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Decompositions of amplituhedra
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Abstract. The (tree) amplituhedron A, i, is the image in the Grassmannian Grg x4,
of the totally nonnegative Grassmannian Grf’(:l, under a (map induced by a) linear map
which is totally positive. It was introduced by Arkani-Hamed and Trnka in 2013 in order
to give a geometric basis for the computation of scattering amplitudes in planar N = 4
supersymmetric Yang—Mills theory. In the case relevant to physics (m = 4), there is
a collection of recursively-defined 4k-dimensional BCFW cells in Gr,??l, whose images
conjecturally “triangulate” the amplituhedron—that is, their images are disjoint and cover
adense subset of A, k4. In this paper, we approach this problem by first giving an explicit
(as opposed to recursive) description of the BCFW cells. We then develop sign-variational
tools which we use to prove that when k = 2, the images of these cells are disjointin A,, 4.
We also conjecture that for arbitrary even m, there is a decomposition of the amplituhedron
Ay k.m involving precisely M (k, n—k—m, %) top-dimensional cells (of dimension km),
where M(a, b, c) is the number of plane partitions contained in an @ x b x ¢ box. This
agrees with the fact that when m = 4, the number of BCFW cells is the Narayana number
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Mathematics Subject Classification (2010). Primary: 05Exx; Secondary: 05A19, 14M15,
15B48, 81T60.

Keywords. Amplituhedron, scattering amplitude, totally nonnegative Grassmannian,
BCFW recursion, Narayana number, plane partition.



304 S. N. Karp, L. K. Williams, and Y. X. Zhang

Contents
1 Introduction . . . . . ... ... ... 304
2 Background on the totally nonnegative Grassmannian . . . . . .. . . 307
3 Background on sign variation . . . ... ... ... L. 313
4 Warmup: the m = 2 amplituhedron . . . . . ... ... ........ 315
5 Binary trees and BCFW plabic graphs . . . . . .. ... ... ... .. 322
6 Pairs of noncrossing lattice paths and BCFW J-diagrams . . . . . . . 327
7 From binary trees to pairs of lattice paths . . . . . .. ... ... ... 330
8 Number of cells in a decomposition of A,  ,, for arbitrary evenm . . 337
9 Disjointness for BCFW cells whenk =1 . . . . ... ... ... ... 342
10 Domino bases for BCFW cellswhenk =2 . . . . .. ... ... ... 344
11 Disjointness for BCFW cells whenk =2 . . . . ... ... ... ... 348
12 A non-triangulationform =3 . . . . .. ... ... 355
A Dyck paths and BCFW domino bases (with Hugh Thomas) . . . . .. 356
References. . . . . . . . . . . 361

1. Introduction

The totally nonnegative Grassmannian Gr,f’?l is the subset of the real Grassman-
nian Gry_, where all Pliicker coordinates are nonnegative. Following seminal work
of Lusztig [22], as well as by Fomin and Zelevinsky [11], Postnikov initiated the
combinatorial study of Gr,%’?i and its cell decomposition [26]. In particular, Post-
nikov showed how the cells in the cell decomposition are naturally indexed by
combinatorial objects including decorated permutations, 1-diagrams, and equiv-
alence classes of plabic graphs. Since then the totally nonnegative Grassmannian
has found applications in diverse contexts such as mirror symmetry [24], soliton
solutions to the KP equation [20], and scattering amplitudes for planar N = 4
supersymmetric Yang—Mills theory [1].

Building on [1], Arkani-Hamed and Trnka [3] recently introduced a beautiful
new mathematical object called the (tree) amplituhedron, which is the image of
the totally nonnegative Grassmannian under a particular map.

Definition 1.1. For a < b, define MatZ’% as the set of real a x b matrices whose
a x a minors are all positive. Let Z € Mat;f:m,n, where m > 0 is fixed with
k + m < n. Then Z induces a map

Z: Gri(; —> Grk,k+m
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defined by
Z((v1,....06) = (Z(v1). . ... Z(vk)).

where (vq, ..., vg) is an element of Grf(:l written as the span of k basis vectors.!
The (tree) amplituhedron A, . ,(Z) is defined to be the image Z (Gr,%?l) inside
Gry k+m-

In special cases the amplituhedron recovers familiar objects. If Z is a square
matrix, i.e. k + m = n, then A, x ,»(Z) is isomorphic to the totally nonnegative
Grassmannian. If k = 1, then it follows from [32] that A, 1 ,(Z) is a cyclic
polytope in projective space P™.

While the amplituhedron A,k ,,(Z) is an interesting mathematical object
for any m, the case relevant to physics is m = 4. In this case, it provides a
geometric basis for the computation of scattering amplitudes in planar N = 4
supersymmetric Yang—Mills theory. These amplitudes are complex numbers
related to the probability of observing a certain scattering process of n particles. It
is expected that the tree-level (i.e. leading-order) term of such amplitudes equals
a canonical differential form on the amplituhedron A, x 4(Z). This statement is
closely related to the following conjecture of Arkani-Hamed and Trnka [3].

Conjecture 1.2. Let Z € Mat;j)_ 4> andlet Cy g 4 be the collection of BCFW cells
in Gri?l. Then the images under Z of the cells Cnk,a “triangulate” the m = 4
amplituhedron, i.e. they are pairwise disjoint, and together they cover a dense
subset of the amplituhedron A, x 4(Z).

More specifically, the BCFW recurrence [7, 8], of Britto, Cachazo, Feng,
and Witten, provides one way to compute scattering amplitudes. Translated into
the Grassmannian formulation of [1], the terms in the BCFW recurrence can be
identified with a collection of 4k-dimensional cells in Gr,f’?l which we refer to as
the BCFW cells C,, k 4. If the images of these BCFW cells in A,, x 4(Z) fit together
in a nice way, then we can combine the canonical form coming from each term to
obtain the canonical form on A, x 4(Z).

In this paper, we make a first step towards understanding Conjecture 1.2.
The BCFW cells are defined recursively in terms of plabic graphs (see §5.1),
and moreover there is a ‘shift by 2’ applied at the end of the recursion (see
Definition 5.3). Hence proving anything about how the images of the BCFW
cells fit together is not at all straightforward from the definitions. To approach

1 The fact that Z has positive maximal minors ensures that Z is well defined [3]. See [15,
Theorem 4.2] for a characterization of when a matrix Z gives rise to a well-defined map Z.



306 S. N. Karp, L. K. Williams, and Y. X. Zhang

Conjecture 1.2, we start by giving an explicit, non-recursive description of the
BCFW cells. Namely, we index the BCFW cells in Grigl by pairs of noncrossing
lattice paths inside a k x (n — k — 4) rectangle, and associate a I-diagram to
each pair of lattice paths, from which we can read off the corresponding cell (see
Theorem 6.3, proved in §7). We then use these J-diagrams to understand the case
k = 2: we derive an elegant description of basis vectors for elements of each
BCFW cell in terms of ‘dominoes’ (Theorem 10.3), and show that the images of
distinct BCFW cells are disjoint in the amplituhedron A, » 4(Z) (Theorem 11.1).
The proof uses classical results about sign variation, along with some new tools
particularly suited to our problem.

We expect that our techniques may be helpful in understanding the case of
arbitrary k, and we make a step in this direction in Appendix A, which is joint
with Hugh Thomas. We use a bijection between BCFW cells and Dyck paths to
associate a conjectural ‘domino basis’ to each element of a BCFW cell (Conjec-
ture A.7). We leave the proof of the conjecture and the analysis of how general
BCFW cells fit together to future work.

As a warmup to our study of BCFW cells in the case m = 4, in §4 we develop
an analogous story in the case m = 2. Namely, we give a BCFW-style recursion
on plabic graphs, describe the resulting cells of Gr,i(:l using lattice paths and
domino bases, and prove disjointness of the images of these cells inside the m = 2
amplituhedron A, x »(Z).

It was observed (e.g. in [1]) that the number of BCFW cells |C, x 4| is the
Narayana number — (Z:) ("’)- Motivated by this fact, as well as known results
about decompositions of amplituhedra when m = 2 or k = 1, we conjecture that
when m is even, there is a decomposition of A, ¢ ,(Z) which involves precisely
M(k,n —k —m, %) top-dimensional cells (see Conjecture 8.1). Here M(a, b, ¢)
denotes the number of collections of ¢ noncrossing lattice paths inside an a x b
rectangle, or equivalently, the number of plane partitions which fit inside an
a x b x ¢ box. See §8.1 for other combinatorial interpretations of M(a, b, c),
as well as Remark 8.2 for a possible extension of Conjecture 8.1 to odd m.

Acknowledgements. We are grateful to Nima Arkani-Hamed, Yuntao Bai, Jacob
Bourjaily, Greg Kuperberg, Hugh Thomas, and Jaroslav Trnka for helpful con-
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Science Foundation.
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2. Background on the totally nonnegative Grassmannian

The (real) Grassmannian Gry , (for 0 < k < n) is the space of all k-dimensional
subspaces of R”. An element of Gry , can be viewed as a k x n matrix of rank k
modulo invertible row operations, whose rows give a basis for the k-dimensional
subspace.

Let [n] denote {1,...,n}, and ([Z]) denote the set of all k-element subsets of
[n]. Given V € Gry, represented by a k x n matrix A, for [ € ([Z]) we let A7 (V)
be the k x k minor of A using the columns /. The A7 (V) do not depend on our
choice of matrix A (up to simultaneous rescaling by a nonzero constant), and are
called the Pliicker coordinates of V.

Definition 2.1 ([26, Section 3]). We say that V' € Gry, is fotally nonnegative if
A7(V) = 0forall I € (1), and totally positive if A;(V) > 0forall I € (). The
set of all totally nonnegative V' e Gry, is the totally nonnegative Grassmannian
Gr,i?l, and the set of all totally positive V is the totally positive Grassmannian

G 5. For M € (), let Sy be the setof V e Gr', with the prescribed collection
of Pliicker coordinates strictly positive (i.e. A;j(V) > 0 for all / € M), and the
remaining Pliicker coordinates equal to zero (i.e. Ay (V) = Oforall J € ([Z]) \M).
If Spr # 0, we call M a positroid and Sy its positroid cell.

Each positroid cell Sy, is indeed a topological cell [26, Theorem 6.5], and
moreover, the positroid cells of Gr,i?l glue together to form a CW complex [27].

2.1. Combinatorial objects parameterizing cells. In [26], Postnikov defined
several families of combinatorial objects which are in bijection with cells of the to-
tally nonnegative Grassmannian, including decorated permutations, 1-diagrams,
and equivalence classes of reduced plabic graphs. In this section, we introduce
these objects, and give bijections between them. This will give us a canonical way
to label each positroid by a decorated permutation, a JI-diagram, and an equiva-
lence class of plabic graphs.



308 S. N. Karp, L. K. Williams, and Y. X. Zhang

Definition 2.2. A decorated permutation of [n] is a bijection : [n] — [n] whose
fixed points are each colored either black or white. We denote a black fixed point
i by (i) = i, and a white fixed point i by 7(i) = i. An anti-excedance of the
decorated permutation 7 is an element i € [n] such that either 7~ !(i) > i or
(i) =1i.

Postnikov showed that the positroids for Gr,i(; are indexed by decorated per-
mutations of [n] with exactly k anti-excedances [26, Section 16].

Now we introduce certain fillings of Young diagrams with the symbols 0
and +, called @-diagrams, and associate a decorated permutation to each such di-
agram. Postnikov [26, Section 20] showed that a special subset of these diagrams,
called d-diagrams, are in bijection with decorated permutations. We introduce
the more general @-diagrams here, since in §5 we will use a distinguished subset
of them to index the BCFW cells of Gri%.

Definition 2.3. Fix 0 < k < n. Given a partition A, we let Y, denote the Young
diagram of A. A &-diagram of type (k,n) is a filling D of a Young diagram Y,
fitting inside a k x (n — k) rectangle with the symbols 0 and + (such that each box
of Y is filled with exactly one symbol). We call A the shape of D. (See Figure 1.)

We associate a decorated permutation 7 of [n] to D as follows (see [26,
Section 19]).

1. Replace each + in D with an elbow \\, and each 0 in D with a cross +

2. View the southeast border of Y} as a lattice path of # steps from the northeast
corner to the southwest corner of the k x (n —k) rectangle, and label its edges
by l,...,n.

3. Label each edge of the northwest border of Y, with the label of its opposite
edge on the southeast border. This gives a pipe dream P associated to D.

4. Read off the decorated permutation 7 from P by following the ‘pipes’ from
the southeast border to the northwest border Y, . If the pipe originating at i
ends at j, we set (i) := j. If (i) = i, then either i labels two horizontal
edges or two vertical edges of P. In the former case, we set 7(i) := i, and
in the latter case, we set (i) 1= 1.

Figure 1 illustrates this procedure. We denote the pipe dream P by P (D), and the
decorated permutation 7 by 7 p. Note that the anti-excedances of 7 correspond to
the vertical steps of the southeast border of Y, so 7 has exactly k anti-excedances.
We denote the corresponding positroid cell of Grigl (see [26, Section 16], and also
Theorem 2.10) by S, or Sp.
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Figure 1. A I-diagram D of type (4, 10) with shape A = (5,5, 3,2), and its corresponding
pipe dream P with decorated permutation 7p = (1,5,4,9,7,6,2,10,3,8).

Definition 2.4. Let D be a ®-diagram, and P its associated pipe dream from
Definition 2.3.

(i) We say that D is reduced if no two pipes of P cross twice.

(ii) Wesay that D is a I-diagram (or Le-diagram) if it avoids the .I-configuration,
i.e. it has no 0 with both a + above it in the same column and a + to its left in
the same row. Equivalently (see [26, Lemma 19.3]), any pair of pipes which
cross do not later touch or cross, when read from southeast to northwest.
(Two pipes cross if they form a cross +, and fouch if they form an elbow
\\.) So, d-diagrams are reduced.

Postnikov showed that I-diagrams correspond to decorated permutations. Lam
and Williams later showed how to transform any reduced @-diagram into a I-di-
agram by using certain moves. We state these results.

Lemma 2.5 ([26, Corollary 20.1 and Theorem 6.5]). The map D +— mp from
Definition 2.3 is a bijection from the set of 1-diagrams of type (k,n) to the set of
decorated permutations of [n] with k anti-excedances. Therefore, 1-diagrams of
type (k,n) index the cells of Gr,f’?t. The dimension of the positroid cell Sp indexed
by D is the number of +’s in D.

Lemma 2.6 ([21]). Let D be a ®-diagram. Then D is reduced if and only if D
can be transformed into a I-diagram D’ by a sequence of I-moves:

Dol e
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In this picture, the four boxes on each side denote the corners of a rectangle
whose height and width are both at least 2, and whose other boxes (aside from
the corners) all contain 0’s. I-moves preserve the decorated permutation of a
@-diagram. Hence D indexes the cell Sp: with decorated permutation tp = wpr,
and the dimension of Sp' is the number of +’s in D.

For example, here is a sequence of J-moves which transforms a reduced
@-diagram into a I-diagram:

+lo][+]+|0]+ ofo[+|+]0]+|
—>
+lolofol+ +o[+]0
o[ofof[+]o]+]
—> .
+ |+

Proof. We explain how to deduce this result from the work of Lam and Williams.
They showed [21, Section 5] that any @-diagram can be transformed into a -
diagram using the JI-moves above, as well as the uncrossing moves

N

Note that a I-move in the statement of the lemma takes a reduced @-diagram to

a reduced @-diagram, and an uncrossing move above can only be performed on a
non-reduced @-diagram. These observations imply the result. O

Definition 2.7. A plabic graph? is an undirected planar graph G drawn inside a
disk (considered modulo homotopy) with n boundary vertices on the boundary of
the disk, labeled 1,...,n in clockwise order, as well as some internal vertices.
Each boundary vertex is incident to a single edge, and each internal vertex is
colored either black or white. If a boundary vertex is incident to a leaf (a vertex
of degree 1), we refer to that leaf as a lollipop.

The following construction of Postnikov associates a hook diagram, network,
and plabic graph to any I-diagram.

2 “Plabic” stands for planar bi-colored.
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Definition 2.8 ([26, Sections 6 and 20]). Let D be a -diagram of type (k, n).
We define the hook diagram H (D) of D, the network N(D) of D, and the plabic
graph G(D) of D. (See Figure 3 for examples.)

To construct H(D), we delete the 0’s of D, and replace each + with a vertex.
From each vertex we construct a hook which goes east and south, to the border
of the Young diagram of D. We label the edges of the southeast border of D by
1,...,n from northeast to southwest.

To construct N(D), we direct the edges of H(D) west and south. Let E be
the set of horizontal edges of N(D). To each such edge ¢ € E, we associate a
variable a..

To construct G(D) from H(D), we place boundary vertices 1,...,n along
the southeast border. Then we replace the local region around each internal
vertex as in Figure 2, and add a black (respectively, white) lollipop for each black
(respectively, white) fixed point of the decorated permutation 7p.

S

Figure 2. Local substitutions for going from the hook diagram H (D) to the plabic graph
G(D).

More generally, each J-diagram D is associated with a family of reduced
plabic graphs consisting of G(D) together with other plabic graphs which can
be obtained from G (D) by certain moves; see [26, Section 12].

From the plabic graph constructed in Definition 2.8 (and more generally from a
reduced plabic graph G), we can read off the corresponding decorated permutation
g as follows.
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) 1 as ai ’ 1
ay de ds dg 43

+—3 <=3
| !
6 5 4 6 5 4

3 7 o idslq 7
10 9 10 9

(a) The hook diagram H (D). (b) The network N (D).

10 9
(c) The plabic graph G(D).

Figure 3. The hook diagram, network, and plabic graph associated to the I-diagram D
from Figure 1.

Definition 2.9. Let G be a reduced plabic graph as above with boundary vertices
1,...,n. For each boundary vertex i € [n], we follow a path along the edges
of G starting at i, turning (maximally) right at every internal black vertex, and
(maximally) left at every internal white vertex. This path ends at some boundary
vertex 7 (i). By [26, Section 13], the fact that G is reduced implies that each fixed
point of 7 is attached to a lollipop; we color each fixed point by the color of its
lollipop. In this way we obtain the decorated permutation tg = w of G. We say
that G is of type (k,n), where k is the number of anti-excedances of 7g. By [26,
Definition 11.5],3 we have

k = #edges — #black vertices — Z(deg(v) —1). 2.1)

white vertices v

3 There is a typo in Postnikov’s formula: k + (n — k) should read k — (n — k). Our formula
looks different than his, but is equivalent.
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We invite the reader to verify that the decorated permutation of the plabic
graph G of Figure 3 is ng = (1,5.4,9,7,6,2,10,3,8). By (2.1), we calculate
k=21-5-12=4.

We now explain how to parameterize elements of the cell Sp associated to a
J-diagram D from its network N (D).

Theorem 2.10 ([26, Section 6]). Let D be a A-diagram of type (k,n), with
associated cell Sp C Gri(; and network N(D) from Definition 2.8. Let E denote
the set of horizontal edges of N(D). We obtain a parameterization RE, — Sp of
Sp, as follows. Let s1 < --- < sy be the labels of the vertical edges of the southeast
border of N(D). Also, to any directed path p of N(D), we define its weight w), to
be the product of the edge variables a, over all horizontal edges e in p. We let A
be the k x n matrix with rows indexed by {s1, ..., sx} whose (s;, j)-entry equals

(_1)|{i/e[k]:si <sir<j}l Z wp.,
pisi—>J

where the sum is over all directed paths p from s; to j. Then the map sending
(de)ecE € Rfo to the element of Gri‘; represented by A is a homeomorphism
fromRE to Sp.

For example, the network in Figure 3 gives the parameterization

1 2 3 4 5 6 7
2 01 0 O —di 0 aias
3 0 0 1 as azas 0 —azasas
6 0O 0 0 O 0 1 0
8 00 0 O 0 0 0
0 —ay(az +asas) —ai(az + asag)(az + ag)
0 asdadsde asasasas(az + as)
0 0 0
1 asg agdog
8 9 10

of Sp € Grf’qo, where D is the I-diagram in Figure 1.

3. Background on sign variation

We provide some background on sign variation, and state Lemma 3.4, which will
be useful later for proving that two cells have disjoint image in the amplituhedron.
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Definition 3.1. A sign vector is a vector with entries in {0, +, —}. For a vector
v € R”*, we let sign(v) € {0, 4+, —}" be the sign vector naturally associated to v.
For example, sign(1, 0, —4,2) = (4,0, —, +).

Definition 3.2. Given v € R”, we let var(v) be the number of times v changes
sign, when viewed as a sequence of » numbers and ignoring any zeros. Also let

var(v) := max{var(w): w € R" such that w; = v; for all i € [r] with v; # 0},

i.e. var(v) is the maximum number of times v changes sign after we choose a sign
for each zero coordinate. Note that we can apply var and var to sign vectors. For
example, var(+,0, 0, +,—) = 1 and var(+,0,0, 4+, —) = 3.

The following result of Gantmakher and Krein characterizes total positivity in
Gry , using sign variation.

Theorem 3.3 ([12, Theorems V.3, V.7, V.1, V.6]). Let V € Grg .

V eGrz, < var(v) <k —1forallveV\{0}
— var(w) > k for all w € V*+\ {0}.

V € Grgy < var(v) <k — 1 forallv € V \ {0}

N (i)
< var(w) >k forall w € V- \ {0}.
The following lemma gives a sign-variational characterization for when two
elements of Gr,f’?l correspond to the same point of the amplituhedron A, s , (Z).
We will apply it repeatedly in §11 to show that the images of the BCFW cells are
disjoint in the k = 2, m = 4 amplituhedron A, » 4(Z).
Lemma 3.4. Let Z < Mat,;gm’n, where k,m,n > 0 satisfy k +m < n, and
Vv,V e Gr,i?l. Then Z(V) = Z(V') if and only if for all v € V, there exists a
unique v' € V' such that Z(v) = Z(v’). We call v’ the matching vector for v.
Note that by Theorem 3.3(ii), we either have v = v’ or var(v —v') > k + m.

Proof. (=) Suppose that Z(V) = Z(V'), i.e. that {Z(v):v € V} = {Z():
v’ € V’}. Then for any v € V, there exists v/ € V’ with Z(v) = Z(v’). Since
dim(Z (V")) = k (see Definition 1.1), we have ker(Z) NV’ = {0}, which implies
that v’ is unique.

(<) Suppose that for all v € V, there exists a unique v’ € V’ such that
Z(v) = Z(v'). Then Z(V) € Z(V"), and since dim(Z(V)) = dim(Z(V")) = k,
we get Z(V) = Z(V"). O
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4. Warmup: the m = 2 amplituhedron

In this section we focus on the m = 2 amplituhedron A, x »(Z), as a warmup to
our study of the m = 4 amplituhedron in the following sections. In analogy to the
m = 4 case, the outline of this section is as follows.

1. In §4.1, we give a recurrence on plabic graphs, which (after a ‘shift by 1°)
produces a collection €, x » of 2k-dimensional cells of Gr,f’?l, whose images
should triangulate A, x »(Z). (This is analogous to the m = 4 BCFW
recursion; see §5.)

2. In §4.2, we describe the -diagrams of these 2k-dimensional cells, indexed
by lattice paths inside a k x (n — k — 2) rectangle. (This is analogous to our
description for m = 4 in terms of pairs of noncrossing lattice paths inside a
k x (n — k — 4) rectangle; see §6 and §7.)

3. In §4.3, we find a nice basis of any subspace V' coming from our cells C,  ».
(This is analogous to our ‘domino bases’ for m = 4; see §10 for the case
k = 2, and Conjecture A.7 for a conjectural generalization to all k.)

4. In §4.4, we prove that the images of the cells C,, x » in A, x »(Z) are disjoint,
using sign variation arguments. (In §11, we will prove disjointness for m = 4
BCFW cells when k = 2, using more intricate arguments along the same
lines.)

While we will not need the results of this section to handle the m = 4 case,
the ideas and techniques used here will hopefully give the reader a flavor of our
arguments for m = 4. We will also cite the m = 2 case as evidence for our
conjecture in §8.

Remark 4.1. Arkani-Hamed, Thomas, and Trnka [2, Section 7] consider the same
collection of cells C, k2, up to a cyclic shift. They define their cells in terms of
bases as in item 3 above, and do not consider a recurrence on plabic graphs or
the I-diagrams. They show both that the images of these cells in A, x »(Z) are
disjoint, and that their union covers a dense subset of A, x »(Z) (we will not prove
the latter fact here). We remark that their arguments also employ sign variation.

4.1. A BCFW-style recursion for m = 2. We start by giving a recursion on
plabic graphs which produces, for each pair (k,n) with 1 < k < n—1, acollection
Ch k.2 of 2k-dimensional positroid cells of Gr,f’?l. This recursion is an analogue of
the well-known BCFW recursion, which produces the BCFW cells C,, x 4 for the
m = 4 amplituhedron (see §5).
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Definition 4.2. We define a local operation on plabic graphs which we call
splitting. Let G be a plabic graph of type (k, n) (see Definition 2.9), and i € [n] a
boundary vertex incident to a unique edge e. We split e at i by locally replacing
e by a vertex v with three incident edges as follows, while leaving the rest of the
graph unchanged:

s . @
i i+1 i

(The color of v may be either black or white.) This produces a plabic graph G’
of type (k’,n + 1), whose boundary vertices are labeled by [n + 1], so that i and
i + 1 are labeled as above (i.e. labels 1, ...,i — 1 from G remain unchanged, and
labels i + 1,...,n from G get increased by 1). Note that by (2.1), k¥’ = k if v is
white, while k¥’ = k + 1 if v is black.

Definition 4.3 (Recursion for cells when m = 2). For positive integers k and n
such that 1 <k <n—1, we recursively define a set G, x » of plabic graphs of type
(k,n) as follows.*

(1) If n =2and k = 1, then ?;'n,k,z contains a unique element, the plabic graph

O

(2) Forn > 3, §n,k,2 is the set of all plabic graphs obtained either by splitting a
plabic graph in G, _; x> at n — 1 with v white, or by splitting a plabic graph
in §,—1 k—1,2 atn — 1 with v black. (See Figure 4.)

Alternatively, the plabic graphs in §n,k,2 are precisely those shown in Figure 5,
where k —1 of the vertices vy, . . ., v,—> are black, and the rest are white. Therefore

|§n,k,2| = (2:?)

4In our notation G n.k.2, the subscript 2 is to remind us that these graphs correspond to the
m = 2 amplituhedron, and the tilde is to remind us that these graphs do not directly label the
cells €, k.. Rather, we must first ‘shift by 1°; see Definition 4.4.
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n—2 2 1
k=1
3 1 3 1
n=3
2 2
4 1 4 1 4 1 4 1
n=4
3 2 3 2 3 2 3 2
k=1 k=2 k=2 k=3

Figure 4. The first two steps of the m = 2 recursion from Definition 4.3, giving the graphs
Sn.k2forn <4

Figure 5. An arbitrary element of §n, k.2, Where precisely k —1 of the vertices vy, ..., v,—2
are black.
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Definition 4.4. Let k,n > O satisfy k <n—2,andc¢, := (n n—1 --- 2 1)
be the long cycle in the symmetric group on [1]. We define a collection IT,, x » of
decorated permutations of type (k, n) by

My ko i ={can: G € Gpk+1,2)

where above we color any fixed points of ¢, g black. (Note that if G is a plabic
graph coming from the recursion in Definition 4.3, then 7 has no fixed points, so
indeed multiplying g by ¢, on the left decreases the number of anti-excedances
by 1.) We let C, x.» denote the collection of cells S, C Gr,i?l corresponding to
permutations 7 € I1, ¢ ».

4.2. I-diagrams for m = 2

Definition 4.5. Let D, x » denote the set of all I-diagrams D of type (k, n) such
that

e cach of the k rows of D contains at least 2 boxes;

o the leftmost and rightmost entry in each row of D is 4+, and all other entries
are 0.

(See Figure 6.) In particular, D has precisely 2k +’s, and hence indexes a cell Sp
of Gr,i(:l of dimension 2k. Also note that the elements of D, x, are naturally
indexed by lattice paths inside a k x (n — k — 2) rectangle;> the lattice path
corresponding to D is the southeast border of the Young diagram obtained by
deleting the two leftmost columns of D.

We can verify that in fact D, x , indexes the cells C, ¢ », via the following
bijection.

Proposition 4.6. Given G € §n,k+1,2 as in Figure 5, let W be the lattice path
inside a k x (n — k — 2) rectangle given by reading the vertices vy, ..., Vn—2 of G,
moving west if v; is white and south if v; is black. Let D € Dy, i » be the 1-diagram
corresponding to W, as in Definition 4.5. (See Figure 6.) Then

D = Cu TG,

where c, := (n n—1 --- 2 1), np is defined in Definition 2.3, and all fixed points
of cpmtg are colored black. In particular, D,  » indexes the cells C,, i ».

5 That is, lattice paths moving from northeast to southwest by unit steps west and south; see
Definition 6.1.
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We leave the proof as an exercise to the reader, as a warmup to Theorem 7.4.

Vg Vg VU7 Vg VU5 Vg4 VU3 VUp V1

=]

0fof+]

()
+

4|+ ]+
+lolo|o

D

Figure 6. A plabic graph G € 511.5.2, the corresponding lattice path W inside a
4 x 5 rectangle, and the corresponding I-diagram D € Djj;a>. We have np =
(2,11,3,4,6,1,8,5,10,7,9) = c117G-

Remark 4.7. Let D, x ; be a set of I-diagrams of type (k,n) in bijection with
Dy+1,k,2, where the element of D,, ;. ; corresponding to D € D, 11 k» is formed
by deleting the leftmost column of D. For example,

+]o0 o[ofo]+]

19 * 6911,4,2

+10|+

+ |+
0 ofofo[+]
g++ € Dio4,1 -
Lt
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Let C, .1 be the cells of Gr,i(:l indexed by D, x 1. In[16], two of us showed that the
images of C, ,; inside the m = 1 amplituhedron A,, x ;(Z) induce a triangulation
(in fact, a cell decomposition) of A, x.1(Z). In fact, one of our motivations for
studying this cell decomposition came from discovering the m = 2 BCFW-
like recursion and the corresponding diagrams D, x ». In light of the bijection
Dy+1.k2 = Dn k.1, itis natural to ask whether the diagrams corresponding to the
BCFW cells for m = 4 can be similarly truncated to give diagrams inducing a
triangulation of the m = 3 amplituhedron. In §12 we show that this fails, at least
for the most obvious such truncation.

4.3. Domino bases for m = 2. We now describe a nice basis of any subspace
coming from a cell of €, x,. We remark that this is the same basis appearing
in [2, (7.5)], up to a cyclic shift (which preserves the positivity of Grg , and Z).
Therefore, our collection of cells €, x , is the same as Arkani-Hamed, Thomas,
and Trnka’s up to a cyclic shift.

Definition 4.8. We say that d € R” \ {0} is a domino if either d has exactly two
nonzero components, which are adjacent and have the same sign, or d has exactly
one nonzero component, which is component 7.

For example, the vectors (0,0, 0, 6, 1,0) and (0,0, 0,0, 0, —2) in R® are domi-
noes.

Lemma 4.9. Given D € D, j », label the edges of the southeast border of D by
1,...,n from northeast to southwest, and let s; < --- < sy be the labels of the
vertical steps. Also let V € Gryg,. Then V € Sp if and only if V has a basis
(O v®) such that for all i € [k],

° v‘/(.i) =O0forall j # s;,si + 1,n and

° Us(f), US)JFI, and (—1)*=v{) are all positive.
Note that such a vector v® is a sum of two dominoes.

Proof. Let A be the k x n matrix from Theorem 2.10, which represents a general
element of Sp. Fori = 1,...,k — 1, we perform the following row operations on
A to obtain a new k x n matrix A’, which represents the same element of Gr,%’?i
that A does:

e if5;11 > s; + 1, we leave row s; unchanged;

o ifs;41 = s; + 1, we add the appropriate scalar multiple of row s; 4+ to row s;
in order to make the (s;, j)-entry zero, where j > s; is minimum such that

J FE Sy, Sk
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For example, for the I-diagram

+]0[+ L

[ as

D=|-4 0 | with associated network

+ |+ gt

6 5
the parameterization matrices A and A’ are
1 2 3 4 5 6
1[ 1 0 —a; 0 O aj(az+aq)
A=2[ 0 1 a3 0 O —ds3dy
4 0 0 0 1 as dsde
1 2 3 4 5 6

1 1 aj/azs 0 0 0 ajar
wA =20 1 as 0 0 —asaq
40 0 0 1 as asae

Given V € Sp, we can specialize the edge variables to positive real numbers
so that A’ represents V. Then we may take vV, ..., v® to be the rows of A’.
Conversely, given any vV, ..., v®) as in the statement of the lemma, we can find
positive values of the edge variables so that the rows of 4’ are vV, ... v®) after
we scale row s; by vg). O

4.4. Disjointness for m = 2. We show that the images of the cells C, x , inside
the m = 2 amplituhedron A, x »(Z) are disjoint. This is a warmup to §11, where
we prove disjointness for m = 4 when k = 2.

Lemma 4.10. Ifv € R” is a sum of k > 1 dominoes, then var(v) < k — 1.

We leave the proof as an exercise to the reader. We will provide a more general
version of Lemma 4.10 in Lemma 11.3.

Proposition4.11. Let Z € Mat,;gz’n. Then Z maps the cells €, j » of Grzzf,), injec-
tively into the amplituhedron A, x »(Z), and their images are pairwise disjoint.

Proof. We must show that given D, D’ € D, ., and V € Sp, V' € Sp’ such that
Z(V)=Z(V'),wehave V = V' Let {v®, ... v®)} be the distinguished basis
of V from Lemma 4.9.
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Claim. For any i € [k] and v’ € V', we have var(w® —v’) < k + 1.

Proof of Claim. Let {w™, ..., w®)} be the distinguished basis of ¥’ from

Lemma 4.9, and write v/ = Zf;lciw(i) for some cq,...,cx € R. Then
v® — o = v® — Y% ;@ The right-hand side can be written as a sum
of k + 2 or fewer dominoes, so var(v®) —v’) < k + 1 by Lemma 4.10. O

For i € [k], let v® € V' be the matching vector for v¥), as in Lemma 3.4.
Then by the claim and Lemma 3.4, we have v = v/® ie v® e V’. Hence
VCVi,andsoV =V O

5. Binary trees and BCFW plabic graphs

In the case m = 4 (which is the case of interest in physics), there is a distinguished
collection of 4k-dimensional cells of Gr,i(; called BCFW cells. These cells are
named after Britto, Cachazo, Feng, and Witten, who gave recursion relations for
computing scattering amplitudes [7, 8]. These relations were translated in [1]
into a recursion on plabic graphs, which we define in §5.1. The resulting graphs
are easily seen to be in bijection with complete binary trees (well-known Catalan
objects), as we explain in §5.2. However, these plabic graphs do not literally label
the BCFW cells in the sense of Definition 2.9; rather, we must perform a ‘shift
by 2’ to the decorated permutation corresponding to the graph, which makes it
difficult to explicitly describe the BCFW cells from the BCFW recursion.® In
§6, we will use a different family of Catalan objects, namely pairs of noncrossing
lattice paths inside a rectangle, to explicitly describe the BCFW cells in terms of
@-diagrams.

5.1. The recursive description of BCFW cells from plabic graphs. The
BCFW recursion [7, 8] is a recursive operation that produces, for each pair (k, n)
with 0 < k < n —4, aset C, x4 of 4k-dimensional positroid cells of Grig, called
the (k,n)-BCFW cells.” This operation is described in [1, Section 17.2/16.28].

¢Bai and He [4, (3.3)] found a recursion on the plabic graphs which do literally index the
BCFW cells. However, their recursion is more complicated and does not obviously correspond
to a family of Catalan objects, so we prefer to work with the original version of the recursion.

7 In fact, there are many different ways to carry out the BCFW recursion, which each lead
to a possibly different set of positroid cells of Gr,??l. For example one can cyclically permute all
boundary labels of the plabic graphs one obtains in the recursion. In this paper we fix a canonical
way to perform the recursion.

8 These two section numbers refer, respectively, to the published book and the arXiv preprint.
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Definition 5.1. We define a local operation on plabic graphs which we call
blowing up. Let G be a plabic graph of type (k, n) (see Definition 2.9), and i € [n]
a boundary vertex incident to a unique internal vertex v, which has degree 3. We
blow up G at i by locally replacing v by a square, as follows, while leaving the
rest of the graph unchanged:

e o NG £

i i+1 i
(5.1)

(The color of v may be black or white.) This produces a plabic graph G’ of type
(k’,n + 1), whose boundary vertices are labeled by [n + 1] so thati and i + 1
are labeled as above (i.e. labels 1, ...,7 — 1 from G remain unchanged, and labels
i+1,...,nfrom G getincreased by 1). In the blowup, the orientation of the square
is important: its vertices alternate in color, with i incident to a black vertex and
i + 1to a white vertex. Note that by (2.1), k¥’ = k if v is black, while k¥’ = k + 1
if v is white.

Definition 5.2 (BCFW recursion). For positive integers k and n such that2 < k <
n —2, we recursively define a set G, i 4 of plabic graphs of type (k, n) as follows.°®

1. If n =4 and k = 2, then §n,k,4 contains a unique element, the plabic graph

2. Forn > 5, §,,,k,4 is the set of all plabic graphs obtained either by blowing up
a plabic graph in §,,_1,k,4 atsome i # 1,n — 1 incident to a black vertex, or
by blowing up a plabic graph in §,,_1,k_1,4 atsomei # 1,n— 1 incident to a
white vertex. (We may obtain such a plabic graph multiple times in this way,
but we only count it once in g,,,k,‘;.) We emphasize that we never blow up at
the first or last boundary positions.

9In our notation § n.k.4, the tilde is to remind us that these graphs do not directly label the
m = 4 BCFW cells. Rather, we must first ‘shift by 2’; see Definition 5.3.
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See Figure 7 for a depiction of the graphs §,,,k,4 for n < 6. Note that we can
read the k statistic from each graph as the number of black vertices incident to the
boundary.

5 1 5 1
4 2 4 2
=5
n 3 3
k=2 k=3
2 3 4 2 3 4
6 1 6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2 5 2
n=6 4 3 4 3 4 3 4 3 4 3
k=2 k=3 k=3 k=3 k=4

Figure 7. The first two steps of the BCFW recursion. The Catalan sequence 1,2, 5, 14, ...
gives the number of graphs in each row. Note that the k statistic has not yet been ‘shifted
by 2. Observe that the middle graph in the bottom row can be obtained via two different
sequences of blowups.

Definition 5.3. Letk,n > O satisfyk <n—4,and¢, := (n n—1 --- 2 1) be the
long cycle in the symmetric group on [r]. We define the BCFW permutations of
type (k,n) (for m = 4) as

Mk = {cinG6:G € Gpkta.a)s

where above we color any fixed points of ¢2mg black. (Note that for any plabic
graph G coming from the BCFW recursion, we have g (i) # i,i + 1 (mod n)
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for all i € [n], so indeed multiplying 7 by c2 on the left decreases the number of
anti-excedances by 2.) The collection C,, 4 of cells S, C Grf(; corresponding to
BCFW permutations & € I, i 4 are called the (k,n)-BCFW cells (for m = 4).1°

Conjecture 5.4 ([3, Section 5]). Let Z € Mat;y, ,, where k.n > 0 satisfy
k < n — 4. Then the images under Z of the BCFW cells Ch.k.a “triangulate”

the m = 4 amplituhedron, i.e. they are pairwise disjoint, and together they cover
a dense subset of A, .4(Z).

Interestingly, the number of BCFW cells in Grf% is a Narayana number. The

Narayana numbers
1(a a
Nagp = —
=)0
1

refine the Catalan numbers, i.e. Y 5_, Nap is the Catalan number —; (%)
[31, A46].

Lemma 5.5 ([1, (17.7)/(16.8)]). For m = 4, the number of (k,n)-BCFW cells is
the Narayana number Ny_3 k1 = — (,’:j)("?)

5.2. Complete binary trees and a bijection to BCFW graphs. In this section
we explain how to index the plabic graphs Sy k.4 coming from the BCFW recursion
by complete binary trees. This construction also appears in a similar form in
lecture notes written by Morales based on a course taught by Postnikov [25,
Figure 110].

Definition 5.6. A complete (or plane) binary tree T is arooted tree such that every
vertex either has 2 ordered child vertices, one joined by a horizontal (left) edge
and the other by a vertical (up) edge, or 0 child vertices. We require that the root
vertex has 2 children. (See Figure 8 for an example.) We call childless vertices
leaves, and other vertices internal vertices. An edge of T is called external if it is
incident to a leaf; otherwise it is called internal. If T has n — 2 leaves (n > 4), we
label them by 2, 3,...,n — 1 clockwise, such that the leaf 2 is joined to the root
vertex by a path of horizontal edges (and similarly, n — 1 is joined to the root by
a path of vertical edges). We let T, 4 denote the set of complete binary trees T
with n — 2 leaves, exactly k + 1 of which are incident to a horizontal edge.

10 Some authors use the term ‘BCFW cells’ to refer to the images Z(Sy) inthe amplituhedron
An k.4(Z) (though in general it is not known that these images are indeed topological cells).
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mﬁ @

Figure 8. A complete binary tree T € T¢,1.4 and its plabic graph G(T') € 56,3,4 (before
and after contracting bivalent vertices and enclosing the graph in a disk). Note that G(T')
is the middle graph in the bottom row of Figure 7.

— N

Definition 5.7. Given a complete binary tree 7' € T, i 4, we define a plabic graph
G(T) with n boundary vertices, as follows.

e We replace the root vertex of 7 with a face, as shown:

n
1

(As we will explain shortly, the ‘half-vertices’ on the right are intentional.)

e We replace each internal vertex of 7" with a face, as shown:

- )
1~

e We replace each leaf of 7', as shown:

i i

o= e



Decompositions of amplituhedra 327

ij
J— —

In both of the resulting local pictures of a plabic graph above, the vertex not
incident toi is incident to exactly one other vertex (which appears just outside
this local picture), of the same color; we contract these two vertices. (This is
to avoid having any bivalent vertices in the resulting plabic graph.)

e We draw a curve through 1, ..., n, enclosing the resulting graph in a disk.

This gives a plabic graph G(T'). See Figure 8 for an example. (Above, we have
depicted only ‘half vertices’ of G(T'), since each internal vertex of G(T'), aside
from those incident to 1 and n, comes from two vertices of 7'.)

Lemma 5.8. The map T — G(T) from Definition 5.7 gives a bijection
Tnjea — gn,k+2,4-

Proof. It follows from Definition 5.7 that adding child vertices to a leaf i of
T corresponds to blowing up G(7') at i. That is, the BCFW recursion acts on
complete binary trees by adding children. O

Note that it is straightforward to recover 7 from G(T): the graph formed by
the internal edges of T is dual to the graph formed by the internal faces of G(T').

6. Pairs of noncrossing lattice paths and BCFW .I-diagrams

In this section, we index the m = 4 BCFW cells by pairs of noncrossing lattice
paths inside a rectangle. We explain how to obtain a ¢-diagram of a BCFW cell
from such a pair.

Definition 6.1. Fix a,b € IN. A lattice path W inside an a x b rectangle is a path
that moves from the northeast corner to the southwest corner, taking unit steps west
and south. We represent W by a word of length a + b on the alphabet {H, V},
with exactly a letters V' (corresponding to the vertical steps) and b letters H
(corresponding to the horizontal steps). For example, the upper lattice path Wy
in Figure 9 is givenby Wy = HHVHHVVH.
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Let £, k.4 denote the set of all pairs (Wy, Wy) of noncrossing lattice paths
inside a k x (n—k —4) rectangle, where Wy denotes the upper path and W}, denotes
the lower path. That is, Wy is weakly below Wy (but the two paths are allowed to
overlap); see Figure 9. In terms of words, this means that for any i € [n — 4], there
are at least as many V’s among the first i letters of Wy, as among the first i letters
of WU.

We give an injective map from elements of £, x 4 to 4k-dimensional positroid
cells of Grf(;. We will prove that the collection of cells in its image are precisely
the (k,n)-BCFW cells.

Definition 6.2. Given (Wy, W) € £, 4, let Yy be the Young diagram inside a
k x (n — k — 4) rectangle whose southeast border is Yy, and similarly define Y7 .
We associate a @-diagram D of type (k, n) (recall Definition 2.3) to (Wy, W) as
follows. (See Figure 9 for an example.)

Step 1. The Young diagram of D is obtained from Y; by adding m = 4 extra
columns at the left of height k. Place a + at the far left end and far right
end of each row of D, leaving the other boxes empty.

Step 2. Consider each column of Yy in turn, reading the columns from left to
right. For each column of Yy of height i, place a top-justified column of
i 0’sin D as far right as possible.

Step 3. In each row of D, place two +’s as far to the right as possible.

Step 4. Fill any remaining empty boxes of D with a 0.

We denote D by Qo (Wy, Wr). This defines an injection Q2 ;»(Wy, W) from
Ly ka4 to the set of @-diagrams of type (k,n). Let D, ;4 be the image of
Qo (Wy, Wr). We will show in Lemma 6.4 that each D € D, x 4 is a reduced
@-diagram with exactly 4k 4’s. Hence by Lemma 2.6, D corresponds to a 4k-di-

mensional cell of Grf(;, and we can use J-moves to find the I-diagram of D. We
will also show in Lemma 6.4 that these 4k-dimensional cells are all distinct.

Theorem 6.3. The ®-diagrams D, i 4 index the (k,n)-BCFW cells Cp, k4.

Theorem 6.3 follows from Lemma 5.8 and Theorem 7.4, the latter of which
we will prove in §7. First, we show that the @-diagrams in D,, j 4 are reduced and
represent distinct positroid cells.

Lemma 6.4. The ®-diagrams in D, y 4 are reduced, and each correspond to a
distinct 4k-dimensional cell of Grf(;.
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Yu =
- +
- +
- +
- 0 +
- 0 +
- 0|+
- 00|+
- 0 +
- 0|+
- 0lofo|+
- 0 +
- 0|+
- +|+lofo]o]|+
- +o |+ ]+
- +|+|0 |+
- +|+lofo]o]|+
- 010 [+]0|+]+
- 0|+ |+]0|+

Y,

329

Figure 9. The map Q.o (Wy, W) from Definition 6.2 takes a pair of lattice paths
Wy, WL) € L, k.4 to areduced @-diagram in D,, i 4, corresponding to a 4k-dimensional
cell of Gr,%o. Here k =3 andn = 12.

n
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Proof. We show that each D € D, 4 is reduced. Let D’ be the @-diagram of
type (k,n — 1) obtained from D by deleting the leftmost column. Then D’ is a
J-diagram: each 0 added in Step 2 of Definition 6.2 has no + above it in the same
column, and each 0 added in Step 4 has no + to its left in the same row (except
for the + at the left end of the row, which has been deleted to form D’ from D).
Hence D’ is reduced, so its pipe dream P(D’) has no double crossings. We form
P(D) from P(D’) by adding a column of elbows at the left, which introduces no
new crossings. Hence D is reduced. Since D has 4k +’s, it corresponds to a
4k-dimensional cell of Gri?l.

Now we show that the diagrams in D,, x 4 index distinct cells of Grf’?l. Suppose
that Dy, D, € Dy, x 4 index the same cell of Gr,i?l, and as above let D} and D/, be
the I-diagrams of type (k,n — 1) formed by deleting the leftmost column of D,
and D5, respectively. In the construction of the pipe dreams P (D) and P (D)
from Definition 2.3, the edges of the west border of the Young diagram in each
pipe dream are labeled with the anti-excedances of the corresponding decorated
permutation. Since wp, = mp,, the pipe dreams P (D) and P (D) have the same
shape and their edges are labeled in the same way. Hence 7, = mp;, whence
D} = D/ by Lemma 2.5. This implies D; = D,. O

7. From binary trees to pairs of lattice paths

In this section we prove Theorem 6.3. Our strategy is to construct a map
Qe Tnxa — Lnka

which takes a complete binary tree T to a pair of noncrossing lattice paths inside
ak x (n —k —4) rectangle, such that the decorated permutation of the @&-diagram
Qo (Qyc(T)) equals ¢2g(ry (recall Definition 5.3).

Definition 7.1. Given a complete binary tree 7, we let rg and ry denote the
horizontal and vertical child vertices of the root r of T. We let Ty denote the
subtree of T rooted at r obtained from T by deleting all children of ry. Also, if
ry is an internal vertex of Ty, we let TF/I be the subtree of 7 rooted at rgy formed
from Ty by deleting r and its two incident edges. We similarly define the subtrees
Ty and T {, of T, by switching the roles of ry and ry.

We associate two lattice paths Wy (T), Wr(T) to T by the following recursive
definition. (Recall from Definition 6.1 that we identify a lattice path of length /
with its corresponding word in { H, V}*.) Below, - denotes concatenation of words.
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If rg and ry are both leaves, then Wiy (T) and W, (T') are the empty words.

e If ry is not a leaf and ry is a leaf, then

Wy(T):= H-Wy(Th),  Wi(T) := We(Th) - H.

If rg is a leaf and ry is not a leaf, then

Wy(T):=V - Wy(Ty), WL(T) :=V - WL(Ty,).

Otherwise,

Wu(T) = Wy (Th) - Wy (Tv), Wi(T) = Wp(Ty) - W(Ty).

Note that in fact
Wu(T) = Wy(Tg) -Wy(Ty) and Wr(T) = Wr(Tg) - Wr(Ty)

forall T.

We let Qgc: Ty k.4 = Ln k.4 be the map which sends T to (Wy (T'), Wr.(T)).
It follows from the definitions of Wy (T') and Wy (T) that they are both words in
{H, V}"=* with precisely k V’s, and moreover that for any i € [n — 4], there are at
least as many V’s among the first i letters of Wy (T') as among the first i letters of
Wy (T). Hence the pair of lattice paths (Wy (T), Wi (T)) is indeed noncrossing,
and represents an element of £y, x 4.

For example, for the complete binary tree T in Figure 10, we have

Wy(T)= HVHVH and Wy (T)= HVHHYV.

Remark 7.2. Given T € T, 4, we can alternatively find Wy (T), Wp.(T) €
{H,V}"=* as follows. We obtain Wy (T) by reading the internal edges of T in
a depth-first search starting at the root, preferentially reading horizontal edges
over vertical edges; we record an H for each horizontal edge and a V' for each
vertical edge. We obtain Wy, (T') by reading the leaves 3,4, ...,n—2of T in order,
recording an H for each leaf incident to a vertical edge, and a V for each leaf
incident to a horizontal edge.

Proposition 7.3. The map Qgc: Ty k.4 — Ly k.4 Is a bijection.
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Proof. 1t follows from Lemma 5.5 and Proposition 8.6(1) that T}, x 4 and £, x4
have the same cardinality, namely the Narayana number N,_3x+1.!! Hence it
suffices to show that Q<. is injective. We can prove this by induction on 7,
using the recursive definitions of Wy (T) and Wi (T). The key observation is
that when we regard the pair of lattice paths (Wy (T), Wr(T)) as the concatena-
tion of the pairs (Wy (Tu), Wr,(Tg)) and (Wy (Ty), Wi(Ty)), we recover where
(Wy (Tv), W (Ty)) begins as the first occurrence of overlapping vertical steps in
(Wy (T), Wr(T)). (If there are no overlapping vertical steps, then ry is a leaf.)
To see this, note that Wy (Ty) and W (Ty) both begin with a vertical step (if they
have any steps at all); conversely, the paths Wy (Ty) and Wi (Tg) do not have any
overlapping vertical steps, since otherwise the paths Wy (T4;) and W (T}, ) would
cross each other. |

Now we state and prove the main result of this section.

Theorem 7.4. For T € T, k 4, we have

2
Tp = CyTG(T)>»

where D = Qcp(Qye(T)) € Dygaandcy, := (n n—1 --- 2 1) is the long
cycle in the symmetric group on [n]. (As in Definition 5.3, we color the fixed points
of ¢c2mry black.)

As we have already noted, this implies Theorem 6.3.

Proof. We proceed by induction on n. Given T' € T}, x 4, let
D :=Qep(Qye(T)) € Dyga

be its associated @-diagram. Note that every row of D contains at least one
+, so wp has no white fixed points. Hence it suffices to show that the equality
Tp = c,%nG(T) holds for (undecorated) permutations. If n = 4, then T is
necessarily the tree _l ,and D is the empty é-diagram inside a 0 x 4 rectangle.

Hence ng(ry = 3412 and 7p = 1234 = ¢Zng(r). This proves the base case.
Now suppose that n > 5 and Theorem 7.4 holds for smaller values of n. We

consider two different cases, depending on whether the last letter of Wy (T) is V'
or H.

1 For further references on the enumeration of £, x 4, see [31, pp. 66-67].
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Case 1: Wy (T) endsin V. Recall from Remark 7.2 that we obtain Wy (T') by
reading the internal edges of T in a depth-first search. Let e be the internal edge of
T corresponding to the last letter of Wy (T'), and let w be the child vertex incident
to e (i.e. w is a child of the other vertex incident to ¢). Then the children of w
are both leaves, and are labeled by p and p + 1 for some 2 < p < n — 2. Let
T’ € Ty_1.k—1,4 be obtained from T by replacing e and its children by a vertical
boundary edge incident to a leaf (which will be labeled by p). Since Wy (T)
ends in V, we obtain (Wy (T"), Wi(T")) from (Wy (T), Wr(T)) by deleting the
last vertical step of each path. Let D’ € D, x_; 4 be the associated @-diagram.
(See Figure 10.) By the induction hypothesis, we have np = cﬁ_lnc;(T/). (We
will regard permutations of [#n — 1] as permutations of [r] which fix n.)

7
6 w
= 1
s . o + 1+ |+ + |2
| Fo [+ ]+ ]+ |43
o 9 7 6 5
3
2—1—4-
T Wy (T), Wp(T)) D
5 6 7
4 +l++]o0o|+]2!
3 r— 8§ 7 6 & 3
2—1—1-
T’ Wy (T"), WL(T")) D’

Figure 10. An example of Case 1 in the proof of Theorem 7.4. Here k =2,n =9, p = 6.

In terms of plabic graphs, G(T) is obtained from G(7"’) by blowing up at p.
Let us introduce the intermediate graph G”, obtained from G(7”) by inserting a
lollipop in between boundary vertices p — 1 and p, and increasing the labels of
the boundary vertices p, p+1,...,n—10of G(T’) by 1. In terms of permutations,
we have

TG = (p p—l—l n)JTG(T/)(I’Z n—1--- p)
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Then G(T) is obtained from G(7T"’) via G” as follows (cf. (5.1)):

p p+1 P

G(T") G

p+1 4
G(T)

Since e corresponds to the last letter of Wy (T'), and this letter is V', the boundary
vertices p+ 1, p+2,...,n—10of G(T) are each incident to a white vertex. Hence
ng(r)(n) = p, and we see that gy = ng7(p p+1 n). Thus

wgry = (p p+1 - m)ngay(n n—1 --- p)(p p+1 n)

(7.1)
=(p p+1 -+ mmgay(n—1 n=2 - p+1).

On the other hand, by Definition 6.2, D is obtained from D’ by appending a
new row, as follows:

D/
D=1p_1 n-o2 p+l p p=1 p=2
+ 10 0|+ |+ |+ |p2
n n—l1 p+2 p+1 p p—1

Above we have given the labels of the southeast borders of D and D’ starting at
p — 2. We can then verify from Definition 2.3 that

np =(p—2 p—1 --- m)ap(n—1 n—2 --- p+1).
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Putting this together with the induction hypothesis 7p: = ¢2_, 7 and (7.1),
we obtain

wp = (p=2 p—1 - n)eg_ymgarn(n—1 n=2 --- p+1)
— Cy%(p p+1 n)][G(T/)(I’l—l n—2 --- p+1) = C,%]TG(T)

Case2: Wy (T)endsin H. Supposethat Wy (T') ends in precisely s H’s, where
s > 1. Let ey—s5—3,en—s5—2, ..., en—a be the internal edges of T corresponding
to the last s letters of Wy (T), when we read the internal edges in a depth-first
search as in Remark 7.2. These edges appear in a horizontal path in 7" as in
Figure 11, where the rightmost vertex is either the root vertex (in which case
this picture is the entirety of 7'), or is joined to its parent vertex by a vertical
edge. The children of the vertices on this path are all leaves, which are labeled by
p,p+1,...,p+s+1for some p. Proceeding in a similar manner to Case 1, we
let 7’ € T,_s.k.4 be obtained from 7' by replacing the entirety of this horizontal
path and its children by a vertex incident to two leaves labeled p and p + 1 (see
Figure 11). Note that (Wy (T”), Wi (T")) is obtained from (Wy (T), W (T)) by
deleting the last s steps of each path (which are all horizontal). Let D’ € D, _; x4
be the associated @-diagram. (See Figure 12.) By the induction hypothesis, we
have rpr = c,%_snG(T/). (As in Case 1, we will regard permutations of [n — s] as
permutations of [n] which fixn —s + 1,...,n.)

In order to relate wg(r) and wg(r7), we again introduce a plabic graph G”,
obtained from G(T’) by inserting s lollipops in between boundary vertices p + 1
and p +2, and increasing the labels of the boundary vertices p+2, p+3,...,n—s
of G(T’) by s. We have

ngr = (p+2 p+3 -+ n)’ngay(n n—1 --- p+2)°%,
and we see from Figure 11 that ng(r) = ng7(p p+1 --- p+s+1)2. This gives

w6y = (p+2 p+3 - n)f'moany(n n=1 -« p+2)°(p p+1 -+ p+s+1)?

= (p+2 p+3 .- n)snG(T/)(n n—1 ---. p)s.
(7.2)

On the other hand, by Definition 6.2, D is obtained from D’ by adding
s columns of all 0’s; the bottom edges of these columns are labeled by p,
p+1,..., p+s—1when we label the southeast border of D by 1,...,n. Hence

ap =(p p+1 --- n)’ap(n n—1 --- p)°.
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p+1 p+2 p+3 p+s  pts+l1
p+1  p+2  p+3 p+s  p+s+l
R S S Y S B
Cn—a [ €p—s—3
il |
T G(T)
ptl p+2 p+3 p+s pts+l
i o o o
pﬂ P
: fil |2
T/ G//

Figure 11. The complete binary trees 7" and 7’, and the plabic graphs G(T') and G”, in
Case 2 of the proof of Theorem 7.4. If k = 0, then the rightmost vertex shown in 7 and T’
is the root vertex, and the edges f; and f> are incident to boundary vertices 1 and n.

7 8 9
6 e7 €6
1
44 +lo[+|+]0]|0 ]|+
3 o T 10 9 8 7 6 5
|
T Wy (T), W(T)) D
7
6 |— 1
4 L +lo|+][+[+]3
3 9 8 7 6 5
PR S—
T/ Wy (T"), Wo(T")) D’

Figure 12. An example of Case 2 in the proof of Theorem 7.4. Here k =2,n = 11, p = 6,

s = 2.
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Putting this together with the induction hypothesis 7p: = ¢2_ g7 and (7.2),
we obtain

ap = (p p+l - n)ci_mgary(n n—1 .- p)*
= cp(p+2 p+3 - n)’mgay(n n=1 -+ p)° = ciuGr). O

8. Number of cells in a decomposition of A, i ., for arbitrary even m

Recall from §4 that the m = 2 amplituhedron A, x> has a decomposition with
("_2) top-dimensional cells, and from Lemma 5.5 that the (conjectural) BCFW
decomposition of the m = 4 amplituhedron A, x4 contains —L=(773)(";) top-
dimensional cells. On the other hand, when k = 1 the amphtuhedron Animisa
cyclic polytope C(n, m). Bayer [5, Corollary 10] (see also [30, Corollary 1. 2(11)])
showed that if m is even, any triangulation of C(n,m) has exactly ( lm ) top-
dimensional simplices. In this section we conjecture a generalization of %he above
statements. We also give several families of combinatorial objects which are
in bijection with the top-dimensional cells in our conjectural decomposition of
An,k,m-
For a,b,c € N, define

k-1
M(abc)_nnni+j+k 2
i=1j=1k=1

Note that M(a, b, ¢) is symmetric in a, b, c.

Conjecture 8.1. For even m, there is a cell decomposition of the amplituhedron
An k.m» whose top-dimensional cells are the images of precisely M (k n—k—m,% )
cells ofGrk » Of dimension km.

We give a summary of all special cases in which Conjecture 8.1 is known or
conjecturally known in Table 1.

Remark 8.2. Conjecture 8.1 only deals with the case of even m. For odd m,
it is possible that a decomposition of A, 11k m+1 wWith M (k.n — k — m, ZFL)
top-dimensional cells could be used to give a decomposition of A, i, with
the same number of top-dimensional cells. This is the case when m = 1,

as two of us showed in [16]. It is also the case when & = 1, since for odd
m+

m there is a triangulation of the cyclic polytope C(n,m) with ( m+1 ) top-

dimensional simplices [30, Corollary 1.2(ii)]. When m = 3, we came up with
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Table 1
special case | M (k,n—k —m,'3) explanation
m=20 1 A is a point
-2
m=2 (n 1 ) [2, Section 7]¢
1 -3 -3
m=4 — (Z N 1) (n i ) conjectured in [3]
k=0 1 A is a point
k=n—m 1 A~ Gr,?(;
n—1-% )
k=1 m A = cyclic polytope C(n, m)
2

@ Arkani-Hamed, Thomas, and Trnka show that the (";2) top-dimensional cells in A x 2
are disjoint and cover a dense subset of the amplituhedron. It is not known whether this induces
a cell decomposition.

a natural construction of M(k,n — k — 3,2) cells of Gri?’ whose images we
had hoped would give a decomposition of A, x 3. However, these images inside
An k3 are not disjoint (see §12). We mention that even in the case of cyclic
polytopes, triangulations are not as well behaved in odd dimension: for even m
every triangulation of C(n, m) has ("_1%_%) top-dimensional simplices, while for

odd m the number of top-dimensional simplices in a triangulation can lie anywhere

_1-mtl
between (" —r )and (" .3 ) [30, Corollary 1.2(ii)].
2 2
The symmetry of M(a, b, c¢) raises the following question.

Question 8.3. Conjecture 8.1 suggests that there is a symmetry for amplituhedra
An kem among the parameters k, n —k —m, and %.. Is there an explanation for
this symmetry?

In the case m = 4, the symmetry between k and n — k — m comes from the
well-known parity of the scattering amplitude (see [2, Section 11]). Below, we
give a combinatorial explanation of this symmetry in terms of complete binary
trees and decorated permutations. The possible symmetries between % and the
other two parameters are completely mysterious.
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Proposition 8.4. Let ¢, := (n n—1 --- 2 1) be the long cycle in the symmetric
group on [n], and wy, the permutation given by w, (i) :=n + 1 —1i fori € [n].

(i) GivenT € Ty let T' € Ty n_g—a.4 be obtained by reflecting T through
a line of slope —1 (i.e. by switching the roles of horizontal and vertical
children). Then

TG(T") = WaTtG(T)Wn-

(ii) The map w +— c,‘,‘wnnwn is a bijection from I, y 4 to 1, n_k—4.4.

Proof. By Definition 5.7, G(T") is obtained from G(T') by reflecting the plabic
graph, interchanging black and white vertices, and reversing the order of the
ground set. Reflecting and interchanging colors individually invert the decorated
permutation (by Definition 2.9), and reversing the order of the ground set cor-
responds to conjugating by w,. This proves part (i). Then using the fact that
Wyenwy = c; b, we get c2ngrry = cpwn(c2wG(ry)wy. Hence by Lemma 5.8, the
bijection T’ +> T’ from T, x 4 t0 T, n—k—4.4, Which sends each tree to its reflection,
induces the bijection & +— c}w,mwy, from T, 4 t0 T, —k—4.4- O

Recall from §4 that IT, x, is a set of decorated permutations which give a
decomposition of A, . We can verify that the analogue of Proposition 8.4(ii)
holds for m = 2, i.e. m > c2wymw, is a bijection from I, x5 to T, 4—k—2 2.

This motivates the following question.

Question 8.5. Fix n and m with m even, and assume for each k we can find a
collection 11, i » of decorated permutations corresponding to km-dimensional
cells of Gri(r)l, whose images induce a cell decomposition of A, x m(Z). Can we
choose I, j m so that the map &= — clw,mw, is a bijection from I, k ,, to
1_In,n—k—m,m?

We do not expect Question 8.5 has a positive answer if m is odd. Indeed, if
we let IT, x 1 be the set of decorated permutations corresponding to the m = 1
BCFW cells of Gri(r)l defined in [16], then & + ¢, w,ww, does not in general take
My x1t0Il, y—g—1,1. Forexample, 1311 = {(1 2),(2 3)}and czws(l 2)wsz =
321 ¢ I3,1,1.)

8.1. Combinatorial and geometric interpretations of M(a, b, c). The number
M(a, b, c) has many interpretations which appear in the literature. We present
some of them below. We refer to the article of Propp [29] for further background
on this subject.
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Proposition 8.6 ([23, Sections IX and X]). Fix a,b,c € IN. Then M(a,b,c)
equals the number of the following objects (see Figure 13):
(1) collections of precisely c noncrossing lattice paths inside an a x b rectangle;
(2) plane partitions which fit inside an a x b x ¢ box;

(3) tilings of the hexagon

by rhombi of the form

(4) perfect matchings of the honeycomb lattice O(a, b, c¢) defined below;

(5) Kekulé structures of a hexagon-shaped benzenoid with parameters a, b, c.

We briefly define the objects in Proposition 8.6 and describe bijections between
them, with reference to Figure 13. Noncrossing lattice paths (1) were defined in
Definition 6.1. A plane partition (2) is a filling of the boxes of a Young diagram
Y with positive integers, such the numbers along each row (from left to right) and
along each column (from top to bottom) are weakly decreasing. We get from a
collection of noncrossing lattice paths (1) to a plane partition (2) by taking the
Young diagram whose southeast border is the bottom lattice path, and writing in
each box the number of lattice paths passing below it. We can depict a plane
partition as a stacking of unit cubes in the nonnegative orthant of R* (3), by
stacking d unit cubes on top of each box of Y filled with a d. We are considering
stackings of cubes contained in an a x b x ¢ box, i.e. such that Y is contained inside
an a x b rectangle and the entries in its boxes are bounded above by c¢.!? From a
plane partition regarded as a stacking of cubes inside an a x b x ¢ box, we get a
rhombic tiling of H(a, b, ¢) (3) by orthogonally projecting the exterior surface of
the stacking onto a symmetric affine plane.

12 MacMahon was the first to enumerate any of the objects in Proposition 8.6, by showing that
the number of plane partitions which fit inside an a x b x ¢ box equals M (a, b, c) [23, Sections IX
and X].
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_] 3[3[2]2
‘ BERE

(1) noncrossing lattice paths (2) plane partition (3) rhombic tiling
H H
N/
H C=C H
\ / \ /
C—C, C=C H
/o N\, /N 7
H—C C—C, C—C, H
NN N,/
C—C, C—C C—C,

/y A} / \ / \
H—C C—C, C=C C—H
N /N /TNy
C=C C—C, C=C
/ \ / N\ / \
H—C, C=C C—C, C—H
N SN N
C—C, C=C C—C

H/ \\C C/ \C C/ \C H
/ A\N /y A\Y V4
H C—C C—C
/7 N/ N\
H C=C H
/A
H H
(4) perfect matching (5) Kekulé structure

Figure 13. The objects appearing in Proposition 8.6. Here (a, b, c) = (2,4, 3).

We define the honeycomb lattice O(a, b, ¢) as the graph dual to the tiling of
H(a, b, c) by unit equilateral triangles; that is, the vertices of O(a, b, c) corre-
spond to the triangles tiling H(a, b, ¢), and two vertices of O(a, b, ¢) are adjacent
precisely when the corresponding triangles share an edge. Alternatively, we ob-
tain O(a, b, c¢) by gluing together regular hexagons into a hexagonal arrangement,
as shown in (4). A perfect matching of a graph is a subset of its edges which
meets every vertex exactly once. From a rhombic tiling of H(a, b, ¢) (3), we ob-
tain a perfect matching of O(a, b, c) (4) by including an edge in the matching if
and only if the corresponding equilateral triangles in H (a, b, c) are covered by the
same rhombus.

Finally, from O(a, b, ¢), we obtain a hexagon-shaped benzenoid (with param-
eters a, b, ¢) by replacing each vertex by a carbon atom, and each edge by a bond
between carbon atoms. Moreover, every carbon atom should be bonded to exactly
three other atoms, so for each carbon atom bonded to only two others, we add
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a hydrogen atom bonded to it (by a single bond). A Kekulé structure of such a
benzenoid specifies whether each bond between carbon atoms is a single bond or
a double bond, subject to the condition that each carbon atom is tetravalent, i.e.
it participates in exactly one double bond. (The tetravalency condition was first
proposed by Kekulé [17, 18].) We have a bijection from perfect matchings (4) to
Kekulé structures (5), which sends matched edges to double bonds and unmatched
edges to single bonds. 13

Remark 8.7. We note that there is a natural structure of distributive lattice
on the various combinatorial objects enumerated by M(a, b, c) [28, Theorem 2
and Example 2.1]. In terms of stackings of cubes inside an @ x b x ¢ box, a
cover relation in the lattice structure corresponds to adding a single unit cube.
It would be interesting to explore what this distributive lattice structure tells us
about the relative position of the corresponding cells in a decomposition of the
amplituhedron. Perhaps cover relations in the distributive lattice are related to
whether the corresponding cells are adjacent in the amplituhedron.

Remark 8.8. In addition to the combinatorial interpretations given in Proposi-
tion 8.6, M(a, b, ¢) also equals the dimension of the degree ¢ component of the
homogeneous coordinate ring C[Gr, 445] [14]. So, the number of top-dimensional
cells in the (conjectured) BCFW decomposition of A, ¢ 4 is equal to the dimen-
sion of the degree 2 part of C[Grg ,—4]. It would be interesting to give a geometric
explanation of this statement.

9. Disjointness for BCFW cells when k = 1

For completeness, and as a further warmup to proving that the images of the k = 2
BCFW cells are disjoint in the amplituhedron (§11), we prove disjointness in the
case k = 1. This follows from the work of Rambau on triangulations of cyclic

3 In general, a Kekulé structure corresponds to a perfect matching of any graph formed by
gluing together regular hexagons, not necessarily of O(a, b, ¢). Independently of work on plane
partitions, the chemists Gordon and Davison [13] gave bijections between Kekulé structures (5),
perfect matchings (4), and collections of noncrossing lattice paths (1). (We thank Greg Kuperberg
for bringing this to our attention.) They also state a formula suggested to them by Everett for the
number of perfect matchings of O(a, b, b), and say that it is “a special case of a more general
equation established by Mr. M. Woodger” in a forthcoming paper. Unfortunately, Woodger’s
work was never published. In later work on Kekulé structures, Cyvin [9, (8)] rediscovered
MacMahon’s formula for the number of perfect matchings of O(a, b, c¢), and it was reproven
in [6]. We refer to [10, 19] for more on Kekulé structures.
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polytopes [30]: any amplituhedron A,, 1 4(Z) is a 4-dimensional cyclic polytope
with n vertices [32], and the triangulation given by the BCFW recursion is among
the ones identified by Rambau. We give his argument below, rephrased in the
language of sign variation and dominoes.

When k& = 1, the BCFW cells have the following explicit description, which
we can verify from Theorem 6.3 (see also [3, (5.2)]).

Lemma 9.1. For k = 1, the positroids (see Definition 2.1) of the (k,n)-BCFW
cells are precisely M = {{i},{i + 1},{j},{j + 1}, {n}} foralli, j € [n — 2] with
i+1<j.

Then Conjecture 5.4 when k = 1 says that every 4-dimensional cyclic polytope
with n vertices is triangulated by the simplices whose vertex sets are of the form
{i,i +1,j,j + 1,n}. This is a special case of [30, Theorem 4.2].

Proposition 9.2 ([30]). Ler Z € Matzy. Then Z maps the (1,n)-BCFW cells
Cn.1,4 injectively into the amplituhedron A, 1 4(Z), and their images are pairwise
disjoint.

Proof (cf. [30, Remark 3.8]). Let V,V’ € Grf?, be subspaces each contained in
a (1,n)-BCFW cell, such that Z(V) = Z(V'). We must show that V = V. Let
v € R” be a basis vector of V, and v’ € V' its matching vector as in Lemma 3.4.
By Lemma 9.1, we can write v — v’ as a sum of 5 or fewer dominoes (recall
Definition 4.8). Hence var(v — v’) < 4 by Lemma 4.10, whence v = v’ by
Lemma 3.4. O

Remark 9.3. This argument generalizes to all m, to show that the images in the
amplituhedron A, 1,,(Z) of certain m-dimensional cells of Grlz,(,)l are mutually
disjoint.
e When m is even, these cells are indexed by the collection of positroids of the
form

fink Ain + 1 Aimg2) Aimg2 + 1) {n )}

e When m is odd, we can take the collection of positroids of the form

{{il}’ {11 + 1}’ KRX} {i(m+l)/2}’ {i(m+1)/2 + 1}}7

“4In more detail, the BCFW triangulation is an iterated extension (in the sense of [30,
Definition 4.1]) of the triangulation of a 1-dimensional cyclic polytope into intervals between
consecutive vertices.
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or alternatively the collection of positroids of the form
{{1}’ {i1}7 {ll + 1}’ R {i(m—l)/Z}’ {i(m—l)/2 + 1}’ {n}}

These in fact give triangulations of A, 1 ,(Z) by [30, Theorem 4.2].

10. Domino bases for BCFW cells when k = 2

In this section we give a basis classification of the BCFW cells €, 5 4 (the case
k = 2) in terms of domino bases. We propose a generalization to all £ in Appen-
dix A (Conjecture A.7). We recall the definition of a domino (Definition 4.8), and
introduce some new terminology.

Definition 10.1. We say that d € R” \ {0} is a domino if there exists i € [n]
such that d; = O forall j # i,i + 1, and d; and d; 1, are nonzero and have the
same sign. (If i = n, then we require that d; = 0 for all j < n, and that d, is
nonzero.) In this case, we call d an i -domino, we call i the index of d, and we call
the common sign of d; and d; 4+ the sign of d. We also regard the zero vector as
a domino, with sign zero.

For example, (0, —1,—2,0,0) € R? is a negative 2-domino.

Definition 10.2. Given v € R” withn > 1, let v € R” denote the vector obtained
from v by setting coordinate n to 0. For v € R”, we say that v is orthodox if v is a
sum of two nonzero dominoes of the same sign with disjoint support, and deviant
if v is a difference of two such nonzero dominoes.

Theorem 10.3. Each BCFW cell S of Gri?l falls into one of 9 classes, shown in
Figure 14. Any element V € S can be written as the row span of a 2 x n matrix
with rows d and e, whose sign patterns are specified precisely in Figure 14. In the
figure, a vertical line represents a ( possibly empty) block of 0’s. We call d and e
the standard basis vectors of V. Note that d is either orthodox or deviant; we call
V either orthodox or deviant, accordingly.

Moreover, we can write the row vectors d and e in terms of linearly independent
positive dominoes dV,d @ d® d® e R", such that the following holds (where
ij is the index of d)):

o ifV isorthodox, theniy +1 < i <iz <is—1,d =d® +d® withd, <0,
ande =d® +d® with e, > 0;
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o ifV isdeviant, theniy + 1 <ir + 1 < i3 <y, d=dO® —d® ywith d, <0,
ande =d® +d® +d® (with e, = 0).
We calld®W,d® . d®,d® the fundamental dominoes of V.

For example, the matrix

Class 1.

Class 2.

Class 3.

Class 4.

Class 5.

Class 6.

Class 7.

Class 8.

Class 9.
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J’_
oo

+| [+ ]+
+|o
T

+

+

+

+

+
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orthodox

orthodox

deviant

deviant

deviant

deviant

deviant

deviant

Figure 14. The @-diagrams and standard basis vectors for the 9 classes of BCFW cells for
k = 2. The black vertical bars in the @-diagrams represent a (possibly empty) block of 0’s
of the appropriate height. Similarly, the vertical bars in the matrices represent a (possibly
empty) block of 0’s.

Proof. By Theorem 6.3, the BCFW cells C; .4 of Grzz,(,), correspond to the @-di-
agrams D, » 4, and a straightforward case analysis using Definition 6.2 implies
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that these are precisely the &-diagrams in Figure 14. It remains to show that for
each such @-diagram, an arbitrary element of the corresponding positroid cell can
be represented by the 2 x n matrix to its right in Figure 14, and that we can find
dominoes dV,d® d® d® satisfying the desired properties. We can ignore
the black vertical bars in the @-diagrams, which correspond exactly to the verti-
cal bars in the matrices. Since the proofs for each of the 9 classes are similar, we
work out the details in two representative cases (Classes 3 and 8), and leave the
others as an exercise. The idea is to use I-moves (Lemma 2.6) to turn each ®-di-
agram into a I-diagram, from which we obtain a hook diagram (Definition 2.8)
and matrix parameterization of the corresponding cell (Theorem 2.10). From here
we can verify the required properties.

Class 3. In this case the @-diagram is a J-diagram, with the following hook
diagram:

+10 | +|+ ]|+ e R
+ |+ P i guba gt by

7 6 5 4 7

N |[<—¢

O\ [«

By Theorem 2.10, an arbitrary element of the corresponding cell of Grig is
represented by

|:l a; 0 —ajap, —ajaz(asz + by)

0 0 1 by b1by
—ayazbs(az + ba) —ajaz(aszas + bzbs(az + b))
b1b2bs b1byb3by ’

where the a;’s and b;’s are positive real numbers. Let v, w € R’ denote the first
and second rows of this matrix. If we replace v by

airax(az + b
o = 4 1a2(as 2)w,

b1by

then we obtain a matrix whose sign pattern matches the matrix in Figure 14.
Therefore any element V' in this cell has basis vectors

d:=v and e:=w,
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and we can write
d=dV4+d® and e=d® + 4@

for some positive dominoes dM,d @, d® d® . We can check that their indices
satisfy the stated inequalities, and they are linearly independent (the fact that
A3.4y # 0 implies that @ and d® are linearly independent).

Class 8. After applying a .I-move to the @-diagram, we obtain the following
J-diagram and hook diagram:

0l+[+[0][+] sl
++[+]+]+] R EIR NS
7 4

7 6 5 4 3 6 5 3

Therefore an arbitrary element of the corresponding cell of Grzz,(; is represented
by

|:1 0 —d —a1b2 —al(a2+b2b3)

0 1 bl blbz b1b2b3
—ay(az(az + ba) + babsby) —arbs(az(as + bs) + babsby)
b1babsby b1b2b3babs ’

where the a;’s and b;’s are positive real numbers. Let v, w € R’ denote the first
and second rows of this matrix. If we replace v by
’ a
vV I=U+ —Ww
by
and then w by
araz(az + b
;. @1a2(a3 4)w+v/’
b1bob3by
we obtain a matrix whose sign pattern matches the matrix in Figure 14. Therefore
any element V' in this cell has basis vectors

d:=v and e:=w,
and we can write
d=dV—d® and e=dV +d? +4®

for some positive dominoes d M, d®, d® d®. We can again check that their
indices satisfy the stated inequalities and that they are linearly independent. [
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Definition 10.4. Let V € Gr2?1 come from a BCFW cell, with fundamental
dominoes dM,d®,d® d® from Theorem 10.3. Note that for any v € V,
we can write v = Z}‘:l (x,d(f) for some unique oy, 0z, 3,004 € R. We let
Domy (v) denote the sequence of dominoes (a1d ", ayd @, a3d @, ayd @), and
domy (v) € {0, 4, —}* the sign vector of (a1, a2, a3, 0g).

We state two corollaries of Theorem 10.3 that we will use in §11.

Corollary 10.5. Suppose that V € Gri?, comes from a BCFW cell, and v € V
such that domy (v) has no zero components. Then we have the following:

e if V is orthodox, domy (v) equals

+(+,+,+.+) or E(+,+,—,-);

o if V is deviant, domy (v) equals

+(+,+,+.—-) or (= +.+,+) or F(+.+,+,+).

Corollary 10.6. Suppose that V € Gri?, comes from a BCFW cell with standard
basis vectors d,e € R" from Theorem 10.3, and v € V such that v has support
size at most 4 (in particular, this includes orthodox and deviant v). Then we have
the following:

o i V is orthodox, then v is a scalar multiple of d or e;

o if V is deviant, then v is a scalar multiple of d or d — e.

11. Disjointness for BCFW cells when k = 2
This section is devoted to the proof of the following result.

Theorem 11.1. For m = 4, Z maps the BCFW cells Cno2.4 ofGri?l injectively
into the amplituhedron A, » 4(Z), and their images are pairwise disjoint.

11.1. Lemmas on dominoes. We begin by proving some useful results on domi-
noes. We already have Lemma 4.10, but we will need more powerful tools.

Definition 11.2. Let D € R” be a finite multiset of dominoes, and v € R” the
sum of the dominoes in D. Given I = {i; < --- < ir} C [n], an [ -alternating
domino sequence for v (with respectto D)is a sequence (d (V. ..., d®) of distinct
nonzero dominoes in D such that
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. dl.(jj) has the same sign as v;, for all j € [k];
o the sign sequence (sign(d V), ..., sign(d D)) e {+, -} alternates in sign.

We call k the length of (d, ..., d%).

Lemma 11.3. Suppose that D C R” is a finite multiset of dominoes, v € R" is the
sum of the dominoes in D, and I C [n]. Then v alternates in sign restricted to 1 if
and only if v has an I -alternating domino sequence. The indices of dominoes in
any I -alternating domino sequence for v are weakly increasing, with each index
appearing at most twice.

We think of an [I-alternating domino sequence (dV,...,d®) for v as a
witness for the corresponding alternating subsequence of v.

Example 11.4. Let D be the set of dominoes d := (1,1,0,0,0), d® :=
0,-3,—1,0,0), d® := (0,1,2,0,0), d® := (0,0,0,—2,—4), and let v =
(1,—1,1,—2,—4) be their sum. Note that v alternates in sign restricted to
I := {1,2,3,5}. The unique corresponding [ -alternating domino sequence is
dW®,d® d® d®) with corresponding indices 1,2, 2, 4.

Proof. Write I = {i; <--- <ig}.

(=) Suppose that v alternates in sign on /. Then for each j € [k], we can
find d/) € D such that a’l.(jj ) is nonzero and has the same sign as v;; . Letting a; be
the index of ) for j € [k], we have aj € {ij,ij—1},s0a; <aj for j' > j +2.
Moreover, d/) and dU+Y have opposite signs for j € [k — 1], s0 d @D, ..., d®
are all distinct. Hence (dV, ..., d®) is an I -alternating domino sequence for v.

(<= ) Suppose that (d(V, ..., d®) is an I -alternating domino sequence for v,
with corresponding indices aq, ..., ax. Then sign(v|;) equals the sign sequence
of (dM, ..., d%), which alternates in sign. Moreover, since a; € {ij,i; — 1} for
all j € [k], wehavea; < --- < ax and a; < aj for j' > j + 2. Since d) and
dU*D have opposite signs for j € [k — 1], this also shows that 4, ..., d® are

all distinct. O
Lemma 11.5. Suppose that (dV, ..., d®) is an I-alternating domino sequence
forv € R", where I = {i{ < +-- < ir}. Choose j' € [k] and any subset

J C [k]\{j'}. Then the vectorv—73 ., d D) has the same sign in coordinate i;:
as the domino d".
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Proof. We know from Definition 11.2 that Vi, has the same sign as d G, It now
suffices to observe that for all j € J, di(];{ ) is either zero or has the opposite sign
as dY", O

We will also use the following facts about dominoes and sign variation, which

are straightforward to verify.

Lemma 11.6. Suppose that v € R, and d € R" is an i-domino.
(i) We have var(v + d) < var(v) + 2.
(ii) Ifv;i =0forall j <iorv; =0forall j > i, then var(v +d) < var(v) + 1.

Definition 11.7. A shuffle of two sequences (s1,...,5¢) and (¢1,...,%;) is a
sequence of length k + / formed by permuting si,..., Sk, ?1,...,#, such that
S1,...,Sk appear in the same relative order, and #1, . .., t; appear in the same rel-

ative order.

For example, the shuffles of (a, ) and (c, d) are precisely

(a,b,c,d), (a,c,b,d), (a,c,d,b),
(c,a,b,d), (c,a,d,b), (c,d,a,b).

Lemma 11.8. Suppose that V,V’ € Gri% come from BCFW cells, and v € V,
v’ € V. Note that v + v’ is the sum of the dominoes in the multiset D of nonzero
dominoes appearing in Domy (v) and Domy/(v'). Then any alternating domino
sequence for v + v’ with respect to D in which all the dominoes in D appear is
obtained by shuffling Domy (v) and Domy (v') and deleting all zero dominoes.

Proof. Suppose that (fM,..., f®) is an I-alternating domino sequence for
v+ v’ with respect to D which uses all the dominoes in D, where I = {i; <---<i;}.
Then the indices of (f(V, ..., f®) are weakly increasing, so we must show that

if two dominoes in Domy (v) or two dominoes in Domy-(v’) have the same index
and both appear in (f (U, ..., f©), then they appear in the same relative order. It
suffices to prove this for Domy (v). We proceed by contradiction and suppose that
there exist dominoes £, fU+D e D with the same index (they are necessarily
adjacent in the domino sequence, by Lemma 11.3), but appear in Domy (v) in the
opposite order, i.e. fU*D before ). We will deduce that var(v) > 2, which
contradicts Theorem 3.3(i).

Perhaps after multiplying all of v, v/, f® ..., f® by —1, we may assume
that ) is negative and fU*D is positive. Note that ¥ equals v + v/ minus
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the sum of the dominoes appearing in Domy-(v’). Since (f,..., f®) are
precisely all dominoes in D, by Lemma 11.5, vi; <0 and vi,;., > 0. We
now let dW, d® d® d® be the fundamental dominoes of V, and refer to
Theorem 10.3. First we suppose that V is orthodox. Since fU) and fU+1
have the same index, V must be of Class 3. Then U+ is a positive scalar
multiple of @, and ) is a negative scalar multiple of d®. Hence 7 =
a(d® +d@)— B(d® + d@) for some a, B > 0. We see that if i is the index
of dV, theni < i 7 and v; > 0, which gives var(v) > 2, as desired. Instead
suppose that V is deviant. Then it must be of Class 4 or 9. Then fU+1 isa
positive scalar multiple of 4, and () is a negative scalar multiple of d®.
Hence o = p(d® —d@®) + 8(d® + d® + d®) for some y,8 > 0. Again v is
positive at the index of dV, giving var(v) > 2. O

Corollary 11.9. Suppose that V,V’ € Gri?, come from BCFW cells, and v € V,
v’ € V are distinct such that Z(v) = Z') and the sum of the support sizes
of domy (v) and domy/(—v’) is at most 6, i.e. at most 6 dominoes appear with
nonzero coefficient in Domy (v) and Domy/(—v’). Then the sum of the support
sizes is exactly 6, and some shuffle of domy (v) and domy+(—v’) alternates in sign
(ignoring the zero components).

This will be useful for us, since if d, e are the standard basis vectors of V' from
Theorem 10.3, then domy (d) has support size 2, and also domy (e) has support
size 2 if V' is orthodox.

Proof. By Theorem 3.3(ii), we have var(v — v’) > 6, and so var(v —v’) > 5.
By Lemma 11.3, v — v/ has an alternating domino sequence of length 6, which
necessarily uses all the (nonzero) dominoes in Domy (v) and Domy(—v’), since
by assumption at most 6 dominoes appear. By Lemma 11.8, the sequence is
obtained by shuffling Domy (v) and Domy(—v’) and deleting all zero dominoes.
The corresponding sign sequence (which alternates in sign) is therefore obtained
by shuffling domy (v) and domy-(—v’) and deleting all zero components. O

11.2. Orthodox vs. orthodox cells

Lemma 11.10. Suppose that V,V' € Gri% are distinct and orthodox. Then
Z(V) # Z(V).

Proof. Suppose otherwise that Z(V) = Z(V'). Letd,e € R" be the standard
basis vectors of V' from Theorem 10.3, which are orthodox, and take matching
vectors v, w € V' ford,e,ie. Z(d) = Z(v) and Z(e) = Z(w). We claim that
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d = v. Otherwise, by Corollary 11.9, some shuffle of domy (d) and domy~ (—v)
alternates in sign after deleting its two zero components, and in particular contains
exactly three +’s and three —’s. But domy (d) contains two +’s, and by Corol-
lary 10.5 domy(v) contains an even number of +’s. This contradiction shows
d = v. Similarly, e = w. Since d and e span V, we get V' C V', a contradic-
tion. O

11.3. Deviant vs. deviant cells

Lemma 11.11. Suppose that V,V' € Gri?, are distinct and deviant. Then
Z(V) # Z(V).

Proof. Suppose otherwise that Z(V) = Z(V"). Denote the standard basis vectors
and fundamental dominoes of V and V' by d, e, dV, d®, d®, d® and d’, ¢,
dW' q@' 40 4@ respectively. Take matching vectors v, w € V' for d, e.
We claim that d = v. Otherwise, by Corollary 11.9, some shuffle of domy (d)
and domy-(—v) alternates in sign after deleting its two zero components, and in
particular contains exactly three 4’s and three —’s. But domy (d) contains one +,
and by Corollary 10.5 domy(v) contains either at least three +’s or at most one +.
This contradiction shows d = v.

Since e has support size 3, we cannot apply Corollary 11.9 to e and w, but
we can deduce that e # w, since otherwise V' = V’. Hence var(e — w) > 6
by Lemma 3.4. Since d = v, we may rescale our fundamental dominoes and
standard basis vectors so that d = d’, d® = d®’ and d® = d@’. We can
writed = d’ = d™ —d® — f for some positive n-domino f, and w = ad’+ Be’
for some o, B € R. Then

e—w=1-a-pB)dD+d? +d® +ad® - a?® — pa®" 1 of.

Since var(e — w) > 6, by Lemma 11.3 we can arrange the 7 dominoes summed
above into an alternating domino sequence (£, ..., f(7). The indices of the
dominoes weakly increase, so f = (1 —a—p)d® and /@ = af. Since f OV
and £ have the same sign, we get sign(1 — « — 8) = sign(«). Hence the sign
sequence of (f V..., ) is a permutation of

sign(a), +, +, sign(a), — sign(B), — sign(B), sign().

This sequence must contain either 3 or 4 +’s, and therefore o and B are negative.
But this contradicts sign(1 —«a — f) = sign(«). O
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11.4. Orthodox vs. deviant cells. This is the hardest case. Until now, our
strategy has been to pick a standard basis vector, look at its matching vector, and
obtain a contradiction. It turns out this is not sufficient here, and we have to work
harder to prove disjointness.

We start by examining the supports supp(v) := {i € [n]:v; # 0} of vectors
v e R".

Lemma 11.12. Suppose that V,V' € Gri% come from BCFW cells, and Z(V) =

Z(V'). Then minyey oy supp(v) = minycyn\ (o) SUpp(v), maxy ey oy SUpp(v) =
maxyey\{o} SUPP(D)-

Proof. Suppose otherwise, so that without loss of generality, we may assume
that either minyey\ (o) SUpp(v) < minyeyp\ (o} SUPP(v) Or Maxy,ey\ (o} SUpp(v) >
maxyeyn oy Supp(®). Letd, e, dV, d@, d®, d® be the standard basis vectors
and fundamental dominoes of V. First we consider the case min,ey\ (o} supp(v) <
minyeyn (o) supp(v). Write d = d® + f, where f := d® if V is orthodox
and f = —d® if V is deviant, and let v € V’ be the matching vector for d.
Note that the index of d(!) is strictly less than min(supp(v’)). Hence by applying
Lemma 11.6(i) to f, Lemma 11.6(ii) to d (M and Theorem 3.3(i) to v/, we obtain

var(d —v') = var(—v' + f +d V) <var@) +2+1<1+2+1=4.

But we also have d # v’, so var(d —v’) > var(d —v’) — 1 > 5by Lemma 3.4, a
contradiction. We can treat the case maxyey\ (o) SUpp(v) > max,ey\ (o} SUpp(v)
by a similar argument, where if V is orthodox we replace d with e. |

Lemma 11.13. Suppose that V € Grf(; is orthodox and V' € Grf(; is deviant
with Z(V) = Z(V'). Then V N V' contains no orthodox vectors.

Proof. Suppose otherwise that there exists an orthodox v € ¥V N V’. Denote the
standard basis vectors and fundamental dominoes of V and V' by d, e, dV, d®,
d®, d® and d’, ', dV', d®@' 4@ @’ respectively. By Corollary 10.6,
v is a scalar multiple of both ¢’ — d’ and either d or e. After rescaling the vectors
appropriately, we may assume that ¥ equals both ¢’ — d’ and either d or e.

Let w € V be the matching vector for d’, and write —w = ad + Be for
some «, B € R. By Corollary 10.6 we have w # d’, so var(d’ — w) > 5 by
Lemma 3.4, i.e. d’ — w alternates in sign on some / = {i; < --- <ig} C [n —1].
By Lemma 11.3 and Lemma 11.8, d’ — w has an [ -alternating domino sequence
obtained by shuffling (¢, —d®’) and («d®,ad @, Bd®, Bd®), which we
see must equal

(otd(l), d(l)/, (xd(z), ,Bd(3), —d(4)/, ﬂd(4)),
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with 8 > 0. In particular, the index of d @ is strictly less than that of d®’, which
implies ¢’ —d’ # d. Hence ¢’ —d’ = e. Now let x := (1 — B)d’ + Be’ € V', so
that var(x) < 1 by Theorem 3.3(i). We can write ¥ = d’ — w —ad P —ad @, so
by Lemma 11.5,

. . / /
SIgN(X(is,ii5.iey) = sign(d, pd P, —d W', Bd®) = (+. +. - +).
This implies var(x) > 2. O

Lemma 11.14. Let V € Grig be orthodox and V' € Gri% be deviant. Then
Z(\V) £ Z(V).

Proof. Suppose otherwise that Z(V) = Z(V'). Denote the standard basis vectors
and fundamental dominoes of V and V' by d, e, dV,d®, d®, d® and d’, ¢,
dW' qa@' g®' g@' regpectively. Let v,w € V' be the matching vectors for
d,e, whence v # d and w # e by Lemma 11.13. Hence by Lemma 3.4 we have
var(d — v), var(@—w) > 5, so we can take I, J € ([Z]) such that d — v alternates
on / and e — w alternates on J.

Let us write —v = ad’ + Be’ and —w = yd’ + §¢’ for some «, B,y,5 € R.
By Lemma 11.3 and Lemma 11.8, d — v has an [-alternating domino sequence
obtained by shuffling (¢, d®) and (o + B)d V', Bd @', Bd®', —ad@’). By
Lemma 11.12, d@ and d ™' have the same support, say {i,i + 1}. Hence this
shuffle equals

(o + lg)d(l)/’ d(l),ﬁd(z)/, d(2)’ ,Bd(3)/, —ad(4)/)

with @ < 0 and B < 0. Since (d — v); has the same sign as (o + ,B)d(l)/, we have
(d —v); < 0. Similarly, e—=w has a J-alternating domino sequence obtained by
shuffling (d®,d®) and ((y + 8)d V', 84 @', 843’ —yd®"). By Lemma 11.12,
d™ and d®' have the same support, so this shuffle equals

((y + 8)d(1)/, 5d(2)/’ d(3), 5d(3)/, d(4), —yd(4)/),

withy > 0,8 < 0,and y + § > 0. Since (y + 8§)dD’ is the only domino above
whose support contains i, we have (e — w); > 0.
Now let

x:=8(d—-v)—Ble—w)=8d—Be+ (a8 — By)d’, (11.1)

so that x € ker(Z). Note that x # 0, since otherwise d’ € V, contradicting
Corollary 10.6. Hence var(x) > 5 by Theorem 3.3(ii), i.e. x alternates in sign on
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K for some K € ([Z]). By Lemma 11.3 and Lemma 11.8, x has a K-alternating

domino sequence obtained by shuffling
(3d .54, ~pd® . ~pd®) and (@8 py)d V' ~(@s— py)d @),
which necessarily equals
6dD, (a8 — By)d D', 84, —d®, (@8 — fy)d @', —pd®).

Hence x; has the same sign as 8dMW so x; < 0. But B<0,6§<0,(d—-v) <0,
and (e — w); > 0, so we see from (11.1) that x; > 0. O

We can now deduce Theorem 11.1 from Theorem 10.3, Lemma 11.10,
Lemma 11.11, and Lemma 11.14.

12. A non-triangulation for m = 3

In this section we show that the m = 3 amplituhedron is not triangulated by a
seemingly natural collection of cells coming from the BCFW cells for m = 4. As
background, we recall from §4 (in particular, see Remark 4.7) that we have two
sets of I-diagrams D,  » and D, i 1, which give triangulations of A,  »(Z) and
An k.1(Z), respectively. Moreover, we have a bijection D, 41 x 2 — Dy k.1, Which
takes a I-diagram D and deletes its leftmost column.

Analogously, let D,, ; 3 be the set of I-diagrams formed from @-diagrams in
Dy+1,k,4 by deleting the leftmost column, so that we have a bijection D, 11 x4 —
D, k3 given by deleting the leftmost column. (The fact that this is a well-defined
bijection follows from the proof of Lemma 6.4.) To our surprise, we found that the
images under Z of the cells of Gr,f’?l corresponding to D, i 3 do not triangulate
the m = 3 amplituhedron A, x 3(Z), since their images are not mutually disjoint.

For example, consider the @-diagrams

bt r]ofofofofofofo]+]
oo+ [+ oo+ ’
bt ofofofofofofo]+]
*l+o]o +[+]ofol+

in D324, which are both Class 6 @-diagrams from Figure 14. Let D and D/, be
the I-diagrams of type (2, 12) formed from D; and D, by deleting the leftmost
column. Given Z € Mat5>,({2, by the claim in [15, Lemma 4.1], the sign patterns
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of the nonzero vectors in ker(Z) are precisely those with at least 5 sign changes.
In particular ker(Z) contains a vector v € R!? with

Sign(v) = (+7 +7 T T +7 +7 R +’ +7 ) _)'
Now let V1, V> € Griqz be represented by the matrices

V1 Uy 0O 0 O 0 0 0 O 0 V11 V12
V1 Uy 0 0 V5 Vg 0 0 Vg V10 V11 U12’

V1 Uy 0 0 0 0 0 0 0 0 V11 V12
0 O—v3 —1)400—1)7 —1)800 0 0’

respectively. We can check using the network parameterizations coming from the
J-diagrams (Theorem 2.10) that V; € S D/ Vo, e S D} The difference of the two
matrices above is

|:000000000000j|
Up V2 U3z Vg Vs Ve VU7 UVUg Vg UVio Vi1 012’

whose rows are both in ker(Z). Hence Z(V;) = Z(V5), showing that the images
of SD; and SD/2 in A12,2,3(Z) intersect.

Problem 12.1. Can we find 3k-dimensional cells of Gr,i?l, naturally in bijection

with the BCFW cells C,, 11 k4, whose images under Z ‘triangulate’ the m = 3
amplituhedron A,  3(Z)?

Appendix A. Dyck paths and BCFW domino bases
(with Hugh Thomas)

Definition A.1. A Dyck path P is a path in the plane from (0, 0) to (27, 0) for some
n > 0, formed by n up steps (1, 1) and n down steps (1, —1), which never passes
below the x-axis. A local maximum of P is called a peak. Let P, x 4 denote the
set of Dyck paths with 2(n — 3) steps and precisely n — 3 — k peaks. For example,
the Dyck path P shown in Figure 15 is in P12 3 4.

The cardinality of P, x 4 equals the Narayana number N, _3 x4+ [31, A46], the
number of (k, n)-BCFW cells. We will give a bijection £, x 4 <— P, k.4, which
thereby allows us to label the (k,n)-BCFW cells by the Dyck paths P, 4. We
then provide a way to conjecturally obtain k basis vectors for any element of a
BCFW cell from its Dyck path.
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A.1. From pairs of lattice paths to Dyck paths

Definition A.2. To any pair of noncrossing lattice paths (Wy., Wr) € £, k.4, We
associate a Dyck path P(Wy, W) € P, k.4 by the following recursive definition.
(We use + and — to denote up and down steps of a Dyck path, and - to denote
concatenation of paths.)

e If Wy and Wy, are the trivial paths of length zero, then P(Wy, W) := +—.
o If Wy and Wr, both begin with a vertical step, then we can write Wy = V- W[],
W =V -W/. Weset
PWy, W) ==+ P(W,, W) -—.

e Otherwise, let (W/;, W/’) be the final portion of (W, W) starting at the first
overlapping vertical step of Wy and Wy . (If Wy and Wy, have no overlapping
vertical steps, then we let Wy and W/’ be the trivial paths.) Then we can
write Wy = H - W, - Wjj, W, = W[ - H - W/'. We set

P(Wy,Wyr) := P(W[,, W)) - P(Wj, W;").
For example, see Figure 15. This gives us a map

Qro:Lyrs — Pria

which sends (Wy, W) to P(Wy, Wp).

HEEE N

Figure 15. The pair of noncrossing lattice paths in £12 3.4 from Figure 9, and its corre-
sponding Dyck path in P12 3 4.

In order to show that 2 ; » is a bijection, we will define its inverse, which has an
elegant description. As far as we know, these inverse bijections have not appeared
in the literature.

Definition A.3. Let P be a Dyck path. For any point p on P, we let shadow, (P)
be the waterline when we turn P upside-down and fill it with as much water as pos-
sible without submerging p; this is a piecewise linear curve between the endpoints
of P. Let touch,(P) be the number of down steps of P whose right endpoint lies
on shadow, (P) to the right of p, but otherwise does not intersect shadow, (P).
Then we associate a pair of noncrossing lattice paths (Wy (P), WL (P)) to P as
follows.
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e Wi (P) is obtained by reading the up steps of P from left to right, recording
V for every up step followed by an up step and H for every up step followed
by a down step (except for the final up step).

e Let py,..., pi be the left endpoints of the up steps of P which are followed
by an up step, ordered from left to right. We let Wy (P) be such that the
distance between the vertical edges of Wy (P) and Wy (P) in row i equals
touchy, (P)—1,for1 <i <k.

Note that this gives a map
Qo ‘:Pn,k,4 — Ln,k,4,

which sends P to (Wy (P), Wr(P)).

Example A.4. Let P € Py, 3,4 be the Dyck path in Figure 15. Reading the up
steps of P from left to right (and ignoring the final up step), we get Wy (P) =
VVHVHHHH. To find Wy (P), we let pi, pa, p3 denote the left endpoints
of the three up steps of P which are followed by an up step. (See Figure 16.)
Then shadow,, (P) is the portion of the x-axis between the endpoints of P, and
touch,, (P) = 3. We have shadow,, (P) = shadow,,(P), and we can calculate
that touch,, (P) = 5, touch,, (P) = 4. (Note that touch,, (P) = 1 4 touch,, (P),
since p3 contributes to touch,, (P) but not to touch,, (P). Also, we point out that
the first down step of P which ends on the x-axis does not contribute to touch,, (P)
or touch,, (P), since the entire step lies on the shadow.) Therefore Wy (P) is such
that the distances between Wy (P) and Wi (P) in rows 1, 2, and 3 are, respectively,
3—1,5—1,and 4 — 1. This agrees with Figure 15.

touch,, (P) =3

P shadow,, (P)

touch,, (P) =5

_______________________ touch,, (P) = 4
pP3

shadow,, (P) = shadow,, (P)

Figure 16. Calculating shadow, (P) and touch,, (P) for the Dyck path P from Figure 15.



Decompositions of amplituhedra 359
Proposition A.S. The map Qcp: Ly k.4 — Py k.4 is a bijection with inverse Qp .

Proof. We can show that Qp ¢ o Q ¢ is the identity on £, ¢ 4 by induction, using
the recursive nature of Definition A.2. The result then follows from the fact that
|Cn k.4l = Nn—3k+1 = |Pn k.4l (Alternatively, we can verify that Qcp o Qo is
the identity on P, x 4.) O

By Theorem 6.3, the (k, n)-BCFW cells are labeled by the @-diagrams D, x 4.
Therefore the bijection Q9 o 9253: Dy k.4 = Pn ka4 allows us to label the (k, n)-
BCFW cells by P, .4.

A.2. From Dyck paths to domino bases. Recall the definition of an i-domino
from Definition 10.1.

Definition A.6. Given P € P, i 4, label the up steps of P by 1,...,n — 3 from
left to right, and label each down step so that it has the same label as the next up
step. (We label the final down step by n — 2.) We match each up step of P to the
next down step at the same height. Let up; < --- < up, be the labels of the up
steps of P which are followed by an up step, and for i € [k] let down; be the label
of the matching down step of the up step up;.

Now for i = 1,...,k, we define the following dominoes in R”. Let
d® be a positive up;-domino, and let e® be a down;-domino which has sign
(—1)ls€lkl:up; <up;<downi}| "[f the up step up; of P begins on the x-axis, then we
let @ be the n-domino (0, ..., 0, (—1)¥7%). Otherwise, take i’ < i so that up;,
labels the last up step of P before up; which finishes at the same height that up;
begins, and let /@ := (—1)!="""14 ) We set

v = gD 4 o 4 O c g1

We call any k-tuple of linearly independent vectors (v, ..., v®) which we can
obtain in this way a P-domino basis.

Conjecture A.7. Let S C Gr,i?l be a (k,n)-BCFW cell labeled by the Dyck path
P € Py k4. Thenany V € S has a P-domino basis.

Example A.8. Let P € P53 4 be the Dyck path from Figure 15. Then the edges
of P are labeled as follows:
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We see that
up; =1, up, =2, up; =4, down; =8, downy =4, downs = 7.

Then according to Definition A.6, the P-domino bases (v, v® v(3) are pre-
cisely those given by the rows of the matrix

1 2 3 4 5 6 7 8 9 10 11 12
M « B 0000 O0 y 8§ 0 0 1
V@ | =| a B4+ & np 00 0 0 0 0 0|, (Al
v® -« —B 0 ¢ k 0O A w0 0 0 O

where «, 8,y,8,¢,¢,1n,0,t,k,A,u > 0. Let us explain in detail how the third
row, v, is obtained. First, d® is a positive 4-domino, which we take to
be (...,0,t,4,0,...). Now, e¢® is a 7-domino, and is positive since none
of the elements of {1,2,4} are strictly between 4 and 7. We take ¢® to be
(-..,0,A,1,0,...). Finally, the last up step of P before up; which finishes at
the same height that up; begins is up,. Therefore £ = (=1)3~1"1dM and we
have already taken d( = (a, 8,0,...).

We can check that every element of the BCFW cell in Gri({Z labeled by P can
be represented by a unique matrix of the form (A.1), by taking the @-diagram in
Figure 9, performing J-moves to obtain a -diagram, constructing the network
parameterization matrix from Theorem 2.10, and carrying out appropriate row
operations. This verifies Conjecture A.7 in this particular case. It seems likely
that the same method can be used to prove Conjecture A.7 in general. To do
so, one would need to figure out a systematic way to perform the required -
moves and row operations. We also observe that constraining all parameters to be
positive is not sufficient for the element of Grs,1, represented by (A.1) to lie in the
corresponding BCFW cell; we also have the nontrivial inequality nx > 0.

We note in the cases k = 1 and k = 2, Conjecture A.7 follows from the same
arguments used to establish Lemma 9.1 and Theorem 10.3. When k = 2, the P-
domino basis vectors v, v of an element V of a BCFW cell are the rows of the
corresponding matrix in Figure 14, up to rescaling the rows by positive constants.

Remark A.9. If we take P € P, x 4 and delete the 2(n — 3 — k) edges incident
to a peak, we obtain a Dyck path P’ with 2k steps. When k = 2, P’ equals

either «“™s or A, depending on whether the BCFW cell of P is orthodox
or deviant, respectively. In general, it may make sense to divide the (k, n)-BCFW

cells into Cy = k—}rl(zlf) classes, based on P’.
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