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From uncountable abelian groups
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1. Introduction

This paper is an account on my studies of topics in mathematics and, although
they are rooted in abelian group theory, they are mostly only indirectly related
to abelian groups themselves. The emphasis is to show connections between my
study of abelian groups to that of fundamental groups, which are non-abelian. To
state theorems exactly we need to use technical terms from algebraic topology, for
which we refer the reader to [19]. But, I take care so that the reader can understand
the outline without understanding precise definitions, which is the main content
of this paper.

2. The Specker theorem

My joining into abelian group people started from my attendance of the Honolulu
conference in 1982-1983. Before then, Riidiger Gobel, who passed away in 2014,
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contacted me as one of the organizers of the conference. L4szl6, who by then
already was a central person in abelian group theory, was present so that I met
him there. After then I worked on abelian groups for several years. The reason
why I started my study in abelian groups is my interest to the Specker theorem
about Z* (see [20]), which is a unique theorem about infinitely generated discrete
groups supporting a duality theorem, i.e.

Hom (Hom (@, Z.Z).Z) = P, Z.

I felt that there should exist good mathematics around this theorem. Since the Cech
homology group H;(H) of the Hawaiian earring H is isomorphic to Z*, I aimed
at analyzing the algebraic structure of the Hawaiian earring (see the Figure 1).

Figure 1

I tried to find applications of both the Specker theorem and the Chase lemma
to algebraic topology. Since the singular homology group of the Hawaiian earring
is not isomorphic to Z®, contrasting to the Cech homology group, I introduced a
canonical factor of the singular homology [13] and investigated such groups for
spaces of certain types. This will be explained in Section 3. But, I felt that what
I expected from the Specker theorem was not sufficient and tried to investigate
the fundamental group of the Hawaiian earring and to prove a non-commutative
version of the Specker theorem. After having obtained a proof around 1985 I only
found out that G. Higman’s work [17] from 1952 already contained a demonstra-
tion of this fact. Namely, there he first proves that every homomorphism from the
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unrestricted free product, i.e. the canonical inverse limit of free groups of finite
rank, factors through a free group of finite rank with the projection, which can be
seen a non-commutative version of the Specker theorem. Then, Higman mentions
the validity of this result also for a certain subgroup P of the inverse limit. Three
years later, H. B. Griffiths [15] proved P to be isomorphic to 71 (IH). I introduced
the notion of a free o-product X7_, G; of groups G; to investigate fundamental
groups of spaces like the Hawaiian earring [6]. A free o-product X7, G; is a sub-
group of the unrestricted free product in [17] consisting of elements expressed
by words defined on countable linearly ordered sets, while an element of a usual
free product is expressed by words defined on finite linearly ordered sets. There,
I proved a non-commutative version of the Chase lemma, which I’'ve mentioned
above, i.e.

TraeoREM 2.1 ([6, Theorem 2.1]). Let

hlﬁ(Gi —> *Hj

iel jeJ

be a homomorphism for groups G; and H;. Then, there exist finite subsets F of I
and G of J respectively such that

h( )%(Gi) < * H;.

iel\F jeG

The original Chase lemma is about homomorphisms from direct products to
direct sums. In the category of abelian groups there exist injective objects and
consequently the statement is more complicated, but in the non-abelian case it
becomes simpler. Actually, the conclusion of Theorem 2.1 can be considerably
sharpened as we will see in Theorem 2.5.

Applying Higman’s theorem I proved that every endomorphism on 71 (H) is
conjugate to an endomorphism induced from a continuous self-map on H. Though
it has become a seminal result, I felt that it was very far from results about the
Sierpinski carpet and Menger sponge at that time, since the Hawaiian earring has
only one wild point, while all the points are wild in the others (see the sequel to
Theorem 2.3 for the word “wild”).

At that time, conjugators about the fundamental groups were troublesome for
me. But, a few years later I found that conjugators become the key for finding
points of the above spaces in their fundamental groups, fundamental groupoids
more exactly. Actually we have:
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THEOREM 2.2 ([7, Theorem 1.1]). Let X be a one-dimensional metric space
and h:t1(H, 0) — m1(X, x9) a homomorphism. Then, there exists a continuous
map f:H — X and a point x € X and a path p from x to x such that f(0) = x
and h = @po fi, where ¢, 1(X, x) — m1(X, xo) is the point change isomorphism
and f. is the homomorphism induced by f. If the image of h is uncountable, the
point x is unique and p is unique up to homotopy relative to end points.

A conjugator in the fundamental group, which was troublesome, corresponds
to the homotopy type of a loop p in the statement. Points can be restored from
fundamental groups as the maximal compactible families of subgroups which are
the homomorphic images of w1 (H), see [1].

Based on this we have:

THeOREM 2.3 ([7, Theorem 1.3]). Let X and Y be one-dimensional, locally
path-connected, path-connected metric spaces which are not semi-locally simply
connected at any point. If the fundamental groups are isomorphic, then X and Y
are homeomorphic.

A one-dimensional space is called semi-locally simply connected if any point
has a neighborhood without a circle. We call a space wild if the space contains a
point at which the space is not semi-locally simply-connected. Theorem 2.3 im-
plies that the fundamental groups of the Sierpiriski carpet and the Menger sponge
are not isomorphic to each other, since the two spaces are not homeomorphic.
This result was quite unexpected: the homotopy equivalence of spaces implies the
isomorphicness of fundamental groups, but in general the homotopy equivalence
is much weaker than the homeomorphism type. Poincaré introduced the notion of
fundamental groups, as a much rough equivalence in comparison with a homeo-
morphism type. Therefore, though it is a very restricted case, this was unexpected.
Although several times I already had checked my proof of Theorem 2.3, I still dis-
trusted it and consequently even tried to manufacture a counter example at least a
few times, and I have heard that several topologists did not believe Theorem 2.3.

Then, I worked on this line, i.e. to investigate relationship between properties
of groups and those of spaces. This duality between spaces and groups through
the fundamental groups is extended to at most countable direct products and other
constructions of spaces [1]. But it was difficult to publish such papers, since no
one except me was working in this area. Since my retirement year was 2017, 1
needed to publish my papers as a researcher and work on other subjects. Among
other things, I proved:
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THeOREM 2.4 ([8, Theorem 1.1]). For one dimensional Peano continua X
and Y, X and Y are homotopy equivalent if and only if w1(X) and 7,(Y) are
isomorphic.

Although this result looks like a standard statement in algebraic topology, the
proof of this theorem depends on Theorem 2.3, which is extraordinary. Conse-
quently this theorem is actually an unconventional theorem.

Before then, as I mentioned, Theorem 2.1 was strengthened as follows.

THeorEM 2.5 ([9, Theorem 1.3]). Under the same assumption of Theorem 2.1,
there exist a finite subset F of I and an element j € J such that h( 2 I\F Gi) is
contained in a subgroup conjugate to H;.

As a variant of this theorem, we have:

THEOREM 2.6 ([9, Theorem 1.4]). Let X be a path-connected, locally path-
connected, first countable space which is not semi-locally simply-connected at
any point. If h:w1(X) — 3K, Hj is an injective homomorphism, then the image
of h is contained in a subgroup conjugate to some H;.

These are results where I translated known facts from abelian group theory to
not necessarily abelian groups, and, in particular, to fundamental groups.

3. Algebraically compact groups

As is well known, the singular homology group of a path-connected space is the
abelianizations of the fundamental group for a path-connected space. In algebraic
topology it is well known that all groups appear as fundamental groups and, conse-
quently, all abelian groups appear as homology groups. However, the correspond-
ing spaces constructed by using group theoretic data are artificial ones. On the
other hand, the fundamental groups of spaces which have local complexities, e.g.
fractals, have not been studied for a long time. Also, divisible, or algebraically
compact groups did not occur as homology groups or their subgroups of spaces,
which are familiar as topological spaces, i.e. not artificial or formal objects.
Back to around 1990, I found out that the singular homology groups of certain
spaces are complete modulo the Ulm subgroup [5] (a notion which had been in-
troduced by Dugas and Gobel [2]). In particular, the divisible group @ occurs as
a subgroup. Since torsion-free groups which are complete modulo the Ulm sub-
group are algebraically compact, reduced algebraically compact groups possibly
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occur as subgroups of the singular homology group of the Hawaiian earring at
that time [6], see Figure 1.

Actually the first singular homology group of the Hawaiian earring, i.e. H;(H),
turned out to be isomorphic to

z°e@ee]]4

p: prime

where ¢ is the cardinality of the continuum and A4, is the p-completion of the free
abelian group of rank c, see [11]. After proving Theorem 2.4, I investigated the
singular homology groups of one dimensional Peano continua. My assessment
was that the singular homology group of the Hawaiian earring could hardly be
isomorphic to any of the Menger sponge or the Sierpifiski carpet—because of
the so much simpler topological structure of the Hawaiian earring. In spite of my
many trials to show this, I had failed to do it. After changing my mind I proved:

TueoreM 3.1 ([10]). The singular homology group H1(X) of a one-dimen-
sional Peano continuum X is isomorphic to a free abelian group of finite rank or
the singular homology group H,(H) of the Hawaiian earring.

That is, if a Peano continuum X contains a single wild point, then H;(X) is
already isomorphic to H; (IH), no matter how many additional wild points are there
in X.

RemaRrk 3.2. In [6] I used the notion “complete modulo the Ulm subgroup”
due to Dugas and Gobel [2]. Very recently, Herfort and Hojka [16] have character-
ized the notion “cotorsion” using equation systems. According to it, results in [6]
can strengthened to being cotorsion from being complete modulo the Ulm sub-
group. This characterization is a commutative version of the equation system due
to G. Higman [17] for non-commutative groups.

4. The Reid class and Cech systems

The Reid class consists of the integer group Z and the groups obtained by iterat-
ing use of forming direct sums and direct products [18]. Back to 1983, answer-
ing a question in [3, 21], whether Hom(A4, Z) belongs to the Reid class for every
abelian group A, I proved that Hom(C (Q, Z), Z)) does not belong to the Reid class,
where C(Q, Z) is a group of continuous functions. Before then I was interested
in algebraic topology and so I tried to apply the Reid class to algebraic topology.
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There are two typical and distinct ways of attaching infinitely many circles with
a common point. One is a so-called “bouquet,” where a basic open neighborhood
consists of open neighborhoods of all circles. A basic open neighborhood of the
common point in the other way consists of almost all copies of the circle and
open neighborhoods in the remaining finite circles. When the number of copies
are countable, the latter space is homeomorphic to the Hawaiian earring, while the
former one is called a countable bouquet. Passing to the factor group of singular
homology as described in [13] one obtains respectively free abelian groups B, Z
and direct products Z*. Let us recall this factorization [13]. The singular chain
group S,(X) is the free abelian group generated by the set C(A,, X), where
A, is the n-simplex. Since C(A,, X) has the compact open topology, S,(X)
can be regarded as the free abelian topological group over C(A,, X). Then,
the boundary operator d,: S,+1(X) — S,(X) becomes continuous. Therefore,
Ker(d,—1) is closed, but Im(d,) may not be closed. We take its closure and
consider Ker(d,)/Im(d,+1) = HT (X), which is the factor of singular homology.
By taking the closure, information due to the wildness of a space disappears. For
instance, H (1) is isomorphic to Z®. On the other hand, if X is locally good, e.g.
locally contractible, Im(d, 1) is closed and we have H, (X) = H,(X). Therefore,
for spaces usually appearing in algebraic topology it gives us the same as singular
homology.

When we attach infinitely many component spaces with one common point
we have two typical types of one point unions. A neighborhood of the common
point is a union of neighborhoods of the point in component space in one type
and is a union of neighborhoods of the point in finitely many component spaces
and the whole spaces for remaining component spaces. These construction can be
done alternately and iterated. In such constructions with the same common point
the complexity of the topology around the common point should increase. The
complexity can be expressed by the hierarchy theorem of the Reid class via the
factor of singular homology [13] and [4, 14] (I talked about this in the Oberwolfach
conference in 1989).

Many years later, I tried, with J. Nakamura, to classify the inverse limits of se-
quences of finitely generated free groups. Such inverse limits in the abelian case
become finitely generated free abelian groups or Z®, which is a consequence of
the fact that any subgroup of a finitely generated free abelian group is also finitely
generated. Remark that a subgroup of a finitely generated free group may not be
finitely generated. The inverse limits of sequences of finitely generated free groups
are precisely the first Cech homotopy groups of one-dimensional connected com-
pact metric spaces. When such spaces are locally connected, they are Peano con-
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tinua. Then, we have an inverse system of surjective homomorphisms and the in-
verse limits are isomorphic to finitely generated free groups F, or the inverse limit
according to the canonical projections of finitely generated free groups. That is,

n
G1 = lim *Zi,
<— .

n—o0i=0

where the bonding map from k}_, Z; to *;’;& Z; is the projection. In general,
we have three other groups. Let F,, be the countable free group. Let

n
G2: Lﬂl Fw**Zi,

n—o00 i=0

where the bonding map from F,, * >|<l’.'=0 Z; to F,, * >|<l’.';5 Z; is the projection. Let
F, » be copies of F, and
n
G3 nlé)i:c’ l>=x<0 Fa),l s

where the bonding map from >|<:.’=0 F,ito *;’;& F, i is the projection, is the in-
verse limit according to the projections of finite free products of copies of F,,.
Now, F,, G», and G3 are the three groups. As you can see from these results, the
classification of the inverse limit of at most countable free groups is the same as
the corresponding one to finitely generated free groups [12]. Therefore, the clas-
sification of shape groups of one dimensional connected, compact metric spaces,
i.e. their first Cech homotopy groups, is the same as that of the corresponding
groups of connected separable metric spaces.

We explain how we proved that these uncountable groups G1, G,, and G5 are
not isomorphic to each others. Let [G, G] be the commutator subgroup of a group
G and Ab(G) = G/[G, G]. Let Rz(A) = ({Ker(h) | h € Hom(A4,Z)}. As is
well known, A/ Rz(A) is isomorphic to a subgroup of Z* for some «. We consider
a functor F(G) = Ab(G)/Rz(Ab(G)). Then, we have F(G,) = Z%,F(G,) =
@D, 7 ® Z° and F(G3) = (@, Z)”. Then, by the hierarchy theorem of the
Reid class we conclude these groups are not isomorphic and consequently so are
Gl, Gz, and G3.

Together with the results in Sections 2 and 3, I feel the following. Though
abelian groups are related to many areas of mathematics through homology and
cohomology, apart from the finitely generated case the relationships are formal
ones. Therefore, what I have explained in the preceding are new aspects in the
relationships between infinitely generated abelian groups, non-abelian groups and
topological spaces. In particular, divisible subgroups or algebraically compact
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(cotorsion) subgroups of singular homology groups imply the existence of wild
points in the spaces.

I am still working on the topic discussed here and so please do not consider
this note as my final report on these issues. I hope I can continue my research until
the age of Laszld, i.e. twenty years more. When I wrote to him “I understand that
one can continue doing mathematics over 90,” he shot back a proposal to argue
that doing mathematics actively would get me over 90.

Acknowledgement. The author thanks the referee for improving wording to
express contents exactly and reading this manuscript thoroughly.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

REFERENCES

G. R. ConneEr — K. Epa, Fundamental groups having the whole information of
spaces, Topology Appl. 146/147 (2005), pp. 317-328.

M. Ducgas — R. GOBEL, Algebraisch kompakte Faktorgruppen, J. Reine Angew. Math.
307(308) (1979), pp. 341-352.

M. Ducas AND B. ZIMMERMANN-HUISGEN, Iterated direct sums and products, in
R. Gobel and E. Walker (ed.), Abelian group theory (Oberwolfach, 1981), Lecture
Notes in Mathematics, 874, Springer, Berlin etc., 1981, pp. 179—193.

K. Epa, On Z-kernel groups, Arch. Math. (Basel) 41 (1983), no. 4, pp. 289-293.

K. Epa, The first integral singular homology groups of one point unions, Quart.
J. Math. Oxford Ser. (2) 42 (1991), no. 168, pp. 443—-456.

K. Eba, Free o-products and noncommutatively slender groups, J. Algebra 148
(1992), no. 1, pp. 243-263.

K. Epa, The fundamental groups of one-dimensional spaces and spatial homomor-
phisms. Topology Appl. 123 (2002), no. 3, pp. 479-505.

K. Epa, Homotopy types of one-dimensional peano continua, Fund. Math. 209
(2010), no. 1, pp. 27-42.

K. Epa, Atomic property of the fundamental groups of the Hawaiian earring and wild
locally path-connected spaces, J. Math. Soc. Japan 63 (2011), no. 3, pp. 769-787.

K. Epa, Singular homology of one-dimensional peano continua, Fund. Math. 232
(2016), no. 2, pp. 99-115.

K. Epa — K. KAWAMURA, The singular homology of the Hawaiian earring, J. London
Math. Soc. (2) 62 (2000), no. 1, pp. 305-310.

K. Epa — J. NAKAMURA, The classification of the inverse limits of free groups of finite
rank, Bull. Lond. Math. Soc. 45 (2013), no. 4, pp. 671-676.



114

[13]

[14]

[15]

[16]

[17]

(18]
[19]
(20]

(21]

K. Eda

K. Epa — K. Saxkarl, A factor of singular homology, Tsukuba J. Math. 15 (1991),
no. 2, pp. 351-387.

P. ExkLor — A. MEKLER, Almost free modules, Set-theoretic methods, revised edi-
tion, North-Holland Mathematical Library, 65, North-Holland Publishing Co., Ams-
terdam, 2002.

H. B. GrrrrITHS, Infinite products of semi-groups and local connectivity, Proc. Lon-
don Math. Soc. (3) 6 (1956), pp. 455—480.

W. HerrorT — W. Hoika, Cotorsion and wild homology, Israel J. Math. 221 (2017),
no. 1, pp. 275-290.

G. HioMmAN, Unrestricted free products, and varieties of topological groups, J. London
Math. Soc. 27 (1952), pp. 73-81.

G. A. R, Almost free abelian groups, Tulane University, New Orleans, MS, 1977.
E. H. SpANIER, Algebraic topology, McGraw-Hill Book Co., New York etc., 1966.

E. SPECKER, Additive Gruppen von Folgen ganzer Zahlen, Portugal. Math. 9 (1950),
pp- 131-140.

B. ZimMERMANN-HUISGEN, On Fuchs’ problem 76, J. Reine Angew. Math. 309
(1979), pp. 86-91.

Manoscritto pervenuto in redazione il 9 marzo 2020.



	Introduction
	The Specker theorem
	Algebraically compact groups
	The Reid class and Čech systems
	Acknowledgement
	References

