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1. Introduction

A left semigroup action S
˛
Õ A of a semigroup S on an abelian group A (by

group endomorphisms) is defined by ˛WS � A ! A, .s; x/ 7! ˛.s/.x/ with

˛.st/ D ˛.s/ ı ˛.t/ and ˛.s/.x C y/ D ˛.s/.x/ C ˛.s/.y/ for every s; t 2 S

and every x; y 2 A. In case S is a monoid with neutral element e, we impose

also ˛.e/.x/ D x for every every x 2 A. For N � S and F � A, let

TN .˛; F / D
P

s2N ˛.s/.F /. Let F.A/ denote the family of all finite subgroups

of A.

We recall that a right Følner sequence of a semigroup S is a sequence .Fn/n2N

of finite non-empty subsets of S such that limn!1 jFns n Fnj=jFnj D 0 for every

s 2 S . A countable semigroup S is right-amenable if and only if S admits a right

Følner sequence. Consider an action S
˛
Õ A of a countable cancellative right-

amenable semigroup S on an abelian group A. For F 2 F.A/ let

Halg.˛; F / D lim
n!1

log jTNn
.˛; F /j

jNnj
;

where .Nn/n2N is any right Følner sequence of S (the limit exists, it is finite and

does not depend on the right Følner sequence). The algebraic entropy of ˛ is

ent.˛/ D sup¹Halg.˛; F /WF 2 F.A/º [3]. This concept extends in a natural way

the algebraic entropy ent for N-actions on A, that is, for group endomorphisms

of A, introduced in [1, 10] and developed in [5].

The nice properties of the algebraic entropy ent stem from the fact that the

action S
˛
Õ A provides a left ZŒS�-module structure on A: ent is an invariant of

the category TS of left ZŒS�-modules that are torsion as abelian groups, and it is

furthermore a length function of TS in the sense of Northcott and Reufel, and of

Vámos (see Fact 2.5). Moreover, there is a remarkable connection of ent with the

topological entropy, that is, ent.˛/ coincides with the topological entropy of the

dual action of ˛ (i.e., the action induced by ˛ of S on the Pontryagin dual group
yA of A) [3, 10].

On the other hand, ent presents some shortcomings from intuitive point of

view. For example, if S is finite then ent.˛/ D log jAj=jS j, so in particular

ent.˛/ D 1 whenever A is infinite. Moreover, there are many cases when S is

a group, T is a subgroup of S and the restricted action ˛�T has ent.˛�T / D 1

while ent.˛/ D 0; in case T is a normal subgroup of S always ent.˛/ � ent. �̨T /.

If again S is a group and T is a normal subgroup of S with T � ker˛, then

ent.˛/ � ent. N̨S=T /, where N̨S=T is the quotient action induced by ˛; also in this

case the inequality can be strict.
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This suggested us to consider the new option for algebraic entropy offered in

Definition 1.2 (see [2]), and inspired by [7], where counterparts of the bizzarre

behavior of the topological entropy were pointed out. Following [7], a regular

system of a finitely generated monoid S is a sequence � D .Nn/n2N of finite

subsets of S such that N0 D ¹eº and NiNj � NiCj for every i; j 2 N. In

particular, Nn � NnC1 for every n 2 N. The regular system � D .Nn/n2N

is exhaustive if S D
S

n2N
Nn and it is standard if for every n 2 N the set

Nn D N1 : : :N1 is the n-fold setwise product of N1, and we set N0 D ¹eº, by

definition.

Example 1.1. The following is the most natural example of an exhaustive

standard regular system. If the monoid S is finitely generated by N1, then the

standard regular system .Nn/n2N of S is exhaustive (e.g., S D N with Nn D

¹0; : : : ; nº for every n 2 N).

Definition 1.2. Let S be a finitely generated monoid, � D .Nn/n2N a regular

system of S , A a torsion abelian group and S
˛
Õ A. For F 2 F.A/, let

zH�
alg.˛; F / D lim sup

n!1

log jTNn
.˛; F /j

n
:

The algebraic receptive entropy of ˛ with respect to � is

fent�.˛/ D sup¹ zH�
alg.˛; F /WF 2 F.A/º:

Unlike the case of ent, it may occur that zH�
alg.˛; F / D 1 for some F 2 F.A/

(see the proof of Theorem 5.1).

Also the algebraic receptive entropy extends in a natural way the algebraic

entropy ent for N-actions, as we show in §2, where we recall the basic properties

of the algebraic (receptive) entropy that we use further on.

In §3 we make use of the standard correspondence between N
m-actions on

abelian groups A of prime exponent p and Rp-module structures on A, where

Rp D FpŒX1; : : : ; Xm� is the ring of polynomials of m variables X1; : : : ; Xm

over the field Fp D Z=pZ. This allows us to freely pass from N
m-actions to

Rp-modules and viceversa, writing ent.A/ or fent.A/ for an Rp-module A, having

in mind the algebraic (receptive) entropy of the corresponding N
m-action. As a

first step we compute the algebraic (receptive) entropy of Rp (see Theorem 3.3).

In §4 we compute the algebraic entropy ent. First we see that ent.A/ D 0

when A D Rp=a is an infinite cyclic Rp-module and a is a non-zero ideal of Rp

(see Theorem 4.1). Using this result we prove that ent.A/ D rankRp
.A/ logp
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for an arbitrary Rp-module A (see Theorem 4.4). This allows us to obtain a

characterization of N
m-actions on torsion abelian groups with zero algebraic

entropy via Bernoulli shifts (see Proposition 4.7).

The first step in §5 is that the receptive algebraic entropy of an infinite cyclic

Rp-module A D Rp=a is infinite whenever a ¤ 0 is a principal ideal of Rp (see

Theorem 5.1). Moreover, in the casem D 2we compute fent.A/ even when a is not

necessarily principal (see Theorem 5.5 and Corollary 5.7). Remaining in the case

m D 2, we describe when 0 < fent.A/ < 1 for a finitely generated Rp-module A

(see Corollary 5.8).

Acknowledgements. It is a pleasure to thank the referee for the careful reading.
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“National Group for Algebraic and Geometric Structures, and Their Applications”

(GNSAGA – INdAM).

2. Basic properties and examples

Let S be a finitely generated monoid and � D .Nn/n2N a regular system of S .

For m 2 NC, the direct product Sm carries two regular systems extending � in a

natural way:

i. the Cartesian extension of � is �m D .Nm
n /n2N;

ii. if N1 is a finite set of generators of S containing e, the minimal extension

�.m/ of � is the standard regular system �.m/ D .N
.m/
n /n2N of Sm with

N
.m/
1 D ¹.s; e; : : : ; e/W s 2 N1º [ � � � [ ¹.e; : : : ; e; s/W s 2 N1º:

In S D N consider the exhaustive standard regular system„ D .„n/n2N with

„1 D ¹0; 1º (so „n D ¹0; : : : ; nº for every n 2 N). Obviously, this is the smallest

exhaustive standard regular system of N.

For Nm the Cartesian extension of„ is „m D .„m
n /n2N with „m

1 D ¹0; 1ºm,

and the minimal extension of „ is „.m/ D .„
.m/
n /n2N with

„.m/
n D ¹.a1; : : : ; am/ 2 N

mW a1 C � � � C am � nº

for every n 2 N.

Remark 2.1. Let S be a finitely generated monoid, A an abelian group and

S
˛
Õ A. IfH is a submonoid of S and � D .Nn/n2N is a regular system ofH , then

� D .Nn/n2N is a regular system of S as well, and zH�
alg.˛�H ; F / D zH�

alg.˛; F /

for every F 2 F.A/, so also fent�. �̨H / D fent�.˛/.
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The above notions of algebraic entropy and algebraic receptive entropy extend

the usual notion of algebraic entropy of a group endomorphism:

Remark 2.2. (a) Let A be an abelian group and �WA ! A an endomorphism.

We recall from [4, 5, 10] that, for F 2 F.A/, T0.�; F / D ¹0º and Tn.�; F / D

F C �.F /C � � � C �n�1.F / for every n 2 NC; moreover

Halg.�; F / D lim
n!1

log jTn.�; F /j

n
;

and the limit exist by Fekete Lemma. The algebraic entropy from [10] is ent.�/ D

sup¹Halg.�; F /WF 2 F.A/º. Consider the action N
˛�

Õ A defined by ˛�.1/ D �. It

is easy to see that T„n
.˛� ; F / D TnC1.�; F / for every n 2 N and F 2 F.A/, and

so ent.�/ D fent„.˛�/ D ent.˛�/.

(b) If �WA ! A is an isomorphism, � induces also an action Z
ˇ�

Õ A defined

by ˇ�.1/ D �. Using again the standard regular system „ of Z, by Remark 2.1

and item (a) we find ent.�/ D fent„.ˇ�/.

Since „ is not exhaustive for Z, it makes sense to consider the exhaustive

standard regular system „0 D .„0
n/n2N of Z with „0

n D ¹�n; : : : ; nº for every

n 2 N. Then, for every n 2 N and F 2 F.A/,

T„0
n
.ˇ� ; F / D ��n.F /C � � � C F C �.F /C � � � C �n.F /

D TnC1.�
�1; F /C �.Tn.�; F //:

Since �n.T„0
n
.ˇ� ; F // D T2nC1.�; F /, and � is bijective, we have jT„0

n
.ˇ� ; F /j D

jT2nC1.�; F /j. Therefore,

zH„0

alg.ˇ� ; F / D lim sup
n!1

log jT„0
n
.ˇ� ; F /j

n

D lim sup
n!1

log jT2nC1.�; F /j

n

D lim
n!1

2nC 1

n

log jT2nC1.�; F /j

2nC 1

D 2Halg.�; F /:

We conclude that fent�
0

.ˇ�/ D 2ent.�/.

Example 2.3. Every exhaustive standard regular system � D .Nn/n2N of Nm

gives rise to a right Følner sequence of Nm. The same occurs for every finitely

generated monoid of subexponential growth.

(We have no example of a regular system of an amenable finitely generated

group that fails to be a right Følner sequence.)
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Remark 2.4. Let S be a finitely generated monoid, A an abelian group and

S
˛
Õ A. Suppose that � D .Nn/n2N is a regular system of S which is also a right

Følner sequence of S and such that

(2.1) jNnj � cn2 for some constant c > 0 and all n 2 NC:

It follows from the definitions that, if for some F 2F.A/ we have zH�
alg.˛; F /<1,

then Halg.˛; F / D 0. Thus,

fent�.˛/ < 1 H) ent.˛/ D 0

(equivalently, ent.˛/ > 0 H) fent�.˛/ D 1).

The condition (2.1) is available for example whenever S is a finitely generated

group that does not contain a cyclic subgroup of finite index.

We recall basic properties of ent that we use below. For a monoid S , abelian

groups A;B and actions S
˛
Õ A; S

ˇ
Õ B , ˛ and ˇ are conjugated by an isomor-

phism �WA ! B if � ı ˛.g/ D ˇ.g/ ı � for every g 2 S .

Fact 2.5. [3] Let S be a cancellative right-amenable monoid, A a torsion

abelian group and S
˛
Õ A. Let B be an ˛-invariant subgroup of A and denote

by ˛B and ˛A=B the induced actions of S on B and on A=B , respectively.

Invariance. For S
ˇ
Õ C with C a torsion abelian group, if ˛ and ˇ are

conjugated, then ent.˛/ D ent.ˇ/.

Monotonicity. ent � max¹ent.˛B/; ent.˛A=B/º:

Continuity. IfA is a direct limit of ˛-invariant subgroups ¹Ai W i 2 I º, then

ent.˛/ D supi2I ent.˛Ai
/.

Weak
Addition Theorem.

If A D A1 �A2, with A1,A2 ˛-invariant subgroups ofA, then

ent.˛/ D ent.˛A1
/C ent.˛A2

/.

Addition Theorem. ent.˛/ D ent.˛B/C ent.˛A=B/.

The next theorem was inspired by a similar result for N-actions in [5].

Theorem 2.6. Let S be a countable cancellative right-amenable monoid, A a

torsion abelian group and S
˛
Õ A. Then ent.˛/ > 0 if and only if there exists a

prime p such that ent.˛AŒp�/ > 0.
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Proof. In view of the monotonicity of ent, it is enough to prove the necessity.

We consider first the case when A is a bounded p-group for some prime

p; let pk be the exponent of A. If k D 1 there is nothing to prove. Assume

that k > 1 and the assertions is true for k � 1. If ent.˛AŒp�/ > 0, there is

nothing to prove. Assume that ent.˛AŒp�/ D 0. Consider the short exact sequence

0 ! AŒp� ! A ! pA ! 0: According to the Addition Theorem and the

invariance, ent.˛/ D ent. p̨A/ C ent.˛AŒp�/ D ent. p̨A/. Since pk�1pA D 0,

we can conclude that ent.˛.pA/Œp�/ > 0. Since .pA/Œp� is a subgroup of AŒp�, by

the monotonicity ent.˛AŒp�/ > 0, a contradiction.

If A is a p-group for some prime p, A D
S

n2N AŒp
n� and ent.˛/ D

supn2N ent.˛AŒpn�/. Hence, our hypothesis ent.˛/ > 0 yields ent.˛AŒpn�/ > 0 for

some n 2 N. The above argument applied to AŒpn�, combined with the obvious

equality .AŒpn�/Œp� D AŒp�, entails ent.˛AŒp�/ > 0.

LetA D
L

p Ap, where eachAp is ap-group. Then using the actionsS
˛Ap

Õ Ap,

one has ent.˛/ D
P

p ent.˛Ap
/, by Fact 2.5. Hence, ent.˛/ > 0 yields the

existence of a prime p such that ent.˛Ap
/ > 0. Now the above argument gives

ent.˛ApŒp�/ > 0. Since ApŒp� D AŒp�, we are done. �

Fact 2.7. [2] Invariance, monotonicity and continuity remain valid also for

the algebraic receptive entropy, while in the weak Addition Theorem only one

inequality is available: if A D A1 � A2, with A1, A2 ˛-invariant subgroups of A,

then fent�.˛/ � fent�.˛A1
/C fent�.˛A2

/.

3. N
m-actions vs ZŒX1; : : : ; Xm�-modules

Notation 3.1. For an action N
m ˛

Õ A on an abelian group A, from now on,

we simply use the notation as follows: zHalg D zH„.m/

alg .

Following a well-known approach of Kaplansky, an N
m-action on an abelian

group A can be viewed in a standard way as an R0-module structure on A, where

R0 D ZŒX1; : : : ; Xm� is the ring of polynomials of m variables X1; : : : ; Xm over

Z. Similarly, a Z
m-action on A can be viewed as a module structure on A over the

ring ZŒX˙1
1 ; : : : ; X˙1

m � of Laurent polynomials ofm variablesX1; : : : ; Xm over Z.

In case A has a prime exponent p, one can use also the ring Rp D FpŒX1; : : : ;

Xm� of polynomials of m variables X1; : : : ; Xm over the field Fp D Z=pZ, and

provide as above an obvious connection between N
m-actions and Rp-module

structures on A. Moreover, the Z
m-actions on A can be viewed as module struc-

tures onA over the ring Fp ŒX
˙1
1 ; : : : ; X˙1

m � of Laurent polynomials ofm variables

X1; : : : ; Xm over Fp. In the sequel we freely pass from N
m-actions to Rp-modules
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and viceversa, writing ent.A/ or fent.A/ for an Rp-module A, having in mind the

algebraic (receptive) entropy of the corresponding N
m-action.

This approach is efficient in the case m D 1, when Rp is a principal ideal

domain, soRp-modules have a relatively simple structure and one can easily prove

that ent.A/ D fent.A/ D rankRp
.A/, where rankRp

.A/ denotes the maximum size

of a subset ofA independent overRp. This characterization is extended to the case

m > 1 in Theorem 4.3. As a starting point, we consider the cyclic Rp-module

A D Rp in Theorem 3.3.

Remark 3.2. For the sake of simplicity, it makes sense to replace, whenever

necessary, the additive monoid .Nm;C; 0/ by the moltiplicative submonoidM D

¹X
s1

1 : : : X
sm
m W .s1; : : : ; sm/ 2 N

mº of the multiplicative monoid .Rp; �; 1/ of the

ring Rp D Fp ŒX1; : : : ; Xm�. For b D X
s1

1 : : : X
sm
m 2 M , the degree of b is

d.b/ D
Pm

iD1 si .

Substantially, for an action N
m ˛

Õ A on an abelian group A of exponent a

prime p, the commuting endomorphisms �i WD ˛.ei/ of A, where ei is the i-th

member of the canonical base of Nm, make it become an Rp-module, as already

explained above. Now the n-th member „
.m/
n of the standard minimal regular

system „.m/ of Nm obviously corresponds to

Bn D ¹b 2 M W d.b/ � nº � M:

Let

(3.1) bn D jBnj D j„.m/
n j

and note that bn coincides with the so called n C 1-th simplicial m-polytopic

number known to be equal to the binomial coefficient C nCm
m . Hence,

(3.2) bn D
1

mŠ
nm C

mC 1

2.m � 1/Š
nm�1 C � � �

is a polynomial of n of degree m, and so limn!1 bn=n D 1 wheneverm > 1.

Theorem 3.3. If m 2 NC, then ent.Rp/ D logp. If m D 1, then fent.Rp/ D

ent.Rp/ D logp, otherwise fent.Rp/ D 1 > ent.Rp/.

Proof. Ifm D 1 the equality fent.Rp/ D ent.Rp/ follows from Remark 2.2(a),

while the equality ent.Rp/ D logp is well known since the corresponding N-ac-

tion is the Bernoulli shift .x0; x1; x2; : : : / 7! .0; x0; x1; x2; : : : / of
L
N
Zp, see [5].
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Assume m > 1 and put F D Fp 2 F.A/, that is, F is the set of all p polynomials

of degree 0 and the zero polynomial. By (3.1), j„
.m/
n j D jBnj D bn. Since

T
„

.m/
n
.˛; F /DWVn is a vector space andBn is a base of Vn, then dimVn DjBnjDbn,

so jVnj D pbn and

(3.3) log jVnj D bn logp:

Since .Bn/n2N is a Følner sequence of Rp, we deduce that

Halg.˛; F / D lim
n!1

log jVnj

j„
.m/
n j

D lim
n!1

bn logp

bn

D logp:

If we replace F by Vl D T
„

.m/

l

.˛; F / for some l 2 N, we have T
„

.m/
n
.˛; Vl/ D

T
„

.m/

nCl

.˛; F / D VnCl , which leads to Halg.˛; Vl/ D Halg.˛; F / D logp. Since

every finite subgroup of Rp is contained in some Vl , this proves ent.Rp/ D logp.

Since limn!1 jNnj=nD limn!1 bn=nD 1 by Remark 3.2, zHalg.˛; F /D 1,

and therefore fent.˛/ D 1. �

4. The algebraic entropy of FpŒX1; : : : ; Xm�-modules

Here we consider Nm-actions on an abelian group A of exponent a prime p; so let

Rp D Fp ŒX1; : : : ; Xm�. Moreover, we use „.m/, which is an exhaustive standard

regular system of N
m and also a Følner sequence. Since ent.A/ D 0 for finite

abelian groups A, we assume in the sequel that A is infinite.

Theorem 4.1. If A D Rp=a is an infinite cyclic Rp-module, where a ¤ 0 is an

ideal of Rp, then ent.A/ D 0.

Proof. Denote by N̨ the N
m-action corresponding to theRp-module structure

of A D Rp=a, and let qWRp ! A D Rp=a be the quotient map. We keep the

notation from the proof of Theorem 3.3. In particular, Vn D T
„

.m/
n
.˛; F / is a

linear subspace of Rp for n 2 N, so q.Vn/ D T
„

.m/
n
. N̨ ; q.Fp// is a linear subspace

of A. Since q.Vn/ Š Vn=Vn \ ker q D Vn=Vn \ a, so jq.Vn/j D jVn=Vn \ aj D

jVnj=jVn \ aj; and hence

(4.1) log jq.Vn/j D log jVnj � log jVn \ aj:

Consider the principal ideal a D .a.X1; : : : ; Xm// and let d be the degree of a.

Then p.X1; : : : ; Xm/ 2 Vn \ a precisely when

p.X1; : : : ; Xm/ D r.X1; : : : ; Xm/a.X1; : : : ; Xm/



54 A. Biś – D. Dikranjan – A. Giordano Bruno – L. Stoyanov

for some r.X1; : : : ; Xm/ 2 Rp of degree at most n � d , i.e., when one has

r.X1; : : : ; Xm/ 2 Vn�d . Since Rp is a domain, the map

Vn�d 3 r.X1; : : : ; Xm/ 7�! r.X1; : : : ; Xm/a.X1; : : : ; Xm/ 2 Vn \ a

provides a bijection, so jVn \ aj D jVn�d j. Hence, (3.2), (3.3), and (4.1) give

(4.2) log jq.Vn/j D .bn � bn�d / logp D
� d

.m � 1/Š
nm�1 C � � �

�
logpI

in particular log jq.Vn/j is a polynomial of n of degree m � 1. This implies

(4.3) Halg. N̨ ; q.Fp// D 0:

For any F 0 2 F.Rp/ one can find n0 2 N such that F 0 � T
„

.m/
n0

.˛;Fp/, so

(4.4) T
„

.m/
nCn0

.˛;Fp/ � T
„

.m/
n
.˛; F 0/ for every n 2 N:

For F � 2 F.A/ there is F 0 2 F.Rp/ with q.F 0/ D F �. By (4.4), this gives

(4.5) T
„

.m/
nCn0

. N̨ ; q.Fp// � T
„

.m/
n
. N̨ ; F �/:

Dividing by j„
.m/
n j and using (4.3) we deduce that Halg. N̨ ; F �/ D 0 as well.

Therefore ent.A/ D 0.

In case when a is not necessarily principal, find a principal ideal 0 ¤ b � a.

Then ent.Rp=b/ D 0 by the above argument. Since A D Rp=a is a quotient of

Rp=b, by Fact 2.5 we deduce that ent.A/ D 0 as well. �

The computation of ent for non-cyclic Rp-modules can be somehow reduced

to the case of cyclic ones.

Definition 4.2. Let R be a domain and A be an R-module. Call a 2 A

R-torsion if ann.a/ D ¹r 2 RW ra D 0º ¤ 0. Let tR.A/ denote the R-submodule

of A consisting of all R-torsion elements of A. Call A R-torsion free (resp.,

R-torsion), if tR.A/ D 0 (resp., tR.A/ D A).

Clearly, A=tR.A/ isR-torsion free. The next result shows that we can study ent

in Rp-torsion free modules A.

Lemma 4.3. Let A be an Rp-module. Then ent.tRp
.A// D 0 and ent.A/ D

ent.A=tRp
.A//. In particular ent.A/ D 0 if A is Rp-torsion.
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Proof. If a 2 A is Rp-torsion, then ann.a/ ¤ 0 and aRp Š Rp=ann.a/.

Hence ent.aRp/ D 0 either because it is finite or by Theorem 4.1. By Fact 2.5,

ent.tRp
.A// D 0 and so ent.A/ D ent.A=tRp

.A//. �

Theorem 4.4. For every Rp-module A, ent.A/ D rankRp
.A/ logp.

Proof. Every Rp-independent subset of A is contained in some maximal

Rp-independent subset X 0 of A. The submodule A0 of A generated by X 0 is free

and rankRp
.A/D rankRp

.A0/DjX 0j. Then A=A0 is Rp-torsion, so ent.A=A0/D0

by Lemma 4.3, and hence ent.A/ D ent.A0/ by Fact 2.5.

If rankRp
.A/ is infinite, then A0 contains a submodule M Š

L
N
Rp, and so

ent.A0/ � ent.M/ D 1 by Fact 2.5. If rankRp
.A/ D t is finite, then A0 D Rt

p,

and so ent.A0/ D t ent.Rp/ D t logp by Theorem 3.3. �

Combining Theorem 4.4 with Theorem 4.1 one obtains the following.

Corollary 4.5. For an infinite Rp-module A, ent.A/ D 0 if and only if

rankRp
.A/ D 0.

We aim to obtain a counterpart of Corollary 4.5 for an arbitrary torsion abelian

group A, but the condition rankRp
.A/ D 0 becomes meaningless, so we give an

alternative characterization of the property ent.A/ D 0.

Remark 4.6. Let A be an Rp-module, corresponding to the action N
m ˛

Õ A.

According to Corollary 4.5, rankRp
.A/ > 0 if and only if A contains a submodule

B isomorphic to Rp Š
L
Nm Zp. Since the action of Nm ˛B

Õ B coincides with the

m-dimensional Bernoulli shift over Zp (i.e., them-th Cartesian power of the usual

one-dimensional Bernoulli shift—see the proof of Theorem 3.3), we shall refer

to this circumstance by simply saying that Nm ˛
Õ A “contains an m-dimensional

Bernoulli shift over”Zp. In these terms, Corollary 4.5 says that an actionN
m ˛

Õ A

on an abelian group A of exponent a prime p has ent.A/ D 0 if and only if

N
m ˛

Õ A does not contain any m-dimensional Bernoulli shift over Zp.

Obviously, this terminolgy can be used also when the torsion abelian group

A is not necessarily an Rp-module; in such a case, for a prime p, by saying that

N
m ˛

Õ A contains an m-dimensional Bernoulli shift over Zp we mean that A

contains an ˛-invariant subgroup B Š
L
Nm Zp such that Nm ˛B

Õ B is conjugated

to the m-dimensional Bernoulli shift over Zp.

By means of Theorem 2.6, we obtain the following extension.
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Proposition 4.7. Letm 2 NC, let A be a torsion abelian group and N
m ˛

Õ A.

Then ent.˛/ > 0 if and only if there exists a prime p such that Nm
˛AŒp�

Õ AŒp�

contains an m-dimensional Bernoulli shift over Zp.

Proof. According to Theorem 2.6, ent.˛/ > 0 if and only if ent.˛AŒp�/ > 0

for a prime p. Now apply Corollary 4.5 and Remark 4.6 to ˛AŒp�. �

The algebraic entropy of m commuting endomorphisms �1; : : : ; �m of an

abelian p-group A was already studied in [5]. Since A is a module over the ring

Jp of p-adic integers, one obtains also a natural structure of a JpŒX1; : : : ; Xm�-

module on A. If ent.�1/ D � � � D ent.�m/ D 0, then ent. / D 0 for every

 2 JpŒ�1; : : : ; �m� by [5, Lemma 2.5]. Let us see that ent.A/ D 0 as well. Indeed,

if ent.A/ > 0, then Proposition 4.7 provides an m-dimensional Bernoulli shift

over Zp in A, i.e., a submodule B Š Fp ŒX1; : : : ; Xm�. Since B is �1-invariant and

�1�B is conjugated to the multiplication byX1, by Fact 2.5 ent.�1/ � ent.�1�B/ �

logp > 0, a contradiction.

With a more careful housekeeping, the above argument proves that if m > 1,

then ent.�1/ D 1 under the assumption that ent.A/ > 0 and even more. Taking for

simplicity A D B D JpŒ�1; : : : ; �m�, then ent. / D 1 for every endomorphism

of A induced by the multiplication by any polynomial  2 JpŒX1; : : : ; Xm� of

positive degree.

5. The algebraic receptive entropy of FpŒX1; : : : ; Xm�-modules

We compute fent for cyclic Rp-modules, where Rp D Fp ŒX1; : : : ; Xm� and m > 2.

Theorem 5.1. If m > 2 and A D Rp=a is an infinite cyclic Rp-module, where

a ¤ 0 is a principal ideal of Rp, then fent.A/ D 1.

Proof. We keep the notation from the proofs of Theorems 3.3 and 4.1. In

particular, ˛ is the N
m-action on Rp and N̨ is the N

m-action on A determined

by the Rp-module structure of A, a D .a/ with d.a/ D d ; for n 2 N, let

Vn D T
„

.m/
n
.˛; F / and so q.Vn/ D T

„
.m/
n
. N̨ ; q.Fp//, where qWRp ! A D Rp=a

is the quotient map. By (4.2), since m � 1 > 1 by hypothesis, we conclude that
zHalg. N̨ ; q.Fp// D 1, and so fent. N̨ / D 1. �

The next example shows that the conclusion of the above theorem need not be

true if a is not principal.
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Example 5.2. (a) Let m D 3, that is, Rp D Fp ŒX; Y; Z�, and let A D Rp=a Š

Fp ŒX�, with a D .Y; Z/ D .Y /C .Z/. So A Š Fp ŒX�. Denote by ˛ the N
3-action

on A induced by the Rp-module structure. This Rp-module induces an A-module

structure on A, and we denote by N̨ the associated N-action on A. Since A is a

quotient of Rp, N̨ is a quotient action of ˛. Therefore, fent„
.3/
.˛/ D fent„. N̨ /, and

fent„. N̨ / D logp < 1 since X acts on A Š FpŒX� as the Bernoulli shift (see [5]).

(b) Let m > 2 and Rp D FpŒX1; : : : ; Xm�. Fix a positive d < m and put ad D

.XdC1; : : : ; Xm/ D .XdC1/ C � � � C .Xm/, and Ad D Rp=ad Š FpŒX1; : : : ; Xd �.

Denote by ˛ the N
m-action on Ad induced by the Rp-module structure. This

Rp-module induces an Ad -module structure on Ad , and we denote by N̨ the

associated N
d -action on Ad . Since Ad is a quotient of Rp, N̨ is a quotient action

of ˛. Therefore fent.˛/ D fent. N̨ /, see [3], and fent. N̨ / D logp < 1 for d D 1

while fent. N̨ / D 1 for d > 1 by Theorem 3.3.

We recall some well-known facts regarding Fp ŒX1; X2� necessary for the proof

of the sharper Theorem 5.5.

Fact 5.3. IfR is a principal ideal domain, then an ideal a ¤ 0 ofRŒX� is prime

if and only if one of the following two cases occur:

a. a D hf .X/i for some irreducible element f .X/ 2 RŒX� (two cases are possible

here: either degf > 0 or f .X/ D p for some prime p 2 R);

b. a D hp; f .X/i for some some prime p 2 R and f .X/ 2 RŒX� such that

degf > 0 and its projection Nf .X/ 2 R=pRŒX� is irreducible; in this case a is

a maximal ideal of RŒX�.

For R D kŒY � with k a finite filed, the maximal ideals of RŒX� have finite index.

The next theorem is focused on N
2-actions, so now Rp D Fp ŒX1; X2�. We

recall that we always consider the regular system„.2/, so we omit to write it every

time. Our aim is to compute the algebraic receptive entropy of finitely generated

Fp ŒX1; X2�-modules. To this end we start with cyclic Rp-modules, recalling that

fent.Rp/ D 1 according to Theorem 3.3.

Lemma 5.4. Let a be a non-trivial ideal of Rp such that Rp=a is infinite and

cyclic. Then there exists a principal prime ideal p of Rp containing a.

Proof. We can apply the Lasker–Noether theorem to deduce that

(5.1) a D

s\

iD1

qi ;
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where qi are primary ideals of Rp for i 2 ¹1; : : : ; sº. Let pi D rad.qi /, then pi is

prime and clearly a � qi � pi . Since Rp is Noetherian, qi is finitely generated, so

there exists ki 2 NC such that p
ki

i � qi .

Suppose that all pi are maximal. Then, using Fact 5.3, we deduce that all

Rp=pi are finite. Since pi is finitely generated, pi=p
2
i is finitely generated as an

Rp=pi -module, hence finite. So, Rp=p
2
i is finite as well. Arguing by induction,

one can see that Rp=p
ki

i is finite. Therefore, Rp=qi is finite for all i 2 ¹1; : : : ; sº.

From (5.1) we deduce that Rp=a embeds into the direct product
Q

i Rp=qi , that

is finite. Hence A D Rp=a is finite as well, a contradiction. Then at least one

pi is not maximal. Being pi prime and non-maximal, according to Fact 5.3 it is

principal. �

Theorem 5.5. If A D Rp=a is an infinite cyclic Rp-module, with a ¤ 0 ideal

of Rp, then 0 < fent.A/ < 1. Moreover, when a D .a.X1; X2// is a principal

ideal, then fent.A/ D dega � logp.

Proof. First assume that a D .a/ is principal and let d D d.a/. Denote

by ˛ the N
2-action on Rp and N̨ the N

2-action corresponding to the Rp-module

structure of A D Rp=a, moreover let qWRp ! A D Rp=a be the quotient map.

Let F 2 F.A/ and F 0 2 F.Rp/ with q.F 0/ D F . There exists n0 2 N such

that F 0 � T
„

.2/
n0

.˛;Fp/, so as in (4.5), T
„

.2/
nCn0

. N̨ ; q.Fp// � T
„

.2/
n
. N̨ ; F / for every

n 2 N. Since, in the notation of Theorem 4.1, for Vn D T
„

.2/
n
.˛;Fp/ one has

q.Vn/ D T
„

.2/
n
. N̨ ; q.Fp//, using (4.2) and (4.5), we deduce that for every n 2 N,

log jT
„

.2/
n
. N̨ ; F /j � d.nC n0/ logpI

so zHalg. N̨ ; F / � d logp for every F 2 F.A/, and we conclude that fent.˛/ �

d logp. On the other hand, from (4.2) we get

fent. N̨ / � zHalg. N̨ ; q.Fp// D d logp > 0:

If a is not principal, pick a principal ideal 0 ¤ b � a. The above argument applied

to A0 D Rp=b gives fent.A0/ < 1. Since A is isomorphic to a quotient of A0,

by Fact 2.7 we conclude that fent.A/ � fent.A0/ < 1. On the other hand, by

Lemma 5.4 there exists a principal ideal p of Rp containing a. So fent.Rp=p/ > 0

by the previous part of the proof, and hence fent.Rp=a/ > fent.Rp=p/ > 0 by

Fact 2.7. �



Algebraic entropies of commuting endomorphisms 59

Example 5.6. Consider the ideal a D .X1 � X2/ of Rp D FpŒX1; X2�. Then

the actions of X1 and X2 on the Rp-module A D Rp=a are the same, say ˛. This

means that, calling � the multiplication by X1 (or X2) in A and of ˛� the relative

N-action on A, ˛ coincides with the co-diagonal action action N
2

˛
.2/
�

Õ A of ˛� ,

defined by ˛
.2/
� .n;m/ D ˛�.nCm/ D �nCm for every n;m 2 N. By Theorem 5.5,

fent.˛
.2/
� / D fent.A/ D logp.

Now we describe when fent.Rp=a/ < 1 for a non-zero ideal a of Rp D

Fp ŒX1; : : : ; Xm�.

Corollary 5.7. Let Rp D FpŒX1; : : : ; Xm� for some m > 1. Then the

following conditions are equivalent:

a. m D 2;

b. there exists a principal ideal a ¤ 0 of Rp such that fent.Rp=a/ < 1;

c. 0 < fent.Rp=a/ < 1 for every ideal a ¤ 0 of Rp.

Proof. (a) H) (c) follows from Theorem 5.5, (c) H) (b) is trivial and

(b) H) (a) follows from Theorem 5.1. �

To conclude, we obtain a complete description when 0 < fent.A/ < 1 for a

finitely generated Rp-module A for Rp D Fp ŒX1; X2�.

Corollary 5.8. For an infinite finitely generated Rp-module A the following

conditions are equivalent:

a. ent.A/ D 0;

b. 0 < fent.A/ < 1;

c. rankRp
.A/ D 0.

Proof. (a) () (c) was proved in Corollary 4.5, and (b) H) (a) follows

from Remark 2.4. To prove (c) H) (b) write A D C1 C � � � C Cn, where Ci

are cyclic submodules of A. By hypothesis, for i 2 ¹1; : : : ; nº we can write

Ci Š Rp=ai for some ideal ai ¤ 0 of Rp. By Theorem 5.5, fent.Ci / < 1 for

i 2 ¹1; : : : ; nº. For A0 D C1 � � � � � Cn we have fent.A0/ < 1 by Fact 2.7. As A

is a quotient of A0, we conclude that fent.A/ < 1 by Fact 2.7. At least one of the

cyclic submodules Ci is infinite, so fent.A/ � fent.Ci/ > 0 by Fact 2.7. �
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Remark 5.9. IfS D FpŒX1; : : : ; Xm� for somem > 1 andA D S=a for an ideal

a ¤ 0 of S contained in the maximal ideal m D .X1; : : : ; Xm/, we conjecture that

0 < fent.A/ < 1 if and only if dimA D 1, where dim denotes the Krull dimension

of the quotient ring A.

If a is principal, then dimS=a D m� 1 by Krull’s Principal Ideal Theorem, so

this conjecture is consistent with Corollary 5.7. On the other hand, this conjecture

covers also Example 5.2(a), where dimS=a D 1.

We conclude with the following open problem.

Question 5.10. Let p be a prime and m > 1 and integer. Is fent a length

function in the category of Fp ŒX1; : : : ; Xm�-modules?
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