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Abstract. The (tree) amplituhedron An;k;m is the image in the Grassmannian Grk;kCm

of the totally nonnegative Grassmannian Gr
�0

k;n
, under a (map induced by a) linear map

which is totally positive. It was introduced by Arkani-Hamed and Trnka in 2013 in order

to give a geometric basis for the computation of scattering amplitudes in planar N D 4

supersymmetric Yang–Mills theory. In the case relevant to physics (m D 4), there is

a collection of recursively-defined 4k-dimensional BCFW cells in Gr�0

k;n
, whose images

conjecturally “triangulate” the amplituhedron—that is, their images are disjoint and cover

a dense subset of An;k;4. In this paper, we approach this problem by first giving an explicit

(as opposed to recursive) description of the BCFW cells. We then develop sign-variational

tools which we use to prove that when k D 2, the images of these cells are disjoint inAn;k;4.

We also conjecture that for arbitrary even m, there is a decomposition of the amplituhedron

An;k;m involving precisely M
�

k; n� k�m; m
2

�

top-dimensional cells (of dimension km),

where M.a; b; c/ is the number of plane partitions contained in an a � b � c box. This

agrees with the fact that when m D 4, the number of BCFW cells is the Narayana number
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1
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1. Introduction

The totally nonnegative Grassmannian Gr�0
k;n

is the subset of the real Grassman-

nian Grk;n where all Plücker coordinates are nonnegative. Following seminal work

of Lusztig [22], as well as by Fomin and Zelevinsky [11], Postnikov initiated the

combinatorial study of Gr�0
k;n

and its cell decomposition [26]. In particular, Post-

nikov showed how the cells in the cell decomposition are naturally indexed by

combinatorial objects including decorated permutations, L-diagrams, and equiv-

alence classes of plabic graphs. Since then the totally nonnegative Grassmannian

has found applications in diverse contexts such as mirror symmetry [24], soliton

solutions to the KP equation [20], and scattering amplitudes for planar N D 4

supersymmetric Yang–Mills theory [1].

Building on [1], Arkani-Hamed and Trnka [3] recently introduced a beautiful

new mathematical object called the (tree) amplituhedron, which is the image of

the totally nonnegative Grassmannian under a particular map.

Definition 1.1. For a � b, define Mat>0
a;b as the set of real a � b matrices whose

a � a minors are all positive. Let Z 2 Mat>0
kCm;n, where m � 0 is fixed with

k Cm � n. Then Z induces a map

zZWGr�0
k;n
�! Grk;kCm
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defined by
zZ.hv1; : : : ; vki/ WD hZ.v1/; : : : ; Z.vk/i;

where hv1; : : : ; vki is an element of Gr�0
k;n

written as the span of k basis vectors.1

The (tree) amplituhedron An;k;m.Z/ is defined to be the image zZ.Gr
�0
k;n

/ inside

Grk;kCm.

In special cases the amplituhedron recovers familiar objects. If Z is a square

matrix, i.e. k C m D n, then An;k;m.Z/ is isomorphic to the totally nonnegative

Grassmannian. If k D 1, then it follows from [32] that An;1;m.Z/ is a cyclic

polytope in projective space P
m.

While the amplituhedron An;k;m.Z/ is an interesting mathematical object

for any m, the case relevant to physics is m D 4. In this case, it provides a

geometric basis for the computation of scattering amplitudes in planar N D 4

supersymmetric Yang–Mills theory. These amplitudes are complex numbers

related to the probability of observing a certain scattering process of n particles. It

is expected that the tree-level (i.e. leading-order) term of such amplitudes equals

a canonical differential form on the amplituhedron An;k;4.Z/. This statement is

closely related to the following conjecture of Arkani-Hamed and Trnka [3].

Conjecture 1.2. Let Z 2Mat>0
kC4;n, and let Cn;k;4 be the collection of BCFW cells

in Gr�0
k;n

. Then the images under zZ of the cells Cn;k;4 “triangulate” the m D 4

amplituhedron, i.e. they are pairwise disjoint, and together they cover a dense

subset of the amplituhedron An;k;4.Z/.

More specifically, the BCFW recurrence [7, 8], of Britto, Cachazo, Feng,

and Witten, provides one way to compute scattering amplitudes. Translated into

the Grassmannian formulation of [1], the terms in the BCFW recurrence can be

identified with a collection of 4k-dimensional cells in Gr
�0
k;n

which we refer to as

the BCFW cells Cn;k;4. If the images of these BCFW cells in An;k;4.Z/ fit together

in a nice way, then we can combine the canonical form coming from each term to

obtain the canonical form on An;k;4.Z/.

In this paper, we make a first step towards understanding Conjecture 1.2.

The BCFW cells are defined recursively in terms of plabic graphs (see §5.1),

and moreover there is a ‘shift by 2’ applied at the end of the recursion (see

Definition 5.3). Hence proving anything about how the images of the BCFW

cells fit together is not at all straightforward from the definitions. To approach

1 The fact that Z has positive maximal minors ensures that zZ is well defined [3]. See [15,

Theorem 4.2] for a characterization of when a matrix Z gives rise to a well-defined map zZ.
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Conjecture 1.2, we start by giving an explicit, non-recursive description of the

BCFW cells. Namely, we index the BCFW cells in Gr�0
k;n

by pairs of noncrossing

lattice paths inside a k � .n � k � 4/ rectangle, and associate a L-diagram to

each pair of lattice paths, from which we can read off the corresponding cell (see

Theorem 6.3, proved in §7). We then use these L-diagrams to understand the case

k D 2: we derive an elegant description of basis vectors for elements of each

BCFW cell in terms of ‘dominoes’ (Theorem 10.3), and show that the images of

distinct BCFW cells are disjoint in the amplituhedron An;2;4.Z/ (Theorem 11.1).

The proof uses classical results about sign variation, along with some new tools

particularly suited to our problem.

We expect that our techniques may be helpful in understanding the case of

arbitrary k, and we make a step in this direction in Appendix A, which is joint

with Hugh Thomas. We use a bijection between BCFW cells and Dyck paths to

associate a conjectural ‘domino basis’ to each element of a BCFW cell (Conjec-

ture A.7). We leave the proof of the conjecture and the analysis of how general

BCFW cells fit together to future work.

As a warmup to our study of BCFW cells in the case m D 4, in §4 we develop

an analogous story in the case m D 2. Namely, we give a BCFW-style recursion

on plabic graphs, describe the resulting cells of Gr
�0
k;n

using lattice paths and

domino bases, and prove disjointness of the images of these cells inside the m D 2

amplituhedron An;k;2.Z/.

It was observed (e.g. in [1]) that the number of BCFW cells jCn;k;4j is the

Narayana number 1
n�3

�

n�3
kC1

��

n�3
k

�

. Motivated by this fact, as well as known results

about decompositions of amplituhedra when m D 2 or k D 1, we conjecture that

when m is even, there is a decomposition of An;k;m.Z/ which involves precisely

M.k; n � k � m; m
2

/ top-dimensional cells (see Conjecture 8.1). Here M.a; b; c/

denotes the number of collections of c noncrossing lattice paths inside an a � b

rectangle, or equivalently, the number of plane partitions which fit inside an

a � b � c box. See §8.1 for other combinatorial interpretations of M.a; b; c/,

as well as Remark 8.2 for a possible extension of Conjecture 8.1 to odd m.
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2. Background on the totally nonnegative Grassmannian

The (real) Grassmannian Grk;n (for 0 � k � n) is the space of all k-dimensional

subspaces of Rn. An element of Grk;n can be viewed as a k � n matrix of rank k

modulo invertible row operations, whose rows give a basis for the k-dimensional

subspace.

Let Œn� denote ¹1; : : : ; nº, and
�

Œn�
k

�

denote the set of all k-element subsets of

Œn�. Given V 2 Grk;n represented by a k � n matrix A, for I 2
�

Œn�
k

�

we let �I .V /

be the k � k minor of A using the columns I . The �I .V / do not depend on our

choice of matrix A (up to simultaneous rescaling by a nonzero constant), and are

called the Plücker coordinates of V .

Definition 2.1 ([26, Section 3]). We say that V 2 Grk;n is totally nonnegative if

�I .V / � 0 for all I 2
�

Œn�
k

�

, and totally positive if �I .V / > 0 for all I 2
�

Œn�
k

�

. The

set of all totally nonnegative V 2 Grk;n is the totally nonnegative Grassmannian

Gr
�0
k;n

, and the set of all totally positive V is the totally positive Grassmannian

Gr>0
k;n. For M �

�

Œn�
k

�

, let SM be the set of V 2 Gr�0
k;n

with the prescribed collection

of Plücker coordinates strictly positive (i.e. �I .V / > 0 for all I 2 M ), and the

remaining Plücker coordinates equal to zero (i.e. �J .V / D 0 for all J 2
�

Œn�
k

�

nM ).

If SM ¤ ;, we call M a positroid and SM its positroid cell.

Each positroid cell SM is indeed a topological cell [26, Theorem 6.5], and

moreover, the positroid cells of Gr
�0
k;n

glue together to form a CW complex [27].

2.1. Combinatorial objects parameterizing cells. In [26], Postnikov defined

several families of combinatorial objects which are in bijection with cells of the to-

tally nonnegative Grassmannian, including decorated permutations, L-diagrams,

and equivalence classes of reduced plabic graphs. In this section, we introduce

these objects, and give bijections between them. This will give us a canonical way

to label each positroid by a decorated permutation, a L-diagram, and an equiva-

lence class of plabic graphs.
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Definition 2.2. A decorated permutation of Œn� is a bijection � W Œn�! Œn� whose

fixed points are each colored either black or white. We denote a black fixed point

i by �.i/ D
N
i , and a white fixed point i by �.i/ D Ni . An anti-excedance of the

decorated permutation � is an element i 2 Œn� such that either ��1.i/ > i or

�.i/ D Ni .

Postnikov showed that the positroids for Gr�0
k;n

are indexed by decorated per-

mutations of Œn� with exactly k anti-excedances [26, Section 16].

Now we introduce certain fillings of Young diagrams with the symbols 0

andC, called˚-diagrams, and associate a decorated permutation to each such di-

agram. Postnikov [26, Section 20] showed that a special subset of these diagrams,

called L-diagrams, are in bijection with decorated permutations. We introduce

the more general˚-diagrams here, since in §5 we will use a distinguished subset

of them to index the BCFW cells of Gr�0
k;n

.

Definition 2.3. Fix 0 � k � n. Given a partition �, we let Y� denote the Young

diagram of �. A ˚-diagram of type .k; n/ is a filling D of a Young diagram Y�

fitting inside a k� .n�k/ rectangle with the symbols 0 andC (such that each box

of Y is filled with exactly one symbol). We call � the shape of D. (See Figure 1.)

We associate a decorated permutation � of Œn� to D as follows (see [26,

Section 19]).

1. Replace eachC in D with an elbow ☞✍, and each 0 in D with a cross .

2. View the southeast border of Y� as a lattice path of n steps from the northeast

corner to the southwest corner of the k�.n�k/ rectangle, and label its edges

by 1; : : : ; n.

3. Label each edge of the northwest border of Y� with the label of its opposite

edge on the southeast border. This gives a pipe dream P associated to D.

4. Read off the decorated permutation � from P by following the ‘pipes’ from

the southeast border to the northwest border Y�. If the pipe originating at i

ends at j , we set �.i/ WD j . If �.i/ D i , then either i labels two horizontal

edges or two vertical edges of P . In the former case, we set �.i/ WD
N
i , and

in the latter case, we set �.i/ WD Ni .

Figure 1 illustrates this procedure. We denote the pipe dream P by P.D/, and the

decorated permutation � by �D. Note that the anti-excedances of � correspond to

the vertical steps of the southeast border of Y�, so � has exactly k anti-excedances.

We denote the corresponding positroid cell of Gr�0
k;n

(see [26, Section 16], and also

Theorem 2.10) by S� or SD.
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Figure 1. A L-diagram D of type .4; 10/ with shape � D .5; 5; 3; 2/, and its corresponding

pipe dream P with decorated permutation �D D .
N
1; 5; 4; 9; 7; N6; 2; 10; 3; 8/.

Definition 2.4. Let D be a ˚-diagram, and P its associated pipe dream from

Definition 2.3.

(i) We say that D is reduced if no two pipes of P cross twice.

(ii) We say that D is a L-diagram (or Le-diagram) if it avoids the L-configuration,

i.e. it has no 0 with both aC above it in the same column and aC to its left in

the same row. Equivalently (see [26, Lemma 19.3]), any pair of pipes which

cross do not later touch or cross, when read from southeast to northwest.

(Two pipes cross if they form a cross , and touch if they form an elbow
☞✍.) So, L-diagrams are reduced.

Postnikov showed that L-diagrams correspond to decorated permutations. Lam

and Williams later showed how to transform any reduced˚-diagram into a L-di-

agram by using certain moves. We state these results.

Lemma 2.5 ([26, Corollary 20.1 and Theorem 6.5]). The map D 7! �D from

Definition 2.3 is a bijection from the set of L-diagrams of type .k; n/ to the set of

decorated permutations of Œn� with k anti-excedances. Therefore, L-diagrams of

type .k; n/ index the cells of Gr�0
k;n

. The dimension of the positroid cell SD indexed

by D is the number of C’s in D.

Lemma 2.6 ([21]). Let D be a ˚-diagram. Then D is reduced if and only if D

can be transformed into a L-diagram D0 by a sequence of L-moves:

C � � � C

:::
: : :

:::

C � � � 0

7�!

0 � � � C

:::
: : :

:::

C � � � C

:
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In this picture, the four boxes on each side denote the corners of a rectangle

whose height and width are both at least 2, and whose other boxes (aside from

the corners) all contain 0’s. L-moves preserve the decorated permutation of a

˚-diagram. Hence D indexes the cell SD0 with decorated permutation �D D �D0 ,

and the dimension of SD0 is the number of C’s in D.

For example, here is a sequence of L-moves which transforms a reduced

˚-diagram into a L-diagram:

C 0 C C 0 C

C 0 0 0 C
7�!

0 0 C C 0 C

C 0 C 0 C

7�!
0 0 0 C 0 C

C 0 C C C
:

Proof. We explain how to deduce this result from the work of Lam and Williams.

They showed [21, Section 5] that any ˚-diagram can be transformed into a L-

diagram using the L-moves above, as well as the uncrossing moves

0 � � � C

:::
: : :

:::

C � � � 0

7�!

C � � � C

:::
: : :

:::

C � � � C

:

Note that a L-move in the statement of the lemma takes a reduced ˚-diagram to

a reduced˚-diagram, and an uncrossing move above can only be performed on a

non-reduced ˚-diagram. These observations imply the result. �

Definition 2.7. A plabic graph2 is an undirected planar graph G drawn inside a

disk (considered modulo homotopy) with n boundary vertices on the boundary of

the disk, labeled 1; : : : ; n in clockwise order, as well as some internal vertices.

Each boundary vertex is incident to a single edge, and each internal vertex is

colored either black or white. If a boundary vertex is incident to a leaf (a vertex

of degree 1), we refer to that leaf as a lollipop.

The following construction of Postnikov associates a hook diagram, network,

and plabic graph to any L-diagram.

2 “Plabic” stands for planar bi-colored.
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Definition 2.8 ([26, Sections 6 and 20]). Let D be a L-diagram of type .k; n/.

We define the hook diagram H.D/ of D, the network N.D/ of D, and the plabic

graph G.D/ of D. (See Figure 3 for examples.)

To construct H.D/, we delete the 0’s of D, and replace each C with a vertex.

From each vertex we construct a hook which goes east and south, to the border

of the Young diagram of D. We label the edges of the southeast border of D by

1; : : : ; n from northeast to southwest.

To construct N.D/, we direct the edges of H.D/ west and south. Let E be

the set of horizontal edges of N.D/. To each such edge e 2 E, we associate a

variable ae.

To construct G.D/ from H.D/, we place boundary vertices 1; : : : ; n along

the southeast border. Then we replace the local region around each internal

vertex as in Figure 2, and add a black (respectively, white) lollipop for each black

(respectively, white) fixed point of the decorated permutation �D.

Figure 2. Local substitutions for going from the hook diagram H.D/ to the plabic graph

G.D/.

More generally, each L-diagram D is associated with a family of reduced

plabic graphs consisting of G.D/ together with other plabic graphs which can

be obtained from G.D/ by certain moves; see [26, Section 12].

From the plabic graph constructed in Definition 2.8 (and more generally from a

reduced plabic graph G), we can read off the corresponding decorated permutation

�G as follows.
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1
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(a) The hook diagram H.D/.

1
2

3

45
6

7
8

910

a1a2

a3a4a5a6a7

a8a9

(b) The network N.D/.

1
2

3

45
6

7
8

910

(c) The plabic graph G.D/.

Figure 3. The hook diagram, network, and plabic graph associated to the L-diagram D

from Figure 1.

Definition 2.9. Let G be a reduced plabic graph as above with boundary vertices

1; : : : ; n. For each boundary vertex i 2 Œn�, we follow a path along the edges

of G starting at i , turning (maximally) right at every internal black vertex, and

(maximally) left at every internal white vertex. This path ends at some boundary

vertex �.i/. By [26, Section 13], the fact that G is reduced implies that each fixed

point of � is attached to a lollipop; we color each fixed point by the color of its

lollipop. In this way we obtain the decorated permutation �G D � of G. We say

that G is of type .k; n/, where k is the number of anti-excedances of �G . By [26,

Definition 11.5],3 we have

k D #edges� #black vertices �
X

white vertices v

.deg.v/� 1/: (2.1)

3 There is a typo in Postnikov’s formula: k C .n � k/ should read k � .n � k/. Our formula

looks different than his, but is equivalent.
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We invite the reader to verify that the decorated permutation of the plabic

graph G of Figure 3 is �G D .
N
1; 5; 4; 9; 7; N6; 2; 10; 3; 8/. By (2.1), we calculate

k D 21 � 5 � 12 D 4.

We now explain how to parameterize elements of the cell SD associated to a

L-diagram D from its network N.D/.

Theorem 2.10 ([26, Section 6]). Let D be a L-diagram of type .k; n/, with

associated cell SD � Gr
�0
k;n

and network N.D/ from Definition 2.8. Let E denote

the set of horizontal edges of N.D/. We obtain a parameterization R
E
>0 ! SD of

SD , as follows. Let s1 < � � � < sk be the labels of the vertical edges of the southeast

border of N.D/. Also, to any directed path p of N.D/, we define its weight wp to

be the product of the edge variables ae over all horizontal edges e in p. We let A

be the k � n matrix with rows indexed by ¹s1; : : : ; skº whose .si ; j /-entry equals

.�1/j¹i 02Œk�Wsi <si0 <j ºj
X

pWsi !j

wp;

where the sum is over all directed paths p from si to j . Then the map sending

.ae/e2E 2 R
E
>0 to the element of Gr

�0
k;n

represented by A is a homeomorphism

from R
E
>0 to SD .

For example, the network in Figure 3 gives the parameterization

of SD � Gr
�0
4;10, where D is the L-diagram in Figure 1.

3. Background on sign variation

We provide some background on sign variation, and state Lemma 3.4, which will

be useful later for proving that two cells have disjoint image in the amplituhedron.
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Definition 3.1. A sign vector is a vector with entries in ¹0;C;�º. For a vector

v 2 R
n, we let sign.v/ 2 ¹0;C;�ºn be the sign vector naturally associated to v.

For example, sign.1; 0;�4; 2/D .C; 0;�;C/.

Definition 3.2. Given v 2 R
n, we let var.v/ be the number of times v changes

sign, when viewed as a sequence of n numbers and ignoring any zeros. Also let

var.v/ WD max¹var.w/Ww 2 R
n such that wi D vi for all i 2 Œn� with vi ¤ 0º;

i.e. var.v/ is the maximum number of times v changes sign after we choose a sign

for each zero coordinate. Note that we can apply var and var to sign vectors. For

example, var.C; 0; 0;C;�/D 1 and var.C; 0; 0;C;�/D 3.

The following result of Gantmakher and Krein characterizes total positivity in

Grk;n using sign variation.

Theorem 3.3 ([12, Theorems V.3, V.7, V.1, V.6]). Let V 2 Grk;n.

V 2 Gr�0
k;n
() var.v/ � k � 1 for all v 2 V n ¹0º

() var.w/ � k for all w 2 V ? n ¹0º:
(i)

V 2 Gr>0
k;n () var.v/ � k � 1 for all v 2 V n ¹0º

() var.w/ � k for all w 2 V ? n ¹0º:
(ii)

The following lemma gives a sign-variational characterization for when two

elements of Gr�0
k;n

correspond to the same point of the amplituhedron An;k;m.Z/.

We will apply it repeatedly in §11 to show that the images of the BCFW cells are

disjoint in the k D 2; m D 4 amplituhedron An;2;4.Z/.

Lemma 3.4. Let Z 2 Mat>0
kCm;n, where k; m; n � 0 satisfy k C m � n, and

V; V 0 2 Gr
�0
k;n

. Then zZ.V / D zZ.V 0/ if and only if for all v 2 V , there exists a

unique v0 2 V 0 such that Z.v/ D Z.v0/. We call v0 the matching vector for v.

Note that by Theorem 3.3(ii), we either have v D v0 or var.v � v0/ � k Cm.

Proof. (H)) Suppose that zZ.V / D zZ.V 0/, i.e. that ¹Z.v/W v 2 V º D ¹Z.v0/W

v0 2 V 0º. Then for any v 2 V , there exists v0 2 V 0 with Z.v/ D Z.v0/. Since

dim. zZ.V 0// D k (see Definition 1.1), we have ker.Z/ \ V 0 D ¹0º, which implies

that v0 is unique.

((H ) Suppose that for all v 2 V , there exists a unique v0 2 V 0 such that

Z.v/ D Z.v0/. Then zZ.V / � zZ.V 0/, and since dim. zZ.V // D dim. zZ.V 0// D k,

we get zZ.V / D zZ.V 0/. �
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4. Warmup: the m D 2 amplituhedron

In this section we focus on the m D 2 amplituhedron An;k;2.Z/, as a warmup to

our study of the m D 4 amplituhedron in the following sections. In analogy to the

m D 4 case, the outline of this section is as follows.

1. In §4.1, we give a recurrence on plabic graphs, which (after a ‘shift by 1’)

produces a collection Cn;k;2 of 2k-dimensional cells of Gr�0
k;n

, whose images

should triangulate An;k;2.Z/. (This is analogous to the m D 4 BCFW

recursion; see §5.)

2. In §4.2, we describe the L-diagrams of these 2k-dimensional cells, indexed

by lattice paths inside a k � .n � k � 2/ rectangle. (This is analogous to our

description for m D 4 in terms of pairs of noncrossing lattice paths inside a

k � .n� k � 4/ rectangle; see §6 and §7.)

3. In §4.3, we find a nice basis of any subspace V coming from our cells Cn;k;2.

(This is analogous to our ‘domino bases’ for m D 4; see §10 for the case

k D 2, and Conjecture A.7 for a conjectural generalization to all k.)

4. In §4.4, we prove that the images of the cells Cn;k;2 in An;k;2.Z/ are disjoint,

using sign variation arguments. (In §11, we will prove disjointness for m D 4

BCFW cells when k D 2, using more intricate arguments along the same

lines.)

While we will not need the results of this section to handle the m D 4 case,

the ideas and techniques used here will hopefully give the reader a flavor of our

arguments for m D 4. We will also cite the m D 2 case as evidence for our

conjecture in §8.

Remark 4.1. Arkani-Hamed, Thomas, and Trnka [2, Section 7] consider the same

collection of cells Cn;k;2, up to a cyclic shift. They define their cells in terms of

bases as in item 3 above, and do not consider a recurrence on plabic graphs or

the L-diagrams. They show both that the images of these cells in An;k;2.Z/ are

disjoint, and that their union covers a dense subset of An;k;2.Z/ (we will not prove

the latter fact here). We remark that their arguments also employ sign variation.

4.1. A BCFW-style recursion for m D 2. We start by giving a recursion on

plabic graphs which produces, for each pair .k; n/ with 1 � k � n�1, a collection

Cn;k;2 of 2k-dimensional positroid cells of Gr�0
k;n

. This recursion is an analogue of

the well-known BCFW recursion, which produces the BCFW cells Cn;k;4 for the

m D 4 amplituhedron (see §5).
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Definition 4.2. We define a local operation on plabic graphs which we call

splitting. Let G be a plabic graph of type .k; n/ (see Definition 2.9), and i 2 Œn� a

boundary vertex incident to a unique edge e. We split e at i by locally replacing

e by a vertex v with three incident edges as follows, while leaving the rest of the

graph unchanged:

��� � � �

i

��
�

e
i
7�!

��� � � �

iiC1

��
�

v (4.1)

(The color of v may be either black or white.) This produces a plabic graph G0

of type .k0; nC 1/, whose boundary vertices are labeled by ŒnC 1�, so that i and

i C 1 are labeled as above (i.e. labels 1; : : : ; i � 1 from G remain unchanged, and

labels i C 1; : : : ; n from G get increased by 1). Note that by (2.1), k0 D k if v is

white, while k0 D k C 1 if v is black.

Definition 4.3 (Recursion for cells when m D 2). For positive integers k and n

such that 1 � k � n�1, we recursively define a set zGn;k;2 of plabic graphs of type

.k; n/ as follows.4

(1) If n D 2 and k D 1, then zGn;k;2 contains a unique element, the plabic graph

12 :

(2) For n � 3, zGn;k;2 is the set of all plabic graphs obtained either by splitting a

plabic graph in zGn�1;k;2 at n � 1 with v white, or by splitting a plabic graph

in zGn�1;k�1;2 at n � 1 with v black. (See Figure 4.)

Alternatively, the plabic graphs in zGn;k;2 are precisely those shown in Figure 5,

where k�1 of the vertices v1; : : : ; vn�2 are black, and the rest are white. Therefore

jzGn;k;2j D
�

n�2
k�1

�

.

4 In our notation zGn;k;2, the subscript 2 is to remind us that these graphs correspond to the

m D 2 amplituhedron, and the tilde is to remind us that these graphs do not directly label the

cells Cn;k;2. Rather, we must first ‘shift by 1’; see Definition 4.4.
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n D 2
12

k D 1

n D 3
1

2

3

k D 1

1

2

3

k D 2

n D 4

1

23

4

k D 1

1

23

4

k D 2

1

23

4

k D 2

1

23

4

k D 3

Figure 4. The first two steps of the m D 2 recursion from Definition 4.3, giving the graphs
zGn;k;2 for n � 4.

1

2

3n 2

n 1

n
v1v2vn 3vn 2

Figure 5. An arbitrary element of zGn;k;2, where precisely k�1 of the vertices v1; : : : ; vn�2

are black.



318 S. N. Karp, L. K. Williams, and Y. X. Zhang

Definition 4.4. Let k; n � 0 satisfy k � n � 2, and cn WD .n n�1 � � � 2 1/

be the long cycle in the symmetric group on Œn�. We define a collection …n;k;2 of

decorated permutations of type .k; n/ by

…n;k;2 WD ¹cn�G WG 2 zGn;kC1;2º;

where above we color any fixed points of cn�G black. (Note that if G is a plabic

graph coming from the recursion in Definition 4.3, then �G has no fixed points, so

indeed multiplying �G by cn on the left decreases the number of anti-excedances

by 1.) We let Cn;k;2 denote the collection of cells S� � Gr
�0
k;n

corresponding to

permutations � 2 …n;k;2.

4.2. L-diagrams for m D 2

Definition 4.5. Let Dn;k;2 denote the set of all L-diagrams D of type .k; n/ such

that

� each of the k rows of D contains at least 2 boxes;

� the leftmost and rightmost entry in each row of D is C, and all other entries

are 0.

(See Figure 6.) In particular, D has precisely 2k C’s, and hence indexes a cell SD

of Gr�0
k;n

of dimension 2k. Also note that the elements of Dn;k;2 are naturally

indexed by lattice paths inside a k � .n � k � 2/ rectangle;5 the lattice path

corresponding to D is the southeast border of the Young diagram obtained by

deleting the two leftmost columns of D.

We can verify that in fact Dn;k;2 indexes the cells Cn;k;2, via the following

bijection.

Proposition 4.6. Given G 2 zGn;kC1;2 as in Figure 5, let W be the lattice path

inside a k � .n� k � 2/ rectangle given by reading the vertices v1; : : : ; vn�2 of G,

moving west if vi is white and south if vi is black. Let D 2 Dn;k;2 be the L-diagram

corresponding to W , as in Definition 4.5. (See Figure 6.) Then

�D D cn�G ;

where cn WD .n n�1 � � � 2 1/, �D is defined in Definition 2.3, and all fixed points

of cn�G are colored black. In particular, Dn;k;2 indexes the cells Cn;k;2.

5 That is, lattice paths moving from northeast to southwest by unit steps west and south; see

Definition 6.1.
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We leave the proof as an exercise to the reader, as a warmup to Theorem 7.4.

1

2

3

4
567

8

9

10

11
v1v2v3v4v5v6v7v8v9

C 0 0 0 0 0 C

C 0 0 C

C 0 C

C C

D

G W

Figure 6. A plabic graph G 2 zG11;5;2, the corresponding lattice path W inside a

4 � 5 rectangle, and the corresponding L-diagram D 2 D11;4;2 . We have �D D

.2; 11;
N
3;
N
4; 6; 1; 8; 5; 10; 7; 9/ D c11�G .

Remark 4.7. Let Dn;k;1 be a set of L-diagrams of type .k; n/ in bijection with

DnC1;k;2, where the element of Dn;k;1 corresponding to D 2 DnC1;k;2 is formed

by deleting the leftmost column of D. For example,

C 0 0 0 0 0 C

C 0 0 C

C 0 C

C C

2 D11;4;2

 !

0 0 0 0 0 C

0 0 C

0 C

C

2 D10;4;1 :
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Let Cn;k;1 be the cells of Gr�0
k;n

indexed byDn;k;1. In [16], two of us showed that the

images of Cn;k;1 inside the m D 1 amplituhedron An;k;1.Z/ induce a triangulation

(in fact, a cell decomposition) of An;k;1.Z/. In fact, one of our motivations for

studying this cell decomposition came from discovering the m D 2 BCFW-

like recursion and the corresponding diagrams Dn;k;2. In light of the bijection

DnC1;k;2 ! Dn;k;1, it is natural to ask whether the diagrams corresponding to the

BCFW cells for m D 4 can be similarly truncated to give diagrams inducing a

triangulation of the m D 3 amplituhedron. In §12 we show that this fails, at least

for the most obvious such truncation.

4.3. Domino bases for m D 2. We now describe a nice basis of any subspace

coming from a cell of Cn;k;2. We remark that this is the same basis appearing

in [2, (7.5)], up to a cyclic shift (which preserves the positivity of Grk;n and Z).

Therefore, our collection of cells Cn;k;2 is the same as Arkani-Hamed, Thomas,

and Trnka’s up to a cyclic shift.

Definition 4.8. We say that d 2 R
n n ¹0º is a domino if either d has exactly two

nonzero components, which are adjacent and have the same sign, or d has exactly

one nonzero component, which is component n.

For example, the vectors .0; 0; 0; 6; 1; 0/ and .0; 0; 0; 0; 0;�2/ in R
6 are domi-

noes.

Lemma 4.9. Given D 2 Dn;k;2, label the edges of the southeast border of D by

1; : : : ; n from northeast to southwest, and let s1 < � � � < sk be the labels of the

vertical steps. Also let V 2 Grk;n. Then V 2 SD if and only if V has a basis

¹v.1/; : : : ; v.k/º such that for all i 2 Œk�,

� v
.i/
j D 0 for all j ¤ si ; si C 1; n and

� v
.i/
si

, v
.i/
si C1, and .�1/k�iv

.i/
n are all positive.

Note that such a vector v.i/ is a sum of two dominoes.

Proof. Let A be the k � n matrix from Theorem 2.10, which represents a general

element of SD. For i D 1; : : : ; k � 1, we perform the following row operations on

A to obtain a new k � n matrix A0, which represents the same element of Gr�0
k;n

that A does:

� if siC1 > si C 1, we leave row si unchanged;

� if siC1 D si C 1, we add the appropriate scalar multiple of row siC1 to row si

in order to make the .si ; j /-entry zero, where j > si is minimum such that

j ¤ s1; : : : ; sk .



Decompositions of amplituhedra 321

For example, for the L-diagram

D D with associated network

1

2

3
4

56

a1a2

a3a4

a5a6

;

C C0

C

C C

C0

the parameterization matrices A and A0 are

A D

2

4

1 2 3 4 5 6

1 1 0 �a1 0 0 a1.a2 C a4/

2 0 1 a3 0 0 �a3a4

4 0 0 0 1 a5 a5a6

3

5

 A0 D

2

4

1 2 3 4 5 6

1 1 a1=a3 0 0 0 a1a2

2 0 1 a3 0 0 �a3a4

4 0 0 0 1 a5 a5a6

3

5:

Given V 2 SD , we can specialize the edge variables to positive real numbers

so that A0 represents V . Then we may take v.1/; : : : ; v.k/ to be the rows of A0.

Conversely, given any v.1/; : : : ; v.k/ as in the statement of the lemma, we can find

positive values of the edge variables so that the rows of A0 are v.1/; : : : ; v.k/, after

we scale row si by v
.i/
si

. �

4.4. Disjointness for m D 2. We show that the images of the cells Cn;k;2 inside

the m D 2 amplituhedron An;k;2.Z/ are disjoint. This is a warmup to §11, where

we prove disjointness for m D 4 when k D 2.

Lemma 4.10. If v 2 R
n is a sum of k � 1 dominoes, then var.v/ � k � 1.

We leave the proof as an exercise to the reader. We will provide a more general

version of Lemma 4.10 in Lemma 11.3.

Proposition 4.11. Let Z 2 Mat>0
kC2;n. Then zZ maps the cells Cn;k;2 of Gr�0

2;n injec-

tively into the amplituhedron An;k;2.Z/, and their images are pairwise disjoint.

Proof. We must show that given D; D0 2 Dn;k;2 and V 2 SD; V 0 2 SD0 such that
zZ.V / D zZ.V 0/, we have V D V 0. Let ¹v.1/; : : : ; v.k/º be the distinguished basis

of V from Lemma 4.9.
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Claim. For any i 2 Œk� and v0 2 V 0, we have var.v.i/ � v0/ � k C 1.

Proof of Claim. Let ¹w.1/; : : : ; w.k/º be the distinguished basis of V 0 from

Lemma 4.9, and write v0 D
Pk

iD1 ci w
.i/ for some c1; : : : ; ck 2 R. Then

v.i/ � v0 D v.i/ �
Pk

iD1 ciw
.i/. The right-hand side can be written as a sum

of k C 2 or fewer dominoes, so var.v.i/ � v0/ � k C 1 by Lemma 4.10. �

For i 2 Œk�, let v0.i/ 2 V 0 be the matching vector for v.i/, as in Lemma 3.4.

Then by the claim and Lemma 3.4, we have v.i/ D v0.i/, i.e. v.i/ 2 V 0. Hence

V � V 0, and so V D V 0. �

5. Binary trees and BCFW plabic graphs

In the case m D 4 (which is the case of interest in physics), there is a distinguished

collection of 4k-dimensional cells of Gr
�0
k;n

called BCFW cells. These cells are

named after Britto, Cachazo, Feng, and Witten, who gave recursion relations for

computing scattering amplitudes [7, 8]. These relations were translated in [1]

into a recursion on plabic graphs, which we define in §5.1. The resulting graphs

are easily seen to be in bijection with complete binary trees (well-known Catalan

objects), as we explain in §5.2. However, these plabic graphs do not literally label

the BCFW cells in the sense of Definition 2.9; rather, we must perform a ‘shift

by 2’ to the decorated permutation corresponding to the graph, which makes it

difficult to explicitly describe the BCFW cells from the BCFW recursion.6 In

§6, we will use a different family of Catalan objects, namely pairs of noncrossing

lattice paths inside a rectangle, to explicitly describe the BCFW cells in terms of

˚-diagrams.

5.1. The recursive description of BCFW cells from plabic graphs. The

BCFW recursion [7, 8] is a recursive operation that produces, for each pair .k; n/

with 0 � k � n� 4, a set Cn;k;4 of 4k-dimensional positroid cells of Gr
�0
k;n

, called

the .k; n/-BCFW cells.7 This operation is described in [1, Section 17.2/16.28].

6 Bai and He [4, (3.3)] found a recursion on the plabic graphs which do literally index the

BCFW cells. However, their recursion is more complicated and does not obviously correspond

to a family of Catalan objects, so we prefer to work with the original version of the recursion.

7 In fact, there are many different ways to carry out the BCFW recursion, which each lead

to a possibly different set of positroid cells of Gr�0

k;n
. For example one can cyclically permute all

boundary labels of the plabic graphs one obtains in the recursion. In this paper we fix a canonical

way to perform the recursion.

8 These two section numbers refer, respectively, to the published book and the arXiv preprint.
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Definition 5.1. We define a local operation on plabic graphs which we call

blowing up. Let G be a plabic graph of type .k; n/ (see Definition 2.9), and i 2 Œn�

a boundary vertex incident to a unique internal vertex v, which has degree 3. We

blow up G at i by locally replacing v by a square, as follows, while leaving the

rest of the graph unchanged:

��� � � �

i

v

��� � � �
e f

i
7�!

��� � � �

iiC1

��� � � �e f

:

(5.1)

(The color of v may be black or white.) This produces a plabic graph G0 of type

.k0; n C 1/, whose boundary vertices are labeled by Œn C 1� so that i and i C 1

are labeled as above (i.e. labels 1; : : : ; i � 1 from G remain unchanged, and labels

iC1; : : : ; n from G get increased by 1). In the blowup, the orientation of the square

is important: its vertices alternate in color, with i incident to a black vertex and

i C 1 to a white vertex. Note that by (2.1), k0 D k if v is black, while k0 D k C 1

if v is white.

Definition 5.2 (BCFW recursion). For positive integers k and n such that 2 � k �

n�2, we recursively define a set zGn;k;4 of plabic graphs of type .k; n/ as follows.9

1. If n D 4 and k D 2, then zGn;k;4 contains a unique element, the plabic graph

1

23

4

:

2. For n � 5, zGn;k;4 is the set of all plabic graphs obtained either by blowing up

a plabic graph in zGn�1;k;4 at some i ¤ 1; n� 1 incident to a black vertex, or

by blowing up a plabic graph in zGn�1;k�1;4 at some i ¤ 1; n� 1 incident to a

white vertex. (We may obtain such a plabic graph multiple times in this way,

but we only count it once in zGn;k;4.) We emphasize that we never blow up at

the first or last boundary positions.

9 In our notation zGn;k;4, the tilde is to remind us that these graphs do not directly label the

m D 4 BCFW cells. Rather, we must first ‘shift by 2’; see Definition 5.3.
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See Figure 7 for a depiction of the graphs zGn;k;4 for n � 6. Note that we can

read the k statistic from each graph as the number of black vertices incident to the

boundary.

n D 4

1

23

4

k D 2

2 3

n D 5

n D 6

1

2

3

4

5

k D 2

1

2

3

4

5

k D 3

2 3 4 432

1

2

34

5

6

k D 2

1

2

34

5

6

k D 3

1

2

34

5

6

k D 3

1

2

34

5

6

k D 3

1

2

34

5

6

k D 4

Figure 7. The first two steps of the BCFW recursion. The Catalan sequence 1; 2; 5; 14; : : :

gives the number of graphs in each row. Note that the k statistic has not yet been ‘shifted

by 2’. Observe that the middle graph in the bottom row can be obtained via two different

sequences of blowups.

Definition 5.3. Let k; n � 0 satisfy k � n� 4, and cn WD .n n�1 � � � 2 1/ be the

long cycle in the symmetric group on Œn�. We define the BCFW permutations of

type .k; n/ (for m D 4) as

…n;k;4 WD ¹c
2
n�GWG 2 zGn;kC2;4º;

where above we color any fixed points of c2
n�G black. (Note that for any plabic

graph G coming from the BCFW recursion, we have �G.i/ ¤ i; i C 1 .mod n/
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for all i 2 Œn�, so indeed multiplying �G by c2
n on the left decreases the number of

anti-excedances by 2.) The collection Cn;k;4 of cells S� � Gr�0
k;n

corresponding to

BCFW permutations � 2 …n;k;4 are called the .k; n/-BCFW cells (for m D 4).10

Conjecture 5.4 ([3, Section 5]). Let Z 2 Mat>0
kC4;n, where k; n � 0 satisfy

k � n � 4. Then the images under zZ of the BCFW cells Cn;k;4 “triangulate”

the m D 4 amplituhedron, i.e. they are pairwise disjoint, and together they cover

a dense subset of An;k;4.Z/.

Interestingly, the number of BCFW cells in Gr�0
k;n

is a Narayana number. The

Narayana numbers

Na;b WD
1

a

�

a

b

��

a

b � 1

�

refine the Catalan numbers, i.e.
Pa

bD1 Na;b is the Catalan number 1
aC1

�

2a
a

�

[31, A46].

Lemma 5.5 ([1, (17.7)/(16.8)]). For m D 4, the number of .k; n/-BCFW cells is

the Narayana number Nn�3;kC1 D
1

n�3

�

n�3
kC1

��

n�3
k

�

.

5.2. Complete binary trees and a bijection to BCFW graphs. In this section

we explain how to index the plabic graphs zGn;k;4 coming from the BCFW recursion

by complete binary trees. This construction also appears in a similar form in

lecture notes written by Morales based on a course taught by Postnikov [25,

Figure 110].

Definition 5.6. A complete (or plane) binary tree T is a rooted tree such that every

vertex either has 2 ordered child vertices, one joined by a horizontal (left) edge

and the other by a vertical (up) edge, or 0 child vertices. We require that the root

vertex has 2 children. (See Figure 8 for an example.) We call childless vertices

leaves, and other vertices internal vertices. An edge of T is called external if it is

incident to a leaf; otherwise it is called internal. If T has n� 2 leaves (n � 4), we

label them by 2; 3; : : : ; n � 1 clockwise, such that the leaf 2 is joined to the root

vertex by a path of horizontal edges (and similarly, n � 1 is joined to the root by

a path of vertical edges). We let Tn;k;4 denote the set of complete binary trees T

with n � 2 leaves, exactly k C 1 of which are incident to a horizontal edge.

10 Some authors use the term ‘BCFW cells’ to refer to the images zZ.S�/ in the amplituhedron

An;k;4.Z/ (though in general it is not known that these images are indeed topological cells).
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2

3

4

5

6

1

2

3
4

5

6

1

2

3
4

5

Figure 8. A complete binary tree T 2 T6;1;4 and its plabic graph G.T / 2 zG6;3;4 (before

and after contracting bivalent vertices and enclosing the graph in a disk). Note that G.T /

is the middle graph in the bottom row of Figure 7.

Definition 5.7. Given a complete binary tree T 2 Tn;k;4, we define a plabic graph

G.T / with n boundary vertices, as follows.

� We replace the root vertex of T with a face, as shown:

:::

: : :

7�!
n

1

:

(As we will explain shortly, the ‘half-vertices’ on the right are intentional.)

� We replace each internal vertex of T with a face, as shown:
:::

:::: : :

7�! ;

:::

::
:

: : : 7�! :

� We replace each leaf of T , as shown:

i

::
:

7�!
i

;
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i

::: 7�!
i

:

In both of the resulting local pictures of a plabic graph above, the vertex not

incident to i is incident to exactly one other vertex (which appears just outside

this local picture), of the same color; we contract these two vertices. (This is

to avoid having any bivalent vertices in the resulting plabic graph.)

� We draw a curve through 1; : : : ; n, enclosing the resulting graph in a disk.

This gives a plabic graph G.T /. See Figure 8 for an example. (Above, we have

depicted only ‘half vertices’ of G.T /, since each internal vertex of G.T /, aside

from those incident to 1 and n, comes from two vertices of T .)

Lemma 5.8. The map T 7! G.T / from Definition 5.7 gives a bijection

Tn;k;4 �! zGn;kC2;4:

Proof. It follows from Definition 5.7 that adding child vertices to a leaf i of

T corresponds to blowing up G.T / at i . That is, the BCFW recursion acts on

complete binary trees by adding children. �

Note that it is straightforward to recover T from G.T /: the graph formed by

the internal edges of T is dual to the graph formed by the internal faces of G.T /.

6. Pairs of noncrossing lattice paths and BCFW L-diagrams

In this section, we index the m D 4 BCFW cells by pairs of noncrossing lattice

paths inside a rectangle. We explain how to obtain a ˚-diagram of a BCFW cell

from such a pair.

Definition 6.1. Fix a; b 2 N. A lattice path W inside an a � b rectangle is a path

that moves from the northeast corner to the southwest corner, taking unit steps west

and south. We represent W by a word of length a C b on the alphabet ¹H; V º,

with exactly a letters V (corresponding to the vertical steps) and b letters H

(corresponding to the horizontal steps). For example, the upper lattice path WU

in Figure 9 is given by WU D HHVHHV VH .
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Let Ln;k;4 denote the set of all pairs .WU ; WL/ of noncrossing lattice paths

inside a k�.n�k�4/ rectangle, where WU denotes the upper path and WL denotes

the lower path. That is, WL is weakly below WU (but the two paths are allowed to

overlap); see Figure 9. In terms of words, this means that for any i 2 Œn� 4�, there

are at least as many V ’s among the first i letters of WL as among the first i letters

of WU .

We give an injective map from elements of Ln;k;4 to 4k-dimensional positroid

cells of Gr
�0
k;n

. We will prove that the collection of cells in its image are precisely

the .k; n/-BCFW cells.

Definition 6.2. Given .WU ; WL/ 2 Ln;k;4, let YU be the Young diagram inside a

k � .n � k � 4/ rectangle whose southeast border is YU , and similarly define YL.

We associate a˚-diagram D of type .k; n/ (recall Definition 2.3) to .WU ; WL/ as

follows. (See Figure 9 for an example.)

Step 1. The Young diagram of D is obtained from YL by adding m D 4 extra

columns at the left of height k. Place a C at the far left end and far right

end of each row of D, leaving the other boxes empty.

Step 2. Consider each column of YU in turn, reading the columns from left to

right. For each column of YU of height i , place a top-justified column of

i 0’s in D as far right as possible.

Step 3. In each row of D, place two C’s as far to the right as possible.

Step 4. Fill any remaining empty boxes of D with a 0.

We denote D by �LD.WU ; WL/. This defines an injection �LD.WU ; WL/ from

Ln;k;4 to the set of ˚-diagrams of type .k; n/. Let Dn;k;4 be the image of

�LD.WU ; WL/. We will show in Lemma 6.4 that each D 2 Dn;k;4 is a reduced

˚-diagram with exactly 4k C’s. Hence by Lemma 2.6, D corresponds to a 4k-di-

mensional cell of Gr�0
k;n

, and we can use L-moves to find the L-diagram of D. We

will also show in Lemma 6.4 that these 4k-dimensional cells are all distinct.

Theorem 6.3. The ˚-diagrams Dn;k;4 index the .k; n/-BCFW cells Cn;k;4.

Theorem 6.3 follows from Lemma 5.8 and Theorem 7.4, the latter of which

we will prove in §7. First, we show that the˚-diagrams in Dn;k;4 are reduced and

represent distinct positroid cells.

Lemma 6.4. The ˚-diagrams in Dn;k;4 are reduced, and each correspond to a

distinct 4k-dimensional cell of Gr�0
k;n

.
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.WU ; WL/ D YU D YL D

Step 1. C C

C C

C C

Step 2. C 0 C

C 0 C

C 0 C

Step 2. C 0 0 C

C 0 C

C 0 C

Step 2. C 0 0 0 C

C 0 C

C 0 C

Step 3. C C C 0 0 0 C

C C 0 C C

C C C 0 C

Step 4. C 0 0 C C 0 0 0 C

C 0 0 0 0 C 0 C C

C 0 0 0 C C 0 C

Figure 9. The map �LD.WU ; WL/ from Definition 6.2 takes a pair of lattice paths

.WU ; WL/ 2 Ln;k;4 to a reduced˚-diagram inDn;k;4, corresponding to a 4k-dimensional

cell of Gr�0

k;n
. Here k D 3 and n D 12.
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Proof. We show that each D 2 Dn;k;4 is reduced. Let D0 be the ˚-diagram of

type .k; n � 1/ obtained from D by deleting the leftmost column. Then D0 is a

L-diagram: each 0 added in Step 2 of Definition 6.2 has noC above it in the same

column, and each 0 added in Step 4 has no C to its left in the same row (except

for the C at the left end of the row, which has been deleted to form D0 from D).

Hence D0 is reduced, so its pipe dream P.D0/ has no double crossings. We form

P.D/ from P.D0/ by adding a column of elbows at the left, which introduces no

new crossings. Hence D is reduced. Since D has 4k C’s, it corresponds to a

4k-dimensional cell of Gr�0
k;n

.

Now we show that the diagrams inDn;k;4 index distinct cells of Gr�0
k;n

. Suppose

that D1; D2 2 Dn;k;4 index the same cell of Gr
�0
k;n

, and as above let D0
1 and D0

2 be

the L-diagrams of type .k; n � 1/ formed by deleting the leftmost column of D1

and D2, respectively. In the construction of the pipe dreams P.D1/ and P.D2/

from Definition 2.3, the edges of the west border of the Young diagram in each

pipe dream are labeled with the anti-excedances of the corresponding decorated

permutation. Since �D1
D �D2

, the pipe dreams P.D1/ and P.D2/ have the same

shape and their edges are labeled in the same way. Hence �D0
1
D �D0

2
, whence

D0
1 D D0

2 by Lemma 2.5. This implies D1 D D2. �

7. From binary trees to pairs of lattice paths

In this section we prove Theorem 6.3. Our strategy is to construct a map

�TLWTn;k;4 �! Ln;k;4

which takes a complete binary tree T to a pair of noncrossing lattice paths inside

a k � .n� k � 4/ rectangle, such that the decorated permutation of the˚-diagram

�LD.�TL.T // equals c2
n�G.T / (recall Definition 5.3).

Definition 7.1. Given a complete binary tree T , we let rH and rV denote the

horizontal and vertical child vertices of the root r of T . We let TH denote the

subtree of T rooted at r obtained from T by deleting all children of rV . Also, if

rH is an internal vertex of TH , we let T 0
H be the subtree of T rooted at rH formed

from TH by deleting r and its two incident edges. We similarly define the subtrees

TV and T 0
V of T , by switching the roles of rH and rV .

We associate two lattice paths WU .T /; WL.T / to T by the following recursive

definition. (Recall from Definition 6.1 that we identify a lattice path of length l

with its corresponding word in ¹H; V ºl .) Below, � denotes concatenation of words.
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� If rH and rV are both leaves, then WU .T / and WL.T / are the empty words.

� If rH is not a leaf and rV is a leaf, then

WU .T / WD H �WU .T 0
H /; WL.T / WD WL.T 0

H / �H:

� If rH is a leaf and rV is not a leaf, then

WU .T / WD V �WU .T 0
V /; WL.T / WD V �WL.T 0

V /:

� Otherwise,

WU .T / D WU .TH / �WU .TV /; WL.T / D WL.TH / �WL.TV /:

Note that in fact

WU .T / D WU .TH / �WU .TV / and WL.T / D WL.TH / �WL.TV /

for all T .

We let �TLWTn;k;4 ! Ln;k;4 be the map which sends T to .WU .T /; WL.T //.

It follows from the definitions of WU .T / and WL.T / that they are both words in

¹H; V ºn�4 with precisely k V ’s, and moreover that for any i 2 Œn� 4�, there are at

least as many V ’s among the first i letters of WL.T / as among the first i letters of

WU .T /. Hence the pair of lattice paths .WU .T /; WL.T // is indeed noncrossing,

and represents an element of Ln;k;4.

For example, for the complete binary tree T in Figure 10, we have

WU .T / D HVHVH and WL.T / D HVHHV:

Remark 7.2. Given T 2 Tn;k;4, we can alternatively find WU .T /; WL.T / 2

¹H; V ºn�4 as follows. We obtain WU .T / by reading the internal edges of T in

a depth-first search starting at the root, preferentially reading horizontal edges

over vertical edges; we record an H for each horizontal edge and a V for each

vertical edge. We obtain WL.T / by reading the leaves 3; 4; : : : ; n�2 of T in order,

recording an H for each leaf incident to a vertical edge, and a V for each leaf

incident to a horizontal edge.

Proposition 7.3. The map �TLWTn;k;4 ! Ln;k;4 is a bijection.
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Proof. It follows from Lemma 5.5 and Proposition 8.6(1) that Tn;k;4 and Ln;k;4

have the same cardinality, namely the Narayana number Nn�3;kC1.11 Hence it

suffices to show that �TL is injective. We can prove this by induction on n,

using the recursive definitions of WU .T / and WL.T /. The key observation is

that when we regard the pair of lattice paths .WU .T /; WL.T // as the concatena-

tion of the pairs .WU .TH /; WL.TH // and .WU .TV /; WL.TV //, we recover where

.WU .TV /; WL.TV // begins as the first occurrence of overlapping vertical steps in

.WU .T /; WL.T //. (If there are no overlapping vertical steps, then rV is a leaf.)

To see this, note that WU .TV / and WL.TV / both begin with a vertical step (if they

have any steps at all); conversely, the paths WU .TH / and WL.TH / do not have any

overlapping vertical steps, since otherwise the paths WU .T 0
H / and WL.T 0

H / would

cross each other. �

Now we state and prove the main result of this section.

Theorem 7.4. For T 2 Tn;k;4, we have

�D D c2
n�G.T /;

where D D �LD.�TL.T // 2 Dn;k;4 and cn WD .n n�1 � � � 2 1/ is the long

cycle in the symmetric group on Œn�. (As in Definition 5.3, we color the fixed points

of c2
n�G.T / black.)

As we have already noted, this implies Theorem 6.3.

Proof. We proceed by induction on n. Given T 2 Tn;k;4, let

D WD �LD.�TL.T // 2 Dn;k;4

be its associated ˚-diagram. Note that every row of D contains at least one

C, so �D has no white fixed points. Hence it suffices to show that the equality

�D D c2
n�G.T / holds for (undecorated) permutations. If n D 4, then T is

necessarily the tree , and D is the empty ˚-diagram inside a 0 � 4 rectangle.

Hence �G.T / D 3412 and �D D 1234 D c2
4�G.T /. This proves the base case.

Now suppose that n � 5 and Theorem 7.4 holds for smaller values of n. We

consider two different cases, depending on whether the last letter of WU .T / is V

or H .

11 For further references on the enumeration of Ln;k;4, see [31, pp. 66–67].
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Case 1: WU .T / ends in V . Recall from Remark 7.2 that we obtain WU .T / by

reading the internal edges of T in a depth-first search. Let e be the internal edge of

T corresponding to the last letter of WU .T /, and let w be the child vertex incident

to e (i.e. w is a child of the other vertex incident to e). Then the children of w

are both leaves, and are labeled by p and p C 1 for some 2 � p � n � 2. Let

T 0 2 Tn�1;k�1;4 be obtained from T by replacing e and its children by a vertical

boundary edge incident to a leaf (which will be labeled by p). Since WU .T /

ends in V , we obtain .WU .T 0/; WL.T 0// from .WU .T /; WL.T // by deleting the

last vertical step of each path. Let D0 2 Dn�1;k�1;4 be the associated˚-diagram.

(See Figure 10.) By the induction hypothesis, we have �D0 D c2
n�1�G.T 0/. (We

will regard permutations of Œn � 1� as permutations of Œn� which fix n.)

0

C C C C0

C C CC

0

C C C C0 0

Figure 10. An example of Case 1 in the proof of Theorem 7.4. Here k D 2, n D 9, p D 6.

In terms of plabic graphs, G.T / is obtained from G.T 0/ by blowing up at p.

Let us introduce the intermediate graph G00, obtained from G.T 0/ by inserting a

lollipop in between boundary vertices p � 1 and p, and increasing the labels of

the boundary vertices p; pC1; : : : ; n�1 of G.T 0/ by 1. In terms of permutations,

we have

�G00 D .p pC1 � � � n/�G.T 0/.n n�1 � � � p/:
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Then G.T / is obtained from G.T 0/ via G00 as follows (cf. (5.1)):

��� � � �

p

G.T 0/

��� � � �

7�! ��� � � �

ppC1

G00

��� � � �

7�! ��� � � �

ppC1

G.T /

��� � � �

:

Since e corresponds to the last letter of WU .T /, and this letter is V , the boundary

vertices pC1; pC2; : : : ; n�1 of G.T / are each incident to a white vertex. Hence

�G.T /.n/ D p, and we see that �G.T / D �G00.p pC1 n/. Thus

�G.T / D .p pC1 � � � n/�G.T 0/.n n�1 � � � p/.p pC1 n/

D .p pC1 � � � n/�G.T 0/.n�1 n�2 � � � pC1/:
(7.1)

On the other hand, by Definition 6.2, D is obtained from D0 by appending a

new row, as follows:

D D

D0

p 2

p 1ppC1pC2n 1n

p 2p 1ppC1n 2n 1 :

0 0C C C C

Above we have given the labels of the southeast borders of D and D0 starting at

p � 2. We can then verify from Definition 2.3 that

�D D .p�2 p�1 � � � n/�D0.n�1 n�2 � � � pC1/:



Decompositions of amplituhedra 335

Putting this together with the induction hypothesis �D0 D c2
n�1�G.T 0/ and (7.1),

we obtain

�D D .p�2 p�1 � � � n/c2
n�1�G.T 0/.n�1 n�2 � � � pC1/

D c2
n.p pC1 � � � n/�G.T 0/.n�1 n�2 � � � pC1/ D c2

n�G.T /:

Case 2: WU .T / ends in H . Suppose that WU .T / ends in precisely s H ’s, where

s � 1. Let en�s�3; en�s�2; : : : ; en�4 be the internal edges of T corresponding

to the last s letters of WU .T /, when we read the internal edges in a depth-first

search as in Remark 7.2. These edges appear in a horizontal path in T as in

Figure 11, where the rightmost vertex is either the root vertex (in which case

this picture is the entirety of T ), or is joined to its parent vertex by a vertical

edge. The children of the vertices on this path are all leaves, which are labeled by

p; pC 1; : : : ; pC sC 1 for some p. Proceeding in a similar manner to Case 1, we

let T 0 2 Tn�s;k;4 be obtained from T by replacing the entirety of this horizontal

path and its children by a vertex incident to two leaves labeled p and p C 1 (see

Figure 11). Note that .WU .T 0/; WL.T 0// is obtained from .WU .T /; WL.T // by

deleting the last s steps of each path (which are all horizontal). Let D0 2 Dn�s;k;4

be the associated ˚-diagram. (See Figure 12.) By the induction hypothesis, we

have �D0 D c2
n�s�G.T 0/. (As in Case 1, we will regard permutations of Œn � s� as

permutations of Œn� which fix n � s C 1; : : : ; n.)

In order to relate �G.T / and �G.T 0/, we again introduce a plabic graph G00,

obtained from G.T 0/ by inserting s lollipops in between boundary vertices pC 1

and pC2, and increasing the labels of the boundary vertices pC2; pC3; : : : ; n�s

of G.T 0/ by s. We have

�G00 D .pC2 pC3 � � � n/s�G.T 0/.n n�1 � � � pC2/s;

and we see from Figure 11 that �G.T / D �G00.p pC1 � � � pCsC1/2. This gives

�G.T / D .pC2 pC3 � � � n/s�G.T 0/.n n�1 � � � pC2/s.p pC1 � � � pCsC1/2

D .pC2 pC3 � � � n/s�G.T 0/.n n�1 � � � p/s:

(7.2)

On the other hand, by Definition 6.2, D is obtained from D0 by adding

s columns of all 0’s; the bottom edges of these columns are labeled by p,

pC 1; : : : ; pC s � 1 when we label the southeast border of D by 1; : : : ; n. Hence

�D D .p pC1 � � � n/s�D0.n n�1 � � � p/s:
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p

pC1 pC2 pC3 pCs pCsC1

en s 3en 5en 4

f1 f2

p

pC1 pC2 pC3 pCs pCsC1

T G.T /

p

pC1

p

pC1 pC2 pC3 pCs pCsC1

f1 f2

T 0 G00

Figure 11. The complete binary trees T and T 0, and the plabic graphs G.T / and G00, in

Case 2 of the proof of Theorem 7.4. If k D 0, then the rightmost vertex shown in T and T 0

is the root vertex, and the edges f1 and f2 are incident to boundary vertices 1 and n.

2

3

4

5

6

7 8 9

10

e6e7

C C C 0 0 0 0 C

C 0 C C 0 0 C

1
2

3
4

567891011

T .WU .T /; WL D//T.

2

3

4

5

6

7

8 C C C 0 0 C

C 0 C C C

1
2

3
4

56789

T 0 .WU .T 0/; WL.T 0 D// 0

Figure 12. An example of Case 2 in the proof of Theorem 7.4. Here k D 2, n D 11, p D 6,

s D 2.
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Putting this together with the induction hypothesis �D0 D c2
n�s�G.T 0/ and (7.2),

we obtain

�D D .p pC1 � � � n/sc2
n�s�G.T 0/.n n�1 � � � p/s

D c2
n.pC2 pC3 � � � n/s�G.T 0/.n n�1 � � � p/s D c2

n�G.T /: �

8. Number of cells in a decomposition of An;k;m for arbitrary even m

Recall from §4 that the m D 2 amplituhedron An;k;2 has a decomposition with
�

n�2
k

�

top-dimensional cells, and from Lemma 5.5 that the (conjectural) BCFW

decomposition of the m D 4 amplituhedron An;k;4 contains 1
n�3

�

n�3
kC1

��

n�3
k

�

top-

dimensional cells. On the other hand, when k D 1 the amplituhedron An;1;m is a

cyclic polytope C.n; m/. Bayer [5, Corollary 10] (see also [30, Corollary 1.2(ii)])

showed that if m is even, any triangulation of C.n; m/ has exactly
�n�1� m

2
m
2

�

top-

dimensional simplices. In this section we conjecture a generalization of the above

statements. We also give several families of combinatorial objects which are

in bijection with the top-dimensional cells in our conjectural decomposition of

An;k;m.

For a; b; c 2 N, define

M.a; b; c/ WD

a
Y

iD1

b
Y

j D1

c
Y

kD1

i C j C k � 1

i C j C k � 2
:

Note that M.a; b; c/ is symmetric in a; b; c.

Conjecture 8.1. For even m, there is a cell decomposition of the amplituhedron

An;k;m, whose top-dimensional cells are the images of precisely M
�

k; n�k�m; m
2

�

cells of Gr�0
k;n

of dimension km.

We give a summary of all special cases in which Conjecture 8.1 is known or

conjecturally known in Table 1.

Remark 8.2. Conjecture 8.1 only deals with the case of even m. For odd m,

it is possible that a decomposition of AnC1;k;mC1 with M
�

k; n � k � m; mC1
2

�

top-dimensional cells could be used to give a decomposition of An;k;m with

the same number of top-dimensional cells. This is the case when m D 1,

as two of us showed in [16]. It is also the case when k D 1, since for odd

m there is a triangulation of the cyclic polytope C.n; m/ with
�n� mC1

2
mC1

2

�

top-

dimensional simplices [30, Corollary 1.2(ii)]. When m D 3, we came up with
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Table 1

special case M
�

k; n � k � m; m

2

�

explanation

m D 0 1 A is a point

m D 2

 

n � 2

k

!

[2, Section 7]a

m D 4
1

n � 3

 

n � 3

k C 1

! 

n � 3

k

!

conjectured in [3]

k D 0 1 A is a point

k D n �m 1 A Š Gr�0

k;n

k D 1

 

n � 1 � m
2

m
2

!

A Š cyclic polytope C.n; m/

a Arkani-Hamed, Thomas, and Trnka show that the
�

n�2

k

�

top-dimensional cells in An;k;2

are disjoint and cover a dense subset of the amplituhedron. It is not known whether this induces

a cell decomposition.

a natural construction of M.k; n � k � 3; 2/ cells of Gr
�0
k;n

whose images we

had hoped would give a decomposition of An;k;3. However, these images inside

An;k;3 are not disjoint (see §12). We mention that even in the case of cyclic

polytopes, triangulations are not as well behaved in odd dimension: for even m

every triangulation of C.n; m/ has
�n�1� m

2
m
2

�

top-dimensional simplices, while for

odd m the number of top-dimensional simplices in a triangulation can lie anywhere

between
�n�1� mC1

2
m�1

2

�

and
�n� mC1

2
mC1

2

�

[30, Corollary 1.2(ii)].

The symmetry of M.a; b; c/ raises the following question.

Question 8.3. Conjecture 8.1 suggests that there is a symmetry for amplituhedra

An;k;m among the parameters k, n � k � m, and m
2

. Is there an explanation for

this symmetry?

In the case m D 4, the symmetry between k and n � k � m comes from the

well-known parity of the scattering amplitude (see [2, Section 11]). Below, we

give a combinatorial explanation of this symmetry in terms of complete binary

trees and decorated permutations. The possible symmetries between m
2

and the

other two parameters are completely mysterious.
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Proposition 8.4. Let cn WD .n n�1 � � � 2 1/ be the long cycle in the symmetric

group on Œn�, and wn the permutation given by wn.i/ WD nC 1 � i for i 2 Œn�.

(i) Given T 2 Tn;k;4, let T 0 2 Tn;n�k�4;4 be obtained by reflecting T through

a line of slope �1 (i.e. by switching the roles of horizontal and vertical

children). Then

�G.T 0/ D wn�G.T /wn:

(ii) The map � 7! c4
nwn�wn is a bijection from …n;k;4 to …n;n�k�4;4.

Proof. By Definition 5.7, G.T 0/ is obtained from G.T / by reflecting the plabic

graph, interchanging black and white vertices, and reversing the order of the

ground set. Reflecting and interchanging colors individually invert the decorated

permutation (by Definition 2.9), and reversing the order of the ground set cor-

responds to conjugating by wn. This proves part (i). Then using the fact that

wncnwn D c�1
n , we get c2

n�G.T 0/ D c4
nwn.c2

n�G.T //wn. Hence by Lemma 5.8, the

bijection T 7! T 0 from Tn;k;4 to Tn;n�k�4;4, which sends each tree to its reflection,

induces the bijection � 7! c4
nwn�wn from …n;k;4 to …n;n�k�4;4. �

Recall from §4 that …n;k;2 is a set of decorated permutations which give a

decomposition of An;k;2. We can verify that the analogue of Proposition 8.4(ii)

holds for m D 2, i.e. � 7! c2
nwn�wn is a bijection from …n;k;2 to …n;n�k�2;2.

This motivates the following question.

Question 8.5. Fix n and m with m even, and assume for each k we can find a

collection …n;k;m of decorated permutations corresponding to km-dimensional

cells of Gr
�0
k;n

, whose images induce a cell decomposition of An;k;m.Z/. Can we

choose …n;k;m so that the map � 7! cm
n wn�wn is a bijection from …n;k;m to

…n;n�k�m;m?

We do not expect Question 8.5 has a positive answer if m is odd. Indeed, if

we let …n;k;1 be the set of decorated permutations corresponding to the m D 1

BCFW cells of Gr
�0
k;n

defined in [16], then � 7! cnwn�wn does not in general take

…n;k;1 to …n;n�k�1;1. (For example, …3;1;1 D ¹.1 2/; .2 3/º and c3w3.1 2/w3 D

321 … …3;1;1.)

8.1. Combinatorial and geometric interpretations of M.a; b; c/. The number

M.a; b; c/ has many interpretations which appear in the literature. We present

some of them below. We refer to the article of Propp [29] for further background

on this subject.
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Proposition 8.6 ([23, Sections IX and X]). Fix a; b; c 2 N. Then M.a; b; c/

equals the number of the following objects (see Figure 13):

(1) collections of precisely c noncrossing lattice paths inside an a�b rectangle;

(2) plane partitions which fit inside an a � b � c box;

(3) tilings of the hexagon

H.a; b; c/ WD

a
b

c

ab

c

by rhombi of the form

1 1

11

I

(4) perfect matchings of the honeycomb lattice O.a; b; c/ defined below;

(5) Kekulé structures of a hexagon-shaped benzenoid with parameters a; b; c.

We briefly define the objects in Proposition 8.6 and describe bijections between

them, with reference to Figure 13. Noncrossing lattice paths (1) were defined in

Definition 6.1. A plane partition (2) is a filling of the boxes of a Young diagram

Y with positive integers, such the numbers along each row (from left to right) and

along each column (from top to bottom) are weakly decreasing. We get from a

collection of noncrossing lattice paths (1) to a plane partition (2) by taking the

Young diagram whose southeast border is the bottom lattice path, and writing in

each box the number of lattice paths passing below it. We can depict a plane

partition as a stacking of unit cubes in the nonnegative orthant of R
3 (3), by

stacking d unit cubes on top of each box of Y filled with a d . We are considering

stackings of cubes contained in an a�b�c box, i.e. such that Y is contained inside

an a � b rectangle and the entries in its boxes are bounded above by c.12 From a

plane partition regarded as a stacking of cubes inside an a � b � c box, we get a

rhombic tiling of H.a; b; c/ (3) by orthogonally projecting the exterior surface of

the stacking onto a symmetric affine plane.

12 MacMahon was the first to enumerate any of the objects in Proposition 8.6, by showing that

the number of plane partitions which fit inside an a�b�c box equals M.a; b; c/ [23, Sections IX

and X].
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(1) noncrossing lattice paths

3 3 2 2

1 1 1

(2) plane partition (3) rhombic tiling

(4) perfect matching

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

(5) Kekulé structure

Figure 13. The objects appearing in Proposition 8.6. Here .a; b; c/ D .2; 4; 3/.

We define the honeycomb lattice O.a; b; c/ as the graph dual to the tiling of

H.a; b; c/ by unit equilateral triangles; that is, the vertices of O.a; b; c/ corre-

spond to the triangles tiling H.a; b; c/, and two vertices of O.a; b; c/ are adjacent

precisely when the corresponding triangles share an edge. Alternatively, we ob-

tain O.a; b; c/ by gluing together regular hexagons into a hexagonal arrangement,

as shown in (4). A perfect matching of a graph is a subset of its edges which

meets every vertex exactly once. From a rhombic tiling of H.a; b; c/ (3), we ob-

tain a perfect matching of O.a; b; c/ (4) by including an edge in the matching if

and only if the corresponding equilateral triangles in H.a; b; c/ are covered by the

same rhombus.

Finally, from O.a; b; c/, we obtain a hexagon-shaped benzenoid (with param-

eters a; b; c) by replacing each vertex by a carbon atom, and each edge by a bond

between carbon atoms. Moreover, every carbon atom should be bonded to exactly

three other atoms, so for each carbon atom bonded to only two others, we add
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a hydrogen atom bonded to it (by a single bond). A Kekulé structure of such a

benzenoid specifies whether each bond between carbon atoms is a single bond or

a double bond, subject to the condition that each carbon atom is tetravalent, i.e.

it participates in exactly one double bond. (The tetravalency condition was first

proposed by Kekulé [17, 18].) We have a bijection from perfect matchings (4) to

Kekulé structures (5), which sends matched edges to double bonds and unmatched

edges to single bonds.13

Remark 8.7. We note that there is a natural structure of distributive lattice

on the various combinatorial objects enumerated by M.a; b; c/ [28, Theorem 2

and Example 2.1]. In terms of stackings of cubes inside an a � b � c box, a

cover relation in the lattice structure corresponds to adding a single unit cube.

It would be interesting to explore what this distributive lattice structure tells us

about the relative position of the corresponding cells in a decomposition of the

amplituhedron. Perhaps cover relations in the distributive lattice are related to

whether the corresponding cells are adjacent in the amplituhedron.

Remark 8.8. In addition to the combinatorial interpretations given in Proposi-

tion 8.6, M.a; b; c/ also equals the dimension of the degree c component of the

homogeneous coordinate ringCŒGra;aCb � [14]. So, the number of top-dimensional

cells in the (conjectured) BCFW decomposition of An;k;4 is equal to the dimen-

sion of the degree 2 part of CŒGrk;n�4�. It would be interesting to give a geometric

explanation of this statement.

9. Disjointness for BCFW cells when k D 1

For completeness, and as a further warmup to proving that the images of the k D 2

BCFW cells are disjoint in the amplituhedron (§11), we prove disjointness in the

case k D 1. This follows from the work of Rambau on triangulations of cyclic

13 In general, a Kekulé structure corresponds to a perfect matching of any graph formed by

gluing together regular hexagons, not necessarily of O.a; b; c/. Independently of work on plane

partitions, the chemists Gordon and Davison [13] gave bijections between Kekulé structures (5),

perfect matchings (4), and collections of noncrossing lattice paths (1). (We thank Greg Kuperberg

for bringing this to our attention.) They also state a formula suggested to them by Everett for the

number of perfect matchings of O.a; b; b/, and say that it is “a special case of a more general

equation established by Mr. M. Woodger” in a forthcoming paper. Unfortunately, Woodger’s

work was never published. In later work on Kekulé structures, Cyvin [9, (8)] rediscovered

MacMahon’s formula for the number of perfect matchings of O.a; b; c/, and it was reproven

in [6]. We refer to [10, 19] for more on Kekulé structures.
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polytopes [30]: any amplituhedron An;1;4.Z/ is a 4-dimensional cyclic polytope

with n vertices [32], and the triangulation given by the BCFW recursion is among

the ones identified by Rambau. We give his argument below, rephrased in the

language of sign variation and dominoes.

When k D 1, the BCFW cells have the following explicit description, which

we can verify from Theorem 6.3 (see also [3, (5.2)]).

Lemma 9.1. For k D 1, the positroids (see Definition 2.1) of the .k; n/-BCFW

cells are precisely M D ¹¹iº; ¹i C 1º; ¹j º; ¹j C 1º; ¹nºº for all i; j 2 Œn � 2� with

i C 1 < j .

Then Conjecture 5.4 when k D 1 says that every 4-dimensional cyclic polytope

with n vertices is triangulated by the simplices whose vertex sets are of the form

¹i; i C 1; j; j C 1; nº. This is a special case of [30, Theorem 4.2].14

Proposition 9.2 ([30]). Let Z 2 Mat>0
5;n. Then zZ maps the .1; n/-BCFW cells

Cn;1;4 injectively into the amplituhedron An;1;4.Z/, and their images are pairwise

disjoint.

Proof (cf. [30, Remark 3.8]). Let V; V 0 2 Gr
�0
1;n be subspaces each contained in

a .1; n/-BCFW cell, such that zZ.V / D zZ.V 0/. We must show that V D V 0. Let

v 2 R
n be a basis vector of V , and v0 2 V 0 its matching vector as in Lemma 3.4.

By Lemma 9.1, we can write v � v0 as a sum of 5 or fewer dominoes (recall

Definition 4.8). Hence var.v � v0/ � 4 by Lemma 4.10, whence v D v0 by

Lemma 3.4. �

Remark 9.3. This argument generalizes to all m, to show that the images in the

amplituhedron An;1;m.Z/ of certain m-dimensional cells of Gr
�0
1;n are mutually

disjoint.

� When m is even, these cells are indexed by the collection of positroids of the

form

¹¹i1º; ¹i1 C 1º; : : : ; ¹im=2º; ¹im=2C 1º; ¹nºº:

� When m is odd, we can take the collection of positroids of the form

¹¹i1º; ¹i1C 1º; : : : ; ¹i.mC1/=2º; ¹i.mC1/=2 C 1ºº;

14 In more detail, the BCFW triangulation is an iterated extension (in the sense of [30,

Definition 4.1]) of the triangulation of a 1-dimensional cyclic polytope into intervals between

consecutive vertices.
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or alternatively the collection of positroids of the form

¹¹1º; ¹i1º; ¹i1C 1º; : : : ; ¹i.m�1/=2º; ¹i.m�1/=2 C 1º; ¹nºº:

These in fact give triangulations of An;1;m.Z/ by [30, Theorem 4.2].

10. Domino bases for BCFW cells when k D 2

In this section we give a basis classification of the BCFW cells Cn;2;4 (the case

k D 2) in terms of domino bases. We propose a generalization to all k in Appen-

dix A (Conjecture A.7). We recall the definition of a domino (Definition 4.8), and

introduce some new terminology.

Definition 10.1. We say that d 2 R
n n ¹0º is a domino if there exists i 2 Œn�

such that dj D 0 for all j ¤ i; i C 1, and di and diC1 are nonzero and have the

same sign. (If i D n, then we require that dj D 0 for all j < n, and that dn is

nonzero.) In this case, we call d an i-domino, we call i the index of d , and we call

the common sign of di and diC1 the sign of d . We also regard the zero vector as

a domino, with sign zero.

For example, .0;�1;�2; 0; 0/ 2 R
5 is a negative 2-domino.

Definition 10.2. Given v 2 R
n with n � 1, let Nv 2 R

n denote the vector obtained

from v by setting coordinate n to 0. For v 2 R
n, we say that v is orthodox if Nv is a

sum of two nonzero dominoes of the same sign with disjoint support, and deviant

if Nv is a difference of two such nonzero dominoes.

Theorem 10.3. Each BCFW cell S of Gr�0
2;n falls into one of 9 classes, shown in

Figure 14. Any element V 2 S can be written as the row span of a 2 � n matrix

with rows d and e, whose sign patterns are specified precisely in Figure 14. In the

figure, a vertical line represents a ( possibly empty) block of 0’s. We call d and e

the standard basis vectors of V . Note that d is either orthodox or deviant; we call

V either orthodox or deviant, accordingly.

Moreover, we can write the row vectors d and e in terms of linearly independent

positive dominoes d .1/; d .2/; d .3/; d .4/ 2 R
n, such that the following holds (where

ij is the index of d .j /):

� if V is orthodox, then i1C1 < i2 � i3 < i4�1, Nd D d .1/Cd .2/ with dn < 0,

and Ne D d .3/ C d .4/ with en > 0;
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� if V is deviant, then i1 C 1 < i2 C 1 < i3 � i4, Nd D d .1/ � d .4/ with dn < 0,

and e D d .1/ C d .2/ C d .3/ (with en D 0).

We call d .1/; d .2/; d .3/; d .4/ the fundamental dominoes of V .

For example, the matrix
"

0 0 3 7 0 1 2 0 0 0 �5

0 0 0 0 0 1 4 1 2 0 2

#

represents an orthodox element of Gr�0
2;11 in a Class 3 BCFW cell of Figure 14.

Class 1.
C

C

0 0

C C

0

C

C C C + + + + 0 0 0 0 -

0 0 0 0 + + + + +
orthodox

Class 2.
C

C

0 0

C C

C C

C

C + + + + 0 0 0 -

0 0 0 + + + + +
orthodox

Class 3.
C

C

0 C

C C

C

C

C + + + + 0 0 -

0 0 + + + + +
orthodox

Class 4.
C

C

C C

C C

0

C

C + + 0 0 - - -

+ + + + + + 0
deviant

Class 5.
C

C

C C 0

0 C C

0

C

C + + 0 0 0 - - -

+ + + + + + 0 0
deviant

Class 6.
C

C

C C

0 0

0 0

C C

0

C

C + + 0 0 0 0 - - -

+ + + + + + 0 0 0
deviant

Class 7.
C

C

C C

0 0

0 0

C C

C

C

+ + 0 0 0 - - -

+ + + + + 0 0 0
deviant

Class 8.
C

C

C C 0

0 C C

C

C

+ + 0 0 - - -

+ + + + + 0 0
deviant

Class 9.
C

C

C C

C C

C

C

+ + 0 - - -

+ + + + + 0
deviant

Figure 14. The ˚-diagrams and standard basis vectors for the 9 classes of BCFW cells for

k D 2. The black vertical bars in the˚-diagrams represent a (possibly empty) block of 0’s

of the appropriate height. Similarly, the vertical bars in the matrices represent a (possibly

empty) block of 0’s.

Proof. By Theorem 6.3, the BCFW cells Cn;2;4 of Gr�0
2;n correspond to the ˚-di-

agrams Dn;2;4, and a straightforward case analysis using Definition 6.2 implies
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that these are precisely the ˚-diagrams in Figure 14. It remains to show that for

each such˚-diagram, an arbitrary element of the corresponding positroid cell can

be represented by the 2 � n matrix to its right in Figure 14, and that we can find

dominoes d .1/; d .2/; d .3/; d .4/ satisfying the desired properties. We can ignore

the black vertical bars in the ˚-diagrams, which correspond exactly to the verti-

cal bars in the matrices. Since the proofs for each of the 9 classes are similar, we

work out the details in two representative cases (Classes 3 and 8), and leave the

others as an exercise. The idea is to use L-moves (Lemma 2.6) to turn each˚-di-

agram into a L-diagram, from which we obtain a hook diagram (Definition 2.8)

and matrix parameterization of the corresponding cell (Theorem 2.10). From here

we can verify the required properties.

Class 3. In this case the ˚-diagram is a L-diagram, with the following hook

diagram:

1

2
3

4567

1

2
3

4567

a1a2a3a4

b1b2b3b4
:

0 CC C

CCC C

C

By Theorem 2.10, an arbitrary element of the corresponding cell of Gr�0
2;7 is

represented by

"

1 a1 0 a1a2 a1a2.a3 C b2/

a1a2b3.a3 C b2/ a1a2.a3a4 C b3b4.a3 C b2//

0 0 1 b1 b1b2

b1b2b3 b1b2b3b4

#

;

where the ai ’s and bi ’s are positive real numbers. Let v; w 2 R
7 denote the first

and second rows of this matrix. If we replace v by

v0 WD v C
a1a2.a3 C b2/

b1b2

w;

then we obtain a matrix whose sign pattern matches the matrix in Figure 14.

Therefore any element V in this cell has basis vectors

d WD v0 and e WD w;
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and we can write

Nd D d .1/ C d .2/ and Ne D d .3/ C d .4/

for some positive dominoes d .1/; d .2/; d .3/; d .4/. We can check that their indices

satisfy the stated inequalities, and they are linearly independent (the fact that

�¹3;4º ¤ 0 implies that d .2/ and d .3/ are linearly independent).

Class 8. After applying a L-move to the ˚-diagram, we obtain the following

L-diagram and hook diagram:

00 CC 1

2

34567

1

2

34567

a1a2a3

b1b2b3b4b5
:

C

CC CCC

Therefore an arbitrary element of the corresponding cell of Gr�0
2;7 is represented

by

"

1 0 a1 a1b2 a1.a2 C b2b3/

a1.a2.a3 C b4/C b2b3b4/ a1b5.a2.a3 C b4/C b2b3b4/

0 1 b1 b1b2 b1b2b3

b1b2b3b4 b1b2b3b4b5

#

;

where the ai ’s and bi ’s are positive real numbers. Let v; w 2 R
7 denote the first

and second rows of this matrix. If we replace v by

v0 WD v C
a1

b1

w

and then w by

w0 WD
a1a2.a3 C b4/

b1b2b3b4

w C v0;

we obtain a matrix whose sign pattern matches the matrix in Figure 14. Therefore

any element V in this cell has basis vectors

d WD v0 and e WD w0;

and we can write

Nd D d .1/ � d .4/ and Ne D d .1/ C d .2/ C d .3/

for some positive dominoes d .1/; d .2/; d .3/; d .4/. We can again check that their

indices satisfy the stated inequalities and that they are linearly independent. �
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Definition 10.4. Let V 2 Gr�0
2;n come from a BCFW cell, with fundamental

dominoes d .1/; d .2/; d .3/; d .4/ from Theorem 10.3. Note that for any v 2 V ,

we can write Nv D
P4

j D1 j̨ d .j / for some unique ˛1; ˛2; ˛3; ˛4 2 R. We let

DomV .v/ denote the sequence of dominoes .˛1d .1/; ˛2d .2/; ˛3d .3/; ˛4d .4//, and

domV .v/ 2 ¹0;C;�º4 the sign vector of .˛1; ˛2; ˛3; ˛4/.

We state two corollaries of Theorem 10.3 that we will use in §11.

Corollary 10.5. Suppose that V 2 Gr�0
2;n comes from a BCFW cell, and v 2 V

such that domV .v/ has no zero components. Then we have the following:

� if V is orthodox, domV .v/ equals

˙.C;C;C;C/ or ˙ .C;C;�;�/I

� if V is deviant, domV .v/ equals

˙.C;C;C;�/ or ˙ .�;C;C;C/ or ˙ .C;C;C;C/:

Corollary 10.6. Suppose that V 2 Gr
�0
2;n comes from a BCFW cell with standard

basis vectors d; e 2 R
n from Theorem 10.3, and v 2 V such that Nv has support

size at most 4 (in particular, this includes orthodox and deviant v). Then we have

the following:

� if V is orthodox, then v is a scalar multiple of d or e;

� if V is deviant, then v is a scalar multiple of d or d � e.

11. Disjointness for BCFW cells when k D 2

This section is devoted to the proof of the following result.

Theorem 11.1. For m D 4, zZ maps the BCFW cells Cn;2;4 of Gr�0
2;n injectively

into the amplituhedron An;2;4.Z/, and their images are pairwise disjoint.

11.1. Lemmas on dominoes. We begin by proving some useful results on domi-

noes. We already have Lemma 4.10, but we will need more powerful tools.

Definition 11.2. Let D � R
n be a finite multiset of dominoes, and v 2 R

n the

sum of the dominoes in D. Given I D ¹i1 < � � � < ikº � Œn�, an I -alternating

domino sequence for v (with respect to D) is a sequence .d .1/; : : : ; d .k// of distinct

nonzero dominoes in D such that
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� d
.j /
ij

has the same sign as vij for all j 2 Œk�;

� the sign sequence .sign.d .1//; : : : ; sign.d .l/// 2 ¹C;�ºl alternates in sign.

We call k the length of .d .1/; : : : ; d .k//.

Lemma 11.3. Suppose that D � Rn is a finite multiset of dominoes, v 2 Rn is the

sum of the dominoes in D, and I � Œn�. Then v alternates in sign restricted to I if

and only if v has an I -alternating domino sequence. The indices of dominoes in

any I -alternating domino sequence for v are weakly increasing, with each index

appearing at most twice.

We think of an I -alternating domino sequence .d .1/; : : : ; d .k// for v as a

witness for the corresponding alternating subsequence of v.

Example 11.4. Let D be the set of dominoes d .1/ WD .1; 1; 0; 0; 0/, d .2/ WD

.0;�3;�1; 0; 0/, d .3/ WD .0; 1; 2; 0; 0/, d .4/ WD .0; 0; 0;�2;�4/, and let v D

.1;�1; 1;�2;�4/ be their sum. Note that v alternates in sign restricted to

I WD ¹1; 2; 3; 5º. The unique corresponding I -alternating domino sequence is

.d .1/; d .2/; d .3/; d .4//, with corresponding indices 1; 2; 2; 4.

Proof. Write I D ¹i1 < � � � < ikº.

(H)) Suppose that v alternates in sign on I . Then for each j 2 Œk�, we can

find d .j / 2 D such that d
.j /
ij

is nonzero and has the same sign as vij . Letting aj be

the index of d .j / for j 2 Œk�, we have aj 2 ¹ij ; ij � 1º, so aj < aj 0 for j 0 � j C 2.

Moreover, d .j / and d .j C1/ have opposite signs for j 2 Œk � 1�, so d .1/; : : : ; d .k/

are all distinct. Hence .d .1/; : : : ; d .k// is an I -alternating domino sequence for v.

((H ) Suppose that .d .1/; : : : ; d .k// is an I -alternating domino sequence for v,

with corresponding indices a1; : : : ; ak. Then sign.vjI / equals the sign sequence

of .d .1/; : : : ; d .k//, which alternates in sign. Moreover, since aj 2 ¹ij ; ij � 1º for

all j 2 Œk�, we have a1 � � � � � ak and aj < a0
j for j 0 � j C 2. Since d .j / and

d .j C1/ have opposite signs for j 2 Œk � 1�, this also shows that d .1/; : : : ; d .k/ are

all distinct. �

Lemma 11.5. Suppose that .d .1/; : : : ; d .k// is an I -alternating domino sequence

for v 2 R
n, where I D ¹i1 < � � � < ikº. Choose j 0 2 Œk� and any subset

J � Œk� n ¹j 0º. Then the vector v �
P

j 2J d .j / has the same sign in coordinate ij 0

as the domino d .j 0/.
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Proof. We know from Definition 11.2 that vij 0 has the same sign as d .j 0/. It now

suffices to observe that for all j 2 J , d
.j /
ij 0

is either zero or has the opposite sign

as d .j 0/. �

We will also use the following facts about dominoes and sign variation, which

are straightforward to verify.

Lemma 11.6. Suppose that v 2 R
n, and d 2 R

n is an i-domino.

(i) We have var.v C d/ � var.v/C 2.

(ii) If vj D 0 for all j � i or vj D 0 for all j > i , then var.vC d/ � var.v/C 1.

Definition 11.7. A shuffle of two sequences .s1; : : : ; sk/ and .t1; : : : ; tl/ is a

sequence of length k C l formed by permuting s1; : : : ; sk; t1; : : : ; tl , such that

s1; : : : ; sk appear in the same relative order, and t1; : : : ; tl appear in the same rel-

ative order.

For example, the shuffles of .a; b/ and .c; d/ are precisely

.a; b; c; d/; .a; c; b; d/; .a; c; d; b/;

.c; a; b; d/; .c; a; d; b/; .c; d; a; b/:

Lemma 11.8. Suppose that V; V 0 2 Gr
�0
2;n come from BCFW cells, and v 2 V ,

v0 2 V . Note that v C v0 is the sum of the dominoes in the multiset D of nonzero

dominoes appearing in DomV .v/ and DomV 0.v0/. Then any alternating domino

sequence for v C v0 with respect to D in which all the dominoes in D appear is

obtained by shuffling DomV .v/ and DomV .v0/ and deleting all zero dominoes.

Proof. Suppose that .f .1/; : : : ; f .l// is an I -alternating domino sequence for

vCv0 with respect to D which uses all the dominoes in D, where ID¹i1 < � � �<ilº.

Then the indices of .f .1/; : : : ; f .l// are weakly increasing, so we must show that

if two dominoes in DomV .v/ or two dominoes in DomV 0.v0/ have the same index

and both appear in .f .1/; : : : ; f .l//, then they appear in the same relative order. It

suffices to prove this for DomV .v/. We proceed by contradiction and suppose that

there exist dominoes f .j /; f .j C1/ 2 D with the same index (they are necessarily

adjacent in the domino sequence, by Lemma 11.3), but appear in DomV .v/ in the

opposite order, i.e. f .j C1/ before f .j /. We will deduce that var.v/ � 2, which

contradicts Theorem 3.3(i).

Perhaps after multiplying all of v; v0; f .1/; : : : ; f .l/ by �1, we may assume

that f .j / is negative and f .j C1/ is positive. Note that Nv equals v C v0 minus
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the sum of the dominoes appearing in DomV 0.v0/. Since .f .1/; : : : ; f .l// are

precisely all dominoes in D, by Lemma 11.5, vij < 0 and vij C1
> 0. We

now let d .1/; d .2/; d .3/; d .4/ be the fundamental dominoes of V , and refer to

Theorem 10.3. First we suppose that V is orthodox. Since f .j / and f .j C1/

have the same index, V must be of Class 3. Then f .j C1/ is a positive scalar

multiple of d .2/, and f .j / is a negative scalar multiple of d .3/. Hence Nv D

˛.d .1/ C d .2// � ˇ.d .3/ C d .4// for some ˛; ˇ > 0. We see that if i is the index

of d .1/, then i < ij and vi > 0, which gives var.v/ � 2, as desired. Instead

suppose that V is deviant. Then it must be of Class 4 or 9. Then f .j C1/ is a

positive scalar multiple of d .3/, and f .j / is a negative scalar multiple of d .4/.

Hence Nv D 
.d .1/ � d .4//C ı.d .1/ C d .2/ C d .3// for some 
; ı > 0. Again v is

positive at the index of d .1/, giving var.v/ � 2. �

Corollary 11.9. Suppose that V; V 0 2 Gr
�0
2;n come from BCFW cells, and v 2 V ,

v0 2 V are distinct such that Z.v/ D Z.v0/ and the sum of the support sizes

of domV .v/ and domV 0.�v0/ is at most 6, i.e. at most 6 dominoes appear with

nonzero coefficient in DomV .v/ and DomV 0.�v0/. Then the sum of the support

sizes is exactly 6, and some shuffle of domV .v/ and domV 0.�v0/ alternates in sign

(ignoring the zero components).

This will be useful for us, since if d; e are the standard basis vectors of V from

Theorem 10.3, then domV .d/ has support size 2, and also domV .e/ has support

size 2 if V is orthodox.

Proof. By Theorem 3.3(ii), we have var.v � v0/ � 6, and so var.v � v0/ � 5.

By Lemma 11.3, v � v0 has an alternating domino sequence of length 6, which

necessarily uses all the (nonzero) dominoes in DomV .v/ and DomV 0.�v0/, since

by assumption at most 6 dominoes appear. By Lemma 11.8, the sequence is

obtained by shuffling DomV .v/ and DomV 0.�v0/ and deleting all zero dominoes.

The corresponding sign sequence (which alternates in sign) is therefore obtained

by shuffling domV .v/ and domV 0.�v0/ and deleting all zero components. �

11.2. Orthodox vs. orthodox cells

Lemma 11.10. Suppose that V; V 0 2 Gr�0
2;n are distinct and orthodox. Then

zZ.V / ¤ zZ.V 0/.

Proof. Suppose otherwise that zZ.V / D zZ.V 0/. Let d; e 2 R
n be the standard

basis vectors of V from Theorem 10.3, which are orthodox, and take matching

vectors v; w 2 V 0 for d; e, i.e. Z.d/ D Z.v/ and Z.e/ D Z.w/. We claim that
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d D v. Otherwise, by Corollary 11.9, some shuffle of domV .d/ and domV 0.�v/

alternates in sign after deleting its two zero components, and in particular contains

exactly three C’s and three �’s. But domV .d/ contains two C’s, and by Corol-

lary 10.5 domV 0.v/ contains an even number of C’s. This contradiction shows

d D v. Similarly, e D w. Since d and e span V , we get V � V 0, a contradic-

tion. �

11.3. Deviant vs. deviant cells

Lemma 11.11. Suppose that V; V 0 2 Gr�0
2;n are distinct and deviant. Then

zZ.V / ¤ zZ.V 0/.

Proof. Suppose otherwise that zZ.V / D zZ.V 0/. Denote the standard basis vectors

and fundamental dominoes of V and V 0 by d , e, d .1/, d .2/, d .3/, d .4/, and d 0, e0,

d .1/0
, d .2/0

, d .3/0
, d .4/0

, respectively. Take matching vectors v; w 2 V 0 for d; e.

We claim that d D v. Otherwise, by Corollary 11.9, some shuffle of domV .d/

and domV 0.�v/ alternates in sign after deleting its two zero components, and in

particular contains exactly threeC’s and three �’s. But domV .d/ contains oneC,

and by Corollary 10.5 domV 0.v/ contains either at least threeC’s or at most oneC.

This contradiction shows d D v.

Since e has support size 3, we cannot apply Corollary 11.9 to e and w, but

we can deduce that e ¤ w, since otherwise V D V 0. Hence var.e � w/ � 6

by Lemma 3.4. Since d D v, we may rescale our fundamental dominoes and

standard basis vectors so that d D d 0, d .1/ D d .1/0
, and d .4/ D d .4/0

. We can

write d D d 0 D d .1/�d .4/�f for some positive n-domino f , and w D ˛d 0Cˇe0

for some ˛; ˇ 2 R. Then

e �w D .1� ˛ � ˇ/d .1/ C d .2/ C d .3/ C ˛d .4/ � ˇd .2/0
� ˇd .3/0

C f̨:

Since var.e � w/ � 6, by Lemma 11.3 we can arrange the 7 dominoes summed

above into an alternating domino sequence .f .1/; : : : ; f .7//. The indices of the

dominoes weakly increase, so f .1/ D .1� ˛� ˇ/d .1/ and f .7/ D f̨ . Since f .1/

and f .7/ have the same sign, we get sign.1 � ˛ � ˇ/ D sign.˛/. Hence the sign

sequence of .f .1/; : : : ; f .7// is a permutation of

sign.˛/;C;C; sign.˛/;� sign.ˇ/;� sign.ˇ/; sign.˛/:

This sequence must contain either 3 or 4C’s, and therefore ˛ and ˇ are negative.

But this contradicts sign.1� ˛ � ˇ/ D sign.˛/. �
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11.4. Orthodox vs. deviant cells. This is the hardest case. Until now, our

strategy has been to pick a standard basis vector, look at its matching vector, and

obtain a contradiction. It turns out this is not sufficient here, and we have to work

harder to prove disjointness.

We start by examining the supports supp.v/ WD ¹i 2 Œn�W vi ¤ 0º of vectors

v 2 R
n.

Lemma 11.12. Suppose that V; V 0 2 Gr�0
2;n come from BCFW cells, and zZ.V / D

zZ.V 0/. Then minv2V n¹0º supp.v/ D minv2V 0n¹0º supp.v/, maxv2V n¹0º supp. Nv/ D

maxv2V 0n¹0º supp. Nv/.

Proof. Suppose otherwise, so that without loss of generality, we may assume

that either minv2V n¹0º supp.v/ < minv2V 0n¹0º supp.v/ or maxv2V n¹0º supp. Nv/ >

maxv2V 0n¹0º supp. Nv/. Let d , e, d .1/, d .2/, d .3/, d .4/ be the standard basis vectors

and fundamental dominoes of V . First we consider the case minv2V n¹0º supp.v/ <

minv2V 0n¹0º supp.v/. Write Nd D d .1/ C f , where f WD d .2/ if V is orthodox

and f WD �d .4/ if V is deviant, and let v0 2 V 0 be the matching vector for d .

Note that the index of d .1/ is strictly less than min.supp.v0//. Hence by applying

Lemma 11.6(i) to f , Lemma 11.6(ii) to d .1/, and Theorem 3.3(i) to v0, we obtain

var.d � v0/ D var.�v0 C f C d .1// � var.v0/C 2C 1 � 1C 2C 1 D 4:

But we also have d ¤ v0, so var.d � v0/ � var.d � v0/ � 1 � 5 by Lemma 3.4, a

contradiction. We can treat the case maxv2V n¹0º supp. Nv/ > maxv2V 0n¹0º supp. Nv/

by a similar argument, where if V is orthodox we replace d with e. �

Lemma 11.13. Suppose that V 2 Gr
�0
k;n

is orthodox and V 0 2 Gr
�0
k;n

is deviant

with zZ.V / D zZ.V 0/. Then V \ V 0 contains no orthodox vectors.

Proof. Suppose otherwise that there exists an orthodox v 2 V \ V 0. Denote the

standard basis vectors and fundamental dominoes of V and V 0 by d , e, d .1/, d .2/,

d .3/, d .4/, and d 0, e0, d .1/0
, d .2/0

, d .3/0
, d .4/0

, respectively. By Corollary 10.6,

v is a scalar multiple of both e0 � d 0 and either d or e. After rescaling the vectors

appropriately, we may assume that Nv equals both e0 � d 0 and either d or e.

Let w 2 V be the matching vector for d 0, and write �w D ˛d C ˇe for

some ˛; ˇ 2 R. By Corollary 10.6 we have w ¤ d 0, so var.d 0 � w/ � 5 by

Lemma 3.4, i.e. d 0 �w alternates in sign on some I D ¹i1 < � � � < i6º � Œn � 1�.

By Lemma 11.3 and Lemma 11.8, d 0 � w has an I -alternating domino sequence

obtained by shuffling .d .1/0
;�d .4/0

/ and .˛d .1/; ˛d .2/; ˇd .3/; ˇd .4//, which we

see must equal

.˛d .1/; d .1/0
; ˛d .2/; ˇd .3/;�d .4/0

; ˇd .4//;
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with ˇ > 0. In particular, the index of d .2/ is strictly less than that of d .4/0
, which

implies e0 � d 0 ¤ d . Hence e0 � d 0 D e. Now let x WD .1 � ˇ/d 0 C ˇe0 2 V 0, so

that var.x/ � 1 by Theorem 3.3(i). We can write Nx D d 0 �w � ˛d .1/ � ˛d .2/, so

by Lemma 11.5,

sign.xj¹i2;i4;i5;i6º/ D sign.d .1/0
; ˇd .3/;�d .4/0

; ˇd .4// D .C;C;�;C/:

This implies var.x/ � 2. �

Lemma 11.14. Let V 2 Gr
�0
2;n be orthodox and V 0 2 Gr

�0
2;n be deviant. Then

zZ.V / ¤ zZ.V 0/.

Proof. Suppose otherwise that zZ.V / D zZ.V 0/. Denote the standard basis vectors

and fundamental dominoes of V and V 0 by d , e, d .1/, d .2/, d .3/, d .4/, and d 0, e0,

d .1/0
, d .2/0

, d .3/0
, d .4/0

, respectively. Let v; w 2 V 0 be the matching vectors for

d; e, whence v ¤ d and w ¤ e by Lemma 11.13. Hence by Lemma 3.4 we have

var.d � v/; var.e �w/ � 5, so we can take I; J 2
�

Œn�
6

�

such that d � v alternates

on I and e �w alternates on J .

Let us write �v D ˛d 0 C ˇe0 and �w D 
d 0 C ıe0 for some ˛; ˇ; 
; ı 2 R.

By Lemma 11.3 and Lemma 11.8, d � v has an I -alternating domino sequence

obtained by shuffling .d .1/; d .2// and ..˛ C ˇ/d .1/0
; ˇd .2/0

; ˇd .3/0
;�˛d .4/0

/. By

Lemma 11.12, d .1/ and d .1/0
have the same support, say ¹i; i C 1º. Hence this

shuffle equals

..˛ C ˇ/d .1/0
; d .1/; ˇd .2/0

; d .2/; ˇd .3/0
;�˛d .4/0

/

with ˛ < 0 and ˇ < 0. Since .d � v/i has the same sign as .˛C ˇ/d .1/0
, we have

.d � v/i < 0. Similarly, e �w has a J -alternating domino sequence obtained by

shuffling .d .3/; d .4// and ..
C ı/d .1/0
; ıd .2/0

; ıd .3/0
;�
d .4/0

/. By Lemma 11.12,

d .4/ and d .4/0
have the same support, so this shuffle equals

..
 C ı/d .1/0
; ıd .2/0

; d .3/; ıd .3/0
; d .4/;�
d .4/0

/;

with 
 > 0, ı < 0, and 
 C ı > 0. Since .
 C ı/d .1/0
is the only domino above

whose support contains i , we have .e �w/i > 0.

Now let

x WD ı.d � v/� ˇ.e � w/ D ıd � ˇe C .˛ı � ˇ
/d 0; (11.1)

so that x 2 ker.Z/. Note that x ¤ 0, since otherwise d 0 2 V , contradicting

Corollary 10.6. Hence var. Nx/ � 5 by Theorem 3.3(ii), i.e. x alternates in sign on
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K for some K 2
�

Œn�
6

�

. By Lemma 11.3 and Lemma 11.8, Nx has a K-alternating

domino sequence obtained by shuffling

.ıd .1/; ıd .2/;�ˇd .3/;�ˇd .4// and ..˛ı � ˇ
/d .1/0
;�.˛ı � ˇ
/d .4/0

/;

which necessarily equals

.ıd .1/; .˛ı � ˇ
/d .1/0
; ıd .2/;�ˇd .3/;�.˛ı � ˇ
/d .4/0

;�ˇd .4//:

Hence xi has the same sign as ıd .1/, so xi < 0. But ˇ < 0 , ı < 0, .d � v/i < 0,

and .e � w/i > 0, so we see from (11.1) that xi > 0. �

We can now deduce Theorem 11.1 from Theorem 10.3, Lemma 11.10,

Lemma 11.11, and Lemma 11.14.

12. A non-triangulation for m D 3

In this section we show that the m D 3 amplituhedron is not triangulated by a

seemingly natural collection of cells coming from the BCFW cells for m D 4. As

background, we recall from §4 (in particular, see Remark 4.7) that we have two

sets of L-diagrams Dn;k;2 and Dn;k;1, which give triangulations of An;k;2.Z/ and

An;k;1.Z/, respectively. Moreover, we have a bijection DnC1;k;2 ! Dn;k;1, which

takes a L-diagram D and deletes its leftmost column.

Analogously, let Dn;k;3 be the set of L-diagrams formed from ˚-diagrams in

DnC1;k;4 by deleting the leftmost column, so that we have a bijection DnC1;k;4 !

Dn;k;3 given by deleting the leftmost column. (The fact that this is a well-defined

bijection follows from the proof of Lemma 6.4.) To our surprise, we found that the

images under zZ of the cells of Gr�0
k;n

corresponding to Dn;k;3 do not triangulate

the m D 3 amplituhedron An;k;3.Z/, since their images are not mutually disjoint.

For example, consider the ˚-diagrams

D1 WD
C C C 0 0 0 0 0 0 0 C

C 0 0 C C 0 0 C
;

D2 WD
C C C 0 0 0 0 0 0 0 C

C 0 0 0 0 C C 0 0 C

in D13;2;4, which are both Class 6˚-diagrams from Figure 14. Let D0
1 and D0

2 be

the L-diagrams of type .2; 12/ formed from D1 and D2 by deleting the leftmost

column. Given Z 2 Mat>0
5;12, by the claim in [15, Lemma 4.1], the sign patterns
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of the nonzero vectors in ker.Z/ are precisely those with at least 5 sign changes.

In particular ker.Z/ contains a vector v 2 R
12 with

sign.v/ D .C;C;�;�;C;C;�;�;C;C;�;�/:

Now let V1; V2 2 Gr�0
2;12 be represented by the matrices

�

v1 v2 0 0 0 0 0 0 0 0 v11 v12

v1 v2 0 0 v5 v6 0 0 v9 v10 v11 v12

�

;

�

v1 v2 0 0 0 0 0 0 0 0 v11 v12

0 0 �v3 �v4 0 0 �v7 �v8 0 0 0 0

�

;

respectively. We can check using the network parameterizations coming from the

L-diagrams (Theorem 2.10) that V1 2 SD0
1
, V2 2 SD0

2
. The difference of the two

matrices above is
�

0 0 0 0 0 0 0 0 0 0 0 0

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

�

;

whose rows are both in ker.Z/. Hence zZ.V1/ D zZ.V2/, showing that the images

of SD0
1

and SD0
2

in A12;2;3.Z/ intersect.

Problem 12.1. Can we find 3k-dimensional cells of Gr
�0
k;n

, naturally in bijection

with the BCFW cells CnC1;k;4, whose images under zZ ‘triangulate’ the m D 3

amplituhedron An;k;3.Z/?

Appendix A. Dyck paths and BCFW domino bases

(with Hugh Thomas)

Definition A.1. A Dyck path P is a path in the plane from .0; 0/ to .2n; 0/ for some

n � 0, formed by n up steps .1; 1/ and n down steps .1;�1/, which never passes

below the x-axis. A local maximum of P is called a peak. Let Pn;k;4 denote the

set of Dyck paths with 2.n� 3/ steps and precisely n� 3� k peaks. For example,

the Dyck path P shown in Figure 15 is in P12;3;4.

The cardinality of Pn;k;4 equals the Narayana number Nn�3;kC1 [31, A46], the

number of .k; n/-BCFW cells. We will give a bijection Ln;k;4  ! Pn;k;4, which

thereby allows us to label the .k; n/-BCFW cells by the Dyck paths Pn;k;4. We

then provide a way to conjecturally obtain k basis vectors for any element of a

BCFW cell from its Dyck path.
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A.1. From pairs of lattice paths to Dyck paths

Definition A.2. To any pair of noncrossing lattice paths .WU ; WL/ 2 Ln;k;4, we

associate a Dyck path P.WU ; WL/ 2 Pn;k;4 by the following recursive definition.

(We use C and � to denote up and down steps of a Dyck path, and � to denote

concatenation of paths.)

� If WU and WL are the trivial paths of length zero, then P.WU ; WL/ WD C�.

� If WU and WL both begin with a vertical step, then we can write WU D V �W 0
U ,

WL D V �W 0
L. We set

P.WU ; WL/ WD C � P.W 0
U ; W 0

L/ � �:

� Otherwise, let .W 00
U ; W 00

L / be the final portion of .WU ; WL/ starting at the first

overlapping vertical step of WU and WL. (If WU and WL have no overlapping

vertical steps, then we let W 00
U and W 00

L be the trivial paths.) Then we can

write WU D H �W 0
U �W

00
U , WL D W 0

L �H �W
00

L . We set

P.WU ; WL/ WD P.W 0
U ; W 0

L/ � P.W 00
U ; W 00

L /:

For example, see Figure 15. This gives us a map

�LPWLn;k;4 �! Pn;k;4;

which sends .WU ; WL/ to P.WU ; WL/.

 !

Figure 15. The pair of noncrossing lattice paths in L12;3;4 from Figure 9, and its corre-

sponding Dyck path in P12;3;4 .

In order to show that �LP is a bijection, we will define its inverse, which has an

elegant description. As far as we know, these inverse bijections have not appeared

in the literature.

Definition A.3. Let P be a Dyck path. For any point p on P , we let shadowp.P /

be the waterline when we turn P upside-down and fill it with as much water as pos-

sible without submerging p; this is a piecewise linear curve between the endpoints

of P . Let touchp.P / be the number of down steps of P whose right endpoint lies

on shadowp.P / to the right of p, but otherwise does not intersect shadowp.P /.

Then we associate a pair of noncrossing lattice paths .WU .P /; WL.P // to P as

follows.
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� WL.P / is obtained by reading the up steps of P from left to right, recording

V for every up step followed by an up step and H for every up step followed

by a down step (except for the final up step).

� Let p1; : : : ; pk be the left endpoints of the up steps of P which are followed

by an up step, ordered from left to right. We let WU .P / be such that the

distance between the vertical edges of WU .P / and WL.P / in row i equals

touchpi
.P / � 1, for 1 � i � k.

Note that this gives a map

�PLWPn;k;4 �! Ln;k;4;

which sends P to .WU .P /; WL.P //.

Example A.4. Let P 2 P12;3;4 be the Dyck path in Figure 15. Reading the up

steps of P from left to right (and ignoring the final up step), we get WL.P / D

V VHVHHHH . To find WU .P /, we let p1; p2; p3 denote the left endpoints

of the three up steps of P which are followed by an up step. (See Figure 16.)

Then shadowp1
.P / is the portion of the x-axis between the endpoints of P , and

touchp1
.P / D 3. We have shadowp2

.P / D shadowp3
.P /, and we can calculate

that touchp2
.P / D 5, touchp3

.P / D 4. (Note that touchp2
.P / D 1C touchp3

.P /,

since p3 contributes to touchp2
.P / but not to touchp3

.P /. Also, we point out that

the first down step of P which ends on the x-axis does not contribute to touchp2
.P /

or touchp3
.P /, since the entire step lies on the shadow.) Therefore WU .P / is such

that the distances between WU .P / and WL.P / in rows 1, 2, and 3 are, respectively,

3 � 1, 5 � 1, and 4� 1. This agrees with Figure 15.

p1
shadowp1

.P /

touchp1
.P / D 3

p2 p3

shadowp2
.P / D shadowp3

.P /

touchp2
.P / D 5

touchp3
.P / D 4

Figure 16. Calculating shadowpi
.P / and touchpi

.P / for the Dyck path P from Figure 15.
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Proposition A.5. The map �LPWLn;k;4 ! Pn;k;4 is a bijection with inverse �PL.

Proof. We can show that �PL ı�LP is the identity on Ln;k;4 by induction, using

the recursive nature of Definition A.2. The result then follows from the fact that

jLn;k;4j D Nn�3;kC1 D jPn;k;4j. (Alternatively, we can verify that �LP ı�PL is

the identity on Pn;k;4.) �

By Theorem 6.3, the .k; n/-BCFW cells are labeled by the˚-diagrams Dn;k;4.

Therefore the bijection �LP ı��1
LD
WDn;k;4 ! Pn;k;4 allows us to label the .k; n/-

BCFW cells by Pn;k;4.

A.2. From Dyck paths to domino bases. Recall the definition of an i-domino

from Definition 10.1.

Definition A.6. Given P 2 Pn;k;4, label the up steps of P by 1; : : : ; n � 3 from

left to right, and label each down step so that it has the same label as the next up

step. (We label the final down step by n � 2.) We match each up step of P to the

next down step at the same height. Let up1 < � � � < upk be the labels of the up

steps of P which are followed by an up step, and for i 2 Œk� let downi be the label

of the matching down step of the up step upi .

Now for i D 1; : : : ; k, we define the following dominoes in R
n. Let

d .i/ be a positive upi -domino, and let e.i/ be a downi -domino which has sign

.�1/j¹j 2Œk�Wupi <upj <downi ºj. If the up step upi of P begins on the x-axis, then we

let f .i/ be the n-domino .0; : : : ; 0; .�1/k�i/. Otherwise, take i 0 < i so that upi 0

labels the last up step of P before upi which finishes at the same height that upi

begins, and let f .i/ WD .�1/i�i 0�1d .i 0/. We set

v.i/ WD d .i/ C e.i/ C f .i/ 2 R
n:

We call any k-tuple of linearly independent vectors .v.1/; : : : ; v.k// which we can

obtain in this way a P -domino basis.

Conjecture A.7. Let S � Gr
�0
k;n

be a .k; n/-BCFW cell labeled by the Dyck path

P 2 Pn;k;4. Then any V 2 S has a P -domino basis.

Example A.8. Let P 2 P12;3;4 be the Dyck path from Figure 15. Then the edges

of P are labeled as follows:

1

2

3 4

4 4

5 6 6 7

7 7 8

8 8 9 9 10

:
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We see that

up1 D 1; up2 D 2; up3 D 4; down1 D 8; down2 D 4; down3 D 7:

Then according to Definition A.6, the P -domino bases .v.1/; v.2/; v.3// are pre-

cisely those given by the rows of the matrix

2

4

v.1/

v.2/

v.3/

3

5 D

2

4

1 2 3 4 5 6 7 8 9 10 11 12

˛ ˇ 0 0 0 0 0 
 ı 0 0 1

˛ ˇ C " � � � 0 0 0 0 0 0 0

�˛ �ˇ 0 � � 0 � � 0 0 0 0

3

5; (A.1)

where ˛; ˇ; 
; ı; "; �; �; �; �; �; �; � > 0. Let us explain in detail how the third

row, v.3/, is obtained. First, d .3/ is a positive 4-domino, which we take to

be .: : : ; 0; �; �; 0; : : : /. Now, e.3/ is a 7-domino, and is positive since none

of the elements of ¹1; 2; 4º are strictly between 4 and 7. We take e.3/ to be

.: : : ; 0; �; �; 0; : : : /. Finally, the last up step of P before up3 which finishes at

the same height that up3 begins is up1. Therefore f .3/ D .�1/3�1�1d .1/, and we

have already taken d .1/ D .˛; ˇ; 0; : : : /.

We can check that every element of the BCFW cell in Gr
�0
3;12 labeled by P can

be represented by a unique matrix of the form (A.1), by taking the ˚-diagram in

Figure 9, performing L-moves to obtain a L-diagram, constructing the network

parameterization matrix from Theorem 2.10, and carrying out appropriate row

operations. This verifies Conjecture A.7 in this particular case. It seems likely

that the same method can be used to prove Conjecture A.7 in general. To do

so, one would need to figure out a systematic way to perform the required L-

moves and row operations. We also observe that constraining all parameters to be

positive is not sufficient for the element of Gr3;12 represented by (A.1) to lie in the

corresponding BCFW cell; we also have the nontrivial inequality �� > ��.

We note in the cases k D 1 and k D 2, Conjecture A.7 follows from the same

arguments used to establish Lemma 9.1 and Theorem 10.3. When k D 2, the P -

domino basis vectors v.1/, v.2/ of an element V of a BCFW cell are the rows of the

corresponding matrix in Figure 14, up to rescaling the rows by positive constants.

Remark A.9. If we take P 2 Pn;k;4 and delete the 2.n � 3 � k/ edges incident

to a peak, we obtain a Dyck path P 0 with 2k steps. When k D 2, P 0 equals

either or , depending on whether the BCFW cell of P is orthodox

or deviant, respectively. In general, it may make sense to divide the .k; n/-BCFW

cells into Ck D
1

kC1

�

2k
k

�

classes, based on P 0.
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