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1. Introduction

A left semigroup action S A Aofa semigroup S on an abelian group A (by
group endomorphisms) is defined by a: S x A — A, (s,x) +— «(s)(x) with
a(st) = afs) oa(t) and a(s)(x + ¥) = a(s)(x) + a(s)(y) for every s, € S
and every x,y € A. In case S is a monoid with neutral element e, we impose
also a(e)(x) = x for every every x € A. For N € S and F C A, let
Tn(a, F) = ) ey a(s)(F). Let F(A) denote the family of all finite subgroups
of A.

We recall that a right Fglner sequence of a semigroup S is a sequence (F£)nen
of finite non-empty subsets of S such that lim, oo | Fys \ Fy|/|Fn| = O for every
s € S. A countable semigroup S is right-amenable if and only if S admits a right
Fglner sequence. Consider an action S A A of a countable cancellative right-
amenable semigroup S on an abelian group A. For F € F(A) let

Hugla F) = lim 200D
where (Ny),en is any right Fglner sequence of S (the limit exists, it is finite and
does not depend on the right Fglner sequence). The algebraic entropy of « is
ent(a) = sup{Hy(a, F): F € F(A)} [3]. This concept extends in a natural way
the algebraic entropy ent for IN-actions on A, that is, for group endomorphisms
of A, introduced in [1, 10] and developed in [5].

The nice properties of the algebraic entropy ent stem from the fact that the
action S A A provides a left Z[S]-module structure on A: ent is an invariant of
the category T g of left Z[S]-modules that are torsion as abelian groups, and it is
furthermore a length function of ¥g in the sense of Northcott and Reufel, and of
Vamos (see Fact 2.5). Moreover, there is a remarkable connection of ent with the
topological entropy, that is, ent(«) coincides with the topological entropy of the
dual action of « (i.e., the action induced by « of S on the Pontryagin dual group
A of 4)[3,10].

On the other hand, ent presents some shortcomings from intuitive point of
view. For example, if S is finite then ent(x) = log|A|/|S|, so in particular
ent(e) = oo whenever A is infinite. Moreover, there are many cases when S is
a group, T is a subgroup of S and the restricted action « 7 has ent(x7) = oo
while ent(a) = 0; in case T is a normal subgroup of S always ent(«) < ent(alr).
If again S is a group and T is a normal subgroup of § with 7" C kera, then
ent(x) < ent(as,7), where ag,r is the quotient action induced by «; also in this
case the inequality can be strict.



Algebraic entropies of commuting endomorphisms 47

This suggested us to consider the new option for algebraic entropy offered in
Definition 1.2 (see [2]), and inspired by [7], where counterparts of the bizzarre
behavior of the topological entropy were pointed out. Following [7], a regular
system of a finitely generated monoid S is a sequence I' = (N,)ne of finite
subsets of § such that Ng = {e} and N;N; C N;4; for every i,j € IN. In
particular, N, € N,4+; for every n € IN. The regular system I' = (Ny)uen
is exhaustive if S = |J,en Nn and it is standard if for every n € IN the set
N, = Nj...N; is the n-fold setwise product of Ny, and we set No = {e}, by
definition.

ExampLE 1.1. The following is the most natural example of an exhaustive
standard regular system. If the monoid S is finitely generated by N, then the
standard regular system (N,),en of S is exhaustive (e.g., S = IN with N, =
{0,...,n} for every n € IN).

DEerintTION 1.2. Let S be a finitely generated monoid, I' = (Ny),en a regular
system of S, A a torsion abelian group and S % A.For F € F(A), let

~ lou |7 .
Harl‘g(a’ F) = limsup w‘

n—00 n

The algebraic receptive entropy of a with respect to T is

ent' (a) = sup{H,y, (o, F): F € F(A)}.

Unlike the case of ent, it may occur that I-~IalIg (o, F) = oo for some F € F(A)
(see the proof of Theorem 5.1).

Also the algebraic receptive entropy extends in a natural way the algebraic
entropy ent for IN-actions, as we show in §2, where we recall the basic properties
of the algebraic (receptive) entropy that we use further on.

In §3 we make use of the standard correspondence between IN"-actions on
abelian groups A of prime exponent p and R,-module structures on A, where
R, = Fp[X1,..., X,] is the ring of polynomials of m variables Xi,..., Xy,
over the field I, = Z/p’Z. This allows us to freely pass from IN"*-actions to
R,-modules and viceversa, writing ent(A) or ent(A4) for an R,-module A, having
in mind the algebraic (receptive) entropy of the corresponding IN"*-action. As a
first step we compute the algebraic (receptive) entropy of R, (see Theorem 3.3).

In §4 we compute the algebraic entropy ent. First we see that ent(4) = 0
when A = R, /ais an infinite cyclic R,-module and a is a non-zero ideal of R,
(see Theorem 4.1). Using this result we prove that ent(4) = rankg,(A)log p
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for an arbitrary R,-module A (see Theorem 4.4). This allows us to obtain a
characterization of IN"*-actions on torsion abelian groups with zero algebraic
entropy via Bernoulli shifts (see Proposition 4.7).

The first step in §5 is that the receptive algebraic entropy of an infinite cyclic
R,-module A = R,/a is infinite whenever a # 0 is a principal ideal of R, (see
Theorem 5.1). Moreover, in the case m = 2 we compute ent(A) even when a is not
necessarily principal (see Theorem 5.5 and Corollary 5.7). Remaining in the case
m = 2, we describe when 0 < ént(A4) < oo for a finitely generated R,-module 4
(see Corollary 5.8).
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2. Basic properties and examples

Let S be a finitely generated monoid and I' = (N,),en a regular system of S.
For m € IN, the direct product S™ carries two regular systems extending I" in a
natural way:

i. the Cartesian extension of I' is ' = (N}"")en;

ii. if N; is a finite set of generators of S containing e, the minimal extension
' of T is the standard regular system '™ = (Nn(m))ne]N of $™ with
Nl(m) ={(s,e,...,e):s € Ny} U---U{(e,...,e,s):s € Ni}.

In § = IN consider the exhaustive standard regular system & = (&, ),en With
81 =1{0,1} (so E, ={0,...,n} for every n € IN). Obviously, this is the smallest
exhaustive standard regular system of IN.

For IN™ the Cartesian extension of E is E” = (E™),eny with 87 = {0, 1},
and the minimal extension of E is 2" = (B ﬁ,m))ne]N with

EI(’lm) :{(alv'--’am)E]Nm:a1+"'+am Sn}
for every n € IN.

RemaRrk 2.1. Let S be a finitely generated monoid, A an abelian group and
S % A.If H is asubmonoid of S and I' = (N,),en is a regular system of H, then
I' = (Nu)nen is a regular system of S as well, and Iflalzg(arg, F) = ITIaIIg(a, F)
for every F € F(A), so also ent” (a) ) = ent! ().
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The above notions of algebraic entropy and algebraic receptive entropy extend
the usual notion of algebraic entropy of a group endomorphism:

ReEmARK 2.2. (a) Let A be an abelian group and ¢: A — A an endomorphism.
We recall from [4, 5, 10] that, for F € F(A), To(¢, F) = {0} and T, (¢, F) =
F+¢(F)+---+ ¢" 1(F) for every n € N, ; moreover

1 T, F
Hag(¢. F) = lim log [Ta(é. F)|

—00 n

and the limit exist by Fekete Lemma. The algebraic entropy from [10] is ent(¢) =
sup{Hye(¢, F): F € F(A)}. Consider the action IN % A defined by a4 (1) = ¢. It
is easy to see that Tz, (ag, F) = Tyy1(¢, F) foreveryn € Nand F € 5(A4), and
so ent(¢) = ent= (o) = ent(ag).

(b) If p: A — A is an isomorphism, ¢ induces also an action Z % A defined
by Bs(1) = ¢. Using again the standard regular system Z of Z, by Remark 2.1
and item (a) we find ent(¢) = ent®(By).

Since E is not exhaustive for Z, it makes sense to consider the exhaustive
standard regular system &' = (E)),en of Z with 8/, = {—n,...,n} for every

n € IN. Then, for every n € IN and F € F(A),
Tz, (Bg. F)=¢™"(F)+--+ F+¢(F)+--+¢"(F)
= Tus1(3™ F) + ¢(Tu(9, F)).

Since ¢" (Tg; (Bg, F)) = Tan+1(¢, F), and ¢ is bijective, we have [Tz, (Bg, F)| =
|T2n+1(¢, F)|. Therefore,

log |Tg/ (By. F)

HE (Bg. F) = limsup
n—0o0

alg n
log |T: ,F
— Tim sup 0g [T2n+1(¢, F)|
n—00 n
— 1lim 2n +1 IOg |T2n+1(¢, F)|
n—>oo pn 2n + 1
= 2Halg(¢7 F)-

We conclude that ent’ (84) = 2ent(¢).

ExampLE 2.3. Every exhaustive standard regular system I' = (Ny), ey of N7
gives rise to a right Fglner sequence of IN”. The same occurs for every finitely
generated monoid of subexponential growth.

(We have no example of a regular system of an amenable finitely generated
group that fails to be a right Fglner sequence.)
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RemaRrk 2.4. Let S be a finitely generated monoid, A an abelian group and
S A A Suppose that I' = (N, )new is a regular system of S which is also a right
Fglner sequence of S and such that

2.1) |Ny| > cn?  for some constant ¢ > 0 and all n € N..

It follows from the definitions that, if for some F € F(A) we have H

g (@ F) <00,
then Hyg (o, F') = 0. Thus,

ent' (@) < co = ent(a) =0

(equivalently, ent(e) > 0 = ent! (&) = 00).
The condition (2.1) is available for example whenever S is a finitely generated
group that does not contain a cyclic subgroup of finite index.

We recall basic properties of ent that we use below. For a monoid S, abelian

groups A, B and actions S A A S fw B, o and B are conjugated by an isomor-
phismé: A — Biffoa(g) = B(g) o & forevery g € S.

Fact 2.5. [3] Let S be a cancellative right-amenable monoid, A a torsion
abelian group and S A A. Let B be an a-invariant subgroup of A and denote
by ap and o4, g the induced actions of S on B and on A/B, respectively.

Invariance. For S % C with C a torsion abelian group, if « and § are
conjugated, then ent(«) = ent(p).

Monotonicity. ent > max{ent(ag), ent(cq,/p)}.

Continuity. If A is adirect limit of @-invariant subgroups {A4;:i € I}, then
ent() = sup; 7 ent(ay, ).

N Weak If A = Ay x Ay, with Ay, A, a-invariant subgroups of A4, then
Addition Theorem. ent() = ent(ay,) + ent(ca, ).

Addition Theorem. ent(a) = ent(ap) + ent(ay,/p).
The next theorem was inspired by a similar result for N-actions in [5].
THEOREM 2.6. Let S be a countable cancellative right-amenable monoid, A a

torsion abelian group and S A~ A. Then ent(a) > 0 if and only if there exists a
prime p such that ent(cy[p)) > 0.
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Proor. In view of the monotonicity of ent, it is enough to prove the necessity.

We consider first the case when A is a bounded p-group for some prime
p; let p* be the exponent of A. If k = 1 there is nothing to prove. Assume
that k > 1 and the assertions is true for k — 1. If ent(ayp)) > O, there is
nothing to prove. Assume that ent(e4[,)) = 0. Consider the short exact sequence
0 - A[p] > A - pA — 0. According to the Addition Theorem and the
invariance, ent() = ent(apq) + ent(aypp)) = ent(apa). Since pk1pa = 0,
we can conclude that ent(c(,4)[p)) > 0. Since (pA)[p] is a subgroup of A[p], by
the monotonicity ent(aq,]) > 0, a contradiction.

If Ais a p-group for some prime p, A = |J,en A[p"] and ent(a) =
sup, ey ent(oyp71). Hence, our hypothesis ent(a) > 0 yields ent(oyp,77) > 0 for
some n € IN. The above argument applied to A[p"], combined with the obvious
equality (A[p"])[p] = A[p], entails ent(aq,)) > 0.

LetA = @p Ap, where each A, is a p-group. Then using the actions § a(? Ap,
one has ent(e) = Zp ent(as,), by Fact 2.5. Hence, ent(a) > 0 yields the
existence of a prime p such that ent(cs,) > 0. Now the above argument gives
ent(as,p)) > 0. Since A,[p] = A[p], we are done. O

Fact 2.7. [2] Invariance, monotonicity and continuity remain valid also for
the algebraic receptive entropy, while in the weak Addition Theorem only one
inequality is available: if A = A; x A, with A;, A, a-invariant subgroups of A,
then ent” (o) < ent! (a4,) + ent’ (aa,).

3. IN™-actions vs Z[ X1, ..., X;]-modules

NoraTioN 3.1. For an action N % A on an abelian group A, from now on,

7y = (m)

we simply use the notation as follows: ﬁalg =H a‘]‘g

Following a well-known approach of Kaplansky, an IN"*-action on an abelian
group A can be viewed in a standard way as an Ry-module structure on A, where

Ro = Z[X4, ..., Xn] is the ring of polynomials of m variables X1, ..., X,, over
Z.. Similarly, a Z™-action on A can be viewed as a module structure on A over the
ring Z[X !, ..., XE!] of Laurent polynomials of m variables X, . . ., X,, over Z.

In case A has a prime exponent p, one can use also the ring R, = F,[X1,...,
X, of polynomials of m variables X;, ..., X,, over the field ', = Z/pZ, and
provide as above an obvious connection between IN"-actions and R,-module
structures on A. Moreover, the Z™-actions on A can be viewed as module struc-
tures on A over the ring ', [Xif!, ..., X£!] of Laurent polynomials of m variables
Xi...., X, over . In the sequel we freely pass from IN"*-actions to R,-modules
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and viceversa, writing ent(A4) or ent(A) for an Rp-module A4, having in mind the
algebraic (receptive) entropy of the corresponding IN"* -action.

This approach is efficient in the case m = 1, when R, is a principal ideal
domain, so R,-modules have a relatively simple structure and one can easily prove
that ent(4) = ent(A) = rankg, (A4), where rankg,(A) denotes the maximum size
of a subset of A independent over R,,. This characterization is extended to the case
m > 1 in Theorem 4.3. As a starting point, we consider the cyclic R,-module
A = R, in Theorem 3.3.

Remark 3.2. For the sake of simplicity, it makes sense to replace, whenever
necessary, the additive monoid (IN™, 4, 0) by the moltiplicative submonoid M =
{(X{' . X (51, ..., 5m) € IN™} of the multiplicative monoid (R,,, 1) of the
ring R, = Fp[X1,....Xm]. For b = Xj'...X;" € M, the degree of b is
db) =Y, si.

Substantially, for an action IN™ A~ A on an abelian group A of exponent a
prime p, the commuting endomorphisms ¢; := «(e;) of A, where e; is the i-th
member of the canonical base of IN”*, make it become an R,-module, as already
explained above. Now the n-th member E ,([") of the standard minimal regular
system E) of IN"* obviously corresponds to

By ={beM:d(b) <n}< M.
Let
3.1) by = |By| = |E(™)|

and note that b, coincides with the so called n + 1-th simplicial m-polytopic
number known to be equal to the binomial coefficient C*™. Hence,
1 m+1

(3.2) by = —n" +

m—1
. 2m—1n1"

is a polynomial of n of degree m, and so lim,—,~, b,/n = co whenever m > 1.

Tueorem 3.3. If m € N4, then ent(R,) = log p. If m = 1, then ent(R,) =
ent(R,) = log p, otherwise é?ft(R,,) = 00 > ent(R).

Proor. If m = 1 the equality ent(R,) = ent(R,) follows from Remark 2.2(a),
while the equality ent(R,) = log p is well known since the corresponding IN-ac-
tion is the Bernoulli shift (xo, x1, x2,...) = (0, xg, x1, X2, ...) of @y Zp, see [5].
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Assume m > 1 and put I = I, € J(A), thatis, F is the set of all p polynomials
of degree 0 and the zero polynomial. By (3.1), |’“(m)| = |Bn| = by. Since
Toom (a, F)=:V, isavector space and B, is abase of V,,, thendim V,, = | B, | = b,

50 |V,| = pbr and
(3.3) log |V, | = by log p.
Since (By)nen is a Fglner sequence of R, we deduce that

log |V, byl
Hag(o, F) = 0gVal _ ;) Dnlogp

n—>oo |H(m)| B n—o00 n - logp.

If we replace F by V; = TE<m)(oe, F) for some [ € IN, we have Tam)(a, V) =
Toom (o, F) = Vg, whichlleads to Hyg(a, V) = Hygl(a, F) = ’iog p. Since
evgr;[ﬁnite subgroup of R, is contained in some V], this proves ent(R,) = log p.

Since limy, o0 | Np|/n = limy .0 by /n = 00 by Remark 3.2, Hyj(ar, F) = 00
and therefore ent(e) = oo. O

4. The algebraic entropy of I'/,[ X1, . .., X;z]-modules

Here we consider IN"*-actions on an abelian group A of exponent a prime p; so let
R, = F,[X1,..., Xm]. Moreover, we use E™, which is an exhaustive standard
regular system of N and also a Fglner sequence. Since ent(A) = 0 for finite
abelian groups A, we assume in the sequel that A is infinite.

THeOREM 4.1. If A = Rp/a is an infinite cyclic R,-module, where a # 0 is an
ideal of R,, then ent(A) = 0.

Proor. Denote by a the N"*-action corresponding to the R,-module structure
of A = Rp/a,and let g: R, — A = Rj,/a be the quotient map. We keep the
notation from the proof of Theorem 3.3. In particular, V,, = T_m (c, F) is a
linear subspace of R, forn € IN,so q(V) = T (m)(oz q(Fy))isa hﬁear subspace
of A. Since q(Vy,)) = V,,/Vy Nkerq =V, / Vy ﬂa o |lg(Vy)| = |Vu/Vu Na| =
[Val/|Viw N a|, and hence

@.1) log l¢ (V)| = log Vil — log [V N al.

Consider the principal ideal a = (a(Xy,..., X;»)) and let d be the degree of a.
Then p(Xy,..., Xm) € V;, N a precisely when

p(Xl,...,Xm) = r(Xl,...,Xm)a(Xl,...,Xm)
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for some r(Xy,...,Xm) € R, of degree at most n — d, i.e., when one has
r(X1,...,Xm) € Vyp—q. Since R, is a domain, the map

Vica d31r( X1, ..., Xm) —r(X1, ..., Xm)a(Xq,...,. Xm) e VyNa

provides a bijection, so |V, Na| = |V,,_g4|. Hence, (3.2), (3.3), and (4.1) give

(42)  loglg(Va)l = (bs —bp-a)log p = ( "l ) log p;

m—1"
in particular log |¢ (V)| is a polynomial of n of degree m — 1. This implies
(4.3) Hag(@, q(Fp)) = 0.

For any F’ € F(R,) one can find ny € N such that F' C T_om (a, Fp), so
Eqn
4.4) Toom (a,Fp) 2 Toom(a, F')  foreveryn € IN.
“n+ng =n
For F* € F(A) there is F' € F(R,) with ¢(F’) = F*. By (4.4), this gives

(4'5) TE(VZ_) (&, q(Fp)) 2 TE(m) (&, F*)
n—+ng n

Dividing by |Ef,m)| and using (4.3) we deduce that Hyg(a, F*) = 0 as well.
Therefore ent(A4) = 0.

In case when a is not necessarily principal, find a principal ideal 0 # b C a.
Then ent(R,/b) = 0 by the above argument. Since A = R,/a is a quotient of
R, /b, by Fact 2.5 we deduce that ent(4) = 0 as well. O

The computation of ent for non-cyclic R,-modules can be somehow reduced
to the case of cyclic ones.

DEeriniTION 4.2. Let R be a domain and A be an R-module. Call ¢ € 4
R-torsion if ann(a) = {r € R:ra = 0} # 0. Let tr(A) denote the R-submodule
of A consisting of all R-torsion elements of A. Call A R-torsion free (resp.,
R-torsion), if tgr(A) = 0 (resp., tr(A) = A).

Clearly, A/tr(A) is R-torsion free. The next result shows that we can study ent
in R,-torsion free modules A.

Lemma 4.3. Let A be an Ry-module. Then ent(tg,(A)) = 0 and ent(A) =
ent(A/tr,(A)). In particular ent(A) = 0 if A is Ry-torsion.
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Proor. If a € A is Rp-torsion, then ann(a) # 0 and aR, = R,/ann(a).
Hence ent(aR,) = 0 either because it is finite or by Theorem 4.1. By Fact 2.5,
ent(tg,(A4)) = 0 and so ent(A4) = ent(A/1g,(A)). O

Tueorem 4.4. For every Ry-module A, ent(A) = rankg, (4) log p.

Proor. Every R,-independent subset of A is contained in some maximal
R,-independent subset X’ of A. The submodule 4y of A generated by X' is free
and rankg,(A) =rankg,(A49) =|X'|. Then A/Ag is R,-torsion, so ent(A4/Ag) =0
by Lemma 4.3, and hence ent(A4) = ent(Ag) by Fact 2.5.

If rank g, (A) is infinite, then 4o contains a submodule M = @ R,, and so
ent(Ap) > ent(M) = oo by Fact 2.5. If rankg, (4) = ¢ is finite, then A9 = R?,
and so ent(A4g) = ¢ ent(R,) = ¢ log p by Theorem 3.3. O

Combining Theorem 4.4 with Theorem 4.1 one obtains the following.

CoroLLARY 4.5. For an infinite R,-module A, ent(A) = 0 if and only if
rankg,(A4) = 0.

We aim to obtain a counterpart of Corollary 4.5 for an arbitrary torsion abelian
group A, but the condition rankg,(A4) = 0 becomes meaningless, so we give an
alternative characterization of the property ent(A4) = 0.

REMARK 4.6. Let 4 be an R,-module, corresponding to the action N A A.
According to Corollary 4.5, rankg, (4) > 0 if and only if A contains a submodule
B isomorphic to R, = Pym Zp. Since the action of IN™ #% B coincides with the
m-dimensional Bernoulli shift over Z,, (i.e., the m-th Cartesian power of the usual
one-dimensional Bernoulli shift—see the proof of Theorem 3.3), we shall refer
to this circumstance by simply saying that IN" A A “contains an m-dimensional
Bernoulli shift over” Z,. In these terms, Corollary 4.5 says that an action IN"™ A A
on an abelian group A of exponent a prime p has ent(A) = 0 if and only if
N™ A A does not contain any m-dimensional Bernoulli shift over Zp.

Obviously, this terminolgy can be used also when the torsion abelian group
A is not necessarily an R,-module; in such a case, for a prime p, by saying that
n™ % A contains an m-dimensional Bernoulli shift over Z, we mean that A
contains an «-invariant subgroup B = @ym Z, such that N S Bis conjugated
to the m-dimensional Bernoulli shift over Z,,.

By means of Theorem 2.6, we obtain the following extension.
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ProrosiTion 4.7. Let m € N, let A be a torsion abelian group and IN™ A A

Then ent() > 0 if and only if there exists a prime p such that N™ “?‘5’] Al p]

contains an m-dimensional Bernoulli shift over Z,.

Proor. According to Theorem 2.6, ent(a) > 0 if and only if ent(aq,)) > 0
for a prime p. Now apply Corollary 4.5 and Remark 4.6 to a4[p). O

The algebraic entropy of m commuting endomorphisms ¢1,..., ¢, of an
abelian p-group A was already studied in [5]. Since A is a module over the ring
J, of p-adic integers, one obtains also a natural structure of a J,[X1, ..., Xp]-
module on A. If ent(¢y) = --- = ent(¢,,) = 0, then ent(yy) = 0 for every
Y€ Jplé1, ..., ¢m] by [5, Lemma 2.5]. Let us see that ent(A4) = 0 as well. Indeed,
if ent(A) > 0, then Proposition 4.7 provides an m-dimensional Bernoulli shift
over Zp in A, i.e., a submodule B = F,[X}, ..., X,]. Since B is ¢;-invariant and
¢1] B is conjugated to the multiplication by X1, by Fact 2.5 ent(¢1) > ent(¢1p) >
log p > 0, a contradiction.

With a more careful housekeeping, the above argument proves that if m > 1,
then ent(¢;) = oo under the assumption thatent(4) > 0 and even more. Taking for
simplicity A = B = Jp[¢1. ..., ¢m], then ent(yy) = oo for every endomorphism
of A induced by the multiplication by any polynomial ¥ € J,[X;,..., Xp] of
positive degree.

S. The algebraic receptive entropy of I',[ X1, . .., X;]-modules

We compute ent for cyclic R,-modules, where R, = F,[X;,..., X;] and m > 2.

THEOREM 5.1. If m > 2 and A = R, /a is an infinite cyclic R,-module, where
a # 0 is a principal ideal of R, then ent(A) = oo.

Proor. We keep the notation from the proofs of Theorems 3.3 and 4.1. In
particular, o is the IN"*-action on R, and & is the IN"-action on A determined
by the R,-module structure of A, a = (a) with d(a) = d; forn € N, let
Vo = Tgom (e, F) and s0 ¢(Va) = Tgom (@, q(Fp)), where g: R, — A = Rp/a
is the qu(;ltient map. By (4.2), since m—1>1 by hypothesis, we conclude that
Hag (@, q(Fp)) = oo, and s0 ent(&) = oo. O

The next example shows that the conclusion of the above theorem need not be
true if a is not principal.
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ExampLE 5.2. (a) Letm = 3, thatis, R, = [,[X,Y,Z],andlet A = R, /a =
F,[X], witha= (Y,Z) = (Y) + (Z). So A = F,[X]. Denote by & the N3-action
on A induced by the R,-module structure. This R,-module induces an A-module
structure on A, and we denote by & the associated IN-action on A. Since A is a
quotient of R, @ is a quotient action of «. Therefore, ente” (o) = ent® (@), and
ent® (@) = log p < oo since X acts on A4 = IF,[X] as the Bernoulli shift (see [5]).

(b) Letm > 2 and R, = Fp[Xy,..., Xp]. Fix a positive d < m and putag; =
Xggts. s Xm) = (Xg+1) + -+ (X)), and 4y = Rp/ad = IFP[Xl, N ¢1N
Denote by « the IN"-action on A, induced by the R,-module structure. This
Rp-module induces an A;z-module structure on A;, and we denote by & the
associated IN-action on A4. Since A, is a quotient of R, @ is a quotient action
of . Therefore ent(o) = ent(x), see [3], and ent(@) = logp < oo ford = 1
while ent(&) = oo for d > 1 by Theorem 3.3.

We recall some well-known facts regarding IF,, [ X1, X»] necessary for the proof
of the sharper Theorem 5.5.

Fact 5.3. If R is a principal ideal domain, then an ideal a # 0 of R[X] is prime
if and only if one of the following two cases occur:

a. a = (f(X)) for someirreducible element f(X) € R[X] (two cases are possible
here: either deg f > 0 or f(X) = p for some prime p € R);

b. a = (p, f(X)) for some some prime p € R and f(X) € R[X] such that
deg f > 0 and its projection f(X) € R/pR[X] is irreducible; in this case a is
a maximal ideal of R[X].

For R = k[Y] with k a finite filed, the maximal ideals of R[X] have finite index.

The next theorem is focused on IN?-actions, so now R, = F,[Xi, X»]. We
recall that we always consider the regular system Z®, so we omit to write it every
time. Our aim is to compute the algebraic receptive entropy of finitely generated
F,[X1, X>]-modules. To this end we start with cyclic R,-modules, recalling that
ent(R,) = oo according to Theorem 3.3.

LemMmA 5.4. Let a be a non-trivial ideal of R, such that R, /a is infinite and
cyclic. Then there exists a principal prime ideal p of R, containing a.

Proor. We can apply the Lasker—Noether theorem to deduce that

(5.1) a=()a.
i=1
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where q; are primary ideals of R, fori € {1,...,s}. Let p; = rad(q;), then p; is
prime and clearly a € g; € p;. Since R, is Noetherian, g; is finitely generated, so
there exists k; € IN; such that pf" C q;.

Suppose that all p; are maximal. Then, using Fact 5.3, we deduce that all
R, /p; are finite. Since p; is finitely generated, p; /p? is finitely generated as an
R, /p;-module, hence finite. So, R, /pi2 is finite as well. Arguing by induction,
one can see that Rp/pf" is finite. Therefore, R, /q; is finite for all i € {1,...,s}.
From (5.1) we deduce that R,/a embeds into the direct product []; R,/q;, that
is finite. Hence A = R, /a is finite as well, a contradiction. Then at least one
p; is not maximal. Being p; prime and non-maximal, according to Fact 5.3 it is
principal. |

THEOREM 5.5. If A = Rp/a is an infinite cyclic R,-module, with a # 0 ideal
of Ry, then 0 < ent(A) < oco. Moreover, when a = (a(X1, X)) is a principal
ideal, then ent(A) = dega - log p.

Proor. First assume that a = (a) is principal and let d = d(a). Denote
by & the IN?-action on R, and & the IN?>-action corresponding to the R,-module
structure of A = R,/a, moreover let g: R, — A = R,/a be the quotient map.
Let F € J(A) and F' € F(R,) with ¢(F’) = F. There exists np € N such
that F’ C TEfqzo’ (a,.Fp), so as in (4.5), TE;(72-|)-n (@, q(Fp)) 2 Taff’ (&, F) for every
n € IN. Since, in the notation of Theorem 2.1, for V,, = TE(Z) (o, IFp) one has
q(Vp) = Taff’ (@,q(Fp)), using (4.2) and (4.5), we deduce that for every n € IN,

log |TE£’2) (@, F)| < d(n + no)log p;

SO ﬁalg(&, F) < dlogp for every F € F(A), and we conclude that ent(r) <
d log p. On the other hand, from (4.2) we get

ent(@) > ﬁalg(&sQ(FP)) =dlogp > 0.

If a is not principal, pick a principal ideal 0 # b < a. The above argument applied
to A’ = R,/b gives ent(4’) < oo. Since A is isomorphic to a quotient of A’,
by Fact 2.7 we conclude that ent(4) < ent(A’) < oco. On the other hand, by
Lemma 5.4 there exists a principal ideal p of R, containing a. So ent(R,/p) > 0
by the previous part of the proof, and hence ent(R,/a) > ent(R,/p) > 0 by
Fact 2.7. O
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ExampLE 5.6. Consider the ideal a = (X; — X3) of R, = F,[X;. X>]. Then
the actions of X; and X, on the R,-module A = R, /a are the same, say «. This

means that, calling ¢ the multiplication by X; (or X>) in 4 and of oy the relative
@

IN-action on A, o coincides with the co-diagonal action action IN? r% A of ag,
defined by ozéf) (n,m) = ag(n+m) = ¢"*" for every n,m € N. By Theorem 5.5,

ent(ay?) = ent(4) = log p.

Now we describe when ent(R,/a) < oo for a non-zero ideal a of R, =
FplX1,..., Xml]

CoroLLARY 5.7. Let R, = F,[Xy,...,X;] for some m > 1. Then the
Jollowing conditions are equivalent:
a. m=2;
b. there exists a principal ideal a # 0 of R, such that ent(R,/a) < 00;
c. 0 <ent(R,/a) < oo for every ideal a # 0 of R,.

Proor. (a) = (c¢) follows from Theorem 5.5, (c) = (b) is trivial and
(b) = (a) follows from Theorem 5.1. O

To conclude, we obtain a complete description when 0 < ent(4) < oo for a
finitely generated R,-module A for R, = I, [X;. X>].

CoroLLARY 5.8. For an infinite finitely generated R,-module A the following
conditions are equivalent:

a. ent(A) = 0;
b. 0 < ent(4) < oo;

c. rankg,(A4) = 0.

Proor. (a) <= (c) was proved in Corollary 4.5, and (b) = (a) follows
from Remark 2.4. To prove (c) = (b) write A = C; + --- + C,, where C;
are cyclic submodules of A. By hypothesis, for i € {1,...,n} we can write
Ci = Rp,/a; for some ideal a; # 0 of R,. By Theorem 5.5, éﬁlt(Ci) < oo for
i e{l,...,n}.For A = C; x---x C, we have ent(4’) < oo by Fact 2.7. As A4
is a quotient of A’, we conclude that ent(A4) < oo by Fact 2.7. At least one of the
cyclic submodules C; is infinite, so ent(A4) > ent(C;) > 0 by Fact 2.7. |
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REMARKS5.9. If § = F)[X;...., X;|forsomem > 1 and A = S /afor anideal
a # 0 of S contained in the maximal ideal m = (X4, ..., X,,), we conjecture that
0 < ent(A) < oo if and only if dim A = 1, where dim denotes the Krull dimension
of the quotient ring A.

If a is principal, then dim S /a = m — 1 by Krull’s Principal Ideal Theorem, so
this conjecture is consistent with Corollary 5.7. On the other hand, this conjecture
covers also Example 5.2(a), where dim S /a = 1.

We conclude with the following open problem.

QuEsTioN 5.10. Let p be a prime and m > 1 and integer. Is ent a length
function in the category of F,[X1, ..., X;;]-modules?
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