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Contraction of Dirac matrices via chord diagrams

Marcel Golz

Abstract. Chord diagrams and combinatorics of word algebras are used to model products
of Dirac matrices, their traces, and contractions. A simple formula for the result of arbitrary
contractions is derived, simplifying and extending an old contraction algorithm due to
Kahane. This formula is then used to express the Schwinger parametric integrand of a
QED Feynman integral in a much simplified form, with the entire internal tensor structure
eliminated. Possible next steps for further simplification, including a specific conjecture,
are discussed.
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1. Introduction

1.1. Motivation. The contraction of Dirac matrices is a problem that has in prin-
ciple been solved since the early 1960s and with the advancement of computers
contractions involving any number of matrices can be computed quickly. How-
ever, recent work has laid bare the need for an improved understanding of the
fundamental combinatorics governing these contractions. In [15] we gave an ex-
plicit formula for the Schwinger parametric integrand of a Feynman graph I' in
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quantum electrodynamics. It takes on the form yr NrSr, where yr contains the
(traces of) products of Dirac matrices, St = exp(—®r/¥r)/ \IJ% is the usual
scalar integrand involving the Kirchhoff and Symanzik polynomials and
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Here )(glj ) are the cycle polynomials in Schwinger parameters ¢, introduced
in [15], X’f’“ k are certain linear combinations of external momenta of I" with cycle
polynomials as coefficients and the sum is over all pairings of fermion edges and
vertices of the graph.! The number of pairings grows factorially with the number
of edges and vertices, so an enormous amount of contractions has to be computed.
While this is in principle doable via computer algebra, even for large graphs, it is
advantageous to understand the contraction combinatorially for a different reason.
Knowing the integer coefficients resulting from contraction, it should be possible
to exploit the multitude of identities for graph polynomials to express the integrand
in a simpler form, with all metric tensors, external momenta and Dirac matrices
fully contracted and in Section 4 we give a conjecture for what this should look
like specificially. This would make quantum electrodynamics pliable for many
mathematical tools previously only applied in scalar theories [20, 27].

There are a multitude of modern methods that have been developed to deal
with the problem of overly complicated contractions (e.g. spin-helicity, BCFW
recursion [1, 13, 14]) and the reader may not yet be convinced that studying the
combinatorics of the “traditional” contraction process is a worthwhile enterprise.
However, especially outside of supersymmetric theories, such on-shell methods
are not immune to becoming complicated and tedious either, and the standard
contraction of Dirac matrices is still very much used today (e.g. in [6, 17]). Instead
of circumventing the contraction process, like these methods, we completely work
it out, in a way that does not depend on any particular choice of representation
for the gamma matrices or spinor basis, and give its end result for any QED
graph, at any loop-order, in terms of simple chord diagrams. Moreover, while
the direct application of this article’s results to scattering amplitude computations
is certainly possible, it is hardly its main purpose. Our focus lies much more on
the study of Feynman amplitudes (their geometry, number theoretic content etc.)
in the parametric context, in which the above methods are plainly not applicable.

! For example, P = {(1, 3)} is a pairing of the set {1, 2, 3,4} with 2,4 ¢ P. Note that we
omitted some notational technicalities for the sake of clarity, hence “~” instead of “=". Details
can be found in [15].
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1.2. Dirac matrices, Chisholm’s identities and Kahane’s algorithm. The
Dirac gamma matrices are a set of four complex 4 x 4 matrices that satisfy the
anticommutation relations

yeyY + iyt = 2" 14xs, p,v =0,1,2,3, (2)

and hence generate a representation of a Clifford algebra. In quantum electrody-
namics Dirac matrices appear as a consequence of the Feynman rules (which, in
turn, are motivated by solutions of the Dirac equation), assigning them to fermion
edges and vertices. Overall, one finds for a QED Feynman graph T that its Dirac
matrix structure is a product of an odd number of Dirac matrices, corresponding
to the edges and vertices in a path leading from an outgoing to an incoming ex-
ternal fermion edge, and a trace of Dirac matrices for each closed fermion cycle.
Consider for example I'y and I', from Figure 1. I'; only contains a fermion cycle,
so one has

yrp =ty yay By By y iy iy ),

where we use the convention that space time indices v; correspond to vertices v;
and u; to edges e;. For I'; one only has a fermion path, so

VL, = pUiyRyriyhay .

where the product has to be ordered by going opposite the fermion flow. The
remaining parts of the Feynman rules result in terms containing combinations
of the polynomials and external momenta mentioned above as well as metric
tensors gV, resulting in contraction of some or all of the Dirac matrices.
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Figure 1. Two examples of Feynman graphs from quantum electrodynamics.
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Contracting Dirac matrices the old-fashioned way. Traditionally the contrac-
tion is computed by iteratively applying the Clifford algebra relation eq. (2), or
rather, an identity that can be derived from it:

2V, -+ Yoy if n is odd,
Yy - Vo, ¥ = 3)
2(Vvp Vo1 - Vouer F Yooy -+ - Y Vo) if 1 is even.

It was first proved (independently and with different methods) by Caianello and
Fubini [4] and Chisholm [7]. After all duplicate indices within one product of
Dirac matrices are contracted one can continue by combining traces with the
Chisholm identity [8],?

yute(y*S) = 2(S + §), 4

where S is a product containing an odd number of Dirac matrices and S is the same
product reversed. When that identity cannot be applied anymore the remaining
traces are expressed in terms of metric tensors with the recursion formula

n
) e N C o Y (VOB 0 ) (5)
i=2

Remark 1.1. Note that the even case of the contraction relation can alternatively
be expressed in the form

YuYvi -« Yoy VM = Z(Vvk.H e Yo Vor Yo T Vo o Vo Yoy - e - Vvk.H)

for any odd k < n. This is discussed in more detail in Section 2. To sum up the
findings of that section in as condensed a form as possible: as a consequence of
the equivalence of different choices of decomposition in the even contraction re-
lation the recursive trace formula eq. (5) reduces to a much shorter, non-recursive
formula from which - among other things - the Chisholm identity eq. (4) follows
as a trivial special case. This simplification in turn allows for the combinatorial
interpretation of contraction in Section 3.

2 Sometimes the previous eq. (3) is also called Chisholm identity, but here we will always
use the name to refer to eq. (4)
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Example 1.2. Consider contraction of yr, with two metric tensors:

Quova8uapa YTy = r(y2yH2y 3yl yvz 2y vy lis)
=—2yH3yV3yH2
— _2 tr(yMS yVS ,J/MZ)/MZ Vvl )/U«S)
=4

= _32(gM3v3gV1M5 — &usvi 8vans + gM3M5gV1V3)

Traces can be combined as follows:
w(yy 2y y ) u(ytty 2y By ™)
= tr(y" w(yy 2ytty2) yryhyt)
=2(yH2yV1yV24yV2yViyH2)
= 2(tr(y 2y y 2yt y Iy 4 (y2ytt y eyt p iyt
—_— —_——

=2(y"2yY1 +yV1yV2) =4
:4g‘)l v2

= 8(g""2tr(yy™) + tr(yP2y ly 3 y™))

= 32(2gv1\)2gv3v4 _ gv1\)4gv2V3 + gV1V3gV2v4)‘

Algorithmic contraction. Computer algorithms for contraction (e.g. imple-
mented as trace4 in FORM [33]) typically try to successively apply the three equa-
tions (3), (4), and (5) until full contraction is achieved. However, as far back as the
1960s there have been attempts to find alternative contraction methods that bear
some similarities to our approach [18]. Kahane developed an algorithm which
involves instructions on how to first draw a diagram based on a given sequence of
Dirac matrices. Following that the algorithm describes how to parse the diagram,
simultaneously multiplying the result with certain factors depending on what one
encounters. In our approach we use chord diagrams — a very well understood type
of graph — together with a colouring to carry all the necessary information. More-
over, we isolate the relevant combinatorial property of the chord diagrams — the
number of cycle subgraphs with a certain colouring — such that our result is a
closed formula instead of an algorithm. Finally, Kahane’s proofs are based on us-
ing a certain basis for the Clifford algebra generated by the Dirac matrices, while
our results are entirely concluded from the contraction relation eq. (3). In fact, in
Section 2 we completely abstract the process of contraction from Dirac matrices to
combinatorial sequences of letters representing the different space-time indices.
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Kahane’s algorithm was later generalised to products of traces by Chisholm [9],
using his identity eq. (4). Working with Kahane diagrams the computations with
this generalised algorithm become quite cumbersome.? Following our approach
the general case follows very directly and with only marginally more complicated
notation as Corollary 3.13 from our single trace result Theorem 3.9.

2. From Dirac matrices to words

2.1. The algebra of Dirac words. In this section we define an algebra that will
serve as an abstraction of products of Dirac matrices and allow us to study their
contraction and traces without any of the unnecessary ballast they carry.

Let A := {a; | i € IN} be an alphabet. Then A* with * denoting the Kleene
star [19] is the set of words w (“noncommutative monomials”) over A. The length,
i.e. the number of letters, of a word w is denoted |w|. We say a word is even (odd)
if its length is even (odd) and we only consider words of finite length. W is the
reversed word. Evidently, A* is a free monoid. Moreover, A generates a free algebra
Z(A) and we also use the nomenclature “word” for elements w = ) _ c;w; of this
algebra. Unless explicitly stated otherwise we consider homogeneous words in
which all “monomial words™ have the same coefficient and are just rearrangements
of the same letters. By linearity the discussion below holds in general, but we will
see that we are only really interested in this kind of word.

In order to model Dirac matrices we have to satisfy three additional conditions:

e cach space-time index (i.e. each letter a; € A) appears at most twice;
e an analogon of the contraction relation eq. (3) holds;

e The word §;; = %(a,-aj + aja;) € Z(A) has the right properties to serve as
an analogon for the metric tensor.

We implement the first condition in our definition of Dirac words.

Definition 2.1 (Dirac words). Let A be the alphabet introduced above and I :=
(a{.C | i € IN) the ideal generated by k-th powers of its letters. Then we define Dirac
words as elements of the free algebra Z(A) divided by all third powers

D := Z(A)/I5.

3 In the words of J. S. R. Chisholm himself [9]: “The proof of our final result is long and
tedious, and even the statement of it is fraught with notational difficulties. We therefore explain
it by an example [...].”
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Moreover, we define fully contracted Dirac words as those Dirac words in which
each letter appears at most once, i.e.

D := Z(A)/I,.

The contraction relation eq. (3) is translated to letters and words in the obvious
way as

ajua; = —20, a;ajua; = 2(ua; + a;0) (6)

for any odd u € D. In remark 1.1 we discussed that the even case can be expressed
in different but equivalent ways. We extend this discussion in Section 2.2 which
will allow us to formulate the contraction relation more elegantly in eq. (10), but
for now this version suffices. Note that the even case also includes length O, i.e.
the empty word, as a? = 2(1 + 1) = 4. Hence, each letter is up to an integer
factor its own multiplicative inverse. This generalises to (monomial) words as
wl = 272w,

Finally, we can also introduce an analogue to the metric tensor by simply
defining it as an abbreviation for a certain element of D that turns out to have
exactly the desired properties.

Proposition 2.2. Ler §;; = 3(a;aj + a;a;) € D. Then,
() &i =4
(ii) 8,~‘,-a‘,- = a;,

(iii) 8,"/'W = W(S,'j for all w € D.

Proof. The first equation follows directly from a? = 4. For (ii) we employ the
contraction relations (6) to find

1 1
5,']'3]' = E(aiajaj + a‘,-aiaj) = 5(43,’ —23a;) = a;.

In order to prove (iii) note first that the exchange of a letter that we just proved also
works if there is a word between §;; and a;, i.e. for u € D with a; ¢ u,

1 - ~ . .

E(aiajuaj + aja;juaj) = —a;u + (ua; + a;u) = ua; if |u| is odd,
Sijuaj = 1 1

Sijuaj = 2kaiajagua;j = —Eakaiﬂak = ua; if |u] is even.

In the latter case we used eq. (6) to rewrite §;; as

1 1
51']' = E(aiaj + ajai) = Zakaiajak
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for some k # 7, j. This is now used to show commutativity with a single letter,
which suffices since a word can be commuted by sequentially commuting its
letters:

1
dija; = Zakaia‘,-akal

1 1
—Zakaiajalak + zakaiajSkl

1 1
= Ealajai + Ealaiaj

= alc?ij. O

Remark 2.3. The reader might be wondering why we did not simply use §;; =
%(aia i + aja;) as a Clifford algebra equation and derive the contraction relations
from there as one does with Dirac matrices. However, that is not possible in
this setting. In the Dirac matrix setting one can only derive eq. (3) from eq. (2)
with the help of the additional information that there are only four Dirac matrices
Yo, V1, V2, Y3 or equivalently the fact that there are four space-time dimensions.
Therefore we include eq. (6) by definition and derive everything we need from
there.

2.2. Commutativity, symmetry equivalence and traces

Symmetry and equivalence In this section we discuss some properties of
symmetric Dirac words to highlight their importance. Define a symmetrisa-
tion/antisymmetrisation map sym: D — D with

sym(w) = 3 (w + (~1) ). ™

such that sym(D) C D is the subset of even symmetric and odd antisymmetric
Dirac words. Let furthermore s;:D — D be the k-fold cyclic shift, i.e. for a
(monomial) word a;a;v one has s (a;a;V) = a;va;, s2(a;a;V) = va;a; and s = s¥
for any k. Using this new notation, reconsider the contraction relation eq. (6). The

even case is
ajajua; = 2(uaj + aju) = 4sym(sy(a;u)). (8)

We mentioned above that different decompositions are possible. Using the odd
case of the contraction relation we find for an even word w = vu with |v|, |u| odd
that

1 -
ajvua; = —Eaivakuakai
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1 - -
= —i—iaivakuaiak — 8;ra;vagl
= —uagvag — agvagl
= 2(uv + Vi)
= 4sym(s}y|(w)).

We see that — as far as the symmetrisation map is concerned — all the odd cyclic
shifts of even words are the same. In other words:

Proposition 2.4. Let u € D be a Dirac word with |u| even. Then
sym(u) = sym(sax(u)) forallk € IN. ®

The symmetrisation map induces an equivalence relation on D given by u ~gym
v if and only if sym(u) = sym(v). For a given even word w there are two
equivalence classes related by odd cyclic shifts: [w] := {syx(w) | £k € IN} and
[W*] := {s2k+1(w) | K € IN}. Whenever no confusion can arise, we simply write
w, w* for (an arbitrary representative of) the equivalence classes, such that odd
cyclic shifts become maps s,5+1(w) = w* and vice versa. The contraction relation
in this notation becomes

—20 if |u] is odd,
a,~ua,~={ u if |ulis o (10)

4sym(u*) if |u| is even.

Commutativity. Above we observed that §;; = 1(a;a; + aja;) = sym(a;a;)
commutes with all other words. We can generalise this commutation property to
longer words as follows.

Proposition 2.5. Let v, w € D with |v| even. Then

sym(vV)w  if |w| is even,
wsym(v) = (11)
sym(v¥)w  if |w| is odd,

for all w € D. Moreover, a word u € D is a central element, i.e. uw = wu for all
w € D, if and only if there exists an even v € D such that

u = sym(v + v¥*).
Proof. Consider commutation of a letter,

1 1
a; sym(v) = Zaiajv*aj = Z(—ajai + 28;j)v*a; = sym(v*)a;.
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Hence, successively commuting an odd or even number of letters in a word
produces the first claim eq. (11) and commutativity of any u = sym(v 4 v*) =
sym(v) + sym(v*) is an immediate consequence. To see that all central elements
have to be of this form consider the following two conditions. If u is central and
|u| even, then on the one hand

ie.u L u. On the other hand one also has
a; sym(u) = sym(u)a; = a; sym(u™)

by commutativity and eq. (11), so u SN Finally, there can be no odd central
word since that would directly contradict the odd case of eq. (11). |

Traces of Dirac words. We have seen in the beginning that after contraction
of all duplicate indices the trace of a product of Dirac matrices is computed with
a recursion formula that decomposes it into metric tensors. We can translate that
formula to our algebra to define the trace of Dirac words as a linear automorphism

n
trra;, ...a;, — Z(—l)jc?ilij tr(ai, ... a;; ...a;,), foralln>2,
j=2

on D, with the trace of the empty word tr(1) := 4 corresponding to the trace of the
4 x 4 unit matrix in the Dirac matrix case. The trace tr(w) € D is clearly central
for every w € D, so by Proposition 2.5 there exists a word w’ € D such that

tr(w) = sym(w’ + w'*)

and w’ differs from w at most by a constant factor, which we discuss in the
following

Theorem 2.6. For all w € D with |w| even
tr(w) = 2 sym(w + w™).
Proof. For |w| € {0,2} we can check explicitly that the claim holds:
2sym(l + 1) =4 = tr(1),

2(sym(a;a;j) + sym(aja;)) = 46;; = tr(a;a;).
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Exploiting the recursive trace formula we then show the general case. Consider
the word a;a; - - - a, and commute the first letter all the way to the end,

didz--+ady — —ajzaiadz---ay +—2812a3---an

. n
= (1" ay-raa 42 Y (— 1) Briaz -4 an.
N—— .
=s1(a1an) =2
Using w;; for the word w after removal of the i-th and j-th letter we can therefore

write
[w]|

23 (=1 8uwi; = w+ (=)™l (w),
i=2

which is w + w* for even words. When trying to do the same for a sum
> (—=1)!8y;(wy;)* one encounters problems since (w;;)* # (w*);;. However, ex-
ploiting the symmetrisation and Proposition 2.4 one quickly shows that for an even
word w

|w] [w]

23 (=1)'81; sym((wi)*) = sym(w + w*) = 2> (=1)'81; sym(wy;).

i=2 i=2

The trick is to move each 61; = %(alai + a;ap) into the i-th slot of wy;, i.e. the
place where the i-the letter has been removed. In the sum on the rhs this leads
to a telescopic sum in which only half of the first and last terms remain. Due to
the symmetrisation and Proposition 2.4 the same trick can be applied to the sum
with (wq;)* albeit with slightly less obvious cancellations. Hence, one recursively
finds

[w

tr(w) = Y (—1)"8y; tr(wy;)
=2
[w]

= 22(—1)i51i sym(wy; + (w;)*)
i=2
= 2sym(w + w™). O

Remark 2.7. With the above expression one immediately sees Chisholm’s iden-
tity eq. (4) as a special case:

a; tr(a;w) = 2a; sym(a;w + wa;) = al-2w + a;wa; + a;wa; + al-2v~v =2(w + W).
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Example 2.8. Consider the trace of a word of length 6 which gives 15 terms in
its usual expansion:

1
7 tr(ajazazasasag)

= 812034056 — 812835846 + 612836845 — 813024856 + 813025046
— 813626045 + 014623856 — 814025636 + 814026035 — 615823846
+ 815624836 — 815026034 + 16023045 — 816624835 + J16025834.
On the contrary, our new expression for the trace has only four terms:
tr(ajazazasasag)
= 2sym(ajazazasasas + a2azasasacay)
= 2122@33d4353¢ + A2a334353631 + Acds53a4a3a23d1 + A1a6A5a433a2.

Moreover, this version of the trace has four terms for any length of word, while
the number of terms in the recursive expansion grows factorially as (Jjw| — 1)!!.

We have now completely abstracted the process of computing traces of Dirac
matrices to computations on words. However, explicitly applying the contraction
relation eq. (10) to reduce a word from D to D is still tedious and not very insightful
from a theoretical viewpoint. In Section 3 we use the results of this chapter to
abstract further to a purely diagrammatical approach. First however we would
like to offer a different perspective on Dirac words that may prove useful in future
work.

2.3. A different perspective — Dirac words as Cartier-Foata monoids. Here
we give an alternative interpretation of the previous section’s content in terms
of slightly different combinatorial objects. While this overcomplicates matters
for the purposes of this article it offers both surprising connections to other
disciplines and potential future application of this article’s results. Both the
seminal articles [5] and [26] as well as the books [22, 11] are useful resources
for more detail.

The idea is to use an alphabet together with so-called dependency relations
on it to generate a free partially commutative monoid. They were first used by
Cartier and Foata in combinatorics [5] and later applied in computer science by
Mazurkiewicz [26]. Following the shorter nomenclature of the latter these objects
are often called trace monoids and their elements traces, but in order to avoid
confusion with the — as far as we can tell — completely unrelated notion of trace
that we discuss in this article we will continue to use the longer more explicit
name.
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Definition 2.9 (free partially commutative monoid). Let X be a finite alphabet and
R C ¥ x ¥ areflexive and symmetric relation thereon. R generates a congruence
~pg on X*. The free partially commutative monoid on X relative to R is defined
as the quotient monoid

M(Z,R):=X%X"/ ~g.

What that means explicitly is that for a pair of letters (a,b) € R one has the
equality ab = ba. Similarly such a relation defines a free partially commutative
algebra Z(X, R) := Z(X)/Ir where one divides the free Z-algebra generated by
the alphabet by the ideal /r = (ab — ba | (a,b) € R) generated by the relation.
Alternatively one can also see the same structure as a free partially commutative
Lie algebra by interpreting R as generating a Lie ideal ([a,b] | (a,b) € R) and
dividing by that [12]. With just a little bit more effort one can also find two dual
Hopf algebra structures on such a free partially commutative algebra [30].

In order to apply this to Dirac words one could now use an alphabet ¥ = {a; |
i € N}U{8;; | i, j € IN} in which the §;; are not abbreviations for algebra elements
but separate letters. Their commutativity is then introduced as a dependency
relation. The contraction relations (6) together with §;; = %(aia i + aja;) then
generate a confluent and Noetherian rewriting system, which in this case is not
surprising because that essentially only means the contraction from D to D can be
automated via computer. Such a rewriting system is a generalisation of what would
be called a semi-Thue system# [32, 28] in the case of (not partially commutative)
free monoids. This alternative interpretation might prove interesting in the future
for two reasons. The unexpected connections to computer science by way of
combinatorics hint at a vast untapped potential of interdisciplinary collaboration.
So far little research has gone into this direction but articles like [23, 24], or [25]
— where it was shown that Feynman graphs can be interpreted as a type of formal
language generated by a theory dependent graph grammar — seem to suggest that
there are deep connections between the two fields whose study might benefit both
disciplines.

Moreover, Cartier and Foata originally introduced their monoids to prove
a (noncommutative generalisation of) MacMahon’s Master Theorem, which in
its simplest form is stated as follows. Let A = (ai;j)1<i,j<» be a matrix with
entries in a commutative ring and x, ..., x, formal variables. Let furthermore

4These systems were of enormous importance in the development of formal languages and
mathematical logic. The article [28] for example contains the first ever proof of undecidability of
a classical mathematical problem. Semi-Thue systems are also known as monoid presentations
(not to be confused with representations) or string-rewriting systems and are isomorphic to both
unrestricted grammars and Turing machines [10].
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C(ky,...,ky) denote the coefficient of x’f‘ . -x],f” in the product

n
[ J@irx + -+ + ainxa)t
i=1
and X = (8;jxi)1<i,j<n the diagonal matrix with the formal variables as entries.
Then

1
Zc(kl,...,kn)xlfl R R
(k1,eeskn) det(Luxn — XA)

where the rhs is to be understood as a formal expansion with
det(Lysxn —XA) ' =1—-R)'=14+R+R*+--,

and the sum is over all tuples of non-negative integers. Since the Kirchhoff polyno-
mial and the various other graph polynomials that typically appear in parametric
Feynman integrals can all be expressed as determinants of certain matrices, insert-
ing the right matrix for A will yield graph polynomials in the coefficients. This
connection between seemingly disparate objects — graph polynomials and free
partially commutative monoids — may prove useful when trying to unveil deeper
combinatoric structures in quantum field theories.

3. Diagrammatic contraction

3.1. Chord diagrams. A graph G is an ordered pair (Vg, Eg) of the set of
vertices Vg = {v1,..., vy, |} and the set of edges Eg = {e1, ..., e|g;|}, together
with a map d: Eg — Vg x V. A cycle is a 2-regular graph, and here we always
take cycle to mean simple cycle, i.e. having only one connected component.

Definition 3.1 (chord diagram). A chord diagram D of order n is a graph, con-
sisting of a cycle on 2n vertices (the base) and k < n more edges that pairwise
connect 2k of the vertices of that cycle (the chords). We denote with D} the set
of all chord diagrams of order n with k chords.

There is an obvious bijection D between traces of (monomial) Dirac words
w and chord diagrams that assigns to each vertex a letter (respecting the relative
ordering) and represents duplicate letters by chords. The cyclicity of tr(w) =
2 sym(w + w*) is manifest in the base cycle of the chord diagram D(w) and since
it is also symmetric it does not make a difference whether we choose to label the
vertices clockwise or anti-clockwise.
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Figure 2. Three chord diagrams of order n = 4 with four, three and two chords respectively.

In order to include products of traces, in particular those that contain contrac-
tions of matrices in different traces, the usual definition of chord diagrams is not
enough, so we generalise as follows:

Definition 3.2 (generalised chord diagram). A generalised chord diagram of order
n = (ny,...,ng) is a graph that consists of £ chord diagrams D; € D In
addition to chords within each base cycle a generalised chord diagram may also
contain edges between vertices in different base cycles, which we will also call
chords (but each vertex is still at most 3-valent). We write N = )_ n; for the total
order of the diagram and denote with D,(C"‘ =) the set of chord diagrams with
the respective number and size of base cycles and k < N chords.

In the following we will always just write chord diagram for the general version.
Finally, for the discussion below we need to sort the edges of a chord diagram into
three distinct sets, which we do via colouring.

Definition 3.3 (edge k-colouring). Let G be a graph and K a finite set consisting
of k colours. Then a map «: Eg — K is called a k-edge-coloring if for every
vertex v of G all edges incident to it are assigned different colours, i.e. if « is
injective on 071 (v x V) C Eg forall v € V.

The number of colours needed to colour a given graph is given by Vizing’s
theorem to be either the maximal degree A of the graph or A + 1 [34]. Clearly,
each chord diagram D admits an edge 3-coloring k: Ep — {0, 1,2} - sometimes
called Tait colouring [31] - where two alternating colours 1 and 2 are assigned to
the edges of the base cycles and the third colour O to all chords. Fix one of the
2¢ possibilities of such a colouring. This edge colouring induces a unique (up to
permutations of colours) double cover {E!, EQ?, E}?} of the chord diagram in
which the components Eg = «~1({i, j}) are given by edge subsets that have
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exactly 2 different colours and we write E9, E}, and E3 for the respective
single colour edge subsets. Furthermore, each two-coloured edge subset can
be decomposed into collections Gg, ﬂ’g of cycles and paths with fPlDz = @ and
|€}7| = ¢ since the bases are the only cycles with these two colours. The two-
coloured paths between the 2-valent vertices of D can always be combined to form
three-coloured cycles by joining all paths in their shared initial or final vertices.
Contracting each path in P9} and P% to a single edge of colour 1 or 2 projects
the three-coloured cycles onto a generalised chord diagram D’ that consists of a
disjoint union of base cycles without any chords. Specifically, it defines a map

7o: D —> D
withn’ = (n,....n)), N' = N —k < N and max{0.{ —k} < {' < { + k. The
number of two-coloured and three-coloured cycles is the central combinatorial
property that we will need later, so we introduce a separate notation for it:

c2(D) = |CY| + |€F|+ £, c3(D):=c2(D) =1

From now on we often abbreviate two-coloured cycle and three-coloured cycle as
2-cycle and 3-cycle respectively.

Example 3.4. In drawings we use different line types to represent the colours:

Let Dy, D,, D3 be the three chord diagrams from Figure 2, from left to right.
Their colourings and two-coloured components are depicted in Figure 3. For D;
there are no free vertices, i.e. vertices without a chord incident to them, so all
two-coloured components are cycles and

c3(D1) =0, (D) =1+2+1=4.

D5 contains two free vertices - 4 and 6 - with two different two-coloured paths be-
tween them, forming a three-coloured cycle. Overall c,(D,) =2 and c3(D3) = 1.
Finally, D3 has four free vertices. There are two 2-cycles, the base and one other
coloured { -, --=-=---}. The four paths form a single 3-cycle, so ¢;(D3) = 2
and C3(D3) =1.
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(b) The 01-component consists of a single path while the 02-component contains a
path and a 2-cycle.
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(c) There are 4 paths in total, but they all combine to form a single three-coloured cycle.

Figure 3. Cycle double covers of the chord diagrams from Figure 2.
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Figure 4. Visualisation of the projection map .



474 M. Golz

Understanding the cycle structure of chord diagrams and how it changes upon
addition of more chords is the main task ahead.
Proposition 3.5. Let Do € D}_, with1 <k < N = Y njand D € D} result
from Dy by adding a chord between two vertices i and j. Then there are the
Jollowing possibilities.

(1) Ifi and j are in the same 3-cycle and

(a) both segments between them consist of a single path, then
c2(D) = c2(Do) +2, ¢3(D) =c3(Do) — 1

(b) one segment consists of a single path and the other of a (necessarily
odd) number of paths larger than 1, then

c2(D) = c2(Do) + 1, ¢3(D) = c3(Do);

(c) both segments between them consist of a nonzero even number of paths,
then

c2(D) = c2(Do), c¢3(D) = c3(Do);

(d) both segments between them consist of an odd (> 3) number of paths,
then
Cz(D) = Cz(Do), C3(D) = C3(D0) + 1.

(2) Ifi and j are in different 3-cycles, then

c2(D) = c2(Do), ¢3(D) = c3(Do) — 1.

Proof. The cases 1.(a) and 1.() are apparent since any single path is completed
by a chord to form a new 2-cycle, while the other segment remains a 3-cycle with
the chord in place of the former path. In 1.(c) both segments have two different
coloured edges on their ends and their opposing colour ends are incident to each
otherin i and j. Hence the new chord bridges the equally coloured endings which
results in a new 3-cycle. Visually, a plane 3-cycle is twisted into an co-shape, or
alternatively, one segment is cut out, flipped and glued back into the 3-cycle with
chords as glue. In 1.(d) both ends of either segment have the same colour, such
that the new chord cleanly separates the 3-cycle into two new 3-cycles. Finally, in
the second case the edges of either colour incident to i are connected by the chord
to the equally coloured edge incident to j in the other 3-cycle such that a single
new cycle results. U
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Example 3.6. Adding a chord between the two free vertices of D, from Exam-
ple 3.4 (cf. Figure 3b) falls into Case la. All six possible ways to add a chord
between any two vertices of D3 (Figure 3c) are examples of Case 1b. To illustrate
the other cases one needs either larger very complicated diagrams or almost triv-
ial cases, so for simplicity consider Dy € D} to be the empty chord diagram of
order 3, in which every single edge is a path:

2 ... r .
3 ‘/ \ 6 — : / \
4’\/5 e L4 “~___*

New chords between any pair of vertices separated by one other vertex (say (1, 3))
correspond to Case lc. Adding a chord between any of the pairs (1,4), (2,5)
or (3, 6) corresponds to Case 1d, where the base cycle is split into two new three-
coloured cycles. Say the chord (1, 4) is added. Then additionally connecting (2, 5)
or (3, 6) would be examples for Case 2.

3.2. Cycle words and diagram contraction. For this section we only consider
the single base cycle case £ = 1. The results are then generalised in the following
section. Above we already mentioned the relation between traces of monomial
Dirac words and chord diagrams. Let w € D be a Dirac word such that D(w) € D}
for k < n. Then D(w) contains at least one 3-cycle and 2(n — k) 2-valent vertices,
corresponding to the non-duplicate letters of w. The structure of D then tells us
how to arrange these letters into new words in W(D) € D which will allow us to
compute the contractions of duplicate letters easily.

Definition 3.7 (cycle words). Let D € D} be a chord diagram with the canonical

edge 3-colouring introduced above and D’ = |_|f/=1 D} = mo(D). Then for each
D! consider the words u; € D that satisfy D(u;) = D]. Up to cyclic shifts there
are four such words for each D} and they are related to each other as u;, U;, u} and
@. Using these words we define the cycle word associated to D as

v v
w(D) = %( H sym(u;) + H sym(u;‘)).
i=1 i=1

Example 3.8. Consider the chord diagram D3 from Figure 4 and Figure 3c,
previously discussed in Examples 3.4 and 3.6. It has the four free vertices 1, 2, 5,
and 6, with four paths 1 —2,2—3—-7—6,6—5 and 5—4 —8 — 1 combining to one
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three-coloured cycle. Note that after projection to a base cycle the free vertices
are not in the original order anymore. Choose for example u = ajaagas. Then

_ 1
w(Dj3) = Z(a1a2a6a5 + asagaza; + azagasa; + ajasagaz).

For an example with multiple cycles consider the empty order 3 diagram also
discussed in Example 3.6 together with a single chord between (3, 6). One cycle
consists of the two paths 2 —3 — 6 — 1 and 1 — 2 which gives the word u; = aa;
while the other in analogous fashion gives u, = asas. The cycle word is then

1
§((a2al + a1a2)(asas + asas) + (a1az + aza1)(asas + asas))
1
= (@221 +a1a2)(asas + asaq)).

In the case k = 0 one has 7o(D(w)) = D(w) € D} with ¢’ = £ = 1 and
therefore

W(DW) = 3(syme) + sym(w*)) = 7 tr(w)

by Theorem 2.6. This is quite sensible since we can interpret the “contraction” of
a word without duplicate letters to contract as the expansion into §;; via the trace
recursion formula, divided by 4 = tr(1). On the other hand one sees thatif k = n
then there are no more 3-cycles in D(w) and w(D(w)) = 1. More generally we
find the following relation between w and w.

Theorem 3.9. Let w € D be a monomial Dirac word such that the associated
chord diagram D(w) € D%, 0 <k < n. Then

tr(w) = (_2)k+62(D(W))+C3(D(W))V—V(D(W))'

Proof. As discussed above the case k = 0 gives tr(w) = 4w(D(w)) where
4 = (=2)%*t1*1 guch that the claim holds for all n. For 0 < k < n we prove
by induction over the number of chords. Let w' € D such that w = §;;w’. We
abbreviate ¢, = c,(D(w)), c3 = c3(D(w)) and w = w(D(w)), and write ¢}, ¢}
and w’ for the corresponding objects resulting from w’. D(w) is D(w’) together
with a chord between vertices i and j and we need to consider the same five cases
as in Proposition 3.5. The idea is the same for all cases: use the contraction relation
eq. (10) to compute §;;w = Nw where N is some integer factor. Then confirm
that both the change in term structure of the cycle word and the new integer factor
is in accordance with change in cycle structure and cycle numbers ¢, and c3 as
discussed in Proposition 3.5.
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(1) If i and j are in the same 3-cycle (base cycle of 7o(D(w’))) with word u;;
and the following hypotheses hold true.

(a)

(b)

(©)

(d)

Both segments between them consist of a single path, then sym(u;;) =
%(ai aj+aja;) = sym(ul’.“j) such that §;;w’ = 4w, where w is the same as
w’ except that the entire base cycle that contained i and j —and no other
vertices — has been removed from both products. Hence, in accordance
with 3.5 we have c¢3 = ¢} — 1. Furthermore we have ¢, = ¢ + 2 and
one more chord (k — 1 — k) such that 4 = (-=2)!*2~! and

tr(w) = & tr(w') = (=2)F 1 +eatess W
— (_z)k—l-l-cé-l-cé AW

— (_2)k+cz +c3 W,

One segment consists of a single path and the other of a (necessarily
odd) number of paths larger than 1, then u;; = vja;ajv, for some words
V1,V € D. Multiplying with §;; extracts the factor 4 = a? but otherwise
leaves the product structure of W’ intact (and in particular ¢z = c}).
There is one additional chord and one new 2-cycle, absorbing the factor
4 = (_2)1+1+0:

tI'(W) — (_z)k—1+cé+cé4v—v — (_2)k+c2+C3V—V

Both segments between them consist of a nonzero even number of
paths, then u;; = vja;vza;vs for some words vy, v, v3 € D with |vs]
odd. One can use

Sijaivzaj = q;Vza; = —2\72
and as before one finds (with ¢, = ¢} and ¢3 = ¢})
tr(W) — (_z)k—l-i-c/z-f—cé (_2)\/—\/ — (—2)k+62+c3V_V.

Both segments between them consist of an odd number of paths (at least
three each), then u;; = vja;vza;v3 for some words vi,vs,v3 € D with
|v2| even. One can use Proposition 2.5 to find

*
dijuij = Vvi1a;V2a;V3 = 4vq sym(v;)v3

sym(vy) if |vi], |v3| are even,
= 4V1V3
sym(vp) if |vq],|vs| are odd,
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and write
vivs sym(vy) + sym(v3)Vsvy if |vq], |v3| are even,

sym(d;;u;;) =2 o
vivs sym(vp) + sym(vp)vsv;  if |vq], |vs| are odd

sym(vy) if |vi], |v3| are even,
= 4sym(vvs)
sym(vy) if |vq], |vs| are odd.

If the even (odd) case applies to u;; then the odd (even) case can be used
to find the analogous result (with (vqv3)™*) for ul*J We see the expected
splitting into two 3-cycles realised in the products. One finds altogether

tr(w) = (=2)F1Heateigy = (—2)kteatag,

(2) If i and j are in different 3-cycles, then we need to consider a product
sym(u;) sym(u;). One can always choose representatives u; and u; such that
a; and a; are either their first or last letter respectively. Hence, there exist
words vq, v, € D such that

1 - - -
dij sym(u;) sym(u;) = Z(aiVI + V13;)(a;vz + V23;) = sym(Vavy).

The factor here is 1 = (—2)'*%~! where we have one more chord but lost
one 3-cycle, so here, too, everything works out as claimed. |

In the case of a single trace discussed here one could have simply used
[Tsym(u;) as cycle word and found the same result. However, next we want to
consider products which have duplicate letters within different traces. In those
cases it is crucial to consider the full w(D(w)) with products over both sym(u;)
and sym(u’) as defined above.

Remark 3.10. Above we only discussed contraction of traces of even words. In
practice one would also like to contract odd words, which are associated to “open”
fermion lines in a Feynman graph. For contraction of such a word w’ € D with |w/|
odd consider the word w = wja;w, where a; € A is a dummy letter that does not
occur in w/, wyw, = w’ and w; starts with the first letter that occurs only once in
the w’, i.e. is not contracted. The trace and its contraction of w can be computed
as above. The contraction of the odd word is then simply obtained by dividing by
4 and “unsymmetrising” the factor corresponding to the 3-cycle that contains the
dummy vertex in the two products in the cycle word, i.e.

sym(u;) — u; or i; and sym(u}) — u] or 7,
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where the choice is fixed by demanding that upon evaluation a; — 1 the first letter
of the unsymmetrised word is the first letter of w,. See also Example 3.11 below.

Example 3.11. We return again to the contraction of gy,v, g4, yr; from Exam-
ple 1.2, corresponding to the Dirac word

W = 037048a1a2a3a4a5a6a7a8

whose chord diagram is again D(w) = Dj3, the rightmost diagram in Figure 2
which we already discussed in all the previous examples. In Example 3.4 we
found c,(D3) = 2 and c3(D3) = 1, and in Example 3.8 we saw

_ 1 1
w(D3) = E(Sym(alazaﬁas) + sym(azasasar)) = 1 tr(ajazaeas).
Therefore
1
tr(w) = (_2)2+2+IZ tr(ajaagas) = —8tr(ajazaeas).

which is the same result as in the previous manual computation.

Let v = ayazasasagaszas be the odd word such that w = a;v. We compute its
contraction following remark 3.10. There is only one factor in the cycle word to
be unsymmetrised and the choice is such that a, is the first letter after removal
of a;. One finds

11
V= (—2)515(31323535 + a2a6a5a1)a1_>1 = —8ajzagas,
which is the expected result.

Example 3.12. We can compute a larger example, like the contraction of an 18
letter word, to demonstrate the efficiency of this contraction formalism. Let

tr(w) = tr(ajazazasajagaragagaipagazaipai4a4+agaeais)

= (-2)? tr(asazazasazasaipasaioasasas)

= (—2)° tr(asazacagazasasas)

= (—2)" tr(asagasas)

= (_2)137
where we already combined multiple contractions in the same line and chose an
efficient order of contractions. For our formalism we simply count the number
chords (k = 9), 3-cycles (c3(D(w)) = 0) and 2-cycles (c2(D(w)) = 4, the base,
two depicted in Figure 5 on the left, and one on the right). Hence we have indeed
tI‘(W) — (_2)9+4+01 — (_2)13'



480 M. Golz

Figure 5

3.3. Multiple traces. Above we considered contraction of single traces but The-
orem 3.9 can be generalised to arbitrary products of traces - including contraction
of letters occurring in different traces - without much effort.

Consider first two words wj,w, € D without any shared letters and D; =
D(w;) € DZi for i = 1,2 their respective chord diagrams. Multiplying their
traces gives

tr(wy) tr(wy) = (_2)k1+k2+02(D1)+62(D2)+63(D1)+63(D2)V—V(D1)V—V(D2)’

where

V_V(Dl)V_V(Dz)
e/
(H sym(uy,;) 1‘[ sym(uz, ;) + 1‘[ sym(ut ) [T symiu3. )
i=1 j=1 i=1 /—1 (12)
¢ ¢,

+ 1‘[ sym(ur ) H sym(uj ;) + 1‘[ sym(u?,) H sym(uz,)) ).

i=1 j=1 i=1

Consider the disjoint union of the two chord diagrams D;, = D U D,. The
terms in eq. (12) can be interpreted as two different cycle words associated to
D15, corresponding to two different colourings of the base cycles of D and D,.

Assuming that all diagrams use the same colour for their chords, there are 2¢
possible colourings of the £ base cycles with the other two colours - visible as four
terms in eq. (12). Combining the terms pairwise (the two in the upper line and
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the two in the lower line) one has a sum over the 26! relative colourings of the
base cycles. Earlier we defined the map D from Dirac words D to chord diagrams.
Clearly it can be extended to word tuples (wy,...,w,) € D¢, mapping them to
chord diagrams with £ base cycles as long as the concatenation wy ---wy € D, i.e.
as long as no letter appears more than twice in the tuple. As we have seen above
there are 2¢~! different relative colourings of the base cycles. Clearly the set of
three-coloured cycles and the projection of such a chord diagram then depend
on the choice of colouring ¢. Similarly the cycle numbers ¢, (D, ¢) and c3(D, ¢)
depend now on the choice of colouring. Using this we can simply extend the
cycle word definition 3.7 to a generalised chord diagram together with a particular
colouring as

v v
w(D,c) = %( H sym(u;) + H sym(u;‘)).
i=1 i=1

where of course ¢’ and all the u; are now also colour dependent via r§. The overall

cycle word for a generalised chord diagram D € @,(C"l """ is then

1

W(D) = 5

Z (_2)02(D,c)+03 (D,c) V_V(D ’ C) '

c
Every summand is of the same form as the cycle word for a single chord diagram,
so Theorem 3.9 can be applied term by term and extends fully to generalised
chord diagrams. In particular the addition of a chord between different base cycles
(corresponding to contraction of letters in different traces) can be treated the same
as Case 2 (new chord between different 3-cycles) in the proof.

Corollary 3.13. Let (wy,...,wy) € DY be a tuple of Dirac words such that

tr(wy) -+~ tr(we) = (=2)*W(D)

(—2)k e2(D,e)+c3(Dyc) =
= ST Z(—Z) 2LOTEEIW(D, ¢).
C

Example 3.14. Consider the chord diagram depicted with its two different rel-
ative colourings in Figure 6. Labelling counter-clockwise and starting with the
uppermost vertex of the left base cycle it corresponds to

51,556,1258,1059,11514,15 tr(ajazazasasasayag) tr(agajparjajzaizai4aisae)
4
= (—2)" tr(asazazasasag) tr(agasaizais) (13)

= —(—2)%(tr(asazazasaizaie) + tr(azazazaszaseas)).
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Figure 6. The two-coloured subgraphs of the same chord diagram for two different relative
colourings. One can see the different structures that result in different cycle words and
numbers.

We have a total of five chords in two base cycles, so k = 5, £ = 2. The two
colourings each have only one 3-cycle, with corresponding words

Up = azasaieaiszazaz and up = azasazaiecaizaz

respectively, which are up to cyclic shifts and reversal the two words in the traces
in eq. (13). Both have three 2-cycles, the two bases and one between vertices 14
and 15. Therefore we compute

(=2)°
4
= —(=2)°%(tr(uy) + tr(uz)).

((=2)**(sym(uy) + sym(u})) + (=2)° " (sym(uz) + sym(u3)))
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4. Feynman integrals and summation of traces

We can now go back to the integrand of parametric Feynman integrals and com-
bine the term containing traces of products of Dirac matrices with the metric ten-
sors found in eq. (1). For simplicity we restrict the discussion to single fermion
loops and graphs of photon propagator type, but the following holds true in gen-
eral. For multiple fermion loops one simply has to use the more cumbersome
notation just introduced in the previous section while fermion propagators, vertex
graphs etc. can be treated by introducing a dummy vertex to close the fermion
loop and then following Remark 3.10 to make some minor changes to the factors.
The overall structure is the same. Finally, in order to avoid further lengthy discus-
sion of notation involving the polynomials )(glj ) in the general gauge case [15],
we restrict ourselves to Feynman gauge.

Letn = (|E1£f )| =+ |Vr|)/2 and label the 2n vertices of a chord diagram base
cycle with fermion edges and vertices of I', respecting their ordering within the
fermion cycle. Working in Feynman gauge we now let Dy be that base cycle
together with n/2 chords fixed in place between the vertices labelled by vertices
of I', such that each chord corresponds to a photon edge of I', including an edge
between the external vertices (ip, jo). We can then reinterpret the sum in eq. (1)
as a sum over all possible chord diagrams containing Dy and write

n Xglj) XII:M
NFNZ Z( Hg“i“f Z‘I/F)l_[ Wp
k=2+1DeD} (i,j)eEQ\E? @)

2 DQDI(() G,j)e D\ Do lEVD

where Eg C Ep are the chords and Vg) C Vp are the 2-valent vertices of D.
Combining this with the Dirac matrices yr and applying Theorem 3.9 gives

Gl =
yr Nt ~ gl}vli’% Xn: Z(_z)k-l—s(D)( 1_[ Xl'f I )W(D, I

20 2n—2k
k=%+1DeDY} (. )EEJ\ED, roWr
b=bo (14)
Suighip v~ (=D¥ s(D) 1))~
= =50 e P []E)wo.n),
k=441 T DeD? (,-,j)eEg\EgO
DDDg

where w(D,T") = \Tv(D)|a )y Xk and s(D) = c2(D) + c3(D).
i Vi A
Example calculations suggest that by exploiting various identities for graph
polynomials it should be possible to sum over all chord diagrams for each k, find-

ing an even simpler result of the form 3~ A4; / Wi, with each A; being expressible as
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arelatively simple polynomial. However, the combinatorics seem to be quite com-
plex and need to be investigated in depth in future work. What we can do for now,
as a preparation and to motivate such a summation, is consider the much simpler
summation of the traces without polynomials, i.e. sums of the form ", (—2)*(?)
where the D are generalised chord diagrams and s(D) = c3(D) + c3(D) is the
total number of cycles. Based on these results we then conjecture an expression
for the sum Y5 (=2)*P) [ )(glj ) for the case D € D" and argue why that should
be enough to completely reduce eq. (14) to its simplest possible form.

4.1. Summation without polynomials

Theorem 4.1. Let Do € D}_, withn = (ny,...,ng) and 1 < k <) n;. Define
D(Do) € Dj, to be the set

D(Dy) :={D € D} | Dy C D},

which contains all chord diagrams that result from Dy by adding a chord in all
possible ways. Furthermore, denote with m = n — k + 1 the number of missing
chords in Dy. Then

D=2 = —m(m + 1) - (=2)*P0).
DeD(Dg)

Proof. Since we only care about the change in total number of cycles the five
cases of Proposition 3.5 can be collected into only three cases here: adding a
chord between vertices in
(1) the same 3-cycle, separated by an odd number of segments, s(D) =s(D¢)+1;
(2) the same 3-cycle, separated by an even number of segments, s(D)=s(Dy);
(3) different 3-cycles, s(D) = s(Dg) — 1.
We first compute explicitly the cases k = n and k = n — 1 to illustrate the idea of
the proof and then prove for general k.
For k = n (m = 1) there are only two free vertices, which are the endpoints

of the two paths of a single 3-cycle and there is only one possibility of adding a
chord, which belongs to Case 1. Hence,

Z(—2)S(D) — (_2)s(D) — (_2)s(D0)+1 - . (_2)5(1)0)‘
DeD (Do)

For k = n—1 (m = 2) there are 6 ways to add a chord and the four free vertices
can be arranged either in a single 3-cycle with four paths or two 3-cycles with two
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paths each. If it is a single 3-cycle, then four of the six ways to add a chord fall into
Case 1, with odd segments containing one and three paths, respectively. The other
way of adding a chord is of Case 2, with both segments containing two paths, such
that overall

Z(_z)s(D) — 4(_2)s(D0)+1 + 2(_2)s(D0) — _6. (_2)s(D0)‘
DeD(Dy)

If there are two 3-cycles then one has four times Case 3 of adding a chord between
different cycles and twice Case 1 of adding a chord in a 3-cycle with two paths (as
in the previous case k = n), so one finds the same result

Z(—Z)S(D) = 4(_2)s(Do)—1 + 2(_2)S(D0)+1 — 6. (_2)5(1)0)‘
DeD(Do)

In general there are (2;") possibilities of adding a chord to D¢ and the 2m free
vertices can be partitioned into up to m 3-cycles (base cycles of 7 (Dy)) as follows

(2m),
2m—-2,2), @Cm-—4,4), ..., ([m],|m)),
2.2,...,2).

Two observations allow us to collect all terms in each of these cases. First,
consider a single 3-cycle on 2/ vertices. Adding a chord separates the cycle into
segments of length /y and [, [y > | > [,. There are 2/ possibilities for each
pair (/1,/;) with /y > [ > [, and [ for [; = | = [,. By simple counting one
finds that this gives /? instances of Case 1 (odd length segments) and /(/ — 1)
of Case 2 (even length segments). Secondly, consider a set of £ 3-cycles on 2/;
vertices respectively and count only the number of possibilities to add a chord
between any two of them. There are (g) choices of two cycles, each of which
contribute 2/; - 2/; possibilities to add a chord such that we can express the total
number of possibilities as E»(2/1,...,2l) = 4E>(l4,...,1;), the evaluation of
the elementary symmetric polynomial of degree 2. Combining these two results
we find that, for a set of £ 3-cycles on 2m; vertices with > m; = m one has the
following number of chord additions corresponding to each case:

Case 1 — Y " m?,
Case 2 — Zmi(mi - 1),

Case 3 — 4E,(my,...,mp).
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Now it remains to be shown that the sum } p.5(p 0)(—2)S(D ) yields the same
result, regardless of the particular 3-cycle partition present in Dy. Assume Dy
contains ¢ 3-cycles with m; free vertices such that (mq,...,mg) with Y m; = m
is the corresponding integer partition of m > 1. Then

4 L

1

Z _ (_z)s(D0)<_ 2Zml2 + Zmi(m,- -1 - §4E2(m1, .. .,mg))

DeD(Dg)(—2)5P) i=1 i=1
4

_ (_2)s(D0)<_ Xe:mi — (Zmlz + 2E5(my, .. .,I”IM)))
i=1

i=1

£ 2
(£ m)"=m
i=1

= —m(m + 1) - (=2)*P0), O

Inspired by the above theorem we can now consider iterations D(D(Dy)), . . .,
D™(Dy), i.e. sums over sets of chord diagrams, which result from adding multiple
chords in all possible ways.

Corollary 4.2. Let Dy € D},_,, with1 < m < N = } n; and D(Dy) as in
Theorem 4.1 above. Then, for | <k <m

oD — vk [N (™M 1Y s\s(Do)
DDZU())Z) — (1) k!(k)( ! )( 2P0,

In particular, one finds the sum over all completions of Do for k = m

Z(_z)s(D) = (—1)"(m + 1)!(_2)S(D0)

DeD™(Dg)

and the sum over all diagrams of a given order 2N fork =m = N

D (2P = 4=V (N + 1)

DeD,
as the completions of the empty chord diagram on 2N vertices.
Proof. For k = 1 the statement is just Theorem 4.1 since (7)("T') = m(m + 1).

For k > 1 we make use of Theorem 4.1 iteratively, collect the factors and divide
by k! to account for the different permutations of chord additions that result in the
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same diagrams:

Z(—z)s(m:% S Y (2P

DeDk (Do) D1€D(Dg) DreD(Di—1)
-1
= %(m—k+1)(m—k+2)z e Y (=2)f P
) D1€D(Dg) Dj_1€D(Di—2)
( 1)" $(Do)
(H(m k +i)(m — k+1+1))( 2)5(Po
i=1
K m—k) (m—k +1)!
— ke (Y™ Y oy 00
(=1 k'(k)( X (=2) ) O

4.2. Summation with polynomials
Conjecture 4.3. Let Do € Df withn € N* and N = Y n;. Then

Y P2 = (=2)4(Z12(Do) + Za1(Do)).

DeDY, (u, v)EEO
where
Zij(Do) = Y ()N El(e[ + DI Y (€ E} ).
EEP(E], )
‘.P(E}')O) here denotes the set of partitions & = (Ey, ..., Eg|) of i-coloured base

edgesand Y (&, E ,]50) is a sum of products of || Dodgson polynomials \Dllﬂ;{ with
1| = |Ex| = |J| and K = @, associated to the underlying graph I.

A number of remarks regarding this conjecture and potential future work are

in order:

e The Dodgson polynomials were introduced by Brown [3]. They enter this
setting because, up to a sign ambiguity, y (l ) = \IJ{l} U} A potential proof
of the conjecture should then rely on the Dodgson 1dent1ty

‘I’g,b}’{jl}qﬁgf@}’{jz} \p{ll} {/2}\11{12} {1} — Up \p{ll iab 41,72}

and its higher order generalisations.
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The precise definition of Y(&, £ éo) requires rather extensive exposition be-
yond the scope of this article and shall be given in future work, together with
a rigorous proof. Such a proof, using the Dodgson identity, seems in reach
in principle but is an enormous combinatorial mess that needs to be worked
out in detail elsewhere.

The conjecture has been checked computationally for all possible configura-
tions n = (ny,...,ng) up to and including ) n; = 7, in which it is a sum
over (2-7 — 1)!! = 135135 chord diagrams.

The chord sum corresponding to k = n in the integrand eq. (14) can be
simplified by this conjecture. Moreover, due to transversality the k = n — 1
term should yield the exact same result when integrating and it should be
possible to prove this directly on the level of the integrand (by showing that
they yield integrands that are equal up to exact forms), observing that the
various )(glj ) and XI';’” " are all first or second derivatives of ®p [15].

The remaining terms with k < n — 1 are all convergent and vanish in renor-
malisation, at least at the superficial level. For graphs with subdivergences
there is a rather complicated interplay between convergent and divergent
parts of sub- and cographs that needs to be studied in detail.

The (—Wr)V 1€l cancels some powers of the Kirchhoff polynomial in the de-
nominator of the integrand, massively reducing its size (in terms of Schwin-
ger parameter monomials) as well as computational complexity. While the
overall transcendental degree of the integrand remains the same, the number
of terms with the highest power of Wr in the denominator is reduced to the

two expressions
ngtlv) + ngtlv)
(u,v)eEll)O (u,v)eElz)0

corresponding to the two partitions that separate £ 11)0 and £ %0 into N parts
containing only one edge each.

5. Conclusion

The process of contracting traces of Dirac matrices was abstracted to a purely
combinatorial level. Using methods that revealed possible interdisciplinary con-
nections to theoretical computer science, we found a formula that replaces the
contraction entirely and expresses the end result in terms of the structure of chord
diagrams associated to traces of Dirac matrices. This allowed us to rewrite the
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complicated numerator structure of parametric Feynman integrands in quantum
electrodynamics as a sum over chord diagrams, with all contractions fully exe-
cuted. An even further simplified expression was conjectured, based on extensive
example computations and the properties of the graph polynomials appearing in
the integrand. Due to an abundance of cancellations and the elimination of the
Dirac matrix structures this conjectured expression massively reduces the overall
size of the integrand, making it accessible to automated integration by a com-
puter, potentially to higher loop numbers than before. Additionally, the simplified
structure of the integrand opens it up to algebro-geometric and number theoretic
studies, e.g. regarding the appearance and cancellation of transcendentals in QED
amplitudes [2, 16, 29].

The method applies to any QED Feynman graph. Moreover, it should be pos-
sible — albeit combinatorially more complex — to generalise the work presented
here to QCD or general gauge theories. Consider the general Schwinger paramet-
ric integrand for gauge theories as derived in [21]. It reduces Feynman graphs
with 4-valent vertices to sums of 3-regular graphs, making it analogous to the
QED case discussed here, and uses the so-called “Corolla differential” to express
the numerator structure. This differential is a generalisation of the derivatives
discussed in [15] and computing it in terms of Dodgson polynomials appears to
be mostly a matter of sorting through large numbers of derivatives and applying
identities already proved in [15]. The reduction to 3-regular graphs suggests that
general gauge theories can be treated similarly to QED Feynman graphs, although
it remains to be seen how exactly the contraction formalism has to be modified to
incorporate some of the more complicated objects arising from non-abelian gauge
theories.
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