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ABsTRACT — We prove in ZFC that an abelian group C is cotorsion if and only if
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lated results. This short note includes a condensed overview of the A-Black Box for
R -free constructions in ZFC.
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1. Introduction

In the theory of abelian groups, locally free groups and their properties have been
the subject of extensive research. In particular, for any given uncountable cardi-
nal k, we will call a group G «-free if every subgroup H C G of cardinality |H | <«
is free. One of the earliest and easiest examples [1, 17] of a non-free N;-free group
is the Baer—Specker group Z®, the cartesian product of countably infinitely many
copies of the integers Z, and the cartesian product Z* is R -free for any cardinal A.
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Apart from that, explicit examples of non-free k-free groups are fairly difficult
to come by and require either some elaborate use of infinite combinatorics or
of specific models of set theory. For instance, it is known that every Whitehead
group is R-free [18], but the question whether non-free Whitehead groups exist
is undecidable and depends on the chosen model of set theory [2, 14]. In Godel’s
Universe V=L, non-free x-free groups exist for all uncountable cardinals «, and
k-free groups with prescribed properties are traditionally constructed with help
of Jensen’s diamond principle <. Similarly, assuming only ZFC, the construction
of R;-free groups with various additional properties is possible utilizing Shelah’s
Black Box. See [3, 9] for some standard literature on these constructions.

In contrast to this, hardly anything has been known about the existence of k-free
groups in ZFC for k > 8. Some first sporadic examples of non-free Ni-free
groups for integers k > 2 can be found in [10, 13], however, the breakthrough in
constructing Rg-free groups with prescribed additional properties is more recent.
In [6, 15], Rg-free groups with trivial dual were constructed, and [5] provides
a construction for Xy -free groups with prescribed endomorphism rings. Similar
constructions of Rx-free groups and modules for £ > 2 can be found in [4, 7, 11,
12] and are based on the A-Black Box as a guiding combinatorial principle. For
cardinals k > R, the situation concerning x-free groups becomes considerably
more complicated. In [16], a construction for R, .r-free groups with trivial dual is
provided for all integers k > 1, while the nonexistence of R, .,-free groups with
trivial dual is shown to be consistent with ZFC.

In this note we want to investigate the relation between «-free groups and
cotorsion groups, where we call a group C cotorsion if Ext(F,C) = 0 for all
torsion-free groups F. If § and € denote the classes of torsion-free groups and
cotorsion groups, respectively, then

¢ =% ={G |Ext(F,G)=0forall F € §)

and
F=1¢={G|Ext(G,C)=0forall C €¢}

holds, i.e., the pair of classes (5, €) defines a coforsion theory. It should be noted
that a group C is cotorsion if and only if Ext(Q, C) = 0 for the additive group of
rationals Q. This is to say that Q is a cogenerator of the cotorsion theory (§, €).
More generally, we call a class §' C §F a cogenerating family provided that any
group C is cotorsion if and only if Ext(F,C) = 0 for all F € §'. Therefore,
(T, €) is cogenerated by the singleton {Q}. This makes it natural to ask if there
also exist cogenerating families of reduced groups. This question was answered
by the following classical result in [8].
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TueoreM 1.1. For any group C the following statements are equivalent:
i. C is cotorsion;

ii. Ext(Z*, C) = 0 for some cardinal A with A} = 2* > |C|.

In particular, with Ag = |C| and ;41 = 2% the cardinal A = Ui <o Ai
satisfies the property A0 = 2% > |C]|, and the class of N;-free groups is a
cogenerating family for (§, €). In this note we would like to add the class of R -free
groups (k > 1) as yet another cogenerating family, thus providing additional
evidence that in ZFC the class of Rg-free groups is large and of a rich structure.

THeOREM 1.2 (ZFC). Letk > 1 be some integer. Then the following statements
are equivalent for any group C:

i. C is cotorsion;

ii. Ext(F, C) = 0 for all Ry -free groups F.

Notably, given any group C that fails to be cotorsion, we will construct an
Ny -free group Fc with Ext(F¢, C) # 0. To this end, Section 2 provides an easy
criterion for cotorsionness, while Section 3 reviews the A-Black Box. The final
construction of Fc is presented in Section 4, while Section 5 provides an Rg-free
analog of Theorem 1.1.

It should be noted that the given argument easily adapts to other combinatorial
principles, like Jensen’s diamond <>, and we make a passing mention of the
corresponding result.

CoroLLARY 1.3 (V=L). Let k be some uncountable cardinal. Then the follow-
ing statements are equivalent for any group C:

i. C is cotorsion;

ii. Ext(F,C) = 0 for all k-free groups F.

Proor. If « is regular, non-weakly compact, we can use a standard Jensen’s
diamond construction for a suitable k-free group F' of size . For all other cardinals
Kk, we construct a suitable «k*-free group F of size k. |

2. A characterization of cotorsion groups

The following criterion distinguishes between cotorsion groups and such groups
that fail to be cotorsion in ways that can be interpreted combinatorially. This will
provide us later on with a useful foothold for applying the A-Black Box.
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TueoreM 2.1. For any group C the following statements are equivalent:
i. Ext(Q,C) # 0;
ii. There exist elements c, € C (n € Zx>o) such that the infinite system of linear
equations
Xn =+ Dxpe1 + cn

is not solvable in C.

Proor. For (i) implies (ii), let us consider some group C with Ext(Q, C) # 0.
Thus, there exists some short exact sequence

O—>C—>GL>Q—>O,

which fails to split. As usual, we will interpret C as a subgroup of G. Forn > 0
choose some g, € G with ¢(g,) = . Then ¢(gx) = ¢((n + 1)gn+1), and there
exist ¢, € C = Ker ¢ with

gn =+ Dgnt1 + cn.

We claim that the corresponding infinite system of equations
Xn =M+ Dxpy1 +cn

has no solution in C. Towards a contradiction let us for the moment assume the
existence of such a solution (x, | n € Z>¢) withx, € C € G.Theng, —x, € G
with (g, — xx) = 0(gn) = % and

gn—Xn = (n+ 1)(gn+1 — Xn+1).

Thus, ¥ () := g» — x, defines a homomorphism v: Q — G with ¢ o ¥ = idg,
and the short exact sequence splits, contradicting our choice.

For (ii) implies (i), let ¢, € C (n € Zx¢) be a set of elements such that the
corresponding system of equations

Xn =M+ Dxpy1 +cn

is not solvable in C. For a set of free generators y, (n € Zxg), we define the
groups
U= (y—+Dyns1—ca|n=00SCaEHZyn

n>0
and
V= (n— (0 + Dynsr | 0> 0) € P Zya.

n>0
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It is readily observed that C embeds into G := (C & €D,;5 Zya)/U canonically
via ¢ > ¢ + U. Furthermore, H := (D, Zyn)/V = Q, and the canonical

projection
7:C &P Zyn — P Zyn
n>0 n>0
induces ahomomorphismz: G — H with 7(y,+U) = y,+V andw(c+U) = 0.
Using the fact that every element of G can be represented in the form (c+zy,,)+U
for suitable ¢ € C, z € Z, and m > 0, we can check Ker 7 = C. Summarizing,
we have the short exact sequence

0—C—G 2> Hx~Q—>0,

and we claim that this exact sequence does not split. Towards a contradiction let
us for the moment assume the existence of a splitting homomorphism y: H — G
with 7 o ¢ = idy. We then have

n+U)—¥(yn+ V) €eKerw =C,
and with x, := (y, + U) = ¥ (y» + V) € C holds

Xp—m+Dxpr1=Qn—+Dyns1 +U) =Y (n— 0+ Dypt1 + V)
=, +U)—yvO0O+V)=c, +U

in G. From this we infer x, = (n + 1)x,4+1 + ¢, in C € G, contradicting (ii).
Hence, the aforementioned exact sequence does not split, and Ext(Q,C) # 0
follows. |

3. The A-Black Box

We recall the basics of the A-Black Box, keeping this exposition rather short
with the intention of providing a fast and simple reference for future Ni-free
constructions in ZFC. The proofs of Lemma 3.5 and Theorem 3.8 can be skipped
for faster access. The reader may consult [6, 11, 12] for further details and any left
out proofs.

3.1 — Aand A

Throughout this section, we will employ some standard notations from set theory.
In particular, we will identify 0 = @, n = {0, ..., n — 1} for every positive integer
n,and @ = {f | B < «a} for every ordinal @. Let w = {0, 1,2, ...} denote the
first infinite ordinal. Ordinals will be assigned letters «, 8, while cardinals will be
assigned letters «, A.
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NotaTion 3.1. Let ®A denote the set of all functions 7: @ — A, while ©T2 is
the subset of “A consisting of all strictly increasing functions n: w — A, namely

T = {n:w — A | n(m) < n(n) for all m < n}.

Similarly, “~ A denotes the set of all functions a:n — A with n < w, while ot>)
is the subset of ®~ A consisting of all strictly increasing functions n:n — A with
n<o.

For some integer k > 1,let A = (Aq,..., Ax) be a finite increasing sequence
of infinite cardinals with the following properties:
i. )szo = Al;

ii. A;"jrl = Amr foralll <m < k.

In particular, the sequence A = (3;,...,3) is an example and constitutes the
smallest possible choice for A.
We associate with A two sets A and A.. Let

A= x . oxet .

For the second set we replace the m-th (and only the m-th) coordinate ®*A,, by
®t>) . thus let

Am*:‘”T)le...x“’T>Amx...><“’TAk forl <m <k

and
Aw = Ams.
1<m=<k
The elements of A, A, will be written as sequences 7 = (11,..., ) With

Nm € @), or Nm € o>y respectively. With each member of € A we
associate some elements of A, which result from restricting the length of one
of the entries 1, € ®TA of 7.

DerintTION 3.2. If ) = (91,...,m%) € Aand 1 < m < k,n < w, then let
111 (m,n) be the following element of A« S A«

Gy =" mEsk
’ N Mn if 1 =m.
We associate with 7 its support
[l ={n1{m.n) |1 =m <k.n <}

which is a countable subset of A .
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3.2 — The modules

Let R be a commutative ring with 1 and let $ € R\ {0} be a countable multiplica-
tively closed subset.

DerintTION 3.3. We introduce the following basic concepts.

a. An R-module M is S-torsion-free it sm = 0 fors € 5, m € M implies
m=0.

b. An R-module M is S-reduced if (\;cgsM = 0.
c. Thering R is an $-ring if R as an R-module is S-torsion-free and S-reduced.

d. Let M be an R-module. A submodule N € M is S-pure if N N sM = sN
forall s € 5. We write N C,. M.

e. Let M be an S-torsion-free R-module, and let 7" be a subset of M. Then (T ).
will denote the smallest S-pure submodule of M containing 7.

In the following, R will always denote an S-ring. Furthermore, we enumerate
S={si | i <w}andputg, = [[;-,si; thus, go = 1 and g44+1 = ¢ns,. The
S-topology on R, generated by the basis sR (s € 5) of neighbourhoods of 0, is
Hausdorff and we can consider the $-completion R of R. Note R C ﬁ, and
see [9] for further basic facts on R.

RemARKk 3.4. The case R = Z presents us with two canonical options for 5.
i. For any prime p, the choice $ = {p’|i € Zso} gives the p-adic topology.
ii. The choice $ = Z-( gives the Z-adic topology.

The choice of R-modules is the most flexible part of the A-Black Box and
very much depends on the respective goals of the final construction. Here we will
present only one simple generic example to discuss some of the more common
features of A-Black Box constructions. In particular, it should be noted that the
following general statement will be responsible for R -freeness of the constructed
R-modules, where Pi"(T') denotes the set of all finite subsets of a given set T.

Lemma 3.5 ([11, Proposition 3.5]). Let F: A — Pin(A,) be any function,
1 < f =< k and Q a subset of A of cardinality Xy_; with a family of sets
ug < {l,...,k} satisfying \uz| > f for all 1 € Q. Then we can find an
enumeration (1% | o < Ry_1) of Q, £y € uje and ng < w (@ < Ry_y) such
that

71 (Casn) ¢ 7P 1 (asn) | B <@} UULF@P) | B <) foralln = n.
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Proor. The proof follows by induction on f. We begin with f = 1, so
2] = No. Let Q = {#* | « < w} be any enumeration without repetitions.
From 1 = f < |uj| follows uz # @ and we choose any {, € wujze for
o < w.Ifa # B < o, then 7* # 7P and there is ngg € o such that
7% 1 (L, n) # 7P 1 (Ly,n) for all n > ngp. Since | J{F (i) | B < o} is finite,
we may enlarge n,g, if necessary, such that 7% 1 (€y, n) ¢ U{F(ﬁﬂ) | B < a} for
alln > ngg. If ng = maxg.y ngg, then

71 (lasn) £47P 1 (Lasn) | B <@y UULF@P) | B <} foralln = ng.

Hence the case f = 1 is settled. For the induction step, we let /" = f + 1 and
assume that the lemma holds for f.

Let [Q2] = Ny and choose an Ny-filtration Q = kaf Qs with Q¢ = 0,
|41 \ Q5] = Rp_y forall § < Re, and Q5 = (J,_5 Q¢ for all limit ordinals
8 < Ry. The next crucial idea comes from [15]: We can also assume that the chain
{Qs | 8 < Ny} is closed, meaning that for any § < R¢, V,7" € Qg and 77 € Q with

{tm | 1 <m <k} C{vm, vy, | V" € FO)UF@), 1 <m <k}
follows 77 € Q. Thus, if § € Qg1 \ Qs, then the set

uz = {1 <€ <k |there exists n < @, v € Qs such that
n1(€,n) =v1({€,n)orni{l,n) e F)}

is empty or a singleton. Otherwise there are n,n’ < @ and distinct 1 < £,¢' <k
with 71(€,n) € {V1(€,n)} U F(¥) and 71 (¢',n") € {(I"1{',n')} U F@') for
certain v, v’ € Q. Hence

{Mm |1 <m <k} C{vm, v, vm v € FO)UFO'),1 <m <k},

and the closure property implies the contradiction 7 € Q5.

If § < Ry, thenlet D5 = Q541 \ Qs with |[Ds| = Rs_;, and u/n = u,—,\u; must
have size > f”—1 = f. Thus, the induction hypothesis applies to {u’; | 7 € Ds}
for each 6 < Ry and we find an enumeration 7 | a < Rr_1) of Ds as in
the lemma. Finally, putting for 6 < R, all these enumerations together with the
standard induced ordering, we find an enumeration (7% | o < Ny) of Q satisfying
the lemma. O

The sets u5 in Lemma 3.5 are merely auxiliary for the induction proof and one
may rather want to focus oneself on the following simplified statement.
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TuEOREM 3.6. For any function F: A — P(A,), and any subset of Q of A
of cardinality |2| < R, we can find an enumeration (7* | @ < |Q2]) of Q, and
elements 1 <y <k andny < w (@ < |R2|) such that

71 (Lasn) € 4717 1 (Laun) | B <} UUKF@P) | B <} foralln = n,.

Remark 3.7. In other words, every element 7% of this enumeration picks up
some new element from A, in its support [*] which has not been associated with
any of the previous elements 77? (8 < «). This will be the core of the support
argument in the proof of Theorem 3.8.

We continue with a description of the most common setup for X -free con-
structions in ZFC. We start with the R-module

B:@Reg
VEA «

freely generated by {e; | v € A} over the S-ring R. The S-topology of R naturally
extends to the 5-topology of B generated by the basis s B (s € $) of neighborhoods
of 0. Let

denote the $-completion of B. Thus every element b € B can be written canoni-
callyasasumb =) ;. A, bves with coefficients by € R, and

[b] = {v € Ax | by # 0}

will denote the support of b. We have B C, B, and we intend to construct an
Ry -free module
BS.MC. B

by adding suitable elements y;-] € B(jeA)toB.
Forn e A andi < w, we call
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In addition, given a function F: A — Pfi"(A,) we choose elements bj, € B
for n € A and n < w with [b5z,] € F(7). Then we introduce branch-like elements
y;-ﬂ. by adding some corrections to our branch-elements yj;, namely

00 k 00

q q

¥ = 2 o (b + D entimm ) = vai + 3 b,
;4 m=1 n=i qi

n=i

In particular, we have

00 k 00
y;‘; = y;‘;o = ZQn(bﬁn + Zeﬁﬂm,n)) =yj+ Zanﬁn-
n=0 m=1 n=0
Note [y5] = [1] and [y;-,] C F(7) U [7]. Our module of interest is now given by
M = (B.y: | i€ A)x S« B.
Note the following helpful recursions

k k
(1) yii = Siyii+1 + Zerﬂ(m,i) and  yi; = siy5 i + bii + Zerﬂ(m,i)-

m=1 m=1

As a consequence we have the identity
M = (B.yj €A =(B.yj |7 €Ai<o)

The central theorem of this section is now the following statement about R -free-
ness.

THEOREM 3.8. Let M be the R-module
M =(B,y, |ieAi<w)= (B y,|i€A)C«B.
Then any subset T of M with |T| < Ry is contained in a free submodule N C M.

Proor. With M = (B, y;-]i | 7 € A,i < w), every element g € M can
be written as an R-linear combination of finitely many branch-like elements y;-”.
and of finitely many generators ej 4 () of B. In particular, collecting all y;-)l. and
e; 1 (m,n) needed for representing the elements g € T, there exists a subset 2 of A

of size |Q2| < Ry such that T is a subset of the submodule
Mga = (€j4(mn). €5, Vin | 1€ Q, 0 € F(i), 1 <m <k,n <w) C M.

To complete the proof, we will show that Mg is a free R-module.
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With Theorem 3.6 we write
Mg = (e,—,a“m,n),eg,y;-]an la < |Qve F(H%),1<m<k,n<w)
for a list (7* | @ < |2|) of Q for which there exist 1 < £, < k and ny < w with
@ 7. n) £ {77 1 {la.n) | B <} UUF@P) | B <} foralln > ng.
Let
Mo = (€57 {(mm) €5, Vv, | ¥ <@,V € F(@"). 1 <m < k.n < o)

for any o < |Q2]. With (1), we have

Mov1 = Mo + (€3¢ f(mn)s €5 Vi, |V € F(%). 1 <m <k.n < o)

= My + (J’;-,an |n>ng) + (er‘;“"|(€a,n) | n < ng)

+ (e, ege g mmy |V EF(%), 1 <m <k,m# {y,n < w).

Hence, any element in M4 can be represented as a sum of the form

g+ Zrny,%a,, + er/zeﬁaﬂﬂa,n) + Zr;,e;, + Z er/r/meflaﬂm,n)’

nzne n<ne veF (M%) n<w 1<m<k
m#Ly
where g € My, and all coefficients r,, r;,, r5, r,,, are from R. Moreover, identify-

ing e; (v € F(7*)) with one of the eje 4, ,; whenever possible and merging all
eze 1{m,n), e; € My into g, we may slightly simplify this sum.

Assume now that the above sum is zero. Condition (2) implies that ez 4 (g, 1)
contributes in this sum only to the branch part yze,  of y%an/ forngy < n’ < n.
Applying this to the y;_]an, starting with the smallest appearing n, we have r;, = 0
for all n > ny. Moreover, the remaining summands g, eze 4 (), and e trivially
have disjoint supports. Thus, also all the coefficients r,,, 3, r;,,,, and consequently
also g must be zero. This shows that My, = M, & @be% Rb for

By = {y%ai’eﬁ“(Za,j)’ef)"‘ﬂm,n)’e"f |

i >ng, j <ng,1<m<km#lyn<wveF@)}\ M,
and Mg = @, <o Dpen, RD is a free R-module. a

Remark 3.9. It should be noted that the statements of Lemma 3.5, Theo-
rem 3.6, and Theorem 3.8 hold for any choice of infinite cardinals A1, ..., Ax. The
additional properties of A required in Section 3.1 are irrelevant for the R -freeness
and are only needed to obtain the added prediction feature. This will be our next
stop!
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3.3 — The prediction

No black box would be complete without some prediction principle, and it is
noteworthy that the prediction of any black box can be traced back to the following
simple general statement.

THEOREM 3.10 (Easy Black Box). Let A be an infinite cardinal and let C be a
set of size |C| < AR, Then there exists some family (¢, | n € @™ 1) of functions
¢y w — C such that the following holds.

PREDICTION PRINCIPLE. Given any map ¢:®Y> A — C and any ordinal a € A,
there exists some n € T A such that n(0) = « and op(n) =@ 'n)foralln < w.

In particular, the A-Black Box for A = (A;,...,Ax) basically constitutes the
result of stacking k Easy Black Boxes on top of each other.

Tueorem 3.11 (A-Black Box). For A = (A1.....Ax) a sequence of cardi-
nals as in Section 3.1, let C = (Cy,...,Cy) be a sequence with |Cpy| < Ap
(1 <m <k), andlet C =\, -py<; Cm. Then there exists some family (@5 | 7] € A)
of functions ¢j: [) — C such that the Jollowing holds.

PrREDICTION PRINCIPLE. Given any map ¢: Ax — C with Apmx@ € Cy, for all
1 < m < k, and given any ordinal a € Ay, there exists some 7} € A such that

Nk (0) = a and g5 < ¢.

4. The proof of Theorem 1.2

For the proof of Theorem 1.2, (i) obviously implies (ii) as all Rg-free groups are
torsion-free. Thus, we only need to verify the converse statement. To that effect,
we will start with a group C that fails to be cotorsion, and we must provide an
Ny -free group Fc with Ext(F¢,C) # 0.

As C fails to be cotorsion, with Theorem 2.1, we choose elements ¢, € C
(n < w) such that the infinite system of linear equations

3) Xn = (n+ Dxnt1 + cn
is not solvable in C. For an infinite cardinal ¥ > |C|, let

A =«8 >|C| and Ajqq =2M.
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Then A = (Aq,...,Ax) satisfies the properties of Section 3.1, and we will use
the prediction of the A-Black Box for the choice C,, = C 1 < m < k),
cf. Theorem 3.11. In particular, there exists some family (¢; | 7 € A) of functions
@7: [7] = C such that the following prediction principle holds.

4 Given any ¢: A« — C, there exists some 7) € A such that ¢; < ¢.

We next want to construct two groups F¢ and G¢. To start with, let

Bz@Zeg

VeEA«

be the group freely generated by {e; | ¥ € Ax}. Let 7 and B denote the Z-
adic completions of Z and B, respectively. Every element b € B can be written
canonically asasumb = ) ;. A, bves with coeflicients b; € Z, and

[b] = {v € Ax | by # 0}

will denote the support of b. For ) € A andi < w, we call

oo k
Vi = Yio = Zn!( > er'm(mn))
n=0 m=1
Note again the recursion
k
(5) vii =+ Dyiist + ) eq(ma-
m=1

These formulas are identical to those in Section 3.2 for the choice $ = Z-o and
s; =i + 1. We now define

Fe = (B.yg | € Ai<w)=(B.y;|7€A)xCuB.
Lemma 4.1. The group Fc is Ry -free.

Proor. Let H C F¢ be a subgroup of cardinality |H| < Ng. Then, with
Theorem 3.8, H is contained in a free subgroup of F¢ and therefore free itself. O
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We start our construction of the group G¢ with a little auxiliary gimmick to
overcome C not embedding into its Z-adic completion C, as ), ez-,1C # 0 may
quite be possible. Let C® =[], ., Ce, denote the cartesian product of countably
infinitely many copies of C. Every element g € C® can be written canonically as
asumg = > 2 gne, with coefficients g, € C,and [g] = {n < w | gn # 0} will
denote the support of g. We define the groups

{g eC? ‘ [¢] is finite with ign = 0} cce

n=0

Ciin =

n

and
C=C?/CP.
Note that C canonically embeds into C via ¢ - ceq + Cg = cep + C§, and we
will identify ¢ € C with the element ce, + C§ € C to ease notation.
The group G¢ will be constructed as a subgroup of B @ C and will incorporate
our A-Black Box predictions @5 (7 € A) and the preselected elements ¢, € C
(n <w).Forne Aandi < w, let

k

z,—,i:y;,i+(z ( Z (n1{(m,n) )en+C§‘;)§§@6.

n=i m=1

Again we have a recursion

k k
(6) zgi = (0 + Dzjie1 + Z €71 (m,i) ( Z 1 (m,i )

m=1

We now define
Ge=(B®C.zij |7TeNi<w) S B®C.

Let 7: B ® C — B denote the canonical projection. Then 7 (e;) = ey for all
Ve Asand m(zgz) = yz foralln € A,i < w, thus n(Ge) =

LemMma 4.2. Gc NKerm = C.

Proor. Every element g € G¢ can be written as a linear combination of some
element from B @ C with finitely many elements z5z;. With (6) we can limit this
representation to one element zy; for each 7 € A. Thus, we can write

N
g :b+c+2naz,—,aia,

where b € B,c € C, N € Z>o,and n* € Z,i% € Z>¢ forall 0 < o < N with
distinct 7% € A. Let us assume 7(g) = 0.
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Applying Theorem 3.6 for the function F: A — Pir(A,) with F(v) = [b]
constant for v € A,, we may assume that every element 7* of the enumeration
(n* | 0 < a < N) picks up some new element from A in its support [7*] which
has not been associated with b or any of the previous elements 7 (8 < «). Thus,
7(g) = 0impliesny = Oforall0 <o < N,and g = b+c.Hence,7(g) =b =0
implies g = c € C. O

The following lemma completes the proof of Theorem 1.2.

LemMma 4.3. We have Ext(F¢,C) # 0.

Proor. With Lemma 4.2, we have the short exact sequence
0—>C—>GCL>FC—>O,

and we claim that this exact sequence does not split. Towards a contradiction let
us for the moment assume the existence of a splitting homomorphism : G¢ — C
with t | C = id¢. We define the function ¢: Ax — C by ¢(V) = t(ep). With (4),
we can choose some 77 € A such that ¢; € ¢, thus

e 1{(m.n)) = @5 (1 {m,n))

foralll <m <k andn < w. We set x,, := 1(z5,) € C forn < w. With (6) we
then have

_ (l’l + l)xn+1 = ‘L’(Zf,n — (n + 1)Zﬁ,n+1)

= r( i €ii{(m,n) + (Cn - i%’)(’ﬂ (m,n))))
i (€51 (m,n)) + (Cn Zfﬂn(ﬁ m, ’l)))

m=1

i: mn)+( szj (771mn>

= + Z(w(m (m.n)) = g3 1 {m.n)) = ¢
m=1
in G¢. From this we infer x, = (n 4+ 1)x,+1 + ¢, in C C C < Gc¢, con-

tradicting (3). Hence, the aforementioned exact sequence does not split, and
Ext(Fc, C) # 0 follows. |
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5. Final remark

In Section 4, given any group C which fails to be cotorsion, we chose cardinals
M =A% >|C| and Ajpq =24

and used the A-Black Box for A = (A1,..., Ag) to construct an R -free group F¢
with Ext(Fc, C) # 0. It should be noted that B € Fc C B with |B| = A}° = Ax
and |§| = |B¥o = )L:O = Ag. Thus we have |Fc| = Ak, and we actually can
prove an even stronger statement as a natural extension of Theorem 1.1 to Ry -free
groups.

LemMa 5.1 (ZFC). Let A = (Aq,...,Ax) for k > 2 be a finite sequence of
infinite cardinals with

A=A and Ay =2M.
Then there exists an Ry -free group F of cardinality |F| = Ay such that for any
group C of cardinality |C| < A1 the following statements are equivalent:

i. C is cotorsion;
ii. Ext(F,C) = 0.

Proor. Again, (i) obviously implies (ii) as all Ri-free groups are torsion-
free. Thus, we only need to verify the converse statement. To that effect, we
must provide a suitable group F such that Ext(F, C) # 0 for every group C of
cardinality |C| < A; which fails to be cotorsion.

For this purpose define the family D of groups to contain one isomorphic copy
of every group C of cardinality |C| < A; which fails to be cotorsion. Note that

D] < At =2k =3,

We now define

F:@FD,

which is an NRg-free group of cardinality |F| = A, - Ay = Ag. If now C is any
group of cardinality |C| < Ay which fails to be cotorsion, then we can find some
C ~C'eD,and

Ext(F,C) = Ext( @D ro. c) = [[ExtFp.C) #0

DeD DeD

as Ext(F¢s, C) = Ext(F¢/,C’) # 0. o
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