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A unified enumeration
of 1-dimension garden algebras and valise Adinkras

Yan X Zhang

Abstract. In the study of supersymmetry in one dimension, various works enumerate
sets of generators of garden algebras GR(d, N) (and equivalently, valise Adinkras) for
special cases N = d = 4and N = d = 8, using group-theoretic methods and computer
computation. We complement this work by enumerating the objects for arbitrary N and d
via a formula in a streamlined manner.
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1. Introduction

In a series of works by Gates etal. ([7], [1], [2], etc.), the GR(d, N) “garden alge-
bras” and their visual representations “valise Adinkras” have been used to study
supersymmetry in 1 (0 spacial and 1 time) dimension. Some of the recent re-
search was on the enumeration and classification of these objects. Chapell, Gates,
and Hiibsch [3] and Randall [8] used computers to enumerate these matrices for
N =d = 4and N = d = 8. More recently, Gates, Hiibsch, Iga, and Mendez-
Diez [6] proved these results algebraically, without computer aid, by coset enu-
meration. The proofs used properties of the Klein-4 group and did not generalize
directly to higher parameters. The main numerical results of [6] can be seen in
Table 1.

Table 1. Previous results in [6]. The first row refers to sets of “permutation generators,”
which are equivalence classes of sets of generators of garden algebras under “forgetting”
of signs. The second row refers to sets of generators proper for the garden algebras.

| N=d=4| N=d=38
ULl ILN T} 6 151200
{Li,....,Ly} 1536 79272345600
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In this note, we give a unified enumeration of these objects for arbitrary N
and d and recover the above results as special cases. The main idea is simply
connecting some mathematical groundwork we laid in our previous work [9] and
Gaborit’s exploration of enumeration of codes [5]. We assert that while our work
gives a more general enumeration, it does not subsume these other works, which
offer particular insights for the special cases that our work do not provide. Rather,
we think of our work as a general complement to the existing work. We give some
preliminaries in Section 2 and our main proof in Section 3.

2. Preliminaries of garden algebras and Adinkras

We review the essentials of garden algebras and Adinkras. Adinkras are basically
visual encodings of garden algebras, with some additional data. The interested
reader should refer to [4] for the introduction of Adinkras into the physics liter-
ature, or our [9] for a more mathematical treatment of Adinkras. In short, these
objects encode a special class of representations of the supersymmetry algebra
that have many nice properties. As this is a paper mainly about enumeration, we
do not focus on the physics background.

A permutation matrix is a square matrix with exactly one 1 in each row and
each column, with all other entries equalling 0. A signed permutation matrix is a
square matrix with exactly one nonzero element, which must be 1 or —1, in each
row and each column. We define the GR(d, N) garden algebras to be algebras
generated by N > 0 d x d signed permutation matrices {L1,..., Ly} which
satisfy the relations:

LiLT + L;L] =25;1,
LTLj + LT L; =25;1.

Here, I denotes the identity matrix and 7 denotes transpose. Call such a
{L1,...,Ly} a set of generators for GR(d, N). We can similarly define a list
of generators (L1, ..., Ly) if we choose to remember the order of the elements,
with the obvious N! to 1 correspondence between lists and sets. Given a signed
permutation matrix M, let |[M| be the permutation matrix where every entry is
1 if the corresponding entry of M is 1 or —1, and 0 otherwise. We call the list
(|L1l,...,|Ln|) arising from a list of generators (L1,..., Ly) an unsigned list
of generators of M. Unsigned lists of generators do not necessarily satisfy nice
relations; they come up for the ease of classifying (signed) lists of generators.
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Example 2.1. One possible list of generators for GR(4,4) is (L1, L, L3, Ly)
respectively equalling

0010 0 -1 0 O 0 0 0 1 1 0 0 O
0 0 01 1 0 0 O 0 0 -1 0 01 0 O
1 00O0['|lO O O —-1"|O -1 0 0|0 O -1 ©
0100 0 0 1 O 1 0 0 O 00 0 -1

We can check that the matrices obey the desired relations. The unsigned list of gen-
erators corresponding to this list is (| L[, |L2|, |L3|, |L4|) respectively equalling

0 01 0 0100 0 0 01 1 0 0O
0 0 01 1 0 0O 0010 01 00O
1 00 O0['|0OOOT1|'fO 1 0 O0[|]0O 010
01 0O 0010 1 000 0 0 01

An N-dimensional chromotopology is a finite connected simple graph G such
that:

e G is N-regular (every vertex has exactly n incident edges) and bipartite;

o the edges of G are colored by n colors such that every vertex is incident to
exactly one edge of each color;

e we assume the colors come with an ordering; that is, we can label the colors
with the integers 1 through #;

e for any distinct colors i and j, the edges in G with colors i and j form a
disjoint union of 4-cycles.

A canonical example of a chromotopology is the n-dimensional Hamming
cube, where there are 2" vertices labeled by the length-n bitstrings, and the edges
correspond to pairs of vertices with Hamming distance (defined as the number
of bits that are different between the two strings) equal to 1. For example, in the
4-dimensional Hamming cube, 0010 and 0011 are adjacent vertices.

Adinkras! are defined to be chromotopologies with 2 additional pieces of data.

e A ranking of a chromotopology G is a map & from the vertices of G to Z
that satisfies certain restraints. For our note, we limit ourselves to the valise
ranking, which simply means having i(v) € {0, 1} for every vertex v and
having every edge (x, y) in G satisfy {h(x), h(y)} = {0, 1}. In other words, a
valise ranking is equivalent to a bipartition of G. We visualize this by putting

1 All Adinkras in our paper refer to 1-dimensional Adinkras working in 1-d supersymmetry,
so we suppress the dimensional adjective.
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the vertices into two rows, each row corresponding to one of the parts of the
bipartition. Thus, a valise ranked chromotopology (or valise Adinkra) means
a chromotopology (or Adinkra) with a valise ranking.

o A dashing of achromotopology G is a map d from the edges of G to Z, such
that the sum of d(e) as e runs over each 2-colored 4-cycle (that is, a 4-cycle
of edges that use a total of 2 colors) is 1 € Z,; alternatively, every 2-colored
4-cycle contains an odd number of 1’s. We typically draw a dash for each
edge marked 1 and a solid edge for each edge marked 0.

Remark 2.2. When we restrict to valise rankings, our problem is fundamentally
equivalent to some sort of classification of lists of generators of Clifford alge-
bras/groups. Elements of GR(d, N) “basically” satisfy the constraints of being
generators for Clifford algebras. Generalizations of the relations to the more com-
plicated supersymmetry algebra correspond to Adinkras with more complex rank-
ing functions than the valise ranking.

A

Figure 1. Left to right: a chromotopology, a valise ranked chromotopology, an (valise)
Adinkra, obtained in sequence by adding more and more structure.

For an example of these objects, see Figure 1. We call an Adinkra (or a ranked
chromotopology) row-ordered if it is equipped with an ordering of the vertices in
each row of the ranking. Lists of generators of garden algebras and row-ordered
Adinkras are related precisely by the following fact:

Lemma 2.3. There is a bijection between length-N lists of generators (L1, ...,
Ly) of GR(d, N) and N -dimensional row-ordered valise Adinkras with 2d ver-
tices.

Proof. These ideas are apparent in the literature as “folklore,” so we mostly sketch
this proof. Starting with a list of generators, we can obtain a row-ordered Adinkra
via the following procedure: for each £1 in row j and column k& of matrix L;,
draw an edge of color i (here, we use the orderings of the colors) from the j-th
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node in the top row to the k-th node in the bottom row. Dash the edge if the entry
is —1 and draw a solid edge if the entry is 1. We can now check that (and this is
the only real content of this proof) the relations of the GR(d, N) algebra are in
fact equivalent to the 2-colored 4-cycle condition of Adinkras. Indeed, because L;
and L; are basically permutation matrices, L; LJ.T corresponds to the permutation
where we travel by color i from the top row to the bottom row and then by color
j from the bottom row to the top row, where the second term needs a transpose
because we are going in the reverse direction. Wheni # j, the L; LjT +L; Ll.T =0
means that traveling by i and then j should get to the same place as traveling by
j and then i, but with an opposite-parity number of dashed edges (encoded by
the negative signs in the matrices). This exactly means that when restricting to
a pair of colors, the graph must become a disjoint union of 2-colored 4-cycles,
where each such 4-cycle has an odd number of dashes. Thus, the garden algebra
conditions match up with the Adinkra dashing conditions. The converse is obvious
from the construction. We omit the remaining technical details. O

Every Adinkra has an underlying ranked chromotopology (just forget about
the dashings). However, not all ranked chromotopologies can be made into an
Adinkra. A chromotopology is called adinkraizable if it is the underlying chro-
motopology of some Adinkra. We define an ARC to be an adinkraizable ranked
chromotopology, which is exactly the data of an Adinkra minus the dashings. We
say that an ARC (or Adinkra) is color-unordered if it is not equipped with an or-
dering of the n colors; one may think of a color-unordered ARC as an equivalence
class of ARC’s where two ARC’s are considered equivalent if we can permute
colors to get from one to the other. An alternative is to think of a color-unordered
ARC as an ARC that only knows about the partition of its edges into the n colors.
We can tweak Lemma 2.3 to suit alternate constraints.

e Forgetting about signs of the matrices in the construction of Lemma 2.3 is the
same as forgetting about the dashings of the Adinkras, which gives ARC’s
instead of Adinkras.

o Counting equivalence classes of lists of generators by allowing the S; x Sy
action of separately permuting the rows and columns of the matrices is the
same as forgetting about the orderings of the vertices in each row of the row-
ordered valise Adinkra, which gives (non-row-ordered!) valise Adinkras.

e Counting sets of generators instead of lists of generators is the same as
forgetting about the order of the generators, which in turn is the same as
forgetting about the ordering of the colors of an Adinkra/ARC (in other
words, counting color-unordered Adinkras/ARC’s).
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Recall from Section 1 that the authors of [3], [6], and [8] are interested in
signed (resp. unsigned) sets of generators of GR(d, N). However, they also do not
care about row and column permutations of the matrices, as those do not really
change the underlying physics. By the discussion above, this amounts to counting
N -dimensional color-unordered valise Adinkras (resp. ARC’s) with 2d vertices;
that will be our goal in Section 3.

We end with few important ideas from [9]. The intuition behind these ideas
were already implicit from early works in the field.

e Adinkraizable chromotopologies are in bijection with (N, k)- doubly-even
codes; that is, for every N-dimensional chromotopology G, there is exactly
one k-dimensional Z,-subspace of Z2' such that every vector has the number
of 1’s divisible by 4. We call k the code-dimension of the corresponding
GR(d, N) algebra / chromotopology.

o If C is the (N, k) doubly-even code associated with an Adinkra, the vertices
of the chromotopology are in bijection with cosets of ZY of form ¢ + C,
where 2 cosets have an edge connecting them if and only if there exist coset
representatives ¢; and c¢; respectively (i.e. the cosets can be rewritten ¢y + C
and ¢, + C) with ¢; and ¢, having Hamming distance 1. When C is trivial,
this definition simply recovers the Haming cube. Note that this bijection
implies that the chromotopology must have 2d = 2V~% vertices, a power
of 2; this is not an obvious fact from the definitions of chromotopologies.

g

Figure 2. Left: the unique chromotopology (with Hamming-cube induced labels to aid
the reader; we stress that the labels are not part of the data considered in this paper) for
N =2andd = 2. Right: the 2 different row-ordered valise ARC’s we can obtain with this
chromotopology. They belong to the same equivalence class under color permutation, so
there is only one color-unordered row-ordered valise ARC.

Example 2.4. Consider N = 2 and d = 2, which corresponds to k = 0. Here,
the code is trivial as it is O-dimensional, so the underlying chromotopology is the
Hamming 2-cube. We observe that there are 2 different row-ordered valise ARC’s,
as seen in Figure 2. After picking an order of colors (say, L; corresponding to
green and L, corresponding to red), these two row-ordered ARC’s correspond to
the two different possible lists of generators (|Ly|,|L2|), whichare ([§ 9].[94])
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and ([93].[49])- As an example, the left row-ordered valise ARC has color
1 (green) matching the first (resp. second) vertex of the top row with the first
(resp. second) vertex of the bottom row, so |L;| is the identity matrix for that
chromotopology. For each row-ordered valise ARC, there are 8 possible dashings
to make them into row-ordered valise Adinkras, corresponding to the fact that
there 8 ways to obtain a list of generators (L;, L,) from an unsigned list of
generators (|L1],|L2]). See Figure 3. Note that the two ARC’s are equivalent
under exchanging the two colors. This corresponds to the fact that the two
corresponding unsigned lists of generators (||, |L>|) are permutations of each
other, so there is exactly 1 unsigned set of generators {|L;|, |L>|} and 8 (signed)
sets of generators {L1, L,}.

\O OAO OAO

Figure 3. The 8 row-ordered valise Adinkras for one of the row-ordered valise ARC’s for
N = d = 2, obtained by adding a dashing.

Example 2.5. Consider N = 4 and d = 4, which corresponds to k = 1.
See Figure 4 for one such valise Adinkra, with the 1-dimensional code C =
{0000, 1111}. One possible choice of coset representatives under this code would
be the 16/2 = 8 bitstrings where the first coordinate is 0, as reflected in the
Figure. As every vertex has 4 possible bits to change, each vertex has degree
4, corresponding to one of 4 colors. If we let the black, red, green, and blue colors
correspond to L1, Ly, L3, L4 respectively, the corresponding list of generators of
GR(4, 4) is precisely what we encountered in Example 2.1. As an example, if we
follow the black edge corresponding to L from the fourth vertex on top labeled
0000, we obtain 1000. This is not one of our coset representatives, but because
0111 = 1000+ 1111, itis in the coset 0111 + C, represented by our second vertex
on the bottom. Thus, there is a 1 in the (4, 2) spot of the matrix L;.

Example 2.6. Consider N = 8 and d = 8, which corresponds to k = 4. One such
code is the extended Hamming code Eg, which is the set of 16 vectors generated
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Figure 4. A row-ordered valise Adinkra corresponding to N = d = 4, with vertex labels
to aid the reader. The corresponding list of generators appears in Example 2.1.

by {11110000, 00111100, 00001111, 01010101}. Then the 2d = 16 vertices of the
chromotopology can be indexed by {v + Eg}. As there are 2® bitstrings in Z§
and 2* bitstrings in Eg, we can select 287* = 16 coset representatives. Then we
have edges between e.g. 00000000 + Eg and 11110001 + Eg because 00000000
is a representative of the first coset and 11110001 4+ 11110000 = 00000001 is a
representative of the second coset, and those have Hamming distance 1 between
them. If we were to draw such an adinkra, each vertex would now have 8 edges
incident to it of different colors, as N = 8.

3. Main theorem and proof

We now present our main results, where we count equivalence classes (under row
and column permutation) of sets (resp. unsigned sets) of generators of GR(d, N),
which is equivalent to counting N -dimensional color-unordered valise Adinkras
(resp. ARC’s) with 24 vertices. We use the ideas from [9] above along with some
elementary combinatorics. Our goal is to reproduce the efforts of [6] and [8] using
the mathematical foundations we built from [9] to create a streamlined general
approach that avoids case-analysis.

First, define C(N, k) to be the number of doubly-even (N, k) codes. We stress
that the enumeration of C(N, k) is known. Thus, one merit of our general approach
is encapsulating a difficult, but solved, part of the problem so we do not have to
end up repeating some of the work for specific cases. One can see [5], which gives
different formulae for different cases (we omit all but two cases for relevance to
our goals of confirming earlier computations):

Theorem 3.1 (Theorem 7, [5]). Forall N, C(N,0) = 1. For1 <k <n/2 and
N >4,
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e if N =4 (mod 8), then

k—2 i i _ _
2N 2i—2 _2N/2 i-1_ 9 1 2N 2k 2N/2 k )
CW.k) = [1_[ 2i+1 1 sz—l * 2k —1 ];

i=0

e if N =0 (mod 8), then

k=2 yN—2i—2 N/2—i—1 N—2k N/2—k
2 +2 -2 1 2 + 2 -2
C(N’k): [l_[ 2i+1 _ 1 ]'[zk—1+ 2k_1 ]’
i=0

e [fN =1,7 (mod38),....

Theorem 3.2. For any d and N, there are

(d)!(d — DIC(N. N — 1 —log, d)
NI

equivalence classes of sets {|L1|, ..., |Ln|} under row and column permutation.

Proof. By our work in Section 2 stemming from Lemma 2.3, this is equivalent to
counting color-unordered valise ARC’s with N colors and 2d vertices. This means
the ARC is (N, k) with 2d = 2V=% sok = N — 1 —log,(d) is the dimension of
the code. There are C(N, k) doubly-even codes; fix such a double-even code C,
which gives a chromotopology. Our strategy is to first count row-ordered valise
ARC’s with this chromotopology under a particular labeling scheme, then divide
out by the symmetries.

Now, we can pick a single one of the 2d vertices to be labeled 00---00 + C.
Each permutation of the N colors corresponds to an assignment of one of the N
indices to each color. This uniquely determines the label of all the other vertices,
defining e.g. 10---00 + C to be the vertex connected to 00---00 + C via the first
color, 01 ---00 + C to be the vertex connected via the second, and so forth.

We now have to pick the vertices to put on the top and the bottom of the valise.
There are 2 choices of whether 00---00 + C would be on the top or the bottom.
Afterwards, there are d! ways of arranging the vertices on the top and d! ways
of arranging the vertices on the bottom, which we must account for as we are
counting row-ordered ARC'’s.

However, the final ARC does not know about these labels. As there are
2d labels, there’s a 2d-fold symmetry on which vertex we would have labeled
00---00 4+ C, so we have to divide the answer by 2d. As there are N! ways to
permute the colors, which we do not care about, we should also divide by N!. This
gives a total of
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C(N,k)(Q)d)(d)  (d)'(d —D!C(N, k)
2dN! B N!
configurations, as desired. O

‘We now wish to count sets of actual generators {L1, ..., Ly}, notjustunsigned
sets of generators. This corresponds to allowing negative signs for the matrices
and allowing dashings for the ARC’s (i.e. turning them into Adinkras). Luckily,
this is easy thanks to our previous result from another paper, which we proved
in [9] with some elementary algebraic topology:

Theorem 3.3 (Theorem 5.8, [9]). The number of dashings of an (N, k)-chromo-
topology A is 22" +k=1,

The main insight this result gives is that after a k is selected, the number of
dashings for all chromotopologies with the same k are the same. Thus, we obtain:

Corollary 3.4. For any d and N, there are

(d)!(d — 1)!C(N, N — 1 —log, d)22¢+N—2-log2(d)
N!

equivalence classes of sets {L, ..., Ly} under row and column permutation.

Proof. This time, we are interested in N-dimensional color-unordered valise
Adinkras (instead of ARC’s) with 2d vertices. As Adinkras are just ARC’s with
a dashing, we simply multiply with the results of Theorems 3.3 and 3.2. |

We now check that we indeed recover the counts of our examples and of
previous research.

Example 3.5. For N = d = 2, we have k = 0. Theorem 3.1 (or direct observa-
tion) produces C(2,0) = 1. Thus, we get (2!)(1!)/(2!) = 1 setof {|L1|, |L>]|}, as
we saw previously in Example 2.4. Multiplying by 24+27271 = 8, we get 8 sets
of {L1, L} of dashings via Corollary 3.4 (or directly, via Theorem 3.3), which
matches Figure 3.

Example 3.6. For N = d = 4, we have k = 1. Theorem 3.1 produces
C4. 1) =(1+ %) = 1 doubly-even code. Thus, we get (4!)(3!)/4! = 6
equivalence classes of sets of {|L1],...,|L4|}. Multiplying by 287472-2 = 28,
we obtain 1536 equivalence classes of sets of {L1, ..., L4} via Corollary 3.4.
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Example 3.7. For N = d = 8, we have k = 4. Theorem 3.1 produces

28—2 + 24—1 -2 28—4 + 24—2 -2
e = () (=)
2876 4243 2\ /1 141-2
()G )
23 —1 8 15
= 30.
Thus, we get
(81)(71)(30)/8! = 151200
equivalence classes of sets of {|L1],...,|Lg|}. Multiplying by 216+8=2=3 — 219

we obtain 79272345600 equivalence classes of sets of {L;, ..., Lg}.

The numbers in Examples 3.6 and 3.7 indeed match previous work in [6], as
seen in Table 1.
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