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The structure of spatial slices

of 3-dimensional causal triangulations

Bergfinnur Durhuus and Thordur Jonsson

Abstract. We consider causal 3-dimensional triangulations with the topology of S2 � Œ0; 1�

orD2 � Œ0; 1� where S2 andD2 are the 2-dimensional sphere and disc, respectively. These

triangulations consist of slices and we show that these slices can be mapped bijectively onto

a set of certain coloured 2-dimensional cell complexes satisfying simple conditions. The

cell complexes arise as the cross section of the individual slices.
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1. Introduction

We investigate in this paper a class of problems that arise in the dynamical triangu-

lation approach to 3-dimensional gravity restricted to the case of so-called causal

triangulations. For an introduction to the dynamical triangulation approach to

discrete quantum gravity we refer to [2] and an account of causal dynamical trian-

gulations can be found in [3]. For the case of 3-dimensional gravity in particular,

one may consult [1] and [4].
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In [9] we gave a proof that the numberN.V / of causal 3-dimensional triangula-

tions homeomorphic to a 3-sphere and consisting of V tetrahedra is exponentially

bounded,

N.V / � C V ;

where C is some positive constant. Validity of this bound is crucial in order for

the relevant correlation functions to exist, and thereby defining the discretised

model (see [2, 3]). The first step of the argument leading to this bound was to

decompose the triangulations into slices (which is possible because of the causal

structure defined below) and to show that it is sufficient to establish the bound

for such causal slices. The number of triangulated causal slices was then shown

to be bounded by the number of certain coloured 2-dimensional cell complexes

homeomorphic to the 2-sphere. These cell complexes arise as mid-sections of the

slices. Finally, bounding the number of those 2-dimensional cell complexes can

be done using well-known techniques.

The method of associating a coloured 2-dimensional cell complex with a causal

triangulation has been applied earlier by other workers in the field [4, 5] and also

used in numerical simulations and in combination with matrix model techniques

to extract properties of the model. It has, however, not been established exactly

what class of 2-dimensional complexes can occur as mid-sections of a causal slice.

As noted in [9], see also [4] Appendix B, some non-trivial constraints have to

be imposed on top of its homeomorphism class. It follows that the connection

between the model defined in terms of triangulations and the one realised in terms

of a specific class of coloured 2-dimensional cell complexes is obscure. It might

be the case that the precise class of cell complexes is unimportant in a possible

scaling limit of the model, see [5], but this remains to be investigated in detail.

In this paper we provide a complete characterisation of the coloured 2-dimen-

sional cell complexes that correspond to 3-dimensional causal slices. In fact, we

shall consider not only the standard notion of causal triangulations homeomorphic

to S2�Œ0; 1�, where S2 denotes the 2-sphere, which in this paper will be referred to

as causal sphere-triangulations, but find it useful to generalise the notion of causal

triangulation to manifolds homeomorphic toD2�Œ0; 1�, whereD2 is the 2-dimen-

sional disc, and @D2 � Œ0; 1� may be viewed as the time-like part of the boundary

while the two discsD2 � ¹0º andD2 � ¹1º form the spatial parts of the boundary.

Such triangulations will be called causal disc-triangulations and the correspond-

ing slices will be called causal disc-slices. The coloured cell complexes, defined

in Section 3, are in this case homeomorphic to D2. The main result of this paper,

Theorem 1, which is proved in Section 4, states that there is a bijection between

the causal disc-slices and the coloured cell complexes. In Section 5 we generalise

this result to causal sphere-slices in Theorem 2.
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These results might serve as a starting point for an exact enumeration of

causal slices by applying well-known techniques for planar surfaces or maps to the

coloured cell complexes homeomorphic to the disc. This interesting combinatorial

problem is more complicated than those previously considered because of the

colouring and the constraints identified in this paper. The result might also

be instrumental in finding an appropriate matrix model generating exactly the

desired causal slices or as an aid in designing effective numerical algorithms for

simulations. These issues are, however, beyond the scope of the present paper.

2. Preliminaries and notation

We will use notation consistent with that of [9]. For the reader’s convenience we

briefly recall the main conventions, restricting the discussion to the 3-dimensional

case. The basic building blocks of our triangulations are tetrahedra or 3-simplices

whose vertices have one of two colours: red or blue. Generally we will denote

an unoriented simplex with vertices x1; : : : ; xn by .x1 : : : xn/. If all the vertices

in a simplex have the same colour we say that the simplex is monocoloured. This

means that if x and y are red vertices and e D .xy/ is a 1-simplex then we say

that e is red, and a triangle � D .xyz/ is red if its vertices (or edges) are red, etc.

If a simplex is not monocoloured we say it is two-coloured. It is assumed that all

tetrahedra are two-coloured. Thus the tetrahedra come in three types: type (3,1)

with three red vertices, type (2,2) with two red vertices and type (1,3) with one

red vertex.

We recall that an abstract simplicial complexK is defined by its vertex setK0,

which is assumed to be finite, and a collection of subsets of K0, called simplices,

such that if � is a simplex and � 0 � � , then � 0 is also a simplex (see [11]). If a

simplex � contains p C 1 vertices we call it a p-simplex. If every simplex in K

is contained in some D-simplex we say that D is the dimension of K. Given two

abstract simplicial complexes K and L, a bijective map  WK0 ! L0 is called a

combinatorial isomorphism if it induces a bijection of the simplices in K and L.

A triangulation is a 3-dimensional simplicial complex which can be viewed as

a collection of tetrahedra together with identifications of some pairs of triangles

(2-simplices) in the boundaries of the tetrahedra, respecting the colouring, such

that any triangle is identified with at most one other triangle. When we identify

triangles we also identify all their subsimplices, i.e. their edges (1-simplices)

and vertices. This point of view will be used and explained in more detail in

Section 4 below. Any pair of identified triangles is called an interior triangle of

the triangulation while the other triangles are referred to as boundary triangles. It

should be noted that it is implicit in the notion of a simplicial complex that
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(i) two triangles contained in the same tetrahedron cannot be identified,

(ii) two different triangles in a given tetrahedron cannot be identified with two

triangles contained in another tetrahedron.

It is common to speak about these two conditions as regularity conditions and

about simplicial complexes as regular triangulations as opposed to singular tri-

angulations, when one or both of these conditions are left out. In this paper we

focus on regular triangulations. Note that the definitions imply that two vertices

are connected by at most one edge and 3 vertices are contained in at most one

triangle.

One may think of a triangulation either as a purely combinatoric object or

as a topological space embedded in a Euclidean space. In the former case two

triangulations are identified if there is a bijective correspondence between their

vertices respecting the colouring and the pairwise identifications of triangles. In

the latter case two triangulations are identified if there exists a homeomorphism

between them mapping simplices to simplices and thus inducing a combinatorial

isomorphism. It is a fact, explained in e.g. [9], that the two points of view are

equivalent.

We now introduce the basic objects of study in this paper, the two types of

causal slices that form the building blocks of the general causal triangulations.

Definition 1. A causal sphere-slice K is a triangulation fulfilling the following

conditions:

(i) K is homeomorphic to the cylinder S2 � Œ0; 1�;

(ii) all monocoloured simplices of K belong to the boundary @K, such that the

red ones belong to one boundary component @Kred and the blue ones belong

to the other component @Kblue.

The set of all causal sphere-slices is denoted by CS.

Definition 2. A causal disc-slice is a triangulation K fulfilling the following

conditions:

(i) K is homeomorphic to the 3-dimensional ball B3;

(ii) all monocoloured simplices of K belong to the boundary @K, such that the

red ones form a disc Dred and the blue ones form a disc Dblue, which will be

called the boundary discs of K.

The set of all causal disc-slices is denoted by CD.
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We note that the above definitions imply that all the vertices of a causal slice of

either type lie on the boundary. Two-coloured edges are sometimes referred to as

timelike edges. Two-coloured triangles can be of two types, with two red vertices

and one blue or vice versa, and are called forward directed and backwards directed

triangles, respectively.

Relaxing the condition in Definition 2 thatDred andDblue are (homeomorphic

to) discs to, say, the requirement that they are deformation retracts of discs yields

a larger class of causal triangulations, that will not be discussed in detail in this

paper (see, however, Section 6 for some further remarks). In the course of the

proof of Theorem 2 we shall encounter particular examples of such triangulations

and we use the same notation as for causal slices without further comment.

Although the main focus of this paper is on causal slices we introduce for

the sake of completeness general causal triangulations in the following definition

as a layered union of causal slices. In general these triangulations have interior

vertices.

Definition 3. A causal sphere-triangulation is a triangulation of the form

M D

N[

iD1

K i ;

where each K i is a causal sphere-slice such that K i is disjoint from Kj if i ¤ j

except that @K i
blue D @K iC1

red for i D 1; : : : ; N � 1 as uncoloured 2-dimensional

triangulations. The boundary components of M are then @K1
red and @KN

blue.

A causal disc-triangulation is a triangulation of the form

M D

N[

iD1

K i ;

where eachK i is a causal disc-slice (with boundary discsDi
red andDi

blue) such that

K i is disjoint from Kj if i ¤ j except thatDi
blue D DiC1

red for i D 1; : : : ; N � 1 as

uncoloured 2-dimensional triangulations. The two discsD1
red andDN

blue are called

the red and blue boundary disc of M , respectively.

The following lemma states that, apart from the two boundary discs, the

boundary of a causal disc-triangulation consists of a “timelike cylinder,” that is

a 2-dimensional causal sphere-triangulation, which is defined as in Definitions 1

and 3 with S2 replaced by S1.



370 Bergfinnur Durhuus and Thordur Jonsson

Lemma 1. Let K be a causal disc-slice and denote by C the subcomplex of @K

consisting of two-coloured triangles. Then C is a 2-dimensional causal sphere-

slice with boundary @Dred [ @Dblue, which will be called the side of K.

More generally, ifM is a causal disc-triangulation then the part of the bound-

ary made up of triangles not in the red or blue boundary discs is a 2-dimensional

causal sphere-triangulation.

Proof. It is clearly enough to prove the first statement. Choose an orientation of

the circle @Dred and consider a vertex v1 2 @Dred and its two nearest neighbours v0

and v2 in @Dred with v0 preceding v1 and v2 succeeding v1. The edges .v0v1/ and

.v1v2/ are each contained in exactly two triangles of @K, one of which is red while

the other one contains a blue vertex v0

1, resp. v0

2, both of which are in @Dblue. Note

that, by the Jordan Curve Theorem, @Dred divides @K into two discs. It follows

that if we denote by u1; : : : ; uk the neighbours of v1 in Dred ordered cyclically

around v1 such that u1 D v0 and uk D v2, then all other neighbours of v1 in @K

are blue and constitute a segment .w1
1 ; w

1
2; : : : ; w

1
`1
/ of @Dblue with w1

1 D v0

1 and

w1
`1

D v0

2, see Figure 1. Hence, the triangles

.v0w
1
1v1/; .w

1
1v1w

1
2/; : : : ; .w1

`1�1v1w
1
`1
/; .w1

`1
v1v2/

make up a segment of a 2-dimensional causal slice.

Dblue

w1
1 D v0

1 w1
2 v0

2 D w1
`1

v0 v2

Dred

v1

Figure 1. The sequence of triangles on the side of the causal sliceK connecting the red and

the blue boundary components.
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Repeating this construction with v0; v1; v2 replaced by v1; v2; v3, where v3

is the successor of v2 in @Dred, we obtain a unique continuation of the segment

constructed above by

.w2
1v2w

2
2/; .w2

2v2w
2
3/; : : : ; .w2

`2�1v2w
2
`2
/; .w2

`2
v2v3/;

where w2
1 D w1

`1
and .w2

1 ; : : : ; w
2
`2
/ is a segment of @Dblue.

If the vertices of @Dred are v0; : : : ; vn then after n steps we obtain a segment of a

causal slice with horizontal edges in @Dred[@Dblue and whose first and last triangle

share the vertex v0. Finally this segment can be completed to a 2-dimensional

causal slice C by adjoining the triangles which contain v0 and have one blue

edge (in @Dblue) and two non-coloured edges. By construction C has boundary

@Dred [ @Dblue and evidently constitutes all of @K n int.Dred [Dblue/. �

The next two propositions are elementary and ensure the existence of causal

disc-slices and sphere-slices with prescribed boundary discs, respectively bound-

ary components.

Proposition 1. Given two triangulated discs D1 and D2 there exists a causal

disc-slice K such that Dred D D1 and Dblue D D2.

Proof. We give an inductive argument. Suppose first thatD1 andD2 are triangles

�red and �blue, respectively. In this case, we can choose K to be the prism,

depicted in Figure 2, made up of one .1; 3/ tetrahedron, one .3; 1/ tetrahedron

and one .2; 2/ tetrahedron.

Now assume K exists for some given D1 and D2. If e is an arbitrary edge in

@D1 D @Dred � @K one can glue a tetrahedron of type .3; 1/ toK along the unique

triangle in the side of K which contains e. Thus we obtain a causal disc-slice K 0

whose red boundary disc has an extra triangle compared to that of K but the blue

boundary disc is the same.

Similarly, given two neighbouring edges e D .x1x2/ and e0 D .x2x3/ in @D1,

see Figure 3, one can first identify e and e0 and then glue a sequence of .2; 2/

tetrahedra sharing the identified e and e0 and whose blue edges are

.y1y2/; .y2y3/; : : : ; .ys�1ys/

with the notation of Figure 3. The resulting triangulationK 00 is a causal disc-slice

with red boundary disc D0

red obtained from Dred by identifying e and e0 while

Dblue is unchanged.
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u

vw

x y

z

Figure 2. A prism made up of 3 tetrahedra .xyzu/, .uvwy/, and .xyuw/.

y1 y2 y3 y4 ys @Dblue

x1 x2 x3 @Dred

e0e

Figure 3. Triangles in the side of a causal disc slice.

Similar constructions can of course be made with Dblue replacing Dred. Start-

ing with an arbitrary triangle, it is well known (see e.g. [7] or [6]) that D1 (and

similarly D2) can be constructed by repeated application of the process of ei-

ther gluing on a triangle or by identifying two neighbouring boundary edges as

described. Hence, the existence of K follows from the preceding discussion by

induction. Note that since D1 and D2 are regular triangulations so is the causal

disc-slice K. �

Proposition 2. Given two triangulated 2-spheres, S1 and S2, there exists a causal

sphere-sliceK such that S1 is the red boundary ofK and the blue boundary is S2.

Proof. We remove one triangle from S1 and another one from S2. Then we obtain

two triangulated discsD1 andD2. By Proposition 1 there exists a causal disc-slice

K 0 with boundary discsDred D D1 andDblue D D2. The side ofK 0, C , is a causal
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2-dimensional disc-slice whose boundary components are triangles. There are two

different possibilities for C , up to combinatorial equivalence, see Figure 4.

(a) (b)

Figure 4. The two possible triangulations of the side of a disc-slice whose red and blue

boundary components are both a single triangle.

Note that we may assume that no pair of neighbouring triangles in C belongs

to the same tetrahedron. Indeed, if the two triangles are both forward (or both

backward) directed, this follows from the fact that otherwise the removed triangle

in either S1 or S2 would be glued to another triangle along two edges contradicting

the regularity of S1 and S2. If one backward triangle and one forward triangle in

C belong to the same tetrahedron in K 0 it must be a (2,2)-tetrahedron which can

be removed from K 0 without changing the red and blue boundary discs (only an

edge in C gets flipped). Since there are only finitely many (2,2)-tetrahedra in K 0

the claim follows.

If now C is of type (a) in Figure 4, then we can glue to K 0 a prism of the form

indicated in Figure 2 to obtain K as desired. If C is of type (b) we can glue onto

the prism of Figure 2 a (2,2)-tetrahedron to obtain a regular prism whose sideC 0 is

of the same type as C and hence can be glued ontoK 0 to obtainK as desired. �

3. Disc-slices and midsections

Given a causal disc-slice K we define its midsection SK as in [9] for a causal

sphere-slice. More explicitly, we viewK as being embedded in a Euclidean space

and consider a tetrahedron t D .v1v2v3v4/ in K with vertices v1; v2; v3; v4, i.e. t

consists of the points of the form

x D s1v1 C s2v2 C s3v3 C s4v4; (1)

where s1; s2; s3; s4 � 0 and s1Cs2Cs3Cs4 D 1. Letting the height h.x/ be defined

as the sum of the coefficients of the red vertices in (1) the 2-cell F corresponding

to t is defined as the set of points x in t of height h.x/ D 1
2
. If t is of type (3,1) then
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F is a triangle whose edges by convention are coloured red; if t is of type (1,3)

then F is likewise a triangle whose edges are coloured blue; if t is of type (2,2)

then F is a quadrangle each of whose boundary edges are contained in exactly one

boundary triangle of t containing a monocoloured edge of t ; by convention each

edge of F inherits the colour of the corresponding monocoloured edge in t . It is

easy to show (see [9] for details) that the 2-cells so obtained define a 2-dimensional

cell complex homeomorphic toD2 with edges coloured red or blue in such a way

that triangles are monocoloured while quadrangles are two-coloured with opposite

edges of the same colour. Moreover, this cell complex is uniquely defined up to

combinatorial isomorphism and is called the midsection of K, denoted by SK .

By construction each vertex a of SK is contained in a unique edge ea of K

whose endpoints have different colours and vice versa. Similarly, any red (blue)

edge of SK is contained in a unique two-coloured triangle of K which contains

a red (blue) edge in @K, and vice versa. Finally, each 2-cell of SK is contained

in a unique tetrahedron of K, the tetrahedron being of type (3,1), (2,2) or (1,3)

depending on whether the cell is a red triangle, a quadrangle, or a blue triangle,

respectively.

In a 2-dimensional coloured cell complex as described we shall use the notation

habi and habci for edges and triangles with vertices a; b and a; b; c, respectively,

whereas a 2-cell with cyclically ordered vertices a; b; c; d , such that habi and hcd i

are red edges, will be denoted by habcd i. Note that with this convention we have,

e.g., habcd i =hdcbai =hcdabi.

By a red, resp. blue, path in SK we mean a sequence e1; : : : ; ek of red, resp.

blue, edges such that ei D haiaiC1i for each i D 1; : : : ; k � 1, and some vertices

a1; : : : ; ak. In this case we say that the path connects a1 and ak . The path is

called simple if either the vertices a1; : : : ; ak are all different or if a1; : : : ; ak�1

are different while a1 D ak , in which case the path is said to be closed.

Remark 1. With the notation just introduced it follows from the definition of SK

that if a and b are two vertices of SK then the red (blue) endpoints of ea and eb

are identical if a and b are connected by a blue (red) path. Indeed, if e D habi is

a red edge of SK , then e is contained in a triangle in K two of whose edges are ea

and eb sharing a blue vertex. Evidently, the claim follows from this, and similarly

if e D habi is blue.

The converse statement that a and b are connected by a red (blue) path if ea

and eb share a blue (red) endpoint also holds as a consequence of the proof of

Theorem 1 below.
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Let us now note that since the monocoloured boundary discs of K are non-

empty, it follows that SK contains at least one triangle of each colour. For the same

reason the boundary of SK must contain edges of both colours. As a consequence,

the boundary of SK consists of a (cyclically ordered) alternating sequence of

monocoloured paths which we shall call boundary arcs. The following few

lemmas describe properties satisfied by any midsection SK .

Lemma 2. Two different vertices in a midsection SK cannot be connected by both

a red and a blue path.

Proof. If two vertices a and b are connected by both a red and a blue path, then

the two edges ea and eb in K have identical endpoints and hence are identical,

which implies a D b. �

Since @Dred is homeomorphic to S1, there does not exist a sequence of

quadrangles q1; q2; : : : ; qk in SK such that qi and qiC1 share a red edge for

i D 1; 2; : : : ; k � 1 and the red edges in q1 and qk, not shared with q2 or qk�1,

belong to @Dred. A sequence of quadrangles as we have described will be called

a red path of quadrangles connecting edges in @Dred. The corresponding state-

ment with red replaced by blue is of course also true. We define a closed path

of quadrangles (red or blue) analogously. Obviously there cannot exist a closed

path of quadrangles in SK because then K would contain a blue or a red edge in

its interior. The absence of paths of quadrangles just described follows from the

following more restrictive conditions.

Lemma 3. Let SK be a midsection, let � denote a closed simple red (blue) path

in SK and let � be a simple red (blue) path connecting two vertices belonging to

different blue (red) arcs in the boundary @SK . Then the following hold:

(i) the interior of �, i.e. the component of SK n � not containing any boundary

edges, contains solely red (blue) edges;

(ii) the two endpoints of � are the two endpoints of a red (blue) boundary arc.

Proof. (i) It is sufficient to consider the case when � is red. If � encloses a

blue edge it clearly also encloses a blue triangle. Since the boundary of SK

contains blue edges the exterior of � likewise contains a blue triangle. Evidently,

all red paths connecting a vertex in an interior blue triangle with a vertex in an

exterior blue triangle must intersect �. For K this means that Dblue consists of

two nontrivial subcomplexes sharing a single vertex (namely the common blue

endpoint of the edges ea for a 2 �) which contradicts the fact that Dblue is a disc.
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(ii) Assume � is red and connects two vertices a and b belonging to two

different blue boundary arcs ˛1 and ˛2. If the conclusion of ii) does not hold one

sees that the common blue endpoint of the edges ea and eb in K would separate

@Dblue into two non-trivial parts sharing only this vertex. This contradicts the fact

that @Dblue is a simple closed curve. Obviously, a similar argument applies when

� is blue. �

Lemma 4. Let e D habi and f D ha0b0i be two disjoint blue (red) edges in the

midsection SK . Suppose a and a0 as well as b and b0 are connected by a red (blue)

path. Then there exists a blue (red) path of quadrangles connecting e and f .

Proof. It suffices to prove the Lemma for blue edges. Let �e and �f be the two-

coloured triangles ofK that contain the blue edges e and f , respectively. Then�e

and�f share a blue edge .xy/ in the blue boundary ofK and also have red vertices

ve and vf in @K. Since e and f are disjoint ve ¤ vf . If .xy/ belongs to @Dblue,

the star of .xy/ consists of a sequence .xyv1v2/; .xyv2v3/; : : : ; .xyvk�1vk/ of

(2,2)-tetrahedra sharing .xy/ and an additional (1,3)-tetrahedron .xyzvk/. We

have ve; vf 2 ¹v1; : : : ; vkº and the claim follows since each (2,2)-tetrahedron

corresponds to a quadrangle in the midsection. If .xy/ is an interior edge inDblue

then the first (2,2)-tetrahedron above has to be preceded by a (1,3)-tetrahedron

.xyz0v1/ and then the rest of the argument is unchanged. �

Proposition 3. The midsection SK of a causal disc-sliceK determinesK uniquely

up to combinatorial equivalence.

Proof. This follows by arguments identical to those in [9] for causal sphere-

slices. �

Definition 4. We let SD denote the set of all coloured cell complexes S home-

omorphic to a disc (with cells as described previously) which have at least one

triangle of each colour and satisfy the following conditions.

(˛) No pair of different vertices in S are connected by both a red and a blue path.

(ˇ1) Each closed simple red (blue) path encloses solely red (blue) triangles in its

interior.

(ˇ2) Considering the division of @S into red and blue arcs, there is no red (blue)

path connecting two vertices belonging to different blue (red) arcs unless they

are the two endpoints of a red (blue) arc.

(
) If e D habi and f D hcd i are two disjoint blue (red) edges in S such that a

and c as well as b and d are connected by a red (blue) path, then there exists

a blue (red) path of quadrangles connecting e and f .
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Remark 2. As mentioned previously, condition .ˇ1/ implies the absence of

closed red (blue) paths of quadrangles. Indeed, the outer blue (red) boundary

component of such a path would violate .ˇ1/. Similarly, condition .ˇ2/ implies

that no two different edges in @S can be connected by a red or blue path of

quadrangles. Likewise, it follows that two different edges in the same triangle

cannot be connected by a path of quadrangles, since it would contradict (˛). One

can demonstrate by explicit examples that property (
) does not follow from the

first three properties.

It was noted in [4, 5] that the dual graphs that arise in the matrix model formula-

tion of 3-dimensional causal triangulations and correspond to 3-dimensional sim-

plicial manifolds satisfy some extra conditions that are closely related to .˛/; .ˇ1/

and .
/ above.

Definition 5. We say that a 2-dimensional coloured cell complex satisfies condi-

tion .ı/ if for any pair of distinct red, resp. blue, triangles it is not possible to join

their vertices pairwise by blue, resp. red, paths.

Lemma 5. Condition (ı) holds for all S 2 SD.

Proof. Given the two triangles, let us assume they are red and that three blue paths

exist connecting a to a0, b to b0, and c to c0. It follows easily from property (˛)

that the two triangles must be disjoint. Using (
) there exists a (non-trivial) path

�ab of quadrangles connecting habi to ha0b0i. Similarly, a path �ac of quadrangles

exists connecting haci to ha0c0i. Each of these two paths contains a blue path

connecting a to a0 which do not intersect each other (although they may touch at

some vertices or edges). Hence they define a closed curve, whose interior consists

of blue triangles by (ˇ1). In particular, all edges of those blue triangles as well as

all red edges of �ab and �ac are interior edges of S , and the exterior of the curve

contains the two original triangles and also the path �bc of quadrangles connecting

hbci to hb0c0i, whose existence again follows from (
). Similarly, considering

the closed blue curves determined by �ab and �bc, respectively �bc and �ac , we

conclude that all edges are interior in S which contradicts the fact that S is a

disc. �

Lemmas 2–5 together with Proposition 3 show that the mapping  WK 7! SK

is a well-defined injective map from the set CD of causal disc-slices into SD. We

now aim to prove the following main result of the present paper.

Theorem 1. The mapping  WK 7! SK is bijective from the set CD of causal

disc-slices onto the set SD of coloured 2-dimensional cell complexes.
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4. Proof of the main result

In this section we prove Theorem 1. The strategy is to show first that from any

S 2 SD we can construct a unique simplicial complex. We then proceed to show

that this simplicial complex has the topology of a ball and is actually a causal disc-

slice. The midsection of this causal slice is the coloured cell complex we started

with.

Proof of Theorem 1. Let S 2 SD be given. In order to construct the correspond-

ing K � KS 2 CD we start by associating to each vertex a 2 S a pair of new

vertices ra; ba which will form the vertex setK0
S of KS with the following identi-

fications:

(?) ra D rb (resp. ba D bb) if a and b are connected by a blue (resp. red) path,

where a; b are arbitrary vertices in S . Thus K0
S consists of all the vertices ra; ba

with a 2 S subject to the identifications (?). By definition we attach the colour

red to the vertex ra while ba is coloured blue.

The set K3
S of coloured tetrahedra is obtained from the collection of 2-cells

of S as follows: for each red triangle � D habci let t� be the (3,1)-tetrahedron

.rarbrcba/ where we notice that all 4 vertices are different by (˛) and ba D bb D

bc ; similarly, if� is a blue triangle, let t� D .babbbcra/; finally, for the quadrangle

q D habcd i, we let tq be the (2,2)-tetrahedron .rarbbabc/; again it follows from

(˛) that the four vertices are different and tq depends only on the quadrangle q.

Thus to each 2-cell F of S there corresponds a tetrahedron tF with vertices

in K0
S . This defines an abstract 3-dimensional coloured simplicial complex KS

whose edges and triangles are obtained as sub-simplices of the tetrahedra.

Let us first verify that F 7! tF is bijective between 2-cells in S and tetrahedra

in KS . By definition the mapping is surjective. Consider two 2-cells F and F 0

such that tF D tF 0 . Clearly F and F 0 are both triangles with the same colour or

they are both quadrangles.

Suppose F D habci and F 0 D ha0b0c0i are, say, red triangles. Then tF D tF 0

means that ba D bb D bc D ba0 D bb0 D bc0 and ¹ra; rb; rcº D ¹ra0 ; rb0; rc0º. By

(˛) this implies that ¹a; b; cº D ¹a0; b0; c0º and hence habci D ha0b0c0i.

If F D habcd i andF 0 D ha0b0c0d 0i are quadrangles then tF D tF 0 implies that

¹ra; rbº D ¹ra0 ; rb0º and ¹ba; bcº D ¹ba0 ; bc0º. Using (˛) it is then straightforward

to check that habcd i is equal to ha0b0c0d 0i. We have thus established that the

tetrahedra of KS are labelled by the 2-cells of S .
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Next let us consider the triangles in KS . These fall into four disjoint classes:

(i) Red triangles .rarbrc/ where habci is a red triangle in S .

(ii) Blue triangles .babbbc/ where habci is a blue triangle in S .

(iii) Triangles .rarbba/ where habi is a red edge in S .

(iv) Triangles .babbra/ where habi is a blue edge in S .

Using property (ı), which holds by Lemma 5, we see that red triangles in KS

corresponding to different red triangles in S are different. Such triangles are

not shared by different tetrahedra and therefore lie in the boundary of KS . The

corresponding statement about blue triangles is also clearly true.

Next consider a triangle .rarbba/ where habi is a red edge in S . By definition

of tF it holds that, if habi belongs to a 2-cell F in S , then .rarbba/ belongs to the

boundary of tF .

Conversely, suppose the triangle .rarbba/ belongs to the boundary of a tetra-

hedron tF . If F is a red triangle ha0b0c0i, then .rarbba/ equals one of the triangles

.ra0rb0ba0/, .ra0rc0ba0/, .rb0rc0ba0/. By (˛) this implies that ¹a; bº equals one of

¹a0; b0º, ¹a0; c0º, ¹b0; c0º and hence the edge habi equals one of the edges ha0b0i,

ha0c0i, hb0c0i. Thus, habi belongs to F . Similarly, if F is a quadrangle ha0b0c0d 0i,

it follows that .rarbba/ equals .ra0rb0ba0/ or .ra0rb0bc0 /. By (˛) this implies that

habi D ha0b0i or habi D hc0d 0i and hence habi is an edge in F .

From these observations follows that two tetrahedra tF and tF 0 share a triangle

� D .rarbba/ (or � D .babbra/) if and only if F and F 0 share the edge habi.

In particular, the interior triangles in KS are labelled by the interior edges in S .

The boundary triangles in KS are labelled by the boundary edges of S together

with the monocoloured triangles in S which label the monocoloured boundary

triangles in KS .

We next consider the edges in KS . In particular, we want to show that mono-

coloured edges lie in @KS . Let .rarb/ be a red edge in KS . This means that a; b

can be assumed to belong to some 2-cell F in S such that habi is a red edge in F .

If F D habci is a red triangle it follows from the preceding paragraph that .rarb/

belongs to @KS since it belongs to the red triangle .rarbrc/. Alternatively, if habi

belongs to a quadrangle q, then by (ˇ1) and (ˇ2) we have that q belongs to a red

path of quadrangles connecting either two red triangles or a red triangle and a red

boundary edge in S . This shows that .rarb/ is an edge in a red triangle in @KS . Ap-

plying similar arguments to blue edges in KS shows that all monocoloured edges

lie in the boundary.

The correspondence a ! .raba/ between vertices in S and the two-coloured

edges of KS is bijective by property (˛). Moreover, .raba/ belongs to @KS
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if and only if a belongs to @S , since it belongs to the two boundary triangles

corresponding to the edges in @S incident on a.

Finally, consider a red vertex x inKS . It belongs to some tetrahedron tF where

F is a 2-cell in S . If F is a quadrangle or a red triangle, then x belongs to a red

edge and hence, by the preceding paragraph, it belongs to @KS . If F is a blue

triangle habci then x D ra D rb D rc . Since we assume that there is a least

one triangle of each colour in S we can pick a path in S starting at a and ending

at vertex a0 in a red triangle ha0b0c0i. There is a first vertex d in the path which

is contained in a red edge and we have x D rd . Hence, x belongs to @KS . An

identical argument shows that a blue vertex in KS is necessarily contained in the

boundary. This completes the argument that all monocoloured simplices in KS

belong to the boundary.

The next thing to consider is the structure of @KS . We have seen above that

there is a one-to-one correspondence between the boundary edges in S and the

two-coloured triangles in @KS . It follows that these triangles form a sequence

�1; : : : ; �k corresponding to the boundary edges e1; : : : ; ek in @S ordered cycli-

cally. Setting ei D haiaiC1i, where a1; : : : ; ak are the cyclically ordered vertices

of @S (with akC1 D a1), we see that�i and�iC1 share the edge .raiC1
baiC1

/. By

(ˇ2) the triangles�1; : : : ; �k make up a 2-dimensional causal sliceC , homeomor-

phic to the cylinder S1 � Œ0; 1�, whose red and blue boundary circles are denoted

@Cred and @Cblue. At this stage we need the following lemma whose proof we will

postpone a little.

Lemma 6. The simplicial complex KS is homeomorphic to the 3-ball so its

boundary is homeomorphic to the 2-sphere.

By the above lemma @KS n C consists of two discs Dred and Dblue whose

boundaries are @Cred and @Cblue. We claim that Dred is made up exactly of the

red triangles in @KS and similarly forDblue. Indeed, sinceDred is a 2-dimensional

pseudomanifold any triangle in Dred can be edge-connected to @Dred D @Cred by

a sequence of triangles in Dred. The triangles in Dred are monocoloured and are

therefore either red or blue. But a blue triangle cannot be glued to a red triangle

so Dred consists of red triangles. These must be all the red triangles in @KS since

Dblue consists solely of blue triangles. We have therefore shown thatKS is a causal

disc slice.

Now it is not hard to verify that the midsection of KS is combinatorially

isomorphic to the original midsection S used to construct KS . We already noted

above that the vertices of S are in bijective correspondence with the two-coloured

edges in KS . By the definition of the midsection S 0 of KS its vertices are the



The structure of spatial slices 381

midpoints of the two-coloured edges of KS , and hence can be labelled by the

vertices of S . In this way the midsection of tF clearly gets identified with F and

the edge in S 0 corresponding to an interior triangle .rarbba/, respectively .babbra/,

of KS is the red, respectively blue, edge habi in S . Hence, the correspondence

between vertices induces bijective correspondences between 2-cells and 1-cells as

well, and so S and S 0 are combinatorially isomorphic. This completes the proof

of Theorem 1. �

It remains to prove Lemma 6. For this purpose an alternative construction

of KS by a gluing procedure is a useful tool. We begin by explaining this

construction.

For each 2-cell F in S and each vertex a of F we define a red vertex rF
a and a

blue vertex bF
a such that rF

a D rF
b

, resp. bF
a D bF

b
, if habi is a blue, resp. red, edge

in F. In this way four different vertices are defined for each 2-cell F and they in

turn define a coloured (abstract) tetrahedron �F considered as a simplicial complex

including its subsimplices. As before �F is of type .3; 1/; .2; 2/, or .1; 3/ depending

on whether F is a red triangle, a quadrangle, or a blue triangle, respectively.

Without further identifications the tetrahedra so defined are pairwise disjoint and

we note that the definition ofKS can be reformulated by stating thatKS is obtained

from the collection of tetrahedra �F labeled by the 2-cells of S by imposing the

identifications of simplices implied by the relations

(??) rF1

a D r
F2

b
(resp. bF1

a D b
F2

b
) if either a D b or a is connected to b by a blue

(resp. red) path,

where a; b are arbitrary vertices in S and F1; F2 are arbitrary 2-cells in S contain-

ing a and b, respectively.

We next show that KS can equivalently be obtained by applying a suitable

gluing procedure to the collection of tetrahedra defined above. Given two 2-

cells F1 and F2 sharing a red edge habi we have that �F1
contains the triangle

.r
F1

a r
F1

b
b

F1

a / and �F2
contains the triangle .r

F2

a r
F2

b
b

F2

a /. We say that �F1
is glued

to �F2
along habi if rF1

a is identified with rF2
a , rF1

b
is identified with rF2

b
, and bF1

a is

identified with bF2

a in �F1
and �F2

and their subsimplices. Similarly, gluing along

a blue interior edge in S is defined. In this way, given an interior edge habi of S ,

the tetrahedra �F1
and �F2

corresponding to the 2-cells F1 and F2 sharing habi

can be glued along habi.

We now define the simplicial complex K 0

S by imposing the identifications

of the simplices in the collection ¹�F º implied by gluing pairs of tetrahedra as

described along all interior edges of S . We claim that KS D K 0

S . In order to
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prove this we need to verify that the identifications of vertices implied by the

gluing conditions are identical to those given by .??/.

First, consider rF 0

a and rF 00

a where a is a vertex in two different 2-cells F 0 and

F 00. Since S is a manifold there exist 2-cells F1; F2; : : : ; Fn such that F1 D F 0 and

Fn D F 00 and Fi and FiC1 share an edge ei containing a for each i D 1; : : : ; n.

From the gluing of �Fi
and �FiC1

along ei it follows that r
Fi
a D r

FiC1

a and

b
Fi
a D b

FiC1

a for i D 1; : : : ; n � 1, and hence we conclude that rF 0

a D rF 00

a and

bF 0

a D bF 00

a .

Next consider two different vertices a and b inS and assume they are connected

by a blue path with edges ha1a2i; ha2a3i; : : : ; hamamC1i, where a1 D a and

amC1 D b. Choosing arbitrary 2-cells F1; : : : ; Fm such that haiaiC1i belongs

to Fi ; i D 1; : : : ; m, we have that r
Fi
ai

D r
Fi
aiC1

and by the preceding paragraph

r
Fi
aiC1

D r
FiC1

aiC1
for all i . It follows that r

F1

a D r
Fm

b
. Of course, the corresponding

result for blue vertices holds if a and b are connected by a red path.

Conversely, it is clear that if a and b are different vertices belonging to 2-cells

F 0 andF 00, respectively, and rF 0

a D rF 00

b
, then a and b are connected by a blue path.

Indeed, there exists a sequence of vertices b1; : : : ; bm and corresponding 2-cells

F1; : : : ; Fm such that a D b1; F
0 D F1 and b D bm; F

00 D Fm and r
Fi

bi
is identified

with r
FiC1

biC1
either through a gluing of �Fi

to �FiC1
along an edge containing bi , in

which case bi D biC1, or else Fi D FiC1 and bi is connected to biC1 by a blue

edge in Fi . Similarly, if bF 0

a D bF 00

b
then a and b are connected by a red path.

This shows that the identifications pertaining to KS and K 0

S are the same and

hence KS D K 0

S as claimed. We are now ready to prove Lemma 6.

Proof of Lemma 6. Let S1; S2; : : : ; SN D S be a local construction (see [8, 6]) of

the midsection S . This means that S1 is a coloured 2-cell and SnC1 is obtained

from Sn by either (i) gluing a coloured 2-cell to Sn along an edge e in @Sn or (ii)

by identifying two edges e1 and e2 in @Sn which have the same colour and share

a vertex. The existence of such a construction is well known and easy to establish

in the 2-dimensional case. For further details we refer to [6, 7]. Evidently, all the

Sn’s have the topology of a disc and the 2-cells as well as interior edges of Sn can

be identified with corresponding 2-cells and interior edges in S .

The correspondence between tetrahedra �F in KS and 2-cells F of S and the

local construction of S gives rise to a sequence of coloured simplicial complexes

Kn, n D 1; : : : ; N , whereKn is defined by gluing the tetrahedra �F assigned to the

2-cells in Sn along the interior edges of Sn. In particular,K1 is a single tetrahedron

and KN D KS , since SN D S and KS D K 0

S as shown above. Moreover,KnC1 is

obtained from Kn by gluing a tetrahedron �F to a tetrahedron �F 0 in Kn along an
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edge habi. In case �F is not in Kn already it is clear that the topological class of

Kn equals that ofKnC1. We shall now argue that the same holds if �F and �F 0 both

belong toKn. SinceK1 is homeomorphic to the 3-ball the same will consequently

hold for KS , and hence the proof of the lemma will be completed.

If �F and �F 0 belong to Kn and are glued along the edge e in Kn then F and

F 0 belong to Sn, and SnC1 is obtained from Sn by identifying two edges e1 and e2

in @Sn sharing a vertex v, such that the identified edges equal e.

e1 e2

v1 v2

v rv1 rv2

rv

1 2
 

e

v

Figure 5. The local construction of the midsection and the corresponding 3-dimensional

simplical complex. Identifying the edges e1 and e2 corresponds to identifying triangles

�1 and �2.

Let us set e1 D hvv1i and e2 D hvv2i and assume e is red. Then KnC1

is obtained from Kn by identifying the triangles �1 D .r
F1
v1
r

F1
v b

F1
v / and �2 D

.r
F2

v2
r

F2

v b
F2

v / which share the edge .rF1

v b
F1

v / D .r
F2

v b
F2

v / in Kn. This is illustrated

on Figure 5. We need to show that no further identifications of simplices are

implied.

Additional identifications can only arise if there is a vertex x 2 @Kn which is

a neighbour of both r
F1

v1
and r

F2

v2
in which case the edges .xr

F1

v1
/ and .xr

F2

v2
/ are

identified in the step from Kn to KnC1. We claim that no such x exists except b
F1

v

and r
F1

v .

First, suppose x is a blue vertex, x ¤ b
F1

v . Then there are two vertices w1 and

w2 in the midsection such that b
F 0

1

w1
D x D b

F 0
2

w2
and r

F 0
i

wi
D r

Fi

vi
; i D 1; 2, in Kn

for some 2-cells F 0

1; F
0

2 in Sn. This implies that w1 and w2 are connected by a red
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path in S while wi is connected to vi by a blue path in S for i D 1; 2. When we

now take the step from Sn to SnC1 and identify e1 and e2 the vertices v1 and v2 get

identified and hence w1 and w2 are connected both by a blue path in S and by a

red path, see Figure 6. Hence, w1 D w2, and we get a closed blue path enclosing

the red edge e which is impossible by .ˇ1/.

@Sn

v1 v2

e1 e2

w1 w2

v

Figure 6. Paths arising in the local construction of the midsection when x is blue.

Now suppose x is a red vertex. Then there are four vertices w1; w2; u1; u2 in

the midsection such that hw1w2i and hu1u2i are red edges and x D rF 0

w2
D rF 00

u2
,

rF 0

w1
D r

F1
v1

, rF 00

u1
D r

F2
v2

for some 2-cells F 0; F 00 in Sn. It follows that w2 and u2

are connected by a blue path �1 and similarly that w1 is connected to v1 and u1 is

connected to v2 by a blue path in S , see Figure 7.

1

v

v1 v2

u1

u2

w1

w2

Figure 7. Paths arising in the local construction of the midsection when x is red.

Upon merging e1 and e2 we get as above a blue path �2 fromw1 to u1. It follows

by condition .
/ that the edges hw1w2i and hu1u2i are connected by a blue path of

quadrangles. This path of quadrangles either lies inside the closed loop made up
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of �1; �2 and the edges hw1w2i and hu1u2i or outside it, see Figure 8. In both cases

we obtain a closed blue loop containing a red edge in its interior which violates

.ˇ1/. This completes the proof of Lemma 6. �

w1

w2

u1

u2
w1

w2

u1

u2

v

v

Figure 8. Paths of quadrangles arising in the local construction of the midsection when x

is red.

5. Sphere-slices

In this section we generalise Theorem 1 to the case of sphere-slices. It is clear

from the proofs of Lemmas 2 and 4 that the midsection of any sphere-slice

has properties .˛/ and .
/, while (ˇ2) is irrelevant as it refers to the boundary.

Furthermore, the proof of Lemma 3 shows that an analogue of (ˇ1) still holds in

the following form:

(ˇ) Each simple closed red (or blue) path divides the midsection into two com-

ponents, one of which is red (blue).

Since a simplicial decomposition of the 2-sphere requires at least 4 triangles it

follows that S must contain at least 4 triangles of each colour. Let � denote the

mapping that takes any sphere slice K to its midsection S .

Definition 6. We let S denote the set of all coloured cell complexes S homeomor-

phic to the 2-sphere (with cells as described previously) which have at least four

triangles of each colour and satisfy the conditions (˛), (ˇ), and (
).
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Lemma 7. Property (ı) holds for all S 2 S.

Proof. Applying the same argument as in the proof of Lemma 5 we conclude that

if (˛), (ˇ), and .
/ hold for a coloured spherical cell complex S and there are two

different red triangles in S whose vertices are pairwise connected by blue paths,

then there exist three paths of quadrangles connecting the edges of the triangles

pairwise and the complement of those paths consists entirely of blue triangles

together with the two given red triangles in S . In particular, there can be only two

red triangles, which contradicts S 2 S. Clearly, a similar argument holds for blue

triangles. �

We now state and prove the main result in this section.

Theorem 2. The map �WK ! S is a bijection from the set CS of causal sphere-

slices to the set S of coloured 2-dimensional cell complexes.

Proof. Given S0 2 S it is enough to construct a sphere-slice K such that �.K/ D

S0. The idea of the proof is to cut a piece out of S0 in such a way that we obtain a

cell complex S in CD. Then we use Theorem 1 to obtain a disc-slice with the given

midsection S . Finally, we fill in the “hole” of the disc-slice to obtain a sphere-slice

with midsection S0. We divide the argument into 5 parts.

(1) Let R be a maximal edge-connected cluster of red triangles in S0 and let

S D S0 n int.R/. Condition .ˇ/ and the Jordan Curve Theorem imply that R

and S are (closed) discs. Moreover, since R is maximal, all edges in @S are

red and contained in quadrangles in S . Pick one of these quadrangles q and let

� D .q1; q2; : : : ; qn/ be the maximal blue path of quadrangles containing q. Let

� D .v1; v2; : : : ; vn/ be the red path in � that shares at least one red edge with @S ,

see Figure 9.

v1 w1 vnwn

0

R

S

  
 

 

Figure 9. A maximal path of quadrangles in S touching the boundary.
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The other red path in �, �0 D .w1; w2; : : : ; wn/, shares no vertex with @S as

a consequence of condition .˛/. Likewise, � and �0 do not intersect and neither

� nor �0 can have multiple vertices, since it would contradict .˛/. Moreover, if

1 � i < j � n are such that vi ; vj 2 @S , then vk 2 @S for all k between i and

j since otherwise R is not maximal due to .ˇ/. Hence, � intersects @S along a

curve segment�, see Figure 9. Note that � does not contain all of @S because this

would again contradict condition .˛/, see Figure 10.

R

S

v1 vn

w0
w00

w1
wn

Figure 10. If @S D � then w0 and w00 are connected both by a red and by a blue path.

The above observations show that the boundary of the strip covered by the

path of quadrangles �, which consists of � and �0 and the two blue edges

hv1w1i and hvnwni, is a simple curve. This curve shares exactly a segment

� D .vi ; viC1; : : : ; vj / with @S where 1 � i < j � n. Hence, removing the strip

covered by � from S we obtain a new disc S 0 whose boundary consists of the blue

edges hv1w1i and hvnwni together with the red paths �0, @S n �, .v1; : : : ; vi/ and

.vj ; : : : ; vn/, see Figure 11.

Now consider the blue triangles �1 and �2 in S 0 containing hv1w1i and

hvnwni, respectively. Denote the third vertex in these triangles by u1 and u2,

respectively, see Figure 11. It follows from condition .ı/ (see Lemma 7) that

u1 ¤ u2 and they cannot be connected by a red path. Moreover, u1 and u2 are not

in @S 0 since this would violate .˛/. Now, removing �1 and �2 (including edges

hv1w1i and hvnwni) from S 0 we obtain another 2-dimensional cell complex S 00

with the topology of a disc and a boundary consisting of the blue paths .v1; u1; w1/

and .vn; u2; wn/ and the same red paths as @S 0.
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v1 w1
wn

vn

u1

u2

wi wj

R

S 0

 

 

vi vj

Figure 11. The cell complex S 0.

(2) We now claim that S 00 belongs to SD. Since paths in S 00 are also paths in

S0, conditions .˛/ and .ˇ1/ are obviously fulfilled. Furthermore, S 00 contains at

least two blue triangles, and since there exist red edges in @S 00 the existence of at

least one red triangle in S 00 will follow once .ˇ2/ has been established for S 00.

In order to verify .ˇ2/ we recall that u1 and u2 cannot be connected by a red

path. Connecting u1 to wn or vn or connecting u2 to w1 or v1 by a red path

evidently contradicts .˛/. Similarly, a red path from v1 to wn or from w1 to vn

contradicts .˛/. This proves .ˇ2/ for S 00 as far as red paths are concerned.

Now let � be a blue path in S 00 connecting the vertex wk to a vertex v in the

other red arc of @S 00. Viewing � as a path in S0 and extending it by the edge hwkvki

we obtain a blue path �0 in S0 connecting vk to v. If v ¤ vk then condition .˛/ is

violated. If v D vk then �0 is a closed blue path in S0 with edges of both colours

inside and outside unless k D 1 or k D n. This proves condition .ˇ2/.

In order to verify condition .
/ for S 00 let e1 D hx1y1i and e2 D hx2y2i be

two blue edges in S 00 such that x1 and x2 as well as y1 and y2 are connected by

red paths. Then, since .
/ holds for S0, there is a blue path of quadrangles ƒ in

S0 connecting e1 and e2. Since the blue boundary edges of S 00 are not contained

in quadrangles outside S 00 the path ƒ cannot leave S 00. This establishes condition

.
/ for the blue edges.

Let now e1 D hx1y1i and e2 D hx2y2i be two red edges in S 00 such that x1 and

x2 as well as y1 and y2 are connected by blue paths �0 and �00. By condition .˛/ the

paths �0 and �00 do not intersect and we can assume without loss of generality that
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they have no multiple vertices. Hence, the closed curve consisting of �0, �00 and

the two edges e1 and e2 is simple and encloses a disc D in S 00. Since condition

.
/ holds for S0 there exists a red path � 0 of quadrangles in S0 connecting e1

and e2 and evidently � 0 is either contained in D or in its exterior. However, the

latter case can be excluded as follows. Observe that neitherD nor � 0 can intersect

R. It follows that one of the closed curves made up of either �0 or �00 and one

of the blue paths in � 0 must separate R (in S0) from the union of D and � 0 in

contradiction with condition .ˇ/, see Figure 12. Note, however, that the curve in

question is not necessarily simple, since �0 may touch the blue path in � 0 with

the same endpoints, and similarly for �00. Using property (ˇ) one can in this case

remove closed parts of the curve so as to obtain a simple closed blue curve with

the same separating property. Thus � 0 is contained in D (and hence in S 00) and

this proves that condition .
/ holds for S 00.

u1

u2

S 00

x1
x2

y1
y2

0

00

D

Figure 12. A path of quadrangles outside D connecting the edges e1 and e2 and the blue

paths �0 and �00 connecting their endpoints. A priori, parts of the path may be outside S 00.

(3) We can now apply Theorem 1 to conclude that there is a unique disc-slice

K 00 2 CD whose midsection is S 00. In view of the structure of @S 00, the side of K 00

consists of two pairs of adjacent backwards directed triangles and two arrays of

forward directed triangles corresponding to the two red arcs in @S 00.
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We now first construct from K 00 a new simplicial complex C by gluing to

K 00 the tetrahedra corresponding to the quadrangles q1; : : : ; qn in � and those

corresponding to the blue triangles at the ends of �. One way to accomplish

this is to consider the simplicial complex K0 whose midsection is � with the two

blue triangles attached to its ends. Clearly K0 is a ball and we may think of it

as a causal slice whose side consists of two pairs of adjacent backwards directed

triangles and two arrays of forward directed triangles of size n whose red edges

are pairwise identified and constitute Dred. On the other hand, Dblue consists of

two triangles with one common edge, see Figure 13.

Figure 13. The cell complex K0 in the case n D 3.

Now consider one array of forward directed triangles in @K0 together with the

two adjacent backwards directed triangles. These triangles form a disc in @K0 and

we can glue K0 to K 00 along this disc and the corresponding disc in @K 00 or, more

precisely, the gluing is performed along the edges hu1w1i; hw1w2i; : : : ; hwnu2i,

see Figure 11. Since both K0 and K 00 are simplicial balls, so is the resulting

complex K 00#K0. Its Euler characteristic is therefore �1.

Note also thatK 00#K0 has a side consisting of two pairs of adjacent backwards

directed triangles and two arrays of forward directed triangles, one of which has

length n. The blue edges in the backwards directed triangles form a closed curve.

We now identify the two backwards directed triangles in each pair, i.e. we glue

tetrahedra inK 00#K0 along the edges hu1v1i and hu2vni. Doing this, the number of

triangles in the simplicial complex decreases by 2, the number of edges decreases

by 4 and the number of vertices decreases by 1 and we obtain a new simplicial

complex C 0 with Euler characteristic �2.
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The side of C 0 is a closed circuit of forward directed triangles sharing a

single blue vertex. We now obtain the simplicial complex C by gluing tetrahedra

in C 0 along the egdes hvkvkC1i in the midsection, for k D 1; : : : ; i � 1 and

k D j; : : : ; n � 1. It is easy to check that the Euler characteristic does not change

with these identifications so

�.C / D �2:

By construction, the midsection of C is S0 nR.

(4) Now return to the disc R that was removed from S0 in the first step. Let xR

be the cone overR, i.e. xR consists of the tetrahedra obtained by adding a common

blue vertex to all the triangles in R or alternatively, by gluing the tetrahedra

corresponding to triangles in R along interior edges in R. We can now glue xR

to C along their sides, i.e. along the edges in @S D @R. The resulting simplicial

complex K has Euler characteristic

�.K/ D �.C /C �. xR/C �2.@R/ D �2;

since �. xR/ D �1, and �2.@R/ D 1 is the Euler characteristic of the cone @R over

@R, which is in fact a disc.

(5) SinceK 00 is a disc-slice it is evident from the preceding construction that @K

consists of two triangulated 2-spheres, one red and one blue. The midsection ofK

is by construction S0. By gluing on cones over the two boundary components ofK

we obtain a simplicial complex zK with Euler characteristic 0. Since zK is clearly a

pseudomanifold we conclude (see [12], p. 216) that zK is also a manifold. In fact,
zK is simply connected since any closed curve can be deformed to a closed curve

on the midsection which is simply connected. Hence, zK is a 3-sphere by [10] and

K is a cylinder as desired.1 This completes the proof of Theorem 2. �

6. Discussion

A few remarks pertaining to extensions and variations of the present work are in

order. As already indicated, the requirement in Definition 2 that Dred and Dblue

be discs is unnecessarily restrictive. Thus, replacing .i i/ of Definition 2 by

(ii0) all monocoloured simplices of K belong to the boundary @K, such that the

red (resp. blue) ones form a connected and simply connected subsimplexDred

(resp.Dblue) of @K,

1 This can presumably be proven by lesser means but the argument does not seem to be

entirely trivial and we will not elaborate on it here.
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leads to a convenient class of causal triangulations. Let us call this class CD0. In

particular, any coloured tetrahedron belongs to CD
0 (but not to CD) and so does

the complex depicted in Figure 13.

By inspection of the proofs given above it is seen that condition (ˇ2) is used

in the construction of a causal disc slice from a cell complex in CD solely to

ensure that @Dred and @Dblue are simple curves. It follows that dropping (ˇ2) one

obtains a one-to-one correspondence between CD
0 and the set SD0 of coloured cell

complexes homeomorphic to a disc and fulfilling conditions (˛), (ˇ1), and (
).

On a different note, one may observe that condition (
) is used partly to ensure

the validity of condition (ı) (see Lemma 5) and otherwise only in the final part of

the proof of Lemma 6 ensuring that the complexK is a simplicial ball. It is natural

to consider replacing property (
) by property (ı) or dropping both of them. This

would require stepping outside the category of simplicial complexes and adopt a

different setting encompassing singular triangulations.

Finally, one might also envisage characterising causal triangulations in higher

dimensions, which evidently would lead to more involved higher dimensional

coloured cell complexes of which little is known at present. In [9] it is explained

how the midsections of 4-dimensional causal triangulations are made up of tetra-

hedra and prisms which replace the triangles and quadrangles which make up the

midsections considered in this paper.

Acknowledgement. B. Durhuus acknowledges support from the Villum Foun-

dation via the QMATH Centre of Excellence (Grant no. 10059).

References

[1] J. Ambjørn, B. Durhuus, and T. Jonsson, Three-dimensional simplicial quantum grav-

ity and generalized matrix models. Modern Phys. Lett. A 6 (1991), no. 12, 1133–1146.

MR 1115607 Zbl 1020.83537

[2] J. Ambjørn, B. Durhuus, and T. Jonsson, Quantum geometry: A statistical field theory

approach. Cambridge Monographs on Mathematical Physics. Cambridge University

Press, Cambridge, 1997. MR 1465433 Zbl 0993.82500

[3] J. Ambjørn, A. Görlich, J. Jurkiewicz, and R. Loll, Nonperturbative quantum gravity.

Phys. Rep. 519 (2012), no. 4-5, 127–210. MR 2982061

[4] J. Ambjørn, J. Jurkiewicz, and R. Loll, Nonperturbative 3D Lorentzian quantum

gravity. Phys. Rev. D (3) 64 (2001), no. 4, 044011, 17 pp. MR 1853980

[5] J. Ambjørn, J. Jurkiewicz, R. Loll, and G. Vernizzi, Lorentzian 3d gravity with

wormholes via matrix models. J. High Energy Phys. 2001, no. 9, Paper 22, 35 pp.

MR 1867177

http://www.ams.org/mathscinet-getitem?mr=1115607
http://zbmath.org/?q=an:1020.83537
http://www.ams.org/mathscinet-getitem?mr=1465433
http://zbmath.org/?q=an:0993.82500
http://www.ams.org/mathscinet-getitem?mr=2982061
http://www.ams.org/mathscinet-getitem?mr=1853980
http://www.ams.org/mathscinet-getitem?mr=1867177


The structure of spatial slices 393

[6] B. Benedetti and G. M. Ziegler, On locally constructible spheres and balls. Acta

Math. 206 (2011), no. 2, 205–243. MR 2810852 Zbl 1237.57025

[7] B. Durhuus, Critical properties of some discrete random surface models. In G. Velo

and A. S. Wightman (eds.), Constructive quantum field theory. II. Proceedings of the

Second NATO Advanced Study Institute and Seventh Ettore Majorana International

School of Mathematical Physics held in Erice, July 1–15, 1988. NATO Advanced

Science Institutes Series B: Physics, 234. Plenum Press, New York, 1990, 235–264.

MR 1151402

[8] B. Durhuus and T. Jonsson, Remarks on the entropy of 3-manifolds. Nuclear Phys. B

445 (1995), no. 1, 182–192. MR 1338102 Zbl 0990.57500

[9] B. Durhuus and T. Jonsson, Exponential bounds on the number of causal triangula-

tions. Comm. Math. Phys. 340 (2015), no. 1, 105–124. MR 3395148 Zbl 1326.83032

[10] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-

manifolds. Preprint, 2003. arXiv:math/0307245 [math.DG]

[11] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology. Ergeb-

nisse der Mathematik und ihrer Grenzgebiete, 69. Springer-Verlag, Berlin etc., 1972.

MR 0350744 Zbl 0254.57010

[12] H. Seifert and W. Threlfall, A textbook of topology. Pure and Applied Mathematics,

89. Academic Press, New York and London, 1980. MR 0575168 Zbl 0469.55001

© European Mathematical Society

Communicated by Renate Loll

Received January 2, 2018; accepted February 8, 2019

Bergfinnur Durhuus, Department of Mathematical Sciences, University of Copenhagen,

Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

e-mail: durhuus@math.ku.dk

Thordur Jonsson, Division of Mathematics, The Science Institute, University of Iceland,

Dunhaga 3, 107 Reykjavik, Iceland

e-mail: thjons@hi.is

http://www.ams.org/mathscinet-getitem?mr=2810852
http://zbmath.org/?q=an:1237.57025
http://www.ams.org/mathscinet-getitem?mr=1151402
http://www.ams.org/mathscinet-getitem?mr=1338102
http://zbmath.org/?q=an:0990.57500
http://www.ams.org/mathscinet-getitem?mr=3395148
http://zbmath.org/?q=an:1326.83032
http://arxiv.org/abs/math/0307245
http://www.ams.org/mathscinet-getitem?mr=0350744
http://zbmath.org/?q=an:0254.57010
http://www.ams.org/mathscinet-getitem?mr=0575168
http://zbmath.org/?q=an:0469.55001
mailto:durhuus@math.ku.dk
mailto:thjons@hi.is

	Introduction
	Preliminaries and notation
	Disc-slices and midsections
	Proof of the main result
	Sphere-slices
	Discussion
	Acknowledgement
	References

