p^{n+2} \sum_{k \in I} \lambda_k a_{j+n+2}^k = \dots$$

In particular, $h(\sum_{k \in I} \lambda_k \bar{\delta}^k) \geq j$.

PROOF. Since $G/B = \bigoplus_{k \in I} \langle a_i^k + B \mid i \in \mathbb{N} \rangle \cong \bigoplus_{|I|} \mathbb{Z}(p^\infty)$, there is, by Proposition 2.1, a normed zero tuple $(\lambda_k \mid k \in I)$ such that $g \in \sum_{k \in I} \lambda_k a_j^k + B$ and the set $\{\sum_{k \in I} \lambda_k a_i^k + B \mid i \in \mathbb{N}\}$ generates a $\mathbb{Z}(p^\infty)$. Now let $g = \sum_{k \in I} \lambda_k a_j^k + b \in p^\omega G$ with $b \in \bigoplus_{i < l} B_i$ for some $l \in \mathbb{N}$. Then by Lemma 3.1

$$g = \sum_{k \in I} \lambda_k a_j^k + b = \sum_{k \in I} \lambda_k \left(p^n a_{j+n}^k + \sum_{r=0}^{n-1} p^r b_{j+r}^k \right) + b \in p^n G,$$

for all $n \in \mathbb{N}$. Hence for all $n \geq l$

$$\begin{aligned} g - p^n \sum_{k \in I} \lambda_k a_{j+n}^k &= \sum_{r=0}^{n-1} \sum_{k \in I} \lambda_k p^r b_{j+r}^k + b \\ &= \sum_{r=j}^{n+j-1} \sum_{k \in I} \lambda_k p^{r-j} b_r^k + b \\ &= \sum_{r=j}^{l-1} \sum_{k \in I} \lambda_k p^{r-j} b_r^k + b + \sum_{r=l}^{n+j-1} \sum_{k \in I} \lambda_k p^{r-j} b_r^k \in p^n B. \end{aligned}$$

Let $b_r = \sum_{k \in I} \lambda_k p^{r-j} b_r^k \in B_r$. In view of height and order considerations we conclude that $\sum_{r=j}^{l-1} b_r + b = 0$. Thus $\sum_{r=l}^{n+j-1} b_r \in p^n B$ for all $n \geq l$, i.e., $b_r = 0$ for all $r \geq l$. It follows that $g = p^n \sum_{k \in I} \lambda_k a_{j+n}^k$ for all $n \geq l$. Consequently $g \in p^\omega G$ has the indicated form. Moreover, $b_r = \sum_{k \in I} \lambda_k p^{r-j} b_r^k = 0$ implies that $p^j \mid \sum_{k \in I} \lambda_k b_r^k$, for all $r \geq l$, and $h(\sum_{k \in I} \lambda_k \bar{\delta}^k) \geq j$. \square

COROLLARY 6.2. *Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G . If $j > h(\bar{\delta}^{k_0})$, then $a_j^{k_0} \notin p^\omega G$.*

PROOF. If $a_j^{k_0} \in p^\omega G$, then by Lemma 6.1 there is a normed zero tuple $(\lambda_k \mid k \in I)$, such that $a_j^{k_0} = \sum_{k \in I} \lambda_k a_j^k + b$ and $a_j^{k_0} = p^n \sum_{k \in I} \lambda_k a_{j+n}^k$ for all n . Thus $b = 0$, $p^j \mid \lambda_k$ for all $k \neq k_0$, and consequently $a_j^{k_0} = p^n a_{j+n}^{k_0}$ for all n .

Now, let $j > h = h(\bar{\delta}^{k_0})$. So there are infinitely many $i \in \mathbb{N}$ where $p^{h+1} \nmid b_i^{k_0} = a_i^{k_0} - p a_{i+1}^{k_0} \in B_i$. Hence we may select an n with $p^{h+1} \nmid b_{j+n}^{k_0}$. We assume $a_j^{k_0} \in p^\omega G$ and apply Lemma 3.1, i.e.,

$$\sum_{r=0}^n p^r b_{j+r}^{k_0} = a_j^{k_0} - p^{n+1} a_{j+n+1}^{k_0} = 0.$$

Using $B = \bigoplus B_i$ we get $p^r b_{j+r}^{k_0} = 0$ for all $0 \leq r \leq n$. In particular, $p^n b_{j+n}^{k_0} = 0$ implies $p^j \mid b_{j+n}^{k_0}$. But $j > h$ further implies that $p^{h+1} \mid b_{j+n}^{k_0}$, a contradiction. Thus $a_j^{k_0} \notin p^\omega G$. \square

Our next theorem describes separable groups in terms of the height of a quasibasis.

THEOREM 6.3. *Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of the reduced group G . Then G is separable if and only if $h(\bar{\delta}) = 0$ for all Q -combinations δ .*

PROOF. Suppose G is separable and let $\delta = \sum_{k \in I} \lambda_k \delta^k(Q)$ be a Q -combination. If $h(\bar{\delta}) > 0$, then there is a $j \in \mathbb{N}$, such that $\sum_{k \in I} \lambda_k b_i^k \in p B_i$ for all $i \geq j$. By this fact combined with Lemma 3.1 we get for all $n \in \mathbb{N}$

$$\begin{aligned} \sum_{k \in I} \lambda_k p^{j-1} a_j^k &= \sum_{k \in I} \lambda_k p^{j-1} \left(p^n a_{j+n}^k + \sum_{r=0}^{n-1} p^r b_{j+r}^k \right) \\ &= p^{j+n-1} \sum_{k \in I} \lambda_k a_{j+n}^k + \sum_{r=0}^{n-1} p^{j+r-1} \sum_{k \in I} \lambda_k b_{j+r}^k \\ &= p^{j+n-1} \sum_{k \in I} \lambda_k a_{j+n}^k. \end{aligned}$$

This holds for all n , thus $\sum_{k \in I} \lambda_k p^{j-1} a_j^k \neq 0$ has infinite height, a contradiction, by [3, 65.1].

Conversely, assume that G is nonseparable, i.e., there is a $0 \neq g \in G$ of infinite height and order p^j . By Lemma 6.1 there is a normed zero tuple $(\lambda_k \mid k \in I)$ with $h(\sum_{k \in I} \lambda_k \bar{\delta}^k) \geq j > 0$, contradicting the hypothesis that $h(\bar{\delta}) = 0$ for all normed Q -combinations δ . \square

The following lemma shows, that a Q -combination δ with $h(\bar{\delta}) = \infty$ allows to find a divisible subgroup of G .

LEMMA 6.4. *Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G . If $\delta = \sum_{k \in I} \lambda_k \delta^k(Q)$ is a Q -combination with $h(\bar{\delta}) = \infty$, then there is a strictly increasing sequence $(n_i)_{i \in \mathbb{N}}$ of natural numbers, such that $\langle d_i \in G \mid i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty)$ with $pd_1 = 0$ and $d_i = pd_{i+1} = p^{n_i} \sum_{k \in I} \lambda_k a_{i+n_i}^k$ for $i \in \mathbb{N}$.*

PROOF. Since $h(\bar{\delta}) = \infty$, there is a strictly increasing sequence $(n_i)_{i \in \mathbb{N}}$ of natural numbers, such that $p^i \mid \sum_{k \in I} \lambda_k b_n^k$ for all $n \geq n_i$. Define $d_i = p^{n_i} \sum_{k \in I} \lambda_k a_{i+n_i}^k$ for all $i \in \mathbb{N}$. Clearly $pd_1 = p^{n_1+1} \sum_{k \in I} \lambda_k a_{n_1+1}^k = 0$. Moreover, for all $i \in \mathbb{N}$

$$\begin{aligned} pd_{i+1} &= p^{n_{i+1}+1} \sum_{k \in I} \lambda_k a_{i+n_{i+1}+1}^k \\ &= p^{n_i+(n_{i+1}-n_i+1)} \sum_{k \in I} \lambda_k a_{i+n_i+(n_{i+1}-n_i+1)}^k \\ &= p^{n_i} \sum_{k \in I} \lambda_k a_{i+n_i}^k - \sum_{r=0}^{n_{i+1}-n_i} p^{n_i+r} \sum_{k \in I} \lambda_k b_{i+n_i+r}^k \\ &= d_i, \end{aligned}$$

by Lemma 3.1 and the height condition above. Since $(\lambda_k \mid k \in I) \neq 0$, we have $d_i \neq 0$, for almost all $i \in \mathbb{N}$. Hence $\langle d_i \in G \mid i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty)$. \square

LEMMA 6.5. *Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G . If D is a divisible subgroup of G of rank 1, then there is a Q -combination $\delta = \sum_{k \in I} \lambda_k \delta^k(Q)$ such that $h(\bar{\delta}) = \infty$, and $D \subset \langle \sum_{k \in I} \lambda_k a_i^k \mid i \in \mathbb{N} \rangle$.*

PROOF. Let $D = \langle g_i \in G \mid i \in \mathbb{N} \rangle \cong \mathbb{Z}(p^\infty)$ be a divisible subgroup of G with $pg_1 = 0$, $pg_{i+1} = g_i \neq 0$ for $i \in \mathbb{N}$. Since $\mathbb{Z}(p^\infty) \cong \langle g_i + B \mid i \in \mathbb{N} \rangle \subset G/B$, there is a normed zero tuple $(\lambda_k \mid k \in I)$, such that $g_i \in \sum_{k \in I} \lambda_k a_i^k + B$, for all $i \in \mathbb{N}$, by Proposition 2.1. Hence by Lemma 6.1

$$g_i = p^n \sum_{k \in I} \lambda_k a_{i+n}^k \quad \text{for almost all } n \in \mathbb{N} \text{ and all } i \in \mathbb{N}.$$

Thus for each $i \in \mathbb{N}$ and for almost all $n \in \mathbb{N}$

$$0 = g_i - pg_{i+1} = p^n \sum_{k \in I} \lambda_k (a_{i+n}^k - pa_{i+n+1}^k) = p^n \sum_{k \in I} \lambda_k b_{i+n}^k,$$

i.e., $p^i \mid \sum_{k \in I} \lambda_k b_{i+n}^k$. Consequently, $h(\sum_{k \in I} \lambda_k \bar{\delta}^k) = \infty$, and, in particular, $D = \langle g_i \in G \mid i \in \mathbb{N} \rangle \subset \langle \sum_{k \in I} \lambda_k a_i^k \mid i \in \mathbb{N} \rangle$. \square

The Lemmata 6.4 and 6.5 lead to the main result in this section.

THEOREM 6.6. *Let $Q = \{a_i^k, \bigoplus B_i\}$ be an inductive quasibasis of G . Then G is not reduced if and only if there is a Q -combination δ with $h(\delta) = \infty$.*

The Theorems 6.3 and 6.6 characterize also the reduced nonseparable groups.

Acknowledgment. We cordially thank the referee for the engaged reading and for many really helpful suggestions.

REFERENCES

- [1] K. BENABDALLAH – K. HONDA, *Straight bases of abelian p -groups*, in R. Göbel, L. Lady, and A. Mader (eds.), proceedings of the conference held at the University of Hawaii, Honolulu, Hawaii, December 28–January 4, 1983, Lecture Notes in Mathematics, 1006. Springer-Verlag, Berlin etc., 1983, pp. 556–561.
- [2] D. L. BOYER – A. MADER, *A representation for abelian groups with no elements of infinite height*, Pacific J. Math. 20 (1967), pp. 31–33.
- [3] L. FUCHS, *Infinite abelian groups*, two volumes, Pure and Applied Mathematics, 36, Academic Press, New York and London, 1970/1973.
- [4] O. MUTZBAUER – E. TOUBASSI, *Quasibases of p -groups*, Rend. Sem. Mat. Univ. Padova 102 (1999), pp. 77–95.
- [5] A. VODOPIVEC, *Quasibasen abelscher, nichtseparabler p -Gruppen*, Doctoral dissertation, Universität Würzburg, Würzburg, 2005.

Manoscritto pervenuto in redazione il 28 ottobre 2019.