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Contraction of Dirac matrices via chord diagrams
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Abstract. Chord diagrams and combinatorics of word algebras are used to model products

of Dirac matrices, their traces, and contractions. A simple formula for the result of arbitrary

contractions is derived, simplifying and extending an old contraction algorithm due to

Kahane. This formula is then used to express the Schwinger parametric integrand of a

QED Feynman integral in a much simplified form, with the entire internal tensor structure

eliminated. Possible next steps for further simplification, including a specific conjecture,

are discussed.
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1. Introduction

1.1. Motivation. The contraction of Dirac matrices is a problem that has in prin-

ciple been solved since the early 1960s and with the advancement of computers

contractions involving any number of matrices can be computed quickly. How-

ever, recent work has laid bare the need for an improved understanding of the

fundamental combinatorics governing these contractions. In [15] we gave an ex-

plicit formula for the Schwinger parametric integrand of a Feynman graph � in
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quantum electrodynamics. It takes on the form 
�N�S� , where 
� contains the

(traces of ) products of Dirac matrices, S� D exp.�ˆ�=‰�/=‰
2
� is the usual

scalar integrand involving the Kirchhoff and Symanzik polynomials and

N� �
X

P

� Y

.i;j /2P

g�i �j

�
.i jj /
�

2‰�

� Y

k…P

X
k;�k

�

‰�

: (1)

Here �
.i jj /
� are the cycle polynomials in Schwinger parameters ˛e introduced

in [15], X
k;�k

� are certain linear combinations of external momenta of� with cycle

polynomials as coefficients and the sum is over all pairings of fermion edges and

vertices of the graph.1 The number of pairings grows factorially with the number

of edges and vertices, so an enormous amount of contractions has to be computed.

While this is in principle doable via computer algebra, even for large graphs, it is

advantageous to understand the contraction combinatorially for a different reason.

Knowing the integer coefficients resulting from contraction, it should be possible

to exploit the multitude of identities for graph polynomials to express the integrand

in a simpler form, with all metric tensors, external momenta and Dirac matrices

fully contracted and in Section 4 we give a conjecture for what this should look

like specificially. This would make quantum electrodynamics pliable for many

mathematical tools previously only applied in scalar theories [20, 27].

There are a multitude of modern methods that have been developed to deal

with the problem of overly complicated contractions (e.g. spin-helicity, BCFW

recursion [1, 13, 14]) and the reader may not yet be convinced that studying the

combinatorics of the “traditional” contraction process is a worthwhile enterprise.

However, especially outside of supersymmetric theories, such on-shell methods

are not immune to becoming complicated and tedious either, and the standard

contraction of Dirac matrices is still very much used today (e.g. in [6, 17]). Instead

of circumventing the contraction process, like these methods, we completely work

it out, in a way that does not depend on any particular choice of representation

for the gamma matrices or spinor basis, and give its end result for any QED

graph, at any loop-order, in terms of simple chord diagrams. Moreover, while

the direct application of this article’s results to scattering amplitude computations

is certainly possible, it is hardly its main purpose. Our focus lies much more on

the study of Feynman amplitudes (their geometry, number theoretic content etc.)

in the parametric context, in which the above methods are plainly not applicable.

1 For example, P D ¹.1; 3/º is a pairing of the set ¹1; 2; 3; 4º with 2; 4 … P . Note that we

omitted some notational technicalities for the sake of clarity, hence “�” instead of “D”. Details

can be found in [15].
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1.2. Dirac matrices, Chisholm’s identities and Kahane’s algorithm. The

Dirac gamma matrices are a set of four complex 4 � 4 matrices that satisfy the

anticommutation relations


�
� C 
�
� D 2g��
14�4; �; � D 0; 1; 2; 3; (2)

and hence generate a representation of a Clifford algebra. In quantum electrody-

namics Dirac matrices appear as a consequence of the Feynman rules (which, in

turn, are motivated by solutions of the Dirac equation), assigning them to fermion

edges and vertices. Overall, one finds for a QED Feynman graph � that its Dirac

matrix structure is a product of an odd number of Dirac matrices, corresponding

to the edges and vertices in a path leading from an outgoing to an incoming ex-

ternal fermion edge, and a trace of Dirac matrices for each closed fermion cycle.

Consider for example �1 and �2 from Figure 1. �1 only contains a fermion cycle,

so one has


�1
D tr.
�4
�4
�3
�3
�2
�2
�1
�5/;

where we use the convention that space time indices �i correspond to vertices vi

and �i to edges ei . For �2 one only has a fermion path, so


�2
D 
�3
�3
�1
�2
�2 ;

where the product has to be ordered by going opposite the fermion flow. The

remaining parts of the Feynman rules result in terms containing combinations

of the polynomials and external momenta mentioned above as well as metric

tensors g�� , resulting in contraction of some or all of the Dirac matrices.

1 2
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Figure 1. Two examples of Feynman graphs from quantum electrodynamics.



460 M. Golz

Contracting Dirac matrices the old-fashioned way. Traditionally the contrac-

tion is computed by iteratively applying the Clifford algebra relation eq. (2), or

rather, an identity that can be derived from it:


�
�1
: : : 
�n


� D

8

<̂

:̂

�2
�n
: : : 
�1

if n is odd,

2.
�n

�1

: : : 
�n�1
C 
�n�1

: : : 
�1

�n
/ if n is even.

(3)

It was first proved (independently and with different methods) by Caianello and

Fubini [4] and Chisholm [7]. After all duplicate indices within one product of

Dirac matrices are contracted one can continue by combining traces with the

Chisholm identity [8],2


� tr.
�S/ D 2.S C zS/; (4)

where S is a product containing an odd number of Dirac matrices and zS is the same

product reversed. When that identity cannot be applied anymore the remaining

traces are expressed in terms of metric tensors with the recursion formula

tr.
�1 : : : 
�n/ D

n
X

iD2

.�1/ig�1�i tr.
�2 : : :b
�i : : : 
�n/: (5)

Remark 1.1. Note that the even case of the contraction relation can alternatively

be expressed in the form


�
�1
: : : 
�n


� D 2.
�kC1
: : : 
�n


�1
: : : 
�k

C 
�k
: : : 
�1


�n
: : : 
�kC1

/

for any odd k < n. This is discussed in more detail in Section 2. To sum up the

findings of that section in as condensed a form as possible: as a consequence of

the equivalence of different choices of decomposition in the even contraction re-

lation the recursive trace formula eq. (5) reduces to a much shorter, non-recursive

formula from which - among other things - the Chisholm identity eq. (4) follows

as a trivial special case. This simplification in turn allows for the combinatorial

interpretation of contraction in Section 3.

2 Sometimes the previous eq. (3) is also called Chisholm identity, but here we will always

use the name to refer to eq. (4)
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Example 1.2. Consider contraction of 
�1
with two metric tensors:

g�2�4
g�2�4


�1
D tr.
�2
�2
�3
�3
�2

„ ƒ‚ …

D�2
�3 
�3 
�2


�2
�1
�5/

D �2 tr.
�3
�3 
�2
�2

„ ƒ‚ …

D4


�1
�5/

D �32.g�3�3
g�1�5

� g�3�1
g�3�5

C g�3�5
g�1�3

/

Traces can be combined as follows:

tr.
�1
�2
�1
�2/ tr.
�1
�2
�3
�4/

D tr.
�1 tr.
�1
�2
�1
�2/
„ ƒ‚ …

D2.
�2 
�1 
�2 C
�2 
�1 
�2 /


�2
�3
�4/

D 2.tr. 
�2
�1
�2
�2

„ ƒ‚ …

D2.
�2 
�1 C
�1 
�2 /
D4g�1�2


�3
�4/C tr.
�2
�1 
�2
�2

„ ƒ‚ …

D4


�3
�4//

D 8.g�1�2 tr.
�3
�4/C tr.
�2
�1
�3
�4//

D 32.2g�1�2g�3�4 � g�1�4g�2�3 C g�1�3g�2�4/:

Algorithmic contraction. Computer algorithms for contraction (e.g. imple-

mented as trace4 in FORM [33]) typically try to successively apply the three equa-

tions (3), (4), and (5) until full contraction is achieved. However, as far back as the

1960s there have been attempts to find alternative contraction methods that bear

some similarities to our approach [18]. Kahane developed an algorithm which

involves instructions on how to first draw a diagram based on a given sequence of

Dirac matrices. Following that the algorithm describes how to parse the diagram,

simultaneously multiplying the result with certain factors depending on what one

encounters. In our approach we use chord diagrams – a very well understood type

of graph – together with a colouring to carry all the necessary information. More-

over, we isolate the relevant combinatorial property of the chord diagrams – the

number of cycle subgraphs with a certain colouring – such that our result is a

closed formula instead of an algorithm. Finally, Kahane’s proofs are based on us-

ing a certain basis for the Clifford algebra generated by the Dirac matrices, while

our results are entirely concluded from the contraction relation eq. (3). In fact, in

Section 2 we completely abstract the process of contraction from Dirac matrices to

combinatorial sequences of letters representing the different space-time indices.
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Kahane’s algorithm was later generalised to products of traces by Chisholm [9],

using his identity eq. (4). Working with Kahane diagrams the computations with

this generalised algorithm become quite cumbersome.3 Following our approach

the general case follows very directly and with only marginally more complicated

notation as Corollary 3.13 from our single trace result Theorem 3.9.

2. From Dirac matrices to words

2.1. The algebra of Dirac words. In this section we define an algebra that will

serve as an abstraction of products of Dirac matrices and allow us to study their

contraction and traces without any of the unnecessary ballast they carry.

Let A ..D ¹ai j i 2 Nº be an alphabet. Then A� with � denoting the Kleene

star [19] is the set of words w (“noncommutative monomials”) over A. The length,

i.e. the number of letters, of a word w is denoted jwj. We say a word is even (odd)

if its length is even (odd) and we only consider words of finite length. zw is the

reversed word. Evidently, A� is a free monoid. Moreover, A generates a free algebra

ZhAi and we also use the nomenclature “word” for elements w D
P

cjwj of this

algebra. Unless explicitly stated otherwise we consider homogeneous words in

which all “monomial words” have the same coefficient and are just rearrangements

of the same letters. By linearity the discussion below holds in general, but we will

see that we are only really interested in this kind of word.

In order to model Dirac matrices we have to satisfy three additional conditions:

� each space-time index (i.e. each letter ai 2 A) appears at most twice;

� an analogon of the contraction relation eq. (3) holds;

� The word ıij
..D 1

2
.aiaj C aj ai / 2 ZhAi has the right properties to serve as

an analogon for the metric tensor.

We implement the first condition in our definition of Dirac words.

Definition 2.1 (Dirac words). Let A be the alphabet introduced above and Ik
..D

hak
i j i 2 Ni the ideal generated by k-th powers of its letters. Then we define Dirac

words as elements of the free algebra ZhAi divided by all third powers

D ..D ZhAi=I3:

3 In the words of J. S. R. Chisholm himself [9]: “The proof of our final result is long and

tedious, and even the statement of it is fraught with notational difficulties. We therefore explain

it by an example [. . . ].”
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Moreover, we define fully contracted Dirac words as those Dirac words in which

each letter appears at most once, i.e.

xD ..D ZhAi=I2:

The contraction relation eq. (3) is translated to letters and words in the obvious

way as

aiuai D �2Qu; aiaj uai D 2.uaj C aj Qu/ (6)

for any odd u 2 D. In remark 1.1 we discussed that the even case can be expressed

in different but equivalent ways. We extend this discussion in Section 2.2 which

will allow us to formulate the contraction relation more elegantly in eq. (10), but

for now this version suffices. Note that the even case also includes length 0, i.e.

the empty word, as a2
i D 2.1 C 1/ D 4. Hence, each letter is up to an integer

factor its own multiplicative inverse. This generalises to (monomial) words as

w
�1 D 2�2jwj zw.

Finally, we can also introduce an analogue to the metric tensor by simply

defining it as an abbreviation for a certain element of D that turns out to have

exactly the desired properties.

Proposition 2.2. Let ıij D 1
2
.aiaj C aj ai/ 2 D. Then,

(i) ıi i D 4;

(ii) ıij aj D ai ;

(iii) ıijw D wıij for all w 2 D.

Proof. The first equation follows directly from a
2
i D 4. For .i i/ we employ the

contraction relations (6) to find

ıij aj D
1

2
.aiaj aj C aj aiaj / D

1

2
.4ai � 2ai / D ai :

In order to prove (iii) note first that the exchange of a letter that we just proved also

works if there is a word between ıij and aj , i.e. for u 2 D with aj … u,

ıijuaj D

8

<̂

:̂

1

2
.aiaj uaj C aj aiuaj / D �ai QuC .uai C ai Qu/ D uai if juj is odd,

ıijuaj D
1

4
akaiaj akuaj D �

1

2
akai Quak D uai if juj is even.

In the latter case we used eq. (6) to rewrite ıij as

ıij D
1

2
.aiaj C aj ai / D

1

4
akaiaj ak
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for some k ¤ i; j . This is now used to show commutativity with a single letter,

which suffices since a word can be commuted by sequentially commuting its

letters:

ıij al D
1

4
akaiaj akal

D �
1

4
akaiaj alak C

1

2
akaiaj ıkl

D
1

2
alaj ai C

1

2
alaiaj

D alıij : �

Remark 2.3. The reader might be wondering why we did not simply use ıij D
1
2
.aiaj C aj ai / as a Clifford algebra equation and derive the contraction relations

from there as one does with Dirac matrices. However, that is not possible in

this setting. In the Dirac matrix setting one can only derive eq. (3) from eq. (2)

with the help of the additional information that there are only four Dirac matrices


0; 
1; 
2; 
3 or equivalently the fact that there are four space-time dimensions.

Therefore we include eq. (6) by definition and derive everything we need from

there.

2.2. Commutativity, symmetry equivalence and traces

Symmetry and equivalence In this section we discuss some properties of

symmetric Dirac words to highlight their importance. Define a symmetrisa-

tion/antisymmetrisation map symWD ! D with

sym.w/ D
1

2
.wC .�1/jwjzw/: (7)

such that sym.D/ � D is the subset of even symmetric and odd antisymmetric

Dirac words. Let furthermore sk WD ! D be the k-fold cyclic shift, i.e. for a

(monomial) word aiaj v one has s1.aiaj v/ D aj vai , s2.aiaj v/ D vaiaj and sk D sk
1

for any k. Using this new notation, reconsider the contraction relation eq. (6). The

even case is

aiaj uai D 2.uaj C aj Qu/ D 4 sym.s1.aj u//: (8)

We mentioned above that different decompositions are possible. Using the odd

case of the contraction relation we find for an even word w D vu with jvj; juj odd

that

aivuai D �
1

2
aivak Quakai



Contraction of Dirac matrices via chord diagrams 465

D C
1

2
aivak Quaiak � ıikaivak Qu

D �uak Qvak � akvak Qu

D 2.uvC QvQu/

D 4 sym.sjvj.w//:

We see that – as far as the symmetrisation map is concerned – all the odd cyclic

shifts of even words are the same. In other words:

Proposition 2.4. Let u 2 D be a Dirac word with juj even. Then

sym.u/ D sym.s2k.u// for all k 2 N: (9)

The symmetrisation map induces an equivalence relation on D given by u �sym

v if and only if sym.u/ D sym.v/. For a given even word w there are two

equivalence classes related by odd cyclic shifts: Œw� ..D ¹s2k.w/ j k 2 Nº and

Œw�� ..D ¹s2kC1.w/ j k 2 Nº. Whenever no confusion can arise, we simply write

w;w� for (an arbitrary representative of ) the equivalence classes, such that odd

cyclic shifts become maps s2kC1.w/ D w
� and vice versa. The contraction relation

in this notation becomes

aiuai D

´

�2Qu if juj is odd,

4 sym.u�/ if juj is even.
(10)

Commutativity. Above we observed that ıij D 1
2
.aiaj C aj ai / D sym.aiaj /

commutes with all other words. We can generalise this commutation property to

longer words as follows.

Proposition 2.5. Let v;w 2 D with jvj even. Then

w sym.v/ D

´

sym.v/w if jwj is even,

sym.v�/w if jwj is odd,
(11)

for all w 2 D. Moreover, a word u 2 D is a central element, i.e. uw D wu for all

w 2 D, if and only if there exists an even v 2 D such that

u D sym.vC v
�/:

Proof. Consider commutation of a letter,

ai sym.v/ D
1

4
aiaj v

�
aj D

1

4
.�aj ai C 2ıij /v

�
aj D sym.v�/ai :
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Hence, successively commuting an odd or even number of letters in a word

produces the first claim eq. (11) and commutativity of any u D sym.v C v
�/ D

sym.v/C sym.v�/ is an immediate consequence. To see that all central elements

have to be of this form consider the following two conditions. If u is central and

juj even, then on the one hand

aiu D uai D �
1

2
aj ai Quaj D �

1

2
aj aiaj Qu D ai Qu;

i.e. u
Š

D Qu. On the other hand one also has

ai sym.u/ D sym.u/ai D ai sym.u�/

by commutativity and eq. (11), so u
Š

D u
�. Finally, there can be no odd central

word since that would directly contradict the odd case of eq. (11). �

Traces of Dirac words. We have seen in the beginning that after contraction

of all duplicate indices the trace of a product of Dirac matrices is computed with

a recursion formula that decomposes it into metric tensors. We can translate that

formula to our algebra to define the trace of Dirac words as a linear automorphism

trW ai1 : : : ain 7�!

n
X

j D2

.�1/j ıi1ij tr.ai2 : : : Oaij : : : ain/; for all n � 2;

on D, with the trace of the empty word tr.1/ ..D 4 corresponding to the trace of the

4 � 4 unit matrix in the Dirac matrix case. The trace tr.w/ 2 D is clearly central

for every w 2 D, so by Proposition 2.5 there exists a word w0 2 D such that

tr.w/ D sym.w0 C w
0�/

and w
0 differs from w at most by a constant factor, which we discuss in the

following

Theorem 2.6. For all w 2 D with jwj even

tr.w/ D 2 sym.w C w
�/:

Proof. For jwj 2 ¹0; 2º we can check explicitly that the claim holds:

2 sym.1C 1/ D 4 D tr.1/;

2.sym.aiaj /C sym.aj ai // D 4ıij D tr.aiaj /:
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Exploiting the recursive trace formula we then show the general case. Consider

the word a1a2 � � � an and commute the first letter all the way to the end,

a1a2 � � � an D �a2a1a3 � � � an C 2ı12a3 � � � an

:::

D .�1/n�1
a2 � � � ana1
„ ƒ‚ …

Ds1.a1���an/

C2

n
X

iD2

.�1/iı1ia2 � � � Oai � � � an:

Using wij for the word w after removal of the i-th and j -th letter we can therefore

write

2

jwj
X

iD2

.�1/iı1iw1i D wC .�1/jwjs1.w/:

which is w C w
� for even words. When trying to do the same for a sum

P
.�1/iı1i .w1i /

� one encounters problems since .wij /
� ¤ .w�/ij . However, ex-

ploiting the symmetrisation and Proposition 2.4 one quickly shows that for an even

word w

2

jwj
X

iD2

.�1/iı1i sym..w1i /
�/ D sym.wC w

�/ D 2

jwj
X

iD2

.�1/iı1i sym.w1i /:

The trick is to move each ı1i D 1
2
.a1ai C aia1/ into the i-th slot of w1i , i.e. the

place where the i-the letter has been removed. In the sum on the rhs this leads

to a telescopic sum in which only half of the first and last terms remain. Due to

the symmetrisation and Proposition 2.4 the same trick can be applied to the sum

with .w1i /
� albeit with slightly less obvious cancellations. Hence, one recursively

finds

tr.w/ D

jwj
X

iD2

.�1/iı1i tr.w1i /

D 2

jwj
X

iD2

.�1/iı1i sym.w1i C .w1i /
�/

D 2 sym.wC w
�/: �

Remark 2.7. With the above expression one immediately sees Chisholm’s iden-

tity eq. (4) as a special case:

ai tr.aiw/ D 2ai sym.aiw C wai / D a
2
i w C ai zwai C aiwai C a

2
i zw D 2.wC zw/:
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Example 2.8. Consider the trace of a word of length 6 which gives 15 terms in

its usual expansion:

1

4
tr.a1a2a3a4a5a6/

D ı12ı34ı56 � ı12ı35ı46 C ı12ı36ı45 � ı13ı24ı56 C ı13ı25ı46

� ı13ı26ı45 C ı14ı23ı56 � ı14ı25ı36 C ı14ı26ı35 � ı15ı23ı46

C ı15ı24ı36 � ı15ı26ı34 C ı16ı23ı45 � ı16ı24ı35 C ı16ı25ı34:

On the contrary, our new expression for the trace has only four terms:

tr.a1a2a3a4a5a6/

D 2 sym.a1a2a3a4a5a6 C a2a3a4a5a6a1/

D a1a2a3a4a5a6 C a2a3a4a5a6a1 C a6a5a4a3a2a1 C a1a6a5a4a3a2:

Moreover, this version of the trace has four terms for any length of word, while

the number of terms in the recursive expansion grows factorially as .jwj � 1/ŠŠ.

We have now completely abstracted the process of computing traces of Dirac

matrices to computations on words. However, explicitly applying the contraction

relation eq. (10) to reduce a word from D to xD is still tedious and not very insightful

from a theoretical viewpoint. In Section 3 we use the results of this chapter to

abstract further to a purely diagrammatical approach. First however we would

like to offer a different perspective on Dirac words that may prove useful in future

work.

2.3. A different perspective – Dirac words as Cartier–Foata monoids. Here

we give an alternative interpretation of the previous section’s content in terms

of slightly different combinatorial objects. While this overcomplicates matters

for the purposes of this article it offers both surprising connections to other

disciplines and potential future application of this article’s results. Both the

seminal articles [5] and [26] as well as the books [22, 11] are useful resources

for more detail.

The idea is to use an alphabet together with so-called dependency relations

on it to generate a free partially commutative monoid. They were first used by

Cartier and Foata in combinatorics [5] and later applied in computer science by

Mazurkiewicz [26]. Following the shorter nomenclature of the latter these objects

are often called trace monoids and their elements traces, but in order to avoid

confusion with the – as far as we can tell – completely unrelated notion of trace

that we discuss in this article we will continue to use the longer more explicit

name.
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Definition 2.9 (free partially commutative monoid). Let† be a finite alphabet and

R � †�† a reflexive and symmetric relation thereon. R generates a congruence

�R on †�. The free partially commutative monoid on † relative to R is defined

as the quotient monoid

M.†;R/ ..D †�= �R :

What that means explicitly is that for a pair of letters .a; b/ 2 R one has the

equality ab D ba. Similarly such a relation defines a free partially commutative

algebra Zh†;Ri ..D Zh†i=IR where one divides the free Z-algebra generated by

the alphabet by the ideal IR D hab � ba j .a; b/ 2 Ri generated by the relation.

Alternatively one can also see the same structure as a free partially commutative

Lie algebra by interpreting R as generating a Lie ideal hŒa; b� j .a; b/ 2 Ri and

dividing by that [12]. With just a little bit more effort one can also find two dual

Hopf algebra structures on such a free partially commutative algebra [30].

In order to apply this to Dirac words one could now use an alphabet† D ¹ai j

i 2 Nº[¹ıij j i; j 2 Nº in which the ıij are not abbreviations for algebra elements

but separate letters. Their commutativity is then introduced as a dependency

relation. The contraction relations (6) together with ıij D 1
2
.aiaj C aj ai / then

generate a confluent and Noetherian rewriting system, which in this case is not

surprising because that essentially only means the contraction from D to xD can be

automated via computer. Such a rewriting system is a generalisation of what would

be called a semi-Thue system4 [32, 28] in the case of (not partially commutative)

free monoids. This alternative interpretation might prove interesting in the future

for two reasons. The unexpected connections to computer science by way of

combinatorics hint at a vast untapped potential of interdisciplinary collaboration.

So far little research has gone into this direction but articles like [23, 24], or [25]

– where it was shown that Feynman graphs can be interpreted as a type of formal

language generated by a theory dependent graph grammar – seem to suggest that

there are deep connections between the two fields whose study might benefit both

disciplines.

Moreover, Cartier and Foata originally introduced their monoids to prove

a (noncommutative generalisation of ) MacMahon’s Master Theorem, which in

its simplest form is stated as follows. Let A D .aij /1�i;j �n be a matrix with

entries in a commutative ring and x1; : : : ; xn formal variables. Let furthermore

4 These systems were of enormous importance in the development of formal languages and

mathematical logic. The article [28] for example contains the first ever proof of undecidability of

a classical mathematical problem. Semi-Thue systems are also known as monoid presentations

(not to be confused with representations) or string-rewriting systems and are isomorphic to both

unrestricted grammars and Turing machines [10].
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C.k1; : : : ; kn/ denote the coefficient of x
k1

1 � � �x
kn
n in the product

n
Y

iD1

.ai1x1 C � � � C ainxn/
ki

and X D .ıijxi /1�i;j �n the diagonal matrix with the formal variables as entries.

Then
X

.k1;:::;kn/

C.k1; : : : ; kn/x
k1

1 � � �xkn
n D

1

det.1n�n �XA/
;

where the rhs is to be understood as a formal expansion with

det.1n�n �XA/�1 D .1 �R/�1 D 1C RCR2 C � � � ;

and the sum is over all tuples of non-negative integers. Since the Kirchhoff polyno-

mial and the various other graph polynomials that typically appear in parametric

Feynman integrals can all be expressed as determinants of certain matrices, insert-

ing the right matrix for A will yield graph polynomials in the coefficients. This

connection between seemingly disparate objects – graph polynomials and free

partially commutative monoids – may prove useful when trying to unveil deeper

combinatoric structures in quantum field theories.

3. Diagrammatic contraction

3.1. Chord diagrams. A graph G is an ordered pair .VG ; EG/ of the set of

vertices VG D ¹v1; : : : ; vjVG jº and the set of edges EG D ¹e1; : : : ; ejEG jº, together

with a map @WEG ! VG � VG . A cycle is a 2-regular graph, and here we always

take cycle to mean simple cycle, i.e. having only one connected component.

Definition 3.1 (chord diagram). A chord diagram D of order n is a graph, con-

sisting of a cycle on 2n vertices (the base) and k � n more edges that pairwise

connect 2k of the vertices of that cycle (the chords). We denote with D
n
k

the set

of all chord diagrams of order n with k chords.

There is an obvious bijection D between traces of (monomial) Dirac words

w and chord diagrams that assigns to each vertex a letter (respecting the relative

ordering) and represents duplicate letters by chords. The cyclicity of tr.w/ D

2 sym.wCw
�/ is manifest in the base cycle of the chord diagramD.w/ and since

it is also symmetric it does not make a difference whether we choose to label the

vertices clockwise or anti-clockwise.
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1

2

3

4

5

1

5

1

5

6 4 6

7 3 7 3 7

8 2 8 2 8

4 6

Figure 2. Three chord diagrams of order n D 4with four, three and two chords respectively.

In order to include products of traces, in particular those that contain contrac-

tions of matrices in different traces, the usual definition of chord diagrams is not

enough, so we generalise as follows:

Definition 3.2 (generalised chord diagram). A generalised chord diagram of order

n D .n1; : : : ; n`/ is a graph that consists of ` chord diagrams Di 2 D
ni

ki
. In

addition to chords within each base cycle a generalised chord diagram may also

contain edges between vertices in different base cycles, which we will also call

chords (but each vertex is still at most 3-valent). We write N D
P
ni for the total

order of the diagram and denote with D
.n1;:::;n`/

k
the set of chord diagrams with

the respective number and size of base cycles and k � N chords.

In the following we will always just write chord diagram for the general version.

Finally, for the discussion below we need to sort the edges of a chord diagram into

three distinct sets, which we do via colouring.

Definition 3.3 (edge k-colouring). Let G be a graph and K a finite set consisting

of k colours. Then a map �WEG ! K is called a k-edge-coloring if for every

vertex v of G all edges incident to it are assigned different colours, i.e. if � is

injective on @�1.v � VG/ � EG for all v 2 VG .

The number of colours needed to colour a given graph is given by Vizing’s

theorem to be either the maximal degree � of the graph or � C 1 [34]. Clearly,

each chord diagram D admits an edge 3-coloring �WED ! ¹0; 1; 2º - sometimes

called Tait colouring [31] - where two alternating colours 1 and 2 are assigned to

the edges of the base cycles and the third colour 0 to all chords. Fix one of the

2` possibilities of such a colouring. This edge colouring induces a unique (up to

permutations of colours) double cover ¹E01
D ; E02

D ; E12
D º of the chord diagram in

which the components E
ij
D D ��1.¹i; j º/ are given by edge subsets that have
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exactly 2 different colours and we write E0
D , E1

D and E2
D for the respective

single colour edge subsets. Furthermore, each two-coloured edge subset can

be decomposed into collections C
ij
D;P

ij
D of cycles and paths with P

12
D D ; and

jC12
D j D ` since the bases are the only cycles with these two colours. The two-

coloured paths between the 2-valent vertices ofD can always be combined to form

three-coloured cycles by joining all paths in their shared initial or final vertices.

Contracting each path in P
01
D and P

02
D to a single edge of colour 1 or 2 projects

the three-coloured cycles onto a generalised chord diagram D0 that consists of a

disjoint union of base cycles without any chords. Specifically, it defines a map

�0WDn
k �! D

n0

0 ;

with n0 D .n0
1; : : : ; n

0
`0/, N

0 D N � k � N and max¹0; ` � kº � `0 � `C k. The

number of two-coloured and three-coloured cycles is the central combinatorial

property that we will need later, so we introduce a separate notation for it:

c2.D/
..D jC01

D j C jC02
D j C `; c3.D/

..D c2.D
0/ D `0:

From now on we often abbreviate two-coloured cycle and three-coloured cycle as

2-cycle and 3-cycle respectively.

Example 3.4. In drawings we use different line types to represent the colours:

0 � ; 1 � ; 2 � :

Let D1; D2; D3 be the three chord diagrams from Figure 2, from left to right.

Their colourings and two-coloured components are depicted in Figure 3. For D1

there are no free vertices, i.e. vertices without a chord incident to them, so all

two-coloured components are cycles and

c3.D1/ D 0; c2.D1/ D 1C 2C 1 D 4:

D2 contains two free vertices - 4 and 6 - with two different two-coloured paths be-

tween them, forming a three-coloured cycle. Overall c2.D2/D2 and c3.D2/D1.

Finally, D3 has four free vertices. There are two 2-cycles, the base and one other

coloured ¹ ; º. The four paths form a single 3-cycle, so c2.D3/ D 2

and c3.D3/ D 1.
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−→

(a) There are no free vertices, so there are no paths but a total of 4 two-coloured cycles.

−→

(b) The 01-component consists of a single path while the 02-component contains a

path and a 2-cycle.

−→

(c) There are 4 paths in total, but they all combine to form a single three-coloured cycle.

Figure 3. Cycle double covers of the chord diagrams from Figure 2.

1 1 1
2

5 6 6

4 56 7

8 2 8

0

3 7 3 4 2 5

Figure 4. Visualisation of the projection map �0.
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Understanding the cycle structure of chord diagrams and how it changes upon

addition of more chords is the main task ahead.

Proposition 3.5. Let D0 2 D
n
k�1

with 1 � k � N D
P
ni and D 2 D

n
k

result

from D0 by adding a chord between two vertices i and j . Then there are the

following possibilities.

(1) If i and j are in the same 3-cycle and

(a) both segments between them consist of a single path, then

c2.D/ D c2.D0/C 2; c3.D/ D c3.D0/ � 1I

(b) one segment consists of a single path and the other of a (necessarily

odd) number of paths larger than 1, then

c2.D/ D c2.D0/C 1; c3.D/ D c3.D0/I

(c) both segments between them consist of a nonzero even number of paths,

then

c2.D/ D c2.D0/; c3.D/ D c3.D0/I

(d) both segments between them consist of an odd (� 3) number of paths,

then

c2.D/ D c2.D0/; c3.D/ D c3.D0/C 1:

(2) If i and j are in different 3-cycles, then

c2.D/ D c2.D0/; c3.D/ D c3.D0/ � 1:

Proof. The cases 1:.a/ and 1:.b/ are apparent since any single path is completed

by a chord to form a new 2-cycle, while the other segment remains a 3-cycle with

the chord in place of the former path. In 1:.c/ both segments have two different

coloured edges on their ends and their opposing colour ends are incident to each

other in i and j . Hence the new chord bridges the equally coloured endings which

results in a new 3-cycle. Visually, a plane 3-cycle is twisted into an 1-shape, or

alternatively, one segment is cut out, flipped and glued back into the 3-cycle with

chords as glue. In 1:.d/ both ends of either segment have the same colour, such

that the new chord cleanly separates the 3-cycle into two new 3-cycles. Finally, in

the second case the edges of either colour incident to i are connected by the chord

to the equally coloured edge incident to j in the other 3-cycle such that a single

new cycle results. �



Contraction of Dirac matrices via chord diagrams 475

Example 3.6. Adding a chord between the two free vertices of D2 from Exam-

ple 3.4 (cf. Figure 3b) falls into Case 1a. All six possible ways to add a chord

between any two vertices ofD3 (Figure 3c) are examples of Case 1b. To illustrate

the other cases one needs either larger very complicated diagrams or almost triv-

ial cases, so for simplicity consider D0 2 D
3
0 to be the empty chord diagram of

order 3, in which every single edge is a path:

12

3

4 5

6

New chords between any pair of vertices separated by one other vertex (say .1; 3/)

correspond to Case 1c. Adding a chord between any of the pairs .1; 4/, .2; 5/

or .3; 6/ corresponds to Case 1d, where the base cycle is split into two new three-

coloured cycles. Say the chord .1; 4/ is added. Then additionally connecting .2; 5/

or .3; 6/ would be examples for Case 2.

3.2. Cycle words and diagram contraction. For this section we only consider

the single base cycle case ` D 1. The results are then generalised in the following

section. Above we already mentioned the relation between traces of monomial

Dirac words and chord diagrams. Let w 2 D be a Dirac word such thatD.w/ 2 D
n
k

for k < n. ThenD.w/ contains at least one 3-cycle and 2.n�k/ 2-valent vertices,

corresponding to the non-duplicate letters of w. The structure of D then tells us

how to arrange these letters into new words in xw.D/ 2 xD which will allow us to

compute the contractions of duplicate letters easily.

Definition 3.7 (cycle words). LetD 2 D
n
k

be a chord diagram with the canonical

edge 3-colouring introduced above and D0 D
F`0

iD1D
0
i D �0.D/. Then for each

D0
i consider the words ui 2 xD that satisfy D.ui/ D D0

i . Up to cyclic shifts there

are four such words for eachD0
i and they are related to each other as ui ; Qui ; u

�
i and

e.u�
i /. Using these words we define the cycle word associated to D as

xw.D/ ..D
1

2

� `0
Y

iD1

sym.ui /C

`0
Y

iD1

sym.u�
i /

�

:

Example 3.8. Consider the chord diagram D3 from Figure 4 and Figure 3c,

previously discussed in Examples 3.4 and 3.6. It has the four free vertices 1; 2; 5;

and 6, with four paths 1�2, 2�3�7�6, 6�5 and 5�4�8�1 combining to one
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three-coloured cycle. Note that after projection to a base cycle the free vertices

are not in the original order anymore. Choose for example u D a1a2a6a5. Then

xw.D3/ D
1

4
.a1a2a6a5 C a5a6a2a1 C a2a6a5a1 C a1a5a6a2/:

For an example with multiple cycles consider the empty order 3 diagram also

discussed in Example 3.6 together with a single chord between .3; 6/. One cycle

consists of the two paths 2� 3� 6� 1 and 1� 2 which gives the word u1 D a2a1

while the other in analogous fashion gives u2 D a4a5. The cycle word is then

1

8
..a2a1 C a1a2/.a4a5 C a5a4/C .a1a2 C a2a1/.a5a4 C a4a5//

D
1

4
..a2a1 C a1a2/.a4a5 C a5a4//:

In the case k D 0 one has �0.D.w// D D.w/ 2 D
n
0 with `0 D ` D 1 and

therefore

xw.D.w// D
1

2
.sym.w/C sym.w�// D

1

4
tr.w/

by Theorem 2.6. This is quite sensible since we can interpret the “contraction” of

a word without duplicate letters to contract as the expansion into ıij via the trace

recursion formula, divided by 4 D tr.1/. On the other hand one sees that if k D n

then there are no more 3-cycles in D.w/ and xw.D.w// D 1. More generally we

find the following relation between w and xw.

Theorem 3.9. Let w 2 D be a monomial Dirac word such that the associated

chord diagram D.w/ 2 D
n
k
; 0 � k � n. Then

tr.w/ D .�2/kCc2.D.w//Cc3.D.w// xw.D.w//:

Proof. As discussed above the case k D 0 gives tr.w/ D 4xw.D.w// where

4 D .�2/0C1C1 such that the claim holds for all n. For 0 < k � n we prove

by induction over the number of chords. Let w0 2 D such that w D ıijw
0. We

abbreviate c2 � c2.D.w//, c3 � c3.D.w// and xw � xw.D.w//, and write c0
2, c0

3

and xw0 for the corresponding objects resulting from w
0. D.w/ is D.w0/ together

with a chord between vertices i and j and we need to consider the same five cases

as in Proposition 3.5. The idea is the same for all cases: use the contraction relation

eq. (10) to compute ıij xw0 D N xw where N is some integer factor. Then confirm

that both the change in term structure of the cycle word and the new integer factor

is in accordance with change in cycle structure and cycle numbers c2 and c3 as

discussed in Proposition 3.5.
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(1) If i and j are in the same 3-cycle (base cycle of �0.D.w
0//) with word uij

and the following hypotheses hold true.

(a) Both segments between them consist of a single path, then sym.uij / D
1
2
.aiaj Caj ai / D sym.u�

ij / such that ıij xw0 D 4xw, where xw is the same as

xw0 except that the entire base cycle that contained i and j – and no other

vertices – has been removed from both products. Hence, in accordance

with 3.5 we have c3 D c0
3 � 1. Furthermore we have c2 D c0

2 C 2 and

one more chord (k � 1 ! k) such that 4 D .�2/1C2�1 and

tr.w/ D ıij tr.w0/ D .�2/k�1Cc0
2

Cc0
3ıij xw0

D .�2/k�1Cc0
2

Cc0
34xw

D .�2/kCc2Cc3 xw:

(b) One segment consists of a single path and the other of a (necessarily

odd) number of paths larger than 1, then uij D v1aiaj v2 for some words

v1; v2 2 xD. Multiplying with ıij extracts the factor 4 D a
2
i but otherwise

leaves the product structure of xw0 intact (and in particular c3 D c0
3).

There is one additional chord and one new 2-cycle, absorbing the factor

4 D .�2/1C1C0:

tr.w/ D .�2/k�1Cc0
2

Cc0
34xw D .�2/kCc2Cc3 xw

(c) Both segments between them consist of a nonzero even number of

paths, then uij D v1aiv2aj v3 for some words v1; v2; v3 2 xD with jv2j

odd. One can use

ıij aiv2aj D aiv2ai D �2Qv2

and as before one finds (with c2 D c0
2 and c3 D c0

3)

tr.w/ D .�2/k�1Cc0
2

Cc0
3.�2/xw D .�2/kCc2Cc3 xw:

(d) Both segments between them consist of an odd number of paths (at least

three each), then uij D v1aiv2aj v3 for some words v1; v2; v3 2 xD with

jv2j even. One can use Proposition 2.5 to find

ıijuij D v1aiv2aiv3 D 4v1 sym.v�
2/v3

D 4v1v3

8

<

:

sym.v�
2/ if jv1j; jv3j are even,

sym.v2/ if jv1j; jv3j are odd,
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and write

sym.ıijuij / D 2

8

<

:

v1v3 sym.v�
2/C sym.v�

2/Qv3 Qv1 if jv1j; jv3j are even,

v1v3 sym.v2/C sym.v2/Qv3Qv1 if jv1j; jv3j are odd

D 4 sym.v1v3/

8

<

:

sym.v�
2/ if jv1j; jv3j are even,

sym.v2/ if jv1j; jv3j are odd.

If the even (odd) case applies to uij then the odd (even) case can be used

to find the analogous result (with .v1v3/
�) for u�

ij . We see the expected

splitting into two 3-cycles realised in the products. One finds altogether

tr.w/ D .�2/k�1Cc0
2

Cc0
34xw D .�2/kCc2Cc3 xw:

(2) If i and j are in different 3-cycles, then we need to consider a product

sym.ui / sym.uj /. One can always choose representatives ui and uj such that

ai and aj are either their first or last letter respectively. Hence, there exist

words v1; v2 2 xD such that

ıij sym.ui / sym.uj / D
1

4
.aiv1 C Qv1ai /.aiv2 C Qv2ai / D sym.Qv2v1/:

The factor here is 1 D .�2/1C0�1 where we have one more chord but lost

one 3-cycle, so here, too, everything works out as claimed. �

In the case of a single trace discussed here one could have simply used
Q

sym.ui / as cycle word and found the same result. However, next we want to

consider products which have duplicate letters within different traces. In those

cases it is crucial to consider the full xw.D.w// with products over both sym.ui /

and sym.u�
i / as defined above.

Remark 3.10. Above we only discussed contraction of traces of even words. In

practice one would also like to contract odd words, which are associated to “open”

fermion lines in a Feynman graph. For contraction of such a wordw0 2 Dwith jw0j

odd consider the word w D w1aiw2 where ai 2 A is a dummy letter that does not

occur in w0, w1w2 D w
0 and w2 starts with the first letter that occurs only once in

the w0, i.e. is not contracted. The trace and its contraction of w can be computed

as above. The contraction of the odd word is then simply obtained by dividing by

4 and “unsymmetrising” the factor corresponding to the 3-cycle that contains the

dummy vertex in the two products in the cycle word, i.e.

sym.ui / �! ui or Qui and sym.u�
i / �! u

�
i or Qu�

i ;
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where the choice is fixed by demanding that upon evaluation ai ! 1 the first letter

of the unsymmetrised word is the first letter of w2. See also Example 3.11 below.

Example 3.11. We return again to the contraction of g�2�4
g�2�4


�1
from Exam-

ple 1.2, corresponding to the Dirac word

w D ı37ı48a1a2a3a4a5a6a7a8

whose chord diagram is again D.w/ D D3, the rightmost diagram in Figure 2

which we already discussed in all the previous examples. In Example 3.4 we

found c2.D3/ D 2 and c3.D3/ D 1, and in Example 3.8 we saw

xw.D3/ D
1

2
.sym.a1a2a6a5/C sym.a2a6a5a1// D

1

4
tr.a1a2a6a5/:

Therefore

tr.w/ D .�2/2C2C11

4
tr.a1a2a6a5/ D �8 tr.a1a2a6a5/;

which is the same result as in the previous manual computation.

Let v D a2a3a4a5a6a3a4 be the odd word such that w D a1v. We compute its

contraction following remark 3.10. There is only one factor in the cycle word to

be unsymmetrised and the choice is such that a2 is the first letter after removal

of a1. One finds

v D .�2/5
1

4

1

2
.a1a2a6a5 C a2a6a5a1/a1!1 D �8a2a6a5;

which is the expected result.

Example 3.12. We can compute a larger example, like the contraction of an 18

letter word, to demonstrate the efficiency of this contraction formalism. Let

tr.w/ D tr.a1a2a3a4a1a6a2a8a9a10a9a3a10a14a4a8a6a14/

D .�2/3 tr.a4a3a2a6a2a8a10a3a10a6a8a4/

D .�2/5 tr.a4a3a6a8a3a6a8a4/

D .�2/7 tr.a4a6a6a4/

D .�2/13;

where we already combined multiple contractions in the same line and chose an

efficient order of contractions. For our formalism we simply count the number

chords (k D 9), 3-cycles (c3.D.w// D 0) and 2-cycles (c2.D.w// D 4, the base,

two depicted in Figure 5 on the left, and one on the right). Hence we have indeed

tr.w/ D .�2/9C4C01 D .�2/13.
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Figure 5

3.3. Multiple traces. Above we considered contraction of single traces but The-

orem 3.9 can be generalised to arbitrary products of traces - including contraction

of letters occurring in different traces - without much effort.

Consider first two words w1;w2 2 D without any shared letters and Di D

D.wi/ 2 D
ni

ki
for i D 1; 2 their respective chord diagrams. Multiplying their

traces gives

tr.w1/ tr.w2/ D .�2/k1Ck2Cc2.D1/Cc2.D2/Cc3.D1/Cc3.D2/ xw.D1/xw.D2/;

where

xw.D1/xw.D2/

D
1

4

�
`0

1Y

iD1

sym.u1;i /

`0
2Y

j D1

sym.u2;j /C

`0
1Y

iD1

sym.u�
1;i /

`0
2Y

j D1

sym.u�
2;j /

C

`0
1Y

iD1

sym.u1;i /

`0
2Y

j D1

sym.u�
2;j /C

`0
1Y

iD1

sym.u�
1;i /

`0
2Y

j D1

sym.u2;j /
�

:

(12)

Consider the disjoint union of the two chord diagrams D12 D D1 t D2. The

terms in eq. (12) can be interpreted as two different cycle words associated to

D12, corresponding to two different colourings of the base cycles of D1 and D2.

Assuming that all diagrams use the same colour for their chords, there are 2`

possible colourings of the ` base cycles with the other two colours - visible as four

terms in eq. (12). Combining the terms pairwise (the two in the upper line and
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the two in the lower line) one has a sum over the 2`�1 relative colourings of the

base cycles. Earlier we defined the mapD from Dirac words D to chord diagrams.

Clearly it can be extended to word tuples .w1; : : : ;w`/ 2 D
`, mapping them to

chord diagrams with ` base cycles as long as the concatenation w1 � � �w` 2 D, i.e.

as long as no letter appears more than twice in the tuple. As we have seen above

there are 2`�1 different relative colourings of the base cycles. Clearly the set of

three-coloured cycles and the projection of such a chord diagram then depend

on the choice of colouring c. Similarly the cycle numbers c2.D; c/ and c3.D; c/

depend now on the choice of colouring. Using this we can simply extend the

cycle word definition 3.7 to a generalised chord diagram together with a particular

colouring as

xw.D; c/ ..D
1

2

� `0
Y

iD1

sym.ui /C

`0
Y

iD1

sym.u�
i /

�

:

where of course `0 and all the ui are now also colour dependent via �c
0 . The overall

cycle word for a generalised chord diagram D 2 D
.n1;:::;n`/

k
is then

xw.D/ ..D
1

2l�1

X

c

.�2/c2.D;c/Cc3.D;c/ xw.D; c/:

Every summand is of the same form as the cycle word for a single chord diagram,

so Theorem 3.9 can be applied term by term and extends fully to generalised

chord diagrams. In particular the addition of a chord between different base cycles

(corresponding to contraction of letters in different traces) can be treated the same

as Case 2 (new chord between different 3-cycles) in the proof.

Corollary 3.13. Let .w1; : : : ;w`/ 2 D
` be a tuple of Dirac words such that

D � D.w1; : : : ;w`/ 2 D
.n1;:::;n`/

k
. Then

tr.w1/ � � � tr.w`/ D .�2/k xw.D/

D
.�2/k

2`�1

X

c

.�2/c2.D;c/Cc3.D;c/ xw.D; c/:

Example 3.14. Consider the chord diagram depicted with its two different rel-

ative colourings in Figure 6. Labelling counter-clockwise and starting with the

uppermost vertex of the left base cycle it corresponds to

ı1;5ı6;12ı8;10ı9;11ı14;15 tr.a1a2a3a4a5a6a7a8/ tr.a9a10a11a12a13a14a15a16/

D .�2/4 tr.a4a3a2a6a7a8/ tr.a8a6a13a16/

D �.�2/6.tr.a4a3a2a7a13a16/C tr.a4a3a2a13a16a7//:

(13)
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−→

−→

Figure 6. The two-coloured subgraphs of the same chord diagram for two different relative

colourings. One can see the different structures that result in different cycle words and

numbers.

We have a total of five chords in two base cycles, so k D 5, ` D 2. The two

colourings each have only one 3-cycle, with corresponding words

u1 D a3a4a16a13a7a2 and u2 D a3a4a7a16a13a2

respectively, which are up to cyclic shifts and reversal the two words in the traces

in eq. (13). Both have three 2-cycles, the two bases and one between vertices 14

and 15. Therefore we compute

.�2/5

4
..�2/3C1.sym.u1/C sym.u�

1//C .�2/3C1.sym.u2/C sym.u�
2///

D �.�2/6.tr.u1/C tr.u2//:
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4. Feynman integrals and summation of traces

We can now go back to the integrand of parametric Feynman integrals and com-

bine the term containing traces of products of Dirac matrices with the metric ten-

sors found in eq. (1). For simplicity we restrict the discussion to single fermion

loops and graphs of photon propagator type, but the following holds true in gen-

eral. For multiple fermion loops one simply has to use the more cumbersome

notation just introduced in the previous section while fermion propagators, vertex

graphs etc. can be treated by introducing a dummy vertex to close the fermion

loop and then following Remark 3.10 to make some minor changes to the factors.

The overall structure is the same. Finally, in order to avoid further lengthy discus-

sion of notation involving the polynomials �
.i jj /
� in the general gauge case [15],

we restrict ourselves to Feynman gauge.

Let n D .jE
.f /
� j C jV� j/=2 and label the 2n vertices of a chord diagram base

cycle with fermion edges and vertices of �, respecting their ordering within the

fermion cycle. Working in Feynman gauge we now let D0 be that base cycle

together with n=2 chords fixed in place between the vertices labelled by vertices

of �, such that each chord corresponds to a photon edge of �, including an edge

between the external vertices .i0; j0/. We can then reinterpret the sum in eq. (1)

as a sum over all possible chord diagrams containing D0 and write

N� �

n
X

kD n
2 C1

X

D2Dn
k

D�D0

� Y

.i;j /2E0
D

nE0
D0

g�i �j

�
.i jj /
�

2‰�

� Y

l2V
.2/

D

X
l;�l

�

‰�

:

where E0
D � ED are the chords and V

.2/
D � VD are the 2-valent vertices of D.

Combining this with the Dirac matrices 
� and applying Theorem 3.9 gives


�N� �
g�i0

�j0

4

n
X

kD n
2 C1

X

D2Dn
k

D�D0

.�2/kCs.D/
� Y

.i;j /2E0
D

nE0
D0

�
.i jj /
�

2‰�

� xw.D; �/

‰2n�2k
�

D
g�i0

�j0

2

n
X

kD n
2

C1

.�1/k

‰2n�k�1
�

X

D2Dn
k

D�D0

.�2/s.D/
� Y

.i;j /2E0
D

nE0
D0

�
.i jj /
�

�

xw.D; �/;

(14)

where xw.D; �/ D xw.D/j
ai !
�i

X
i;�i
�

and s.D/ D c2.D/C c3.D/.

Example calculations suggest that by exploiting various identities for graph

polynomials it should be possible to sum over all chord diagrams for each k, find-

ing an even simpler result of the form
P
Ai=‰

i
� , with eachAi being expressible as
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a relatively simple polynomial. However, the combinatorics seem to be quite com-

plex and need to be investigated in depth in future work. What we can do for now,

as a preparation and to motivate such a summation, is consider the much simpler

summation of the traces without polynomials, i.e. sums of the form
P

D.�2/
s.D/

where the D are generalised chord diagrams and s.D/ D c2.D/ C c3.D/ is the

total number of cycles. Based on these results we then conjecture an expression

for the sum
P

D.�2/
s.D/

Q
�

.i jj /
� for the caseD 2 D

n
n and argue why that should

be enough to completely reduce eq. (14) to its simplest possible form.

4.1. Summation without polynomials

Theorem 4.1. Let D0 2 D
n
k�1

with n D .n1; : : : ; n`/ and 1 � k �
P
ni . Define

xD.D0/ � D
n
k

to be the set

xD.D0/
..D ¹D 2 D

n
k j D0 � Dº;

which contains all chord diagrams that result from D0 by adding a chord in all

possible ways. Furthermore, denote with m D n � k C 1 the number of missing

chords in D0. Then

X

D2 xD.D0/

.�2/s.D/ D �m.mC 1/ � .�2/s.D0/:

Proof. Since we only care about the change in total number of cycles the five

cases of Proposition 3.5 can be collected into only three cases here: adding a

chord between vertices in

(1) the same 3-cycle, separated by an odd number of segments, s.D/Ds.D0/C1;

(2) the same 3-cycle, separated by an even number of segments, s.D/Ds.D0/;

(3) different 3-cycles, s.D/ D s.D0/ � 1.

We first compute explicitly the cases k D n and k D n� 1 to illustrate the idea of

the proof and then prove for general k.

For k D n (m D 1) there are only two free vertices, which are the endpoints

of the two paths of a single 3-cycle and there is only one possibility of adding a

chord, which belongs to Case 1. Hence,

X

D2 xD.D0/

.�2/s.D/ D .�2/s.D/ D .�2/s.D0/C1 D �2 � .�2/s.D0/:

For k D n�1 (m D 2) there are 6 ways to add a chord and the four free vertices

can be arranged either in a single 3-cycle with four paths or two 3-cycles with two
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paths each. If it is a single 3-cycle, then four of the six ways to add a chord fall into

Case 1, with odd segments containing one and three paths, respectively. The other

way of adding a chord is of Case 2, with both segments containing two paths, such

that overall

X

D2 xD.D0/

.�2/s.D/ D 4.�2/s.D0/C1 C 2.�2/s.D0/ D �6 � .�2/s.D0/:

If there are two 3-cycles then one has four times Case 3 of adding a chord between

different cycles and twice Case 1 of adding a chord in a 3-cycle with two paths (as

in the previous case k D n), so one finds the same result

X

D2 xD.D0/

.�2/s.D/ D 4.�2/s.D0/�1 C 2.�2/s.D0/C1 D �6 � .�2/s.D0/:

In general there are
�

2m
2

�

possibilities of adding a chord to D0 and the 2m free

vertices can be partitioned into up tom 3-cycles (base cycles of �0.D0/) as follows

.2m/;

.2m� 2; 2/; .2m � 4; 4/; : : : ; .dme; bmc/;
:::

.2; 2; : : : ; 2/:

Two observations allow us to collect all terms in each of these cases. First,

consider a single 3-cycle on 2l vertices. Adding a chord separates the cycle into

segments of length l1 and l2, l1 � l � l2. There are 2l possibilities for each

pair .l1; l2/ with l1 > l > l2 and l for l1 D l D l2. By simple counting one

finds that this gives l2 instances of Case 1 (odd length segments) and l.l � 1/

of Case 2 (even length segments). Secondly, consider a set of ` 3-cycles on 2li

vertices respectively and count only the number of possibilities to add a chord

between any two of them. There are
�

`
2

�

choices of two cycles, each of which

contribute 2li � 2lj possibilities to add a chord such that we can express the total

number of possibilities as E2.2l1; : : : ; 2l`/ D 4E2.l1; : : : ; l`/, the evaluation of

the elementary symmetric polynomial of degree 2. Combining these two results

we find that, for a set of ` 3-cycles on 2mi vertices with
P
mi D m one has the

following number of chord additions corresponding to each case:

Case 1 �!
X

m2
i ;

Case 2 �!
X

mi .mi � 1/;

Case 3 �! 4E2.m1; : : : ; mr/:
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Now it remains to be shown that the sum
P

D2 xD.D0/.�2/
s.D/ yields the same

result, regardless of the particular 3-cycle partition present in D0. Assume D0

contains ` 3-cycles with mi free vertices such that .m1; : : : ; m`/ with
P
mi D m

is the corresponding integer partition of m � 1. Then

X

D2 xD.D0/.�2/s.D/

D .�2/s.D0/
�

� 2
X̀

iD1

m2
i C

X̀

iD1

mi .mi � 1/ �
1

2
4E2.m1; : : : ; m`/

�

D .�2/s.D0/
�

�
X̀

iD1

mi �
� X̀

iD1

m2
i C 2E2.m1; : : : ; m`/

�

„ ƒ‚ …

D
�

P̀

iD1

mi

�2

Dm2

�

D �m.mC 1/ � .�2/s.D0/: �

Inspired by the above theorem we can now consider iterations xD.xD.D0//, : : : ,
xDm.D0/, i.e. sums over sets of chord diagrams, which result from adding multiple

chords in all possible ways.

Corollary 4.2. Let D0 2 D
n
N �m with 1 � m � N D

P
ni and xD.D0/ as in

Theorem 4.1 above. Then, for 1 � k � m

X

D2 xDk.D0/

.�2/s.D/ D .�1/kkŠ

�
m

k

��
mC 1

k

�

.�2/s.D0/:

In particular, one finds the sum over all completions of D0 for k D m

X

D2 xDm.D0/

.�2/s.D/ D .�1/m.mC 1/Š.�2/s.D0/

and the sum over all diagrams of a given order 2N for k D m D N

X

D2Dn
N

.�2/s.D/ D 4.�1/N .N C 1/Š

as the completions of the empty chord diagram on 2N vertices.

Proof. For k D 1 the statement is just Theorem 4.1 since
�

m
1

��
mC1

1

�

D m.mC 1/.

For k > 1 we make use of Theorem 4.1 iteratively, collect the factors and divide

by kŠ to account for the different permutations of chord additions that result in the
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same diagrams:

X

D2 xDk.D0/

.�2/s.D/ D
1

kŠ

X

D12 xD.D0/

� � �
X

Dk2 xD.Dk�1/

.�2/s.Dk/

D
.�1/

kŠ
.m � k C 1/.m � k C 2/

X

D12 xD.D0/

� � �
X

Dk�12 xD.Dk�2/

.�2/s.Dk�1/

:::

D
.�1/k

kŠ

� k
Y

iD1

.m � k C i/.m� k C i C 1/
�

.�2/s.D0/

D
.�1/k

kŠ

mŠ

.m � k/Š

.mC 1/Š

.m � k C 1/Š
.�2/s.D0/

D .�1/kkŠ

�
m

k

��
mC 1

k

�

.�2/s.D0/: �

4.2. Summation with polynomials

Conjecture 4.3. Let D0 2 D
n
0 with n 2 N

` and N D
P
ni . Then

X

D2Dn
N

.�2/s.D/
Y

.u;v/2E0
D

�
.ujv/
� D .�2/`.Z12.D0/CZ21.D0//:

where

Zij .D0/
..D

X

E2P.E i
D0

/

.�‰�/
N �jEj.jEj C 1/Š Y.E; E

j
D0
/:

P.Ei
D0
/ here denotes the set of partitions E D .E1; : : : ; EjEj/ of i-coloured base

edges and Y.E; E
j
D0
/ is a sum of products of jEj Dodgson polynomials ‰

I;J
�;K with

jI j D jEk j D jJ j and K D ;, associated to the underlying graph �.

A number of remarks regarding this conjecture and potential future work are

in order:

� The Dodgson polynomials were introduced by Brown [3]. They enter this

setting because, up to a sign ambiguity, �
.i jj /
� D ˙‰

¹iº;¹j º
�;; . A potential proof

of the conjecture should then rely on the Dodgson identity

‰
¹i1º;¹j1º
�;; ‰

¹i2º;¹j2º
�;; � ‰

¹i1º;¹j2º
�;; ‰

¹i2º;¹j1º
�;; D ‰�‰

¹i1;i2º;¹j1;j2º
�;;

and its higher order generalisations.
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� The precise definition of Y.E; E
j
D0
/ requires rather extensive exposition be-

yond the scope of this article and shall be given in future work, together with

a rigorous proof. Such a proof, using the Dodgson identity, seems in reach

in principle but is an enormous combinatorial mess that needs to be worked

out in detail elsewhere.

� The conjecture has been checked computationally for all possible configura-

tions n D .n1; : : : ; n`/ up to and including
P
ni D 7, in which it is a sum

over .2 � 7 � 1/ŠŠ D 135135 chord diagrams.

� The chord sum corresponding to k D n in the integrand eq. (14) can be

simplified by this conjecture. Moreover, due to transversality the k D n � 1

term should yield the exact same result when integrating and it should be

possible to prove this directly on the level of the integrand (by showing that

they yield integrands that are equal up to exact forms), observing that the

various �
.i jj /
� and X

i;�i

� are all first or second derivatives of ˆ� [15].

� The remaining terms with k < n � 1 are all convergent and vanish in renor-

malisation, at least at the superficial level. For graphs with subdivergences

there is a rather complicated interplay between convergent and divergent

parts of sub- and cographs that needs to be studied in detail.

� The .�‰�/
N �jEj cancels some powers of the Kirchhoff polynomial in the de-

nominator of the integrand, massively reducing its size (in terms of Schwin-

ger parameter monomials) as well as computational complexity. While the

overall transcendental degree of the integrand remains the same, the number

of terms with the highest power of ‰� in the denominator is reduced to the

two expressions
Y

.u;v/2E1
D0

�
.ujv/
� C

Y

.u;v/2E2
D0

�
.ujv/
�

corresponding to the two partitions that separate E1
D0

and E2
D0

into N parts

containing only one edge each.

5. Conclusion

The process of contracting traces of Dirac matrices was abstracted to a purely

combinatorial level. Using methods that revealed possible interdisciplinary con-

nections to theoretical computer science, we found a formula that replaces the

contraction entirely and expresses the end result in terms of the structure of chord

diagrams associated to traces of Dirac matrices. This allowed us to rewrite the
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complicated numerator structure of parametric Feynman integrands in quantum

electrodynamics as a sum over chord diagrams, with all contractions fully exe-

cuted. An even further simplified expression was conjectured, based on extensive

example computations and the properties of the graph polynomials appearing in

the integrand. Due to an abundance of cancellations and the elimination of the

Dirac matrix structures this conjectured expression massively reduces the overall

size of the integrand, making it accessible to automated integration by a com-

puter, potentially to higher loop numbers than before. Additionally, the simplified

structure of the integrand opens it up to algebro-geometric and number theoretic

studies, e.g. regarding the appearance and cancellation of transcendentals in QED

amplitudes [2, 16, 29].

The method applies to any QED Feynman graph. Moreover, it should be pos-

sible – albeit combinatorially more complex – to generalise the work presented

here to QCD or general gauge theories. Consider the general Schwinger paramet-

ric integrand for gauge theories as derived in [21]. It reduces Feynman graphs

with 4-valent vertices to sums of 3-regular graphs, making it analogous to the

QED case discussed here, and uses the so-called “Corolla differential” to express

the numerator structure. This differential is a generalisation of the derivatives

discussed in [15] and computing it in terms of Dodgson polynomials appears to

be mostly a matter of sorting through large numbers of derivatives and applying

identities already proved in [15]. The reduction to 3-regular graphs suggests that

general gauge theories can be treated similarly to QED Feynman graphs, although

it remains to be seen how exactly the contraction formalism has to be modified to

incorporate some of the more complicated objects arising from non-abelian gauge

theories.
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