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Soliton cellular automata

associated with infinite reduced words

Max Glick, Rei Inoue,1 and Pavlo Pylyavskyy2

Abstract. We consider a family of cellular automata ˆ.n; k/ associated with infinite

reduced elements on the affine symmetric group ySn, which is a tropicalization of the

rational maps introduced in [3]. We study the soliton solutions for ˆ.n; k/ and explore

a duality with the sln-box-ball system.
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1. Introduction

1.1. Soliton cellular automata. A soliton cellular automaton (SCA) is a cellular

automaton which has solitonic solutions. The first example, and a beautiful one at

that, of SCA is the box-ball system (BBS) discovered by Takahashi and Satsuma

in 1990 [17], which is a dynamical system of finitely many balls in an infinite

number of boxes arranged in a line. We will present its concrete definition in §7,

and here we simply show a typical time evolution of BBS:

t D 0W � � � 11222111121111111111111 � � � ;

t D 1W � � � 11111222112111111111111 � � � ;

t D 2W � � � 11111111221221111111111 � � � ;

t D 3W � � � 11111111112112221111111 � � � ;

t D 4W � � � 11111111111211112221111 � � � ;

where 1 and 2 respectively denote an empty box and a box occupied by a ball.

One can observe here the notion of soliton that (i) a soliton (a sequence of balls)

moves to the right with a constant velocity proportional to the size of the soliton

(the length of the sequence), and (ii) a bigger soliton eventually passes a smaller

one, after a scattering with resulting shifts of their locations. The shifts caused by

scattering provide evidence that the BBS is a nonlinear system.

Though the original definition of BBS seems to be far from known integrable

systems, the piecewise-linear equation which describes the system turned out to be

related to the piecewise-linear limit (ultradiscretization or tropicalization) of the

discrete KdV equation [18]. Another remarkable property of BBS is that its initial

value problem is independently solved by using completely different mathematics,

crystal base theory [2, 4] and tropical geometry [9]. (Also see [7] for a review and

a list of references on these topics.) In any of these strategies, the tau-function

plays an important role in describing solutions [5].

We are interested in methods to construct SCA and to study their solutions

applying combinatorics, representation theory and tropical geometry. To this

end, we start with the discrete soliton equations introduced in [3], and study the

corresponding SCA.

1.2. The Coxeter discrete KdV. In [3], two of the authors introduced a new

method to construct dynamical models of discrete space-time coordinates, as-

sociated to a pair of reduced words in the affine symmetric group ySn. Let
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si .i D 0; : : : ; n� 1/ be the generators of ySn with relations:

s2
i D 1;

si siC1si D siC1si siC1;

si sj D sj si ; ji � j j > 1 mod n;

where we take the indices i of si modulo n. Consider a pair u; v of reduced

elements in ySn such that vu is also reduced. Fix reduced decompositions of u and

v, u D si1si2 � � � sil and v D sj1
sj2
� � � sjm

, and assign each si with a real variable a

as si .a/. The dynamics called the Coxeter discrete KdV is defined as the rational

transformation of the `Cm variables assigned to vu, induced by moving v to the

right of u with the use of the Lusztig relations:

si .a/siC1.b/si .c/ D siC1.bc=.aC c//si .aC c/siC1.ab=.aC c//; (1.1)

si .a/sj .b/ D sj .b/si .a/; ji � j j > 1 mod n: (1.2)

Originally these relations were introduced by Lusztig to study the totally positive

parts of algebraic groups and the canonical bases of quantum groups [13, 1]. In

the network model which offers a strong tool in [3], (1.1) is depicted as in Figure 1

and called the Yang–Baxter move [11].
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Figure 1. The Yang–Baxter move.

The important property of the rational transformation studied in [3] is that they

have soliton solutions. By applying the network model to a pictorial representation

of reduced elements in ySn, we identify vertex variables and chamber variables of

the network respectively with the dynamical variables and the tau-functions of the

model. This enables us to reduce the rational transformation to a bilinear equation,

and the multi-soliton solutions are obtained.

1.3. Main results. In this paper, we focus on a family of dynamical system

�.n; k/ .k D 0; 1; : : : ; n � 2/ for n > 2 given by u D s1s2 � � � sn�1 and v D

sksk�1 � � � s0sn�1 � � � skC2. As in the general case, the rational transformations are
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subtraction free because they are built out of Lusztig moves (1.1) and hence can

be written using only the other three arithmetic operations. Hence �.n; k/ has a

tropicalization (or, piecewise-linear version) obtained by replacing .C;�;�/ with

.min;C;�/. We study the tropicalization ˆ.n; k/ of �.n; k/, and mainly consider

the soliton solutions for ˆ.n; k/ on Z.

Our main results are that a form of each soliton for ˆ.n; k/ onZ is parametrized

by .n� 2/ positive integers (Theorem 2.7), and that the evolution rule of the soli-

tons has a duality with that of a well-known soliton cellular automaton called the

sln-box-ball system [2, 4] (Conjecture 7.4, which is a theorem for n D 3; 4). The

second result is clarified via the combinatorial R-matrix acting on the product of

crystals corresponding to the symmetric tensor representation of U 0
q.bsln/. Addi-

tionally, we find that the rational map �.n; k/ is a limit of another R-matrix action

(Proposition 3.1), namely the geometric R-matrix acting on the product of geo-

metric versions of the above (symmetric) crystal and its dual.

We remark that the network model [11] has a potential to be a useful tool to

study integrable rational maps. Once we can formulate the map using a network,

we may get not only the information of bilinear equations as in [3], but also

the combinatorial information of the Lax form. For an example of the latter

application, see [8].

This paper is organized as follows: in Section 2, following [3] we define

the dynamical system and introduce �.n; k/ and ˆ.n; k/. We give the notion

of soliton for ˆ.n; k/ in §2.4, and state the first main result at Theorem 2.7.

In Section 3, the explicit formula for �.n; k/ and the relation to the geometric

R-matrix is shown (Proposition 3.1). In Section 4, by making use of the pictorial

representation of reduced words in ySn, the tau-function and the bilinear equation

for the model are obtained. Sections 5 and 6 are devoted to computing soliton

solutions for ˆ.n; k/ in different two ways. We compute the tropicalization of the

geometric solutions for �.n; k/ obtained in [3] in Section 5, and see that almost

all geometric solutions vanish in tropicalization except for the simplest ones. In

Section 6, we naively solve the tropical bilinear equations and prove Theorem 2.7.

In Section 7, we study the duality between the soliton solutions for ˆ.n; k/ and the

sln-box-ball system. After a brief introduction of the box-ball system, we present

Conjecture 7.4. We explain a strategy to prove it in §7.3, and give the proof in the

cases of n D 3 and 4 in §7.4 and §7.5 respectively. In the last section, we present

other interesting numerical phenomena for ˆ.n; k/, including negative solitons,

pulsars, and relaxations of solitons and pulsars. We add Appendix A.1 to explain

the basics of the tropical semifield used in this paper.
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2. Description of the model

2.1. Discrete dynamical system in infinite reduced words. Following [3], we

introduce a discrete dynamical system associated to a pair of reduced words.

Define an automorphism � on the affine symmetric group ySn by �.si / D siC1.

Let � be a homomorphism from ySn to the symmetric group Sn given by �.si / D

.i; i C 1/ (as usual, i is considered modulo n). We call a reduced element g 2 ySn

a glide, when

�.g/ D

�
1 2 � � � n � k n � k C 1 � � � n

1C k 2C k � � � n 1 � � � k

�

holds for some k D 0; 1; : : : ; n� 1. We call this k the offset of the glides.

Fix the expressions of two glides u D si1si2 � � � sil and v D sj1
sj2
� � � sjm

, and

assume that vu is reduced. Let k1 and k2 be the offsets of u and v respectively.

By [3, Lemma 2.1], we have

vu D �k2.u/��k1.v/: (2.1)

Consider an (semi-)infinite word

u � ��k1.u/ � ��2k1.u/ � ��3k1.u/ � � � :

Put v on the left side of the infinite word, and move it to the right using (2.1):

v � u � ��k1.u/ � ��2k1.u/ � ��3k1.u/ � � �

D �k2.u/ � ��k1.v/ � ��k1.u/ � ��2k1.u/ � ��3k1.u/ � � �

:::

D �k2.u/ � ��k1Ck2.u/ � ��2k1Ck2.u/ � ��3k1Ck2.u/ � � � :

(2.2)

At the first line of (2.2), we assign the positive variable z0 D .z0;1; : : : ; z0;m/

to v as sj1
.z0;1/ � � � sjm

.z0;m/ and the positive variable yi D .yi;1; yi;2; : : : ; yi;l/

to ��ik1.u/ as si1�ik1
.yi;i1/ � � � sil �ik1

.yi;il / for i 2 Z�0. By using the Lusztig

relations, we define a rational transformation of the parameters corresponding

to (2.2);

.z0; y0; y1; y2; y3; : : :/ 7�! .y0
0; z1; y1; y2; y3; : : :/

:::

7�! .y0
0; y0

1; y0
2; y0

3; : : : ; z1/;

(2.3)

where .zi ; yi/ is transformed into .y0
i ; ziC1/ corresponding to ��ik1.v/���ik1.u/ D

��ik1Ck2.u/ � ��.iC1/k1.v/. We call each yi a state, and each zi a carrier.
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A commuting pair for u and v is a choice of w D .w1; : : : ; wl/ and z D

.z1; : : : ; zm/ satisfying

sj1
.z1/sj2

.z2/ � � � sjm
.zm/ � si1.w1/si2.w2/ � � � sil .wl/

D si1Ck2
.w1/si2Ck2

.w2/ � � � sil Ck2
.wl/ � sj1�k1

.z1/sj2�k1
.z2/ � � � sjm�k1

.zm/:

We call such w and z a vacuum state and an initial carrier respectively.

We fix a commuting pair .w; z/, we set z0 D z, and we assume limi!1 yi D w.

For t > 0, define .yt
i/i2Z�0

inductively by

.z; yt
0; yt

1; yt
2; yt

3; : : :/ 7�! .ytC1
0 ; ytC1

1 ; ytC1
2 ; ytC1

3 ; : : :/: (2.4)

Empirically, at the end of each step the final carrier z1 equals the initial one z and

the new states again satisfy limi!1 ytC1
i D w.

Remark 2.1. For the sake of exposition, we have simplified the system from [3]

wherein the state sequence : : : ; y�1; y0; y1; y2; : : : is bi-infinite and assumed to

approach w in both directions. The description above corresponds to the special

case in which yi D w for all i < 0. To properly define the general system one

must insert the initial carrier farther and farther left and take a limit. We ignore

this issue, because our focus will be on the tropicalization of the system for which

it is consistent to assume for each t that only finitely many yt
i differ from w.

2.2. Dynamical system �.n; k/. Let us focus on the case that both u and v have

length n � 1 as

u D s1s2s3 � � � sn�1; (2.5a)

v D v.k/ D sksk�1 � � � s0sn�1 � � � skC2; for k D 0; 1; : : : ; n� 2; (2.5b)

whose offsets are k1 D 1 and k2 D n � 1 respectively.

Lemma 2.2. The following pair .w; z/ is a commuting pair for .u; v.k//:

z D .˛k � ˛kC1; ˛k�1 � ˛kC1; : : : ;

˛1 � ˛kC1; ˛n � ˛kC1; ˛n�1 � ˛kC1; : : : ; ˛kC2 � ˛kC1/;

w D .˛n � ˛1; ˛n � ˛2; : : : ; ˛n � ˛n�1/;

where we assume ˛kC1 < ˛i < ˛n for i D ¹1; : : : ; n�1º n ¹kC1º, and the indices

i of ˛i are taken modulo n.

Proof of Lemma 2.2. To the wiring diagram of v.k/u introduced at Figure 4 in

§4.2, we apply the wire ansatz in [3, Section 4] by replacing ˛i with �˛i on the

i-th wire. �
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We write �.n; k/ for the dynamical system (2.4) given by the two glides u and

v.k/ of (2.5) together with the commuting pair of Lemma 2.2.

Example 2.3. The system �.3; 1/ corresponds to the words u D s1s2, v D s1s0.

The equation (2.1) reads

vu D s1s0s1s2 D s0s1s0s2 D �2.u/��1.v/

which follows from a single braid move. By (1.1) the weights evolve according to

..zt
i;1; zt

i;2/; .yt
i;1; yt

i;2// 7�!..ytC1
i;1 ; ytC1

i;2 /; .zt
iC1;1; zt

iC1;2//

D
�� zt

i;2yt
i;1

zt
i;1C yt

i;1

; zt
i;1C yt

i;1

�
;
� zt

i;1zt
i;2

zt
i;1 C yt

i;1

; yt
i;2

��
:

(2.6)

The commuting pair is z D .˛1 � ˛2; ˛3 � ˛2/, w D .˛3 � ˛1; ˛3 � ˛2/ and one

can check easily from the formula that .z; w/ 7! .w; z/ does hold. The full system

inputs yt
0; yt

1; : : : with limi!1 yt
i D w and uses (2.6) (with zt

0 D z) to calculate

the ytC1
i .

2.3. Tropical dynamical system ˆ.n; k/. For A; B; C 2 R, we define the

tropicalization of the Lusztig relations (1.1) and (1.2) as

si .A/siC1.B/si .C / D siC1.A0/si .B
0/siC1.C 0/; (2.7)

si .A/sj .B/ D sj .B/si .A/; for ji � j j > 1 mod n; (2.8)

where

.A0; B 0; C 0/ WD .B C C �min.A; C /; min.A; C /; AC B C�min.A; C //:

See Appendix A for preliminaries on tropicalization. It is straightforward to

tropicalize Lemma 2.2.

Lemma 2.4. The following pair .W; Z/ is a tropical commuting pair for .u; v.k//:

Z D .Ak; Ak�1; : : : ; A1; An; An�1; : : : ; AkC2/; W D .An; An; : : : ; An/; (2.9)

where we assume

AkC1 > Ai > An; i 2 ¹1; : : : ; n� 1º n ¹k C 1º: (2.10)

Using the tropical Lusztig relations for the glides u and v.k/ of (2.5) we define

the piecewise-linear transformation of the real variables Zi D .Zi;1; : : : ; Zi;n�1/

and Yi D .Yi;1; Yi;2; : : : ; Yi;n�1/ for i 2 Z�0 in the same way as (2.3).



256 M. Glick, R. Inoue, and P. Pylyavskyy

We write ˆ.n; k/ for the tropical dynamical system given by the two glides (2.5)

and the commuting pair (2.9). As in the rational case, we call each Zi and each

Yi a carrier and a state respectively. Also, we call W the vacuum state, and Z the

initial carrier.

Example 2.5. Corresponding to Example 2.3, we have ˆ.3; 1/ given by

..Zt
i;1; Zt

i;2/; .Y t
i;1; Y t

i;2//

7�! ..Y tC1
i;1 ; Y tC1

i;2 /; .Zt
iC1;1; Zt

iC1;2//

D ..Zt
i;2 C Y t

i;1 �minŒZt
i;1; Y t

i;1�; minŒZt
i;1; Y t

i;1�/;

.Zt
i;1 CZt

i;2 �minŒZt
i;1; Y t

i;1�; Y t
i;2//

(2.11)

with the commuting pair Z D .A1; A3/ and W D .A3; A3/.

In this paper, we mainly study the tropical dynamics on Z � R. In particular

we consider the case with An D 0, Ai D 1 for i D ¹1; : : : ; n � 1º n ¹k C 1º, and

AkC1 > 1, so that the commuting pair is

Z D .1; : : : ; 1„ ƒ‚ …
k

; 0; 1; : : : ; 1„ ƒ‚ …
n�2�k

/; W D .0; : : : ; 0/: (2.12)

2.4. Solitons. We define a one-soliton for ˆ.n; k/ to be a finite sequence X1; : : : ;

Xm of non-vacuum states satisfying the following conditions.

(i) The sequence moves to the right with a constant velocity, i.e. for some a and

b the input

X1; : : : ; XM ; W; W; : : :

is carried under a steps of ˆ.n; k/ to

W; : : : ; W„ ƒ‚ …
b

; X1; : : : ; XM ; W; W; : : : :

(ii) For each t , the final carrier equals the initial one, i.e. Zt
i D Z for i � 0

(unlike the rational case, we know of inputs for which this condition fails,

see Section 8.2).

An amazing feature of soliton systems is the existence of multi-soliton solutions,

which we define in our setting to be an input consisting of several one-solitons

separated by vacuums such that

(iii) for t � 0 the outcome is a collection of one-solitons, arranged in increasing

order of velocity from left to right, with the same set of veloicities as the

initial solitons.
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We will see that different one-solitons can have the same speed and in particular

that the components of a multi-soliton for t � 0 may differ from the initial ones.

For two states Yt
i and Yt 0

i 0 , we say Yt
i is bigger than Yt 0

i 0 , if Y t
i;j � Y t 0

i 0;j for all

j D 1; : : : ; n � 1 and there is at least one j such that Y t
i;j > Y t 0

i 0;j . In the same

manner, we say Yt
i is smaller than Yt 0

i 0 , if Y t
i;j � Y t 0

i 0;j for all j D 1; : : : ; n� 1 and

there is at least one j such that Y t
i;j < Y t 0

i 0;j . We say a soliton is positive (resp.

negative) when all states of the soliton are bigger (resp. smaller) than the vacuum

state.

The following are several examples of positive solitons, where we show .Yt
i /i

for each t .

Example 2.6. One-solitons.

(i) ˆ.3; 1/:

t D 0W .00/.31/.00/.00/.00/.00/.00/.00/.00/;

t D 1W .00/.21/.10/.00/.00/.00/.00/.00/.00/;

t D 2W .00/.11/.20/.00/.00/.00/.00/.00/.00/;

t D 3W .00/.01/.30/.00/.00/.00/.00/.00/.00/;

t D 4W .00/.00/.31/.00/.00/.00/.00/.00/.00/;

t D 5W .00/.00/.21/.10/.00/.00/.00/.00/.00/:

(ii) ˆ.4; 1/:

t D 0W .000/.312/.000/.000/.000/.000/.000/;

t D 1W .000/.212/.100/.000/.000/.000/.000/;

t D 2W .000/.112/.200/.000/.000/.000/.000/;

t D 3W .000/.012/.300/.000/.000/.000/.000/;

t D 4W .000/.002/.310/.000/.000/.000/.000/;

t D 5W .000/.001/.311/.000/.000/.000/.000/;

t D 6W .000/.000/.312/.000/.000/.000/.000/;

t D 7W .000/.000/.212/.100/.000/.000/.000/:

For a one-soliton we define its minimal length to be the minimal lattice length

the soliton occupies in propagation. We also define the velocity of a soliton, which

is the ratio of the minimal number of time steps it takes to recover the initial

sequence and the lattice length it propagates during the time steps (in the notation

of (i), velocity D b=a) . In the first case of Example 2.6, the soliton occupies
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one lattice at t D 0; 4 and two lattices at t D 1; 2; 3; 5. The sequence at t D 0 is

recovered at t D 4, moving one lattice to the right. Hence it has minimal length

one, and velocity 1=4. Similarly, the soliton in the second case has minimal length

one, and velocity 1=6.

Theorem 2.7. Consider the system ˆ.n; k/ on Z with commuting pair (2.12).

Then

X D .b1; b2; : : : ; bn�1/

is a one-soliton with minimal length one for any b1; : : : ; bn�12Z�1 with bkC1D1.

Its velocity is .
Pn�1

kD1 bk/�1.

In principle one can verify that X above is a soliton directly using formulas

for the system we develop in §3. Instead we give the proof in §6 at which point

we are able to give explicit descriptions of one-solitons in terms of tau-functions

(Proposition 6.7). One upshot of this approach is that it mimics what is done

for similar systems and suggests that Theorem 2.7 gives all positive solitons (and

in particular, all positive solitons have minimal length one). Moreover, the tau-

functions could be useful in constructing multi-solitons, which we demonstrate in

the case of n D 3.

To denote a positive soliton we use the form at the minimal length of Theo-

rem 2.7, and call it the minimal form of the soliton. For example, in Example 2.6

the one-solitons have the minimal forms .3; 1/ for (i) and .3; 1; 2/ for (ii). In the

rest we often call a positive soliton just a soliton.

Here are examples of soliton scatterings whose combinatorial property will be

studied in §7.

Example 2.8. Two-solitons.

(i) The case of ˆ.3; 1/; .1; 1/ � .3; 1/ 7! .3; 1/� .1; 1/:

t D 0W .00/.11/.00/.31/.00/.00/.00/.00/.00/.00/.00/.00/;

t D 1W .00/.01/.10/.21/.10/.00/.00/.00/.00/.00/.00/.00/;

t D 2W .00/.00/.11/.11/.20/.00/.00/.00/.00/.00/.00/.00/;

t D 3W .00/.00/.01/.20/.21/.00/.00/.00/.00/.00/.00/.00/;

t D 4W .00/.00/.00/.21/.11/.00/.00/.00/.00/.00/.00/.00/;

t D 5W .00/.00/.00/.11/.20/.11/.00/.00/.00/.00/.00/.00/;

t D 6W .00/.00/.00/.01/.30/.01/.10/.00/.00/.00/.00/.00/;

t D 7W .00/.00/.00/.00/.31/.00/.11/.00/.00/.00/.00/.00/:
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(ii) The case of ˆ.4; 1/; .2; 1; 1/� .3; 1; 2/ 7! .4; 1; 1/� .1; 1; 2/:

t D 0W .000/.211/.001/.311/.000/.000/.000/.000/.000/.000/;

t D 1W .000/.111/.100/.312/.000/.000/.000/.000/.000/.000/;

t D 2W .000/.011/.200/.212/.100/.000/.000/.000/.000/.000/;

t D 3W .000/.001/.210/.112/.200/.000/.000/.000/.000/.000/;

t D 4W .000/.000/.211/.012/.300/.000/.000/.000/.000/.000/;

t D 5W .000/.000/.111/.102/.310/.000/.000/.000/.000/.000/;

t D 6W .000/.000/.011/.201/.311/.000/.000/.000/.000/.000/;

t D 7W .000/.000/.001/.210/.312/.000/.000/.000/.000/.000/;

t D 8W .000/.000/.000/.211/.212/.100/.000/.000/.000/.000/;

t D 9W .000/.000/.001/.111/.302/.110/.000/.000/.000/.000/;

t D 10W .000/.000/.000/.011/.401/.111/.000/.000/.000/.000/;

t D 11W .000/.000/.000/.001/.410/.112/.000/.000/.000/.000/;

t D 12W .000/.000/.000/.000/.411/.012/.100/.000/.000/.000/;

t D 13W .000/.000/.000/.000/.311/.102/.110/.000/.000/.000/;

t D 14W .000/.000/.000/.000/.211/.201/.111/.000/.000/.000/:

where the change of internal structure of solitons is observed.

The behavior witnessed in these and other examples suggest the following.

Conjecture 2.9. Combining positive solitons gives rise to multi-soliton solutions

as in condition (iii) at the beginning of this subsection.

In the cases of n D 3; 4, this conjecture is a theorem which follows from the

duality with the sln-box-ball system proved in §7.4 and §7.5.

3. The formula for �.n; k/

Let xR be a rational map on Q.p; q/ with non-negative variables p D .pi /iD1;:::;n,

q D .qi/iD1;:::;n, given by xRW .p; q/ 7! .q0; p0/;

p0
i D pi

piC1 C qiC1

pi C qi

; q0
i D qi

piC1 C qiC1

pi C qi

: (3.1)

This map originates from the geometric version of the combinatorial R-matrix,

the isomorphism between the tensor products of crystals B xm ˝ B`

�
! B` ˝ B xm.
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Here B` is the crystal corresponding to the `-fold symmetric tensor representation

of U 0
q.bsln/, and B Ǹ is the dual of B`. As a set, B` and B Ǹ are the same:

B` D B Ǹ D
°
x D .x1; x2; : : : ; xn/ 2 .Z�0/nW

nX

iD1

xi D `
±
: (3.2)

See [11, §3.1 and §11.9] for details of the map xR.

Proposition 3.1. The transformation .zi ; yi/ 7! .y0
i ; ziC1/ of the dynamical

system �.n; k/ is described by xR, by setting

p D .zi;kC1; zi;kC2; : : : ; zi;n�1; 0; zi;1; zi;2; : : : ; zi;k/;

q D .0; yi;n�1; yi;n�2; : : : ; yi;kC2; yi;kC1; yi;k; : : : ; yi;1/:

More explicitly, the transformation .zi ; yi/ 7! .y0
i ; ziC1/ is given by

y0
i;j D yi;j

zi;kC2�j C yi;j �1

zi;kC1�j C yi;j

; ziC1;j D zi;j

zi;j C1 C yi;k�j

zi;j C yi;kC1�j

: (3.3)

Here we assume that the second subscript j of zi;j and yi;j is taken modulo n,

and set yi;n D zi;n D 0.

First let us prove the following lemma. Assuming yi;0 D zi;0 D 0, denote

y00
i;j D yi;j

zi;kC2�j C yi;j �1

zi;kC1�j C yi;j

; z00
iC1;j D zi;j

zi;j C1 C yi;k�j

zi;j C yi;kC1�j

: (3.4)

Lemma 3.2. For any j we have

sj .zi;kC1�j /sj �1.zi;kC2�j C yi;j �1/sj .yi;j /

D sj �1.y00
i;j /sj .zi;kC1�j C yi;j /sj �1.z00

iC1;kC1�j /:

Proof. Direct substitution:

.zi;kC2�j C yi;j �1/yi;j

zi;kC1�j C yi;j

D y00
i;j ;

zi;kC1�j .zi;kC2�j C yi;j �1/

zi;kC1�j C yi;j

D z00
iC1;kC1�j : �
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Now we are ready to prove the proposition.

Proof of Proposition 3.1. By the commutativity relations

sk.zi;1/ : : : sj .zi;kC1�j / : : : skC2.zi;n�1/s1.yi;1/ : : : sj .yi;j / : : : sn�1.yi;n�1/

D sk.zi;1/ : : : s1.zi;k/s0.zi;kC1/s1.yi;1/ : : : sk.yi;k/

� sn�1.zi;kC2/ : : : skC2.zi;n�1/skC1.yi;kC1/skC2.yi;kC2/ : : : sn�1.yi;n�1/:

Applying the lemma several times we see that

sk.zi;1/ : : : s1.zi;k/s0.zi;kC1/s1.yi;1/ : : : sk.yi;k/

D sk.zi;1/ : : : s1.zi;k/s0.zi;kC1 C yi;0/s1.yi;1/ : : : sk.yi;k/

D s0.y00
i;1/sk.zi;1/ : : : s2.zi;k�1/s1.zi;k C yi;1/s2.yi;2/ : : : sk.yi;k/s0.z00

iC1;k/

:::

D s0.y00
i;1/ : : : sk�1.y00

i;k/sk.zi;1 C yi;k/sk�1.z00
iC1;1/ : : : s0.z00

iC1;k/

D s0.y00
i;1/ : : : sk�1.y00

i;k/sk.y00
i;kC1/sk�1.z00

iC1;1/ : : : s0.z00
iC1;k/:

Similarly, by application of the lemma, we get

sn�1.zi;kC2/ : : : skC2.zi;n�1/skC1.yi;kC1/skC2.yi;kC2/ : : : sn�1.yi;n�1/

D sn�1.zi;kC2/ : : : skC2.zi;n�1/skC1.zi;0 C yi;kC1/skC2.yi;kC2/ : : :

� sn�1.yi;n�1/

:::

D skC1.y00
i;kC2/ : : : sn�2.y00

i;n�1/sn�1.zi;kC2 C yi;n�1/sn�2.z00
iC1;kC2/ : : :

� skC1.z00
iC1;n�1/

D skC1.y00
i;kC2/ : : : sn�2.y00

i;n�1/sn�1.z00
iC1;kC1/ : : : skC1.z00

iC1;n�1/:

Putting the two parts together we get

s0.y00
i;1/ : : : sk�1.y00

i;k/sk.y00
i;kC1/sk�1.z00

iC1;1/ : : : s0.z00
iC1;k/

� skC1.y00
i;kC2/ : : : sn�2.y00

i;n�1/sn�1.z00
iC1;kC1/ : : : skC1.z00

iC1;n�1/

D s0.y00
i;1/ : : : sk�1.y00

i;k/sk.y00
i;kC1/skC1.y00

i;kC2/ : : : sn�2.y00
i;n�1/

� sk�1.z00
iC1;1/ : : : s0.z00

iC1;k/sn�1.z00
iC1;kC1/ : : : skC1.z00

iC1;n�1/

D s0.y00
i;1/ : : : sn�2.y00

i;n�1/sk�1.z00
iC1;1/ : : : skC1.z00

iC1;n�1/:

This separates into a carrier with parameters z00
iC1;j and a state with parameters

y00
i;j . We conclude that y0

i;j D y00
i;j and ziC1;j D z00

iC1;j , as desired. �
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In the following, we use the same notation �.n; k/ to denote the map on

.Rn�1
>0 /2 which comprises the dynamics �.n; k/, so we write

�.n; k/W .zi ; yi/ 7�! .y0
i ; ziC1/:

Let � be a map on Rn�1 given by

a D .a1; a2; : : : ; an�1/ 7�! .an�1; an�2; : : : ; a1/;

and let Q� be the map on .Rn�1/2 given by

.a; b/ 7�! .�.b/; �.a//:

Proposition 3.3. As maps on .Rn�1
>0 /2, it holds that

�.n; n� 2� k/ D Q� ı ��1.n; k/ ı Q� (3.5)

for k D 0; 1; : : : ; n� 2.

Proof. For .z; y/ D .zj ; yj /j D1;:::;n�1 we show

�.n; n� 2 � k/ ı Q� ı �.n; k/.z; y/ D Q�.z; y/

by a direct calculation. From (3.3) we write

.z0; y0/ WD �.n; k/.z; y/ D
�
yj

zkC2�j C yj �1

zkC1�j C yj

; zj

zj C1 C yk�j

zj C ykC1�j

�
j D1;:::;n�1

;

where we assume zn D yn D 0. By substituting this into

�.n; n� 2 � k/ ı Q�.z0; y0/

D
�
y0

n�j

z0
kCj
C y0

n�j C1

z0
kC1Cj

C y0
n�j

; z0
n�j

z0
n�j �1 C y0

kC2Cj

z0
n�j C y0

kC1Cj

�
j D1;:::;n�1

;

we see the claim. �

4. Chamber variables

As is typical in integrable systems, we will express various solutions to our

systems in terms of tau-functions, by applying Hirota’s bilinear method [5].

A tau-function can be though of as an auxiliary collection of variables that have

relations among themselves imposed by the original evolution equations. Before

proceeding, we define certain networks which provide a good visualization of how

the tau-functions fit in.
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4.1. Wiring diagram and chamber variables. Following [3] we use the net-

work model introduced in [11] to describe our system. Consider a semi-infinite

cylinder with n horizontal directed wires forming an infinite wiring diagram,

which is a pictorial representation of an infinite reduced word in ySn. Away from

the crossings, the n wires run along the cylinder at n positions, and correspond-

ing to si 2 ySn we cross the wires in positions i and i C 1. Corresponding to the

parametrized version si .a/ of si , we assign the crossing with a, and call it a vertex

variable. The Lusztig relation (1.1) corresponds to the Yang–Baxter move of the

wires in positions i , i C 1 and i C 2 as in Figure 1.

For i D 1; : : : ; n, let ei be the i-th unit vector in Zn. For integers 1 � i; j � n,

we set

eŒi;j � D

´Pj

kDi
ek if i � j;

0 if i > j:

For S 2 Zn, we often write Si for S C ei , and ŒS� for the class of S in Zn=Z eŒ1;n�.

Following [3, §5.1] (cf. [1]), we label the chambers of the wiring diagram with

elements of Zn=Z eŒ1;n�, and at the left end of wires, label the wire at position i

with ˛i 2 R>0. Fix a label of one chamber, and extend it to the others by labeling

the surrounding four chambers at each crossing of the wires, as shown in Figure 2.

✟✟✟✟✟✟✟✟✟✟✟✟✯❍❍❍❍❍❍❍❍❍❍❍❍❥

s

a

˛i

j̨

ŒS�

ŒSi;j �

ŒSi � ŒSj �

Figure 2. Chamber labeling at the crossing of wires ˛i and j̨ , where a is the vertex variable

associated with this crossing.

The chamber variables make up a tau-function denoted � whose domain is Zn.

We assume � is periodic on a cylinder:

�.S C eŒ1;n�/ D �.S/: (4.1)

The enriched Yang–Baxter move, see Figure 3, corresponds to the relation among

the chamber variables

.˛i � ˛k/�.Sj / �.Si;k/ D .˛i � j̨ /�.Sk/ �.Si;j /C . j̨ � ˛k/�.Si/ �.Sj;k/:

(4.2)
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�
�❅

❅
❅

✲

✲

✲

˛i

j̨

˛k

ra

rb

rc

ŒS�

ŒSi � ŒSj � ŒSk �

ŒSi;j � ŒSj;k �

ŒSi;j;k �

 !

❅
❅
❅

❅
❅
❅�

�
�

�
�
�

❅
❅
❅�

�
�

✲

✲

✲

˛i

j̨

˛k

rc0

rb0

ra0

ŒSi;j;k �

ŒSi;j � ŒSi;k � ŒSk;j �

ŒSi � ŒSk �

ŒS�

Figure 3. The enriched Yang–Baxter move, where .a0; b0; c0/ D
�

bc
aCc

; aC c; ab
aCc

�
.

Remark 4.1. Several names are used in the literature for the enriched Yang–

Baxter move: Hirota bilinear difference equation [20], discrete analogue of gen-

eralized Toda equation and lattice KP equation [16], bilinear lattice KP equa-

tion [21], or Hirota–Miwa equation [12]. It goes back to the works of Miwa [15]

and Hirota [5].

The following lemma is shown easily [3, Lemma 3.1]:

Lemma 4.2. The enriched Yang–Baxter move on chamber variables (4.2) induces

the Yang–Baxter move (1.1) on vertex variables via the transformation:

a D .˛i � j̨ /
�.Si;j / �.S/

�.Si/ �.Sj /
(4.3)

with labels as in Figure 2.

4.2. The tau-function for �.n; k/. We start with the wiring diagram of the semi-

infinite word (2.2) with u and v D v.k/ given by (2.5), as depicted at Figure 4. At

the left end of the diagram, the wire at position i is assigned with ˛i 2 R>0, and

the chamber between the n-th and the 1-st wires is labelled with 0 2 Zn. From

the diagram we see that n � 2 Yang–Baxter moves are applied in calculating the

dynamics of �.n; k/, .zt
i ; yt

i/ 7! .ytC1
i ; zt

iC1/, hence the corresponding enriched

Yang–Baxter moves give n � 2 relations among chamber variables:

.˛n � ˛kC1/ �.eŒ1;p�1� C ekC1/ �.eŒ1;p� � en/

D.˛n � p̨/ �.eŒ1;p�1� C ekC1 � en/ �.eŒ1;p�/

C . p̨ � ˛kC1/ �.eŒ1;p�1�/ �.eŒ1;p� C ekC1 � en/I p D 1; : : : ; k;

(4.4)

.˛n � ˛kC1/ �.eŒ1;kCp� C ekC1/ �.eŒ1;kCpC1� � en/

D.˛n � ˛kCpC1/ �.eŒ1;kCp� C ekC1 � en/ �.eŒ1;kCpC1�/

C .˛kCpC1 � ˛kC1/ �.eŒ1;kCp�/ �.eŒ1;kCpC1� C ekC1 � en/;

(4.5)

for p D 1; : : : ; n� k � 2:
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ekC1

e1 C ekC1

eŒ1;2� C ekC1

eŒ1;kC1�

eŒ1;kC2�

eŒ1;n�1�

eŒ1;n�

eŒ1;kC1� C ekC1

eŒ1;kC2� C ekC1

eŒ1;n�1� C ekC1

eŒ1;n� C ekC1 eŒ1;n� C e1 C ekC1

e1 C ekC1 � en

eŒ1;2� C ekC1 � en

eŒ1;kC1� � en

eŒ1;kC1� C ekC1 � en

eŒ1;kC2� C ekC1 � en

z1

z2

zk

zkC1

zkC2

zn�1

zkC2

zkC1

zk

y1

y2

yk

ykC1

ykC2

yn�1

y1

Figure 4. The wiring diagram for v.k/u on the universal covering of a cylinder. A fundamental domain is between two dashed lines.
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For a glide g 2 ySn we define its trajectory �.g/ 2 Zn in the following way:

draw the wiring diagram of g, and label the wire at position i with ˛i at the left

end. Let S (resp. S 0) be the label of the chamber between wires 1 and 2 at the

leftmost (resp. rightmost) point of the diagram for g. Then the trajectory of g is

�.g/ WD S 0 � S .

Lemma 4.3. (i) The trajectories of v WD v.k/ and Qu WD �n�1.u/ are

�. Qu/ D �en; �.v/ D ekC1: (4.6)

(ii) When we label the chamber to the left of the vertex ytD0
0;j with S 2 Zn, then

that of the vertex yt
i;j is

S C i�. Qu/ � t�.v/:

Proof. (i) The trajectory �.v/ is the difference of the labels of the left chamber of

y2 and the left chamber of zk , which is .e1 C ekC1/ � e1. Since the offset of v is

k2, in the diagram the vertex of y1 is a crossing of the wires n and 1. Hence the

difference of the labels of the right chamber of zkC1 and the left chamber of y1,

.ekC1 � en/ � ekC1, is the trajectory of �n�1.u/.

(ii) It follows from [3, Proposition 5.4]. �

Label the left chamber of zt
i;kC1

with �. Qu/i � �.v/t , and define

� i;t.S/ WD �.S C �. Qu/i � �.v/t/ (4.7)

for S 2 Zn. The following proposition immediately follows from Lemma 4.2.

Proposition 4.4. For i; t 2 Z, set

� for p D 1; : : : ; n� 1;

yt
i;p D .˛n � p̨/

� i;t .ekC1 C eŒ1;p�/ � i;t.ekC1 � en C eŒ1;p�1�/

� i;t .ekC1 C eŒ1;p�1�/ � i;t.ekC1 � en C eŒ1;p�/
I (4.8a)

� for p D 1; : : : ; k;

zt
i;p D .˛kC1�p � ˛kC1/

� i;t.ekC1 C eŒ1;kC1�p�/ � i;t.eŒ1;k�p�/

� i;t.eŒ1;kC1�p�/ � i;t.eŒ1;k�p� C ekC1/
I (4.8b)

� for p D 1; : : : ; n� k � 1;

zt
i;kCp D .˛nC1�p � ˛kC1/

� i;t.ekC1 C eŒ1;n�pC1�/ � i;t.eŒ1;n�p�/

� i;t.eŒ1;n�pC1�/ � i;t.ekC1 C eŒ1;n�p�/
: (4.8c)

Then a solution of (4.4) and (4.5) gives the solution for ˆ.n; k/.
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Via tropicalization, we see the following facts. Let T be the tropical chamber

variables (tau-functions) on Zn satisfying the tropicalization of (4.4) and (4.5):

� for p D 1; : : : ; k;

T .eŒ1;p�1� C ekC1/C T .eŒ1;p� � en/

D minŒT .eŒ1;p�1� C ekC1 � en/C T .eŒ1;p�/;

Ap � An C T .eŒ1;p�1�/C T .eŒ1;p� C ekC1 � en/�I

(4.9)

� for p D 1; : : : ; n� k � 2,

T .eŒ1;kCp� C ekC1/C T .eŒ1;kCpC1� � en/

D minŒT .eŒ1;kCp� C ekC1 � en/C T .eŒ1;kCpC1�/;

AkCpC1 � An C T .eŒ1;kCp�/C T .eŒ1;kCpC1� C ekC1 � en/�:

(4.10)

A solution for these equations gives that of ˆ.n; k/ as follows:

� for p D 1; : : : ; n� 1;

Y t
i;p D An C T i;t.ekC1 C eŒ1;p�/C T i;t.ekC1 � en C eŒ1;p�1�/

� T i;t .ekC1 C eŒ1;p�1�/ � T i;t .ekC1 � en C eŒ1;p�/I
(4.11a)

� for p D 1; : : : ; k;

Zt
i;p D AkC1�p C T i;t .ekC1 C eŒ1;kC1�p�/C T i;t.eŒ1;k�p�/

� T i;t .eŒ1;kC1�p�/ � T i;t.eŒ1;k�p� C ekC1/I
(4.11b)

� for p D 1; : : : ; n� k � 1;

Zt
i;kCp D AnC1�p C T i;t.ekC1 C eŒ1;n�pC1�/C T i;t.eŒ1;n�p�/

� T i;t .eŒ1;n�pC1�/ � T i;t .ekC1 C eŒ1;n�p�/:
(4.11c)

Here we set T i;t.S/ D T .S C �. Qu/i � �.v/t/.

5. Soliton solutions for ˆ.n; k/ via tropicalization of geometric solution

We study the soliton solution for ˆ.n; k/ on R by tropicalizing those for �.n; k/

on R>0 in [3]. In this section we prove the following theorem.
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Theorem 5.1. Tropicalizing the soliton solutions for �.n; k/ studied in [3], we get

the soliton solutions for ˆ.n; k/ whose minimal form is .x; : : : ; x/ for An < x < A,

where A D minŒAi I i 2 ¹1; : : : ; n � 1º n ¹k C 1º�. Their velocity is 1=.n � 1/,

independent of x.

Besides the condition (2.10), for simplicity we assume that all Ai are distinct.

Using ¹ipI p D 1; : : : ; nº D ¹1; : : : ; nº we write the ordering of the Ai as

Ai1 < Ai2 < � � � < Ain

where i1 D n and in D k C 1. We define

AŒi1;:::;ip� WD Ai1 C Ai2 C � � � C Aip :

Let

K D C¹¹tºº WD
[

n�1

C..t1=n//

be the field of Puiseux series over C. Let val be the valuation map

valWK �! R [ ¹1º

(see Appendix A.2 for the precise definition.) For k D 1; : : : ; n, fix ˛k 2 K to

satisfy val.˛k/ D Ak. Let b; c 2 K satisfy

.b � ˛1/.b � ˛2/ � � � .b � ˛n/ D .c � ˛1/.c � ˛2/ � � � .c � ˛n/; (5.1)

and Aip � val.b/ < val.c/ < AipC1
for some p 2 ¹1; : : : ; n� 1º.

Let F.X; Y / be the tropical polynomial:

F.X;Y /DminŒY; nX; .n�1/XCAi1; .n�2/XCAŒi1;i2�; : : : ; XCAŒi1;in�1�; AŒi1;in��:

The affine tropical curve � determined by F.X; Y / is a graph in R2 defined as

� D ¹.X; Y / 2 R2 j F.X; Y / is indifferentiableº:

See Figure 5. The tropical curve � is the tropicalization of the affine curve 
 in

K2 given by

y D y.x/ D .x � ˛1/.x � ˛2/ � � � .x � ˛n/:

Precisely, � is the closure of the set of valuations of points in 
 .

Let Xc satisfy Aip < Xc < AipC1
for some p 2 ¹1; 2; ; : : : ; n�1º. We consider

a pair of intersection points of the curve � and a line parallel to the X-axis:

.Aip ; .n� p/Xc C AŒi1;ip�/; .Xc ; .n� p/Xc C AŒi1;ip�/:

This pair is the image under val of a pair of points .b; y.b// and .c; y.c// on the

curve 
 , such that y.b/ D y.c/ and Aip � val.b/ < val.c/ D Xc < AipC1
. Note

that it turns out that val.b/ D Aip from the graph �.
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Ai1
Ai2

Ai3
Ain

nAi1

AŒi1;i2
C .n 2/Ai2

AŒi1;i3
C .n 3/Ai3

:::

AŒi1;in

X

Y

Figure 5. The tropical curve � separating R2 into nC 2 domains.

Lemma 5.2. It holds that

val.b C ˛i / D

8
ˆ̂<
ˆ̂:

Ai for i D i1; : : : ; ip�1;

Aip C .n � p/.Xc � Aip / for i D ip;

Aip for i D ipC1; : : : ; in;

val.c C ˛i / D

´
Ai for i D i1; : : : ; ip;

Xc for i D ipC1; : : : ; in:

Proof. By the assumption on Xc and Lemma A.1, we obtain val.c � ˛i / for all i

and val.b � ˛i / for i ¤ ip immediately. As for val.b � ˛ip /, taking the valuation

of (5.1);
nX

iD1

val.b � ˛i / D

nX

iD1

val.c � ˛i /;

it follows that

val.b � ˛ip / D

nX

iD1

val.c � ˛i / �
X

i¤ip

val.b � ˛i /

D AŒi1;ip� C .n � p/Xc � AŒi1;ip�1� � .n � p/Aip ;

and we obtain the result. �
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The one soliton solution for �.n; k/ constructed in [3] is given in terms of

chamber variable:

�.S/ D 1C `B
s1

1 B
s2

2 � � �B
sn
n ; S D .s1; : : : ; sn/ 2 Zn; ` 2 K n ¹0º; (5.2)

where

Bj D
b � j̨

c � j̨

; j D 1; : : : ; n: (5.3)

Due to (5.1), it holds that �.S C eŒ1;n�/ D �.S/. We are interested in the

tropicalization of the tau-function. As a corollary of Lemma 5.2 we obtain the

following.

Corollary 5.3. We have

val.Bi / D

8
ˆ̂<
ˆ̂:

0 for i D i1; : : : ; ip�1;

.n � p/.Xc � Aip/ for i D ip;

Aip � Xc for i D ipC1; : : : ; in:

Remark that
Pn

iD1 val.Bi / D 0 holds. Define

W.Xc/ WD .val.Bi//iD1;:::;n 2 Rn:

Now it is easy to show the following.

Proposition 5.4. (i) The one soliton solution for ˆ.n; k/ is given by

T .S/ D minŒ0; LC S �W.Xc/�; S 2 Zn; L 2 R: (5.4)

(ii) We have

W.Xc/ � �.��1.u// D

´
�.n� 1/.Xc � Ai1/ for Ai1 < Xc < Ai2;

0 for Ai2 < Xc < Ain :

W.Xc/ � �.v/ D Aip �Xc for Aip < Xc < AipC1
:

In particular, the soliton exists only when Ai1 < Xc < Ai2 , and its velocity is

.n � 1/�1, independent of Xc .

Proof. (i) It follows from Corollary 5.3. (ii) Due to Lemma 4.3 (ii), when W.Xc/ �

�.��1.u// ¤ 0, the velocity of the soliton is given by (Cf. [3, §8.1])

W.Xc/ � �.v/

W.Xc/ � �.��1.u//
:

The result is obtained by using Lemma 4.3 (i) and Corollary 5.3. �
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By substituting (5.4) into (4.11), we obtain the soliton solution whose minimal

form is .Xc ; : : : ; Xc„ ƒ‚ …
n�1

/ with An < Xc < Ai2 . Since all of these have velocity

1=.n�1/, there is no scattering among solitons. It ends the proof of Theorem 5.1.

Remark 5.5. For any N � 1, an N -soliton solution corresponding to Xn < Xc1
�

Xc2
� � � � � XcN

< A is given by

T .S/ D min
�
0; minŒLi C S �W.Xci

/I i D 1; : : : ; N �
�
:

with appropriate Li 2 R.

Remark 5.6. When we set A WD Ai2 D � � � D Ain�1
as (2.12), the tropical curve �

is degenerated and Xc has only two possibilities An < Xc < A or A < Xc < AkC1.

The similar calculation of valuation shows

W.Xc/ D

8
ˆ̂<
ˆ̂:

.Xc � An/.�1; : : : ;�1; n� 1/ for An < Xc < A;

Xc � A

n � 2
.1; : : : ; 1„ ƒ‚ …

k

;�.n� 2/; 1; : : : ; 1„ ƒ‚ …
n�k�2

; 0/ for A < Xc < AkC1:

Thus we see that W.Xc/ ��.��1.u// and W.Xc/ ��.v/ have the same expression as

Proposition 5.4 (ii), and solitons only have volocity .n�1/�1. In the limit Xc ! A,

it gives the positive soliton whose minimal form is .1; 1; : : : ; 1„ ƒ‚ …
n�1

/ in Theorem 2.7.

6. Soliton solutions for ˆ.n; k/ from tropical tau function

We study the soliton solutions for ˆ.n; k/ by naively solving the tropical bilinear

equations (4.9) and (4.10), instead of tropicalizing the geometric solutions. It

turns out that there are various solitons besides those presented in §5, a reflection

of the general phenomenon that tropicalization is not reversible. We first present

the solution for ˆ.3; k/ on R, and next show the solution for ˆ.n; k/ on Z for

general n. Theorem 2.7 finally follows from Propositions 6.3 and 6.7.

6.1. The n D 3 case. Let �.i; t / be a function of .i; t / 2 Z2 satisfying a relation

.1C ı/�.i; t � 1/ �.i C 2; t C 1/

D �.i C 1; t C 1/ �.i C 1; t � 1/C ı �.i; t / �.i C 2; t/:
(6.1)

We first demonstrate the case of ˆ.3; 1/ in detail.
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Proposition 6.1. A solution of (6.1) gives the solution of �.3; 1/ via

yt
i;1 D .˛3 � ˛1/

�.i C 1; t/ �.i C 1; t � 1/

�.i; t � 1/ �.i C 2; t/
; (6.2a)

yt
i;2 D .˛3 � ˛2/

�.i C 1; t � 1/ �.i C 2; t/

�.i C 1; t/ �.i C 2; t � 1/
; (6.2b)

zt
i;1 D .˛1 � ˛2/

�.i C 1; t/ �.i; t /

�.i C 1; t C 1/ �.i; t � 1/
; (6.2c)

zt
i;2 D .˛3 � ˛2/

�.i; t � 1/ �.i C 1; t/

�.i; t / �.i C 1; t � 1/
: (6.2d)

Proof. From (4.4) and (4.5), the bilinear equation for chamber variables � of

�.3; 1/ is

.˛3 � ˛2/�.S C e1 � e3/ �.S C e2/

D .˛3 � ˛1/�.S C e2 � e3/ �.S C e1/C .˛1 � ˛2/�.S/ �.S C e1 C e2 � e3/:

(6.3)

We change the chamber coordinate generated by the unit vectors ek .k D 1; 2; 3/

to that generated by �. Qu/ D �e3, �.v/ D e2 and eŒ1;3�. By using e1 D eŒ1;3� C

�. Qu/� �.v/, e2 D �.v/ and e3 D �t .u/, and transforming �.i; t; j / WD �.S/ when

S D i � �. Qu/ � t � �.v/C j � eŒ1;3�, we rewrite (6.3) and obtain

.˛3 � ˛2/�.i C 2; t C 1; j C 1/ �.i; t � 1; j /

D .˛3 � ˛1/�.i C 1; t � 1; j C 1/ �.i C 1; t C 1; j /

C .˛1 � ˛2/�.i; t; j / �.i C 2; t; j C 1/:

We set ı D .˛1 � ˛2/=.˛3 � ˛1/, and ignore the third coordinate by taking into

account the periodic condition (4.1). Then (6.1) is obtained.

By identifying � i;t .i 0 ��. Qu/� t 0 ��.v/Cj 0 �eŒ1;3�/ with �.iC i 0; tC t 0; j 0/ which

reduces to �.i C i 0; t C t 0/, we obtain (6.2) from (4.8). �

For �.3; 0/, instead of (6.3) we have

.˛3 � ˛1/�.S C eŒ1;2� � e3/ �.S C 2e1/

D .˛3 � ˛2/�.S C 2e1 � e3/ �.S C eŒ1;2�/

C .˛2 � ˛1/�.S C e1/ �.S C eŒ1;2� C e1 � e3/:

In the same manner using �.v/ D e1 and ı D .˛2 � ˛1/=.˛3 � ˛2/, we again

obtain (6.1). Then a solution of (6.1) gives the solution of �.3; 0/ via

yt
i;1 D .˛3 � ˛1/

�.i; t � 2/ �.i C 1; t � 1/

�.i; t � 1/ �.i C 1; t � 2/
; (6.4a)
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yt
i;2 D .˛3 � ˛2/

�.i C 1; t � 1/ �.i C 1; t � 2/

�.i; t � 2/ �.i C 2; t � 1/
; (6.4b)

zt
i;1 D .˛3 � ˛1/

�.i; t � 1/ �.i C 1; t/

�.i; t / �.i C 1; t � 1/
; (6.4c)

zt
i;2 D .˛2 � ˛1/

�.i C 1; t � 1/ �.i; t � 1/

�.i C 1; t/ �.i; t � 2/
; (6.4d)

which originate from (4.8).

In the following we set trop.ı/ D 1, corresponding to the condition (2.12). We

study the soliton solutions for ˆ.3; k/ by solving the tropicalization of (6.1):

T .i; t � 1/C T .i C 2; t C 1/

D min ŒT .i C 1; t C 1/C T .i C 1; t � 1/; 1C T .i; t /C T .i C 2; t/� :
(6.5)

Proposition 6.2. The soliton solutions of (6.5) are given by

(1) one-soliton:

T .i; t / D

´
minŒ0; LC iP � t � for L 2 R; P � 2;

min
�
0; LC iP � t P

2

�
for L 2 R; 0 < P � 2I

(6.6)

(2) two-soliton: Define Cj .i; t / WD LjCiPj �t and C 0
j .i; t / WD LjCiPj �tPj =2,

T .i; t / D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

minŒ0; C1.i; t /; C2.i; t /; C1.i; t /C C2.i; t /CZ1;2�I

for Lj 2 R; Pj � 2 such that P1 ¤ P2;

minŒ0; C1.i; t /; C 0
2.i; t /; C1.i; t /C C 0

2.i; t /CZ0
1;2�I

for Lj 2 R; 0 < P2 < 2 � P1;

where

Z1;2 WD 2 minŒP1; P2�� 1; Z0
1;2 WD

3

2
P2:

Proof. We compute the soliton solutions using Hirota’s method [5, §1.5].

(1) A one soliton solution for (6.1) is set to be a form as �.i; t / D 1C `piqt

with `; p; q 2 R>0. By substituting it into (6.1), we obtain an algebraic equation

for p and q:

.1C ı/.q�1 C p2q/ D pq C pq�1 C ı.1C p2/:

Then P WD trop.p/ and Q WD trop.q/ are required to satisfy

min Œ�Q; 2P CQ� D minŒP CQ; P �Q; 1CminŒ0; 2P �� : (6.7)
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We solve this equation assuming P > 0 without loss of generality. When Q > 0,

(6.7) reduces to �Q D minŒP � Q; 1�, which has no solution. When Q � 0,

(6.7) reduces to minŒ�Q; 2P C Q� D minŒP C Q; 1�. If �Q � 2P C Q and

1 � P CQ, we have Q D �1 and P � 2. If �Q � 2P CQ and 1 > P CQ, we

have Q D �P=2 and 0 < P < 2. If �Q > 2P �Q, we have no solution.

(2) By substituting a form of two soliton solution

�.i; t / D 1C `1pi
1qt

1 C `2pi
2qt

2 C z1;2`1pi
1qt

1`2pi
2qt

2

with `i ; pi ; qi > 0 for i D 1; 2 into (6.1), and taking the order of `1`2, we have

z1;2D
p1p2.q2

1Cq2
2/Cıq1q2.p2

1Cp2
2/�.1C ı/.p2

1q2
1Cp2

2q2
2/

.1C ı/.1Cp2
1q2

1p2
2q2

2/�.p1p2.1Cıp1p2q1q2/Cq1q2.ıCp1p2q1q2//
:

Set trop.qi/ D Qi D �1 and trop.pi / D Pi � 2 for i D 1; 2 such that P1 ¤ P2.

In the numerator of z1;2, we have

trop.p1p2.q2
1 C q2

2/C ıq1q2.p2
1 C p2

2// D minŒP1 C P2 � 2; 2P1 � 1; 2P2 � 1�

D 2 minŒP1; P2� � 1;

trop..1C ı/.p2
1q2

1 C p2
2q2

2// D 2 minŒP1; P2�� 2;

and in the denominator, we have

trop..1C ı/.1C p2
1q2

1p2
2q2

2// D minŒ0; 2.P1C P2/ � 4� D 0;

trop.p1p2.1C ıp1p2q1q2/C q1q2.ı C p1p2q1q2//

D minŒP1 C P2;�1; P1C P2 � 4� D �1:

Thus the dominant terms of tropicalization in the numerator and denominator of

zi;2 have the same sign, and we obtain

Z1;2 WD trop.z1;2/ D 2 minŒP1; P2�� 2� .�1/ D 2 minŒP1; P2�� 1:

In the same manner, when Q1 D �1, P1 � 2, Q2 D �P2=2 and 0 < P2 < 2, we

obtain trop.z1;2/ D 3=2P2. �

By substituting (6.6) into the tropicalization of (6.2) or (6.4) we obtain the

following:

Proposition 6.3. Assume L 2 Z and P 2 Z�2 in (6.6). Then we obtain a positive

soliton whose minimal form is .P � 1; 1/ for ˆ.3; 1/, and a positive soliton whose

minimal form is .1; P �1/ for ˆ.3; 0/. In both cases the velocity of soliton is 1=P .
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The proof is included in that of Proposition 6.7 (ii).

Remark 6.4. For general L 2 R and P 2 R>0, a soliton may have the minimal

length more than one. See §8.3.

6.2. General n case. In the same way as the n D 3 case, we study soliton

solutions for ˆ.n; k/ for n > 3. Unfortunately we obtain only one-soliton solutions

for technical reason. For simplicity we study only integral solutions.

We transform the bilinear equations for � i;t on the chambers, (4.4) and (4.5),

to those for an .n � 2/-tuple of tau-functions .�p/pD0;1;:::;n�3 on Z2 using the

following rule. Recall the definition of � i;t (4.7) and that we have labelled the

left chamber of zt
i;kC1

with �. Qu/i � �.v/t . Note that in the universal covering of

the wiring diagram for v.k/u, the chamber labels lie in the subset of Zn

Ck WD
®
eŒ1;p� C i � en C t � ekC1 C j � eŒ1;n�I p 2 ¹0; 1; : : : ; n� 1º; i; t; j 2 Z

¯
:

When k � 1, we set

� i;t.eŒ1;p�/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�0.i; t / if p D 0,

�p.i C 1; t C 1/ if p D 1; : : : ; k;

�p�1.i C 1; t/ if p D k C 1; : : : ; n� 2;

�0.i C 1; t/ if p D n � 1;

(6.8)

and uniquely extend it to Ck using

� i;t .�i 0en � t 0ekC1 C jeŒ1;n�/ D � iCi 0;tCt 0

.0/ (6.9)

for any i 0; t 0; j 2 Z. For instance, when n D 4 and k D 2, it holds that

� i;t .ekC1 C eŒ1;2�/ D � i;t�1.eŒ1;2�/ D �2.i C 1; t/. Remark that the periodic

condition for chamber variables (4.1) is hidden by (6.9). When k D 0, instead

of (6.8) we set

� i;t .eŒ1;p�/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�0.i; t / if p D 0;

�0.i; t � 1/ if p D 1;

�p�1.i C 1; t/ if p D 2; : : : ; n� 2;

�0.i C 1; t/ if p D n � 1;

and use (6.9).



276 M. Glick, R. Inoue, and P. Pylyavskyy

Proposition 6.5. Set ˛i D ˛ for i D ¹1; 2; : : : ; n � 1º n ¹k C 1º, and define

ı WD .˛�˛kC1/=.˛n�˛/. Via the above introduced transformation, (4.4) and (4.5)

reduce to the following equations for the �p.i; t /, which are independent of k:

.1C ı/�0.i; t � 1/ �1.i C 2; t C 1/

D �1.i C 1; t C 1/ �0.i C 1; t � 1/C ı �0.i; t / �1.i C 2; t/;
(6.10)

and

.1C ı/�p.i C 1; t � 1/ �pC1.i C 2; t/

D �pC1.i C 1; t/ �p.i C 2; t � 1/

C ı �p.i C 1; t/ �pC1.i C 2; t � 1/;

(6.11)

for p D 1; : : : ; n� 3, where we assume �n�2.i; t / D �0.i; t /.

Proof. When k � 1, from (4.4) and (4.5) we obtain

.˛n � ˛kC1/�0.i; t � 1/ �1.i C 2; t C 1/

D .˛n � ˛1/�1.i C 1; t C 1/ �0.i C 1; t � 1/

C .˛1 � ˛kC1/ �0.i; t / �1.i C 2; t/;

.˛n � ˛kC1/�p�1.i C 1; t/ �pC1.i C 2; t C 1/

D .˛n � p̨/�p.i C 1; t C 1/ �p�1.i C 2; t/

C . p̨ � ˛2/ �p�1.i C 1; t C 1/ �p.i C 2; t/;

for p D 2; : : : ; k; and

.˛n � ˛kC1/�p�2.i C 1; t � 1/ �p�1.i C 2; t/

D .˛n � p̨/�p�1.i C 1; t/ �p�2.i C 2; t � 1/

C . p̨ � ˛kC1/ �p�2.i C 1; t/ �p�1.i C 2; t � 1/;

for p D kC2; : : : ; n�1: Using the defined ı, we see that the first equation reduces

to (6.10), and the next two equations reduce to (6.11).

When k D 0, we only have (4.5) which turns out to be (6.10) when p D 1,

and (6.11) when p D 2; 3; : : : ; n� 2. �

From Proposition 4.4 we obtain the following:

Corollary 6.6. A solution of (6.10) and (6.11) gives the solution of �.n; k/ via the

following formulae. In the case of k � 1:

yt
i;1 D .˛n � ˛/

�1.i C 1; t/�0.i C 1; t � 1/

�0.i; t � 1/�1.i C 2; t/
; (6.12)
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yt
i;p D .˛n � ˛/

�p.i C 1; t/�p�1.i C 2; t/

�p�1.i C 1; t/�p.i C 2; t/
; for p D 2; : : : ; k; (6.13)

yt
i;kC1 D .˛n � ˛/

�k.i C 1; t � 1/�k.i C 2; t/

�k.i C 1; t/�k.i C 2; t � 1/
; (6.14)

yt
i;p D .˛n � ˛/

�p�1.i C 1; t � 1/�p�2.i C 2; t � 1/

�p�2.i C 1; t � 1/�p�1.i C 2; t � 1/
; for p D k C 2; : : : ; n� 1;

(6.15)

zt
i;p D .˛ � ˛kC1/

�kC1�p.i C 1; t/�k�p.i C 1; t C 1/

�kC1�p.i C 1; t C 1/�k�p.i C 1; t/
; for p D 1; : : : ; k � 1;

(6.16)

zt
i;k D .˛ � ˛kC1/

�1.i C 1; t/�0.i; t /

�1.i C 1; t C 1/�0.i; t � 1/
; (6.17)

zt
i;kC1 D .˛n � ˛kC1/

�0.i; t � 1/�0.i C 1; t/

�0.i; t /�0.i C 1; t � 1/
: (6.18)

and

zt
i;kCp D .˛ � ˛kC1/

�n�p.i C 1; t � 1/�n�p�1.i C 1; t/

�n�p.i C 1; t/�n�p�1.i C 1; t � 1/
; (6.19)

for p D 2; : : : ; n� k � 1: In the case of k D 0:

yt
i;1 D .˛n � ˛/

�0.i; t � 2/�0.i C 1; t � 1/

�0.i; t � 1/�0.i C 1; t � 2/
;

yt
i;2 D .˛n � ˛/

�1.i C 1; t � 1/�0.i C 1; t � 2/

�0.i; t � 2/�1.i C 2; t � 1/
;

and yt
i;p for p D 3; : : : ; n � 1 has the same expression as (6.15). The variable

zt
i;1 is as (6.18), zt

i;p for p D 2; : : : ; n� 2 is as (6.19). The variable ztC1
i;n�1 has the

same expression as (6.17).

In the following, we set trop.ı/ D 1 corresponding to (2.12), and study

solutions of the tropicalization of (6.10) and (6.11):

T0.i; t � 1/C T1.i C 2; t C 1/

D min ŒT1.i C 1; t C 1/C T0.i C 1; t � 1/; 1C T0.i; t /C T1.i C 2; t/� ;

(6.20)
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and

Tp.i C 1; t � 1/C TpC1.i C 2; t/

D minŒTpC1.i C 1; t/C Tp.i C 2; t � 1/;

W 1C Tp.i C 1; t/C TpC1.i C 2; t � 1/�;

(6.21)

for p D 1; : : : ; n� 3:

Proposition 6.7. (i) A one-soliton solution for ˆ.n; k/ is given by

T0.i; t / D minŒ0; LC iP � t �;

Tp.i; t / D min D
h
0; LC iP � t C

n�3X

j Dp

Rj

i
; for p D 1; : : : ; n� 3;

where L 2 Z, P 2 Z�n�1, Rj 2 Z��1 for j D 1; : : : ; n�3, and PC
Pn�3

j D1 Rj � 2.

(ii) The minimal form of this soliton is

�
P � 1C

n�3X

j D1

Rj ;�R1;�R2; : : : ;�Rk�1; 1;�Rk; : : : ;�Rn�3

�
:

Proof. (i) We substitute �0.i; t / D 1 C `ciqt and �s.i; t / D 1 C `ciqt
Qn�3

kDs rk

into (6.10) and (6.11), and obtain

.1C ı/.c�1 C c2qr/ D cqr C cq�1 C ı.1C c2r/; (6.22)

.1C ı/.q�1rs C c/ D 1C cq�1rs C ı.rs C cq�1/; for s D 1; : : : ; n� 3;

(6.23)

where r WD
Qn�3

kD1 rk. By eliminating the rs, we have

.1C ı � c � ıq/n�2 D cq.q C ıc � .1C ı/cq/n�2: (6.24)

Assume P WD trop.c/ > 0 and set Q WD trop.q/ as in the n D 3 case.

When n is odd, set n0 WD
n�3

2
. Equation (6.24) is expanded as

n0X

iD0

�
n� 2

2i

�
.1C ı/n�2�2i .c C ıq/2i

C cq

n0X

iD0

�
n � 2

2i C 1

�
.q C ıc/n�3�2i .cq.1C ı//2iC1

D

n0X

iD0

�
n � 2

2i C 1

�
.1C ı/n�3�2i .c C ıq/2iC1

C pq

n0X

iD0

�
n � 2

2i

�
.q C ıc/n�2�2i .cq.1C ı//2i :

(6.25)
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Assume Q 2 Z<0. It holds that trop.c C ıq/ D minŒP; QC 1� D Q C 1 � 0 and

trop.qC ıc/ D minŒQ; 1CP � D Q. Thus the tropicalization of (6.25) reduces to

minŒ.n�3/.QC1/; 2PC2QC.n�3/Q� D minŒ.n�2/.QC1/; PCQC.n�2/Q�;

from which we obtain

minŒn� 3; 2P C 2Q� D QCminŒP CQ; n� 2�:

When P C Q � n � 2, it follows that Q D �1 and P � n � 1. When

n0 < P CQ < n� 2, it holds that n� 3 D P C 2Q which contradicts Q 2 Z<0.

When P C Q � n0, we obtain P D 0 which is a contradiction. When Q � 0,

there is no solution since the tropicalization of the l.h.s. and the r.h.s of (6.25) are

respectively zero and positive.

When n is even, by a similar discussion we see that the solution is that Q D �1

and P 2 Z�n�1.

From (6.23) with Q D �1 and P � n � 1, we obtain

minŒRs C 1; P � D minŒ0; P C 1CRs; 1CRs; 2C P �;

which holds for any Rs��1. Further, from (6.22) it follows that PC
Pn�3

kD1 Rk�2.

(ii) Define �p WD
Pn�3

iDp Ri for p D 1; : : : ; n � 3. We show that the minimal

form is obtained by setting t D 1, i D �1 and L D ��k, for k � 2. The case of

k D 1 is similar.

First, we consider Y tD1
i;kC1

with L D ��k. By tropicalizing (6.14) we have

Y tD1
i;kC1 D Tk.i C 1; 0/C Tk.i C 2; 1/� Tk.i C 1; 1/ � Tk.i C 2; 0/

D minŒ0; .i C 1/P �CminŒ0; .i C 2/P � 1�

�minŒ0; .i C 1/P � 1� �minŒ0; .i C 2/P �:

When i D �1, all but the third term are zero in the last line of the above formula,

and we obtain Y 1
�1;kC1

D 1. It is satisfied that minŒ0; �� D � for all terms when

i < �1, and that minŒ0; �� D 0 for all terms when i > �1. Thus Y tD1
i;kC1

D 0 when

i ¤ �1.

Next we calculate Y 1
i;1. By tropicalizing (6.12) we have

Y 1
i;1 D T1.i C 1; 1/C T0.i C 1; 0/� T0.i; 0/ � T1.i C 2; 1/

D minŒ0; LC .i C 1/P � 1C�1�CminŒ0; LC .i C 1/P �

�minŒ0; LC iP � �minŒ0; LC .i C 2/P � 1C�1�:
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When i D �1, the first and the third terms in the above formula are nonzero, and

we obtain Y 1
�1;1 D .L � 1C �1/ � .L � P / D P C �1 � 1. When i ¤ �1, we

obtain Y 1
i;1 D 0 for the same reason as for Y 1

i;kC1
.

In the case of Y 1
i;k

, from (6.13) we obtain

Y 1
i;k D Tk.i C 1; 1/C Tk�1.i C 2; 1/� Tk�1.i C 1; 1/ � Tk.i C 2; 1/

D minŒ0; .i C 1/P � 1�CminŒ0; LC .i C 2/P � 1C�k�1�

�minŒ0; LC .i C 1/P � 1C�k�1��minŒ0; .i C 2/P � 1�:

Using the conditions LC�k�1 D Rk�1, Rj � �1 and P C
Pn�3

kD1 Rk � 2, we see

that Y 1
i;k
D 0 when i ¤ �1 in the same way as Y 1

i;kC1
. When i D �1, we obtain

Y 1
�1;k
D �Rk�1. Similarly, we obtain Y 1

�1;p D �Rp�1 when p D 2; : : : ; k � 1,

Y 1
�1;p D �Rp�2 when p D k C 2; : : : ; n � 1, and Y 1

i;p D 0 otherwise. �

Remark 6.8. Equation (6.23) requires that the rs should be the same for all s D 1;

: : : ; n� 3, but the tropicalization of (6.23) is weaker so that the Rs can differ.

7. Duality with box-ball system

7.1. Basics of the sln box-ball system. The sln box-ball system (BBS) is a

cellular automaton, defined as a dynamical system of finitely many balls with

n � 1 colors in an infinite number of boxes arranged along a line. (See [7] for

a review and a list of comprehensive references of the BBS.) The original BBS

mentioned in the introduction is the simplest case of n D 2. In this paper we study

the case that n � 3 and each box can contain one ball at most. By writing 1 for an

empty box and p for a box containing a p-ball (a ball of color p) for p D 2; : : : ; n,

we represent a configuration of the system as a (infinite) word on ¹1; 2; : : : ; nº.

The evolution of one time step t ! t C 1 is given as follows: do the following

procedure for p from n down to 2.

(i) Exchange the leftmost p with its nearest 1 to the right.

(ii) Exchange the leftmost p among the rest of the p with its 1 to the right.

(iii) Repeat (ii) until all of the p are moved exactly once.

The resulting word corresponds to the configuration at time t C 1.

It is known that a soliton of the system is a nonincreasing sequence of 2; : : : ; n,

and that a collection of such sequences gives a multi-soliton solution, in a sense

of (i)–(iii) in §2.4.



SCA associated with infinite reduced words 281

Example 7.1. n D 3.

(i) two solitons:

t D 0W 1133321111321111111111111111 � � � ;

t D 1W 1111113332113211111111111111 � � � ;

t D 2W 1111111111332133211111111111 � � � ;

t D 3W 1111111111111321133321111111 � � � ;

t D 4W 1111111111111113211113332111 � � � :

(ii) three solitons:

t D 0W 113322211113221112111111111111111111111111 � � � ;

t D 1W 111111133222113221211111111111111111111111 � � � ;

t D 2W 111111111111332113122222111111111111111111 � � � ;

t D 3W 111111111111111332311111222221111111111111 � � � ;

t D 4W 111111111111111111233311111112222211111111 � � � ;

t D 5W 11111111111111111121133311111111122222111 � � � :

The symmetry of the sln-BBS is known to be described by the bsln-crystal

for the symmetric tensor representation of U 0
q.bsln/, see [2, 4]. Now we present

the minimum needed prerequisites concerning the bsln-crystal for the BBS. Recall

the bsln-crystal B` corresponding to the `-fold symmetric tensor representation of

U 0
q.bsln/, and given by (3.2) as a set. Let

Rm`WBm ˝ B`

�
�! B` ˝ Bm

be the combinatorial R-matrix defined by

Rm`Ww˝ x 7�! x0 ˝w0;

where

x0
i D xi CKiC1 �Ki ; (7.1a)

w0
i D wi CKi �KiC1; (7.1b)

Ki WD Ki.x; w/ D min
j D0;1;:::;n�1

h jX

pD1

wi�p C

nX

pDj C2

xi�p

i
: (7.1c)

Here we assume that the subscripts of wi and xi are modulo n.
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With the notion of a carrier which moves balls, the combinatorial R-matrix

describes the above time evolution in the following way. The configuration space

of the BBS is B˝L
1 for some large number L, where w D .wi /iD1;:::;n 2 B1 denotes

an empty box (resp. a box containing a p-ball) when w1 D 1 (resp. wp D 1) and

the other wi are zero. A carrier of capacity ` is an element in B`. Write wt
i 2 B1

for a state at the i-th component of B˝L
1 , at time t . We assume that the initial

carrier x0 D .x0;i /iD1;:::;n 2 B` has no ball, i.e., x0;1 D ` and the other x0;i are

zero, and that wtD0
i for i � 1 is an empty box. Then the time evolution is given

by applying the combinatorial R-matrix as

wt
L ˝ � � � ˝wt

2 ˝wt
1 ˝wt

0 ˝ x0

7�! wt
L ˝ � � � ˝wt

2 ˝wt
1 ˝R1`.wt

0 ˝ x0/

D wt
L ˝ � � � ˝wt

2 ˝wt
1 ˝ xt

1 ˝wtC1
0

7�! wt
L ˝ � � � ˝wt

2 ˝R1`.wt
1 ˝ xt

1/˝wtC1
0

D wt
L ˝ � � � ˝wt

2 ˝ xt
2 ˝wtC1

1 ˝wtC1
0

7�! � � � D x0 ˝wtC1
L ˝ � � � ˝wtC1

2 ˝wtC1
1 ˝wtC1

0 ;

(7.2)

where we denote R1`.wt
i ˝ xt

i / D xt
iC1 ˝ wtC1

i for i � 0 and set xt
0 D x0, at any

time t . Note that R1`.w˝ x0/ D x0˝w holds if w is an empty box, thus we have

xt
i D x0 for i � 1 by the assumption. In the limit `!1, the original sln-BBS is

obtained. We remark that in (7.2), right and left is opposite to that in the original

description of the BBS (i)–(iii). We also write the action of the R-matrix using a

diagram:

✲

❄

wt
i

wtC1

i

xt
i

xt
iC1

Figure 6. BBS by the combinatorial R-matrix

We will use the following lemma later.

Lemma 7.2. Let � 2 Sn be

� D

�
1 2 3 � � � n

1 n n � 1 � � � 2

�
;
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and let � be a map on Zn ˝ Zn given by

.a1; a2; : : : ; an/˝ .b1; b2; : : : ; bn/ 7�! .b�.1/; : : : ; b�.n//˝ .a�.1/; : : : ; a�.n//:

Then it holds that Rm` ı � D � ı R`m.

We omit the proof, as it is easy. Note that � induces a map Bm˝B` ! B`˝Bm

for any m; `, and that � ı � is an identity.

7.2. Observation. Our claim is that the positive soliton solutions of ˆ.n; k/ is

dual to those of the BBS. Precisely, the dynamics of carriers (resp. states) in

ˆ.n; k/ for positive solitons coincides with that of states (resp. carriers) of the

sln-BBS.

Conjecture 7.3. When we have only the positive solitons in ˆ.n; k/, the carriers

Zt
i take values in a finite set

M WD

8
<
:

mp WD .1; : : : ; 1„ ƒ‚ …
p�1

; 0; 1; : : : ; 1„ ƒ‚ …
n�p�1

/I p D 1; : : : ; n� 1;

mn WD .1; 1; : : : ; 1/

9
=
; � ¹0; 1ºn�1:

Define a map

ˇk WM �! zB1 WD
°
.x2; x3; : : : ; xn/ 2 .Z�0/n�1W

nX

iD2

xi � 1
±

by

mp 7�! mn �mp�1�k D

8
ˆ̂̂
<
ˆ̂̂
:

.0; : : : ; 0„ ƒ‚ …
p�2�k

; 1; 0; : : : ; 0„ ƒ‚ …
n�pCk

/ for p > k;

. 0; : : : ; 0„ ƒ‚ …
nCp�2�k

; 1; 0; : : : ; 0„ ƒ‚ …
�pCk

/ for p � k;

for p D 1; : : : ; n and k D 0; 1; : : : ; n� 2, where the subscript i of mi is modulo n.

Conjecture 7.4. Assume that the initial configuration .Y0
i /i of ˆ.n; k/ includes

only positive solitons. By interchanging space and time coordinates the rules of

state and carrier are swapped i.e. Yt
i and Zt

i are respectively regarded as a carrier

and a state at time i of space t . Then, via the map ˇk , the dynamics of the Zt
i

is identified with that of the sln-BBS where .0; : : : ; 0/ 2 zB1 denotes 1 (an empty

box) and

.0; : : : ; 0„ ƒ‚ …
p�2

; 1; 0; : : : ; 0„ ƒ‚ …
n�p

/ 2 zB1
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denotes p (a box containing a p-ball) for p D 2; : : : ; n. If .Yt
i /i includes a soliton

of the minimal form .b1; b2; : : : ; bn�1/ with bkC1 D 1, then the corresponding

configuration of BBS includes a soliton as

n : : : n„ƒ‚…
b1

n� 1 : : : n � 1„ ƒ‚ …
b2

n� 2 : : : n � 2„ ƒ‚ …
b3

: : : 2 : : : 2„ƒ‚…
bn�1

;

whose velocity is
Pn�1

pD1 bp.

Example 7.5. We show .Zt
i /i for each t , corresponding Example 2.6 and Exam-

ple 2.8. Non-initial states are coloured in red.

ˆ.3; 1/ (Example 2.6 (i)):

t D 0W .10/.10/.01/.10/.10/.10/.10/.10/.10/.10/.10/.10/;

t D 1W .10/.10/.01/.10/.10/.10/.10/.10/.10/.10/.10/.10/;

t D 2W .10/.10/.01/.10/.10/.10/.10/.10/.10/.10/.10/.10/;

t D 3W .10/.10/.11/.10/.10/.10/.10/.10/.10/.10/.10/.10/;

t D 4W .10/.10/.10/.01/.10/.10/.10/.10/.10/.10/.10/.10/;

t D 5W .10/.10/.10/.01/.10/.10/.10/.10/.10/.10/.10/.10/;

t D 6W .10/.10/.10/.01/.10/.10/.10/.10/.10/.10/.10/.10/;

t D 7W .10/.10/.10/.11/.10/.10/.10/.10/.10/.10/.10/.10/:

ˆ.4; 1/ (Example 2.6 (ii)):

t D 0W .101/.101/.011/.101/.101/.101/.101/.101/.101/.101/;

t D 1W .101/.101/.011/.101/.101/.101/.101/.101/.101/.101/;

t D 2W .101/.101/.011/.101/.101/.101/.101/.101/.101/.101/;

t D 3W .101/.101/.111/.101/.101/.101/.101/.101/.101/.101/;

t D 4W .101/.101/.110/.101/.101/.101/.101/.101/.101/.101/;

t D 5W .101/.101/.110/.101/.101/.101/.101/.101/.101/.101/;

t D 6W .101/.101/.101/.011/.101/.101/.101/.101/.101/.101/;

t D 7W .101/.101/.101/.011/.101/.101/.101/.101/.101/.101/;

t D 8W .101/.101/.101/.011/.101/.101/.101/.101/.101/.101/;

t D 9W .101/.101/.101/.111/.101/.101/.101/.101/.101/.101/;

t D 10W .101/.101/.101/.110/.101/.101/.101/.101/.101/.101/:
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ˆ.3; 1/ (Example 2.8 (i)):

t D 0W .10/.10/.01/.10/.01/.10/.10/.10/.10/.10/.10/.10/;

t D 1W .10/.10/.11/.10/.01/.10/.10/.10/.10/.10/.10/.10/;

t D 2W .10/.10/.10/.01/.11/.10/.10/.10/.10/.10/.10/.10/;

t D 3W .10/.10/.10/.11/.10/.01/.10/.10/.10/.10/.10/.10/;

t D 4W .10/.10/.10/.10/.01/.11/.10/.10/.10/.10/.10/.10/;

t D 5W .10/.10/.10/.10/.01/.10/.01/.10/.10/.10/.10/.10/;

t D 6W .10/.10/.10/.10/.11/.10/.11/.10/.10/.10/.10/.10/;

t D 7W .10/.10/.10/.10/.10/.01/.10/.01/.10/.10/.10/.10/;

t D 8W .10/.10/.10/.10/.10/.01/.10/.11/.10/.10/.10/.10/;

t D 9W .10/.10/.10/.10/.10/.01/.10/.10/.01/.10/.10/.10/;

t D 10W .10/.10/.10/.10/.10/.11/.10/.10/.11/.10/.10/.10/:

The last case is dual with Example 7.1 (i).

Remark 7.6. The positive solitons for ˆ.n; k/ do not correspond to all sln-BBS

solitons; a BBS soliton related to a positive soliton of ˆ.n; k/ should include at

least one p-ball for p 2 ¹2; : : : ; nº n ¹n� kº, and exactly one .n� k/-ball.

7.3. Strategy to prove Conjectures 7.3 and 7.4. Let zB` be a set as

zB` D
°
x D .y1; y2; : : : ; yn�1/ 2 .Z�0/n�1W

nX

iD1

yi � `
±
:

We have a natural isomorphism 
`WB` ! zB` given by

.x1; x2; : : : ; xn/ 7�! .x2; x3; : : : ; xn/;

where the inverse map 
�1
`

is given by

.y1; y2; : : : ; yn�1/ 7�!
�
`�

n�1X

iD1

yi ; y1; : : : ; yn�1

�
:

Define zRm` as

zRm` WD .
` ˝ 
m/ ı Rm` ı .
�1
m ˝ 
�1

` /W zBm ˝ zB`

�
�! zB` ˝ zBm:

Recall the maps � onRn�1 and Q� on .Rn�1/2 defined in Section 3. We use the same

notations � and Q� for their restrictions onZ. We identify .Zn�1/2 withZn�1˝Zn�1,

following the expression of the combinatorial R-matrix.
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Lemma 7.7. The followings hold:

(i) .
` ˝ 
m/ ı � ı .
�1
m ˝ 
�1

`
/ D Q�;

(ii) Q� ı zRm` ı Q� D zR`m on zB` ˝ zBm;

(iii) Q� ı .ˇk ˝ �/ D .�˝ ˇn�2�k/ ı Q� on M ˝ zBm, for k D 0; 1; : : : ; n� 2 � k.

Proof. (i) is easy. (ii) follows from (i) and Lemma 7.2. We check (iii). For

mp ˝w 2M ˝ zBm, we have

.�˝ ˇn�2�k/ ı Q�.mp ˝w/ D .�˝ ˇn�2�k/.�.w/˝mn�p/

D w˝ .mn �mkC1�p/;

Q� ı .ˇk ˝ �/.mp ˝w/ D Q�..mn �mp�1�k/˝ �.w//

D w˝ .mn �m�pC1Ck/;

for p D 1; : : : ; n and k D 0; 1; : : : ; n� 2 � k. �

As with �.n; k/ in Section 3, we use the same notation ˆ.n; k/ to denote the

map on Zn�1 ˝ Zn�1 which is the building block of the dynamics ˆ.n; k/. We

write

ˆ.n; k/WZt
i ˝Yt

i 7�! YtC1
i ˝ Zt

iC1

with a diagram:

✲

❄

Zt
i Zt

iC1

Yt
i

YtC1
i

Proposition 7.8. If it holds that

zR11 ı .ˇk ˝ �/.mp ˝ w/ D .�˝ ˇk/ ıˆ.n; k/.mp ˝w/ (7.3)

for some k 2 ¹0; 1; : : : ; n� 2º and some mp ˝w 2M ˝ zB1, then

zR11 ı .ˇn�2�k ˝ �/.mn�p0 ˝ �.w0//

D .�˝ ˇn�2�k/ ıˆ.n; n� 2 � k/.mn�p0 ˝ �.w0//;
(7.4)

where .w0 ˝m0
p/ WD ˆ.n; k/.mp ˝ w/.
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Proof. Equation (7.3) can be rewritten as

zR11 ı .ˇk ˝ �/ˆ.n; k/�1.w0 ˝m0
p/ D .�˝ ˇk/.w0 ˝m0

p/:

By tropicalizing (3.3), it holds that

ˆ.n; n� 2 � k/ D Q� ıˆ�1.n; k/ ı Q� (7.5)

on Zn�1 ˝ Zn�1. By using this and Lemma 7.7, the l.h.s. of the first equation

becomes

Q� ı zR11 ı Q� ı .ˇk ˝ �/ ı Q� ıˆ.n; n� 2� k/ ı Q�.w0 ˝m0
p/

D Q� ı zR11 ı .�˝ ˇn�2�k/ˆ.n; n� 2 � k/.mn�p0 ˝ �.w0//:

On the other hand, the r.h.s. becomes Q� ı .ˇn�2�k ˝ �/.mn�p0 ˝ �.w0//: Thus the

claim follows. �

To prove Conjectures 7.3 and 7.4 we have to check that all configurations

which appear in propagating positive solitons have the form mp ˝w 7! w0˝mp0

and satisfy (7.3). Proposition 7.8 means that the claims in the conjectures for

ˆ.n; n � 2 � k/ follow from those for ˆ.n; k/. In the next two subsections, we

prove these conjectures in the cases of n D 3 and 4.

7.4. Proof for ˆ.3; k/. We prove the case of ˆ.3; 1/, from which the case of

ˆ.3; 0/ follows due to Proposition 7.8.

We say a finite sequence of states is stable when the carrier returns to its initial

state after passing through the sequence. For example, in the case of ˆ.3; 1/ the

vacuum state .0; 0/ is stable, and a sequence .3; 1/.2; 0/ is stable but .3:1/.2; 1/ is

not, as shown by diagrams:

✲ ✲
❄ ❄

.1; 0/ .0; 1/ .1; 0/

.3; 1/ .2; 0/

.2; 1/ .3; 0/

✲ ✲
❄ ❄

.1; 0/ .0; 1/ .1; 1/

.3; 1/ .2; 1/

.2; 1/ .3; 1/

Lemma 7.9. The following sequences of states are stable:

(a) .i; 1/.0; 0/; i > 0,

(b) .i; 1/.j; 0/; i; j > 0,

(c) .0; 1/.i; 0/; i > 0,

(d) .i; 1/.j 0; 1/.k; 0/, i; k > 0; j 0 � 0.
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Assume that the initial configuration of .YtD0
i /i for ˆ.3; 1/ consists of the vacuum

state .0; 0/ and a finite number of the above sequences. Then the configuration for

t D 1 again consist of the vacuum state and these sequences.

Proof. From (2.11) we see that all sequences (a)–(d) are stable by the diagrams

in Figure 7. Note that the vacuum state .0; 0/ is also stable:

.1; 0/˝ .0; 0/ 7�! .0; 0/˝ .1; 0/:

When the configuration at t D 0 is given by a composition of these stable

sequences, the configuration at t D 1 is obtained by simply combining the

diagrams in Figure 7, due to the stability. It turns out that (a) and (b) change

to the form of (b) or (c), (c) changes to the form of .0; 0/(a)�, and (d) changes to

the form of (b)(a)� or (c)(a)�. Here we define (a)� WD .i; 1/ for i > 0. Thus, at

t D 1 the sequence immediately to the right of (a)� is always .0; 0/, (b) or (c), but

not (a). If it is .0; 0/, we obtain the form of (a). If it is (b) or (c), we obtain the

form of (d). Since the number of (a)–(d) at t D 0 is finite, all (a)� which appear

at t D 1 turn out to be a part of a new (a) or (d). Then the claim follows. �

(a)

.1; 0/ .0; 1/ .1; 0/

.i; 1/ .0; 0/

.i 1; 1/ .1; 0/

(b)

.1; 0/ .0; 1/ .1; 0/

.i; 1/ .j; 0/

.i 1; 1/ .j C 1; 0/

(c)

.1; 0/ .1; 1/ .1; 0/

.0; 1/ .i; 0/

.0; 0/ .i; 1/

(d)

.1; 0/ .0; 1/ .1; 1/ .1; 0/

.i; 1/ .j 0; 1/ .k; 0/

.i 1; 1/ .j 0
C 1; 0/ .k; 1/

Figure 7. The stable sequences for ˆ.3; 1/ (i; j; k > 0; j 0 � 0).

The following is easily seen from Figure 8.

Lemma 7.10. A soliton corresponds to a sequence of the form (a)–(c). The soliton

at its minimal length has the form (a), i.e. it equals .k; 1/ for some k > 0, The

velocity of the soliton is 1=.k C 1/.

Proof of Conjecture 7.3 for ˆ.3; 1/. Assume that we start with an initial configu-

ration including N > 1 sequences of forms (a)–(c), which is an N -soliton state.
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✲ ✲ ✲
❄ ❄ ❄

✲ ✲ ✲
❄ ❄ ❄

✲ ✲ ✲
❄ ❄ ❄

✲ ✲ ✲
❄ ❄ ❄

✲ ✲ ✲
❄ ❄ ❄

✲ ✲ ✲
❄ ❄ ❄

.1; 0/ .0; 1/ .1; 0/ .1; 0/

.1; 0/ .0; 1/ .1; 0/ .1; 0/

.1; 0/ .0; 1/ .1; 0/ .1; 0/

.1; 0/ .0; 1/ .1; 0/ .1; 0/

.1; 0/ .1; 1/ .1; 0/ .1; 0/

.1; 0/ .1; 0/ .0; 1/ .1; 0/

.k; 1/

.k � 1; 1/

:::

.1; 1/

.0; 1/

.0; 0/

:::

.0; 0/

.1; 0/

:::

.k � 1; 0/

.k; 0/

.k; 1/

:::

.0; 0/

.0; 0/

:::

.0; 0/

.0; 0/

.0; 0/

:::

Figure 8. Propagation of a soliton.

Then a faster soliton catches up with a slower one, and overtakes it after some

scattering states (d). Finally, the N solitons line up in a way that slower ones are

left and faster ones are right. Thus, from Figure 7, the possible configurations

which appear in propagating positive solitons are as Figure 9, where we have only

.1; 0/, .1; 1/, and .0; 1/ for the carriers. �

Proof of Conjecture 7.4 for ˆ.3; 1/. In Figure 8, we see that during rightward

propagation of a soliton .k; 1/, a sequence of carriers

.Zt
1/tD0;1;:::;k D ..0; 1/; : : : ; .0; 1/„ ƒ‚ …

k

; .1; 1//

propagates downward with velocity k C 1. By the map ˇ1, this sequence is

transformed into

..0; 1/; : : : ; .0; 1/„ ƒ‚ …
k

; .1; 0//
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.1; 0/ .1; 0/

.0; 0/

.0; 0/

.1; 0/ .0; 1/

.k; 1/

.k 1; 1/

.0; 1/ .1; 0/

.k 1; 0/

.k; 0/

.1; 0/ .1; 1/

.0; 1/

.0; 0/

.1; 1/ .1; 0/

.k; 0/

.k; 1/

.0; 1/ .1; 1/

.k 1; 1/

.k; 0/

Figure 9. Possible configurations to propagate solitons in ˆ.3; 1/ (k 2 Z�1).

which corresponds to a soliton

33 � � � 3„ ƒ‚ …
k

2

of the sl3-BBS.

The configurations in Figure 9 are the local diagrams appearing in Figure 7,

which are nothing but those that appear in soliton propagations. We transform

them into the diagrams in Figure 10, by acting by ˇ1 on carriers and � on states.

Using (7.1), one sees that (7.3) is fulfilled by mp ˝ w 2 M ˝ zB1 appearing in

Figure 9. It turns out that all configurations in Figure 10 are what appear when

R11 propagates solitons of the form

33 � � � 3„ ƒ‚ …
k>0

2;

due to the following facts: in the states .x2; x3/ on the vertical edges in Figure 10,

x2 takes only 0 or 1 which means that each soliton includes at most one 2-ball.

There is neither configuration

zR11..0; 0/˝ .0; 1// D .0; 0/˝ .0; 1/

nor

zR11..1; 0/˝ .0; 0// D .1; 0/˝ .0; 0/:

This means that there is neither a soliton containing only 3-balls, nor a soliton

containing only 2-balls. �
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.0; 0/ .0; 0/

.0; 0/

.0; 0/

.0; 0/ .0; 1/

.1; k/

.1; k 1/

.0; 1/ .0; 0/

.0; k 1/

.0; k/

.1; 0/ .0; 0/

.0; 0/

.1; 0/

.1; 0/ .0; 0/

.0; k/

.1; k/

.0; 1/ .1; 0/

.1; k 1/

.0; k/

Figure 10. The sl3-BBS configurations from ˆ.3; 1/ (k 2 Z�1).

7.5. Proof for ˆ.4; k/. First we consider ˆ.4; 2/. The map �.4; 2/ is given by

.zt
i;1; zt

i;2; zt
i;3/˝ .yt

i;1; yt
i;2; yt

i;3/

7�! .ytC1
i;1 ; ytC1

i;2 ; ytC1
i;3 /˝ .zt

iC1;1; zt
iC1;2; zt

iC1;3/

D
� zt

i;3yt
i;1

zt
i;2 C yt

i;1

;
.zt

i;2 C yt
i;1/yt

i;2

zt
i;1C yt

i;2

; zt
i;1 C yt

i;2

�

˝
�zt

i;1.zt
i;2 C yt

i;1/

zt
i;1 C yt

i;2

;
zt

i;2zt
i;3

zt
i;2 C yt

i;1

; yt
i;3

�
:

(7.6)

Lemma 7.11. The following sequences of states are stable:

(a1) .i; j; 1/.0; 0; 0/; for i; j > 0;

(a2) .i1; j; 1/.i2; 0; 0/; for i1; i2; j > 0;

(b1) .0; j; 1/.i; 0; 0/; for i; j > 0;

(b2) .0; j; 1/.i; j 0; 0/; for i; j1; j2 > 0;

(c) .0; 0; 1/.i; j; 0/; for i; j > 0;

(d) .0; j1; 1/.i1; j 0; 1/.i2; j2; 0/; for i1; i2; j1; j2 > 0; j 0 � 0;

(e1) .i1; j1; 1/.i 0; j2; 1/.i2; j 0; 0/; for i1; i2; j1; j2 > 0; i 0; j 0 � 0;

(e2) .i1; j1; 1/.i 0; 0; 1/.i2; j2; 0/; for i1; i2; j1; j2 > 0; i 0 � 0;

(f ) .i1; j1; 1/.i 0; j2; 1/.i2; j 0; 1/.i3; j3; 0/; for i1; i2; i3; j1; j2; j3 > 0; i 0; j 0 � 0.
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Assume that the initial configuration of .YtD0
i /i for ˆ.4; 2/ consists of the vacuum

state .0; 0; 0/ and a finite number of these sequences of states. Then the configu-

ration for t D 1 again consist of the vacuum state and these sequences.

Proof. It is shown in the same way as in the case of ˆ.3; 1/: due to the map ˆ.4; 2/

given by the tropicalization of (7.6), we obtain diagrams in Figure 11, and see that

all sequences (a1)–(f ) and the vacuum state .0; 0; 0/ are stable. Then one sees that

(a1) changes to (a2), (a2) changes to (a2) or (b1), (b1) changes to (b2) or (c), (c)

changes to .0; 0; 0/(a)�, (d) changes to (b2)(a)� or (c)(a)�, (e1) changes to (e1)

or (d) or (e2), (e2) changes to (a2)(a)�, and (f ) changes to (e1)(a)� or (d)(a)�.

Moreover, (a)�.0; 0; 0/ has a form of (a1), and (a)�(x) has a form of (e1) or (e2)

or (f ) where (x) is one of (a2)–(e2). Then the claim follows. �

Proof of Conjecture 7.3 and 7.4 for ˆ.4; 2/. We give an outline of the proof. It is

easy to show that one-soliton propagation is given by combining diagrams (a1)–(c)

in Figure 11, thus a soliton of the minimal form .i; j; 1/ has velocity 1=.iCj C1/.

Further, from Lemma 7.11 it follows that the propagation of any multi-soliton state

is described by diagrams (a1)–(f ) and

.1; 1; 0/˝ .0; 0; 0/ 7�! .0; 0; 0/˝ .1; 1; 0/; (7.7)

so Conjecture 7.3 follows. The diagrams in Figure 11 consist of local diagrams

as in Figure 12 and (7.7), and they are shown to satisfy (7.3). Then we see that in

the corresponding sl4-BBS only solitons of forms as

4 � � � 4„ƒ‚…
i

3 � � � 3„ƒ‚…
j

2

for some i; j > 0 appear, which proves Conjecture 7.4. �

Conjectures 7.3 and 7.4 for ˆ.4; 0/ follows from the above result on ˆ.4; 2/

and Proposition 7.8, where the corresponding sl4-BBS only includes solitons of

forms as

4 3 � � �3„ƒ‚…
i

2 � � � 2„ƒ‚…
j

for some i; j > 0.

Next we consider ˆ.4; 1/.
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(a1)

.1; 1; 0/ .1; 0; 1/ .1; 1; 0/

.i; j; 1/ .0; 0; 0/

.i 1; j; 1/ .1; 0; 0/

(a2)

.1; 1; 0/ .1; 0; 1/ .1; 1; 0/

.i1; j; 1/ .i2; 0; 0/

.i1 1; j; 1/ .i2 C 1; 0; 0/

(b1)

.1; 1; 0/ .0; 1; 1/ .1; 1; 0/

.0; j; 1/ .i; 0; 0/

.0; j 1; 1/ .i; 1; 0/

(b2)

.1; 1; 0/ .0; 1; 1/ .1; 1; 0/

.0; j; 1/ .i; j 0; 0/

.0; j 1; 1/ .i; j 0
C 1; 0/

(c)

.1; 1; 0/ .1; 1; 1/ .1; 1; 0/

.0; 0; 1/ .i; j; 0/

.0; 0; 0/ .i; j; 1/

(d)

.1; 1; 0/ .0; 1; 1/ .1; 1; 1/ .1; 1; 0/

.0; j1; 1/ .i1; j 0; 1/ .i2; j2; 0/

.0; j1 1; 1/ .i1; j C 1; 0/ .i2; j2; 1/

(e1)

.1; 1; 0/ .1; 0; 1/ .0; 1; 1/ .1; 1; 0/

.i1; j1; 1/ .i 0; j2; 1/ .i2; j 0; 0/

.i1 1; j1; 1/ .i 0
C 1; j2 1; 1/ .i2; j 0

C 1; 0/

(e2)

.1; 1; 0/ .1; 0; 1/ .1; 1; 1/ .1; 1; 0/

.i1; j1; 1/ .i 0; 0; 1/ .i2; j2; 0/

.i1 1; j1; 1/ .i 0
C 1; 0; 1/ .i2; j2; 1/

(f )

.1; 1; 0/ .1; 0; 1/ .0; 1; 1/ .1; 1; 1/ .1; 1; 0/

.i1; j1; 1/ .i 0; j2; 1/ .i2; j 0; 1/ .i3; j3; 0/

.i1 1; j1; 1/ .i 0
C 1; j2 1; 1/ .i2; j 0

C 1; 0/ .i3; j3; 1/

Figure 11. Carrier stable sequences for ˆ.4; 2/ (i; j; i�; j� > 0; i 0; j 0 � 0).

Lemma 7.12. The following sequences of states are stable:

(a1) .i; 1; j /.0; 0; 0/; for i; j > 0,

(a2) .i1; 1; j /.i2; 0; 0/; for i1; i2; j > 0,

(b) .0; 1; j /.i; 0; 0/; for i; j > 0,

(c1) .0; 0; j /.i; 1; 0/; for i; j > 0,

(c2) .0; 0; j1/.i; 1; j2/; for i; j1; j2 > 0,

(d) .0; 1; j1/.i1; 0; j2/.i2; 1; j 0/; for i1; i2; j1; j2 > 0; j 0 � 0,

(e1) .i1; 1; j1/.i 0; 1; j2/.i2; 0; 0/; for i1; i2; j1; j2 > 0; i 0 � 0,

(e2) .i1; 1; j1/.i 0; 0; j2/.i2; 1; j 0/; for i1; i2; j1; j2 > 0; i 0; j 0 � 0,

(f ) .i1; 1; j1/.i 0; 1; j2/.i2; 0; j3/.i3; 1; j 0/; for i1; i2; i3; j1; j2; j3 > 0; i 0; j 0 � 0.
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.1; 1; 0/ .1; 0; 1/

.i; j; 1/

.i 1; j 1; 1/

.1; 1; 0/ .0; 1; 1/

.0; j; 1/

.0; j 1; 1/

.1; 1; 0/ .1; 1; 1/

.0; 0; 1/

.0; 0; 0/

.1; 0; 1/ .1; 1; 0/

.i; 0; 0/

.i C 1; 0; 0/

.1; 0; 1/ .0; 1; 1/

.i; j; 1/

.i C 1; j 1; 1/

.1; 0; 1/ .1; 1; 1/

.i; 0; 1/

.i C 1; 0; 0/

.0; 1; 1/ .1; 1; 0/

.i; j 1; 0/

.i; j; 0/

.0; 1; 1/ .1; 1; 1/

.i; j 1; 1/

.i; j; 1/

.1; 1; 1/ .1; 1; 0/

.i; j; 0/

.i; j; 1/

Figure 12. Possible configurations to propagate solitons for ˆ.4; 2/ (i; j 2 Z�1).

Assume that the initial configuration of .YtD0
i /i for ˆ.4; 1/ consists of the vacuum

state .0; 0; 0/ and a finite number of these sequences. Then the configuration for

t D 1 again consist of the vacuum state and these sequences.

Using this lemma, one can show that Conjectures 7.3 and 7.4 holds for ˆ.4; 1/,

in the same manner as the case of ˆ.4; 2/. The corresponding sl4-BBS only

includes solitons of forms as

4 � � � 4„ƒ‚…
i

3 2 � � � 2„ƒ‚…
j

for some i; j > 0.

8. Numerical phenomena: negative solitons, relaxation solitons, and pulsars

Besides positive solitons, we numerically observe negative solitons, relaxation

solitons and pulsars for ˆ.n; k/ on Z with the commuting pair given by (2.12). It

might be an interesting future problem to study these phenomena.
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8.1. Negative solitons. For the definition of a negative soliton, see §2.4. We

observe that a state

.�p; : : : ;�p„ ƒ‚ …
n�1

/

for p 2 Z>0 is a negative soliton for ˆ.n; k/, whose velocity is 1=.n � 1/

independent of p. The difference among the negative solitons appears in scattering

with positive solitons. The following examples show that in scatterings of positive

and negative solitons the phase shift of the positive soliton depends on p.

Example 8.1. Scatterings of positive and negative solitons in the case of ˆ.3; 1/.

We write Nk for �k, for k 2 Z>0.

(i) .N1; N1/ � .3; 1/ 7! .3; 1/� .N1; N1/:

t D 0W .00/.N1N1/.00/.31/.00/.00/.00/.00/.00/.00/.00/.00/;

t D 1W .00/.0N1/.N10/.21/.10/.00/.00/.00/.00/.00/.00/.00/;

t D 2W .00/.00/.N1N1/.11/.20/.00/.00/.00/.00/.00/.00/.00/;

t D 3W .00/.00/.0N1/.N11/.30/.00/.00/.00/.00/.00/.00/.00/;

t D 4W .00/.00/.00/.N1N1/.31/.00/.00/.00/.00/.00/.00/.00/;

t D 5W .00/.00/.00/.0N1/.02/.2N1/.00/.00/.00/.00/.00/.00/;

t D 6W .00/.00/.00/.00/.N10/.40/.N10/.00/.00/.00/.00/.00/;

t D 7W .00/.00/.00/.00/.0N1/.22/.0N1/.00/.00/.00/.00/.00/;

t D 8W .00/.00/.00/.00/.00/.01/.3N1/.N10/.00/.00/.00/.00/;

t D 9W .00/.00/.00/.00/.00/.00/.31/.N1N1/.00/.00/.00/.00/;

t D 10W .00/.00/.00/.00/.00/.00/.21/.1N1/.N10/.00/.00/.00/;

t D 11W .00/.00/.00/.00/.00/.00/.11/.20/.N1N1/.00/.00/.00/;

t D 12W .00/.00/.00/.00/.00/.00/.01/.30/.0N1/.N10/.00/.00/;

t D 13W .00/.00/.00/.00/.00/.00/.00/.31/.00/.N1N1/.00/.00/:

(ii) .N2; N2/� .3; 1/ 7! .3; 1/� .N2; N2/:

t D 0W .00/.N2N2/.00/.31/.00/.00/.00/.00/.00/.00/.00/.00/;

t D 1W .00/.0N2/.N20/.21/.10/.00/.00/.00/.00/.00/.00/.00/;

t D 2W .00/.00/.N2N2/.11/.20/.00/.00/.00/.00/.00/.00/.00/;

t D 3W .00/.00/.0N2/.N21/.30/.00/.00/.00/.00/.00/.00/.00/;

t D 4W .00/.00/.00/.N2N2/.31/.00/.00/.00/.00/.00/.00/.00/;

t D 5W .00/.00/.00/.0N2/.N23/.3N2/.00/.00/.00/.00/.00/.00/;
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t D 6W .00/.00/.00/.00/.N2N2/.51/.N20/.00/.00/.00/.00/.00/;

t D 7W .00/.00/.00/.00/.0N2/.03/.1N2/.00/.00/.00/.00/.00/;

t D 8W .00/.00/.00/.00/.00/.N20/.5N1/.N20/.00/.00/.00/.00/;

t D 9W .00/.00/.00/.00/.00/.0N2/.23/.N1N2/.00/.00/.00/.00/;

t D 10W .00/.00/.00/.00/.00/.00/.N11/.4N2/.N20/.00/.00/.00/;

t D 11W .00/.00/.00/.00/.00/.00/.0N1/.32/.N2N2/.00/.00/.00/;

t D 12W .00/.00/.00/.00/.00/.00/.00/.11/.2N2/.N20/.00/.00/;

t D 13W .00/.00/.00/.00/.00/.00/.00/.01/.30/.N2N2/.00/.00/;

t D 14W .00/.00/.00/.00/.00/.00/.00/.00/.31/.0N2/.N20/.00/;

t D 15W .00/.00/.00/.00/.00/.00/.00/.00/.21/.10/.N2N2/.00/:

Remark 8.2. Negative solitons for the sl2-BBS were found by Hirota [6], and

studied in [10, 19] and others. In [10], it is clarified that the states with negative

solitons are transformed into the sl2-BBS with greater box capacity. It is not clear

for now if some similar mechanism works in the general sln-BBS or in ˆ.n; k/.

8.2. Relaxation solitons and pulsars. Besides solitons, we introduce two phe-

nomena, relaxation solitons and pulsars, which may satisfy the condition (i) for

solitons presented in §2.4, but not (ii).

We define a relaxation soliton as a finite sequence of non-vacuum states at

t D 0 such that the carrier gets back to the initial one for t > t0 for some t0 2 Z�0,

but not for 0 � t � t0. In the other words, it is a finite sequence of non-vacuum

states which reduces to solitons at t D t0 C 1 > 0. In the following examples, we

have t0 D 0 in (i) and t0 D 1 in (ii).

Example 8.3. Relaxation solitons.

(i) ˆ.3; 1/:

.Yt
i /i .Zt

i /i

t D 0W .00/.23/.00/.00/.00/.00/.00/.00/ .10/.10/.03/.30/.30/.30/.30/.30/;

t D 1W .00/.11/.30/.00/.00/.00/.00/.00/ .10/.10/.01/.10/.10/.10/.10/.10/;

t D 2W .00/.01/.40/.00/.00/.00/.00/.00/ .10/.10/.11/.10/.10/.10/.10/.10/;

t D 3W .00/.00/.41/.00/.00/.00/.00/.00/ .10/.10/.10/.01/.10/.10/.10/.10/;

t D 4W .00/.00/.31/.10/.00/.00/.00/.00/ .10/.10/.10/.01/.10/.10/.10/.10/;

t D 5W .00/.00/.21/.20/.00/.00/.00/.00/ .10/.10/.10/.01/.10/.10/.10/.10/;

t D 6W .00/.00/.11/.30/.00/.00/.00/.00/ .10/.10/.10/.01/.10/.10/.10/.10/:
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(ii) ˆ.4; 0/:

.Yt
i /i .Zt

i /i

t D 0W .000/.320/.000/.000/.000/.000/ .011/.011/.023/.023/.023/.023/;

t D 1W .000/.041/.000/.000/.000/.000/ .011/.011/.110/.010/.010/.010/;

t D 2W .000/.031/.100/.000/.000/.000/ .011/.011/.110/.011/.011/.011/;

t D 3W .000/.021/.110/.000/.000/.000/ .011/.011/.110/.011/.011/.011/;

t D 4W .000/.011/.120/.000/.000/.000/ .011/.011/.110/.011/.011/.011/;

t D 5W .000/.001/.130/.000/.000/.000/ .011/.011/.101/.011/.011/.011/;

t D 6W .000/.000/.131/.000/.000/.000/ .011/.011/.011/.111/.011/.011/;

t D 7W .000/.000/.031/.100/.000/.000/ .011/.011/.011/.110/.011/.011/:

We define a pulsar as a finite sequence of non-vacuum states satisfying

(i) the sequence moves to the right with a constant velocity,

(ii0) the final carriers Zt
i for i � 1 are periodic in t .

See the following examples.

Example 8.4. Pulsars:

(i) ˆ.3; 1/:

.Yt
i /i .Zt

i /i

t D 0W .00/.10/.00/.00/.00/.00/.00/.00/ .10/.10/.00/.00/.00/.00/.00/.00/;

t D 1W .00/.01/.00/.00/.00/.00/.00/.00/ .10/.10/.11/.20/.20/.20/.20/.20/;

t D 2W .00/.00/.10/.00/.00/.00/.00/.00/ .10/.10/.10/.00/.00/.00/.00/.00/;

t D 3W .00/.00/.01/.00/.00/.00/.00/.00/ .10/.10/.10/.11/.20/.20/.20/.20/;

t D 4W .00/.00/.00/.10/.00/.00/.00/.00/ .10/.10/.10/.10/.00/.00/.00/.00/;

t D 5W .00/.00/.00/.01/.00/.00/.00/.00/ .10/.10/.10/.10/.11/.20/.20/.20/:

(ii) ˆ.4; 0/:

.Yt
i /i .Zt

i /i

t D 0W .000/.110/.000/.000/.000/.000/ .011/.011/.021/.021/.021/.021/;

t D 1W .000/.011/.000/.000/.000/.000/ .011/.011/.110/.010/.010/.010/;

t D 2W .000/.001/.100/.000/.000/.000/ .011/.011/.101/.002/.002/.002/;

t D 3W .000/.000/.110/.000/.000/.000/ .011/.011/.011/.021/.021/.021/;
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t D 4W .000/.000/.011/.000/.000/.000/ .011/.011/.011/.110/.010/.010/;

t D 5W .000/.000/.001/.100/.000/.000/ .011/.011/.011/.101/.002/.002/;

t D 6W .000/.000/.000/.110/.000/.000/ .011/.011/.011/.011/.021/.021/:

8.3. Phase diagram for ˆ.3; 1/. We close this section with the phase diagram

of solitons and pulsars in the case of ˆ.3; 1/. We numerically observe that when

an initial state includes only one non-vacuum state .x; y/ 2 .Z�0/2, it is either a

positive soliton, a relaxation soliton, or a pulser as follows:

(1) .x; 1/ with x � 1: a positive soliton,

(2) .0; 1/ or .1; 0/: a pulsar,

(3) the other .x; y/: a relaxation soliton which reduces to a positive soliton of

the minimal form .x C y � 1; 1/.

If we consider the dynamical system on Q, the situation is more complicated

since there are solitons and pulsars whose minimal lengths are more than one.

Nevertheless, we numerically find an interesting structure as shown in Figure 13.

✲

✻

x

y

r

r

r r r r r r r❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡

❡ ❡ ❡ ❡

❡ ❡ ❡

r r r r r r

r r r r r

r r r r

r r r r r r r r

r r r r r r r r r

r r r r r r r r r r

r r r r r r r r r r

r r r r r r r r r r

r r r r r r r r r r

❜ ❜ ❜

❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜ ❜

❜ ❜

0 1 2 3

1

2

3

r❡ : a soliton

❜❡ : a pulsar

r : a relaxation soliton

❜ : a relaxation pulsar

Figure 13. Phase diagram for ˆ.3; 1/ on Z=3.

In the phase diagram, the relaxation pulsar is defined to be a finite sequence

of non-vacuum states which reduces to a pulsar after a few time steps. The points

.x; y/ corresponding to solitons are on a line x D y when x � 1 and on a line

y D 1 when x � 1. We observe that some relaxation solitons .x; y/ are reduced

to solitons .xCy�1; 1/, and the others are reduced to solitons out of the diagram,

whose minimal lengths are more than one. This is the same for relaxation pulsars.
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See Example 8.5 for a relaxation soliton given by .x; y/ D
�

7
3
; 2

3

�
, where one sees

that the length of the resulting soliton is always two.

Example 8.5. A relaxation soliton of ˆ.3; 1/ on Z=3:

.Yt
i /i .Zt

i /i

t D 0W .00/
�

7

3

2

3

�
.00/.00/.00/.00/.00/.00/ .10/.10/

�
0

2

3

��
2

3
0
��

2

3
0
��

2

3
0
��

2

3
0
��

2

3
0
�
;

t D 1W .00/
�

4

3
1
��

2

3
0
�
.00/.00/.00/.00/.00/ .10/.10/.01/.10/.10/.10/.10/.10/;

t D 2W .00/
�

1

3
1
��

5

3
0
�
.00/.00/.00/.00/.00/ .10/.10/

�
2

3
1
�
.10/.10/.10/.10/.10/;

t D 3W .00/
�
0

1

3

�
.2

2

3
/.00/.00/.00/.00/.00/ .10/.10/

�
1

1

3

��
1

3

2

3

�
.10/.10/.10/.10/;

t D 4W .00/.00/
�

4

3
1
��

2

3
0
�
.00/.00/.00/.00/ .10/.10/.10/.01/.10/.10/.10/.10/;

t D 5W .00/.00/
�

1

3
1
��

5

3
0
�
.00/.00/.00/.00/ .10/.10/.10/

�
2

3
1
�
.10/.10/.10/.10/:

Appendix A. Tropical semifield

A.1. Tropical limit. To a substruction-free rational map, we associate a piece-

wise-linear map via a limiting procedure called tropicalization.

The algebra .R [ ¹1º;˚;ˇ/ is called the min-plus algebra (or the tropical

semifield), where an addition ˚ and a multiplication ˇ are defined by

a˚ b WD minŒa; b�; aˇ b WD aC b:

Note that 1 corresponds to zero in the algebra: we have 1 ˚ a D a and

1ˇ a D 1 for any a 2 R. Moreover we have an inverse of ˇ, a ˇ .�a/ D 0,

but not an inverse of ˚. In the following we also write min and C for ˚ and ˇ.

The substruction-free algebra .R>0;C;�/ is formally linked to the min-plus

algebra in the following way. We define a map Log"W R>0 ! R with an

infinitesimal parameter " > 0 by

Log"W a 7�! �" log a: (A.1)

For a > 0, define A 2 R by a D e� A
" . Then we have Log".a/ D A. Moreover, for

a; b > 0 define A; B 2 R by a D e� A
" and b D e� B

" . Then we have

Log".aC b/ D �" log.e� A
" C e� B

" / 7�! "! 0 min.A; B/;

Log".a � b/ D AC B:

In summary, tropicalization is a procedure which reduce the algebra .R>0;C;�/

to the min-plus algebra by the procedure lim"!0 Log" with the scale transforma-

tion as a D e� A
" .
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Via tropicalization, substruction-free rational maps on R>0 formally reduce to

piecewise-linear maps on R. We may be able to restrict the resulted piecewise-

linear map on R to that on Z, which is sometimes called the ultradiscretization of

the original rational map.

A.2. Valuation field. Let K D C¹¹tºº WD
S

n�1 C..t1=n// be the field of

Puiseux series over C. The field K is an algebraically closed field with non-trivial

valuation, where the valuation map valW K ! R [ ¹1º is given by

valW b1ta1 C b2ta2 C � � � 7�! a1

if b1 ¤ 0, a1 < a2 < � � � 2 Z=n for some n � 1.

We recall the axioms for the valuation map on K:

(i) val.a/ D1 iff a D 0,

(ii) val.ab/ D val.a/C val.b/ for any a; b 2 K,

(iii) val.aC b/ � minŒval.a/; val.b/� for any a; b 2 K.

As for the last axiom, we have an important lemma:

Lemma A.1. For a; b 2 K, if val.a/ ¤ val.b/, then an equality holds in the

above (iii), i.e. val.aC b/ D minŒval.a/; val.b/�.

For the proof, see [14, Lemma 2.1.1] for example.

The tropicalization can be regarded as the following composition map:

R>0 �! K
val
�!R [ ¹1º;

a D e� A
" 7�! tA 7�! A:

We write trop.a/ D A for the image A of a under this map.
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