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Soliton cellular automata
associated with infinite reduced words

Max Glick, Rei Inoue,! and Pavlo Pylyavskyy?

Abstract. We consider a family of cellular automata ®(n, k) associated with infinite
reduced elements on the affine symmetric group S,,, which is a tropicalization of the
rational maps introduced in [3]. We study the soliton solutions for ®(n, k) and explore

a duality with the sl -box-ball system.
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1. Introduction

1.1. Soliton cellular automata. A soliton cellular automaton (SCA) is a cellular
automaton which has solitonic solutions. The first example, and a beautiful one at
that, of SCA is the box-ball system (BBS) discovered by Takahashi and Satsuma
in 1990 [17], which is a dynamical system of finitely many balls in an infinite
number of boxes arranged in a line. We will present its concrete definition in §7,
and here we simply show a typical time evolution of BBS:

t=0: ---11222111121111111111111 - -+,
t=1: ---11111222112111111111111 - -,
t =2 ---11111111221221111111111 ---,
t =3 ---11111111112112221111111---,
t =4 ---11111111111211112221111 - -,

where 1 and 2 respectively denote an empty box and a box occupied by a ball.
One can observe here the notion of soliton that (i) a soliton (a sequence of balls)
moves to the right with a constant velocity proportional to the size of the soliton
(the length of the sequence), and (ii) a bigger soliton eventually passes a smaller
one, after a scattering with resulting shifts of their locations. The shifts caused by
scattering provide evidence that the BBS is a nonlinear system.

Though the original definition of BBS seems to be far from known integrable
systems, the piecewise-linear equation which describes the system turned out to be
related to the piecewise-linear limit (ultradiscretization or tropicalization) of the
discrete KdV equation [18]. Another remarkable property of BBS is that its initial
value problem is independently solved by using completely different mathematics,
crystal base theory [2, 4] and tropical geometry [9]. (Also see [7] for a review and
a list of references on these topics.) In any of these strategies, the tau-function
plays an important role in describing solutions [5].

We are interested in methods to construct SCA and to study their solutions
applying combinatorics, representation theory and tropical geometry. To this
end, we start with the discrete soliton equations introduced in [3], and study the
corresponding SCA.

1.2. The Coxeter discrete KdV. In [3], two of the authors introduced a new
method to construct dynamical models of discrete space-time coordinates, as-
sociated to a pair of reduced words in the affine symmetric group S,. Let
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s;i i =0,...,n—1) be the generators of §n with relations:

SiSi+15i = Si4+15iSi+1,
s;sj =s8;8i, |i—j|>1 modn,

where we take the indices i of s; modulo n. Consider a pair u, v of reduced
elements in S, such that vu is also reduced. Fix reduced decompositions of u and
v, U = S Si, -8, and v = s}, 5, -+ Sj,,, and assign each s; with a real variable a
as s; (a). The dynamics called the Coxeter discrete KdV is defined as the rational
transformation of the £ + m variables assigned to vu, induced by moving v to the
right of u with the use of the Lusztig relations:

si(a)si+1(b)si(c) = siy1(be/(a + ¢))si(a + ¢)siv1(ab/(a + ¢)), (1.1
si(a)sj(b) = sj(b)si(a), |i—j|>1 modn. (1.2)

Originally these relations were introduced by Lusztig to study the totally positive
parts of algebraic groups and the canonical bases of quantum groups [13, 1]. In
the network model which offers a strong tool in [3], (1.1) is depicted as in Figure 1
and called the Yang—Baxter move [11].

i+2

i+1 <>

Figure 1. The Yang—Baxter move.

The important property of the rational transformation studied in [3] is that they
have soliton solutions. By applying the network model to a pictorial representation
of reduced elements in 3’,,, we identify vertex variables and chamber variables of
the network respectively with the dynamical variables and the tau-functions of the
model. This enables us to reduce the rational transformation to a bilinear equation,
and the multi-soliton solutions are obtained.

1.3. Main results. In this paper, we focus on a family of dynamical system
o(n,k) (k = 0,1,....,.n —2)forn > 2 givenby u = s152---5,—; and v =
SkSk—1 " -S0Sn—1 - Sk+2. As in the general case, the rational transformations are
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subtraction free because they are built out of Lusztig moves (1.1) and hence can
be written using only the other three arithmetic operations. Hence ¢ (n, k) has a
tropicalization (or, piecewise-linear version) obtained by replacing (+, x, <) with
(min, +, —). We study the tropicalization ®(n, k) of ¢ (n, k), and mainly consider
the soliton solutions for ®(n, k) on Z.

Our main results are that a form of each soliton for ®(n, k) on Z is parametrized
by (n — 2) positive integers (Theorem 2.7), and that the evolution rule of the soli-
tons has a duality with that of a well-known soliton cellular automaton called the
sl,-box-ball system [2, 4] (Conjecture 7.4, which is a theorem for n = 3, 4). The
second result is clarified via the combinatorial R-matrix acting on the product of
crystals corresponding to the symmetric tensor representation of U, (2[,,). Addi-
tionally, we find that the rational map ¢ (n, k) is a limit of another R-matrix action
(Proposition 3.1), namely the geometric R-matrix acting on the product of geo-
metric versions of the above (symmetric) crystal and its dual.

We remark that the network model [11] has a potential to be a useful tool to
study integrable rational maps. Once we can formulate the map using a network,
we may get not only the information of bilinear equations as in [3], but also
the combinatorial information of the Lax form. For an example of the latter
application, see [8].

This paper is organized as follows: in Section 2, following [3] we define
the dynamical system and introduce ¢(n,k) and ®(n,k). We give the notion
of soliton for ®(n, k) in §2.4, and state the first main result at Theorem 2.7.
In Section 3, the explicit formula for ¢ (n, k) and the relation to the geometric
R-matrix is shown (Proposition 3.1). In Section 4, by making use of the pictorial
representation of reduced words in §n, the tau-function and the bilinear equation
for the model are obtained. Sections 5 and 6 are devoted to computing soliton
solutions for ®(n, k) in different two ways. We compute the tropicalization of the
geometric solutions for ¢ (n, k) obtained in [3] in Section 5, and see that almost
all geometric solutions vanish in tropicalization except for the simplest ones. In
Section 6, we naively solve the tropical bilinear equations and prove Theorem 2.7.
In Section 7, we study the duality between the soliton solutions for ®(#, k) and the
sl,-box-ball system. After a brief introduction of the box-ball system, we present
Conjecture 7.4. We explain a strategy to prove it in §7.3, and give the proof in the
cases of n = 3 and 4 in §7.4 and §7.5 respectively. In the last section, we present
other interesting numerical phenomena for ®(n, k), including negative solitons,
pulsars, and relaxations of solitons and pulsars. We add Appendix A.1 to explain
the basics of the tropical semifield used in this paper.
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2. Description of the model

2.1. Discrete dynamical system in infinite reduced words. Following [3], we
introduce a discrete dynamical system associated to a pair of reduced words.

Define an automorphism p on the affine symmetric group S, by p(si) = Si+1.
Let n be a homomorphism from S, to the symmetric group S, given by n(s;) =
(i,i + 1) (as usual, i is considered modulo »n). We call a reduced element g € S,
a glide, when

() = 1 2 e n—k n—k+1 - n
ME=\14+k 24k - n 1 ek

holds for some k = 0, 1,...,n — 1. We call this k the offser of the glides.

Fix the expressions of two glides u = s;, i, --+s;, and v = sj,5j, -5, and
assume that vu is reduced. Let k; and k, be the offsets of u and v respectively.
By [3, Lemma 2.1], we have

vu = p2u)p™ (v). @1
Consider an (semi-)infinite word
wep Fr ) p7R @) p @)
Put v on the left side of the infinite word, and move it to the right using (2.1):
veup @) - p TR ) p TR () -
= p2) - p 1 () p T @) p R ) p T () -

(2.2)

— pkz (M) . p—k1+k2 (u) . p—2k1+k2 (M) . p—3k1+k2 (M) e
At the first line of (2.2), we assign the positive variable zg = (zo1,.-.,Z0,m)
to v as s;,(zo0,1) - S}, (Zo,n) and the positive variable y; = (yi,1,yi2...-, i)

to p~t*1(u) as Siy—iky (Viiy) =+ Sij—ik, (Vi,iy) for i € Zso. By using the Lusztig
relations, we define a rational transformation of the parameters corresponding
to (2.2);
(Z0.Y0.¥1.¥2,¥3....) —> (y(),Zl,Y1,Y2,Y3, oY)
: (2.3)
> (Y0, Y1, Y2, Y35 - - -5 Zoo)

where (z;,y;) is transformed into (y}, z; 41) corresponding to p k1 (v)-p~ R () =
ptkitka () . p=G+Dk () We call each y; a state, and each z; a carrier.



254 M. Glick, R. Inoue, and P. Pylyavskyy

A commuting pair for u and v is a choice of w = (wy,...,w;) and z =
(z1,. .., zm) satisfying

851 (21)87,(22) * +* S, (Zm) + 51y (W1)$1, (W2) -+ - 53, (wy)
= Siy ko (W1)Sin ks (W2) *+ Si 1 kp (W1) + Sjy—ky (21)8jo—ky (22) =+ 8 —k1 (Zm)-

We call such w and z a vacuum state and an initial carrier respectively.
We fix a commuting pair (w, z), we setZg = z, and we assume lim; 0 y; = W.
For t > 0, define (y!);ez., inductively by

(2, Yo, ¥, ¥5. 5. ) — (o it ys vt ). (2.4)

Empirically, at the end of each step the final carrier z, equals the initial one z and
the new states again satisfy lim; oo y'*!

=W
Remark 2.1. For the sake of exposition, we have simplified the system from [3]
wherein the state sequence ...,y—1,Yo0,Y¥1,Y2,--. is bi-infinite and assumed to
approach w in both directions. The description above corresponds to the special
case in which y; = w for all i < 0. To properly define the general system one
must insert the initial carrier farther and farther left and take a limit. We ignore
this issue, because our focus will be on the tropicalization of the system for which
it is consistent to assume for each ¢ that only finitely many y; differ from w.

2.2. Dynamical system ¢ (n, k). Let us focus on the case that both ¥ and v have
length n — 1 as

U = 515283 " Sn_1, (2.5a)

v="v(k) = SgSg—1---SoSn—1-"*Sg+2, Tfork=0,1,...,n—2, (2.5b)
whose offsets are k; = 1 and k, = n — 1 respectively.
Lemma 2.2. The following pair (w,z) is a commuting pair for (u, v(k)):

7= (ak_ak-Fl’ak—l —Ok+15---5

O — Q15,0 — Qe 1, ¥n—1 — Okt 15 - -+ » Q2 — Oht1),
W= (0p — 01, Qp — 02,...,0 — Up_1),
where we assume a1 < & < oy fori ={1,...,n—1}\{k + 1}, and the indices

i of a; are taken modulo n.

Proof of Lemma 2.2. To the wiring diagram of v(k)u introduced at Figure 4 in
§4.2, we apply the wire ansatz in [3, Section 4] by replacing «; with —¢; on the
i-th wire. O
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We write ¢ (n, k) for the dynamical system (2.4) given by the two glides u and
v(k) of (2.5) together with the commuting pair of Lemma 2.2.

Example 2.3. The system ¢ (3, 1) corresponds to the words u = 5152, v = 515p.
The equation (2.1) reads

VU = 51505152 = 0815052 = p>(u)p~ ' (v)

which follows from a single braid move. By (1.1) the weights evolve according to

+1 141
((Zit,hzit,z)a()’it,layit,z)) '_>(()’it,1 ’y;,z )’(Zf+1,1szf+1,2))

t t t t
Zi2Yin : : ) ( Zi1%i2 : ))
= : ’ 7Z' + ; ) ’ . ) 1 .
((25,1 + Vi ZRRC ziy + i Y12
(2.6)

The commuting pair is z = (¢; — @2, 003 — @2), W = (03 — @1, 03 — «2) and one
can check easily from the formula that (z, w) > (w, z) does hold. The full system

inputs yh, y{, ... with lim; o y; = w and uses (2.6) (with z; = z) to calculate

the y'*!

i .

2.3. Tropical dynamical system ®(n,k). For A,B,C € R, we define the
tropicalization of the Lusztig relations (1.1) and (1.2) as

5i (A)si+1(B)si(C) = si41(A)si(B)si41(C), (2.7)
S,(A)S/(B) = Sj(B)S,'(A), for |l —j| >1 mod n, (28)

where
(A",B',C’") := (B + C —min(4, C),min(4, C), A+ B + —min(4, C)).

See Appendix A for preliminaries on tropicalization. It is straightforward to
tropicalize Lemma 2.2.

Lemma 2.4. The following pair (W, Z) is a tropical commuting pair for (u, v(k)):

7= (Ax, Ag—1,..., A1, An, Au—1, ..., Agy2), W= (A4,,A4,,...,4,), (29)
where we assume

A1 > Ai > Ay, i e{l,...,n—1}\{k+ 1} (2.10)

Using the tropical Lusztig relations for the glides v and v (k) of (2.5) we define
the piecewise-linear transformation of the real variables Z; = (Z; 1,..., Zin—1)
andY; = (Yi1,Yipo, ..., Yin—1) fori € Zsy in the same way as (2.3).
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We write ®(n, k) for the tropical dynamical system given by the two glides (2.5)
and the commuting pair (2.9). As in the rational case, we call each Z; and each
Y, a carrier and a state respectively. Also, we call W the vacuum state, and Z the
initial carrier.

Example 2.5. Corresponding to Example 2.3, we have ®(3, 1) given by

(Zi 1. Zi5). (Y 1. Y]5))
— ((Yitjlv Ylt;l) (Zit+1,1v Zit+1,2))
= ((Zi, + Y}y —min[Z] ,, Y/,], min[Z; ;, Y] ,]),

(Zi + Zi, —min[Z] |, Y} |].Y})))

(2.11)

with the commuting pair Z = (A;, A3) and W = (43, A3).

In this paper, we mainly study the tropical dynamics on Z C R. In particular
we consider the case with 4, =0, 4; = 1fori = {1,...,n—1}\ {k + 1}, and
Ag41 > 1, so that the commuting pair is

Z=(,...,1,0,1,....,1), W=(0,...,0). (2.12)
—— ——
k n—2—k

2.4. Solitons. We define a one-soliton for ®(n, k) to be a finite sequence X, . . .,
X, of non-vacuum states satisfying the following conditions.

(i) The sequence moves to the right with a constant velocity, i.e. for some a and

b the input
Xi,.... X, W, W, .

is carried under a steps of ®(n, k) to

W,...WX,.... Xy, WW, .. .
———
b

(ii) For each ¢, the final carrier equals the initial one, i.e. Z{ = Z fori > 0
(unlike the rational case, we know of inputs for which this condition fails,
see Section 8.2).

An amazing feature of soliton systems is the existence of multi-soliton solutions,
which we define in our setting to be an input consisting of several one-solitons
separated by vacuums such that

(iii) for ¢ > 0 the outcome is a collection of one-solitons, arranged in increasing
order of velocity from left to right, with the same set of veloicities as the
initial solitons.
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We will see that different one-solitons can have the same speed and in particular
that the components of a multi-soliton for # > 0 may differ from the initial ones.
For two states Y? and Y?,, we say Y? is bigger than Y?,, if ¥/ = vy ; for all

j = 1,...,n — 1 and there is at least one j such that Y/, > Yl.',/j. In the same
manner, we say Y# is smaller than Yﬁ;, if Yi’j < Yl.’,/j forall j =1,...,n—1and

there is at least one j such that ¥/, < Yl.’,: ;- We say a soliton is positive (resp.
negative) when all states of the soliton are bigger (resp. smaller) than the vacuum
state.

The following are several examples of positive solitons, where we show (Y?);

for each .

Example 2.6. One-solitons.

(i) ®(3, 1):
t =0: (00)(31)(00)(00)(00)(00)(00)(00)(00),
t =1: (00)(21)(10)(00)(00)(00)(00)(00)(00),
t =2: (00)(11)(20)(00)(00)(00)(00)(00)(00),
t =3: (00)(01)(30)(00)(00)(00)(00)(00)(00),
t = 4:  (00)(00)(31)(00)(00)(00)(00)(00)(00),
t =5: (00)(00)(21)(10)(00)(00)(00)(00)(00).

(i) D4, 1):

t =0: (000)(312)(000)(000)(000)(000)(000),
t = 1: (000)(212)(100)(000)(000)(000)(000),
t =2: (000)(112)(200)(000)(000)(000)(000),
t =3: (000)(012)(300)(000)(000)(000)(000),
t = 4: (000)(002)(310)(000)(000)(000)(000),
t =5 (000)(001)(311)(000)(000)(000)(000),
t = 6: (000)(000)(312)(000)(000)(000)(000),
t =7: (000)(000)(212)(100)(000)(000)(000).

For a one-soliton we define its minimal length to be the minimal lattice length
the soliton occupies in propagation. We also define the velocity of a soliton, which
is the ratio of the minimal number of time steps it takes to recover the initial
sequence and the lattice length it propagates during the time steps (in the notation
of (i), velocity = b/a) . In the first case of Example 2.6, the soliton occupies
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one lattice at ¢t = 0, 4 and two lattices at t = 1,2, 3,5. The sequence at ¢t = 0 is
recovered at 1 = 4, moving one lattice to the right. Hence it has minimal length
one, and velocity 1/4. Similarly, the soliton in the second case has minimal length
one, and velocity 1/6.

Theorem 2.7. Consider the system ®(n,k) on Z with commuting pair (2.12).
Then
X =(b1.ba,....by—1)

is a one-soliton with minimal length one for any by, . .., by—1 €Z>1 with by 1 =1.
. . —1 —
Its velocity is (3 gy br) ™"

In principle one can verify that X above is a soliton directly using formulas
for the system we develop in §3. Instead we give the proof in §6 at which point
we are able to give explicit descriptions of one-solitons in terms of tau-functions
(Proposition 6.7). One upshot of this approach is that it mimics what is done
for similar systems and suggests that Theorem 2.7 gives all positive solitons (and
in particular, all positive solitons have minimal length one). Moreover, the tau-
functions could be useful in constructing multi-solitons, which we demonstrate in
the case of n = 3.

To denote a positive soliton we use the form at the minimal length of Theo-
rem 2.7, and call it the minimal form of the soliton. For example, in Example 2.6
the one-solitons have the minimal forms (3, 1) for (i) and (3, 1, 2) for (ii). In the
rest we often call a positive soliton just a soliton.

Here are examples of soliton scatterings whose combinatorial property will be
studied in §7.

Example 2.8. Two-solitons.
(i) The case of ®(3,1); (1,1) x (3,1) — (3,1) x (1, 1):

t =0: (00)(11)(00)(31)(00)(00)(00)(00)(00)(00)(00)(00).
t =1: (00)(01)(10)(21)(10)(00)(00)(00)(00)(00)(00)(00).
t =2: (00)(00)(11)(11)(20)(00)(00)(00)(00)(00)(00)(00).
t =3: (00)(00)(01)(20)(21)(00)(00)(00)(00)(00)(00)(00).
t =4:  (00)(00)(00)(21)(11)(00)(00)(00)(00)(00)(00)(00).
t =5: (00)(00)(00)(11)(20)(11)(00)(00)(00)(00)(00)(00).
t =6 (00)(00)(00)(01)(30)(01)(10)(00)(00)(00)(00)(00).
t =7: (00)(00)(00)(00)(31)(00)(11)(00)(00)(00)(00)(00).
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(ii) The case of ®(4,1); 2,1,1) x 3, 1,2) — (4,1, 1) x (1,1, 2):

¢t =0: (000)(211)(001)(311)(000)(000)(000)(000)(000)(000),
t=1: (000)(111)(100)(312)(000)(000)(000)(000)(000)(000),
t =2: (000)(011)(200)(212)(100)(000)(000)(000)(000)(000),
t =3: (000)(001)(210)(112)(200)(000)(000)(000)(000)(000),
t = 4:  (000)(000)(211)(012)(300)(000)(000)(000)(000)(000),
t =5: (000)(000)(111)(102)(310)(000)(000)(000)(000)(000),
t =6: (000)(000)(011)(201)(311)(000)(000)(000)(000)(000),
t =7 (000)(000)(001)(210)(312)(000)(000)(000)(000)(000),
1 =8: (000)(000)(000)(211)(212)(100)(000)(000)(000)(000),
1 =9: (000)(000)(001)(111)(302)(110)(000)(000)(000)(000),
¢t =10: (000)(000)(000)(011)(401)(111)(000)(000)(000)(000),
t=11: (000)(000)(000)(001)(410)(112)(000)(000)(000)(000),
t =12:  (000)(000)(000)(000)(411)(012)(100)(000)(000)(000),
t =13: (000)(000)(000)(000)(311)(102)(110)(000)(000)(000),
t = 14:  (000)(000)(000)(000)(211)(201)(111)(000)(000)(000).

where the change of internal structure of solitons is observed.
The behavior witnessed in these and other examples suggest the following.

Conjecture 2.9. Combining positive solitons gives rise to multi-soliton solutions
as in condition (iii) at the beginning of this subsection.

In the cases of n = 3, 4, this conjecture is a theorem which follows from the
duality with the sl,,-box-ball system proved in §7.4 and §7.5.

3. The formula for ¢ (n, k)

Let R be a rational map on Q(p. q) with non-negative variables p = (p;)i=1....n»
q = (¢i)i=1,...n> given by R: (p, @) - (q', p);
/ Pi+1 t qi+1 / Pi+1 t qi+1
L il e
This map originates from the geometric version of the combinatoriill R-matrix,
the isomorphism between the tensor products of crystals Bz ® By — By ® Bj;.

3.1
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Here By is the crystal corresponding to the £-fold symmetric tensor representation
of U(; (sln), and By is the dual of By. As a set, By and B; are the same:

By = B; = {x = (X1,X2,...,Xn) € (Zzo)”:in = 6}. 3.2)
i=1

See [11, §3.1 and §11.9] for details of the map R.

Proposition 3.1. The transformation (z;,y;) + (y;.2zi+1) of the dynamical
system ¢ (n, k) is described by R, by setting

P= Zik+1-Zik+2o---+Zin—1,0,Zi1,Zi 20 - - Zi k),

q = (0’ yi,n—lv yi,n—Z’ ) yi,k+2’ yi,k-l-l’ yi,k’ cee )’i,l)'
More explicitly, the transformation (z;,y;) — (Y;,Zi+1) is given by

;o Zik+2—j T Vi,j—1 _ Zij+1 t YVijk—j
Yijj = Vi,j v Zidly T Iy
Zik+1—j T Vi,j Zij + Vik+1—j

(3.3)

Here we assume that the second subscript j of z; j and y; j is taken modulo n,
and set yip = zin = 0.

First let us prove the following lemma. Assuming y; o = z;,0 = 0, denote

v Zik+2—j t Vij-1 v Zij+1rt Yik—j 34
Yij = Yi.j v i,y T 4T (3.4)
Zik+1—j T Vi,j Zi,j + Vik+1-j
Lemma 3.2. For any j we have
8j i g+1-)8j-1(Zik+2—j + Yi,j—1)8; (Vi,j)
1 1
= sj—l(yi,j)sj (Zik+1-7 + yi,j)sj—l(zi+1,k+1—j)'
Proof. Direct substitution:
(Zik+2—j + Vij-D)Vij
=y,
Zik+1—-j + Vi,j /
Zi k+1—j (Zi k+2—j + Yi,j—1) - 0

=z .
it 1k41—
Zik+1—j T Vi j /
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Now we are ready to prove the proposition.

Proof of Proposition 3.1. By the commutativity relations

Sk(zi) oo 8 Zik1—j) - Sk42Zin—1)51(Vi,1) - .S (Visj) oo Snm1(Vign—1)
= Sk (zi,1) - - -51(Zi k) S0(Zi k+1)51(Vi,1) - - -5k (Vik)
“Sn—1CZik+2) - Sk+2CZin—1)Sk+1Vik+1)Sk+2Vik+2) - - - Sn—1(Vin—1)-

Applying the lemma several times we see that

sk(zi1) -+ $1Zig) S0 (Zigk+1)51(Vi1) - - Sk (Vik)
= 5k (zi,1) - .- 51(Zik)S0(Zik+1 + Yio)s1(Vi1) - - - sk (Vik)
=50y} sk (i) - $2(Zi k—1)81 ik + yi)s2(Vi2) - - sk (ig)so(Z] 4 1)

=50/ 1) - Sk—1 V] )k (Ziot + Vi) Sk—1(Z{411) - 50(Z] 1 )
=50V - Sk=1 O] )k O e )Sk=1 (274 1,1) - - 50(2] 1 g )
Similarly, by application of the lemma, we get
Sn—1(Zik+2) - - - Sk42(Zin-1)Sk+1(Vik+ DSk +2(Vik+2) - - - Sn—1(Vi,n—1)

= Sn—1Zik+2) - - Sk+2(Zi,n—1)Sk+1(Zi,0 + Vi k+1)Sk+2 (Vi k+2) - - -
: Sn—l(,)/i,n—l)

= Skt1(V] ky2) - - - Sn=2(Vi n—1)8n—1Ci k2 + Yin-1)n—2(] 11 j42) - -
*Sk+1 (Zl{/-f—l,n—l)

= Skt1(V] k2) - - Sn—2 (Ve D)Sn=1] g1 ) -+ Sk41(Z 1)
Putting the two parts together we get
S0(71) - - Sk—1 V] )8k V] g 1)Sk=1 (2 1,1) - - 80(2 g 1)

k1 kg2) - =20 DSn=1 4y ) - Skt 1 (Z 1)

S0V )+ Sk—1 V] DSk O e )Sk+1 0 g g2) -+ Sn—2(Vi 1)

4 4 14 "
“Sk=1(Zi1,0) - S0(Zi )1y ) -+ Sk i pm)
4 4 " 4
= SO(yi,l) - -Sn—2(yi,n—1)sk—1(ZH—I,I) - -Sk+1(Zi+1,n—1)-
This separates into a carrier with parameters z;/, | j and a state with parameters

" ro_ . /) :
yi j- Weconclude that y; ; = y/"; and z; 11, = z;, ;, as desired. O
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In the following, we use the same notation ¢(n, k) to denote the map on

(R™,1)?* which comprises the dynamics ¢ (n, k), so we write

¢ (n,k): (2:,y:) —> (¥is Zi+1)-
Let ¢ be a map on R*~! given by
a=(ay,az,...,ap-1) —> (@p—1,an-2,...,a1),

and let 5 be the map on (R”~!)? given by

(@,b) —> («(b), (a)).
Proposition 3.3. As maps on (R”,")?, it holds that

d(n,n—2—k)y=pop (n.k)op (3.5)
fork =0,1,...,n—2.
Proof. For (z,y) = (zj, yj)j=1...n—1 We show
¢p(n,n—2—k)opop(n k)zy)=pzy)

by a direct calculation. From (3.3) we write

Zk42—j T Vj-1 _ Zj+1+ Yk—j
@.y) =gy = (» .2 ) ,
Dz 4y 24 yegrmg St

where we assume z, = y, = 0. By substituting this into

p(n.n—2—k)op.y)

!/ i !/ !/
_ ( b Tk g, Zamjm1 T Viay
- n—j _s ! YEn—j o / . _

Zkr4j T Vn—j Zn—j T V1) /I=lenml

we see the claim. O

4. Chamber variables

As is typical in integrable systems, we will express various solutions to our
systems in terms of tau-functions, by applying Hirota’s bilinear method [5].
A tau-function can be though of as an auxiliary collection of variables that have
relations among themselves imposed by the original evolution equations. Before
proceeding, we define certain networks which provide a good visualization of how
the tau-functions fit in.
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4.1. Wiring diagram and chamber variables. Following [3] we use the net-
work model introduced in [11] to describe our system. Consider a semi-infinite
cylinder with n horizontal directed wires forming an infinite wiring diagram,
which is a pictorial representation of an infinite reduced word in Sp. Away from
the crossings, the n wires run along the cylinder at n positions, and correspond-
ing to s; € S, we cross the wires in positions i and i + 1. Corresponding to the
parametrized version s; (a) of s;, we assign the crossing with a, and call it a vertex
variable. The Lusztig relation (1.1) corresponds to the Yang—Baxter move of the
wires in positions i, i + 1 and i + 2 as in Figure 1.
Fori =1,...,n, let e; be the i-th unit vector in Z”. For integers 1 <i, j <n,
we set
{Z',’;:i ex ifi <),
€li,jl = e
0 ifi > j.
For S € 7", we often write S; for S + e;, and [S] for the class of S in Z" /Z e[y .
Following [3, §5.1] (cf. [1]), we label the chambers of the wiring diagram with
elements of Z" /Z e[, ,}, and at the left end of wires, label the wire at position i
with «; € R~¢. Fix a label of one chamber, and extend it to the others by labeling
the surrounding four chambers at each crossing of the wires, as shown in Figure 2.

aj [Si.j]

(Xl' [S]

Figure 2. Chamber labeling at the crossing of wires «; and &, where a is the vertex variable
associated with this crossing.

The chamber variables make up a tau-function denoted t whose domain is Z".
We assume 7 is periodic on a cylinder:

(S + epn) = 7(S). @.1)

The enriched Yang—Baxter move, see Figure 3, corresponds to the relation among
the chamber variables

(i — ) T(8;) T(Sip) = (i —a;j)T(Sk) T(Sij) + (@ — ) T(Si) T(Sjk)-
4.2)
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[Si.j.k] [Si.j.x]

[S] [S]

Figure 3. The enriched Yang-Baxter move, where (a’,b’,¢’) = (aﬁfc ,a+c, a‘ffc).

Remark 4.1. Several names are used in the literature for the enriched Yang—
Baxter move: Hirota bilinear difference equation [20), discrete analogue of gen-
eralized Toda equation and lattice KP equation [16], bilinear lattice KP equa-
tion [21], or Hirota—Miwa equation [12]. It goes back to the works of Miwa [15]
and Hirota [5].

The following lemma is shown easily [3, Lemma 3.1]:

Lemma 4.2. The enriched Yang—Baxter move on chamber variables (4.2) induces
the Yang—Baxter move (1.1) on vertex variables via the transformation:

t(Si,/) t(S)

4.3
2(5) 1(5) (*3)

a = (o —aj)
with labels as in Figure 2.

4.2. The tau-function for ¢(n, k). We start with the wiring diagram of the semi-
infinite word (2.2) with u and v = v(k) given by (2.5), as depicted at Figure 4. At
the left end of the diagram, the wire at position i is assigned with «; € R~, and
the chamber between the n-th and the 1-st wires is labelled with 0 € Z". From
the diagram we see that n — 2 Yang—Baxter moves are applied in calculating the
dynamics of ¢(n,k), (z!.y!) — (yi*'.zl,), hence the corresponding enriched
Yang—Baxter moves give n — 2 relations among chamber variables:

(otn — otgg1) T(epr, p—1] + ex+1) T(ep,p] — €n)

=(an — ap) (e, p—1] + €k+1 — €n) T(e[1,p)) 4.4)
+ (op —ag41) Tlepr,p—1) Tep1,p) + €k+1—€n); p=1,... .k,
(otn — k+1) T(€p1,k+p] + €k+1) T(€[1,k+p+1] — €n)
=(an — et p+1) T(€[1,k+p] T €k+1 — €n) T(€[1,k+p+1]) 4.5)

+ (Olk+p+1 — Q1) T(e[l,k+p]) T(e[l,k+p+1] +ek41 —en),

forp=1,....n—k—2.



e[1.n] + ex+1

Y1 er.n] +e1 + ekt

421
e[1.n—1] + ex+1
Qp
e[1,n—1] e[1.k+2] + ex+1
Opn—1
€[1.k+2] Zn—1 e[ k411 + ex+1 e[1.k+2] + exk+1—en
Oi+2
e[l k+1] e[1.k+11 + ex+1—éen
Qg +1
er1.x] er1.2] +ex+1 e[1.k+1] —é€n
673
el + ek+1 er12) teky1—en
%]
€k+1 el terr1—ey
ap
€k+1 —€n
Qn
Zk+2 €k+1 —€n—1—¢€n

Figure 4. The wiring diagram for v(k)u on the universal covering of a cylinder. A fundamental domain is between two dashed lines.

SPIOM PIONPAI AIIUYUI IIM PIIBIOOSSE VS

¢9¢
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For a glide g € S, we define its trajectory k(g) € 7" in the following way:
draw the wiring diagram of g, and label the wire at position i with «; at the left
end. Let S (resp. S’) be the label of the chamber between wires 1 and 2 at the
leftmost (resp. rightmost) point of the diagram for g. Then the trajectory of g is
k(g) =8 -3S.

Lemma 4.3. (i) The trajectories of v := v(k) and it :== p" ' (u) are

k() = —en,  Kk(V) = erq1. (4.6)

(ii) When we label the chamber to the left of the vertex y(’)’zjo with S € 77", then
that of the vertex y} ; is
S +ik() —tk(v).

Proof. (i) The trajectory «(v) is the difference of the labels of the left chamber of
v, and the left chamber of z;, which is (e; + ex+1) — e1. Since the offset of v is
ko, in the diagram the vertex of y; is a crossing of the wires n and 1. Hence the
difference of the labels of the right chamber of z;,; and the left chamber of y,
(ek+1 — en) — ex41, is the trajectory of p"~1(u).

(ii) It follows from [3, Proposition 5.4]. O

Label the left chamber of z! , 41 With k()i — k(v)z, and define
(8) 1= (S + k(i1)i —k(v)1) 4.7
for S € Z". The following proposition immediately follows from Lemma 4.2.

Proposition 4.4. Fori,t € 7, set

e forp=1,...,n—1,

T (ep41 + e, pl) T (ep1 —en + e[1,p—11)

t
Yip = (0n —0p)— . ;. (4.82)
P TP e (e + e po1) T (et — €n + €1, p)
o forp=1,...,k,
T (et + e[1.k+1-p]) Ti’t(e[l k—p])
zf = (Qkg1—p — Ck1)— s ~P (4.8b)
bP i (e k4 1-p) T (e[1,k—p] + €x41)
o forp=1,...,.n—k—1,
T (kg1 + €[1,n—p+11) T (€[1,n—p])
Zf,k+p = (dnt1-p — Uet1) (n—pt1] [L.n—p] (4.8¢)

Ti’t(e[l,n—p+1]) Th (eg41 + e[l,n—p])‘

Then a solution of (4.4) and (4.5) gives the solution for ®(n, k).
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Via tropicalization, we see the following facts. Let 7" be the tropical chamber
variables (tau-functions) on Z”" satisfying the tropicalization of (4.4) and (4.5):
o forp=1,...,k,
T(e[l,p—l] + €k+1) + T(e[l,p] —ey)

= min[T (e[1, p—1] + €k+1 — €n) + T(e[1,p]). (4.9)
Ap = An + T(ep1,p-1) + Tlep p) + exv1 —en)l;

eforp=1,....n—k -2,

T(er1k+p) + €k+1) + T(ef1k+p+1] — €n)
= min[7 (e[1,k+p] + €k+1 — €n) + T(e[1,k+p+11),

Akt p+1 — An + T(epk+p) + T(e[1k+p+1] + €k+1 — €n)]-

(4.10)
A solution for these equations gives that of ®(n, k) as follows:
eforp=1,....,n—1,
Y, = An + T (exr1 +epi,p) + T (eks1 — en + ep1,p-17) (4.11a)
— T (ex41 + ep1,p-11) = T (k1 — en + €1, p));
o forp=1,...,k,
Z! , = Akr1—p + TV (ers1 + epkr1-p)) + T (ep1,k-p)) (4.11b)
— T (epk+1-p) — T (ep1,k—p] + €x41);
eforp=1,....n—k—1,
Z iy =Ant1-p + T (ek1 + epn—p+1) + T (e(1,-p) (4.11c)

- Ti’t(e[l,n—p+1]) - Ti’t(ek+1 + €[1.n-p))-

Here we set TH(S) = T(S + «(i1)i —«(v)t).

5. Soliton solutions for ® (n, k) via tropicalization of geometric solution

We study the soliton solution for ®(n, k) on R by tropicalizing those for ¢ (n, k)
on R~ in [3]. In this section we prove the following theorem.
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Theorem 5.1. Tropicalizing the soliton solutions for ¢ (n, k) studied in [3], we get
the soliton solutions for ®(n, k) whose minimal formis (x, ..., x) for A, < x < A,
where A = min[A4;; i € {l,...,n — 1} \ {k + 1}]. Their velocity is 1/(n — 1),
independent of x.

Besides the condition (2.10), for simplicity we assume that all A; are distinct.
Using {i,; p=1.....,n} ={1,...,n} we write the ordering of the 4; as
A <A, << A4;,
where i1 = n and i, = k + 1. We define
Afiy,.ip) = Aiy + Aiy +--+ Aj,.

Let
K = ()= | e’

n>1

be the field of Puiseux series over C. Let val be the valuation map
val: K — R U {00}

(see Appendix A.2 for the precise definition.) For k = 1,...,n, fix ¢y € K to
satisfy val(ay) = Ag. Let b, ¢ € K satisty

(b—a)b—-—a)---(b—ay) =(c—a)(c—a)---(c—an), (.1
and 4;, < val(b) < val(c) < 4;,,, forsome p € {1,...,n—1}.
Let F(X,Y) be the tropical polynomial:
F(X,Y) =1’l’lil’1[Y, nX, (I’l—l)X—i—Ail s (n—2)X—|—A[,-1’,-2], e, X+A[i1,in—1]’ A[il,in]]'
The affine tropical curve I" determined by F(X,Y) is a graph in R? defined as
I = {(X,Y) e R? | F(X,Y) is indifferentiable}.
See Figure 5. The tropical curve I is the tropicalization of the affine curve y in
K? given by
y=yx)=x—-a)x—az) - (x —an).
Precisely, I is the closure of the set of valuations of points in y.
Let X, satisfy A;, < X, < 4;,,, forsome p € {1,2,,...,n—1}. We consider
a pair of intersection points of the curve I" and a line parallel to the X -axis:
(Aip, (n — p)Xc + Ay i,) (Xe, (n = p)Xe + Apiy i)

This pair is the image under val of a pair of points (b, y(b)) and (c, y(c)) on the
curve y, such that y(b) = y(c) and 4;, < val(b) < val(c) = X, < 4;,,,. Note
that it turns out that val(b) = A;, from the graph T".
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Aliyinl T

Aliyis) + (n—3)A4s,

Aliy i) + (1 = 2) A,

nA;,

269

A Aj, Ay A

in

Figure 5. The tropical curve T separating R? into n 4 2 domains.

Lemma 5.2. It holds that

A,‘ fOl"i =i1,...,ip_1,
val(b + ;) = { Ai, + (n — p)(Xc — Ai,)  fori =ip,

Aj, Jori =ipi1, ... 0y,

A; ori = i1,...,Ip,
val(c + ) = { ' f ! P

XC fOY‘i =ip+1,...,in.

Proof. By the assumption on X, and Lemma A.1, we obtain val(c — «;) for all i
and val(b — «;) for i # i, immediately. As for val(b — «;,), taking the valuation

of (5.1);
Zval(b —a;) = Zval(c — o),

i=1 i=1

it follows that
n
val(b — ;) = Y val(c — o) — Y val(h — a;)
i=1 i#ip
= Afiyip) + (1 = p)Xe — Apiy i, — (n = p) A,

and we obtain the result.
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The one soliton solution for ¢ (n, k) constructed in [3] is given in terms of
chamber variable:

T(S)=14+LB5'B2...B", S =(s1.....sn) €Z", L K\{0}, (5.2)

where

b—Olj

B = j=1...n. (5.3)

b
C—0

Due to (5.1), it holds that (S + e[ ,) = ©(S). We are interested in the
tropicalization of the tau-function. As a corollary of Lemma 5.2 we obtain the
following.

Corollary 5.3. We have

0 fori:il,...,ip_l,
val(B;) = ¢ (n — p)(X, — Ai,) fori =ip,
A,'p—Xc fori=ip+1,...,in.

Remark that ) ;_, val(B;) = 0 holds. Define

W(Xc) = (val(Bi))i=1,..n € R".

.....

Now it is easy to show the following.
Proposition 5.4. (i) The one soliton solution for ®(n, k) is given by
T(S)=min[0,L + S - W(X.)], SeZ" LceR. (5.4)
(ii) We have

—(n—1)(X, — A4; A, < Xe < A,
W(X.) 'K(,O_l(u)) _ (n )(Xe i) Jor A c in
0 for Aiz < Xc < Ain-

W(Xe)-k(v) = 4i, — Xe  for Ai,, < Xc < Aj, .

In particular, the soliton exists only when A;, < X. < A;,, and its velocity is
(n — 1)7Y, independent of X..

Proof. (i) It follows from Corollary 5.3. (ii) Due to Lemma 4.3 (ii), when W (X,)-
k(p~(u)) # 0, the velocity of the soliton is given by (Cf. [3, §8.1])

W(Xc) -k (v)
W(Xe) - k(p~t(u))
The result is obtained by using Lemma 4.3 (i) and Corollary 5.3. |
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By substituting (5.4) into (4.11), we obtain the soliton solution whose minimal
form is (Xc....,X.) with 4, < X. < A;,. Since all of these have velocity
——

n—1
1/(n —1), there is no scattering among solitons. It ends the proof of Theorem 5.1.

Remark 5.5. Forany N > 1, an N -soliton solution corresponding to X,, < X, <
Xey <o < Xy < Ais given by

T(S)=min[0,min[L; + S - W(Xc,); i = 1,....N]].
with appropriate L; € R.

Remark 5.6. Whenweset A := 4;, = --- = A4;,_, as (2.12), the tropical curve I
is degenerated and X, has only two possibilities A, < X, < Aor4 < X, < Ag41-
The similar calculation of valuation shows

Xe —A4n)(1,...,—1,n—=1) for 4, < X, < A,
=JX,—A
WXe) =122 _i—2).1,....1,0) for A < Xo < Ay,
11—2 N’ N——
k n—k—2

Thus we see that W(X.) -k (p~ (1)) and W(X,) -k (v) have the same expression as

Proposition 5.4 (ii), and solitons only have volocity (n—1)~!. In the limit X, — A,

it gives the positive soliton whose minimal form is (1,1, ..., 1) in Theorem 2.7.
—

n—1

6. Soliton solutions for ®(n, k) from tropical tau function

We study the soliton solutions for ®(n, k) by naively solving the tropical bilinear
equations (4.9) and (4.10), instead of tropicalizing the geometric solutions. It
turns out that there are various solitons besides those presented in §5, a reflection
of the general phenomenon that tropicalization is not reversible. We first present
the solution for ®(3, %) on R, and next show the solution for ®(n, k) on Z for
general n. Theorem 2.7 finally follows from Propositions 6.3 and 6.7.

6.1. The n = 3 case. Let 7(i, 1) be a function of (i, ) € Z? satisfying a relation

A+, t—D@@ +2,t+1)

(6.1)
=t(@+Lt+ D)@+ 1,t—-1) 480, 1)@ +2,1).

We first demonstrate the case of ®(3, 1) in detail.
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Proposition 6.1. A solution of (6.1) gives the solution of ¢ (3, 1) via
ti+1,0)t@+1,t=-1)

C ’ 6.2
i = e o) T o
t i+ 1,t=1)t(i +2,1)
. B ’ 6.2b
Vip = (@3 "‘2)r(i + Lot +2.0-1) o
, t(i +1,6) (i, 1)
- B ’ 6.2
= lon —o0) T 02
.,l‘ —1 | 1,t
zl, = (a3 — az)r(l et L (©29

(i, )i +1,1—1)
Proof. From (4.4) and (4.5), the bilinear equation for chamber variables v of
¢(3,1)is
(3 —02)T(S +e1 —e3) T(S + e2)

= (a3 —a1)T(S +e2—e3) (S + e1) + (a1 —@2)7T(S) T(S + e1 + e2 —e3).

(6.3)
We change the chamber coordinate generated by the unit vectors e (k = 1,2, 3)
to that generated by «(ii) = —es, K(v) = e and e[y 3. By using ey = e[ 31 +
k() —k(v), e2 = k(v) and e3 = —t(u), and transforming t (7, ¢, j) := 7(S) when

S =1i-«k)—1t-k()+ j-e[,3, we rewrite (6.3) and obtain

(a3 —ax)t(@ +2,t+1,j+ D@, t—1,))
=(z—ant(@+1,t—-1,j+ D@+ 1,t+1,j)
+ (e —ap)t(@ t, j) (i +2,¢,j + 1).
We set § = (a1 — @2)/(e3 — o1), and ignore the third coordinate by taking into
account the periodic condition (4.1). Then (6.1) is obtained.
By identifying t (i’ -k (i1) —t' -k (v) + j'-ep1 31) with T(i +i’, ¢ +¢’, j') which
reduces to t(i + i’,t + t’), we obtain (6.2) from (4.8). O

For ¢ (3, 0), instead of (6.3) we have
(a3 —a1)T(S + e12] —e3) (S + 2er)
= (o3 —a2)T(S + 2e1 —e3) T(S + ef1,2))
+ (02 —a1)T(S + 1) (S + e[1,2] + €1 — €3).

In the same manner using x(v) = e; and § = (a2 — a1)/(03 — @2), we again
obtain (6.1). Then a solution of (6.1) gives the solution of ¢ (3, 0) via
t(i,t—2)t(i +1,t—1)
it =1t +1,1-2)

yi1 = (a3 —ar) (6.4a)
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ti+1L,t—Dt(i+1,t-2)

t

= (a3 — 4

Yip = (0 = o) =) (6-45)

‘ t(i,t—1Dt(i +1,1)

= (a5 — , 6.4

Za = O ) T L= D) (6.4c)
Lt — 1) (-1

oy = (o gy S LI DG D) (6.4d)

i+ 1L,t)t(i,t—2)

which originate from (4.8).
In the following we set trop(§) = 1, corresponding to the condition (2.12). We
study the soliton solutions for ®(3, k) by solving the tropicalization of (6.1):

TG, t—1)+TG+2,t41)

6.5
=min[TG+1,t+D)+TGE+1,t—=1, 1+TG)+TGE+2,1)]. ©3)
Proposition 6.2. The soliton solutions of (6.5) are given by
(1) one-soliton:
min[0, L +iP —¢ LeR, P=>2,
TG0y = |minl0- L+ ]P for (6.6)
min [0,L +iP —t%£] forLeR, 0<P <2;

(2) two-soliton: Define C;(i,t) := L;j +iP;—t and C;(i,1) := L; +iP; —tP;/2,
min[0, C1(i,1), Co(i, 1), C1(i, 1) + Ca(i, 1) + Z12];
for Li € R, Pj > 2 suchthat Py # P>,

min[0, C1(i, 1), C5(i, 1), C1(i, 1) + C5(i, 1) + Z ,];
forLj €R, 0< Py <2< Py,

T@,t)=

where 3
Zl,2 = 2min[P1,P2]—1, Zi,z = EPz.

Proof. We compute the soliton solutions using Hirota’s method [5, §1.5].

(1) A one soliton solution for (6.1) is set to be a form as 7(i,¢) = 1 + {p'q’
with £, p, ¢ € R~¢. By substituting it into (6.1), we obtain an algebraic equation
for p and g:

(1+8)@™" + p*q) = pg + pg~" +8(1 + p?).
Then P := trop(p) and Q := trop(q) are required to satisfy

min[—Q, 2P + Q] = min[P + Q, P — Q, 1 + min[0, 2P]]. (6.7)
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We solve this equation assuming P > 0 without loss of generality. When Q > 0,
(6.7) reduces to —Q = min[P — Q, 1], which has no solution. When Q < 0,
(6.7) reduces to min[—Q,2P + Q] = min[P + Q,1]. If —Q < 2P + Q and
I1<P+Q,wehave Q =—land P >2. If —-Q <2P + Qand1 > P + Q, we
have Q = —P/2and 0 < P <2.If —Q > 2P — Q, we have no solution.

(2) By substituting a form of two soliton solution

t(i,t) =1+ Klp’iqtl + széqé + 21,2511716]55217?1;
with ¢;, p;,q; > 0 fori = 1,2 into (6.1), and taking the order of £;¢,, we have

_ P1P2(43+43) +84192(p + p3)— (1 + 8)(piai + p343)
(1 +8)(1+ piq3 p393)— (p1p2(148p1 p2q192) + 41928+ p1p29192))

Z1,2

Set trop(g;) = Q; = —1 and trop(p;) = P; > 2 fori = 1,2 such that Py # P;.
In the numerator of z; », we have

trop(p1p2(q7 + 43) + 8q192(p7 + p3)) = min[Py + P, —2,2P; — 1,2P, — 1]
= 2min[P1, Pz] -1,

trop((1 + 8)(piq; + p3g3)) = 2min[Py, P>] -2,
and in the denominator, we have
trop((1 + 8)(1 + piqip3¢3)) = min[0,2(Py + P2) —4] =0,

trop(p1p2(1 + 8p1p29192) + q192(8 + p1p291492))
= min[P1 + Py,—1,P1+ Py —4] = —1.

Thus the dominant terms of tropicalization in the numerator and denominator of
z; » have the same sign, and we obtain

Z1 = trop(z12) = 2min[Py, P;] —2 — (—1) = 2min[Py, P,] — 1.

In the same manner, when Q; = —1, P; > 2, 0, = —P>/2and 0 < P, < 2, we
obtain trop(z;2) = 3/2P;. O

By substituting (6.6) into the tropicalization of (6.2) or (6.4) we obtain the
following:

Proposition 6.3. Assume L € Z and P € 7, in (6.6). Then we obtain a positive
soliton whose minimal form is (P — 1, 1) for ®(3, 1), and a positive soliton whose
minimal form is (1, P — 1) for ®(3,0). In both cases the velocity of soliton is 1/ P.
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The proof is included in that of Proposition 6.7 (ii).

Remark 6.4. For general L € R and P € R~y, a soliton may have the minimal
length more than one. See §8.3.

6.2. General n case. In the same way as the n = 3 case, we study soliton
solutions for ®(n, k) forn > 3. Unfortunately we obtain only one-soliton solutions
for technical reason. For simplicity we study only integral solutions.

We transform the bilinear equations for 7’/ on the chambers, (4.4) and (4.5),
to those for an (n — 2)-tuple of tau-functions (z,)p=o0,1,...n—3 ON 7?2 using the
following rule. Recall the definition of % (4.7) and that we have labelled the
left chamber of zf, 1 With k()i — k(v)z. Note that in the universal covering of
the wiring diagram for v(k)u, the chamber labels lie in the subset of Z”

Cr = {e[l,p]—I—i'en—l—t'ekﬂ—l—j'e[l,n]; pe{01,....,n—1},i,t,j EZ}.

When k > 1, we set

70(i, 1) if p =0,
; Li+1,t4+1) ifp=1,...k,
tlen) =1 " ‘ (6.8)
-1 (i +1,1) ifp=k+1,....,n-2,
0(i +1,1) ifp=n-—1,
and uniquely extend it to C; using
e (—i'en — e y1 + jepn) = T 1H(0) 6.9)

for any i’,t’,j € 7. For instance, when n = 4 and k = 2, it holds that
¥ (eks1 + ep) = T Nepz) = t2(i + 1,7). Remark that the periodic
condition for chamber variables (4.1) is hidden by (6.9). When k = 0, instead
of (6.8) we set

79(i, 1) if p=0,

T0(i,t — 1) if p=1,
pa(+1,1) ifp=2,...,n-2,
0(i +1,1) ifp=n-—1,

(e, p) =

and use (6.9).
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Proposition 6.5. Set o; = «a fori = {1,2,...,n — 1} \ {k + 1}, and define
8 1= (@—ag+1)/(ap—a). Via the above introduced transformation, (4.4) and (4.5)
reduce to the following equations for the t, (i, t), which are independent of k:

A+8r,t—D) (@ +2,t+1)

(6.10)
=100+ 1L,t+ D)@ +1,t—1)+81G, 1) 1@ +2,¢),
and
I+ +1,t=1) 1410 +2,1)
=1+ 1)1 +2,t-1) (6.11)
+01,(i + 1, 1) tp1 (i + 2,1 1),
for p=1,...,n—3, where we assume t,—>(i,t) = to(i, ).

Proof. When k > 1, from (4.4) and (4.5) we obtain

(n —o4+1)T0( 0 — D@ + 2,1+ 1)
=(ay—apnt@i+1,t+1)19G@ +1,2-1)
+ (o1 — ag+1) (A, 1) (0 + 2, 1),
(n — kD) Tp—1( + 1,0) o410 + 2,7+ 1)
= (ot —ap)pi + Lt + D 1p1 (0 +2,1)
+(ap—a)p1(+ 1,1+ 1)1, +2,1),

forp=2,...,k,and

(an —og+1)Tp2( + 1.t = 1) 11(0 +2,1)
= (an —p)p1 (i + 1, 1) 1p2(i + 2,1 —1)
+(tp — k1) o2 (i + 1, 1) 1p—1 (I + 2,1 — 1),
for p = k+2,...,n—1.Using the defined §, we see that the first equation reduces
to (6.10), and the next two equations reduce to (6.11).

When k = 0, we only have (4.5) which turns out to be (6.10) when p = 1,
and (6.11) when p =2,3,...,n —2. O

From Proposition 4.4 we obtain the following:

Corollary 6.6. A solution of (6.10) and (6.11) gives the solution of ¢ (n, k) via the

following formulae. In the case of k > 1:

@+ 1,0t +1,t—1)
to(i,t — D7 (i +2,1)

yip = (on — ) , (6.12)
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(0 + 1,011 +2,1)
o1 (i + 1,050 +2,1)
(@ +1,t — D (i +2,1)
(i + 1,000 +2,6—1)
o1+ 1, t — D1 + 2,1 —1)
Tpoa(i + 1,0 = D)1py (i + 2,6 — 1)

forp=2,...,k, (6.13)

Vip = (@ =)

yf,k+1 = (an — )

yit,p=(05n_0‘) forp=k+2,...,n—1,

Tep1—p(i + 1, 0)T—p (i + 1,2 4+ 1)
Tet1—p( + 1t + D1 p (i + 1,1)°

Zf,p=(05—05k+1) forp=1,....k—1,

(6.16)

P ‘El(i + l,l)fo(i,l)

b= (a — , 6.17
Zide = @ = ) e G = ) ©.17)

P to(i,t — Dto(i + 1,¢)

; = — ) 6.18
Zik+1 (otn ak+1)fg(i,l‘)fg(i FLi—1) ( )
and

t Tn—p(i +1,71— 1)Tn—P—l(i + lvt)

; = (a — , 6.19
Ziktp = (@ ak+1)rn_p(i 0o, 1+ L= 1) (6.19)
forp=2,...,n—k —1.In the case of k = 0:

y;l = (o _a)fo(i,t —Dro(i + 1,1 — 1)’
b to(i,t — Dto(i + 1,2 —2)
: ( )rl(i+1,t—1)r0(i+1,t—2)
= (o —« ,
Yig = (0 0.1 —2)11(i +2.1—1)
and yf’p for p = 3,....n — 1 has the same expression as (6.15). The variable
zj  is as (6.18), Zf’p forp=2,...,n—2isas (6.19). The variable ij;ll has the

same expression as (6.17).

In the following, we set trop(§) = 1 corresponding to (2.12), and study
solutions of the tropicalization of (6.10) and (6.11):

To(i,t— D)+ T +2,t+1)
=min[Ty(G + 1,6 + 1)+ To(i + 1,6 = 1), 14+ To(i, 1) + T1(i +2,1)],

(6.20)
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and
T, +1,t=1)+Tpa(i +2,1)
=min[Tp41(0 + 1.0) + T, + 2.t —1),
1+ T +1,8) + Tppa(i + 2,1 —1)],
forp=1,...,n—3.

Proposition 6.7. (i) A one-soliton solution for ®(n, k) is given by

To(i,t) = min[0, L + iP —1],
n—3

T,(i.1) = min = [O,L+iP—t+ZRJ-], forp=1,....n—3,

J=p

(6.21)

where L € Z, P € Zisp—1, Rj € Ze—y for j = 1,....n=3,and P+Y_1_3 Rj > 2.

(ii) The minimal form of this soliton is

n—3
(P —1 + ZR'a_Rl’_R27 .. "_Rk—17 17_Rk7 .. -,_Rn—3)-
j=1

Proof. (i) We substitute 7o(i,7) = 1 + £ciq" and 75(i, 1) = 1 + Lciq’ ]_[z;i Tk

into (6.10) and (6.11), and obtain
A+ 8 +c2qr) =cqr +cqg ' +8(1 + c2r),

A+ rs+e)=1+cqg lrg+8(rs+cqg™t), fors=1,...

where r := ]_[2;31 rr. By eliminating the ry, we have

(A+8—c—689)" > =cq(q+8—(1+8)cq)" 2.

Assume P := trop(c) > 0 and set Q := trop(q) as in the n = 3 case.

When # is odd, set ng := % Equation (6.24) is expanded as

3 (” N 2) (14 8)" 272 (¢ 4+ §g)%

¢ 2i
i=0

o (1n—2 n—3-2i i
+C¢12(2l.+1)(61+8c) 2 (eq(1+ )
i=0

o~ (n—2 n—3—2i 2i+1
_;(2i+1)(1+8) (c +89)

+pq ) (nz_ 2) (g + 8¢)" > (cq(1 + 8))*.
i=0

i

N

(6.22)

-3,

(6.23)

(6.24)

(6.25)
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Assume Q € Zg. It holds that trop(c + §¢) = min[P,Q + 1] = Q + 1 <0 and
trop(q + 8¢) = min[Q, 1 + P] = Q. Thus the tropicalization of (6.25) reduces to

min[(n—3)(Q +1),2P+20+(n—3)Q] = min[(n—2)(Q+1), P+ 0+ (n—-2)Q],
from which we obtain
min[n —3,2P +2Q0] = Q + min[P 4+ Q,n —2].

When P + Q > n — 2, it follows that 0 = —1 and P > n — 1. When
ng < P+ Q <n—2,itholds thatn —3 = P 4+ 2Q which contradicts Q € Z .
When P + Q < ng, we obtain P = 0 which is a contradiction. When Q > 0,
there is no solution since the tropicalization of the L.h.s. and the r.h.s of (6.25) are
respectively zero and positive.

When 7 is even, by a similar discussion we see that the solution is that Q = —1
and P € Zsp—1.

From (6.23) with Q = —1 and P > n — 1, we obtain

min[Rs; + 1, P] = min[0, P + 1 + Rs, 1 + R, 2 + P],

which holds for any Ry <—1. Further, from (6.22) it follows that P —1—22;31 Ry >2.

(ii) Define A, := l’-';; R; for p = 1,...,n — 3. We show that the minimal
form is obtained by setting t = 1,i = —1 and L = —Ag, for k > 2. The case of
k =1 is similar.

First, we consider Yl’ ,21 with L = —Ag. By tropicalizing (6.14) we have

Vit =Tili + 1.0) + Ti(i +2. 1) = T (i + 1.1) = Te (i +2.0)
= min[0, (i + 1)P] + min[0, (i +2)P — 1]
—min[0, i + 1)P — 1] — min[0, (i + 2)P].

When i = —1, all but the third term are zero in the last line of the above formula,

and we obtain Y_l1 w41 = 1. Itis satisfied that min[0, *] = x for all terms when

i < —1, and that min[0, ] = O for all terms when i > —1. Thus Yl.’,fil = 0 when
i #—1.
Next we calculate Yi}l. By tropicalizing (6.12) we have

Yy =Tl + 1,1) + To(i + 1,0) — To(i,0) — Ty (i +2.1)
min[0, L + (@ + 1)P — 1+ A1] + min[0, L + (i + 1) P]
—min[0, L +iP]—min[0, L + (@ +2)P — 1 + Aq].



280 M. Glick, R. Inoue, and P. Pylyavskyy

When i = —1, the first and the third terms in the above formula are nonzero, and
we obtain Y!, | = (L -1+ A))—(L—P) =P+ A;—1. Wheni # —1, we

obtain Y;'; = 0 for the same reason as for ¥,!, ;.

In the case of Yl.lk, from (6.13) we obtain

V=Tl + 1)+ Tg(i +2. ) = Tha (i + L) = T +2.1)
=min[0, (i + )P — 1]+ min[0, L + (i +2)P — 1 + Ag_4]
—min[0, L + (i + )P — 1 + Ag_q] —min[0, (i +2)P —1].

Using the conditions L + Ag_y = Rx—;, Rj < —land P + ZZj R; > 2, we see

that ¥;'; = 0 when i # —1 in the same way as ¥;', , ;. When i = —1, we obtain
Y—ll,k = —Ry—;. Similarly, we obtain Y!; = = —R,—; when p =2,... .k -1,
Yl ,=—Rpawhenp=k+2,....n—1andY! =0otherwise. O

Remark 6.8. Equation (6.23) requires that the r; should be the same for all s = 1,
...,n — 3, but the tropicalization of (6.23) is weaker so that the R can differ.

7. Duality with box-ball system

7.1. Basics of the s[, box-ball system. The sl,, box-ball system (BBS) is a
cellular automaton, defined as a dynamical system of finitely many balls with
n — 1 colors in an infinite number of boxes arranged along a line. (See [7] for
a review and a list of comprehensive references of the BBS.) The original BBS
mentioned in the introduction is the simplest case of n = 2. In this paper we study
the case that n > 3 and each box can contain one ball at most. By writing 1 for an
empty box and p for a box containing a p-ball (a ball of color p) for p =2,...,n,
we represent a configuration of the system as a (infinite) word on {1,2,...,n}.
The evolution of one time step t — ¢ + 1 is given as follows: do the following
procedure for p from n down to 2.

(i) Exchange the leftmost p with its nearest 1 to the right.
(ii) Exchange the leftmost p among the rest of the p with its 1 to the right.
(iii) Repeat (ii) until all of the p are moved exactly once.

The resulting word corresponds to the configuration at time ¢ + 1.

It is known that a soliton of the system is a nonincreasing sequence of 2, .. ., n,
and that a collection of such sequences gives a multi-soliton solution, in a sense
of (i)—(iii) in §2.4.
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Example 7.1. n = 3.
(i) two solitons:

t =0: 1133321111321111111111111111 -+,
t=1: 1111113332113211111111111111 -~ -,
t=2: 1111111111332133211111111111---,
t=3: 1111111111111321133321111111---,
t=4: 1111111111111113211113332111---

(ii) three solitons:

t =0: 113322211113221112111111111111 111121111121 11 -+ -,
t=1: 111111133222113221211111111111111111111111 -+ -,
t=2: 111111111111332113122222111111111111111111-- -,
t=3: 111111111111111332311111222221111111111111 -+,
t =4 111111111111111111233311111112222211111111---,
t=>5 11111111111111111121133311111111122222111--- .

The symmetry of the sl,-BBS is known to be described by the sl -crystal
for the symmetric tensor representation of U(; (sly), see [2, 4]. Now we present

the minimum needed prerequisites concerning the sl -crystal for the BBS. Recall
the sl,-crystal By corresponding to the £-fold symmetric tensor representation of
U, (sly), and given by (3.2) as a set. Let

RmZ: Bm &® BZ ;) BZ ® Bm
be the combinatorial R-matrix defined by

Ry w®@xr—xX Q@W,

where
x; =x; + Kiy1 — Ki, (7.1a)
w; = w; + Ki — Kiy1, (7.1b)
J n
Ki=Ki(xw)= _ min [ > wiep + in_,,]. (7.1¢)
p=1 p=j+2

Here we assume that the subscripts of w; and x; are modulo 7.



282 M. Glick, R. Inoue, and P. Pylyavskyy

With the notion of a carrier which moves balls, the combinatorial R-matrix
describes the above time evolution in the following way. The configuration space

an empty box (resp. a box containing a p-ball) when wy = 1 (resp. w, = 1) and
the other w; are zero. A carrier of capacity £ is an element in B;. Write W§ € B;
for a state at the i-th component of B{®L , at time . We assume that the initial
carrier Xo = (Xo,i)i=1,..n € B¢ has no ball, i.e., xo,1 = ¢ and the other x,; are
zero, and that w'=° for ; >> 1 is an empty box. Then the time evolution is given
by applying the combinatorial R-matrix as

W, R @ W5 ® W ® Wy ® X
— W, @ ®@ W5, ® Wi ® Ryg(Wy ® Xo)
=W, ® - @W,®W ®x, @ wh!
W, ®- - @ W, ® Ri(W, @ x)) @ wit!
=W, ® W, ®x, @ Wi @ wi!

=% W @ ewit @ wit! @ wht,

(7.2)

where we denote Ri¢(W; ® X;) = x{ | ® wi ! fori > 0 and set X}, = xXo, at any
time ¢. Note that R1,(W ® X¢) = Xo ® w holds if w is an empty box, thus we have
x; = x¢ fori > 1 by the assumption. In the limit £ — oo, the original sl,-BBS is
obtained. We remark that in (7.2), right and left is opposite to that in the original
description of the BBS (i)—(iii). We also write the action of the R-matrix using a
diagram:

A
Xi+1

Figure 6. BBS by the combinatorial R-matrix

We will use the following lemma later.

Lemma 7.2. Leto € S, be

0_12 3 oo
“\1 n n—=1 --- 2)
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and let p be a map on 7" ® 77" given by
(ai,az,...,an) @ (b1,ba,...,by) —> (bs(1), - -, bsn)) ® (As(1),-- - Adc(m))-
Then it holds that R,y o p = p o Ryy,.

We omit the proof, as it is easy. Note that p induces amap B, ® By — By ® By,
for any m, £, and that p o p is an identity.

7.2. Observation. Our claim is that the positive soliton solutions of ®(n, k) is
dual to those of the BBS. Precisely, the dynamics of carriers (resp. states) in
®(n, k) for positive solitons coincides with that of states (resp. carriers) of the
sl,-BBS.

Conjecture 7.3. When we have only the positive solitons in ®(n, k), the carriers
Z! take values in a finite set

mp:=(1,...,1,0,1,...,1); p=1,....n—1,
N e’ N e’ -
M = 1 n—p1 c{o, 13" 1.
mn ‘=(1717 71)

Define a map

n
B M — By = {(x2,X3,...,Xn) € (Zzo)n_llzxi =< 1}
i=2

by
©,...,0,1,0,...,0) forp >k,
N—— N——
Mp —> My —Mp_1_f = p—2-k n—p+k
i (0,...,0,1,0,...,0) forp <k,
SN—_—— S——
n+p—2—k —p+k
forp=1,...,nandk =0,1,...,n—2, where the subscript i of m; is modulo .

Conjecture 7.4. Assume that the initial configuration (Y?); of ®(n, k) includes
only positive solitons. By interchanging space and time coordinates the rules of
state and carrier are swapped i.e. Y} and Z! are respectively regarded as a carrier
and a state at time i/ of space 7. Then, via the map fj, the dynamics of the Z!
is identified with that of the sl,-BBS where (0,...,0) € El denotes 1 (an empty
box) and

,...,0,1,0,...,0) € By

——— ——

p—2 n—p
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denotes p (a box containing a p-ball) for p =2,..., n. If (Y!); includes a soliton
of the minimal form (b1, bs, ..., bn—1) with bg4; = 1, then the corresponding
configuration of BBS includes a soliton as

n..nn—1..n—1n-2...n—-2...2...2,
N—— ——

by b> b3 bp—1

whose velocity is Y72} b.

Example 7.5. We show (Z!); for each ¢, corresponding Example 2.6 and Exam-
ple 2.8. Non-initial states are coloured in red.
®(3, 1) (Example 2.6 (i)):

t =0: (10)(10)(01)(10)(10)(10)(10)(10)(10)(10)(10)(10),
t=1: (10)(10)(01)(10)(10)(10)(10)(10)(10)(10)(10)(10),
t =2 (10)(10)(01)(10)(10)(10)(10)(10)(10)(10)(10)(10),
t =3 (10)(10)(11)(10)(10)(10)(10)(10)(10)(10)(10)(10),
t =4 (10)(10)(10)(01)(10)(10)(10)(10)(10)(10)(10)(10),
t =5 (10)(10)(10)(01)(10)(10)(10)(10)(10)(10)(10)(10),
t =6 (10)(10)(10)(01)(10)(10)(10)(10)(10)(10)(10)(10),
t =7 (10)(10)(10)(11)(10)(10)(10)(10)(10)(10)(10)(10).

®(4, 1) (Example 2.6 (ii)):

t=0: (101)(101)(011)(101)(101)(101)(101)(101)(101)(101),
t=1: (101)(101)(011)(101)(101)(101)(101)(101)(101)(101),
r=2: (101)(101)(011)(101)(101)(101)(101)(101)(101)(101),
t=3: (101)(101)(111)(101)(101)(101)(101)(101)(101)(101),
t =4: (101)(101)(110)(101)(101)(101)(101)(101)(101)(101),
t =5 (101)(101)(110)(101)(101)(101)(101)(101)(101)(101),
t =6 (101)(101)(101)(011)(101)(101)(101)(101)(101)(101),
t =7 (101)(101)(101)(011)(101)(101)(101)(101)(101)(101),
r=8: (101)(101)(101)(011)(101)(101)(101)(101)(101)(101),
t =9 (101)(101)(101)(111)(101)(101)(101)(101)(101)(101),
t =10: (101)(101)(101)(110)(101)(101)(101)(101)(101)(101).
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®(3, 1) (Example 2.8 (i)):

t =0: (10)(10)(01)(10)(01)(10)(10)(10)(10)(10)(10)(10),
t=1: (10)(10)(11)(10)(01)(10)(10)(10)(10)(10)(10)(10),
t =2 (10)(10)(10)(01)(11)(10)(10)(10)(10)(10)(10)(10),
t =3 (10)(10)(10)(11)(10)(01)(10)(10)(10)(10)(10)(10),
t =4: (10)(10)(10)(10)(01)(11)(10)(10)(10)(10)(10)(10),
t =5 (10)(10)(10)(10)(01)(10)(01)(10)(10)(10)(10)(10),
t =6: (10)(10)(10)(10)(11)(10)(11)(10)(10)(10)(10)(10),
t =7 (10)(10)(10)(10)(10)(01)(10)(01)(10)(10)(10)(10),
t =8 (10)(10)(10)(10)(10)(01)(10)(11)(10)(10)(10)(10),
t =9: (10)(10)(10)(10)(10)(01)(10)(10)(01)(10)(10)(10),
t =10:  (10)(10)(10)(10)(10)(11)(10)(10)(11)(10)(10)(10).

The last case is dual with Example 7.1 (i).

Remark 7.6. The positive solitons for ®(n, k) do not correspond to all sl,,-BBS
solitons; a BBS soliton related to a positive soliton of ®(#, k) should include at
least one p-ball for p € {2,...,n} \ {n — k}, and exactly one (n — k)-ball.

7.3. Strategy to prove Conjectures 7.3 and 7.4. Let B, be a set as

n
Bo={x= (0102 mm) € Zo) ™Y i < 4.
i=1

We have a natural isomorphism y;: B, — By given by
(X1, %2, ..., X)) —> (X2, X3, ..., Xn),

where the inverse map y, ! is given by

n—1
01, Y2, -+ Y1) — (Z_Z)H,)’Ia---,yn—l)-
i=1

Define fémz as
Rt = (7t ® Ym) © R 0 (v @ ;7 ): B ® By —> By ® By

Recall the maps ¢ on R*~! and p on (R”~!)? defined in Section 3. We use the same
notations ¢ and g for their restrictions on Z. We identify (Z"~1)? with Z" 17" !,
following the expression of the combinatorial R-matrix.
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Lemma 7.7. The followings hold:
D) (e®ym)opo(yy' ®y;") =5
(i) po ﬁm( op= ﬁgm on Eg ® Em;
(i) po Bk ® 1) = (1 ® Pu_or)opon M & By, fork =0,1,....n—2—k.

Proof. (i) is easy. (ii) follows from (i) and Lemma 7.2. We check (iii). For
m, W € M ® B,,, we have

(t ® Bn—2—k) © la(mp W) =(® Brori)t(W)® mn—p)
=WQ® (my —mMpy1-p),

po (B ®)(mp @ W) = p((mn —mp—1-k) Q L(W))

=WQ (my —m_pi14k)s
forp=1,....,nandk =0,1,...,n—2—k. |

As with ¢ (n, k) in Section 3, we use the same notation ®(n, k) to denote the
map on Z"~! ® Z"~! which is the building block of the dynamics ®(n, k). We
write

S, k):Z: @Y — YT ®ZE,

with a diagram:

v,

t t
Zi Zi+1

Yt_+l

Proposition 7.8. If it holds that
Riso o (B ® 1)(mp @ W) = (1 ® i) 0 D1, k) (mp @ W) (7.3)
for some k € {0,1,...,n —2} and somem, @ wWe M ® Eoo, then

ﬁloo o (,Bn—2—k ® L)(mn—p/ ® L(W/))

(7.4)
= ((® Buaic) © D1 —2 = k) (M ® L(W)).

where (W ® m},) := ®(n,k)(mp ® W).
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Proof. Equation (7.3) can be rewritten as
Rico 0 (B ® 0001, k) (W @ m)) = (1 ® B)(W @ ).
By tropicalizing (3.3), it holds that
d(n,n—2—-k)y=pod tn,k)op (7.5)

on Z"~! ® 7", By using this and Lemma 7.7, the Lh.s. of the first equation
becomes

poReotopo(Br®)opod(nn—2-k)opw ®m)
=50 Roo1 © (t ® Brzp) P11, = 2 = k) (mp—py ® L(W)).

On the other hand, the r.h.s. becomes p o (By—z—k ® )(Mp—p @ t(W')). Thus the
claim follows. U

To prove Conjectures 7.3 and 7.4 we have to check that all configurations
which appear in propagating positive solitons have the form m, @ w > W' ® m,,
and satisfy (7.3). Proposition 7.8 means that the claims in the conjectures for
®(n,n — 2 — k) follow from those for ®(n, k). In the next two subsections, we
prove these conjectures in the cases of n = 3 and 4.

7.4. Proof for ®(3, k). We prove the case of ®(3, 1), from which the case of
®(3, 0) follows due to Proposition 7.8.

We say a finite sequence of states is stable when the carrier returns to its initial
state after passing through the sequence. For example, in the case of ®(3, 1) the
vacuum state (0, 0) is stable, and a sequence (3, 1)(2, 0) is stable but (3.1)(2, 1) is
not, as shown by diagrams:

3.1 (2,0) 3. 1) 2,1
(1,0) +(O, 1) —‘—~(1,0) (1,0) l 0,1) l (1,1)
2,1 (3,0) 2,1) 3.1

Lemma 7.9. The following sequences of states are stable:
(a) (4,1)(0,0), i >0,

(®) (.1)(.0),i.j >0,

() (0,1)(i,0), i >0,

@ G DG, D(k,0),i,k>0,j >0.
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Assume that the initial configuration of (Y:=°); for ®(3, 1) consists of the vacuum
state (0, 0) and a finite number of the above sequences. Then the configuration for
t = 1 again consist of the vacuum state and these sequences.

Proof. From (2.11) we see that all sequences (a)—(d) are stable by the diagrams
in Figure 7. Note that the vacuum state (0, 0) is also stable:

(1,0) ® (0,0) — (0,0) ® (1, 0).

When the configuration at ¢+ = 0 is given by a composition of these stable
sequences, the configuration at + = 1 is obtained by simply combining the
diagrams in Figure 7, due to the stability. It turns out that (a) and (b) change
to the form of (b) or (c), (c) changes to the form of (0, 0)(a)*, and (d) changes to
the form of (b)(a)* or (c)(a)*. Here we define (a)* := (i, 1) for i > 0. Thus, at
t = 1 the sequence immediately to the right of (a)* is always (0, 0), (b) or (c), but
not (a). If it is (0, 0), we obtain the form of (a). If it is (b) or (c), we obtain the
form of (d). Since the number of (a)-(d) at + = 0 is finite, all (a)* which appear

att = 1 turn out to be a part of a new (a) or (d). Then the claim follows. O
@ @i 1) (0,0) © 0,1) @,0)
(1,0) l 0,1) l (1,0) (1,0) —j—*(l,l) +(1,0)
i—-11) (1,0) (0,0) @1
© @1 (. 0) @ @1 (.1 (k.0)
(1,0) J (0.1) l (1,0) (1,0) 4‘—(0-,1) l (1.1) l (1,0)
(i—1,1) (j + 1,0 (i-11) (' +10) (k, 1)

Figure 7. The stable sequences for ®(3,1) (i, j,k > 0, j' > 0).

The following is easily seen from Figure 8.

Lemma 7.10. A soliton corresponds to a sequence of the form (a)—(c). The soliton
at its minimal length has the form (), i.e. it equals (k, 1) for some k > 0, The
velocity of the soliton is 1/(k + 1).

Proof of Conjecture 7.3 for ®(3,1). Assume that we start with an initial configu-
ration including N > 1 sequences of forms (a)—(c), which is an N-soliton state.
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(k, 1) 0,0) 0,0)
(1,00 ——(0,1) (1,0) (1,0)
(k—1,1) (1,0) 0,0)

(1,00 ——(0,1) (1,0) (1,0)
(1,00 ——(0,1) (1,0) (1,0)
(1,1 (k—1,0) 0,0)

(1,0) ——(0,1) (1,0) (1,0)
0, 1) (k,0) 0,0)

(1,0) —— (1, 1) (1,0) (1,0)
(0,0) (k, 1) 0,0)

(1,0) ——(1,0) 0,1) (1,0)

Figure 8. Propagation of a soliton.

Then a faster soliton catches up with a slower one, and overtakes it after some
scattering states (d). Finally, the N solitons line up in a way that slower ones are
left and faster ones are right. Thus, from Figure 7, the possible configurations
which appear in propagating positive solitons are as Figure 9, where we have only
(1,0), (1, 1), and (0, 1) for the carriers. |

Proof of Conjecture 7.4 for ®(3,1). In Figure 8, we see that during rightward
propagation of a soliton (k, 1), a sequence of carriers

(Ztl)t=0,1 ..... k = ((0’ 1)7""(0’ 1)7(1’1))
k

propagates downward with velocity £ + 1. By the map f;, this sequence is
transformed into

(0, 1), ...,(0, 1), (1,0))
N —

k
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(0.0) (k. 1) (k —1,0)
(1,0) (1,0) (1,0) —‘—(0,1) 0.1) +(1,0)
(0.0) (k—1.1) (k.0)
0.1) (k.0) (k—1.1)
(1,0) (1,1) (1,1) —‘—(1.0) (0, 1) —‘—(1,1)
(0.,0) (k. 1) (k.0)

Figure 9. Possible configurations to propagate solitons in ®(3,1) (k € Zx>1).

which corresponds to a soliton

of the s(5-BBS.

The configurations in Figure 9 are the local diagrams appearing in Figure 7,
which are nothing but those that appear in soliton propagations. We transform
them into the diagrams in Figure 10, by acting by 8; on carriers and ¢ on states.
Using (7.1), one sees that (7.3) is fulfilled by m, @ w e M ® EOO appearing in
Figure 9. It turns out that all configurations in Figure 10 are what appear when
R10 propagates solitons of the form

due to the following facts: in the states (x5, x3) on the vertical edges in Figure 10,
X, takes only 0 or 1 which means that each soliton includes at most one 2-ball.
There is neither configuration

Ri56((0,0) ® (0, 1)) = (0.0) ® (0, 1)
nor
Rioo((1,0) ® (0,0)) = (1,0) ® (0, 0).

This means that there is neither a soliton containing only 3-balls, nor a soliton
containing only 2-balls. |
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(0.0) (1.k) 0.k —1)

(0,0) (0,0) (0,0) 0,1) 0.1) (0,0)
(0.0) (1k—1) (0.k)
(0,0) (0.k) (1.k—1)

(1,0) (0,0) (1,0) (0,0 0,1) (1,0)
(1,0) (1.k) (0.k)

Figure 10. The sl3-BBS configurations from ®(3, 1) (k € Zx>).

7.5. Proof for ®(4, k). First we consider ®(4,2). The map ¢ (4, 2) is given by

t t t t t t

(215225 Zi3) ® i1 Vins Vi)

1 t+1 L t+1 t t t

i1 Yio Vi3 ) ® (Zit1,1Zit1,20 Zit1,3)
t t t t t
ZigVian  Cip+VidVia 1 7.6

—\z Y Zin T ip (7.6)

Zip T Vi Zi1 T Vip

— (y

t t t t t
(Zi,l(zi,Z + Vi1 ZioZis o, )

7 7 > 1 Vi3
ZintVip  ZiptVia

Lemma 7.11. The following sequences of states are stable:

(al) (i, j,1)(0,0,0), fori,j > 0;

(@2) (i1, j,1)(i2,0,0), foriy,iz, j > 0;

(bl) (0, 7,1)(7,0,0), fori,j > 0;

(b2) (0, /,1)(i, j',0), fori, j1,j2 > 0;

(¢) (0,0,1)(, j,0), fori,j > 0;

(@) O, j1, D, j', D2, j2,0), foriv, iz, j1,j2 >0, j' > 0;

(el) (i1, j1, DG’ j2, D2, j',0), foriv,iz, j1, j2 > 0,1, j" > 0;

(€2) (i1, j1, D@0, 1) (G2, j2,0), for iy, iz, j1,j2>0,i" > 0;

() (1, j1. DG jo, DGz, j' D3, J3,0), for i, iz, iz, ji, ja2, j3 > 0,0, j" > 0.
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Assume that the initial configuration of (Y:=°); for ®(4,2) consists of the vacuum
state (0, 0,0) and a finite number of these sequences of states. Then the configu-
ration for t = 1 again consist of the vacuum state and these sequences.

Proof. Itis shown in the same way as in the case of ®(3, 1): due to the map ®(4, 2)
given by the tropicalization of (7.6), we obtain diagrams in Figure 11, and see that
all sequences (al)—(f) and the vacuum state (0, 0, 0) are stable. Then one sees that
(al) changes to (a2), (a2) changes to (a2) or (bl), (b1) changes to (b2) or (c), (c)
changes to (0,0, 0)(a)*, (d) changes to (b2)(a)* or (c)(a)*, (el) changes to (el)
or (d) or (e2), (e2) changes to (a2)(a)*, and (f) changes to (el)(a)* or (d)(a)*.
Moreover, (a)*(0, 0, 0) has a form of (al), and (a)*(x) has a form of (el) or (e2)
or (f) where (x) is one of (a2)—(e2). Then the claim follows. O

Proof of Conjecture 1.3 and 7.4 for ®(4,2). We give an outline of the proof. It is
easy to show that one-soliton propagation is given by combining diagrams (al)—(c)
in Figure 11, thus a soliton of the minimal form (i, j, 1) has velocity 1/(i + j +1).
Further, from Lemma 7.11 it follows that the propagation of any multi-soliton state
is described by diagrams (al)—(f) and

(1,1,0) ® (0,0,0) —> (0,0,0) ® (1, 1,0), (1.7)

so Conjecture 7.3 follows. The diagrams in Figure 11 consist of local diagrams
as in Figure 12 and (7.7), and they are shown to satisfy (7.3). Then we see that in
the corresponding sl4-BBS only solitons of forms as

4...43...32
i J

for some 7, j > 0 appear, which proves Conjecture 7.4. |

Conjectures 7.3 and 7.4 for ®(4, 0) follows from the above result on ®(4,2)
and Proposition 7.8, where the corresponding sl4-BBS only includes solitons of
forms as

43...32...2
\.,-4\,-/

for some i, j > 0.
Next we consider ®(4, 1).
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(al) @i, j, 1) (0,0,0) © 0,0,1) i, 7,0)
(1,1,0) %(1,0,1) +(1,1,0) (1,1,0) 1 (1,1,1) 1 (1,1,0)
i—-1,j,1) (1,0,0) (0,0,0) @i, j. 1
(a2) o ) (d) . o, .
(i1, /. D (i2,0,0) ©, j1, 1) (i1, 7", 1) (i2 j2,0)
(1,1,0) +(1,0, 1 +(1.1,0) (1,1,0) 1 0,1,1) 1 (1,1,1) +(1,1,0)
((1—1.j,1) (i2+1,0,0) ©0,j1i-1L1) (1.7 +1,0 (2, j2.1)
(bl) . . ey . o .
(O,], 1) (lsovo) (115]151) (l,vj2s 1) (123]/’0)
(1,1,0) +(0,1, 1) +(1,1,0) (1,1,0) 1 (1,0, 1) 1 0,1,1) +(1, 1,0)
0,j—-1,1)  (i,1,0) (1—1,j1,1) ("+1,j2=1,1) (2,7 +1,0)
(b2) (e2) . . ..
0,7, 1) @, j',0) (i1, j1. D (i',0,1) (i2. j2.0)
(1,1,0) %(0 1,1) —‘—v(l 1,0) (1,1,0) 1 (1,0, 1) 1 (1,1,1) <‘——(l,1,0)
0,j =11 (@ j +1,0) (1—1j1.1) (@ +1.0,1) (2. )2, 1)
(i1, j1, 1) i’ ja. 1) (i, j', 1) (i3, j3,0)

(1,1,0) +(1 0.1) +(0,1,1) +(1,1,1) +(1,1,0)

(=171, "+ 1, 2=11) (i2,j'+1,0) (3,3, 1)

Figure 11. Carrier stable sequences for ®(4,2) (i, j,ix, j« > 0, i’, j’ > 0).

Lemma 7.12. The following sequences of states are stable:

(al) (i,1,7)(0,0,0),fori,j >0,

(@2) (i1, 1,)(2,0,0),for iy, iz, j >0,

() (0,1, j)(#,0,0),fori, j >0,

(cl) (0,0,/)(,1,0),fori,j >0,

(c2) (0.0, jO)(. 1, j2).for i, j1, j2 > 0,

(@ (0.1, j1)(1, 0, j2) (2. 1. j') . for iv, iz, j1. j2 > 0, j' =0,

(el) (i1, 1, j0)(" 1, j2)(i2,0,0), for i1, iz, j1, j2 > 0, i’ > 0,

(€2) (i1, 1, j0)(",0, j2)(i2, 1, j) foriv, iz, j1,j2 > 0,i", j' =0,

() (1, 1 jOG" 1 j2)(2,0, j3) (s, 1, j) forin iz, i3, j1, j2, j3 > 0,0, j" = 0.
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(i, j, D 0,4,1) (0,0,1)
(1,1,0) —‘—(1,0,1) (1,1,0) —‘—(0,1,1) (1,1,0) —‘—(1,1,1)
(i—1,j—1,1) 0,7 —1,1) (0,0,0)
(i,0,0) i, j. 1) (i,0,1)
(1,0,1) —‘—(1,1,0) (1,0,1) —‘—(0,1,1) (1,0,1) —‘—(1,1,1)
(i +1,0,0) (i+1.j—11) (i +1,0,0)
(i,j —1,0) (i, j—11) (i,7,0)

0,1,1) (1,1,0) (0,1,1) (1,1,1) (1,1,1) (1,1,0)

+
+
+

(i./.0) @.j. 1 @.j. 1

Figure 12. Possible configurations to propagate solitons for ®(4,2) (i, j € Z>1).

Assume that the initial configuration of (Y!=°); for ®(4, 1) consists of the vacuum
state (0,0, 0) and a finite number of these sequences. Then the configuration for
t = 1 again consist of the vacuum state and these sequences.

Using this lemma, one can show that Conjectures 7.3 and 7.4 holds for ®(4, 1),
in the same manner as the case of ®(4,2). The corresponding sl4-BBS only
includes solitons of forms as

for some i, j > 0.

8. Numerical phenomena: negative solitons, relaxation solitons, and pulsars

Besides positive solitons, we numerically observe negative solitons, relaxation
solitons and pulsars for ®(n, k) on Z with the commuting pair given by (2.12). It
might be an interesting future problem to study these phenomena.



8.1. Negative solitons. For the definition of a negative soliton, see §2.4. We
observe that a state

for p € Z-o is a negative soliton for ®(n, k), whose velocity is 1/(n — 1)
independent of p. The difference among the negative solitons appears in scattering
with positive solitons. The following examples show that in scatterings of positive
and negative solitons the phase shift of the positive soliton depends on p.

Example 8.1. Scatterings of positive and negative solitons in the case of (3, 1).

SCA associated with infinite reduced words

We write k for —k, for k € Z-y.
() (1, 1) x @3B, 1)~ (3, 1) x(I,1):

t=0:
r=1
r =2
r =3
t =4
t=5:
t =6
t="T:
t =28
=0
t =10:
t =11:
t =12:
t=13:

(00)(11)(00)(31)(00)(00)(00)(00)(00)(00)(00)(00),
(00)(01)(10)(21)(10)(00)(00)(00)(00)(00)(00)(00),
(00)(00)(11)(11)(20)(00)(00)(00)(00)(00)(00)(00),
(00)(00)(01)(11)(30)(00)(00)(00)(00)(00)(00)(00),
(00)(00)(00)(11)(31)(00)(00)(00)(00)(00)(00)(00),
(00)(00)(00)(01)(02)(21)(00)(00)(00)(00)(00)(00),
(00)(00)(00)(00)(10)(40)(10)(00)(00)(00)(00)(00),
(00)(00)(00)(00)(01)(22)(01)(00)(00)(00)(00)(00),
(00)(00)(00)(00)(00)(01)(31)(10)(00)(00)(00)(00),
(00)(00)(00)(00)(00)(00)(31)(11)(00)(00)(00)(00),
(00)(00)(00)(00)(00)(00)(21)(11)(10)(00)(00)(00),
(00)(00)(00)(00)(00)(00)(11)(20)(11)(00)(00)(00),
(00)(00)(00)(00)(00)(00)(01)(30)(01)(10)(00)(00),
(00)(00)(00)(00)(00)(00)(00)(31)(00)(11)(00)(00).

(i) (2,2) x 3, 1) = (3, 1) x (2,2):

t=0:
r=1:
r =2
r =3
r =4
t=25:

(00)(22)(00)(31)(00)(00)(00)(00)(00)(00)(00)(00).
(00)(02)(20)(21)(10)(00)(00)(00)(00)(00) (00)(00),
(00)(00)(22)(11)(20)(00)(00)(00)(00)(00)(00)(00),
(00)(00)(02)(21)(30)(00)(00)(00)(00)(00) (00)(00),
(00)(00)(00)(22)(31)(00)(00)(00)(00)(00) (00)(00),
(00)(00)(00)(02)(23)(32)(00)(00)(00)(00) (00)(00),



296 M. Glick, R. Inoue, and P. Pylyavskyy

t = 6:  (00)(00)(00)(00)(22)(51)(20)(00)(00)(00)(00)(00),
t =7 (00)(00)(00)(00)(02)(03)(12)(00)(00)(00)(00)(00),
t = 8: (00)(00)(00)(00)(00)(20)(51)(20)(00)(00)(00)(00),
t =9: (00)(00)(00)(00)(00)(02)(23)(12)(00)(00)(00)(00),
t = 10:  (00)(00)(00)(00)(00)(00)(11)(42)(20)(00)(00)(00),
t = 11:  (00)(00)(00)(00)(00)(00)(01)(32)(22)(00)(00)(00),
t = 12:  (00)(00)(00)(00)(00)(00)(00)(11)(22)(20)(00)(00),
t = 13:  (00)(00)(00)(00)(00)(00)(00)(01)(30)(22)(00)(00),
t = 14:  (00)(00)(00)(00)(00)(00)(00)(00)(31)(02)(20)(00),
t =15 (00)(00)(00)(00)(00)(00)(00)(00)(21)(10)(22)(00).

Remark 8.2. Negative solitons for the sl,-BBS were found by Hirota [6], and
studied in [10, 19] and others. In [10], it is clarified that the states with negative
solitons are transformed into the sl,-BBS with greater box capacity. It is not clear
for now if some similar mechanism works in the general sl,,-BBS or in ®(n, k).

8.2. Relaxation solitons and pulsars. Besides solitons, we introduce two phe-
nomena, relaxation solitons and pulsars, which may satisfy the condition (i) for
solitons presented in §2.4, but not (ii).

We define a relaxation soliton as a finite sequence of non-vacuum states at
t = O such that the carrier gets back to the initial one for ¢ > t, for some #y € Z>o,
but not for 0 < ¢ < f¢. In the other words, it is a finite sequence of non-vacuum
states which reduces to solitons at t = 9 + 1 > 0. In the following examples, we
have t9 = 0in (i) and 79 = 1 in (ii).

Example 8.3. Relaxation solitons.
i) ©3,1):

t =0
t =1

(Yi)i
(00)(23)(00)(00)(00)(00)(00)(00)
(00)(11)(30)(00)(00)(00)(00)(00)

(Z})i
(10)(10)(03)(30)(30)(30)(30)(30),
(10)(10)(01)(10)(10)(10)(10)(10),

t =2: (00)(01)(40)(00)(00)(00)(00)(00) (10)(10)(11)(10)(10)(10)(10)(10),
t =3 (00)(00)(41)(00)(00)(00)(00)(00) (10)(10)(10)(01)(10)(10)(10)(10),
t =4 (00)(00)(31)(10)(00)(00)(00)(00) (10)(10)(10)(01)(10)(10)(10)(10),
t =5 (00)(00)(21)(20)(00)(00)(00)(00) (10)(10)(10)(01)(10)(10)(10)(10),
t =6 (00)(00)(11)(30)(00)(00)(00)(00) (10)(10)(10)(01)(10)(10)(10)(10).
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(i) ®(4, 0):

(YD)
t =0: (000)(320)(000)(000)(000)(000)
t =1: (000)(041)(000)(000)(000)(000)
t =2: (000)(031)(100)(000)(000)(000)
t =3 (000)(021)(110)(000)(000)(000)
t =4: (000)(011)(120)(000)(000)(000)
t =5 (000)(001)(130)(000)(000)(000)
t =6 (000)(000)(131)(000)(000)(000)
t =7: (000)(000)(031)(100)(000)(000)
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(Z7)

(011)(011)(023)(023)(023)(023),
(011)(011)(110)(010)(010)(010),
(011)(011)(110)(011)(011)(011),
(011)(011)(110)(011)(011)(011),
(011)(011)(110)(011)(011)(011),
(011)(011)(101)(011)(011)(011),
(011)(011)(011)(111)(011)(011),
(011)(011)(011)(110)(011)(011).

We define a pulsar as a finite sequence of non-vacuum states satisfying

(i) the sequence moves to the right with a constant velocity,

(ii") the final carriers Z: for i > 1 are periodic in 7.

See the following examples.

Example 8.4. Pulsars:

(i) ®(3, 1):
(Y)
t =0: (00)(10)(00)(00)(00)(00)(00)(00)
t =1: (00)(01)(00)(00)(00)(00)(00)(00)
t =2: (00)(00)(10)(00)(00)(00)(00)(00)
t =3: (00)(00)(01)(00)(00)(00)(00)(00)
t =4:  (00)(00)(00)(10)(00)(00)(00)(00)
t =5 (00)(00)(00)(01)(00)(00)(00)(00)
(i) ®(4,0):
(Y?)i
t =0: (000)(110)(000)(000)(000)(000)
t = 1: (000)(011)(000)(000)(000)(000)
¢ =2: (000)(001)(100)(000)(000)(000)
¢ =3: (000)(000)(110)(000)(000)(000)

(Z})i

(10)(10)(00)(00)(00)(00)(00)(00),
(10)(10)(11)(20)(20)(20)(20)(20),
(10)(10)(10)(00)(00)(00)(00)(00),
(10)(10)(10)(11)(20)(20)(20)(20),
(10)(10)(10)(10)(00)(00)(00)(00),
(10)(10)(10)(10)(11)(20)(20)(20).

(Z7);

(011)(011)(021)(021)(021)(021),
(011)(011)(110)(010)(010)(010),
(011)(011)(101)(002)(002)(002),
(011)(011)(011)(021)(021)(021),
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t = 4:  (000)(000)(011)(000)(000)(000) (011)(011)(011)(110)(010)(010),
t =5 (000)(000)(001)(100)(000)(000) (011)(011)(011)(101)(002)(002),
t =6: (000)(000)(000)(110)(000)(000) (011)(011)(011)(011)(021)(021).

8.3. Phase diagram for ®(3,1). We close this section with the phase diagram
of solitons and pulsars in the case of ®(3, 1). We numerically observe that when
an initial state includes only one non-vacuum state (x, y) € (Zxo)?, it is either a
positive soliton, a relaxation soliton, or a pulser as follows:

(1) (x,1) with x > 1: a positive soliton,
(2) (0,1)or (1,0): a pulsar,

(3) the other (x, y): a relaxation soliton which reduces to a positive soliton of
the minimal form (x + y — 1, 1).

If we consider the dynamical system on @, the situation is more complicated
since there are solitons and pulsars whose minimal lengths are more than one.
Nevertheless, we numerically find an interesting structure as shown in Figure 13.

y
39 e e e e o o o o o
> ° ° ° ° ° ° ° ° ° ® : a soliton
) e o o o o o o o o ® : a pulsar

o . arelaxation soliton

L[]
L]
L]
L]
L]
L]
L]
L]
L]

o : arelaxation pulsar

O e e e o o o o o

1 © 0 ® ®® ®® ® O

© ® © e o e o o o

®@ © © 0 e e o o o
o x

0 1 2 3

Figure 13. Phase diagram for ®(3,1) on Z/3.

In the phase diagram, the relaxation pulsar is defined to be a finite sequence
of non-vacuum states which reduces to a pulsar after a few time steps. The points
(x, y) corresponding to solitons are on a line x = y when x < | and on a line
y = 1 when x > 1. We observe that some relaxation solitons (x, y) are reduced
to solitons (x + y —1, 1), and the others are reduced to solitons out of the diagram,
whose minimal lengths are more than one. This is the same for relaxation pulsars.
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See Example 8.5 for a relaxation soliton given by (x, y) = (%
that the length of the resulting soliton is always two.

2), where one sees

Example 8.5. A relaxation soliton of ®(3, 1) on Z/3:
(Y7): (Z);i

t = 0: (00)(£2)(00)(00)(00)(00)(00)(00)  (10)(10)(0%)(20)(20)(20)(20)(20),
t = 1: (00)(21)(20)(00)(00)(00)(00)(00)  (10)(10)(01)(10)(10)(10)(10)(10),

t =2: (00)(51)(30)(00)(00)(00)(00)(00)  (10)(10)(21)(10)(10)(10)(10)(10),
t = 3: (00)(05)(22)(00)(00)(00)(00)(00)  (10)(10)(13)(53)(10)(10)(10)(10),

t = 4: (00)(00
t =5: (00)(00

1)(%0)(00)(00)(00)(00) (10)(10)(10)(01)(10)(10)(10)(10),

(4
)(51)(50)(00)(00)(00)(00) ~ (10)(10)(10)(31)(10)(10)(10)(10).

Appendix A. Tropical semifield

A.1. Tropical limit. To a substruction-free rational map, we associate a piece-
wise-linear map via a limiting procedure called tropicalization.

The algebra (R U {oo}, @, ©@) is called the min-plus algebra (or the tropical
semifield), where an addition @ and a multiplication © are defined by

a®b:=minfa,b], a®b:=a+b.

Note that oo corresponds to zero in the algebra: we have co & a = a and
00 ® a = oo for any a € R. Moreover we have an inverse of ©®, a © (—a) = 0,
but not an inverse of @. In the following we also write min and + for & and ©.

The substruction-free algebra (R~, +, x) is formally linked to the min-plus
algebra in the following way. We define a map Log,: R.¢ — R with an
infinitesimal parameter ¢ > 0 by

Log,:a — —¢loga. (A.1)

Fora > 0,define A e Rbya = e~% . Then we have Log,.(a) = A. Moreover, for
a,b>0define A,BeRbya = e~% and b = e~%. Then we have

Log,(a + b) = —elog(e™® + e~ %) —> & — Omin(4, B).
Log.(a xb) = A+ B.

In summary, tropicalization is a procedure which reduce the algebra (R~¢, +, %)

to the min-plus algebra by the procedure lim,—.o Log, with the scale transforma-
_A

tionasa = e
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Via tropicalization, substruction-free rational maps on R formally reduce to
piecewise-linear maps on R. We may be able to restrict the resulted piecewise-
linear map on R to that on Z, which is sometimes called the ultradiscretization of
the original rational map.

A.2. Valuation field. Let K = C{{t}} = U, C((t'/")) be the field of
Puiseux series over C. The field K is an algebraically closed field with non-trivial
valuation, where the valuation map val: K — R U {oo} is given by

val: b1t + byt 4 - —> ay
if by #0,ay <ap <--- € Z/n for somen > 1.
We recall the axioms for the valuation map on K:
(i) val(a) = c0iffa =0,
(ii) val(ab) = val(a) + val(b) for any a, b € K,
(iii) val(a + b) > min[val(a), val(d)] for any a, b € K.

As for the last axiom, we have an important lemma:
Lemma A.1. Fora,b € K, if val(a) # val(b), then an equality holds in the
above (iii), i.e. val(a 4+ b) = min[val(a), val(b)].

For the proof, see [14, Lemma 2.1.1] for example.

The tropicalization can be regarded as the following composition map:

1
Rso — K — R U {oo},

A
a=e¢ & — 14— A.

We write trop(a) = A for the image A of a under this map.
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