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Lie groups of controlled characters

of combinatorial Hopf algebras
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Abstract. In this article groups of “controlled” characters of a combinatorial Hopf algebra

are considered from the perspective of infinite-dimensional Lie theory. A character is

controlled in our sense if it satisfies certain growth bounds, e.g. exponential growth. We

study these characters for combinatorial Hopf algebras. Following Loday and Ronco, a

combinatorial Hopf algebra is a graded and connected Hopf algebra which is a polynomial

algebra with an explicit choice of basis (usually identified with combinatorial objects such

as trees, graphs, etc.). If the growth bounds and the Hopf algebra are compatible we prove

that the controlled characters form infinite-dimensional Lie groups. Further, we identify the

Lie algebra and establish regularity results (in the sense of Milnor) for these Lie groups.

The general construction principle exhibited here enables to treat a broad class of examples

from physics, numerical analysis and control theory.

Groups of controlled characters appear in renormalisation of quantum field theories,

numerical analysis and control theory in the guise of groups of locally convergent power

series. The results presented here generalise the construction of the (tame) Butcher group,

also known as the controlled character group of the Butcher–Connes–Kreimer Hopf alge-

bra.
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Introduction and statement of results

Hopf algebras and their character groups appear in a variety of mathematical

and physical contexts, such as numerical analysis [45, 51], renormalisation of

quantum field theories [46, 18], the theory of rough paths [37, 13] and control

theory [32, 56]. In the contexts mentioned above, these Hopf algebras encode

combinatorial information specific to the application. On the structural level,

the combinatorial nature of the Hopf algebras allows one to identify them with

polynomial algebras built from combinatorial objects like trees, graphs, words or

permutations. Thus one is naturally led to the notion of a combinatorial Hopf

algebra. Following Loday and Ronco, a Hopf algebra is combinatorial if it is

a graded and connected Hopf algebra which is isomorphic as an algebra to a

polynomial algebra.1 In this picture, the variables which generate the polynomial

algebra correspond to the combinatorial objects. However, in applications one

is usually not only interested in the Hopf algebra, but in its character group, i.e.

the group of algebra homomorphisms from the Hopf algebra into a commutative

target algebra. Elements in the character group can for example be identified

with formal power series. These correspond in numerical analysis to formal

1Note that the isomorphism to the polynomial algebra is part of the structure of a combi-

natorial Hopf algebra. The notion of combinatorial Hopf algebra used in the present paper is

more specialised than the notion of combinatorial Hopf algebras as defined in [44]. In contrast

to ibid. combinatorial Hopf algebras in our sense are always graded and connected and we re-

strict to Hopf algebras which are free algebras over a generating set (in ibid. also the cofree case

is considered).
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numerical solutions of differential equation [10] and to Chen–Fliess series in

control theory [23]. Further, in the renormalisation of quantum field theories

the correspondence yields (formal) power series acting on the space of coupling

constants [18, Chapter 1, 6.5].

A Lie group structure for the character groups of a large class of Hopf algebras

was constructed in [8]. However, it turns out that the topology and differentiable

structure of the character group is not fine enough to treat for example (local) con-

vergence and well-posedness problems which arise in applications. As discussed

in [11, 9] this problem can not be solved in general, since the group of characters

does not admit a finer structure which still turns it into a Lie group.

One way to remedy this problem is to pass to a suitable subgroup of characters,

which admits a finer structure. The groups envisaged here correspond to groups

of power series which converge at least locally. Groups arising in this way have

been investigated in numerical analysis [10] and in the context of control theory,

where in [32] a group of locally convergent Chen–Fliess series is constructed. For

example, the group treated in numerical analysis, called tame Butcher group, cor-

responds to a group of formal power series, the B-series. Local convergence of

these power series yields locally convergent approximative (numerical) solutions

to ordinary differential equations. Using the Lie group structure, it was observed in

[10] that methods from numerical analysis (e.g. identifying characters with B-se-

ries) correspond to Lie group morphisms between infinite-dimensional groups.

Consequently, these mechanisms fit into an abstract framework where tools from

Lie theory are available for the analysis.

Motivated by these results, we present a construction principle for Lie groups

of “controlled characters.” Here a character is called controlled (a notion made

precise in Section 2 below), if it satisfies certain growth bounds, e.g. exponential

growth bounds (tame Butcher group case). The general consensus in the litera-

ture seems to be that these groups should admit a suitable Lie group structure.

However, to obtain groups of controlled characters, the growth bounds and the

Hopf algebra structure must be compatible. In essence this means that the struc-

tural maps of the Hopf algebra should satisfy certain estimates with respect to the

growth bounds. The resulting concept of controlled character (and the group of

all controlled characters) thus depend fundamentally on the combinatorial data

chosen. This should not be seen as a defect but rather as a feature of our theory.

In fact, this behaviour is even expected and relevant for applications in physics:

While the group of all characters is insensitive to the combinatorial choices [9, Re-

mark 3.10], the group of controlled characters depends o them and thus exhibits

new features which are desirable in the renormalisation of quantum field theories
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(S. Paycha, private communications). To phrase this dependence in a concise way,

we introduce the the notion of a control pair (see Definition 3.3 below) and prove

that every control pair gives rise to a Lie group of controlled characters, for which

we investigate the Lie theoretic properties. The novelty of these results is the flex-

ibility of the construction which applies to a broad class of Hopf algebras and

growth bounds (whereas the methods from the tame Butcher case were limited in

scope).

Finally, we mention that in the present paper we mainly focus on the Lie

theory for these groups and illustrate the constructions only with some selected

examples. The reason for this is that examples usually require certain specific (and

involved) combinatorial estimates.2 It should come at no surprise that the general

theory for controlled character groups is technically much more demanding then

the general Lie theory for character groups as developed in [8]. The additional

difficulty corresponds exactly to the passage from formal power series to (locally)

convergent series. However, the results obtained are stronger, as the topology and

differentiable sturcture of controlled characters are suitable to treat applications

where convergence is essential.

We will now describe the results of this paper in more details. Fix a graded and

connected Hopf algebra .H; m; 1H; �; "; S/ and a commutative Banach algebraB

over K 2 ¹R;Cº. We recall that the character group G.H; B/ ofH is defined as

G.H; B/´

´

' 2 HomK.H; B/

ˇ
ˇ
ˇ
ˇ

'.ab/ D '.a/'.b/; for all a; b 2 H;

'.1H/ D 1B

µ

;

together with the convolution product'? ´ mBı.'˝ /ı�. Our aim is to study

certain subgroups of “controlled characters” for a combinatorial Hopf algebra3

.H; †/. To give meaning to the term “controlled,” we fix a family .!k/k2N of

functions !k WN0 ! Œ0;1Œ which defines growth bounds for the characters. With

respect to such a family, we then define the subset of all controlled characters as

Gctr.H; B/ D ¹' 2 G.H; B/ j there exists k 2 N such that

k'.�/kB � !k.j� j/ for all � 2 †º:

For example, the growth family .n 7! 2kn/k2N (used in [10] for the tame Butcher

group) gives rise to the subset of exponentially bounded characters. In general,

the set Gctr.H; B/ will not form a subgroup of .G.H; B/; ?/ (cf. Example 3.9).

2We refer the reader to Section 5 for a more in depth discussion of these problems.

3As explained above, in our sense a combinatorial Hopf algebra is a graded and connected

Hopf algebra H together with an algebra isomorphism to an algebra of (non) commutative

polynomials generated by † �H.
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However, if the growth family satisfies suitable conditions and is compatible with

the combinatorial Hopf algebra, we prove that Gctr.H; B/ is indeed a subgroup of

the character group. Here compatibility roughly means that the coproduct and

the antipode of the combinatorial Hopf algebra satisfy `1-type estimates with

respect to growth bounds. This leads to the notion of a control pair consisting of a

combinatorial Hopf algebra .H; †/ and a compatible growth family (made precise

in Section 3). For a control pair ..H; †/; .!k/k2N/ and a Banach algebra B , we

prove that the controlled characters form a groupwith a natural (in general infinite-

dimensional) Lie group structure:

Theorem A. Let .H; †/ be a combinatorial Hopf algebra, B a commutative

Banach algebra and .!k/k2N be a growth family such that .H; .!k/k2N/ forms a

control pair. The associated group of B-valued controlled characters Gctr.H; B/

is an analytic Lie group modelled on an (LB)-space.

To understand these results, we note that we use a concept of differentiable

maps between locally convex spaces known as Bastiani’s calculus [3] or Keller’s

C r
c -theory [41] (see [49, 27, 55] for streamlined expositions). For the reader’s

convenience Appendix A contains a brief recollection of the basic notions used

throughout the paper. At this point it is worthwhile to discuss a finer point of the

topology andmanifold structure of the controlled character group. Recall from [8]

that the character group G.H; B/ of a graded and connected Hopf algebra is an

infinite-dimensional Lie group. Albeit the controlled characters form a subgroup

of this Lie group, they are not a Lie subgroup in the sense that its manifold

structure and the topology are not the induced ones. Instead, the topology on

the group of controlled characters is properly finer than the one induced by all

characters.4 However, the inclusion Gctr.H; B/ ! G.H; B/ turns out to be a

smooth group homomorphism.

The Lie algebra of G.H; B/ is the Lie algebra of infinitesimal characters

g.H; B/´ ¹' 2 HomK.H; B/ j '.ab/ D ".a/'.b/C ".b/'.a/º

with the commutator Lie bracket

Œ';  �´ ' ?  �  ? ':

It turns out that the Lie algebra of the subgroup Gctr.H; B/ consists precisely of

those infinitesimal characters which satisfy an estimate similar to the definition of

the controlled characters:

4 For additional information we refer to the discussion on the topology of the tame Butcher

group in [10] and in [9]. Note that the topologies there are studiedwith a view towards application

in numerical analysis (compare [11, Remark 2.3]).
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Lie algebra of the controlled characters. The Lie algebra of Gctr.H; B/ is

given by the controlled infinitesimal characters .gctr.H; B/; Œ � ; � �/, where the Lie

bracket is the commutator bracket induced by the convolution

Œ';  � D ' ?  �  ? ':

As in the Lie group case, this Lie algebra is a Lie subalgebra of the Lie algebra of

all characters but in general with a finer topology.

Thenwe discuss regularity (in the sense ofMilnor) for Lie groups of controlled

characters. To understand these results first recall the notion of regularity for Lie

groups. Let G be a Lie group modelled on a locally convex space, with identity

element 1, and r 2 N0 [ ¹1º. We use the tangent map of the left translation

�g WG �! G; x 7�! gx .g 2 G/;

to define

g:v ´ T1�g.v/ 2 TgG for v 2 T1.G/ DW L.G/.

Following [30], G is called C r -semiregular if for each C r -curve �W Œ0; 1�! L.G/

the problem
´


 0.t / D 
.t/:�.t/;


.0/ D 1

has a (necessarily unique) C rC1-solution

Evol.�/´ 
 W Œ0; 1� �! G:

Furthermore, if G is C r -semiregular and the map

evolWC r.Œ0; 1�;L.G// �! G; 
 7�! Evol.
/.1/;

is smooth, then G is called C r -regular. If G is C r -regular and r � s, then G

is also C s-regular. A C1-regular Lie group G is called regular (in the sense of

Milnor) – a property first defined in [49]. Every finite-dimensional Lie group is

C 0-regular (cf. [55]). Several important results in infinite-dimensional Lie theory

are only available for regular Lie groups (see [49, 55, 30], cf. also [42]).

Recall that in [8, Theorem C] regularity of the character group G.H; B/ is

shown. Together with well known techniques from [30], this result paves the way

to establish semiregularity of the controlled character groups. Our strategy is to

prove that the solutions of the differential equations on G.H; B/ remain in the

group of controlled characters if the initial data of the differential equation is

contained in the controlled characters. Unfortunately, we were unable to obtain
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the necessary estimates to carry out this program in full generality. Instead our

methods yield (semi-)regularity only for a certain class of combinatorial Hopf

algebras in the presence of additional estimates. Before we state the result, recall

the notion of a right-handed Hopf algebra from [48]: a combinatorial Hopf

algebra .H; †/ is right-handed if the reduced coproduct5 satisfies

x�.�/ � K
.†/ ˝H for all � 2 †;

whereK.†/ is the vector space spanned by†. Thus in a right-handedHopf algebra,

the reduced coproduct contains only polynomials in † on the right-hand side

of the tensor products, whereas the left-hand side contains only (multiples of )

elements of†. Many combinatorial Hopf algebras appearing in applications (e.g.

the Butcher–Connes–Kreimer algebra, Faà di Bruno algebras) are right-handed

Hopf algebras. In addition to the right-handed condition we also need to assume

that the terms of the reduced coproduct whose right-hand side is also given by

a multiple of an element in † grows only linearly in the degree.6 To this end,

we consider the elementary coproduct, i.e. the terms of the reduced coproduct

contained in K
.†/ ˝K

.†/,

x�".�/ WD
X

j˛jCjˇ jDj� j

˛;ˇ2†

c˛;ˇ;�˛ ˝ � for all � 2 †:

A right-handed Hopf algebra right-hand linearly bounded (RLB) if there exist

a; b 2 R

such that



x�".�/






`1 D
X

j˛jCjˇ jDj� j

˛;ˇ2†

jc˛;ˇ;� j � aj� j C b for all � 2 †:

For example, the Butcher–Connes–Kreimer algebra of rooted trees is an (RLB)

Hopf algebra. This property was used to establish the regularity of the tame

Butcher group in [10]. For groups of controlled characters of an (RLB)-Hopf

algebra we prove.

Theorem B. Let .H; †/ be an (RLB) Hopf algebra,B a Banach algebra. Assume

that ..H; †/; .!k/k2N/ is a control pair. Then the associated group Gctr.H; B/ is

C 0-regular and thus in particular regular in the sense of Milnor.

5Recall that in a graded and connected Hopf algebra the coproduct can be written as

�.x/D 1˝ xC x ˝ 1C x�.x/, where x� is a sum of tensor products a˝ b with jaj; jbj � 1.

6Our methods can be adapted to slightly more general situations, cf. Remark 4.8.
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The main difficulty here is to prove that the solutions of the differential equa-

tions stay bounded, whence the above estimates come into play. In particular, The-

orem B emphasises the value of “right-handedness” of the Hopf algebra.7 Note

that Theorem B is new even for the tame Butcher group, which was previously

only known to be C 1-regular (see [10]). This seemingly minor improvement is

quite important as [38] recently established Lie theoretic tools such as the strong

Trotter formula for C 0-regular infinite-dimensional Lie groups. It is currently un-

known whether similar results can be obtained for C 1-regular Lie groups. We

remark that the proof of Theorem B is much more conceptual than the proof for

the regularity appearing in [10].

Though Theorem B establishes regularity for controlled character groups for

some combinatorial Hopf algebras, a general regularity result is still missing. This

is somewhat problematic as there are diverse combinatorial Hopf algebras which

appear in applications and are not right-handed. For example, the shuffle algebra

(cf. Example 3.2) is not right-handed so it is not a (RLB) Hopf algebra. Also the

Faà di Bruno algebra, see Example 5.5, is not an (RLB) Hopf algebra (though it is

right-handed) However, to the authors knowledge Theorem B is the only available

result which asserts regularity of groups of controlled characters. Stronger results

could conceivably be established once new and refinedmethods become available.

It is a long standing conjecture in infinite-dimensional Lie theory, that every Lie

group modelled on a complete space is regular. Hence we expect the groups to be

regular and pose:

Open problem. Establish regularity for the group of controlled characters of

an arbitrary combinatorial Hopf algebra. Alternatively, give an example of a

combinatorial Hopf algebra with a a controlled character group which is not

regular.
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1. Foundations: weighted function spaces

1.1 Notation. We write N ´ ¹1; 2; 3; : : :º, and N0 ´ N [ ¹0º. Throughout

K 2 ¹R;Cº. In a normed spaceE, we denote byUE
r .x/ the r�ball around x 2 E.

Our goal is to study functions which grow in a controlled way, i.e. satisfy

certain growth restrictions. Tomake this precise we fix a family of functions which

will measure how fast a function can grow while still be regarded as “controlled”:

1.2 Definition (growth family). A family .!k/k2N of functions !kWN0 ! N is

called growth family if it satisfies the following conditions. For all k 2 N and

n;m 2 N0,

(W1) !k.0/ D 1 and !k.n/ � !kC1.n/;

(W2) !k.n/ � !k.m/ � !k.nCm/:

(W3) for all k1 2 N there exists k2 � k1 such that !k2
.n/ � 2n � !k1

.n/:

A growth family is called convex if for a fixed k1 we can choose k2 � k1 such that

in addition for each k3 � k2,

(cW) there exists ˛ 2 �0; 1Œ such that

!k1
.n/˛ � !k3

.n/1�˛ � !k2
.n/ for all n 2 N0:

The technical condition (cW) assures that the model spaces of the Lie groups

of controlled characters are well behaved (see Lemma B.5 for the exact statement).

In general, condition (cW) is needed for our techniques. However, in an important

class of examples (i.e. characters of Hopf algebras of finite type with values in

finite-dimensional algebras, compare Proposition 1.14 (d)) it is not necessary to

require (cW).

1.3 Remark. Observe that (W3) implies that a growth family will grow at least

exponentially fast. The growth bounds considered in Proposition 1.4 below thus

grow at least with exponential speed. In general, it is desirable to use the most

restrictive growth family (i.e. one with exponential growth) to ensure certain

convergence properties in applications. However, as we will see in Example 5.7,

not all combinatorial Hopf algebras admit groups of controlled characters which

are exponentially bounded.

1.4 Proposition (standard examples). The families in Table 1 are convex growth

families in the sense of Definition 1.2 (Hopf algebra and Example refer to further

information given in Section 5).
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Table 1

!k.n/ Application Hopf algebra see Source

kn B-series, (coloured) Connes–Kreimer 5.2 [35]

2kn P-series algebra of rooted trees 5.9 [10]a

kn � nŠ Chen–Fliess series Faà di Bruno type 5.13 [31]

kn2
formal power Faà di Bruno 5.5

kn.nŠ/k seriesb 5.7

a Note that the growth families kn and 2kn both realise groups of exponentially bounded

characters.
b The growth bounds will be used to illustrate certain technical details of the theory.

Proof. Property (W1) can be established by trivial calculations for all examples.

The functions !k.n/ WD kn are multiplicative, i.e. !k.n/!k.m/ D !k.nCm/

so (W2) holds. Furthermore, setting k2 WD 2k1, (W3) is satisfied. This proves that

the family .n 7! kn/k2N is a growth family.

To show that it is convex, i.e. that it satisfies (cW), we proceed as follows. Let

k1 2 N be given and let as above k2 D 2k1. Now for fixed k3 � k2 we use that

lim
˛!1

k˛
1 � k

1�˛
3 D k1 < k2;

whence there is ˛ 2 �0; 1Œ such that k˛
1 � k

1�˛
3 < k2. For each n 2 N we now have

!k1
.n/˛ � !k3

.n/1�˛ D kn˛
1 � k

n.1�˛/
3 < kn

2 D !k2
.n/ (1)

which is what we wanted to show. As !k.n/ D 2kn is a cofinal subsequence8 of

the family .n 7! kn/k2N, we immediately see that .n 7! 2kn/k2N is also a convex

growth family. Similarly, one establishes that !k.n/ D k
n2

forms a convex growth

family.

Now, we turn to !k.n/ D knnŠ: It is well known that 1 �
�

iCj
j

�

D .iCj /Š
iŠj Š

�

2iCj holds for all i; j 2 N. Hence (W2) holds and if we choose k2 � 2k1 we see

that (W3) is satisfied. Multiplying (1) with nŠ, (cW) is immediately satisfied.

We now turn to the family !k.n/ D k
n.nŠ/k and compute for k 2 N as follows

!k.i/!k.j / D k
i .i Š/kkj .j Š/k D kiCj .i Šj Š/k � kiCj ..i C j /Š/k D !k.i C j /:

Thus (W2) is satisfied. Again choosing k2 D 2k1 allows one to see that (W3)

holds. Therefore, the functions !k.n/ D kn.nŠ/k form a growth family. To see

8Recall that subsequence .ank
/k of .bn/n is cofinal if for every n 2 N there is k 2 N with

nk > n.
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that this family is convex, consider k3 � k2 D 2k1. Now since k2 > k1 we can

choose ˛ 2 �0; 1Œ such that (1) is satisfied (with respect to k3). Enlarging ˛ 2 �0; 1Œ

if necessary, we may also assume that ˛k1 C .1� ˛/k3 < k2. With this choice of

˛ we obtain for each n 2 N

!k1
.n/˛!k3

.n/1�˛ D .k˛
1k

1�˛
3 /n.nŠ/˛k1C.1�˛/k3 < kn

2 .nŠ/
k2 D !k2

.n/: �

1.5 Remark. Let 'WN0 ! N0 be a function with the following properties:

� '.0/ D 0 and '.n/ � n;

� '.m/C '.n/ � '.mC n/.

Then .n 7! !k.'.n///k2N is a (convex) growth family provided that .!k/k2N is

a (convex) growth family. In particular, this works for monomial maps '.n/ D

nj for a fixed j 2 N. This generalises the example .n 7! kn2
/k2N from

Proposition 1.4.

1.6 Remark. The properties (W1) and (W2) are needed to construct locally con-

vex algebras on certain inductive limits of spaces of bounded functions. Further,

(W3) and (cW) ensure that these inductive limits have certain desirable properties.

We can not dispense with property (W3) if we want to obtain groups of controlled

characters (whereas (cW) is not crucial in this regard). As an example consider

the family

!k.n/ WD e
�n

k ; k 2 N:

This family arises from growth bounds for Fourier coefficients in numerical anal-

ysis (see [16]). It turns out that it is not a growth family as it satisfies all properties

(including convexity) except for (W3). We return later to this in Example 3.9 and

see that the characters whose growth is bounded in this sense do not even form a

group.

1.7 Definition (graded index sets). A graded index set .J; j�j/ is a set J , together

with a grading, i.e. a function j�j W J ! N0. For each n 2 N0, we use the notation

Jn WD ¹� 2 J; j� j D nº:

We call .J; j�j/ pure if J0 D ;, connected if J0 has exactly one element, and of

finite type if every Jn is finite.

1.8. Given a graded index set .J; j�j/, define the graded vector space

K
.J / WD

° X

�2J

c� � �
ˇ
ˇ
ˇ all but finitely many c� are zero

±

D
M

n2N0

K
.Jn/
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of formal linear combinations of elements of J . Every graded vector can be

obtained in this fashion (using a non-canonical choice of a basis of each step).

We will always think of J as a subset (the standard basis) of K.J /.

Controlled characters will be modelled on weighted sequence spaces (see

e.g. [25]).

1.9 Weighted `1-spaces induced by growth families. Let .J; j�j/ be a graded

index set and .!k/k2N a growth family. We interpret the elements of the growth

family as weights and define a weighted norm on K
.J / as follows








X

�2J

c� � �







`1
k

WD
X

�2J

jc� j!k.j� j/:

The completion with respect to this norm is the Banach space

`1
k.J / WD

° X

�2J

c� � �; c� 2 K

ˇ
ˇ
ˇ

X

�2J

jc� j!k.j� j/ <1
±

which is isometrically isomorphic to `1.J / (cf. [47, Section 7]) via

`1
k.J / �! `1.J /;

X

�

c� � � 7�!
X

�

c�!k.j� j/ � �:

For a given growth family, `1
kC1

.J / is a subspace of `1
k
.J / (see Lemma B.1).

Hence every graded index set with a growth family gives rise to a sequence of

Banach spaces

`1
1.J / � `

1
2.J / � � � � � `

1
k.J / � `

1
kC1.J / � � � :

The inclusions in the above sequence are continuous linear with operator norm

at most 1 (see again Lemma B.1). Thus one can consider the (locally convex)

projective limit

`1
 .J / WD

\

k2N

`1
k.J /

D lim
 �
k

`1
k.J /

D
° X

�

c� � �
ˇ
ˇ
ˇ for each k 2 NW

X

�

jc� j!k.j� j/ <1
±

:

This space is a Fréchet space. And if .J; j�j/ is of finite type it is even a Fréchet

–Schwartz space9 (see [47, p. 303] for more information).

9 Iteratively constructing indices which satisfy (W3) yields a cofinal sequence with compact

inclusion maps I
k2

k1
, I

k3

k2
; : : :, whence the limit is a Fréchet –Schwartz space.
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In the following, we will often have to consider the continuity of maps

`1
 .J / ! `1

 .I / which arise as extensions of linear mappings T WK
.J / ! K

.I/.

One can prove the following criterion for the continuity of the extension (the proof

is in Appendix B).

1.10 Lemma. Let .J; j�j/ and .I; j�j/ be two graded index sets. Then a linear map

T WK.J / ! K
.I/ extends to a (unique) continuous operator zT W `1

 .J / ! `1
 .I /,

if and only if for each k1 2 N there is a k2 2 N and a C > 0 such that

kT �k`1
k1

� C!k2
.j� j/ for all � 2 J:

Passage to spaces of bounded functions. In this section we construct the model

spaces for the controlled character groups. These arise as weighted `1 spaces

with values in a Banach space. Hence throughout this section, we choose and

fix a Banach space B (over K) and let .J; j�j/ be a graded index set. Further, the

spaces of controlled functions encounteredwill always be constructedwith respect

to some choice of growth family .!k/k2N. In this setting we can define controlled

functions and Banach spaces of controlled functions.

1.11 Controlled functions. (a) Let k 2 N. A function f W J ! B is called k-

controlled if sup�
kf .�/kB
!k.j� j/

<1. The space of all k-controlled functions

`1k .J; B/ WD
°

f W J �! B
ˇ
ˇ
ˇ sup

�

kf .�/kB
!k.j� j/

<1
±

with the norm kf k`1
k
WD sup�

kf .�/kB
!k.j� j/

is a Banach space. In fact, the mapping

`1k .J; B/ �! `1.J; B/ D ¹f W J ! B j sup
�
kf .�/kB <1º; f 7�!

f

!k.j�j/
:

is an isometric isomorphism to the Banach space `1.J; B/. Since growth families

satisfy (W1), it is easy to see that `1
k
.J; B/ � `1

kC1
.J; B/ and the inclusion map

`1k .J; B/ �! `1kC1.J; B/; f 7�! f;

is a continuous operator with operator norm at most 1 for all k 2 N.

(b) A function f W J ! B is called controlled if there is a k 2 N such that f is

k-controlled, i.e. f 2 `1
k
.J; B/. The space of all controlled functions is denoted

by `1!.J; B/. This space is locally convex as it is the locally convex direct limit

`1!.J; B/´
°

f W J �! B
ˇ
ˇ
ˇ there is a k 2 N such that sup

�

kf .�/kB
!k.j� j/

<1
±

D lim
�!

k

`1k .J; B/;

where the bonding maps of the limit are the continuous inclusions from (a).
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The spaces of controlled functions will allow us to build model spaces for

the Lie groups which are constructed later. We will now discuss properties of

spaces of controlled functions. Beginning with the k-controlled functions we will

establish that the space of all k-controlled functions is closely connected to certain

linear maps. This will explain in which sense characters of Hopf algebras are

k-controlled.

1.12 Definition. Let k 2 N and endowK
.J / with the `1

k
norm. A continuous linear

map 'WK.J / ! B is called k-controlled. Note that every k-controlled linear map

extends (uniquely) to a continuous linear map `1
k
.J / ! B on the completion,

which has the same operator norm.

1.13. As J is a basis of the vector space K
.J /, a linear map 'WK.J / ! B is

uniquely determined by its values on J . This yields an isomorphism of vector

spaces

Hom.K.J /; B/ �! BJ ; ' 7�! f' WD 'jJ ;

with inverse

BJ �! Hom.K.J /; B/; f 7�! 'f ;

where 'f WK
.J / ! B is the unique linear map extending f W J ! B . It is not hard

to see that this isomorphism induces an isometric isomorphism

¹f 2 HomK.K
.J /; B/ j f is k-controlledº �! `1k .J; B/:

For the readers convenience a proof of this fact is recorded in Lemma B.2

With the direct limit topology `1!.J; B/ is an (LB)-space, i.e. a direct limit of

an injective sequence of Banach spaces. In general, (LB)-spaces may not be well

behaved, e.g. they may fail to be Hausdorff. However, one can prove the following.

1.14 Proposition (properties of `1!.J; B/). Let .J; j�j/ be a graded index set,

.!k/k2N a growth family andB be a Banach space. Then the following is satisfied.

(a) The linear map

`1!.J; B/ �! BJ ; f 7�! f;

is continuous (where BJ is endowed with the topology of pointwise conver-

gence). Thus `1!.J; B/ is a Hausdorff space.
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(b) The linear map

`1!.J; B/ �! Hom.`1
 .J /; B/; f 7�!

� X

�

c� � � 7!
X

�

c�f .�/
�

;

is bijective and continuous (where Hom.`1
 .J /; B/ is endowed with the

topology of uniform convergence on bounded subsets, the strong topology).

(c) Assume that .J; j�j/ is pure. Then for every r > 0 and every controlled

function f there is a k 2 N such that kf k`1
k
< r , i.e.

`1!.J; B/ D
[

k2N

U
`1

k
.J;B/

r .f / :

(d) The space `1!.J; B/ is complete, if one of the following statements hold:

� the growth family is convex;

� .J; j�j/ is of finite type and B is finite-dimensional.

It is not clear to the authors up to this point whether the linear map in part (b)

may fail to be a topological isomorphism for some choices of .!k/k2N, .J; j�j/,

and B . However, we will not need that fact at all.

Proof. (a) Follows directly from the universal property of locally convex direct

limits applied to the family `1
k
.J; B/ ! BJ ; f 7! f . Since BJ is Hausdorff,

continuity of the inclusion implies that `1!.J; B/ is Hausdorff as well.

(b) Continuity of the linear map follows directly of the universal property of

locally convex direct limits applied to

`1k .J; B/ Š Hom.`1
k.J /; B/ �! Hom.`1

 .J /; B/:

Clearly the map is injective and it is surjective by Lemma B.3.

(c) Consider f 2 `1!.J; B/ and choose k1 2 N such that f 2 `1
k1
.J; B/. By

property (W3) there is a k2 � k1 such that

kf k`1
k2

D sup
�2J

kf .�/kB
!k2

.j� j/

(W3)
� sup

�2J

kf .�/kB

2j� j � !k1
.j� j/

� sup
�2J

kf .�/kB
2 � !k1

.j� j/
D
1

2
� kf k`1

k1

:

In the second inequality we used the fact that j� j � 1 since .J; j�j/ is pure by

assumption.

Repeating this process, we get a sequence .km/m2N such that .kf k`1
km
/m2N

converges to zero. In particular, there is km such that kf k`1
km

is less than r .
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(d) By [60, Corollary 6.5], completeness of an (LB)-space follows if we can

show that the limit `1!.J; B/ is compactly regular, i.e. for every compact set

K � `1!.J; B/ there is a k 2 N such thatK is a compact subset of `1
k
.J; B/. If the

growth family is convex, compact regularity follows from Lemma B.5. If on the

other hand, .J; j�j/ is of finite type and the Banach space B is finite-dimensional,

we obtain compact regularity from Lemma B.6. �

2. Analytic manifolds of controlled characters on free monoids

Throughout this section, let B be a fixed commutative10 Banach algebra, i.e.

a commutative associative unital K-algebra with a complete submultiplicative

norm k�kB such that k1BkB D 1. Further, we fix a (convex) growth family .!k/k2N
with respect to which all weighted sequence spaces, e.g. `1

k
.J; B/, in this section

will be constructed.

2.1 Definition (graded monoid). A graded monoid .M; j�j/ is a monoid M , to-

gether with a monoid homomorphism

j�j WM �! .N0;C/:

In particular, every graded monoid is a graded index set in the sense of Defini-

tion 1.7.

For each graded monoid .M; j�j/ the vector space K.M / of finite formal linear

combinations introduced in 1.8 becomes a graded associative unital algebra by

extending the monoid multiplication bilinearly.

2.2 Example. Let .†; j�j/ be a graded index set. There are two natural ways of

constructing a graded monoid over K 2 ¹R;Cº from .†; j�j/.

(a) The free monoid †� (also called the word monoid) over the alphabet† con-

sists of all finite words. The degree of a word w 2 †� is the sum of the

degrees of the letters of w. The neutral element of †� is the empty word

(whose degree is zero). The unital algebra Kh†i WD K
.†�/ is the noncom-

mutative polynomial algebra over the alphabet †, which is free algebra (or

tensor algebra) over K.†/.

10Most of the results will hold for noncommutative algebras as well – but in Section 3 we

will need commutativity anyway.
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(b) Identify two words in†� when they agree up to a permutation of the letters to

obtain the free commutative monoid†�. This is a gradedmonoidwith respect

to the same grading. The unital algebra KŒ†� WD K
.†�/ is the commutative

polynomial algebra over the alphabet † (the symmetric algebra over K.†/).

In both examples, the grading on themonoid is connected if and only if the grading

on † is pure and the monoid is of finite type if and only if .†; j�j/ is of finite type.

2.3. By aB-valued character of the gradedmonoid .M; j�j/wemean amonoid ho-

momorphism �WM ! .B; �/. The isomorphism of 1.13 maps the characters ofM

bijectively to the characters of the algebra K.M /, i.e. the algebra homomorphisms

of K.M / to the unital algebra B .

2.4 Definition (controlled characters). Let M be a graded monoid. A character

�WM ! B is called a controlled character of the monoid M if it is a controlled

function, i.e. � 2 `1!.M;B/. The set of controlled characters endowed with the

subspace topology of `1!.M;B/ is denoted by Gctr.M;B/:

The main result will be the fact that for the free monoidM , this subset is very

well behaved, in particular it is an analytic submanifold (see Proposition 2.8).

2.5 Lemma. Let �WM ! B be a B-valued character. Assume that M is (as a

monoid) generated by a subset † � M and let k 2 N. Then the following are

equivalent:

(i) � 2 `1
k
.M;B/ with k�k`1

k
D 1;

(ii) �j† 2 `
1
k
.†; B/ with k�j†k`1

k
� 1

Proof. It is obvious that (i) implies (ii). To show the converse, assume that �j† is

k-controlled with norm at most 1. This means that for each � 2 † we have:

k�.�/kB � !k.j� j/:

We will now show that �WM ! B is also k-controlled of norm at most 1. Let

w D �1 � � � �` 2M be a finite word of length ` � 1. Then we can estimate:

k�.w/kB D k�.�1 � � � �`/kB D k�.�1/ � � ��.�`/kB � k�.�1/kB � � � k�.�`/kB

� !k.j�1j/ � � �!k.j�`j/
(W2)
� !k.j�1j � � � j�`j/ D !k.j�1 � � � �`j/ D !k.jwj/:

For the empty word we obtain

k�.1M /kB D k1BkB D 1
(W1)
D !k.0/ D !k.j1M j/: �
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Note that we need the following proposition only for the monoids from Ex-

ample 2.2 constructed over the field of complex numbers. However, an easy com-

plexification argument yields an analogous statement for thesemonoids in the case

K D R.

2.6 Proposition. Let .†; j�j/ be a graded index set, M D †� or M D †� and fix

k 2 N. Assume further, that B is a commutative Banach algebra over C. Then

every k-controlled function f 2 `1
k
.†; B/ with kf k`1

k
< 1=2 uniquely extends

to a k-controlled character�f 2 `
1
k
.M;B/with




�f






`1
k

� 1 and the (nonlinear)

extension operator

‰k WU
`1

k
.†;B/

1=2
.0/ �! `1k .M;B/; f 7�! �f ;

between open subsets of Banach spaces is of class C!
C

.

Proof. Step 1: ‰k is well defined. The universal property of the free monoid

(or the free commutative monoid, respectively) allows one to uniquely extend

f W† ! B to a character �f WM ! B (using multiplicative continuation). By

Lemma 2.5 it follows that this extension �f is k-controlled with operator norm 1,

if f 2 U
`1

k
.†;B/

1 .0/. Therefore, the extension operator ‰k is well defined.

Step 2: ‰k is continuous. Let f0 2 U
`1

k
.†;B/

1=2
.0/ and let " > 0 be given. We

may assume that " � 1. Let f 2 U
`1

k
.†;B/

1=2
.0/ such that f1 WD f � f0 has norm

kf1k`1
k
� "

2
. We will show that

k�f0Cf1
� �f0

k`1
k
� ":

Clearly it suffices to prove that for every word w 2M of length ` � 0 we have

k�f0Cf1
.w/� �f0

.w/k
B
� " � !k.jwj/:

For the empty word w D 1M this holds since the left hand side of the inequality

is zero as characters map the unit to the unit. So, let w D �1 � � � �` be a word of

length ` � 1,

k�f0Cf1
.w/� �f0

.w/k
B
D








Ỳ

jD1

.f0.�j /C f1.�j // �
Ỳ

jD1

f0.�j /







B

D







X

˛2¹0;1º`

Ỳ

jD1

f˛.j /.�j / �
Ỳ

jD1

f0.�j /







B
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D







X

˛2¹0;1º`

˛¤0

Ỳ

jD1

f˛.j /.�j /







B

�
X

˛2¹0;1º`

˛¤0

Ỳ

jD1

kf˛.j /.�j /kB

�
X

˛2¹0;1º`

˛¤0

Ỳ

jD1

.



f˛.j /






`1
k

!k.
ˇ
ˇ�j

ˇ
ˇ//

�
X

˛2¹0;1º`

˛¤0

� "

2

�j˛�1.1/j�1

2

�j˛�1.0/j Ỳ

jD1

!k.
ˇ
ˇ�j

ˇ
ˇ/

(W2)
�

X

˛2¹0;1º`

˛¤0

"j˛
�1.1/j

„ ƒ‚ …

�"

�
�1

2

�`

!k.jwj/

D .2` � 1/"
�1

2

�`

!k.jwj/

< " � !k.jwj/:

Step 3: ‰k is C-analytic. For each w 2M , define the operator

�w W `
1
k .M;B/ �! B; h 7�! h.w/:

Now �w is continuous by Proposition 1.14(a) and the family

ƒ WD ¹' ı �w j ' 2 B
0Iw 2M º

separates the points of `1
k
.M;B/ as the topological dual B 0 separates the points

of B by the Hahn-Banach Theorem. Hence the continuous operator ‰k will be

C-analytic by Proposition A.4 if �w ı‰k is C-analytic. If w D �1 � � � �` 2 M , the

map

�w ı‰k W `
1
k .†; B/ �! B; f 7�! f .�1/ � � �f .�`/;

is a continuous `-homogeneous polynomial (in f ), whence C-analytic (cf. [6]).

�

Wewill use this proposition now to prove the analogue result in the (LB)-space

case:
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2.7 Proposition. Let .†; j�j/ be a pure graded index set and let M D †� or

M D †�. Then every controlled function f 2 `1!.†; B/ has a unique extension

to a controlled character �f 2 Gctr.M;B/ � `1!.M;B/ and the (nonlinear)

extension operator

‰W `1!.†; B/ �! `1!.M;B/; f 7�! �f ;

is of class C!
K

, i.e. it is K-analytic.

Proof. Since † is pure, we may apply part (c) of Proposition 1.14. Hence, the

locally convex space `1!.†; B/ is the union of the balls U
`1

k
.†;B/

1=2
.0/. So, every

controlled function is k-controlled with norm < 1=2 for a large enough k 2 N.

In particular, we can deduce from Proposition 2.6 that every controlled function

admits an extensionwhich is also controlled, whence the extension operatormakes

sense.

If K D C, the analyticity is a direct application of [20, Theorem A] which

ensures the complex analyticity of a function defined on the directed union of

balls of the same radius (in this case 1=2) if the function is complex analytic and

bounded on each step which is ensured in this case by Proposition 2.6.

For K D R we consider the complexification BC of B . Now BC is a complex

Banach algebra which contains B as a closed real subalgebra whose norm is

induced by the norm on BC (see [7, Section 2] and [50]). For each k 2 N the

complex Banach space `1
k
.†; BC/ decomposes into a direct sum of two copies of

the closed real spaces `1
k
.†; B/. And since finite direct sums and direct limits

commute [39, Theorem 3.4], we conclude `1!.†; BC/ is the complexification of

`1!.†; B/ and induces the correct topology on the closed real subspace `
1
!.†; B/.

Now the complex extension operator ‰CW `
1
!.†; BC/ ! `1!.M;BC/ is com-

plex analytic and restricting to the real subspaces we obtain the real opera-

tor ‰W `1!.†; B/ ! `1!.M;B/ which is therefore real analytic (see Defini-

tion A.2). �

2.8 Proposition (controlled characters form a submanifold). Let .†; j�j/ be a

graded index set and let M D †� or M D †�. Assume that .†; j�j/ is pure,

i.e. that M is connected. Then the set Gctr.M;B/ of controlled characters is a

C!
K

-submanifold of the locally convex space `1!.M;B/ of all controlled functions

on the monoid M . A global chart for Gctr.M;B/ is the C!
K

-diffeomorphism

resWGctr.M;B/ �! `1!.†; B/; � 7�! �j†:
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Proof. Let J WDM n† the set of all words with length different from 1. Then by

[39, Theorem 3.4] we have an isomorphism

`1!.M;B/ Š `
1
!.†; B/� `

1
!.J; B/

of locally convex spaces. Thus

‰W `1!.†; B/ �! Gctr.M;B/ � `
1
!.†; B/; f 7�! �f

is C!
K
by Proposition 2.7. Now, consider the projection map

�J W `
1
!.M;B/ �! `1!.J; B/; h 7�! hjJ

which is continuous linear and hence the composition �J ı ˆW `
1
!.†; B/ !

`1!.J; B/ is C
!
K
as well which implies that the graph of �J ı ‰ is a closed split

submanifold of `1!.†; B/� `
1
!.J; B/ which is C

!
K
-diffeomorphic to the domain.

Using the above identification, this graph becomes the set Gctr.M;B/. As the

graph of an analytic function is an analytic submanifold (the argument in the

setting of locally convexmanifolds coincideswith the standard argument for finite-

dimensional manifolds, cf. [43, Example 1.30]), the assertion follows. �

3. Lie groups of controlled characters on Hopf algebras

In this section we construct the Lie group structure for groups of controlled

characters of suitable Hopf algebras. To this end, we have to restrict our choice of

Hopf algebras.

3.1 Definition. Consider a graded and connected Hopf algebra H together with

† � H. We call .H; †/ a combinatorial Hopf algebra if H is, as an associative

algebra, isomorphic to a polynomial algebra KŒ†� or Kh†i.

Observe that the isomorphism realising a combinatorial Hopf algebra as a poly-

nomial algebra with generating set † is part of the structure of the combinatorial

Hopf algebra. Recall that any commutative graded and connected Hopf algebraH

is isomorphic to a polynomial algebra KŒ†� by a suitable version of the Milnor–

Moore theorem (see [14, Theorem3.8.3]). The term “combinatorial Hopf algebra”

refers to the rôle of† in our main examples: Usually†will be a set of combinato-

rial objects (trees, partitions, permutations, etc.) and the Hopf algebra will encode

combinatorial information. The estimates considered in the following are always

understood with respect to the basis of the polynomial algebra KŒ†� (or Kh†i).
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3.2 Example (the shuffle Hopf algebra [57]). For an alphabetA ¤ ; we consider

the word monoid A
� and the algebra KhAi. Fix �WA! N to induce a grading

j � jWKhAi �! N; a1 : : : an 7�!

n
X

iD1

�.ai/:

Let a; b be letters and u;w be words. We define the shuffle product recursively by

1 w D w 1 D w; .au/ .bw/ WD a.u .bw//C b..au/ w/:

The (bilinear extensions of the) shuffle product and the deconcatenation of words

�.a1 � a2 � � � � � an/ D

n
X

iD0

a1 � a2 � � � � � ai ˝ aiC1 � aiC2 � � � � � an

turns KhAi into a graded and connected K-bialgebra (i.e. a Hopf algebra). How-

ever, an explicit formula for the antipode is available as

S.a1a2 : : : an/ D .�1/
nanan�1 : : : a1 for all a1; : : : ; an 2 †:

We call the resulting commutative Hopf algebra ShK.A; �/ the shuffle Hopf al-

gebra. The shuffle Hopf algebra usually appearing in the literature (e.g. [57]) is

constructed with respect to � � 1.

Now assume that there is a total order “�” on the alphabet A and order words

in A
� by the induced lexicographical ordering. Then one defines the “Lyndon

words” as those words w 2 A� which satisfy that for every non trivial splitting

w D uv the condition u < v. Radford’s theorem (cf. [57, Section 6] or [40])

shows that the shuffle Hopf algebra is isomorphic to the polynomial algebraKŒ†�,

where † is the set of Lyndon words in A
�. Summing up, .ShK.A; �/; †/ is a

combinatorial Hopf algebra.

Recall that shuffle Hopf algebras appear in diverse applications connected to

numerical analysis, see e.g. [51, 54, 53, 45]. Also they appear in the work of

Fliess in control theory (we refer to [56, Section 6, Example (5)] for an account).

Furthermore, there are generalisations of the shuffle Hopf algebra, e.g. the Quasi-

shuffle Hopf algebras [40], which are also combinatorial Hopf algebras.

3.3 Definition. Let .H; †/ be a combinatorial Hopf algebra and .!n/n2N a

growth family. We call ..H; †/; .!n/n2N/ control pair if �HWH ! H ˝H and

SHWH ! H are `1
 -continuous with respect to the growth family .!n/n2N (see

Lemma 1.10).11

11 In order for this to make sense, we use the identifications H D K.M / and H ˝H D

K.M �M /, where M D †� or M D †�, respectively.
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In general `1
 -continuity of the multiplication with respect to a given growth

family does not seem to be automatic (due to the inequality in (W2)). However,

continuity of the multiplication is not needed in our approach. Finally, we address

why well known recursion formulae for the antipode are in general not sufficient

to establish `1
 -continuity of the antipode.

3.4 Remark. For a graded and connected Hopf algebra H, the antipode can be

compute recursively (cf. [46, Corollary 5]) as

S.x/ D �x �
X

.x/

S.x0/x00 D �x �
X

.x/

x0S.x00/: (2)

Naively one may hope to derive from this formula the `1-continuity (with respect

to the growth families from Proposition 1.4) if one can establish the `1-continuity

of the coproduct first. However, this fails even in easy cases, where the `1-

continuity of the coproduct is almost trivial. For example for the combinatorial

Hopf algebra [22] of (decorated) graphs, the antipode is given by

S.�;D/ D �.�;D/�
X

;¨.ƒ;F /¨.�;D/

S.ƒ; F /˝ .�=ƒ;D=F //:

Here we hide all technicalities (e.g. on the graphs and the decorations). For us,

the crucial observation is that all coefficients occurring are˙1 and thus it suffices

to count summands in the recursion. As ƒ is a subgraph of � and the grading

is by number of edges. Assume that � has n edges, then in the kth step of the

recursion at most 2n�k summands. However, iterating this, we obtain the (very

rough) estimate that in a worst case one has to account for 2n2n�1 � � � 21 � 2
n2Cn

2

summands. In total, we thus obtain super exponential growth, whence we can

not hope to obtain a control pair if we choose for example exponential growth.

Summing up, even if the coproduct is very easy, the recursion formulae (2) can

not be used to derive `1-continuity for S .

The deeper reason why the recursion formula is unsuitable for our purposes is

that it contains in general an enormous amount of terms which cancel each other.

Thus a cancellation free, non-recursive formula would be desirable. In general

however, it is a difficult combinatorial problem to construct such a formula. This

problem has been dubbed the antipode problem [2, Section 5.4] (also cf. [1]).

Recently a cancellation free formula, the preLie forest formula [48, Theorem 8],

has been constructed for the so called right-handed Hopf algebras, cf. 4.1. Note

that the Hopf algebras considered in the present paper are often of this type (e.g.

the Connes–Kreimer algebra of rooted trees 5.2 and the Faà di Bruno algebra

(Example 5.5) are right-handed Hopf algebras). Unfortunately, we were not able
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to establish the `1-continuity of the antipode from the preLie forest formula in this

general setting.

3.5. Throughout this section, assume that B is a commutative Banach algebra,

.!k/k2N is a fixed convex growth family, .H; †/ a combinatorial Hopf algebra. In

addition, we assume that ..H; †/; .!k/k2N/ is a control pair. As a vector space,

H is hence isomorphic to K
.M /, whereM D †� orM D †�, respectively.

AK-linear map 'WH! B is controlled if its restriction toM is controlled (in

the sense of 1.11), i.e. if 'jM 2 `
1
!.M;B/. By slight abuse of notation, we will

denote the space of all controlled linear maps by `1!.H; B/.

We briefly digress here to define a category of combinatorial Hopf algebras

suitable for our purpose (meaning that the morphisms in this category mesh well

with the notion of controlled functions).

3.6 The category of combinatorial Hopf algebras. A Hopf algebra morphism

between combinatorial Hopf algebras F W .H; †/ ! . zH; z†/ will be called mor-

phism of combinatorial Hopf algebras if

� it is of degree 0, i.e. F.Hn/ � zHn for all n 2 N0;

� there is C > 0 constant, such that for every � 2 † with F.�/ D
P

�2z† c
�
��

the estimate
P

�2Q� jc
�
� j < C

j� j holds.

Combinatorial Hopf algebras and their morphisms form a category CombHopf.

The definition of morphism is geared towards preserving the controlled mor-

phisms, i.e. if ..H; †/; .!k/k2N/ and .. zH; z†/; .!k/k2N/ are control pairs and

F W .H; †/! . zH; z†/ is a morphim of combinatorial Hopf algebras, then for every

controlled 'W zH ! B also ' ı F is controlled. To see this, assume that ' is in

`1
k
.H; B/, then

k' ı F k`1
k
D sup

�2†

k'.
P

�2Q� c
�
��/kB

!k.j� j/

� sup
�2†

X

�2z†

jc�
� j
k'.�/kB

!k.j� j/

� sup
�2†

C j� jk'k`1
k
:

(3)

The last inequality is due to j� j D j� j since F is of degree 0. Applying (W3) we

see that by replacing k with some larger K, the right hand side of (3) is bounded,

whence ' ı F is controlled.
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Recently [19, 3.2] proposed another definition for a category of combinatorial

Hopf algebras. In general both categories are incomparable as the notion of com-

binatorial Hopf algebras are incomparable (though a key idea in both approaches

is to single out a specific generating set). Note that neither the category in [19, 3.2]

nor our category of combinatorial Hopf algebras is a subcategory of the category

of connected and graded Hopf algebras (as we will discuss in Section 5 Hopf al-

gebras which carry different combinatorial structures).

3.7 Definition. A linear map 'WH! B is called

� (B-valued) character if it is a homomorphism of unital algebras, i.e.

'.ab/ D '.a/'.b/ for all a; b 2 H and '.1H/ D 1B (4)

(equivalently, ' is a character of the underlying monoid .H; mH/);

� infinitesimal character if

' ımH D mB ı .' ˝ "H C "H ˝ '/; (5)

which means for a; b 2 H that '.ab/ D '.a/"H.b/C "H.a/'.b/.

The set of characters is denoted by G.H; B/, while g.H; B/ denotes the set of all

infinitesimal characters. Further, we letGctr.H; B/ D G.H; B/\`
1
!.H; B/ be the

set of controlled Hopf algebra characters and gctr.H; B/ D g.H; B/ \ `1!.H; B/

be the set of controlled infinitesimal characters.

3.8 Definition (convolution of controlled linear maps). Let ';  2 Hom.H; B/

be two linear maps. We define the convolution of the linear maps ' and  to be

' ?  WD mB ı .' ˝  / ı�H:

Here mB WB ˝ B ! B is the linear map induced by the algebra multiplication.

The space Hom.H; B/ of all linear maps from H to B is an associative unital

algebra with the convolution product and the neutral element 1´ 1B � "H.

It is well known that the convolution turns the set of charactersG.H; B/ into a

group (see e.g. [8, Section 2]). The definition of a growth family is geared towards

turning the controlled functions into a subgroup of all characters. To emphasise

this point, we now return to the family of functions .!k.n/ WD e
�n

k /k2N discussed

in Remark 1.6. For these functions the controlled characters, in general, do not

form a group.
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3.9 Example. Recall that the family of functions .!k.n/ WD e�
n
k /k2N discussed

in Remark 1.6 is not a growth family (it violates property (W3)). We will now see

that for this reason characters which are controlled with respect to this family of

functions (which is not a growth family!) do not form a group.

To this end, letH D KŒX� be the polynomial algebra in one indeterminate and

endow it with the coproduct defined on the generators as

�.X i / D

i
X

kD0

Xk ˝X i�k

and the grading jX i j D i . With this structure, H becomes a graded, connected

and commutative Hopf algebra (an antipode is given by S.X i / D .�1/iX i also

cf. Remark 3.4). It is well known that in this case .G.KŒX�;K/; ?/ Š .K;C/

as groups (see e.g. [59, Section 1.4]). One easily computes that the subset of

characters which are controlled with respect to the family of functions

.!k.n/ WD e
�n

k /k2N

corresponds under the above isomorphism to ¹x 2 K j jxj < 1º which is not a

subgroup of .K;C/.

3.10 Proposition (locally convex algebra of controlled maps). `1!.H; B/ is a

locally convex unital topological algebra with respect to convolution.

Proof. Note that the counit "HWH ! K is automatically `1
 -continuous for a

graded and connected Hopf algebra. This follows immediately from Lemma 1.10

as for H graded and connected

"H.x/ D

´

r if x D r 1H 2 K 1H D H0;

0 else.

Hence the unit 1 is controlled, i.e. 1 D 1B � "H 2 `1!.H; B/. To prove that

`1!.H; B/ is closed under convolution, fix k1 2 N and consider ';  2 `1
k1
.H; B/.

We construct k2 2 N such that ' ?  2 `1
k2
.H; B/. Let M denote the canonical

basis of H, i.e. M D †� orM D †� (see 3.5). Since �H is `1
!-continuous, we

can choose k2 > k1 and C > 0 with

k�H.�/k`1
k1

� C!k2
.j� j/ for all � 2M: (6)

Let � 2M be given. Write �H.�/ as a linear combination of the basis ofH˝H

�H.�/ D
P

�;�2M c�;��˝ �: and apply (6) to obtain
X

�;�

ˇ
ˇc�;�

ˇ
ˇ!k1

.j�j C j� j/ � C!k2
.j� j/: (7)
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This allows us the following computation:

k' ?  .�/kB D kmB ı .' ˝  / ı�H.�/kB

D







X

�;�

c�;�'.�/ .�/







B

�
X

�;�

jc�;� jk'.�/kB k .�/kB

�
X

�;�

jc�;� j k'jM k`1
k1

!k1
.j�j/ k jMk`1

k1

!k1
.j� j/

(W2)
� k'jM k`1

k1

k jMk`1
k1

X

�;�

jc�;� j!k1
.j�j C j� j/

(7)
� k'jM k`1

k1

k jMk`1
k1

C!k2
.j� j/:

Divide both sides of the inequality by !k2
.j� j/ and pass to the supremum over

� 2M to see that ' ? is contained in `1
k2
.H; B/. By [39, Theorem 3.4] we have

`1!.M;B/�`
1
!.M;B/ D lim!.`

1
k
.M;B/�`1

k
.M;B// as locally convex spaces.

Hence the continuity of the convolution product follows from the continuity on the

steps of the inductive limit (by [20, Corollary 2.1]). �

3.11 Lemma. Consider the locally convex algebra .`1!.H; B/; ?/ (cf. Proposi-

tion 3.10) and the associated Lie algebra .`1!.H; B/; Œ � ; � �/, where

Œ';  � D ' ?  �  ? '

is the commutator bracket.

(a) The controlled characters Gctr.H; B/ form a closed subgroup of the unit

group of the locally convex algebra . Inversion in this group is given by

the map ' 7! ' ı SH and the unit element is 1A ´ uB ı "HWH ! B;

x 7! "H.x/1B .

(b) The controlled infinitesimal characters gctr.H; B/ form a closed Lie subal-

gebra of .`1!.H; B/; Œ � ; � �/.

Proof. Characters form a group with respect to the convolution and pre-composi-

tion with the antipode. Similarly, the infinitesimal characters form a Lie Algebra.

We refer to [46, 4.3, Propositions 21 and 22)] for proofs. For every controlled

character, its inverse ' ı S is again a controlled character since the antipode map

S WH ! H is `1
 -continuous by assumption. It is clear from the definitions that

Gctr.H; B/ and gctr.H; B/ are closed subsets with respect to the topology of point-

wise convergence and hence Proposition 1.14(a) implies the closedness with re-

spect to the `1!-topology. �
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Now the first main result constructs the Lie group of controlled characters.

3.12 Theorem. Let ..H; †/; .!n/n2N/ be a control pair and let B be a commuta-

tive Banach algebra. The group of B-valued controlled characters Gctr.H; B/ is

an analytic Lie group modelled on the (LB)-space `1!.†; B/.

Proof. We use the fact the H is – as an algebra – isomorphic to KŒ†� or Kh†i.

Hence, by Proposition 2.8 the controlled characters form a closed splitK-analytic

submanifold of the surrounding space `1!.H; B/. Since convolution is analytic

(even continuous bilinear) on the surrounding space by Proposition 3.10, it is still

analytic when restricting to an analytic submanifold. So, group multiplication

is analytic. Since the inverse of a character is given by pre-composition with

the antipode map, inversion on the group is the restriction of a continuous linear

map on the surrounding space and hence analytic as well. This turns Gctr.H; B/

into a K-analytic Lie group. As a manifold it is diffeomorphic to `1!.†; B/ by

Proposition 2.8, so it is modelled on that space. �

Before we identify the Lie algebra of the group of B-valued controlled char-

acters recall from [8, Theorem 2.8] the Lie group of B-valued characters.

3.13 Lie group structure of G.H; B/. Let B be a commutative Banach algebra

and H be a graded and connected Hopf algebra (both over K). Then the character

group .G.H; B/; ?/ of B-valued characters is a K-analytic Lie group whose Lie

algebra is g.H; B/. The Lie group exponential is given by the exponential series

expG.H;B/W g.H; B/ �! G.H; B/; ' 7�!
X

n�0

'?n

nŠ
;

where ?n is the nfold convolution of ' with itself. Finally, the canonical inclusion

G.H; B/ ! HomK.H; B/ realises G.H; B/ as a closed K-analytic submanifold

where the right hand side is endowed with the topology of pointwise convergence.

Character groups of graded and connected Hopf algebras are infinite-dimen-

sional Lie groups. The controlled character groups just constructed are naturally

subgroups of the character groups and the inclusion turns out to be a Lie group

morphism.

3.14 Lemma. Let ..H; †/; .!n/n2N/ be a control pair and Gctr.H; B/ the Lie

group induced by it. The canonical inclusion �H;B WGctr.H; B/ ! G.H; B/;

' 7! ' is a K-analytic morphism of Lie groups.
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Proof. Obviously �H;B is a group morphism as Gctr.H; B/ is a subgroup of

G.H; B/. Hence we only have to prove that it is K-analytic. As outlined in 3,

the Hopf algebra H is – as an algebra – either KŒ†� or Kh†i for some graded

index set †. LetM be †� or †�, respectively. Thus with respect to the topology

of pointwise convergence we have an isomorphism of topological vector spaces

HomK.H; B/! BM (compare 1.13). Proposition 1.14 (a) shows that the inclu-

sion I W `1!.H; B/ ! BM Š HomK.H; B/ is continuous linear, whence K-ana-

lytic. As �H;B arises as the (co-)restriction of I to the closed analytic submanifolds

Gctr.H; B/ � `
1
!.H; B/ andG.H; B/ � HomK.H; B/ it is againK-analytic. �

Note however, that the topology of the controlled character groups is finer than

the subspace topology induced by the full character group. Thus the Lie group

structure of the controlled character groups does not turn them into Lie subgroups

of the full character group. Using the Lie group morphism just constructed we

can now identify the Lie algebra as the Lie algebra of all controlled infinitesimal

characters with the following natural Lie bracket.

3.15 Proposition. The Lie algebra of the Lie groupGctr.H; B/ induced by the con-

trol pair ..H; †/; .!n/n2N/, is given by .gctr.H; B/; Œ � ; � �/, where the Lie bracket

is the commutator bracket induced by the convolution

Œ';  � D ' ?  �  ? ':

As a locally convex vector space gctr.H; B/ is isomorphic to `1!.†; B/ via

resW gctr.H; B/ �! `1!.†; B/;  7�!  j†;

whose inverse extends a function f 2 `1!.†; B/ to all words by assigning each

word of length different from 1 to zero.

Proof. By Lemma 3.14, �H;B WGctr.H; B/ ! G.H; B/; � 7! � is a K-analytic

morphism of Lie groups. Hence L.�H;B/ WD T1�H;B W gctr.H; B/ ! g.H; B/ is a

morphism of Lie algebras. Now as �H;B arises as the restriction of a continuous

linear map I to aK-analytic submanifold, we deduce that T1�H;B is the restriction

of T1I which can be identified again with I . In conclusion L.�H;B/.'/ D '

for every ' 2 Gctr.H; B/ by definition of I . Hence Œ � ; � � D L.�H;B/ ı Œ � ; � � D

ŒL.�H;B/.�/;L.�H;B/.�/�g.H;B/ D Œ � ; � �g.H;B/. Summing up the assertion follows

from the formula for the Lie bracket of g.H; B/.

It remains to show the statement about the isomorphism. By Proposition 2.8

we know that the C!
K
-manifold Gctr.H; B/ is diffeomorphic to `

1
!.†; B/ via the

diffeomorphism

Gctr.H; B/ �! `1!.†; B/; ' 7�! 'j†:



424 R. Dahmen and A. Schmeding

Taking the tangent map at the identity ofGctr.H; B/we obtain an isomorphism of

the corresponding tangent spaces gctr.H; B/ and `
1
!.†; B/. Since the diffeomor-

phism can be extended to the continuous linear map

`1!.H; B/ �! `1!.†; B/; ' 7�! 'j†;

its tangent map at each point is also given by this exact formula. �

In Theorem 3.12 we have seen that the controlled characters of a real Hopf

algebra form an analytic real Lie group. We will now establish that this group

admits a complexification in the following sense (cf. [30, 9.6]).

3.16 Definition. Let G be a real analytic Lie group modelled on the locally

convex space E and GC be a complex analytic Lie group modelled on EC. Then

GC is called a complexification of G if G is a real submanifold of GC, the

inclusion G ! GC is a group homomorphism and for each g 2 G, there exists

an open g-neighbourhood V � GC and a complex analytic diffeomorphism

'WV ! W � EC such that '.V \G/ D W \E.

Note that for a real Hopf algebra H, also its complexification HCis a Hopf

algebra. If ..H; †/; .!n/n2N/ is a control pair then, since H is isomorphic to

RŒ†� or Rh†i, clearly HC is isomorphic to CŒ†� or Ch†i, respectively. For a

commutative Banach algebra B its complexification BC is again a Banach algebra

(see [5, Lemma 2] such that its norm coincides onB with the original norm. From

Lemma 1.10 we deduce thus:

3.17 Lemma. If ..H; †/; .!n/n2N/ is a control pair then ..HC; †/; .!n/n2N/ is a

control pair.

Armed with this knowledge, we can now generalise the complexification of

the (tame) Butcher group discussed in [10, Corollary 2.8].

3.18 Proposition. Let B be a commutative real Banach algebra and let the pair

..H; †/; .!n/n2N/ be a control pair such that H is a real Hopf algebra. Denote

by HC and BC their complexifications. Then the complex Lie group

(a) Gctr.HC; BC/ constructed in Theorem 3.12 is the complexification of the real

Lie group Gctr.H; B/;

(b) G.HC; BC/ (cf. 3.13) is the complexification of the real Lie group G.H; B/.
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Summing up, the following diagram is commutative:

Gctr.H; B/ Gctr.HC; BC/

G.H; B/ G.HC; BC/

 

!
�

 !�H;B  ! �HC;BC

 

!
�

(8)

Proof. (a) The complexification of the modelling space E WD `1!.†; B/ of

Gctr.H; B/ is `
1
!.†; BC/ by [39, Theorem 3.4], since Proposition 2.7 shows that

the complexifications of the steps in the limit are `1
k
.†; BC/. In the canonical

global charts one immediately sees that the inclusion Gctr.H; B/ � Gctr.H; B/

is a group morphism which realises Gctr.H; B/ as a real analytic submanifold of

Gctr.H; B/. Summing up, Gctr.HC; BC/ is the complexification of Gctr.H; B/ in

the sense of Definition 3.16 (taking ' to be the canonical chart).

(b) Recall from [8, Theorem 2.7] that the Lie group G.H; B/ is a closed

analytic submanifold of the densely graded algebra .HomR.H; B/; ?/. Here

.HomR.H; B/ Š BI, where the right hand side is endowed with the prod-

uct topology and I is some choice of a vector space basis for H. Note that I

is then also a basis for the complex vector space HC. Obviously, the canon-

ical inclusion BI � BI

C
Š HomC.HC; BC/ is a complexification, whereas

G.H; B/! G.HC; BC/ is one.

Obviously, the diagram (8) is commutative by construction and all morphisms

are (R=C-)analytic morphisms of Lie groups. �

3.19 Remark. Part (b) of Proposition 3.18, is true for arbitrary connected and

graded Hopf algebras, i.e. they need not be isomorphic (as associative algebras)

to KŒ†� or Kh†i. Further, the algebra B can be any (real) locally convex algebra.

We end this section with some comparison results concerning the groups of

controlled characters of a combinatorial Hopf algebra with respect to different

growth families.

3.20 Proposition. Let .H; †/ be a combinatorial Hopf algebra. Fix two growth

families such that ..H; †/; .!k/k2N/ and ..H; †/; . Q!k/k2N/ are control pairs. For

a commutative Banach algebra B denote by Gctr.H; B/ (resp. zGctr.H; B/ ) the

controlled characters with respect to .!k/k2N (resp. . Q!k/k2N). If for every r 2 N

there exists s 2 N with !r.n/ � Q!s.n/ 8n 2 N then we obtain an analytic Lie

group morphism

Gctr.H; B/ �! zGctr.H; B/; ' 7�! ':
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Proof. The modelling space of the Lie group Gctr.H; B/ is the inductive limit

of the Banach spaces `1r .†; B/. To distinguish the weights, we denote by

`1
r; Q!k

.†; B/ the steps of the inductive limit forming the modelling space of

zGctr.H; B/. Now the condition !r.n/ � Q!s.n/, for al n 2 N, that there is a

canonical inclusion of `1r .†; B/ ! `1
s; Q!k

.†; B/ for every r 2 N. These maps

are continuous linear and composing with the limit maps of the steps `1
s; Q!k

we ob-

tain continuous linear inclusions of the steps `1r .†; B/ into the modelling space

of zGctr.H; B/. By the universal property of the inductive limit, we thus obtain a

continuous linear inclusion of the modelling space of Gctr.H; B/ into the one of
zGctr.H; B/. Composing with the global charts of the groups of controlled charac-

ters, we obtain exactly the analytic Lie group morphism described in the proposi-

tion. �

4. Regularity of controlled character groups

In this chapter we discuss regularity in the sense ofMilnor for groups of controlled

characters. Our approach here follows the strategy outlined in [10, Section 4].

First recall from [8, Theorem B] that the full character group G.H; B/ is

C 0-regular. Hence to establish semiregularity, we prove that solutions of the

differential equations in the full character group factor through Gctr.H; B/ for

suitable initial data. We then prove that under certain assumptions one obtains

smooth solutions of the equations on the controlled character group.

In a second step, we use then inductive limit techniques to establish the smooth-

ness of the evolution operator. As a consequence the controlled character groups

will even be regular. However, certain assumptions are necessary to obtain the es-

timates used in our strategy. These methods do not allow us to establish a general

regularity result as it is very hard to obtain estimates for general combinatorial

Hopf algebras. Since we also want to establish regularity properties for the con-

trolled character groups of complex Hopf algebras a few conventions and remarks

are needed:

Complex analyticmaps are smooth with respect to the underlying real structure

by [27, Proposition 2.4], whence for a complex Hopf algebra H the complex Lie

group Gctr.H; B/ also carries the structure of a real Lie group. A complex Lie

group is called regular, if the underlying real Lie group is regular (in the sense of

the introduction).

4.1. Recall that the coproduct in a graded and connected Hopf algebra can be

written as �.x/ D 1H˝x C x ˝ 1HCx�.x/, where x�WH !
L

n;m2N Hn ˝Hm
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denotes the reduced coproduct. Following [48] a combinatorial Hopf algebra

.H; †/ is called right-handed combinatorial Hopf algebra if its reduced coproduct

satisfies

x�.H/ � K
.†/ ˝H; with K

.†/ the vector space with base †:

One can prove that (commutative) right-handed combinatorial Hopf algebras are

closely connected to preLie algebras and the antipode is given by a Zimmermann

type forest formula (cf. [48, Theorem 8]).

Hopf algebras occuring in the renormalisation of quantum field theories are

typically right-handed Hopf algebras (such as the Connes–Kreimer Hopf algebra,

Example 5.2).

In the following we fix a control pair ..H; †/; .!n/n2N/ with convex growth

family and assume that .H; †/ is an right-handed combinatorial Hopf algebra.

The Lie group of controlled charactersGctr.H; B/will always be constructed with

respect to such a pair, and some commutative Banach algebraB . Before we begin,

recall the type of differential equation we wish to solve.

4.2 Lie type differential equations on controlled character groups. As dis-

cussed in the introduction we are interested in solutions of the differential equa-

tion ´


 0.t / D 
.t/:�.t/;


.0/ D 1;

where � 2 C.Œ0; 1�; gctr.H; B// and the dot means right multiplication in the

tangent Lie group TGctr.H; B/. By Lemma 3.14 the map

�H;B WGctr.H; B/ �! G.H; B/; ' 7�! '

is a Lie group morphism. Its derivative L.�H;B/WL.Gctr.H; B// ! L.G.H; B//

is the canonical inclusion of `1!.H; B/ into B
H. As a consequence of [30,

Lemma 10.1] if � 2 C k.Œ0; 1�; gctr.H; B// admits a C
kC1-evolution 
 W Œ0; 1� !

Gctr.H; B/, then

�H;B ı 
 D EvolG.H;B/.L.�H;B/ ı �/: (9)

Thus from [8, Step 1 in the proof of Theorem 2.11] we see that the differential

equation for regularity can be rewritten for � 2 C.Œ0; 1�; gctr.H; B// as
´


 0.t / D 
.t/ ? �.t/;


.0/ D 1
(10)

(this can also be deduced directly from the submanifold structure).
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We will now prove that for certain Hopf algebras, the solution of the equa-

tion (10) factors through the controlled character group if the initial curve � takes

its values in the Lie algebra of controlled characters. However, our proof depends

on a certain estimate on the growth of the convolution product (we discuss this in

Remark 4.8 below). To formulate the growth estimate, we define the elementary

coproduct.

4.3 Definition. For a right-handed Hopf algebra .H; †/ define

x�".�/ WD
X

˛;ˇ2†

c˛;ˇ;�˛ ˝ ˇ; for all � 2 †:

the right elementary coproduct. Here the right-hand side is given by the terms

in the basis expansion of the reduced coproduct � of the Hopf algebra. Since the

Hopf algebra is right-handed, the elementary coproduct restricts the terms only by

imposing a condition on the second component of the tensor products. Note that

the right elementary coproduct will in general contain less terms than the reduced

coproduct since we restrict in the second component to elements in the alphabet†.

4.4 Definition ((RLB) Hopf algebra). We call a right-handed combinatorial Hopf

algebra .H; †/ right-hand linearly bounded (or (RLB)) Hopf algebra if there

are constants a; b > 0 such that the elementary coproduct satisfies a uniform

`1-estimate



x�".�/






`1 D
X

j˛jCjˇ jDj� j

˛;ˇ2†

jc˛;ˇ;� j � .aj� j C b/; for all � 2 †: (11)

For example, the Connes–Kreimer algebra (see Example 5.2) is a (RLB)

Hopf algebra, whereas the Faà di Bruno algebra (cf. Example 5.5) is not of this

type. We need a version of Gronwall’s inequality (see [58, Lemma 2.7] and [21,

Lemma 1.1.24(a)]):

4.5 Lemma (Gronwall). LethW Œ0; 1�! Œ0;C1Œ be continuous,A;B � 0 constant

with

h.t/ � AC B

tZ

0

h.s/ds for all t 2 Œ0; 1�:

Then

h.t/ � AetB for all t 2 Œ0; 1�:

4.6 Proposition. If .H; †/ is a (RLB) Hopf algebra and ..H; †/; .!n/n2N/ is a

control pair, then Gctr.H; B/ is C 0-semiregular.
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Proof. Recall from [8] that the differential equation (10) has a unique solution in

G.H; B/ (since this group is C 0-semiregular). We will now prove that for every

fixed � 2 C.Œ0; 1�; gctr.H; B// the solution 
 W Œ0; 1�! G.H; B/ to (10) inG.H; B/

factors through the controlled characters. Since �.Œ0; 1�/ � gctr.H; B/ is compact

and the Lie algebra is a compactly regular inductive limit (cf. Lemma B.5), we

deduce from Proposition 1.14 (c) that there is k 2 N with �.Œ0; 1�/ � U
`1

k

1 .0/.

Now define

hn.t / WD sup
�2†;j� j�n

k
.t/.�/k

!k.j� j/
; t 2 Œ0; 1�; n 2 N

Our aim is to find an upper bound for hn growing at most exponentially in n (and

thus slower then any growth family). Choose a; b > 0 such that (11) is satisfied.

Recall that 
 0 D 
 ?� 2 Hom.H; B/ by (10). Hence we can integrate this formula

and use the properties of (infinitesimal) characters to obtain the following estimate

for n 2 N:

hn.t / D sup
j� j�n

k
.t/.�/k

!k.j� j/
D sup
j� j�n










tZ

0


.s/ ? �.s/ds










!k.j� j/

(5), (4)
D sup
j� j�n

1

!k.j� j/










tZ

0

�


.s/.�/ �.s/.;/
„ ƒ‚ …

D0

C 
.s/.;/
„ ƒ‚ …

D1B

�.s/.�/

C
X

j˛jCjˇ jDj� j

˛2†;ˇ2†�n¹;º

c˛;ˇ;�
.s/.˛/�.s/.ˇ/
�

ds










(5), (4)
D sup
j� j�n

1

!k.j� j/

tZ

0

�

k�.s/.�/k
„ ƒ‚ …

�!k.j� j/

ds

C

tZ

0

X

j˛jCjˇ jDj� j;

˛;ˇ2†

jc˛;ˇ;� j k
.s/.˛/k
„ ƒ‚ …

�hn.s/!k.j˛j/

k�.s/.ˇ/k
„ ƒ‚ …

�!k.jˇ j/

�

ds

� 1C sup
j� j�n

X

j˛jCjˇ jDj� j

˛;ˇ2†

jc˛;ˇ;� j
!k.jˇj/!k.j˛j/

!k.j� j/

tZ

0

hn.s/ds

(11)
� 1C sup

j� j�n

.aj� j C b/

Z

hn.s/ds � 1C .anC b/

tZ

0

hn.s/ds:
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Working in a right-handed Hopf algebra ensured that there are no higher powers

of hn in the formulae. By the Gronwall inequality (Lemma 4.5) this leads to

hn.t / � 1 � e
.anCb/t < .2n/

2aC2b
:

By .2aC 2b/ times applying (W3) we obtain a k2 > k such that

!k.n/ .2
n/

2aC2b
� !k2

.n/ for all n 2 N:

For a given t 2 Œ0; 1� and � 2 † we deduce

k
.t/.�/k D !k.j� j/hj� j.t / � !k.j� j/.2
j� j/2aC2b � !k2

.j� j/:

This shows that 
 takes only values in the (unit ball of the) space `1
k2
.H; B/. Now

apply (W3) again to find k3 > k2 with .an C b/!k2
.n/ < !k3

.n/ for all n 2 N.

Then 
 W Œ0; 1�! U
`1

k3
.H;B/

1 .0/ is continuous due to the following estimate:

k
.t/ � 
.t0/k`1
k3

�

tZ

t0

k
 0.s/k`1
k3

ds

D

tZ

t0

k
.s/ ? �.s/k`1
k3

ds

� sup
�2†

tZ

t0

�

k�.s/.�/k`1
k3

„ ƒ‚ …

�1

C
X

j˛jCjˇ jDj� j;

˛;ˇ2†

jc˛;ˇ;� j
!k2

.j� j/

!k3
.j� j/

k
.s/k`1
k2

„ ƒ‚ …

�1

k�.s/k`1
k2

„ ƒ‚ …

�1

�

ds

� sup
�2†

tZ

t0

�

1C
.aj� j C b/!k2

.j� j/

!k3
.j� j/

�

ds

� 2 jt � t0j :

By [30, Lemma 7.10] continuity of 
 suffices to conclude that 
 is C 1 and that

EvolGctr.H;B/.�/ D 
 . This concludes the proof. �

We may now show that the group of controlled characters is even C 0-regular:

4.7 Theorem (regularity of the group of controlled characters). Assume that

.H; †/ is an (RLB) Hopf algebra and ..H; †/; .!n/n2N/ a control pair. Then

Gctr.H; B/ is C 0-regular (with an analytic evolution map) and in particular

regular in Milnor’s sense.
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Proof. We will assume throughout this proof that K D C. The regularity of a

group of real controlled characters can be deduced from the complex case by

[30, Corollary 9.10] since Proposition 3.18 shows that the complexification of

a group of controlled characters is the complex group of controlled characters.

In Proposition 4.6 we have shown that for every � 2 C.Œ0; 1�; gctr.H; B// there is


� D Evol.�/ 2 C 1.Œ0; 1�; g.H; B/ such that 
 0� D 
� ? �. It remains to establish

smoothness of

evolW gctr.H; B/ �! Gctr.H; B/; � 7�! 
�.1/:

Step 1: Working in charts. The C!
K
-manifold Gctr.H; B/ is C

!
K
-diffeomorphic to

the (LB)-space `1!.†; B/ via

resG WGctr.H; B/ �! `1!.†; B/; ' 7�! 'j†;

by Proposition 2.8. Furthermore, Proposition 3.15 entails that the locally convex

space gctr.H; B/ is topologically isomorphic to the (LB)-space `
1
!.H; B/ via

resgW gctr.H; B/ �! `1!.†; B/;  7�!  j†:

Using these identifications it remains to establish smoothness of the map

ˆWC.Œ0; 1�; `1!.†; B// �! `1!.†; B/; � 7�! resG.evol.res
�1
g
ı�//:

Step 2: The auxiliary maps ˆk;` for ` � k. Let k 2 N. In the proof of

Proposition 4.6 we have seen that there is a ` > k such that

sup
t2Œ0;1�

k
�.t /k`1
`
� 1 whenever sup

t2Œ0;1�

k�.t/k`1
k
� 1:

Note that the isomorphism resgW gctr.H; B/! `1!.†; B/ is isometric with respect

to the `1
k
-norms since an infinitesimal character is zero on all words of length

different from 1 (as the Hopf algebra is connected). This means that we obtain a

function �W Œ0; 1�! U
`1

k
.†;B/

1 .0/ via

ˆk;`WU
C.Œ0;1�;`1

k
.†;B//

1 .0/ �! `1` .†; B/; � 7�! ˆ.�/ D resG.evol.res
�1
g
ı�//:

Step 3: ˆk;` is continuous for `� k. Let now k 2 N be fixed. We have seen that

there is a number `1 > k such that ˆk;`1
is well defined. Let again a; b > 0 be the

constants for H such that (11) holds. Now apply (W3) once more to find `2 > `1

with

.anC b C 1/eanCb!`1
.n/ � !`2

.n/ for all n 2 N:
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We will show that ˆk;`2
WU

C.Œ0;1�;`1
k

.†;B//

1 .0/! `1
`2
.†; B/ is continuous. To this

end, let " > 0 and choose ı WD ". Fix �1; �2 2 U
C.Œ0;1�;`1

k
.†;B//

1 .0/ with

sup
t2Œ0;1�

k�1.t / � �2.t /k`1
k
< ı D ":

Consider the Lie group valued curves 
i WD EvolGctr.H;B/.res
�1
g
ı�i /. Continuity

of ˆk;`2
holds if k
1 � 
2k`1

`2

� ". Similar to the proof of Proposition 4.6 define

gn.t / WD sup
�2†;j� j�n

k
1.t /.�/� 
2.t /.�/k

!`1
.j� j/

; for all t 2 Œ0; 1�; n 2 N:

Now for a t 2 Œ0; 1� we have the estimate:

gn.t / D sup
�2†j� j�n

1

!`1
.j� j/










tZ

0

.
 01.s/.�/ � 

0
2.s/.�//ds










D sup
�2†j� j�n

1

!`1
.j� j/










tZ

0

..
1.s/ ? �1.s//.�/ � .
1.s/ ? �1.s//.�//ds










D sup
�2†j� j�n

1

!`1
.j� j/










tZ

0

�

�1.s/.�/ � �2.s/.�/

C
X

j˛jCjˇ jDj� j

˛;ˇ2†

c˛;ˇ;� .
1.s/.˛/�1.s/.ˇ/ � 
2.s/.˛/�2.s/.ˇ//
�

ds










� sup
�2†j� j�n

1

!`1
.j� j/

tZ

0

k�1.s/.�/ � �2.s/.�/k
„ ƒ‚ …

�"�!k.j� j/�"�!`1
.j� j/

dsC

C
X

j˛jCjˇ jDj� j

˛;ˇ2†

jc˛;ˇ;� j

tZ

0

k
1.s/.˛/�1.s/.ˇ/ � 
2.s/.˛/�2.s/.ˇ/k ds

� "C sup
�2†j� j�n

X

j˛jCjˇ jDj� j

˛;ˇ2†

jc˛;ˇ;� j
1

!`1
.j� j/

tZ

0

.k
1.s/.˛/k
„ ƒ‚ …

�!`1
.j˛j/

k�1.s/.ˇ/ � �2.s/.ˇ/k
„ ƒ‚ …

�"�!k.jˇ j/�"�!`1
.jˇ j/

C k
1.s/.˛/ � 
2.s/.˛/k
„ ƒ‚ …

�gn.s/�!`1
.j˛j/

k�2.s/.ˇ/k
„ ƒ‚ …

�!k.jˇ j/�!`1
.jˇ j/

/ds
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� sup
�2†j� j�n

X

j˛jCjˇ jDj� j

˛;ˇ2†

jc˛;ˇ;� j
!`1

.j˛j/!`1
.jˇj/

!`1
.j� j/

„ ƒ‚ …

�1

�

"C

tZ

0

gn.s/ds

�

� sup
�2†j� j�n

X

j˛jCjˇ jDj� j

˛;ˇ2†

jc˛;ˇ;� j

„ ƒ‚ …

�aj� jCb

�

"C

tZ

0

gn.s/ds

�

� ".1C anC b/C .anC b/

tZ

0

gn.s/ds:

By Gronwall’s inequality (Lemma 4.5) this implies

gn.t / � ".1C anC b/e
.anCb/t ;

and in particular

sup
�2†

k.
1.1/ � 
2.1//.�/k

!`2
.j� j/

� sup
�2†

gn.1/!`1
.j� j/

!`2
.j� j/

� sup
�2†

".1C anC b/e.anCb/t!`1
.j� j/

!`2
.j� j/

� ";

which is what we had to show.

Step 4: ˆk;` is complex analytic. Fix k 2 N and choose ` > k as in Step 3

such that ˆk;` makes sense and is continuous. By Lemma 3.14 the inclusion

Gctr.H; B/ ! G.H; B/ is a Lie group morphism. The group on the right is

C 0-regular with an analytic evolution map (see [8, Theorem 2.11]). This shows

that ˆk;` is analytic when regarded as a map into the full character group which is

a submanifold of the locally convex space BH. Since the continuous linear point

evaluations separate the points, we may apply Proposition A.4 to conclude that

ˆk;` is C-analytic.

Step 5: ˆ is complex analytic. As a consequence of Step 2 and Step 4 for each

k 2 N

ˆk WU
C.Œ0;1�;`1

k
.†;B//

1 .0/ �! `1!.†; B/; � 7�! ˆ.�/ D resG.evol.res
�1
g
ı�//:

is complex analytic and bounded. So by [20, Theorem A] the map ˆ is complex

analytic. Summing up, this shows that the evolution map is complex analytic. �
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4.8 Remark. Observe that Theorem 4.7 and Proposition 4.6 can be adapted to

slightly more general situations. The assumption that the Hopf algebra is an (RLB)

Hopf algebra can be relaxed if more information on the growth bound is known.

Namely, instead of the estimate (11) it suffices to require that the elementary

coproduct of the right-handed combinatorial algebra .H; †/ satisfies for all k 2 N

the estimate

kx�".�/k`1 D
X

j˛jCjˇ jDj� j

˛;ˇ2†

jc˛;ˇ;� j � log
�!`.j� j/

!k.j� j/

�

; � 2 †; for suitable ` > k:

Inserting this estimate in the proofs of Proposition 4.6 and Theorem 4.7, one

sees that they can be carried out without any further changes. If the algebra is

not an (RLB) algebra, our estimate indicates that functions in the growth family

need to grow super exponentially fast (i.e. at least like exp
�

kx�".�/k`1

�

). Thus

the only growth family from Proposition 1.4 leading to regular Lie groups are

!k.n/ D k
n.nŠ/k or !k.n/ D k

n2

.

Observe that the estimates in the above proofs will in general be quite con-

servative. Hence we conjecture that with better estimates, or a refinement of the

techniques used in the proofs above, one should be able to obtain regularity for all

Lie groups of controlled characters.

5. Instructive examples of controlled character groups

In this section we discuss (controlled) character groups for certain well known

combinatorial Hopf algebras. Analysis of these examples usually involves in-

volved combinatorial estimates (cf. e.g. the computations following Example 5.5).

Such an analysis is in general beyond the scope of the present article. However

some perspectives for research with application to numerical analysis and control

theory is provided.

Examples from numerical analysis I: the tame Butcher group. In this section

we discuss (controlled) character groups which are inspired by application from

numerical analysis. Namely, we consider groups which are related to the Butcher

group and its generalisations from Lie–Butcher theory (cf. e.g. [45]). Special

emphasis will be given to the power series solutions associated to elements in this

group. This is due to the fact that these power series solutions were the motivation

to consider the tame Butcher group in [10]. We begin with the easiest example in

this context, the character group of the Connes–Kreimer Hopf algebra.12

12 This Hopf algebra is most prominently studied in the Connes–Kreimer approach to per-

turbative renormalisation of quantum field theories, whence the name. We refer to [18] for an

account.
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5.1 Notation. (a) A rooted tree is a connected finite graph without cycles with

a distinguished node called the root. We identify rooted trees if they are graph

isomorphic via a root preserving isomorphism.

Let T be the set of all rooted trees and write T0 WD T [ ¹;º where ; denotes

the empty tree. The order j� j of a tree � 2 T0 is its number of vertices.

(b) An ordered subtree13 of � 2 T0 is a subset s of all vertices of � which

satisfies

(i) s is connected by edges of the tree � ;

(ii) if s is non-empty, then it contains the root of � .

The set of all ordered subtrees of � is denoted by OST.�/. Further, s� denotes the

tree given by vertices of s with root and edges induced by � .

(c) A partition p of a tree � 2 T0 is a subset of edges of the tree. We denote

by P.�/ the set of all partitions of � (including the empty partition).

Associated to s 2 OST.�/ is a forest � n s (collection of rooted trees) obtained

from � by removing the subtree s and its adjacent edges. Similarly, to a partition

p 2 P.�/ a forest � n p is associated as the forest that remains when the edges of

p are removed from the tree � . In either case, we let #� np be the number of trees

in the forest.

(d) We denote by GK

TM the Butcher group over K and recall that it is the set

of tree maps GK

TM D ¹aWT [ ¹;º j a.;/ D 1º. The multiplication of the Butcher

group corresponds to the composition of formal power series (see below 5.3).

5.2 Example (controlled characters of the Connes–Kreimer algebra of rooted

trees). Consider the algebra H
K

CK WD KŒT� of polynomials which is generated

by the trees in T. One defines a coproduct and an antipode on the trees as follows

�WHK

CK �! H
K

CK ˝H
K

CK ; � 7�!
X

s2OST.�/

.� n s/˝ s;

S WHK

CK �! H
K

CK ; � 7�!
X

p2P.�/

.�1/#�np.� n p/

One can show that with these structuresHK

CK is aK-Hopf algebra which is graded

and connected with respect to the number of nodes grading (see [15, 5.1] for

details).

13 The term “ordered” refers to that the subtree remembers from which part of the tree it was

cut.
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Since jOST.�/j � 2j� j and jP.�/j � 2j� j (cf. e.g. [10, Appendix B]) it follows

from the formulae for the antipode and the coproduct that ..HK

CK ;T/; .!n/n2N/ is

a control pair for all growth families discussed in Proposition 1.4.

Recall from [8, Lemma 4.8] that the group of all characters of the Connes–

Kreimer Hopf algebra H
K

CK corresponds to the Butcher group from numerical

analysis

G.HK

CK ;K/ �! GK

TM ; a 7�! ajT[¹;º: (12)

We can construct the group of controlled characters with respect to every growth

family in Proposition 1.4. Consider Gctr.H
K

CK ;K/ induced by the control pair

..HK

CK ;T/; .n 7! kn/k2N/. Then the correspondence of the character group

with the Butcher group identifies Gctr.H
K

CK ;K/ with the tame Butcher group

constructed in [10].

To see this, recall that the weights used in [10] in the construction of the tame

Butcher group are of the form !k.n/ WD 2
kn D .2k/n. It is easy to see that .!k/k2N

is a convex growth family and a cofinal subsequence of the convex growth family.

Thus the inductive limits of the weighted `1-spaces constructed with respect to

both families coincide, as do the Lie group structures from Theorem 3.12 and [10,

Theorem 2.4].

We recall now how controlled characters lead to (locally) convergent power

series of interest to numerical analysis.

5.3 Definition (elementary differentials and B-series). Let now f WE � U ! E

be an analytic mapping on an open subset of the normed space .E; k�k/. For � 2 T

define recursively the elementary differentialFf .�/WU ! E viaFf .�/.y/ D f .y/

and

Ff .�/.y/´ f .m/.y/.Ff .�1/.y/; : : : ; Ff .�m/.y// for � D Œ�1; : : : ; �m�; (13)

where f .m/ denotes themth Fréchet derivative. Nowwe can define for an element

aWT ! K in the Butcher group, y 2 U and h 2 R a formal series

Bf .a; y; h/´ y C
X

�2T

hj� j

�.�/
a.�/Ff .�/.y/; (14)

called B-series. The �.�/ are the symmetry coefficients (used to normalise the

series). As f is usually fixed, the dependence on f will be suppressed in the

notation of elementary differentials and B-series.
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The B-seriesBf .a; y; h/ corresponds to a numerical approximation of a power

series solutions near y0 of the ordinary differential equation

´

y0.t / D f .y/;

y.0/ D y0:
(?)

One would like the formal B-series to converge at least locally, but B-series do not

exhibit this behaviour in general. However, the B-series of a controlled character

converges at least locally (cf. [10, Section 6]).

Example: the Faà di Bruno algebra. The aim of the present chapter is twofold.

First of all, we recall the construction of the Faà di Bruno Hopf algebra. This

Hopf algebra encodes the combinatorial structure of the composition of formal

diffeomorphisms on vector spaces. As is well known, this composition can be

described via the famous Faà di Bruno formula (cf. e.g. [26]), whence the name

of the Hopf algebra. In a second step we consider another realisation of this Hopf

algebra as a combinatorial Hopf algebra. This example emphasises the importance

of the explicit choice of basis for the combinatorial Hopf algebra as a change of

base yields different behaviour of the controlled characters.

5.4 Remark. The dependence on the basis should be seen as a feature of our

approach and not as a defect: In contrast to the construction for the full character

group which is insensitive to the grading [9, Remark 3.10], the construction

depends on the grading. Thus the group of controlled characters exhibits new

features which are desirable in the renormalisation of quantum field theories

(S. Paycha, private communications).

We concentrate here on the classical commutative Faà di Bruno algebra.14 Our

exposition follows mainly [24, Section 3.2.3], but we need the explicit formula

for the antipode as recorded in [12, Theorem 2.14]. (Observe that our choice of

variables is compatible with the one in loc. cit. by [12, Remark 2.12].)

5.5 Example (the commutative Faà di Bruno algebra). The Faà di Bruno algebra

is the combinatorial right-handed Hopf algebraHF dB given by the following data:

� Fix a graded index set † WD ¹a1; a2; : : :º with janj WD n. Conceptually, the

variables correspond to the coordinate functions of formal diffeomorphisms,

i.e. an.'/ D
1

.nC1/Š
dnC1

dxnC1'.0/.

14 There are many Hopf algebras (and bialgebras) which are of “Faà di Bruno type.” For

another example, we refer to Example 5.13 below.
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� As an algebra HF dB is the commutative polynomial algebra CŒ†� with the

connected grading induced by †. The counit "WHF dB ! C is projection

onto the 0th component (as in every connected Hopf algebra).

� The coproduct �WHF dB ! HF dB ˝HF dB is given by the formula

�.an/ WD

n
X

rD0

X

ˇ1C2ˇ2C���CnˇnDn�r
ˇ0Cˇ1C���CˇnDrC1

.r C 1/Š

ˇ0Šˇ1Š � � �ˇnŠ
ar ˝ a

ˇ1

1 � � �a
ˇn
n : (15)

D

n
X

rD0

.r C 1/Š

.nC 1/Š
BnC1;rC1.1Ša0; 2Ša1; : : : ; .n� r C 1/Šan�rC1/: (16)

Here theBn;r are the partial Bell polynomials (cf. [17, Section 3.3]). Further,

we identify a0 WD 1 as this yields the Faà di Bruno bialgebra.

� The antipode S WHF dB ! HF dB is given by the explicit formula

S.an/ WD �an �

n�1
X

rD1

.�1/r
X

n1C���CnrCnrC1Dn

n1;:::;nrC1>0

�.n1; : : : ; nr/ an1
� � �anranrC1

; (17)

where

�.n1; : : : ; nr / D
X

m1C���CmrDr

m1C���Cmh�h

hD1;:::;r�1

�
n1 C 1

m1

�

� � �

�
nr C 1

mr

�

: (18)

This formula was derived in [12] for a non-commutative Faà di Bruno algebra.

Its abelianisation yields an explicit formula for the commutative case.

5.6 Proposition. Together with any growth family from Proposition 1.4 the com-

binatorial Hopf algebra .HF dB ; †/ forms a control pair.

Proof. Once the estimates to apply Lemma 1.10 are established, `1-continuity fol-

lows. Let us first consider the coproduct and recall from [17, p. 135, Theorem B],

BnC1;rC1.1; 2Š; 3Š; : : : ; .n� r C 1/Š/ D

�
n

r

�
.nC 1/Š

.r C 1/Š
:
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Fix k 2 N and use the formula (16) to obtain for n 2 N the following

k�.an/k`1
k
D








n
X

rD0

.r C 1/Š

.nC 1/Š
BnC1;rC1.1Ša0; 2Ša1; : : : ; .n� r C 1/Šan�rC1/








`1
k

�

n
X

rD1

BnC1;rC1.1Š; 2Š; : : : ; .n� r C 1/Š/!k.janj/

D !k.n/

n
X

rD1

.r C 1/Š

.nC 1/Š

�
n

r

�
.nC 1/Š

.r C 1/Š
� !k.n/2

n:

To pass to the second line we used

n�kC1
Y

iD0

!k.jai j/ � !k.janj/

(cf. the explicit (15)).

We now turn to the antipode and use the formula (17). Note that we immedi-

ately have to take an estimate as we are not working with the abelianised version

of the formula. Again fix k 2 N and let n 2 N. Then we compute

kS.an/k`1
k
� !k.janj/C

n�1
X

rD1

X

n1C���CnrCnrC1Dn

n1;:::;nrC1>0

�.n1; : : : ; nr/!k.jan1
j/ � � �!k.janrC1

j/

� !k.janj/
�

1C

n�1
X

rD1

X

n1C���CnrCnrC1Dn

n1;:::;nrC1>0

�.n1; : : : ; nr/
�

:

Recall from (18) that the coefficients �.n1; : : : ; nr/ in the above formula consist of

a sum of products of binomial coefficients. Taking a very rough estimate (observe

the condition in the second sum of (18)!), ever summand in this sum is certainly

smaller than 22n D 4n. To complete the estimate on �.n1; : : : ; nr/, recall from

[12, 2.4] that this number equals the r th Catalan number Cr WD
1

rC1

�
2r
r

�

. Since

r < n we obtain

�.n1; : : : ; nr/ � Cr4
n � 22n4n D 16n:

Inserting this into the above estimate, we obtain

kS.an/k`1
k
� !k.janj/

�

1C

n�1
X

rD1

X

n1C���CnrCnrC1Dn

n1;:::;nrC1>0

16n
�

� !k.jXnj/16
n2n�1
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For the last estimate we used that the summands do not depend on the summation

condition, whence only the number of summands is important. As this number

is the number of compositions of the number n into r smaller natural numbers,

it is smaller than 2n�1 (cf. [17, p. 123, Example 23]). Since all growth families

grow at least exponentially in n, the continuity of the antipode follows (e.g. for

` > 32k). �

Though the Faà di Bruno algebra is a right-handed Hopf algebra, it is unfor-

tunately not an (RLB) Hopf algebra as the next computation with (15) shows for

n 2 N:

kx�".an/k`1 D







n�1
X

rD1

X

ˇ1C2ˇ2C���CnˇnDn�r

ˇ1C���CˇnD1;ˇi2¹0;1º

.r C 1/Š

rŠˇ1Š � � �ˇnŠ
ar ˝ a

ˇ1

1 � � �a
ˇn
n








`1

D







n�1
X

rD1

.r C 1/ar ˝ an�r








`1

D

n�1
X

rD1

.r C 1/

D
n.nC 1/

2
� 1:

Hence, the Faà di Bruno Hopf algebra is not an (RLB) Hopf algebra and we can

not use Theorem 4.7 to establish regularity of its controlled character groups.

However, as exp
�

n.nC1/
2
� 1

�

< kn2

for large enough k, at least the Lie group

of controlled characters with respect to the growth family !k.n/ D kn2
is C 0-

regular by Remark 4.8.

We now realise the Faà di Bruno Hopf algebra as a different combinatorial

Hopf algebra turn to realise another choice of variables for the Faà di Bruno

algebra, i.e. we realise . Note that the only changes in the following example

will be a change of base of the Hopf algebra. All other structure maps remain the

same (though the formulae have to be expressed in the new basis).

5.7 Example (Faà di Bruno algebra II: another combinatorial structure). We

construct the Faà di Bruno algebra as in Example 5.5. However, we scale the

variables

†0 WD ¹Xn ´ .nC 1/Šan j n 2 Nº

and consider HF dB as a combinatorial Hopf algebra with respect to †0. One

introduces the coordinate transformation to the Xn because the coproduct (16)
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changes to

�.Xn/ D

n
X

kD0

Xk ˝ BnC1;kC1.X0; X1; X2; : : : ; Xn�kC1/; n 2 N; (19)

where BnC1;kC1 is the partial Bell polynomial and X0 D 1. For the antipode an

easy computation shows that (17) yields the following in the new variables.

S.Xn/ D �Xn �

n�1
X

rD1

.�1/r
X

n1C���CnrCnrC1Dn

n1;:::;nrC1>0

�.n1; : : : ; nr/
.nC 1/ŠXn1

� � �Xnr
XnrC1

.n1 C 1/Š � � � ..nrC1 C 1/Š/
: (20)

We will now see that ..HF dB ; †
0/; .!k/k2N/ is a control pair for the growth

families from Proposition 1.4 if the growth family is given by !k.n/ D k
n.nŠ/k .

To this end recall from [17, p. 135, TheoremB] that the partial Bell polynomial

Bn;k.1; : : : ; 1/ yields the Stirling number of the second kind. The Stirling numbers

of the second kind add up to the Bell numbers (see [17, Section 5.4] , for which

asymptotic growth bounds are known (cf. [4]). We derive for n 2 N the bound

k�.Xn/k`1
k
< !k.jXnj/

�0:792.nC 1/

log.nC 1/

�nC1

� !k.jXnj/.nC 1/
nC1:

Recall the estimate e
�

n
e

�n
< nŠ, whence

.nC 1/nC1 < .nC 1/ŠenC1 D e.nC 1/.nŠ/en � e.2e/n.nŠ/:

Now as !k.n/ D k
n.nŠ/k , we see that for ` > 2ek we obtain the estimate

k�.Xn/k`1
k
< e!`.jXnj/ for all n 2 N:

Similar to the estimate obtained in Proposition 5.6 for the antipode one establishes

an `1
k
bound for the antipode from (20). Thus ..HF dB ; †

0/; .n 7! kn.nŠ/k/k2N/

is a control pair. However, as the above estimates show, the general growth

behaviour of the coproduct and the antipode do not allow one to form e.g. a group

of exponentially bounded characters. Note further that also .HF dB ; †
0/ is not an

(RLB)-Hopf algebra (an estimate of the elementary coproduct shows that it grows

as 2jXnj).

Example from numerical analysis II: partitioned methods. We will now con-

struct controlled characters in the context of partitioned Butcher series (also called

P-series, cf. [15, 52]). To this end, we consider coloured trees.
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5.8 Definition. Consider a set of colours C D ¹1; 2; : : : ; N º for N 2 N [ ¹1º.

A coloured rooted tree � is a rooted tree � 2 T, where each node has been marked

with one of the symbols (colours) i 2 C. We let TC be the set of coloured rooted

trees and identify C with the set of coloured one-node trees in TC. A subtree �

of the coloured rooted tree � is a coloured tree by endowing it with the colouring

inherited from � .

5.9 Coloured Connes–Kreimer Hopf algebra. Let C be a set of colours and

consider the algebra H
K

CK;C WD KŒTC�. This algebra is a graded and connected

Hopf algebra with respect to the coproduct, antipode and the number of nodes

grading from Example 5.2. We call this Hopf algebra the C-coloured Connes–

Kreimer Hopf algebra.

Every growth family from Proposition 1.4, ..HK

CK ;T/; .!n/n2N/ is a control

pair (as in Example 5.2). Hence Theorem 3.12 allows us to construct controlled

character groups. Again, one is interested in control pairs which ensure (local)

convergence.

In the discussion we restrict to the important special case C D ¹1; 2º (the

general case is similar). To ease the discussion, associate 1 with ”white” and 2

with ”black.”

5.10 Partitioned systems of ODE’s and P-series. Let d 2 N and fix analytic

functions

f; gWR2d �! R
d :

We consider the partitioned ordinary differential equation

´

Pp D f .p; q/; p.0/ D p0;

Pq D g.p; q/; q.0/ D q0:
(21)

Equations of this type appear naturally for example in the treatment of mechanical

systems (distinguishing positions and velocities) ot in rewriting a second order dif-

ferential equation as a system of equations. In these instances, numerical schemes

should respect the special structure of (21). This leads to Runge–Kutta–Nyström

methods and additive Runge–Kutta methods (cf. [52, Introduction] and [36, Sec-

tion III.2]).

Numerical (power-series) solutions to (21) can be constructed similarly to the

B-series already discussed. To this end one augments the definition of elementary

differentials (13) to encompass coloured trees. Whenever the node in the tree is

white, we insert the partial derivative of f with respect to p and if the node is
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black we insert the differential of g with respect to q. Consider the following

explicit example

� D  F.�/.p; q/

D d3
1 f .p; qI d

2
2g.p; qI g.p; q/; f .p; q//; g.p; q/; g.p; q//

Using the elementary differentials with respect to coloured trees, one defines the

P-series15 of a map aWTC [ ¹;º ! K as

P.f;g/.a; h; .p; q//D

0

B
B
B
B
B
B
B
@

a.;/p C
X

�2TC

root of � is white

hj� j

�.�/
a.�/F.�/.p; q/

a.;/q C
X

�2TC

root of � is black

hj� j

�.�/
a.�/F.�/.p; q/

1

C
C
C
C
C
C
C
A

:

Arguing as in the case of the tame Butcher group in [10], one can now obtain

interesting groups of controlled characters for the coloured Connes–KreimerHopf

algebras. In the special case of two colours, the controlled characters induced

by the control pair .HK

CK;C; .n 7! kn/k2N/ correspond to a group of (locally)

convergent P-series.

Outlook: non-commutative case, Lie–Butcher theory. In numerical analysis

the Butcher group, B-series and P-series as discussed above are geared towards un-

derstanding numerical integration schemes for differential equations on euclidean

space. There are several generalisations of this concept which are of interest to

numerical analysis. The other regimes of interest often involve distinct features of

non-commutativity. For example, if one wants to treat (autonomous) differential

equations evolving on manifolds one has to deal with the non-commutativity of

the differentials occurring in this setting. This lead to the development and study

of Lie–Butcher series and their associated (non-commutative) Hopf algebra. On

one hand, one can model these integrators using the shuffle algebra (autonomous

case), cf. [45]. Note that the shuffle algebra and its characters appear in the treat-

ment of word series with application to numerical integration as in [54, 53]. On

the other hand, one can consider a Faà-di Bruno type algebra [45] to model the

non-autonomous case. We will now recall from [54] and [45] the constructions of

power series solutions associated to characters of the shuffle algebra.

15 This presentation of the P-series follows [36, III, Definition 2.1]. Note that loc. cit. defines

for every colour in C a different empty tree. This leads to a non-connected Hopf algebra. We

avoid this by allowing just one empty tree and refer to [52] for the development of the theory.
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Power series and word series ([54]). Consider on R
d the initial value problem

´
d
dt
x.t/ D

P

a2A �a.t /fa.x/;

x.0/ D x0;
(22)

where A is a finite or countably infinite alphabet with the grading � � 1, the

�a are scalar-valued functions and the fa are R
d -valued. For a word w 2

A
� one constructs recursively the word-basis function fw by combining partial

derivatives of the functions fa using the product rule. To illustrate this, we

recall the following example from [54, Remark 2] (derivatives in the following

are Fréchet derivatives):

fba.x/ D f
0

a.x/.fb.x//;

fcba.x/ D f
0

ba.x/fc.x/ D f
00

fa.x/.fb.x/; fc.x//C f
0

a.x/.f
0

b .x/.fc.x//:

Thus the word-basis function fw is a linear combination of elementary differ-

entials (as in 5.10) in the functions fa; a 2 A for some trees. For a character

ı 2 G.Sh.A; �/;R/ one defines now the formal series16

Wı.x/ D
X

w2A�

ı.w/fw.x/ (23)

A similar construction is outlined in [45] to construct solutions to (autonomous)

differential equations on a manifold. To treat time-dependent differential equa-

tions on a manifold, one introduces a generalised Connes–Kreimer Hopf algebra

(see [51], [45, Section 4.3.3]). Once the algebra is defined, one obtains power

series from its characters through a formula which is similar to (23).

5.11 Open problems. We refrain from discussing the details here as it would

involve a combinatorial analysis. However, let us outline the main steps and

problems:

(a) establish control pairs for the shuffleHopf algebra (using the basis of Lyndon

words) and the generalised Connes–Kreimer algebra (here obtain a basis

first);

(b) study convergence of power series induced by the controlled characters.

16Which becomes a power series by introducing a step size parameter " > 0, cf. [54,

Remark 3].
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Similar to [10] one could hope that exponentially bounded controlled charac-

ters with Cauchy-type estimates imply local convergence. However, the construc-

tion of the power series (23) differs fundamentally from the construction of the

B-series (14). Contrary to B-series, the power series associated to the shuffle al-

gebra do not include a normalisation (needed to establish local convergence via

[10, Proposition 1.8]). Thus exponentially growing characters might not lead to

(locally) convergent series.

Outlook: a Faà di Bruno algebra related to Chen–Fliess series. In this sub-

section we discuss a Hopf algebra closely connected to Chen–Fliess series from

control theory. Our exposition follows [31]. In control theory, one is interested in

integral operators called Fliess operators and their generating series.

5.12 Generating series of Chen–Fliess operators. Fix a finite, non-empty al-

phabet X D ¹x0; : : : ; xmº and denote by RhhXii the set of mappings cWX� ! R.

One interprets elements in RhhXii as formal series via c D
P

�2X�.c; �/� and

identifies these series as the generating series of the Fliess operators. Now adjoin

a new symbol ı (formally the generating series of the identity) and set cı D ıC c

for c 2 RhhXii.

5.13 Example (a Faà di Bruno type Hopf algebra [31]). We use the notation as

in 5.12. For � 2 X� [ ¹ıº define the coordinate functions

a�WRhhXii �! R; c 7�! .c; �/

and

aı � 1:

Define the commutative R-algebra of polynomials A D RŒa�W � 2 X [ ı�, where

the product is defined as a�a
 .cı/ D a�.cı/a
 .cı/. Then one can construct on

A the structure of a graded and connected Hopf algebra such that the character

group corresponds to the group of Fliess operators. Note that we are deliberately

vague here and refer to [31, 32] and [23] for an explicit description (even of a

combinatorial basis). Hence A is a right-handed combinatorial Hopf algebra.

The group G.A;R/ group was considered (formally) in control theory “as an

infinite-dimensional Lie group” (cf. [33, Section 5]). It’s Lie group structure

should be the one from [8, TheoremA]). Now characters inG.A;R/which satisfy

j'.�/j < Ckj�jj�jŠ for some C; k > 0 and all � 2 X�: (24)
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correspond to locally convergent series as explained in [31, p. 442]. It was shown

in [31, Theorem 7] that these bounded characters form a subgroup of the character

group G.A;R/. Hence, a detailed analysis should show that the Hopf algebra

together with the growth bounds (24) form a control pair. Thus we expect to obtain

a Lie group of controlled characters by applying Theorem 3.12 which is of interest

in control theory. Details of this construction are beyond the scope of the present

paper, as they require a detailed understanding of the results in [31, 32, 23]. We

hope to provide details and a discussion of possible applications in future work.

Appendices

A. Calculus in locally convex spaces

A.1 Definition. Let r 2 N0 [ ¹1º and E, F locally convexK-vector spaces and

U � E open. We say a map f WU ! F is a C r
K
-map if it is continuous and the

iterated directional derivatives

dkf .x; y1; : : : ; yk/´ .Dyk
� � �Dy1

f /.x/

exist for all k 2 N0 with k � r and y1; : : : ; yk 2 E and x 2 U , and the mappings

dkf WU � Ek ! F so obtained are continuous. If f is C1
R
, we say that f is

smooth. If f is C1
C

we say that f is holomorphic or complex analytic17 and that

f is of class C!
C
.

A.2 Definition. LetE, F be real locally convex spaces and f WU ! F defined on

an open subset U . Denote the complexification of E and F by EC (by FC resp.).

We call f real analytic (or C!
R
) if f extends to a C1

C
-map Qf W QU ! FC on an

open neighbourhood QU of U in the complexification EC.

For r 2 N0[¹1; !º, being of classC
r
K
is a local condition, i.e. iff jU˛ isC

r
K
for

every member of an open cover .U˛/˛ , then f is C r
K
. (see [28, pp. 51–52] for the

case of C!
R
, the other cases are clear by definition.) In addition, the composition

of C r
K
-maps (if possible) is again a C r

K
-map (cf. [28, Propositions 2.7 and 2.9]).

A.3 C r

K
-Manifolds and C r

K
-mappings between them. For r 2 N0 [ ¹1; !º,

manifolds modelled on a fixed locally convex space can be defined as usual. The

model space of a manifold and the manifold as a topological space will always be

17Recall from [21, Proposition 1.1.16] that C 1
C

functions are locally given by series of

continuous homogeneous polynomials (cf. [7, 6]). This justifies our abuse of notation.
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assumed to be Hausdorff. However, we will neither assume second countability

nor paracompactness. Direct products of locally convexmanifolds, tangent spaces

and tangent bundles as well as C r
K
-maps between manifolds may be defined as

in the finite-dimensional setting. For C r
K
-manifolds M;N we use the notation

C r
K
.M;N/ for the set of all C r

K
-maps fromM to N . Furthermore, for s 2 ¹1; !º,

we define locally convex C s
K

-Lie groups as groups with a C s
K
-manifold structure

turning the group operations into C s
K
-maps.

A.4 Proposition. LetE;F be complete locally convex spaces over C and U � E

be an open subset. A continuous f WU ! F is complex analytic if there exists

a separating18 family ƒ of continuous linear maps �WF ! C such that � ı f is

complex analytic.

Proof. It is well known (cf. [21, Lemma 1.1.15]) that f is complex analytic if

and only if f is continuous and Gateaux-analytic at every point of its domain. By

definition f is Gateaux analytic if for every x 2 U and v 2 E there exists " > 0

such that

fx;vWB
C

" .0/ �! F; z 7�! f .x C zv/;

is analytic. However, our assumption shows that for every such pair .x; v/ and

� 2 ƒ the mapping � ı fx;v is complex analytic. As ƒ separates the points and

F is complete [34, Theorem 1] shows that fx;v is complex analytic, whence f is

so. �

B. Auxiliary results for Section 1

B.1 Lemma. Let .J; j�j/ be a graded index set and fix a growth family .!k/k2N.

For each k 2 N, the vector space `1
kC1

.J / is a subspace of `1
k
.J / and the

inclusion

Ik W `
1
kC1.J / �! `1

k.J /;
X

�

c� � � 7�!
X

�

c� � �;

is continuous linear with operator norm at most 1.

Proof. Let
P

� c� � � 2 `
1
kC1

.J / be given. Then








X

�

c� � �







`1
k

D
X

�

jc� j!k.j� j/
(W1)
�

X

�

jc� j!kC1.j� j/ D







X

�

c� � �







`1
kC1

:

�

18 “Separating” means that for every v 2 F there is � 2 ƒ with �.v/¤ 0.
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B.2 Lemma. Fix a graded index set J , a growth family .!k/k2N and a Banach

space B . Let k 2 N and endow K
.J / with the `1

k
-norm and the continuous

linear maps HomK.K
.J /; B/ with the operator norm. Then there is an isometric

isomorphism

RWHomK.K
.J /; B/ �! `1k .J; B/; f 7�! f jJ :

Proof. Denote by kf kop the operator norm of f 2 HomK.K
.J /; B/. For � 2 J

we derive

kR.f /.�/kB D kf .�/kB � kf kop k�k`1
k
D kf kop !k.j� j/

Dividing by !k.j� j/ and passing to the supremum over � 2 J in the above

inequality, we see that

kR.f /k`1
k
D kf jJ k`1

k
� kf kop :

Conversely, for x D
P

�2J cx� 2 K
.J /,

kf .x/kB �
X

�2J

jcx j kf .�/kB

D
X

�2J

jcx j
kf .�/kB
!k.j� j/

!k.j� j/

� kxk`1
k
kf jJ k`1

k

D kxk`1
k
kR.f /k`1

k
:

Dividing by kxk`1
k
and passing to the supremum over x, we see that

kf kop � kR.f /k`1
k
: �

We will now establish Lemma 1.10 using a result which should be a standard

fact from functional analysis. Unfortunately, we were unable to track it down.

B.3 Lemma (factorisation lemma). Let E WD lim
 �

Ek be the projective limit

of a sequence of Banach spaces .E1  E2  � � � / such that the projections

�k WE ! Ek have dense image.19 Let 'WE ! B be a linear map with values in a

Banach space B . Then ' is continuous if and only if there is k0 2 N such that '

factors through a continuous linear map Q'WEk0
! B .

19 This is equivalent to the assumption that the bonding maps have dense image.
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Proof. It is clear that the condition is sufficient for the continuity of '. Hence we

have to establish that it is also necessary. Since 'WE ! B is continuous there is

a continuous seminorm p on E such that k'.x/kB � p.x/ for all x 2 E. The

topology on E D lim
 �

Ek is generated by the projections �kWE ! Ek . Hence

there is a k0 2 N and a constant C > 0 such that

k'.x/kB � p.x/ � C



�k0

.x/





Ek0

for all x 2 E:

If x 2 ker�k0
, this implies at once that '.x/ D 0 and we obtain a well-defined

map

 W�k0
.E/ � Ek0

�! F; �k0
.x/ 7�! '.x/:

This linear map is continuous with operator norm at most C and hence it can be

extended to a continuous linear map Q'WEk0
! B as �k0

.E/ is dense in Ek0
. �

B.4 Lemma (Lemma 1.10). Let .J; j�j/ and .I; j�j/ be graded index sets. Then a

linear map T WK.J / ! K
.I/ extends to a (unique) continuous operator

zT W `1
 .J / �! `1

 .I /

if and only if for each k1 2 N there is a k2 2 N and a C > 0 such that

kT �k`1
k1

� C!k2
.j� j/ for all � 2 J:

Proof. We first show that this criterion is sufficient. Note that we only need that

T is continuous with respect to all k�k`1
k
on the range space. For k1 2 N choose

k2 and C � 0 as in the statement of the Lemma. Let
P

� c� � � 2 K
.J / be given.

Then






T

� X

�

c� � �
�






`1
k1

D







X

�

c� � T �







`1
k1

�
X

�

jc� j � kT �k`1
k1

�
X

�

jc� jC!k2
.j� j/

D C
X

�

jc� jhk2
.�/

D C







X

�

c� � �







`1
k2

:
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Conversely, assume that the linear map T WK.J / ! K
.I/ can be extended to a

continuous linear operator zT W `1
 .J / ! `1

 .I /. Then for each fixed k1 2 N,

we can compose this map with the projection to the Banach space `1
k1
.I /. This

yields a continuous linear map from `1
 .J / to `

1
k1
.I /. By LemmaB.3 this operator

factors through one of the steps `1
k
.J /, i.e. there is k2 such that

`1
k2
.J / �! `1

k1
.I /;

X

�

c� � � 7�! zT
� X

�

c� � �
�

;

is a continuous operator between these Banach spaces with operator norm 0 �

C < 1. Now each � 2 J can be regarded as a vector in `1
k2
.J / and hence we

have the estimate:

kT �k`1
k1

D kzT �k`1
k1

� Ck�k`1
k2

D Chk2
.�/ D C!k2

.j� j/: �

B.5 Lemma (compact regularity of `1!.J; B/). Let .J; j�j/ be a graded index set,

.!k/k2N be a convex growth family and B be a Banach space. Then the direct

limit `1!.J; B/ is compactly regular, i.e. for every compact set K � `1!.J; B/

there is a k 2 N such that K is a compact subset of `1
k
.J; B/.

Proof. By [60, Theorems 6.1 and 6.4], compact regularity follows from

for all k1 2 N there exist k2 � k1 such that

for all k3 � k2; for all " > 0 there exist ı > 0/ such that

U
`1

k1
.J;B/

1 .0/ \ U
`1

k3
.J;B/

ı
.0/ � U

`1
k2

.J;B/

" .0/ :

For fixed k1 2 N, we need k2 such that for all k3 � k2, " > 0 there exists ı > 0

with
�

sup
�

jf .�/j

!k1
.j� j/

� 1 and sup
�

jf .�/j

!k3
.j� j/

� ı
�

H) sup
�

jf .�/j

!k2
.j� j/

� ":

Let k1 2 N be given. We choose k2 � k1 as in (cW) and fix some " > 0. We will

now construct a suitable ı > 0 independent of � 2 J which satisfies the above

property. By (W1) we know that !k1
.j� j/ < !k2

.j� j/ for all � . Hence for ˛ 2 �0; 1Œ

we obtain the estimate !k1
.�/˛ � !k3

.�/1�˛ � !k2
.�/: Thus

jf .�/j D
� jf .�/j

!k1
.j� j/

�˛� jf .�/j

!k3
.j� j/

�1�˛

!k1
.j� j/˛ � !k3

.j� j/1�˛

�
� jf .�/j

!k1
.j� j/

�˛� jf .�/j

!k3
.j� j/

�1�˛

!k2
.j� j/

� ı1�˛!k2
.j� j/:

This is independent of � , whence the property holds for all ı>0with ı1�˛<". �
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B.6 Lemma (`1!.J; B/ is sometimes a Silva space). Let .!k/k2N be a ( possibly

not convex) growth family and assume that .J; j�j/ is a graded index set of finite

type. Assume further that dim B < 1. Then the (LB)-space `1!.J; B/ is a

Silva space and compactly regular, i.e. a locally convex direct limit with compact

operators as bonding maps such that every compact subset of `1!.J; B/ is a

compact subset of some step.

Proof. Every Silva space is compactly regular (see e.g. [29, Proposition 4.4]).

Thus it suffices to show that `1!.J; B/ is a Silva space. To this end, we construct

iteratively indices which satisfy (W3). This yields a sequence k1 < k2 < k3 <

k4 < � � � such that

!kj
.n/

!kj C1
.n/
�
1

2n
for all n 2 N

Since passing to a cofinal subsequence .`1
k1
.J; B/ ! `1

k2
.J; B/ ! � � � / does not

change the limit, we may assume without loss of generality that kj D j and thus

that
!k.n/

!kC1.n/
�
1

2n
for all n 2 N: (25)

Using the isometric isomorphisms

`1k .J; B/ �! `1.J; B/; f 7�!
f

!k.j�j/
;

we see that the bonding map I kC1
k

is a compact operator if and only if the

multiplication operator

MhW `
1.J; B/ �! `1.J; B/; f 7�! h � f;

where

hW J �! R; � 7�!
!k.j� j/

!kC1.j� j/
;

is compact.

Since B Š K
d , we identify `1.J;Kd / Š .`1.J;K//d ; so without loss of

generality, B D K. In this case, the multiplication operator is compact if and only

if h has countable support and limj!1 !k=!kC1.j�j j/ D 0 for some enumeration

.�j /j of the support of h (cf. [47, p. 147, Exercise 4]). Since .J; j�j/ is of finite

type, this means that j�j j ! 1, whence !k=!kC1.j�j j/ � 2�j�j j ! 0 by (25).

Thus the bonding maps are compact and `1!.J; B/ is a Silva space. �
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