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The structure of spatial slices
of 3-dimensional causal triangulations

Bergfinnur Durhuus and Thordur Jonsson

Abstract. We consider causal 3-dimensional triangulations with the topology of §2 x [0, 1]
or D? x [0, 1] where S2 and D? are the 2-dimensional sphere and disc, respectively. These
triangulations consist of slices and we show that these slices can be mapped bijectively onto
a set of certain coloured 2-dimensional cell complexes satisfying simple conditions. The
cell complexes arise as the cross section of the individual slices.
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1. Introduction

We investigate in this paper a class of problems that arise in the dynamical triangu-
lation approach to 3-dimensional gravity restricted to the case of so-called causal
triangulations. For an introduction to the dynamical triangulation approach to
discrete quantum gravity we refer to [2] and an account of causal dynamical trian-
gulations can be found in [3]. For the case of 3-dimensional gravity in particular,
one may consult [1] and [4].
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In [9] we gave a proof that the number N (1) of causal 3-dimensional triangula-
tions homeomorphic to a 3-sphere and consisting of V' tetrahedra is exponentially
bounded,

NV)<CY,

where C is some positive constant. Validity of this bound is crucial in order for
the relevant correlation functions to exist, and thereby defining the discretised
model (see [2, 3]). The first step of the argument leading to this bound was to
decompose the triangulations into slices (which is possible because of the causal
structure defined below) and to show that it is sufficient to establish the bound
for such causal slices. The number of triangulated causal slices was then shown
to be bounded by the number of certain coloured 2-dimensional cell complexes
homeomorphic to the 2-sphere. These cell complexes arise as mid-sections of the
slices. Finally, bounding the number of those 2-dimensional cell complexes can
be done using well-known techniques.

The method of associating a coloured 2-dimensional cell complex with a causal
triangulation has been applied earlier by other workers in the field [4, 5] and also
used in numerical simulations and in combination with matrix model techniques
to extract properties of the model. It has, however, not been established exactly
what class of 2-dimensional complexes can occur as mid-sections of a causal slice.
As noted in [9], see also [4] Appendix B, some non-trivial constraints have to
be imposed on top of its homeomorphism class. It follows that the connection
between the model defined in terms of triangulations and the one realised in terms
of a specific class of coloured 2-dimensional cell complexes is obscure. It might
be the case that the precise class of cell complexes is unimportant in a possible
scaling limit of the model, see [5], but this remains to be investigated in detail.

In this paper we provide a complete characterisation of the coloured 2-dimen-
sional cell complexes that correspond to 3-dimensional causal slices. In fact, we
shall consider not only the standard notion of causal triangulations homeomorphic
to S2x[0, 1], where S? denotes the 2-sphere, which in this paper will be referred to
as causal sphere-triangulations, but find it useful to generalise the notion of causal
triangulation to manifolds homeomorphic to D2 x [0, 1], where D? is the 2-dimen-
sional disc, and dD? x [0, 1] may be viewed as the time-like part of the boundary
while the two discs D? x {0} and D? x {1} form the spatial parts of the boundary.
Such triangulations will be called causal disc-triangulations and the correspond-
ing slices will be called causal disc-slices. The coloured cell complexes, defined
in Section 3, are in this case homeomorphic to D?. The main result of this paper,
Theorem 1, which is proved in Section 4, states that there is a bijection between
the causal disc-slices and the coloured cell complexes. In Section 5 we generalise
this result to causal sphere-slices in Theorem 2.
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These results might serve as a starting point for an exact enumeration of
causal slices by applying well-known techniques for planar surfaces or maps to the
coloured cell complexes homeomorphic to the disc. This interesting combinatorial
problem is more complicated than those previously considered because of the
colouring and the constraints identified in this paper. The result might also
be instrumental in finding an appropriate matrix model generating exactly the
desired causal slices or as an aid in designing effective numerical algorithms for
simulations. These issues are, however, beyond the scope of the present paper.

2. Preliminaries and notation

We will use notation consistent with that of [9]. For the reader’s convenience we
briefly recall the main conventions, restricting the discussion to the 3-dimensional
case. The basic building blocks of our triangulations are tetrahedra or 3-simplices
whose vertices have one of two colours: red or blue. Generally we will denote
an unoriented simplex with vertices x1,...,x, by (x1...x,). If all the vertices
in a simplex have the same colour we say that the simplex is monocoloured. This
means that if x and y are red vertices and e = (xy) is a 1-simplex then we say
that e is red, and a triangle A = (xyz) is red if its vertices (or edges) are red, etc.
If a simplex is not monocoloured we say it is two-coloured. It is assumed that all
tetrahedra are two-coloured. Thus the tetrahedra come in three types: type (3,1)
with three red vertices, type (2,2) with two red vertices and type (1,3) with one
red vertex.

We recall that an abstract simplicial complex K is defined by its vertex set K°,
which is assumed to be finite, and a collection of subsets of K, called simplices,
such that if ¢ is a simplex and ¢’/ C o, then ¢ is also a simplex (see [11]). If a
simplex o contains p + 1 vertices we call it a p-simplex. If every simplex in K
is contained in some D-simplex we say that D is the dimension of K. Given two
abstract simplicial complexes K and L, a bijective map y: K° — L is called a
combinatorial isomorphism if it induces a bijection of the simplices in K and L.

A triangulation is a 3-dimensional simplicial complex which can be viewed as
a collection of tetrahedra together with identifications of some pairs of triangles
(2-simplices) in the boundaries of the tetrahedra, respecting the colouring, such
that any triangle is identified with at most one other triangle. When we identify
triangles we also identify all their subsimplices, i.e. their edges (1-simplices)
and vertices. This point of view will be used and explained in more detail in
Section 4 below. Any pair of identified triangles is called an interior triangle of
the triangulation while the other triangles are referred to as boundary triangles. It
should be noted that it is implicit in the notion of a simplicial complex that
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(i) two triangles contained in the same tetrahedron cannot be identified,

(ii) two different triangles in a given tetrahedron cannot be identified with two
triangles contained in another tetrahedron.

It is common to speak about these two conditions as regularity conditions and
about simplicial complexes as regular triangulations as opposed to singular tri-
angulations, when one or both of these conditions are left out. In this paper we
focus on regular triangulations. Note that the definitions imply that two vertices
are connected by at most one edge and 3 vertices are contained in at most one
triangle.

One may think of a triangulation either as a purely combinatoric object or
as a topological space embedded in a Euclidean space. In the former case two
triangulations are identified if there is a bijective correspondence between their
vertices respecting the colouring and the pairwise identifications of triangles. In
the latter case two triangulations are identified if there exists a homeomorphism
between them mapping simplices to simplices and thus inducing a combinatorial
isomorphism. It is a fact, explained in e.g. [9], that the two points of view are
equivalent.

We now introduce the basic objects of study in this paper, the two types of
causal slices that form the building blocks of the general causal triangulations.

Definition 1. A causal sphere-slice K is a triangulation fulfilling the following
conditions:

(i) K is homeomorphic to the cylinder 2 x [0, 1];

(ii) all monocoloured simplices of K belong to the boundary dK, such that the
red ones belong to one boundary component K4 and the blue ones belong
to the other component dKpjye.

The set of all causal sphere-slices is denoted by CS.
Definition 2. A causal disc-slice is a triangulation K fulfilling the following
conditions:

(i) K is homeomorphic to the 3-dimensional ball B3;

(ii) all monocoloured simplices of K belong to the boundary dK, such that the
red ones form a disc D,eq and the blue ones form a disc Dpjye, Which will be
called the boundary discs of K.

The set of all causal disc-slices is denoted by CD.
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We note that the above definitions imply that all the vertices of a causal slice of
either type lie on the boundary. Two-coloured edges are sometimes referred to as
timelike edges. Two-coloured triangles can be of two types, with two red vertices
and one blue or vice versa, and are called forward directed and backwards directed
triangles, respectively.

Relaxing the condition in Definition 2 that Deq and Dy are (homeomorphic
to) discs to, say, the requirement that they are deformation retracts of discs yields
a larger class of causal triangulations, that will not be discussed in detail in this
paper (see, however, Section 6 for some further remarks). In the course of the
proof of Theorem 2 we shall encounter particular examples of such triangulations
and we use the same notation as for causal slices without further comment.

Although the main focus of this paper is on causal slices we introduce for
the sake of completeness general causal triangulations in the following definition
as a layered union of causal slices. In general these triangulations have interior
vertices.

Definition 3. A causal sphere-triangulation is a triangulation of the form

where each K is a causal sphere-slice such that K’ is disjoint from K7 if i # j
except that dK{, = = 9K’} ! fori = 1,...,N — I as uncoloured 2-dimensional
triangulations. The boundary components of M are then 9K ,; and 8Ké\l’ue.

A causal disc-triangulation is a triangulation of the form

N
M:UW,

i=1

where each K' is a causal disc-slice (with boundary discs D!, and D{ ) such that
K' is disjoint from K/ if i # j exceptthat D{, == D!}!'fori =1,...,N—1as
uncoloured 2-dimensional triangulations. The two discs D, and DéYue are called

the red and blue boundary disc of M, respectively.

The following lemma states that, apart from the two boundary discs, the
boundary of a causal disc-triangulation consists of a “timelike cylinder,” that is
a 2-dimensional causal sphere-triangulation, which is defined as in Definitions 1
and 3 with S? replaced by S!.
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Lemma 1. Let K be a causal disc-slice and denote by C the subcomplex of 0K
consisting of two-coloured triangles. Then C is a 2-dimensional causal sphere-
slice with boundary 0Dyeq U dDyye, which will be called the side of K.

More generally, if M is a causal disc-triangulation then the part of the bound-
ary made up of triangles not in the red or blue boundary discs is a 2-dimensional
causal sphere-triangulation.

Proof. 1t is clearly enough to prove the first statement. Choose an orientation of
the circle dD,eq and consider a vertex vy € dD;eq and its two nearest neighbours v,
and v, in 0Deq With vy preceding v and v, succeeding v;. The edges (vov;) and
(v1vy) are each contained in exactly two triangles of dK, one of which is red while
the other one contains a blue vertex v}, resp. v5, both of which are in 0Dyjye. Note
that, by the Jordan Curve Theorem, dD.q divides 0K into two discs. It follows

that if we denote by uq, ..., u; the neighbours of vy in Dyq ordered cyclically
around v; such that u; = vg and u; = v,, then all other neighbours of v; in K
are blue and constitute a segment (w}, wi,..., w 5}1) of dDpyye with w! = v} and

1 _ / . .
w, = vy, see Figure 1. Hence, the triangles

(vowivy), (Wiviwy), ..., (wc}l_lvlwt}l), (wel1 V1V2)

make up a segment of a 2-dimensional causal slice.

Dyjye

Figure 1. The sequence of triangles on the side of the causal slice K connecting the red and
the blue boundary components.
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Repeating this construction with vy, vy, v, replaced by vy, va, v3, where v3
is the successor of v, in dD;eq, We obtain a unique continuation of the segment
constructed above by

2 2 2 2 2 2 2
(wivaw3), (wavaw3), ..., (wg,_jvawy,), (Wg,v2v3),
2 _ .1 2 2y
where wi = Wy, and (wy, ..., wez) is a segment of dDpjye.
If the vertices of dDyeq are vy, . . ., v, then after n steps we obtain a segment of a

causal slice with horizontal edges in dDyeqUdDppye and whose first and last triangle
share the vertex vy. Finally this segment can be completed to a 2-dimensional
causal slice C by adjoining the triangles which contain vy and have one blue
edge (in dDy)ye) and two non-coloured edges. By construction C has boundary
0Dreq U 0Dpyye and evidently constitutes all of 9K \ int(Dyeq U Dypjye)- O

The next two propositions are elementary and ensure the existence of causal
disc-slices and sphere-slices with prescribed boundary discs, respectively bound-
ary components.

Proposition 1. Given two triangulated discs D1 and D, there exists a causal
disc-slice K such that D;eq = D1 and Dyje = Do.

Proof. We give an inductive argument. Suppose first that D, and D are triangles
Areg and Apyye, respectively. In this case, we can choose K to be the prism,
depicted in Figure 2, made up of one (1, 3) tetrahedron, one (3, 1) tetrahedron
and one (2, 2) tetrahedron.

Now assume K exists for some given D; and D,. If e is an arbitrary edge in
dD; = 0Dyeq C 0K one can glue a tetrahedron of type (3, 1) to K along the unique
triangle in the side of K which contains e. Thus we obtain a causal disc-slice K’
whose red boundary disc has an extra triangle compared to that of K but the blue
boundary disc is the same.

Similarly, given two neighbouring edges e = (x1x;3) and ¢/ = (xpx3) in dD,
see Figure 3, one can first identify e and ¢’ and then glue a sequence of (2,2)
tetrahedra sharing the identified e and ¢’ and whose blue edges are

1y2), 2y3), ..., (Vs=1Ys)

with the notation of Figure 3. The resulting triangulation K” is a causal disc-slice
with red boundary disc D/ ; obtained from D,cq by identifying e and e’ while
Dhpjye is unchanged.
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w v

Figure 2. A prism made up of 3 tetrahedra (xyzu), (uvwy), and (xyuw).

oD blue

X1 X2 X3 0Dreq

Figure 3. Triangles in the side of a causal disc slice.

Similar constructions can of course be made with Dy, replacing Dieq. Start-
ing with an arbitrary triangle, it is well known (see e.g. [7] or [6]) that D (and
similarly D) can be constructed by repeated application of the process of ei-
ther gluing on a triangle or by identifying two neighbouring boundary edges as
described. Hence, the existence of K follows from the preceding discussion by
induction. Note that since D; and D, are regular triangulations so is the causal
disc-slice K. O

Proposition 2. Given two triangulated 2-spheres, S1 and S», there exists a causal
sphere-slice K such that Sy is the red boundary of K and the blue boundary is S».

Proof. We remove one triangle from S and another one from S5. Then we obtain
two triangulated discs D and D,. By Proposition 1 there exists a causal disc-slice
K’ with boundary discs Deq = D7 and Dy = D». The side of K/, C, is a causal
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2-dimensional disc-slice whose boundary components are triangles. There are two
different possibilities for C, up to combinatorial equivalence, see Figure 4.

Figure 4. The two possible triangulations of the side of a disc-slice whose red and blue
boundary components are both a single triangle.

Note that we may assume that no pair of neighbouring triangles in C belongs
to the same tetrahedron. Indeed, if the two triangles are both forward (or both
backward) directed, this follows from the fact that otherwise the removed triangle
in either S or S, would be glued to another triangle along two edges contradicting
the regularity of S; and S,. If one backward triangle and one forward triangle in
C belong to the same tetrahedron in K’ it must be a (2,2)-tetrahedron which can
be removed from K’ without changing the red and blue boundary discs (only an
edge in C gets flipped). Since there are only finitely many (2,2)-tetrahedra in K’
the claim follows.

If now C is of type (a) in Figure 4, then we can glue to K’ a prism of the form
indicated in Figure 2 to obtain K as desired. If C is of type (b) we can glue onto
the prism of Figure 2 a (2,2)-tetrahedron to obtain a regular prism whose side C is
of the same type as C and hence can be glued onto K’ to obtain K as desired. [

3. Disc-slices and midsections

Given a causal disc-slice K we define its midsection Sk as in [9] for a causal
sphere-slice. More explicitly, we view K as being embedded in a Euclidean space
and consider a tetrahedron 1 = (viv,v3v4) in K with vertices vy, va, V3, Vg, i.€. ¢
consists of the points of the form

X = S1V1 + S2VUp + S3V3 + S4V4, ()

where s1, 52, 53, 54 > 0and 51 +s52 453454 = 1. Letting the height 2(x) be defined
as the sum of the coefficients of the red vertices in (1) the 2-cell F corresponding
to ¢ is defined as the set of points x in z of height i (x) = % If ¢ is of type (3,1) then
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F is a triangle whose edges by convention are coloured red; if ¢ is of type (1,3)
then F is likewise a triangle whose edges are coloured blue; if ¢ is of type (2,2)
then F is a quadrangle each of whose boundary edges are contained in exactly one
boundary triangle of ¢ containing a monocoloured edge of ¢; by convention each
edge of F inherits the colour of the corresponding monocoloured edge in ¢. It is
easy to show (see [9] for details) that the 2-cells so obtained define a 2-dimensional
cell complex homeomorphic to D? with edges coloured red or blue in such a way
that triangles are monocoloured while quadrangles are two-coloured with opposite
edges of the same colour. Moreover, this cell complex is uniquely defined up to
combinatorial isomorphism and is called the midsection of K, denoted by Sk.

By construction each vertex a of Sk is contained in a unique edge e, of K
whose endpoints have different colours and vice versa. Similarly, any red (blue)
edge of Sk is contained in a unique two-coloured triangle of K which contains
a red (blue) edge in 0K, and vice versa. Finally, each 2-cell of Sk is contained
in a unique tetrahedron of K, the tetrahedron being of type (3,1), (2,2) or (1,3)
depending on whether the cell is a red triangle, a quadrangle, or a blue triangle,
respectively.

In a 2-dimensional coloured cell complex as described we shall use the notation
(ab) and (abc) for edges and triangles with vertices a, b and a, b, ¢, respectively,
whereas a 2-cell with cyclically ordered vertices a, b, ¢, d, such that (ab) and {cd )
are red edges, will be denoted by (abcd ). Note that with this convention we have,
e.g., {abcd) =(dcba) =(cdab).

By a red, resp. blue, path in Sk we mean a sequence ey, ..., e, of red, resp.
blue, edges such that ¢; = (a;a;4+1) foreachi = 1,...,k — 1, and some vertices
ai,...,ag. In this case we say that the path connects a; and a;. The path is
called simple if either the vertices ay, ..., a are all different or if aq,...,ax—
are different while a; = ag, in which case the path is said to be closed.

Remark 1. With the notation just introduced it follows from the definition of Sk
that if a and b are two vertices of Sk then the red (blue) endpoints of e, and ep
are identical if ¢ and b are connected by a blue (red) path. Indeed, if e = (ab) is
ared edge of Sk, then e is contained in a triangle in K two of whose edges are e,
and e sharing a blue vertex. Evidently, the claim follows from this, and similarly
if e = (ab) is blue.

The converse statement that a and b are connected by a red (blue) path if ¢,
and e, share a blue (red) endpoint also holds as a consequence of the proof of
Theorem 1 below.
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Let us now note that since the monocoloured boundary discs of K are non-
empty, it follows that Sk contains at least one triangle of each colour. For the same
reason the boundary of Sx must contain edges of both colours. As a consequence,
the boundary of Sk consists of a (cyclically ordered) alternating sequence of
monocoloured paths which we shall call boundary arcs. The following few
lemmas describe properties satisfied by any midsection Sk.

Lemma 2. Two different vertices in a midsection Sk cannot be connected by both
a red and a blue path.

Proof. If two vertices a and b are connected by both a red and a blue path, then
the two edges e, and e;, in K have identical endpoints and hence are identical,
which implies a = b. O

Since 0Dyq is homeomorphic to S!, there does not exist a sequence of
quadrangles ¢qi,¢2,...,qx in Sk such that ¢; and ¢;4+; share a red edge for
i =1,2,...,k — 1 and the red edges in ¢; and g, not shared with ¢, or gx_1,
belong to dDeq. A sequence of quadrangles as we have described will be called
a red path of quadrangles connecting edges in dD4. The corresponding state-
ment with red replaced by blue is of course also true. We define a closed path
of quadrangles (red or blue) analogously. Obviously there cannot exist a closed
path of quadrangles in Sk because then K would contain a blue or a red edge in
its interior. The absence of paths of quadrangles just described follows from the
following more restrictive conditions.

Lemma 3. Let Sg be a midsection, let p denote a closed simple red (blue) path
in Sk and let u be a simple red (blue) path connecting two vertices belonging to
different blue (red) arcs in the boundary 0Sk. Then the following hold:

(i) the interior of p, i.e. the component of Sk \ p not containing any boundary
edges, contains solely red (blue) edges;

(ii) the two endpoints of u are the two endpoints of a red (blue) boundary arc.

Proof. (i) It is sufficient to consider the case when p is red. If p encloses a
blue edge it clearly also encloses a blue triangle. Since the boundary of Sk
contains blue edges the exterior of p likewise contains a blue triangle. Evidently,
all red paths connecting a vertex in an interior blue triangle with a vertex in an
exterior blue triangle must intersect p. For K this means that Dy consists of
two nontrivial subcomplexes sharing a single vertex (namely the common blue
endpoint of the edges e, for a € p) which contradicts the fact that Dy, is a disc.



376 Bergfinnur Durhuus and Thordur Jonsson

(i) Assume p is red and connects two vertices a and b belonging to two
different blue boundary arcs «; and «5. If the conclusion of ii) does not hold one
sees that the common blue endpoint of the edges e, and e; in K would separate
dDy)ye into two non-trivial parts sharing only this vertex. This contradicts the fact
that 0Dy is a simple closed curve. Obviously, a similar argument applies when
W is blue. O

Lemma 4. Let e = {ab) and f = (a’b’) be two disjoint blue (red) edges in the
midsection Sk. Suppose a and a’ as well as b and b’ are connected by a red (blue)
path. Then there exists a blue (red) path of quadrangles connecting e and f.

Proof. It suffices to prove the Lemma for blue edges. Let A, and Ay be the two-
coloured triangles of K that contain the blue edges e and f, respectively. Then A,
and A share ablue edge (xy) in the blue boundary of K and also have red vertices
ve and vy in dK. Since e and f are disjoint v, # vy. If (xy) belongs to dDpye,
the star of (xy) consists of a sequence (xyvivs), (xyvav3), ..., (Xxyvg_1vg) of
(2,2)-tetrahedra sharing (xy) and an additional (1,3)-tetrahedron (xyzvg). We
have ve, vy € {v1,..., vt} and the claim follows since each (2,2)-tetrahedron
corresponds to a quadrangle in the midsection. If (xy) is an interior edge in Dyjye
then the first (2,2)-tetrahedron above has to be preceded by a (1,3)-tetrahedron
(xyz'vy) and then the rest of the argument is unchanged. O

Proposition 3. The midsection Sk of a causal disc-slice K determines K uniquely
up to combinatorial equivalence.

Proof. This follows by arguments identical to those in [9] for causal sphere-
slices. O

Definition 4. We let SD denote the set of all coloured cell complexes S home-
omorphic to a disc (with cells as described previously) which have at least one
triangle of each colour and satisfy the following conditions.

(o) No pair of different vertices in S are connected by both a red and a blue path.

(B1) Each closed simple red (blue) path encloses solely red (blue) triangles in its
interior.

(B2) Considering the division of 9§ into red and blue arcs, there is no red (blue)
path connecting two vertices belonging to different blue (red) arcs unless they
are the two endpoints of a red (blue) arc.

(y) Ife = (ab) and f = (cd) are two disjoint blue (red) edges in S such that a
and c as well as b and d are connected by a red (blue) path, then there exists
a blue (red) path of quadrangles connecting e and f.
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Remark 2. As mentioned previously, condition (f8;) implies the absence of
closed red (blue) paths of quadrangles. Indeed, the outer blue (red) boundary
component of such a path would violate (8;). Similarly, condition (8) implies
that no two different edges in dS can be connected by a red or blue path of
quadrangles. Likewise, it follows that two different edges in the same triangle
cannot be connected by a path of quadrangles, since it would contradict (). One
can demonstrate by explicit examples that property (y) does not follow from the
first three properties.

It was noted in [4, 5] that the dual graphs that arise in the matrix model formula-
tion of 3-dimensional causal triangulations and correspond to 3-dimensional sim-
plicial manifolds satisfy some extra conditions that are closely related to («), (81)
and (y) above.

Definition 5. We say that a 2-dimensional coloured cell complex satisfies condi-
tion (8) if for any pair of distinct red, resp. blue, triangles it is not possible to join
their vertices pairwise by blue, resp. red, paths.

Lemma 5. Condition (8) holds for all S € 8D.

Proof. Given the two triangles, let us assume they are red and that three blue paths
exist connecting a to a’, b to b’, and ¢ to ¢’. It follows easily from property (c)
that the two triangles must be disjoint. Using (y) there exists a (non-trivial) path
pab Of quadrangles connecting (ab) to (a’b’). Similarly, a path p,. of quadrangles
exists connecting {ac) to {a’c’). Each of these two paths contains a blue path
connecting @ to a’ which do not intersect each other (although they may touch at
some vertices or edges). Hence they define a closed curve, whose interior consists
of blue triangles by (8;). In particular, all edges of those blue triangles as well as
all red edges of p,p and p,. are interior edges of S, and the exterior of the curve
contains the two original triangles and also the path pp. of quadrangles connecting
(be) to (b'c’), whose existence again follows from (y). Similarly, considering
the closed blue curves determined by p,p and pp., respectively pp. and pg, we
conclude that all edges are interior in S which contradicts the fact that S is a
disc. |

Lemmas 2-5 together with Proposition 3 show that the mapping ¥: K + Sk
is a well-defined injective map from the set CD of causal disc-slices into §D. We
now aim to prove the following main result of the present paper.

Theorem 1. The mapping v: K — Sk is bijective from the set CD of causal
disc-slices onto the set 8D of coloured 2-dimensional cell complexes.
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4. Proof of the main result

In this section we prove Theorem 1. The strategy is to show first that from any
S € 8D we can construct a unique simplicial complex. We then proceed to show
that this simplicial complex has the topology of a ball and is actually a causal disc-
slice. The midsection of this causal slice is the coloured cell complex we started
with.

Proof of Theorem 1. Let S € 8D be given. In order to construct the correspond-
ing K = Kg € CD we start by associating to each vertex a € S a pair of new
vertices r,, b, which will form the vertex set K g of Kg with the following identi-
fications:

(%) rq = rp (resp. b, = byp) if a and b are connected by a blue (resp. red) path,

where a, b are arbitrary vertices in S. Thus K9 consists of all the vertices r4, bg
with a € S subject to the identifications (). By definition we attach the colour
red to the vertex r, while b, is coloured blue.

The set K3 of coloured tetrahedra is obtained from the collection of 2-cells
of S as follows: for each red triangle A = (abc) let ta be the (3,1)-tetrahedron
(rarprebg) where we notice that all 4 vertices are different by («) and b, = by =
b.; similarly, if A is ablue triangle, letta = (bybpb.14); finally, for the quadrangle
q = (abcd), we let t; be the (2,2)-tetrahedron (r4rpb4bc); again it follows from
(o) that the four vertices are different and ¢, depends only on the quadrangle g.

Thus to each 2-cell F of S there corresponds a tetrahedron ¢ with vertices
in Kg. This defines an abstract 3-dimensional coloured simplicial complex K
whose edges and triangles are obtained as sub-simplices of the tetrahedra.

Let us first verify that F + tF is bijective between 2-cells in S and tetrahedra
in Kg. By definition the mapping is surjective. Consider two 2-cells F and F’
such that tg = tp/. Clearly F and F’ are both triangles with the same colour or
they are both quadrangles.

Suppose F = (abc) and F' = (a’b’c’) are, say, red triangles. Then tp = tp-
means that b, = by = b, = by = by = b and {rq, 1y, rc} = {rg’, 1y, 7). By
(@) this implies that {a, b, ¢} = {a’, b’, ¢’} and hence (abc) = (a’b’c’).

If F = (abcd) and F' = (a’b’c'd’) are quadrangles then tr = ¢F/ implies that
{ra,rp} = {ra,rpy} and {b,, b} = {by, b} Using () it is then straightforward
to check that (abcd) is equal to (a’b’c’d’). We have thus established that the
tetrahedra of Kg are labelled by the 2-cells of S.
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Next let us consider the triangles in K. These fall into four disjoint classes:
(i) Red triangles (r,rpr.) where (abc) is a red triangle in S.
(ii) Blue triangles (b,bpb.) where (abc) is a blue triangle in S.
(iii) Triangles (rorpb,) where (ab) is a red edge in S.
(iv) Triangles (bybpr,) where (ab) is a blue edge in S.

Using property (§), which holds by Lemma 5, we see that red triangles in Kg
corresponding to different red triangles in S are different. Such triangles are
not shared by different tetrahedra and therefore lie in the boundary of Kg. The
corresponding statement about blue triangles is also clearly true.

Next consider a triangle (r,rpb,) where (ab) is a red edge in S. By definition
of tF it holds that, if (ab) belongs to a 2-cell F in S, then (r,rpb,) belongs to the
boundary of ¢F.

Conversely, suppose the triangle (r,7b,) belongs to the boundary of a tetra-
hedron ¢f. If F is a red triangle {a’b’c’), then (r,rpb,) equals one of the triangles
(rarrprbar), (rarrerby), (rprrerbgr). By (@) this implies that {a, b} equals one of
{a’',b'}, {a’,c'}, {b', ¢’} and hence the edge (ab) equals one of the edges {a’d’),
(a’c"y, (b'c’). Thus, (ab) belongs to F. Similarly, if F is a quadrangle (a’b’c’d’),
it follows that (r,rpb,) equals (rq 1y bgar) or (rgrrpber). By (a) this implies that
(ab) = (a’b’) or (ab) = (c¢’d’) and hence (ab) is an edge in F.

From these observations follows that two tetrahedra ¢ and ¢+ share a triangle
A = (rarpbg) (or A = (bgbpry)) if and only if F and F’ share the edge (ab).
In particular, the interior triangles in K5 are labelled by the interior edges in .
The boundary triangles in K are labelled by the boundary edges of S together
with the monocoloured triangles in S which label the monocoloured boundary
triangles in Kg.

We next consider the edges in Kg. In particular, we want to show that mono-
coloured edges lie in 0Kg. Let (r,rp) be a red edge in Kg. This means that a, b
can be assumed to belong to some 2-cell F in S such that (ab) is a red edge in F.
If F = (abc) is ared triangle it follows from the preceding paragraph that (r,7)
belongs to dKg since it belongs to the red triangle (r,rpr.). Alternatively, if (ab)
belongs to a quadrangle ¢, then by (8;) and (8,) we have that ¢ belongs to a red
path of quadrangles connecting either two red triangles or a red triangle and a red
boundary edge in S. This shows that (r,7p) is an edge in a red triangle in dKs. Ap-
plying similar arguments to blue edges in Ks shows that all monocoloured edges
lie in the boundary.

The correspondence a — (r,b,) between vertices in S and the two-coloured
edges of Ky is bijective by property («). Moreover, (rzb,) belongs to 0Kg
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if and only if a belongs to 3§, since it belongs to the two boundary triangles
corresponding to the edges in 9SS incident on a.

Finally, consider a red vertex x in K. It belongs to some tetrahedron tr where
Fisa2-cellin S. If F is a quadrangle or a red triangle, then x belongs to a red
edge and hence, by the preceding paragraph, it belongs to dKs. If F is a blue
triangle (abc) then x = r, = rp = r.. Since we assume that there is a least
one triangle of each colour in S we can pick a path in § starting at @ and ending
at vertex a’ in a red triangle (a’b’c’). There is a first vertex d in the path which
is contained in a red edge and we have x = r;. Hence, x belongs to dKs. An
identical argument shows that a blue vertex in K is necessarily contained in the
boundary. This completes the argument that all monocoloured simplices in Kg
belong to the boundary.

The next thing to consider is the structure of dKs. We have seen above that
there is a one-to-one correspondence between the boundary edges in S and the
two-coloured triangles in dKs. It follows that these triangles form a sequence
Ay, ..., A corresponding to the boundary edges ey, ..., e in dS ordered cycli-
cally. Setting e; = (a;a;+1), where aq, ..., ay are the cyclically ordered vertices
of dS (with ag4+1 = a;), we see that A; and A;4; share the edge (ral.+1 bal.+1 ). By
(B2) the triangles Ay, ..., A make up a 2-dimensional causal slice C, homeomor-
phic to the cylinder S x [0, 1], whose red and blue boundary circles are denoted
0Creq and dCyye. At this stage we need the following lemma whose proof we will
postpone a little.

Lemma 6. The simplicial complex Ks is homeomorphic to the 3-ball so its
boundary is homeomorphic to the 2-sphere.

By the above lemma 0Ks \ C consists of two discs Dieq and Dypj,e Whose
boundaries are dCreq and dCppe. We claim that Do is made up exactly of the
red triangles in 0K g and similarly for Dy. Indeed, since Dy¢q is a 2-dimensional
pseudomanifold any triangle in D4 can be edge-connected to dDeq = 9Creq by
a sequence of triangles in Dy.q. The triangles in D4 are monocoloured and are
therefore either red or blue. But a blue triangle cannot be glued to a red triangle
s0 Dieq consists of red triangles. These must be all the red triangles in dKs since
Dy1e consists solely of blue triangles. We have therefore shown that K g is a causal
disc slice.

Now it is not hard to verify that the midsection of Kg is combinatorially
isomorphic to the original midsection S used to construct Kg. We already noted
above that the vertices of S are in bijective correspondence with the two-coloured
edges in Kg. By the definition of the midsection S’ of Ky its vertices are the
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midpoints of the two-coloured edges of Ks, and hence can be labelled by the
vertices of S. In this way the midsection of ¢ clearly gets identified with F and
the edge in S’ corresponding to an interior triangle (r,7pb,), respectively (babpry),
of Ky is the red, respectively blue, edge (ab) in S. Hence, the correspondence
between vertices induces bijective correspondences between 2-cells and 1-cells as
well, and so S and S’ are combinatorially isomorphic. This completes the proof
of Theorem 1. O

It remains to prove Lemma 6. For this purpose an alternative construction
of Ks by a gluing procedure is a useful tool. We begin by explaining this
construction.

For each 2-cell F in S and each vertex a of F we define a red vertex rf and a
blue vertex b} suchthatrf = rf' resp. b)Y = bf,if (ab) is ablue, resp. red, edge
in F. In this way four different vertices are defined for each 2-cell F and they in
turn define a coloured (abstract) tetrahedron 77 considered as a simplicial complex
including its subsimplices. As before tf is of type (3, 1), (2,2), or (1, 3) depending
on whether F is a red triangle, a quadrangle, or a blue triangle, respectively.
Without further identifications the tetrahedra so defined are pairwise disjoint and
we note that the definition of K g can be reformulated by stating that K is obtained
from the collection of tetrahedra tr labeled by the 2-cells of S by imposing the
identifications of simplices implied by the relations

(xx) 11 = rlfz (resp. pEr = blfz) if either a = b or a is connected to b by a blue
(resp. red) path,

where a, b are arbitrary vertices in S and Fy, F, are arbitrary 2-cells in S contain-
ing a and b, respectively.

We next show that K¢ can equivalently be obtained by applying a suitable
gluing procedure to the collection of tetrahedra defined above. Given two 2-
cells F; and F, sharing a red edge (ab) we have that tr, contains the triangle
(rf ! r,f ik ') and tF, contains the triangle (rf 2 r,f 2pF ?). We say that 7, is glued
to tr, along (ab) if rf ! is identified with rf 2, rlf ! is identified with rlf 2 and bf lis
identified with 5£2 in 7, and tr, and their subsimplices. Similarly, gluing along
a blue interior edge in S is defined. In this way, given an interior edge (ab) of §,
the tetrahedra tr, and tr, corresponding to the 2-cells F; and F, sharing (ab)
can be glued along (ab).

We now define the simplicial complex K by imposing the identifications
of the simplices in the collection {tr} implied by gluing pairs of tetrahedra as
described along all interior edges of S. We claim that Ks = K. In order to
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prove this we need to verify that the identifications of vertices implied by the
gluing conditions are identical to those given by (xx).

First, consider rf" and rf” where a is a vertex in two different 2-cells F’ and
F”. Since S is a manifold there exist 2-cells Fy, F», ..., F, suchthat F; = F’ and
F, = F” and F; and F; share an edge e; containing a foreachi = 1,...,n.
From the gluing of 1, and tf,,, along ¢; it follows that rFi = rf i*1 and
bEi = bt fori = 1,....n — 1, and hence we conclude that 77" = rF" and
bF" = pF",

Next consider two different vertices @ and b in S and assume they are connected
by a blue path with edges (a1a2), (a2a3), ..., {(amam+1), where a; = a and
am+1 = b. Choosing arbitrary 2-cells Fy,..., F,, such that {(a;a;+;) belongs
to F;,i = 1,...,m, we have that rf;" = r;;f ', and by the preceding paragraph
ral,, = riijll for all i. It follows that ra ' = /™. Of course, the corresponding
result for blue vertices holds if @ and b are connected by a red path.

Conversely, it is clear that if @ and b are different vertices belonging to 2-cells
F’and F”, respectively, and rf" = rf " then a and b are connected by a blue path.
Indeed, there exists a sequence of vertices by, ..., b, and corresponding 2-cells

Fy,...,Fy,suchthata = b, F' = Fiandb =b,,, F" = F, andr]f;" is identified

with r:; ’: either through a gluing of 75, to tF, , along an edge containing b;, in
which case b; = b; 41, or else F; = F;4+1 and b; is connected to b;+; by a blue
edge in F;. Similarly, if b "= blf " then a and b are connected by a red path.

This shows that the identifications pertaining to Ks and K’ are the same and
hence Ks = K as claimed. We are now ready to prove Lemma 6.

Proof of Lemma 6. Let S1,S5,...,Sy = S be alocal construction (see [8, 6]) of
the midsection S. This means that S is a coloured 2-cell and S, is obtained
from S, by either (i) gluing a coloured 2-cell to S, along an edge e in 95, or (ii)
by identifying two edges e; and e; in 95, which have the same colour and share
a vertex. The existence of such a construction is well known and easy to establish
in the 2-dimensional case. For further details we refer to [6, 7]. Evidently, all the
S»’s have the topology of a disc and the 2-cells as well as interior edges of S, can
be identified with corresponding 2-cells and interior edges in S.

The correspondence between tetrahedra tr in Kg and 2-cells F of S and the
local construction of S gives rise to a sequence of coloured simplicial complexes
K,,n=1,..., N,where K, is defined by gluing the tetrahedra tr assigned to the
2-cells in S, along the interior edges of S;,. In particular, K; is a single tetrahedron
and Ky = Kg, since Sy = S and Kg = KfS as shown above. Moreover, K+ is
obtained from K, by gluing a tetrahedron tr to a tetrahedron 7f/ in K, along an
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edge (ab). In case tF is not in K,, already it is clear that the topological class of
K, equals that of K, 1. We shall now argue that the same holds if 7 and tr/ both
belong to K. Since K; is homeomorphic to the 3-ball the same will consequently
hold for K, and hence the proof of the lemma will be completed.

If 7r and 7F’ belong to K, and are glued along the edge e in K, then F and
F’ belong to Sy, and S, 4 is obtained from S, by identifying two edges ¢; and e,
in 05, sharing a vertex v, such that the identified edges equal e.

U1 v2
el ez
.

|
RN

[ ]
v
Figure 5. The local construction of the midsection and the corresponding 3-dimensional

simplical complex. Identifying the edges e; and e> corresponds to identifying triangles
A 1 and Az.

Let us set e; = (vvy) and e = (vv,) and assume e is red. Then K, 4;
is obtained from K, by identifying the triangles Ay = (rf;1 rE by and Ay =
(rE2rF2bf2) which share the edge (r'bf") = (r[2bL?) in K,. This is illustrated
on Figure 5. We need to show that no further identifications of simplices are
implied.

Additional identifications can only arise if there is a vertex x € 0K, which is
a neighbour of both r.' and r.2 in which case the edges (xr+,') and (xro) are
identified in the step from K, to K, 4. We claim that no such x exists except bf !

F
and ry '.

. . F .
First, suppose x is a blue vertex, x # b, '. Then there are two vertices w; and
. . . F| F; F/ F; . .
w, in the midsection such that b,,; = x = b,3 and r,) = r,/,i = 1,2,in K,

1

for some 2-cells F{, F; in S,,. This implies that w; and w, are connected by a red
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path in S while w; is connected to v; by a blue path in S fori = 1,2. When we
now take the step from S, to S, +; and identify e; and e, the vertices v; and v, get
identified and hence w; and w, are connected both by a blue path in S and by a
red path, see Figure 6. Hence, w; = w,, and we get a closed blue path enclosing
the red edge e which is impossible by (81).

U1 v2

<o

w TTTwo

Figure 6. Paths arising in the local construction of the midsection when x is blue.

Now suppose x is a red vertex. Then there are four vertices wy, wo, u1, u5 in
the midsection such that (wyw,) and (uyus) are red edges and x = rf = r[F"
rk 1’ = ril, r,flﬁ = 2 for some 2-cells F', F” in S,,. It follows that w, and u,
are connected by a blue path p; and similarly that w; is connected to vy and u; is

connected to v, by a blue path in S, see Figure 7.

U1 v2
®
v
wy e ui

wzb\_/OMZ

P1

Figure 7. Paths arising in the local construction of the midsection when x is red.

Upon merging e; and e, we get as above a blue path p, from wy to u;. It follows
by condition (y) that the edges (w;w,) and (u;u,) are connected by a blue path of
quadrangles. This path of quadrangles either lies inside the closed loop made up
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of p1, p» and the edges (w;w,) and (uu,) or outside it, see Figure 8. In both cases
we obtain a closed blue loop containing a red edge in its interior which violates
(B1)- This completes the proof of Lemma 6. |

Figure 8. Paths of quadrangles arising in the local construction of the midsection when x
is red.

5. Sphere-slices

In this section we generalise Theorem 1 to the case of sphere-slices. It is clear
from the proofs of Lemmas 2 and 4 that the midsection of any sphere-slice
has properties («) and (y), while (8,) is irrelevant as it refers to the boundary.
Furthermore, the proof of Lemma 3 shows that an analogue of (8;) still holds in
the following form:

(B) Each simple closed red (or blue) path divides the midsection into two com-
ponents, one of which is red (blue).

Since a simplicial decomposition of the 2-sphere requires at least 4 triangles it
follows that S must contain at least 4 triangles of each colour. Let ¢ denote the
mapping that takes any sphere slice K to its midsection S.

Definition 6. We let S denote the set of all coloured cell complexes S homeomor-
phic to the 2-sphere (with cells as described previously) which have at least four
triangles of each colour and satisfy the conditions (), (8), and (y).
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Lemma 7. Property (8) holds for all S € 8.

Proof. Applying the same argument as in the proof of Lemma 5 we conclude that
if (@), (B), and () hold for a coloured spherical cell complex S and there are two
different red triangles in S whose vertices are pairwise connected by blue paths,
then there exist three paths of quadrangles connecting the edges of the triangles
pairwise and the complement of those paths consists entirely of blue triangles
together with the two given red triangles in S'. In particular, there can be only two
red triangles, which contradicts S € S. Clearly, a similar argument holds for blue
triangles. |

We now state and prove the main result in this section.

Theorem 2. The map ¢: K — S is a bijection from the set CS of causal sphere-
slices to the set § of coloured 2-dimensional cell complexes.

Proof. Given Sy € 8§ it is enough to construct a sphere-slice K such that ¢ (K) =
So. The idea of the proof is to cut a piece out of Sy in such a way that we obtain a
cell complex S in €D. Then we use Theorem 1 to obtain a disc-slice with the given
midsection S'. Finally, we fill in the “hole” of the disc-slice to obtain a sphere-slice
with midsection Sy. We divide the argument into 5 parts.

(1) Let R be a maximal edge-connected cluster of red triangles in Sy and let
S = So \ int(R). Condition () and the Jordan Curve Theorem imply that R
and S are (closed) discs. Moreover, since R is maximal, all edges in dS are
red and contained in quadrangles in S. Pick one of these quadrangles ¢ and let
I' = (91,92, .. .,qn) be the maximal blue path of quadrangles containing ¢q. Let
p = (v1,v2,...,v,) be the red path in I" that shares at least one red edge with 9§,
see Figure 9.

U K
EA Iy L
Sy p A
:I/\’/l \\/\\‘ '
! ! “\/\\
v]\lwl wn\ - Un

Figure 9. A maximal path of quadrangles in S touching the boundary.
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The other red path in T, p’ = (wy, wa, ..., wy), shares no vertex with 05 as
a consequence of condition («). Likewise, p and p’ do not intersect and neither
p nor p’ can have multiple vertices, since it would contradict («). Moreover, if
1 <i < j < n are such that v;,v; € 95, then vxy € 9S for all k between i and
j since otherwise R is not maximal due to (8). Hence, I" intersects dS along a
curve segment p, see Figure 9. Note that i does not contain all of S because this
would again contradict condition («), see Figure 10.

Figure 10. If 3S = u then w’ and w” are connected both by a red and by a blue path.

The above observations show that the boundary of the strip covered by the
path of quadrangles T", which consists of p and p’ and the two blue edges
(viw;) and (v,wy), is a simple curve. This curve shares exactly a segment
n = (Vi,Vi41,...,vj) with 0§ where 1 <i < j < n. Hence, removing the strip
covered by T" from S we obtain a new disc S’ whose boundary consists of the blue
edges (vyw;) and (v, wy) together with the red paths p’, S \ i, (vy,...,v;) and
(vj,...,vn), see Figure 11.

Now consider the blue triangles A; and A, in S’ containing (vyw;) and
(vawy), respectively. Denote the third vertex in these triangles by u; and us,
respectively, see Figure 11. It follows from condition (§) (see Lemma 7) that
U1 # u, and they cannot be connected by a red path. Moreover, u; and u, are not
in 9§’ since this would violate (). Now, removing A; and A, (including edges
(viwy) and (v, wy,)) from S’ we obtain another 2-dimensional cell complex S”
with the topology of a disc and a boundary consisting of the blue paths (v, u;, wy)
and (vy, Uz, wy,) and the same red paths as 0S’.
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Figure 11. The cell complex S’.

(2) We now claim that S” belongs to 8D. Since paths in S” are also paths in
So, conditions («) and (B1) are obviously fulfilled. Furthermore, S” contains at
least two blue triangles, and since there exist red edges in dS” the existence of at
least one red triangle in S” will follow once (8,) has been established for S”.

In order to verify (8,) we recall that u; and u, cannot be connected by a red
path. Connecting u; to w, or v, or connecting u, to w; or vy by a red path
evidently contradicts (). Similarly, a red path from v, to w, or from w; to v,
contradicts (). This proves () for S” as far as red paths are concerned.

Now let  be a blue path in S” connecting the vertex wy to a vertex v in the
other red arc of dS”. Viewing n as a path in Sy and extending it by the edge (w vg)
we obtain a blue path 1’ in Sy connecting v to v. If v # v then condition () is
violated. If v = v then 7 is a closed blue path in Sy with edges of both colours
inside and outside unless k = 1 or k = n. This proves condition (85).

In order to verify condition (y) for S” let e; = (x1y1) and e; = (x2y2) be
two blue edges in S” such that x; and x, as well as y; and y, are connected by
red paths. Then, since (y) holds for Sy, there is a blue path of quadrangles A in
So connecting e and e,. Since the blue boundary edges of S” are not contained
in quadrangles outside S” the path A cannot leave S”. This establishes condition
() for the blue edges.

Letnow e; = (x1y1) and e = {x2y») be two red edges in S” such that x; and
xo as well as y; and y, are connected by blue paths A’ and A”. By condition («) the
paths A" and A” do not intersect and we can assume without loss of generality that
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they have no multiple vertices. Hence, the closed curve consisting of A/, ” and
the two edges e; and e, is simple and encloses a disc D in S”. Since condition
(y) holds for Sq there exists a red path T of quadrangles in Sy connecting e,
and e, and evidently I" is either contained in D or in its exterior. However, the
latter case can be excluded as follows. Observe that neither D nor I/ can intersect
R. Tt follows that one of the closed curves made up of either A’ or A” and one
of the blue paths in I'" must separate R (in Sp) from the union of D and T in
contradiction with condition (8), see Figure 12. Note, however, that the curve in
question is not necessarily simple, since A’ may touch the blue path in ' with
the same endpoints, and similarly for A”. Using property (8) one can in this case
remove closed parts of the curve so as to obtain a simple closed blue curve with
the same separating property. Thus I' is contained in D (and hence in S”) and
this proves that condition (y) holds for S”.

Uz
ui

Figure 12. A path of quadrangles outside D connecting the edges e; and e> and the blue
paths A" and A" connecting their endpoints. A priori, parts of the path may be outside S”.

(3) We can now apply Theorem 1 to conclude that there is a unique disc-slice
K" € €D whose midsection is S”. In view of the structure of dS”, the side of K”
consists of two pairs of adjacent backwards directed triangles and two arrays of
forward directed triangles corresponding to the two red arcs in 9.S”.
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We now first construct from K” a new simplicial complex C by gluing to
K" the tetrahedra corresponding to the quadrangles ¢i,...,¢q, in I and those
corresponding to the blue triangles at the ends of I'. One way to accomplish
this is to consider the simplicial complex K, whose midsection is I" with the two
blue triangles attached to its ends. Clearly Ky is a ball and we may think of it
as a causal slice whose side consists of two pairs of adjacent backwards directed
triangles and two arrays of forward directed triangles of size n whose red edges
are pairwise identified and constitute Dyeq. On the other hand, Dy consists of
two triangles with one common edge, see Figure 13.

Figure 13. The cell complex Ko in the case n = 3.

Now consider one array of forward directed triangles in 0K together with the
two adjacent backwards directed triangles. These triangles form a disc in 0Ky and
we can glue Ko to K” along this disc and the corresponding disc in dK” or, more
precisely, the gluing is performed along the edges (uiwi), (wiwaz), ..., (wyus),
see Figure 11. Since both K¢ and K” are simplicial balls, so is the resulting
complex K"#Kj. Its Euler characteristic is therefore —1.

Note also that K”#K has a side consisting of two pairs of adjacent backwards
directed triangles and two arrays of forward directed triangles, one of which has
length n. The blue edges in the backwards directed triangles form a closed curve.
We now identify the two backwards directed triangles in each pair, i.e. we glue
tetrahedra in K"#K along the edges (u;v;) and (u,v,). Doing this, the number of
triangles in the simplicial complex decreases by 2, the number of edges decreases
by 4 and the number of vertices decreases by 1 and we obtain a new simplicial
complex C’ with Euler characteristic —2.
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The side of C’ is a closed circuit of forward directed triangles sharing a
single blue vertex. We now obtain the simplicial complex C by gluing tetrahedra
in C’ along the egdes (vgvg41) in the midsection, for k = 1,...,i — 1 and
k = j,....,n— 1. Itis easy to check that the Euler characteristic does not change
with these identifications so

x(C) =—
By construction, the midsection of C is Sp \ R.

(4) Now return to the disc R that was removed from Sy in the first step. Let R
be the cone over R, i.e. R consists of the tetrahedra obtained by adding a common
blue vertex to all the triangles in R or alternatively, by gluing the tetrahedra
corresponding to triangles in R along interior edges in R. We can now glue R
to C along their sides, i.e. along the edges in dS = dR. The resulting simplicial
complex K has Euler characteristic

X(K) = x(C) + x(R) + x2(9R) = —

since y(R) = —1, and x2(dR) = 1 is the Euler characteristic of the cone dR over
dR, which is in fact a disc.

(5) Since K" is adisc-slice it is evident from the preceding construction that 0K
consists of two triangulated 2-spheres, one red and one blue. The midsection of K
is by construction Sy. By gluing on cones over the two boundary components of K
we obtain a simplicial complex K with Euler characteristic 0. Since K is clearly a
pseudomanifold we conclude (see [12], p. 216) that K is also a manifold. In fact,
K is simply connected since any closed curve can be deformed to a closed curve
on the midsection which is simply connected. Hence, K is a 3-sphere by [10] and
K is a cylinder as desired.! This completes the proof of Theorem 2. |

6. Discussion

A few remarks pertaining to extensions and variations of the present work are in
order. As already indicated, the requirement in Definition 2 that D;eq and Dyjye
be discs is unnecessarily restrictive. Thus, replacing (i i) of Definition 2 by

(ii") all monocoloured simplices of K belong to the boundary 0K, such that the
red (resp. blue) ones form a connected and simply connected subsimplex Dieq
(resp. Dylue) of 0K,

1 This can presumably be proven by lesser means but the argument does not seem to be
entirely trivial and we will not elaborate on it here.
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leads to a convenient class of causal triangulations. Let us call this class CD’. In
particular, any coloured tetrahedron belongs to €D’ (but not to €D) and so does
the complex depicted in Figure 13.

By inspection of the proofs given above it is seen that condition (8,) is used
in the construction of a causal disc slice from a cell complex in €D solely to
ensure that 0D g and dDyyye are simple curves. It follows that dropping (8,) one
obtains a one-to-one correspondence between €D’ and the set SD’ of coloured cell
complexes homeomorphic to a disc and fulfilling conditions («), (81), and (y).

On a different note, one may observe that condition (y) is used partly to ensure
the validity of condition (§) (see Lemma 5) and otherwise only in the final part of
the proof of Lemma 6 ensuring that the complex K is a simplicial ball. It is natural
to consider replacing property (y) by property (§) or dropping both of them. This
would require stepping outside the category of simplicial complexes and adopt a
different setting encompassing singular triangulations.

Finally, one might also envisage characterising causal triangulations in higher
dimensions, which evidently would lead to more involved higher dimensional
coloured cell complexes of which little is known at present. In [9] it is explained
how the midsections of 4-dimensional causal triangulations are made up of tetra-
hedra and prisms which replace the triangles and quadrangles which make up the
midsections considered in this paper.
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