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Magnificent four

Nikita Nekrasov

Abstract. We present a statistical mechanical model whose random variables are solid par-
titions, i.e. Young diagrams built by stacking up four dimensional hypercubes. Equivalently,
it can be viewed as the model of random tessellations of R3 by squashed cubes of four fixed
orientations. The model computes the refined index of a system of DO0-branes in the pres-
ence of D8—D8 system, with a B-field strong enough to support the bound states. Math-
ematically, it is the equivariant K-theoretic version of integration over the Hilbert scheme
of points on C# and its higher rank analogues, albeit the definition is real-, not complex
analytic. The model is a mother of all random partition models, including the equivariant
Donaldson-Thomas theory and the four dimensional instanton counting. Finally, a version
of our model with infinite solid partitions with four fixed plane partition asymptotics is the
vertex contribution to the equivariant count of instantons on toric Calabi—Yau fourfolds.

The conjectured partition function of the model is presented. We have checked it up to
six instantons (which is one step beyond the checks of the celebrated P. MacMahon’s failed
conjectures of the early X X century). A specialization of the formula is our earlier (2004)
conjecture on the equivariant K-theoretic Donaldson-Thomas theory, recently proven by
A. Okounkov [63].
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1. Introduction

This paper has several facets. From the mathematical point of view we are
studying a combinatorial problem. We assign a complex-valued probability to
the collections of hypercubes in dimensions two to four, called partitions, plane
partitions, and solid partitions, respectively, and investigate the corresponding
partition functions. From the physical point of view we are studying a bound
state problem in the supersymmetric quantum mechanics of the system of point-
like particles defined using the DO-branes of IIA string theory in a presence of
a sophisticated domain wall-type defect, a configuration of the D8-D8-branes.
The Four in the title refers to the number of complex spatial dimensions of
the D8-branes. The same four is the number of real euclidean dimensions of
the hypercubes forming the solid partitions of the combinatorial problem. The
adjective Magnificent reflects this author’s conviction that the dimension four
is the maximal dimension where the natural albeit complex-valued probability
distribution exists.

The connection between the physical and mathematical problems goes through
the definition of a moduli space My of solutions to a system of quadratic matrix
equations, generalizing, in a certain manner, the ADHM equations [1] encoding
the solutions of instanton equations

Fy=—xF4 (1)
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in the ordinary four dimensional gauge theory. The classical gauge theory studies
the solutions of the partial differential equations

DiFq =0,

which describe the critical of the Yang—Mills functional

: 2

1
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Equation (1) is solved by the absolute minima (cf. (2)) of the Yang—Mills action
in a given topological sector. In quantum gauge theory, the path integral

{.DA} e_SYM+% fX4 Tr FANF4 (3)
[A/S]

could be potentially approximated, for small g2, by the saddle point contributions.
In reality g2 is not a parameter of the model due to asymptotic freedom. Instead, a
more sophisticated version of (3) involving fermions can be sometimes evaluated
exactly [57] using an analogue of Duistermaat-Heckman formula.

In higher dimensions one expects the saddle point approximation to be even
more problematic given the dimensionful nature of the coupling constant, which
measures the non-linearity of the corresponding partial differential equations.
However, supersymmetry might come to rescue there as well. With the introduc-
tion in [57] of localization techniques in the exact computations in supersymmetric
gauge theories in four and higher dimensions [54], the enumeration of partitions,
a more then a century-old subject [44], has been revived with a novel set of natural
(complex) probability measures. The partitions, and their higher dimensional ana-
logues plane and solid partitions which we discuss below, enumerate the extrema
of the analogues of the Yang—Mills action defined on noncommutative spaces. The
noncommutative gauge theory arises in a limit [70] of string theory, yet may cap-
ture some of the non-local features of the latter without all its degrees of freedom.
Formally one may work with the semi-topological theory in eight dimensions in-
troduced in [5], and its upgrades to nine dimensions along the lines of [53, 6].
However the most important question is how one compactifies the moduli space
of solutions to the equations

x Fy = =Ty N Fy 4)

generalizing (1) for the higher dimensional spaces of special holonomy (the closed
four-form T, being preserved by that special holonomy). Part of the interest in
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these solutions is their relation to calibrated cycles of [31], in particular special
Lagrangian submanifolds in Calabi—Yau fourfolds.

In the present work we shall be mostly interested in the so-called fat points,
i.e. the solutions with the action concentrated in codimension eight. Physically
these arise in the context of DO0-branes possibly bound to D8-brane(s) wrapping
a Calabi—Yau fourfold, with the B-field turned on, cf. [72]. It is interesting to
allow for both D-branes and anti-branes, as in the D8—D8 configuration of [65].
However, unlike the [65] setup we may have supersymmetry restored via tachyon
condensation as in [61]. The importance of the D0-brane bound state problem
[68, 75, 48] for the non-perturbative string dynamics is well known [73].

The mathematical challenge of the enumeration of the solutions to (4) is the
need to deal with the Pfaffians of the (twisted) Dirac operators arising in the
linearized problem, also known as the orientation problem. We shall discuss this
problem below.

2. Partitions

2.1. Ordinary partitions. Partitions enumerate ways of representing a whole as
a sum of its parts.

For a non-negative integer |A| its partition A is its representation as a sum
of non-negative integers, more specifically a partition A is a non-decreasing se-
quencee of non-negative integers:

A=A =A== ) )
where
Al =A1 + -+ A

is called the size of the partition A and £(A) is called its length. One represents
the partition A with the help of the Young diagram which is a collection of neatly
packed squares [J of total number |A| arranged into a pile of £(4) rows of lengths
A1, A2, ..., Ag@y, as in Figure 1.

The picture also shows a way of coordinatizing the Young diagrams: we assign
to the pair of integers (i, j) obeying 1 < i < {(4),1 < j < A; a single square
positioned in the i ’th row counted from the top, and the j ’th column counted from
the left.

The Young diagrams, i.e. partitions traditionally show up in the representation
theory of symmetric groups, for A’s are in one-to-one correspondence with the
irreducible representations of S(|A|). They also enumerate the irreducible rep-
resentations of the special unitary groups, this time £(1) plays a role: A’s are in
one-to-one correspondence with the irreducible representations of SU(N) with
N > L(A).
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Figure 1

2.2. Multi-dimensional partitions. An obvious generalization is to stack cubes,
hypercubes etc. In Figure 2 one can see a picture! of the three dimensional Young
diagram, also known as the plane partition.
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Figure 2

1 Thanks to the graphics talents of A. Okounkov.
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More formally, we consider the following generalization of the structure (5).
Let S be a partially ordered set S with valuation |-|: S — Zs¢, such that is
51,82 € S, 51 > s5o, then |s1]| > |s3|. Define P(S) to be the set of finite sequences

P(S)=1{0 =(s1.52,....,8¢) | si > sj foralli < j}.

Then P(IN) = A is the set of all ordinary partitions, P(A) = IT is the set of plane
partitions, P(IT) = & is the set of solid partitions, the subject of this paper.

We can view the plane (three-dimensional) partition r as a Young diagram A,
with Zs¢-valued function 7 on the set of its squares [ € A, with the condition
that

Wi,j =2 Wi+1,j,  Ti,j = T, j+1,

where we write ; ; = mg for the square O = (i, j) € A,. The size of the plane
partition = is defined as
|| = Z Ti,j-
i,j

There are three such representations (corresponding to the choice of the labeling of
the three coordinate axes). We may call such representations (2, 1)-types (2 for the
dimensionality of the Young diagram, 1 for the fact that we write only a number
in each square). Equivalently, we can view m as a sequence of non-increasing
ordinary partitions. There are also three such representations. We call them
(1, 2)-representations.

For the solid partitions we can use (3, 1), (2, 2), or (1, 3)-pictures: as three
dimensional Young diagrams with the height functions on the set of cubes (four
such representations), as two dimensional Young diagrams with the A-valued
function on the set of squares, and as the sequences of non-increasing plane
partitions. In the (3, 1)-representation we fix a plane partition 7 and the height
function

Pijk =1 pijk = Pivt gk Pijk = Mijrik.  Pijk = Pijk+ls

with (i, j, k) € . We define p; j = 0 for (i, j, k) € IN*\ . The size of the solid
partition is, naturally
ol =" pijk-

i,j.k

2.2.1. Enumeration of partitions. Enumeration of partitions has a long history.
The naive question is given the size how many partitions, plane partitions, solid
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partitions, etc. are there. Equivalently, one is looking for the grand canonical
ensemble partition function

Za(@) = pa(n)q",
n=0

where py(n) is the number of d-dimensional partitions of size n.

For each d > 1 the functions

o0

Ma@ =Y pa o =[] ——— s =ew s fala)  ©
n=0 (I—qm)™ I=1

n=1

where

cm= ("1 = g

were introduced in [44]. In particular,

J\/[2(CI)=1-I-C{—I-Zqz—l-?nt{3—|—5q4—|—7q5—|-11qG_|_...’
Ms(q) = 1+ q+ 30> + 69° + 13q* 4 249° + 48q° +--- .

Ma(q) = 1 + q + 49> + 10g> + 269* +59¢° + 141¢° +--- .

Z4(q) = Mg (q) was conjectured by P.A. MacMahon [44] as part of the “[...]
author’s preliminary researches in combinatory theory which have been carried
out during the last thirty years.”

The generating functions M,, M3 actually do count partitions and plane par-
titions, respectively. For d = 2, Z, = M, is Euler’s formula, which in modern
language relates free bosons and free fermions in 1 4+ 1 dimensions. The d = 3
formula has many proofs, one of them also uses free fermions [64]. For some
strange reason M3 coincides with the partition function of free conformally cou-
pled scalar on $! x $2, with q = e R1/R2_Ford = 4, M4 — Z4 = 0(mod ¢°). But
the conjecture is false, giving p,(6) = 141 instead of the true value p4(6) = 140
of solid partitions of 6, see Figure 3.



512 N. Nekrasov

Ny SR 12}

M-

Figure 3

3. Statistics of solid partitions

Since [44] new ways of enumerating partitions came to the attention of mathe-
maticians and physicists. For example, the ordinary, 2-dimensional partitions A
are in one-to-one correspondence with the irreducible representations R, of the
symmetric group S(|A|). The space of representations has a natural Plancherel
measure

1
i = W(dimﬂm2 (7

which was studied for large |A| in [42, 43]. The measure (7), in turn, has a deep
three-parametric generalization, interpolating between the uniform (constant) and
Plancherel measure. The generalization came from the studies of supersymmetric
gauge theories, four-manifold invariants, and representation theory of infinite-
dimensional algebras:

aq+1 —an l\:\-l-l)

—1
(1—g3q;"" g5 )1 —q3q; “q
1i(q1.42.q3) = l_[ : . : %

+1 -/ — Iq+1
Oer 931 =g g, D)1 —q;Bg,” )

: ()
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where for O = (i, j) € A one defines the arm-length ag = A; — j and the leg-
length /g = A} —i (see [49, 50, 57, 59] for more explanations and more notations).
The strange-looking formula (8) and its scarier versions for the ensembles of
colored partitions [57, 59] can be pacified by the plethystic exponent presentation
(we already used such a presentation in writing (6))

—|A * * *
141,42, 43) = 43 ME[(1 — 3)(NK* + N*K — (1 — 1) (1 — g2) KK™)],
where

o0
1
E[f(x1,x2,....xp)] =exp27f(x{,xé,...,xf,),
I=1

and for (8), N =1,

K=Y d"a"
e

and
-1 -1 —1
fr(x1, X2, .0, xp) = f(x7, x5 e Xy ).

The conjecture [54] (proven using the results of [16])

(1 —q193)(1 —q2q3) q ] ©)

Al —
;#1(41,6]2,6]3)‘1 E[ 0—a)(—q2as 1—1
relates the U(1) noncommutative gauge theory in 4 4+ 1 dimensions to the
(2, 0)-tensor multiplet in 5 + 1 dimensions, compactified on an elliptic curve.
The fugacity q in this correspondence becomes the nome of the elliptic curve
q = exp(2rir). The relations (9) and their more sophisticated analogues moti-
vated the general BPS/CFT correspondence conjecture of [56], and its much more
detailed AGT version [3].

3.1. The measure. We start by presenting the explicit formula for the complex-
valued measure on the set of solid partitions, which originates in gauge theory.
Let g,,a = 1,2, 3, 4 be non-zero complex numbers, obeying

4
1_[ da = 1.
a=1
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Fix © € C*, and define, for the indeterminates x,...,x; € C*, the rational
function (a symmetric function of xy, ..., xg)
Xk = l( qa(1 —q12)(1 — q13)(1 — q23) )k
KU\ /(1 =g (1 —q2)(1 — q3)(1 — q4)

» l—[ (xj — xi)(x; — q12Xi) (Xj — q23%;)(X; — q13X;)

\<ivij<k (x; —q1xi)(xj — q2x;i)(x; — q3%;)(Xj — qaX;)
k 1 —pux

— px;

X .
1_[ 1—x,-

i=1

For the four dimensional (solid) partition p C Zi of size |p| = k define

—1 _b—1 c—1 .d—
xo = (q77'a5 7457 45 Nabe.dren

and

ax;. (10)
Xi

k
M(p) = ZRes(xa(i))f~c=1=prk 1_[
ogeS (k) i=1

4. Gauge theory

We now pass to the derivation of (10).

4.1. ADHM construction in four complex dimensions. Let N, K, T be com-
plex Hermitian vector spaces, of dimensions n, k, and 4, respectively. We assume,
in addition, that T is endowed with the fixed holomorphic 4-form Q € A*T*,
which is compatible with the Hermitian structure,

QAQ =vol

The space A2T* of exterior two-forms has a real structure. Let U ~ R® be the
corresponding real space, so that U ® C = A?T*.
The symmetry H of the problem is the product

H=U(N)x U(K) x SU(4). (1D

The ADHM data consists of the quadruple of matrices B, € End(K), fora =1, 2,
3, 4, which we combine into a linear map

B:K— KQ®T



Magnificent four 515
and a homomorphism /: N — K. The commutator
[B,B]: K — K ® A°T

can be projected into the self-dual and the anti-self-dual parts. Specifically, we
define the following H-equivariant equations

1
Sab = [Ba. Bs] + 5QubealBy. B} =0. 1<a<b=4. (12)

and

4
= Z [Bo, BN+ 11T =¢ 1. (13)

Equations (12) actually imply the stronger equations
[Ba, Bp] =0, (14)

since
ZTrsabSZb = ZTr[Ba’ Bb][Ba, Bb]T

1<a<b=4 1<a<b<4

Equation (13) with { > 0 is equivalent to the stability condition

any subspace K’ C Ks.t. I(N) C K’, and B,(K') C K', a =1,2,3,4 15)
= K =K.

The proof is identical to that for crossed instantons [58]. In fact, it was by studying
the crossed and spiked instantons [58] that we arrived at the equations above.

The space of commuting quadruples B obeying the stability condition (15) is
the celebrated Hilbert scheme of points Hilb™! (C*) on C*. Although the scheme is
defined algebro-geometrically over C, our way of defining it uses the real structure.
The advantage of our approach (as we advocated earlier in [45, 46] and later
in [58]) is the possibility of using the conventional Mathai-Quillen representative
for the integrals over what is now called the virtual fundamental cycle [29]. The
alternative approaches use the perfect obstruction theory [29], derived differential
geometry [10] and other sophisticated techniques whose physical meaning is yet
to be clarified.

By writing B, = X5,-1+1X24,a = 1, .. .4, with Hermitian X,,,,m = 1,...,8
we can view the collection of the matrices B, BT as the linear map

X:K—K®YV,

where V~ RE,VQC =T T*.
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4.1.1. Deformations and obstructions. We mentioned the obstruction theory
above. In our context, each solution of (12) and (13) defines two vector spaces

T — kerD and T°" = cokerD,

where D is the linearization of the equations and projector onto the subspace
orthogonal to the tangent space to the U(K)-orbit. The space 79" actually has the
complex structure (for the same reason (12) imply the holomorphic equations (14).
Therefore 79 has a canonical orientation. The space T° is only a real vector
space. The subtle and important feature of 7°° is that it also has an orientation.
Even though the dimensions of 79 and 7°P% may jump over different loci in
Hilb*! (C*), the orientation det7°P stays constant. We show this using the

4.2. Cohomological field theory. Let us now explain the origin of our mea-
sure (10). We will be integrating over the supermanifold (in fact, the supervector
space)

Xx = (T (Hom(K, K ® €) @ Hom(N, K)) ® Lie U(K))/U(K),  (16)

where
C=R>’pVaU

has real dimension 16 + 1. The bosonic variables (fields) of our integration
problem are X,,, 0,6, Hap = 0, hi = €apca H;C, h valued in End(K), with X, =
X,};, m=1,...,8, 0" =&, and seven “auxiliary” fields h; = h:.r, i=1,...,6
and & = h'. In addition, our bosonic variables include / € Hom(N, K),IT e
Hom(K, N). The fermionic variables are W,,, n, yqp = cr";b Xi = Eabed )(Z;C, and y,
all valued in TT1 End(K), and ¢ € TTHom(N, K), T € ITHom(K, N). The most
important fact about the space (16) is the nilpotent (on the quotient by U(K)) odd
vector field, which acts on our variables as follows:

8Xm = U, §W,, = [0, Xp],
8l = v, Sy =ol,
It =yt Syt =—Ito,

8o =1, én = [o, 0], 17
5)(,' = h,’, 5]/1,' = [CT, )(i],

Sy =nh, 8h = [o, 1],

o0 = 0.

The operator § is nothing but the equivariant de Rham differential. Its square
82 = L is the infinitesimal gauge transformation generated by o.
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The supersymmetric measure on the space of the eight-dimensional ADHM
data which represents the bulk contribution to Witten index a la [68, 69] is given
by

Dbosons] D [fermions]| _sy

{ Vol(U(K)) }
where the measure D [bosons] D [fermions] is the canonical Berezin measure up
to a factor Do which is uniquely defined (as in [71]) by normalizing it so as to
produce the Haar measure on U(K) of volume 1. The gauge fermion ¥ is taken
to be equal to

¥ = Re { > Te(x, (sab — Hap) +¢.c) + Y Tr U[5. Xon]
m

a<b

(18)

+ Te(y G 1) + c.c) + Trolo, 5]}.

4.2.1. Q-deformation. Now let us use the SU(4)-symmetry of (12) and (13):
B, — UfBb,

with UU' = 1, Det(U) = 1. One promotes the differential (17) to the SU(4) x
U(K) equivariant differential §,, with important modifications:

e (\p2a—1 + i“IJZa) = [07 Ba] + €4 By,
SeHup = [0, xab] + (6a + &b) Xab-

with 882 = L, + L, where diag(eq, €2, €3, €4) an element of the complexified
Cartan subalgebra of SU(4).

We can now address the choices of the orientation we discussed earlier. They
amount to the ordering of the y;’s in the measure Dy. Once this order is
fixed the orientation is chosen globally. In writing (10) we chose the ordering
Dy12D x13D 23D 34D y42D y41.

4.2.2. Matter bundle. In addition to the fermionic symmetry § the system
(B,BT,...) has the so-called ghost number U(1) symmetry, under which the
bosonic variables X,,, I, IT, h;, h, have degree zero, the boson o has degree +2,
the boson & has degree —2, the fermions W,,, ¥, ¥ have degree + 1, the fermions
Xi» X»n have degree —1. The total charge of the measure

{ D[bosons] D [fermions] }
Vol(U(K))

also known as the ghost number anomaly or the virtual dimension of the moduli

space is equal to 2k.
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In the absence of Q2-deformation the integral (18) vanishes unless we insert
some observable of positive ghost number. One possibility, as in [71] is to use the
equivariant symplectic form

4
w=TrY W Vo + ¥y’ + Trop

a=1

which obeys dzw = 0, so that (18) becomes

’

¢ DIbosons]D[fermions] | . _s y_
Z; = { }e
Vol(U(K))
Xk
where W; = W + --- is a deformed version of W¥. We don’t need the precise
expression.

Asin [58] it is more advantageous to insert more geometric observables. Recall
that the space K is the vector bundle over the moduli space My, of solutions to (12)
and (13) modulo U(K). The natural observable is the equivariant Euler class of
K, and more generally its Chern polynomial

k
c(m:K) =" cx—i(Kym'. (19)
i=0

By analogy with the four dimensional instanton calculus [57] we call K the
matter bundle. The operator (19) can be represented using an auxiliary system
of bosons A and fermions Y, valued in K, and their conjugates A T, YT, with the
8 symmetry acting as

~ t

Y =H, §H=(0+mY, §Y'=H" 6H =-"T0+m).
We modify the gauge fermion to
v — W+ TrYTH, (20)

The Q2-deformation violates the ghost number symmetry, in that the parameters
€4 should be assigned the charge +2 in order for the §, operator to have the same
charge +1 as the operator §. So the Q-deformed theory has nontrivial partition
function both with and without the modification (20). We recover the theory
without matter deformation by taking the limit m — oo, at the same time tuning
the fugacity q — 0 so that mq = A stays finite. This is analogous to the flow from
the N = 2* theory in four dimensions to the pure N = 2 theory.
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The mass parameter m is similar to the equivariant parameters ¢4, in that it
corresponds to a U(1) symmetry of the vector bundle K. If the parameter m is a
integral linear combination

4
m— E Ng€q, MNg =0,
a=1

then the bundle has an equivariant section

§ = li[ B}e1,
a=1
which can be used to modify the gauge fermion further to
¥ — W4+ Tr Y (H —3), (21)
which by scaling § can be made the integral localize onto the locus
5=0, (22)
which is the usual representative of the Euler class of K.

4.2.3. Open string theory. We expect the fields 7, I, T, YT result in the quan-
tization of open strings connecting D0-branes and D8 and anti-D8 branes, re-
spectively [62]. The X,, etc. are the usual 0 — O strings.

The deformation (21) and the subsequent localization to (22) surely reflects
an interesting spacetime event. For example, when m = ¢, fora = 1,2,3, or
4 our model, we believe, describes the effects of the tachyon condensation in the
D8-D38 system, resulting in their annihilation leaving behind a single D6 brane
discussion of the t'écl'i')fon condensation in the context of string field theory and
boundary string field theory see [66, 67, 8, 27, 28, 2, 74].

4.2.4. Quantum mechanics. Finally, the measure (10) comes from the K-
theoretic, or loop space analogue of (18). It is the localization computation of
the path integral representing the Witten index:

Dg

— 8 T (~)F Uge B
Vol U(K) s (ZD7Uge

(23)
where U = diag(q1, g2, ¢3,q4) x p imposes the SU(4) x U(1) twisted bound-
ary conditions in the supersymmetric quantum mechanics of our fellow friends

2 i ) = Trggs ()P U —



520 N. Nekrasov

B,BY,...,Y, TT. The second expression in (23) corresponds to imposing the
U(K) Gauss law by averaging over the gauge group.

Our theory computes the equivariant index of Dirac operator coupled to the
alternating sum of vector bundles:

i

2wt = [ AK] g, ~ [ MG Dl en(AK).

[Mk]virt

where p is the additional equivariant weight, and A stands for the virtual A-roof
genus:

. . 1
A Tdef_ Tobs — Xi ( Vi ) )
(Tx x) U 2 sinh(x; /2) U 2sinh(y;/2)
with x;’s being the Chern roots of the deformations, the y;’s the Chern roots of
the obstructions.
Our ultimate goal is the generating function

o0
2" (qas i) = ) g
k=0

By playing with the coupling constants (using the §.-invariance of the measure)
one arrives at the contour integral expression which leads to (10). This is analo-
gous to the manipulations in [47, 48, 57].

4.3. Enter solid partitions. The residues in the contour integral are the fixed
points of the U(1)3 action on Hilb! (C*), i.e. the zeroes of §;. We claim these are
the solid partitions p of size |p| = k.
The solid partition p can be described in several ways: as a monomial ideal
Jo C Clz1, 22, 23, z4] in the ring of polynomials in four variables such that the
quotient
K = C[Zl, Z2,23, Z4]/jp

has finite dimension. Recall that the vector subspace J C C[z1, z2, 23, z4] is called
an ideal if for any v € J and f € C|z1, 22,23, 2z4], fv € J. The polynomials
g1,...,8gr are called the generators of an ideal J if for any v € J there exist
polynomials f, ..., f;, such that

v= fig1+ fag2+ -+ frgr.

Finally, the ideal J, is called monomial if it has a basis of monomial generators.
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The four dimensional torus T4 = (C*)* acts on C[zy, 22, 23, Z4], Jp, and on K:

f— f1=(q1,92,93.94) - .  [fUz1,22,23,24) = f(q121,9222, 4323, qaZ4).

So the ideal is (C*)*-invariant if and only if it is monomial.

Actually, in our story we don’t have the full four dimensional torus (C*)* at
our disposal, only the maximal torus of SU(4), i.e. U(1)3. But we can easily prove,
as in [58], that (By, B2, B3, B4, I) obeying (12), (13) and

eaBya+[0,Bs] =0, a=1,...,40] =0, 24)

with generic ¢,’s obeying ), ¢, = 0 actually obeys (24) with arbitrary quadruple
(¢a)4_,,i.e. the generator of the four dimensional torus (C*)*. To avoid confusion,
the compensating infinitesimal transformation o in (24) depends on ¢,’s. The idea
in [58] is to note that the matrix N = BB, B3B,; commutes with the U(1)3-
action, is nilpotent, so by Jacobson-Morozov theorem includes in the s/,-triple,
also commuting with the U(1)? -action. The Cartan generator of this s/, furnishes
the fourth torus generator.

One can show that the 79 space is a representation of this torus (C*)*. The
obstruction 7°" is not though.

5. Instanton partition function: the conjecture

Our conjecture states

o0
s s 1 ins
(G142, 43, qar s i @) = E[F™] = exp ) 25"t 45, 45, 45 1*. 4°),
k=1
(25)

where
[9192][9193][9243][1]

[91][g21lg3]lg4]ll/Lal[ /it~ 1]

and we used the (unconventional) notation:

F g1, 2. 43, qan 11, q) = (26)

[X]= X% - X3

We have explicitly checked this conjecture up to six instantons (i.e. modulo q7),
so as to not fall on the fate of [44]. Note that the six-instanton brut-force fit
of the signs (the choice of the local orientation of the obstruction space) would
require 2'4% ~ 102 attempts, which would probably take longer than the age
of the Universe (~ 4 - 10'7 sec) on a regular computer. Our success is a strong
indication the conjecture is correct.

Equations (25) and (26) have several interesting specifications.
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5.1. Three dimensional DT theory. Let u = ¢4, fora = 1,2,3, or 4. In this
case the four dimensional partitions are confined to a three-dimensional subspace
ig = 0,1. Our main formula (26) in this case specifies to (we took a = 4 for
definiteness)

[9192][9193][9293]
[91]1g2][g3][/q49)[/q497]

which, with the addition of the so-called perturbative contribution to the free
energy:

T (91,92, 93, 4. q) =

Vs + /1/44 27
[91][q2][g3]

can be cast in the surprisingly S(5)-symmetric form

?gert(éh,éh,%) =

Mo

[0]]

b
Il

‘,}-13 = ‘,EF];CIT + Sjgnst —

(28)

T
Q
Ny

—

where Oy = qo, @ = 1,2,3, 04 = /429, 05 = /qaq",

5
HQA=1
A=1

and the diagonal matrix U = diag(Q4) € SU(5) (in case when |¢,| = |p| = 1) is
a twist natural for the supersymmetric partition function of M -theory [55, 54],

Z = Try,,, —DFU.

The conjecture of [55, 54]
21
Z=exp) ~Fa(g;.q") (29)
n=1

was recently proven in [63]. See also [60] for the extension of the theory beyond
the points, to account for curves (membranes).

5.2. Weaker (cohomological) conjectures. In the limit » — 0, with g, = ebea

u = eb™ | with q,m and g, kept finite, our conjecture becomes the statement

about the cohomological theory, e.g. a partition function of the 8-dimensional
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super-Yang—Mills theory in the 2-background:

n

m(e1 + &2)(e1 + €3)(e2 + €3) Z q
£162€364 n(1—qg")? (30)

m(eg+ep)(e] +e3)(ep+€3)
= M;s(q) £1€26384

lenst X

In the global situation, where one studies the analogous moduli space of sheaves
on a Calabi—Yau four-fold X, ¢1(Tx) = 0, as in [10, 12, 13, 14], the exponent
in (30) becomes an integral of the charactertic class:

/ e3(Tr)er (£).

X

where £ is a line bundle, representing the Chan—Paton gauge bundle on the
D8-brane (so that 1 ~ e€1(%)),

As this paper was being prepared for submission we learned that (30) was
independently checked up to the q® order (five instantons) in [15].

5.2.1. Singularities and speculations. As in [57], the limit ¢, — 1 is a ther-
modynamic limit, in which the partition function (25) behaves as the partition
function of a non-ideal gas, confined to the volume ~ 1/log(g,) — oo. This is
easy to understand: our instantons are no longer confined to the fixed point 0 € C#,
instead they are free to move along the Cl-plane. However, our conjecture implies
that even with the g, finite the partition function may develop the thermodynamic
behavior, namely, when

q—> uts, (31)

6. Conclusions and speculations

This non-perturbative growth of the additional dimension of our problem (with the
tuning (31) of the coupling constant) is of course reminiscient of the emergence
of the eleventh dimension in the strong coupling limit of the IIA string [73]. What
makes our story tantalizing is that it is (29) which is related to the partition function
of the eleven dimensional theory, while our (25) contains more degrees of free-
dom. If we naively attribute the number of factors in the denominator in (26) to
the number of complex spatial dimensions, we are forced to conclude that the the-
ory of solid partitions hints at some thirteen-dimensional theory, which we shall
call the M;3-theory. Is there a room for a topological suspension of F-theory?
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One argument in favor of M3 is the existence of D 8-branes, the nine-dimensional
objects. Their geometric realization could involve the compactification of M;3 on
a Taub—Nut space, just like the D6 branes arise from M -theory.

The S(5) symmetry of (28), which is the enhancement of the S(3) x S(2) sym-
metry (the permutations of ¢,’s and the nonperturbative symmetry q — q~!) is
the Weyl group of SU(5), the supersymmetry preserving subgroup of the spa-
tial rotations in the eleven dimensional Poincare group. The master partition
function (26) has only the S(4) x S(2) symmetry (the permutations of ¢, and
the non-perturbative symmetry q — q~'). This is the Weyl group of the group
SU(4) x SU(2), which is apparently the supersymmetry preserving global sym-
metry of the mysterious M;3-theory.

The cohomological limit (30) of our formula suggests an extension of topologi-
cal strings. Recall that one of the curious coincidences around the M3 (q) function
(first observed by R. Dijkgraaf) is that it reproduces the all-genus degree zero
Gromov-Witten invariants of a Calabi—Yau threefold. In the equivariant form, the
all-genus A model partition function of C3 is equal to:

[e.e]
to 282 (e1+eo)(e1 +e3)(en+€3)
Z"P(e1, €2, €3, h) = exp Z 7 Fe(e1, €2, 63) = M3(q) €12€3 ,
g=0
where q = —e'”, # is the closed string coupling constant, the symmetry # — —#

is the consequence of the orientability of the worldsheets in the A model, and

(cf. [9D)

Teler,62,83) = /c(sl;]Hg)c(82;]Hg)c(e3;Hg)

Mg(C3)
_ (61 + &2)(e1 + €3)(e2 + &3) B2gB2g—2
£182€3 2g(22)!(2g —2)!
using
&
1
/-
E1€283
3

and the theorem proven in [24]. The correspondence between the perturbative
closed topological string and the Donaldson-Thomas theory (in which the count
of plane partitions arises naturally) led to the GW/DT correspondence [32, 45, 46].
It seems unlikely that our cohomological theory (30) could be explained by some
kind of GW/DT correspondence for the Calabi—Yau fourfolds [37]. Instead, an
extension of the [60] theory seems more adequate.
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We should also point out a possible connection to the “ordinary” three dimen-
sional gravity. As we explain in the appendix, the solid partitions can be visualized
as tesselations of the three dimensional Euclidean space, by squashed cubes. In
this way we get an ensemble of random three dimensional geometries, analogous,
in a way, to the ensembles of two dimensional random geometries described by
the matrix models of two dimensional gravity [30, 20, 11, 17]. It would be nice
to connect our tesselation model to the model of [7].

Our final speculation concerns the algebraic aspects of the moduli spaces My
and their upgraded versions corresponding to the toric sheaves on toric Calabi—
Yau fourfolds with nontrivial chg, k = 2, 3, 4 (our fat points only have chy = k).
We expect the equivariant K-theory of these spaces act on the cohomological
Hall algebras of threefolds, constructed in [38, 39, 40, 41], Nakajima algebras
[50, 51, 52] and the quiver W -algebras [35, 36] corresponding to surfaces, and
quantum toroidal algebras [21]. We call the conjectural superseding algebraic
structure the Mama-algebra, although we suspect it is not an algebra in the
ordinary sense.

Appendices

A. (Hyper)cubes and their projections

In this appendix we recall some geometry used in visualizing the plane and solid
partitions.

A.1. Three dimensional cube and its projection. In drawing the three dimen-
sional partitions on the two dimensional sheet of paper we employ a projection,
which makes visible only half of the faces of the cubes, see Figure 4.

Figure 4
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Moreover, out of six faces of a cube only three can be seen on the projection.
If we choose the (1, 1, 1) axis as the line of the perspective, then the three faces of
a cube land onto three rombi, see Figure 5.

(1,1,1)

Figure 5

Each rombus is characterized by the angles « and § between the adjacent
edges:

cos(o) = —%, B =——q.

(See Figure 6

Figure 6

Using the (1, 1, 1) projection we map the plane partitions to the dimer con-
figurations on the hexagonal lattice on a plane. See [64, 34] for the recent de-
velopments in the studies of the thermodynamics of these configurations, and
[22, 23, 33] for the early exact solutions.

A.1.1. Four dimensional hypercube and its projection. We use the notation
4 =1{1,2,3,4}asin [58]. Let

e = (1,0,0,0), € = (0, 1,0,0), €3 = (0,0, 1,0), €4 = (0, 0, 0, 1)

be the orthogonal basis in R*. Lete = %(1, 1, 1, 1). Consider the unit hypercube
centered at n € Z*:

Hy={r|reR*0<(r—n,e)<1,icd).
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The boundary of the hypercube is the union of eight cubes:
4
oH. = J vy,
i=1
with
1
i = {r‘r eR*0<(r—-n,e) <1, jed (r—ne)= 5(1 + 1)}.

Consider the projection p: R* — R? along the e-direction:

p() =r—(r,ee.

Let &;, i € 4 be the unit vectors in the directions of p(e;):

2
& = 7§ p(e:). (32)
We can choose the orthonormal basis 711, 12, 73 in R3, such that
&4 =13,
24/2 1
& = —n1 — —1N3,
1 3 m 3773
V2 N V2 1
&) = ——— —1ny — =13,
2 3 m \/5772 3713
V2 V2 1
g3 = —— N1 — —1p — —1N3.
3 3 m ﬁﬁz 3773

Then £F; = p(Cy5) is a three-dimensional polytope:

1
TE = {x‘xe]?é,x: Yoe 0=yl edn=(% 1)}.
je4
(See Figure 7.)
On the projection to R we see only ZI ;» the four squashed hypercubes. The
corresponding angle « is easy to compute from

|
cos(e) = (ei.6)) = —5. i #
As the dimer configurations can be drawn on the two dimensional sheet of paper

and then printed on a printer, our squashed cubes are best printed on the 3D
printer.? We welcome enthusiasts to generate solid partitions and print them.

2 An excellent suggestion by A. Abanov
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Figure 7

B. Curiosities

The angle @ = cos™! ( — ), which defines the “squashed cube” has appeared
in the context of supersymmetric field theories in four dimensions in [25, 26].
The 4 + 2 split of the symmetry of the higher (124) dimensional (gauge) field
theory has been discussed in [18]. Finally, many people have asked me whether
the conjecture (26) can be used to correct [44]. To this end one would need to come
up with the limit of the parameters ¢,’s etc such that the measure (10) becomes
uniform. The numerical studies [4] suggest this is unlikely. Our conclusion is the
uniform measure on solid partitions is not natural. Deep down they look three
dimensional.

Acknowledgments. The main formula (25), (26) has been presented at several
venues in 2016-2017: SCGP (Stony Brook, Oct 2016, Jan 2017),3 UC Berkeley
(Nov 2016), Landau Institute (Chernogolovka, Dec 2016), HMI Trinity College
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HShE (Moscow, May 2017), LMS regional meeting in Loughborough University
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the inspiration and useful questions. I also thank M. Bershtein, S. Donaldson,
I. Frenkel, H. Nakajima, A. Okounkov, M. Kontsevich and Y. Soibelman for
interesting discussions. Part of the work was done during my 2016, 2017 visits
to the IHES (Bures-sur-Yvette, France). I am grateful to this wonderful institution
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