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A Cheeger-type exponential bound
for the number of triangulated manifolds

Karim Adiprasito and Bruno Benedetti

Abstract. In terms of the number of triangles, it is known that there are more than
exponentially many triangulations of surfaces, but only exponentially many triangulations
of surfaces with bounded genus. In this paper we provide a first geometric extension of this
result to higher dimensions. We show that in terms of the number of facets, there are only
exponentially many geometric triangulations of space forms with bounded geometry in the
sense of Cheeger (curvature and volume bounded below, and diameter bounded above).
This establishes a combinatorial version of Cheeger’s finiteness theorem.
Further consequences of our work are:

(1) there are exponentially many geometric triangulations of S¢;

(2) there are exponentially many convex triangulations of the d-ball.
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1. Introduction

In discrete quantum gravity, one simulates Riemannian structures by considering
all possible triangulations of manifolds [30, 6, 33]. The metric is introduced a
posteriori, by assigning to each edge a certain length (as long as all triangular
inequalities are satisfied). For example, in Weingarten’s dynamical triangulations
model, we simply assign to all edges length 1, and view all triangles as equilateral
triangles in the plane [6, 33]. The resulting intrinsic metric is sometimes called
“equilateral flat metric”, cf. [2].

This model gained popularity due to its simplification power. For example,
the partition function for quantum gravity, a path integral over all Riemannian
metrics, becomes a sum over all possible triangulations with N facets [33]. To
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make sure that this sum converges when N tends to infinity, one needs to establish
an exponential bound for the number of triangulated d-manifolds with N facets;
compare Durhuus and Jonsson [20]. However, already for d = 2, this dream
is simply impossible: It is known that here are more than exponentially many
surfaces with N triangles. For d = 2 the problem can be bypassed by restricting
the topology, because for fixed g there are only exponentially many triangulations
of the genus-g surface, as explained in [6, 31].

In dimension greater than two, however, it is not clear which geometric tools to
use to provide exponential cutoffs for the class of triangulations with N simplices.
Are there only exponentially many triangulations of S3, or more? This open
problem, first asked in [5], was later put into the spotlight also by Gromov [21,
pp- 156-157]. Part of the difficulty is that when d > 3 many d-spheres cannot
be realized as boundaries of (d + 1)-polytopes [24, 29], and cannot even be
shelled [22]. In fact, we know that shellable spheres are only exponentially
many [11].

We tackle the problem from a new perspective. Cheeger’s finiteness theorem
states that there are only finitely many diffeomorphism types of space forms
with “bounded geometry”: curvature and volume bounded below, and diameter
bounded above. What we achieve is a discrete analogue of Cheeger’s theorem,
which (roughly speaking) shows that geometric triangulations of manifolds with
bounded geometry are very few.

Theorem I (Theorem 3.5). In terms of the number of facets, there are exponen-
tially many geometric triangulations of space forms with bounded geometry (and
fixed dimension).

Since every topological triangulation of an orientable surface can be straight-
ened to a geometric one [18, 32], this result is a generalization of the classical
exponential bound on the number of triangulated surfaces with bounded genus.

Here is the proof idea. Via Cheeger’s bounds on the injectivity radius, we
chop any manifold of constant curvature into a finite number of convex pieces
of small diameter. Up to performing a couple of barycentric subdivisions, we can
assume that each piece is a shellable ball [3], and in particular endo-collapsible [9].
This implies an upper bound for the number of critical faces that a discrete Morse
function on the triangulation can have. From here we are able to conclude, using
the second author’s result that there are only exponentially many triangulations of
manifolds with bounded discrete Morse vector [9].

Inspired by Gromov’s question, let us now consider the unit sphere S¢ with
its standard intrinsic metric. Let us agree to call “geometric triangulation” any
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tiling of S¢ into regions that are convex simplices with respect to the given metric
and combinatorially form a simplicial complex. For example, all the boundaries
of (d + 1)-polytopes yield geometric triangulations of S¢, but not all geometric
triangulations arise this way. How many geometric triangulations are there?

Once again, by proving that the second derived subdivision of every geometric
triangulation is endo-collapsible, we obtain

Theorem II (Theorem 2.9). There are at most 2¢ 2(@+DY*N gistinct combinato-
rial types of geometric triangulations of the standard S¢ with N facets.

Our methods rely, as explained, on convex and metric geometry. Whether all
triangulations of S¢ are exponentially many, remains open. But even if the answer
turned out to be negative, Main Theorems I and II provide some support for the
hope of discretizing quantum gravity in all dimensions.

Preliminaries

By R?, H? and S¢ we denote the euclidean d-space, the hyperbolic d-space,
and the unit sphere in R?*!, respectively. A (euclidean) polytope in R? is the
convex hull of finitely many points in R¢. Similarly, a hyperbolic polytope in
H¢ is the convex hull of finitely many points of H?. A spherical polytope in
S is the convex hull of a finite number of points that all belong to some open
hemisphere of S¢. Spherical polytopes are in natural one-to-one correspondence
with euclidean polytopes, just by taking radial projections; the same is true for
hyperbolic polytopes. A geometric polytopal complex in R? (resp. in S¢ or H¢)
is a finite collection of polytopes in R¥ (resp. S¢, H?) such that the intersection
of any two polytopes is a face of both. An intrinsic polytopal complex is a
collection of polytopes that are attached along isometries of their faces (cf. Davis—
Moussong [19, Sec. 2]), so that the intersection of any two polytopes is a face of
both.

The face poset (C, ) of a polytopal complex C is the set of nonempty faces
of C, ordered with respect to inclusion. Two polytopal complexes C, D are combi-
natorially equivalent, denoted by C = D, if their face posets are isomorphic. Any
polytope combinatorially equivalent to the d-simplex, or to the regular unit cube
[0, 1]¢, shall simply be called a d-simplex or a d-cube, respectively. A polytopal
complex is simplicial (resp. cubical) if all its faces are simplices (resp. cubes).

The underlying space |C| of a polytopal complex C is the topological space
obtained by taking the union of its faces. If two complexes are combinatorially
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equivalent, their underlying spaces are homeomorphic. If C is simplicial, C is
sometimes called a triangulation of |C| (and of any topological space homeo-
morphic to |C|). If X is a metric length space, we call geometric triangulation
any intrinsic simplicial complex C isometric to X such that the simplices of C
are convex in the underlying length metric. For example, the boundary of every
simplicial (d + 1)-polytope yields a geometric triangulation of S¢.

Figure 1. Lerr: A tiling of a disk that is not a geometric triangulation, because the tiles are
not convex. RiGHT: Rudin’s 3-ball R is a non-shellable subdivision of a convex 3-dimensional
polytope with 14 vertices, cf. [35]. Coning off the boundary of R one gets a simplicial complex
d(v * R) that is a geometric triangulation of S3, but it is not shellable, hence not polytopal.

A subdivision of a polytopal complex C is a polytopal complex C’ with the
same underlying space of C, such that for every face F’ of C’ there is some face
F of C for which F’ C F. A derived subdivision sd C of a polytopal complex
C is any subdivision of C obtained by stellarly subdividing at all faces in order
of decreasing dimension of the faces of C, cf. [23]. An example of a derived
subdivision is the barycentric subdivision, which uses as vertices the barycenters
of all faces of C.

If C is a polytopal complex, and A is some set, we define the restriction
R(C, A) of C to A as the inclusion-maximal subcomplex D of C such that |D]|
lies in A. The star of o in C, denoted by St(o, C), is the minimal subcomplex of
C that contains all faces of C containing o. The deletion C — D of a subcomplex
D from C is the subcomplex of C given by R(C, C\ relint D). The ( first) derived
neighborhood N(D, C) of D in C is the simplicial complex

N(D,C) :=|_JSt(s.sdC).
oesd D

Similarly, for k > 1, the k-th derived subdivision of a complex C is recursively
defined as sd C = sd(sdk_1 C). The k-derived neighborhood of D in C, denoted
by N¥(D, C), is the union of St(o, sd® C),witho € sd* D.
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Figure 2. N2(D, C), where C is a triangle and D the subcomplex formed by two of its edges.

Next comes the geometric definition of the link of a face o. Intuitively, it is
a spherical complex whose face poset is the upper order ideal of o in the face
poset of C. The formal definition is as follows, cf. [4]. Let p be any point of a
metric space X. By T, X we denote the tangent space of X at p. Let TII) X be
the restriction of T, X to unit vectors. If Y is any subspace of X, then N(, y) X
denotes the subspace of the tangent space T, X spanned by the vectors orthogonal
to T, Y. If p is in the interior of Y, we define sz’y) X = NeprnXn Tll, Y.
If 7 is any face of a polytopal complex C containing a nonempty face o of C,
then the set N%p’a) 7 of unit tangent vectors in N%p’a) |C | pointing towards t forms
a spherical polytope P,(t), isometrically embedded in N%p,a) |C|. The family
of all polytopes P,(t) in N%p,o) |C| obtained for all t D o forms a polytopal
complex, called the link of C at o; we will denote it by Lk,(0,C). If C is a
geometric polytopal complex in X4 = R¢ (or X¢ = §%), then Lk, (0, C) is
naturally realized in N(lp,a) X<, Obviously, N(lp,a) X4 is isometric to a sphere of
dimension d —dim o — 1, and will be considered as such. Up to ambient isometry
Lk, (0, C) and N%p,g) T in N%p,g) |C| or sz’a) X4 do not depend on p; for this
reason, p will be omitted in notation whenever possible. By convention, we define
Lk(@, C) = C, and it is the only link that does not come with a natural spherical
metric.

If C is a simplicial complex, and o, t are faces of C, we denote by ¢ * 7 the
minimal face of C containing both o and 7 (if there is one). If o is a face of C, and
T is aface of Lk(o, C), then o * 7 is defined as the face of C with Lk(o, 0 x7) = 1.
In both cases, the operation x is called the join.

Inside a polytopal complex C, a free face o is a face strictly contained in only
one other face of C. An elementary collapse is the deletion of a free face o from
a polytopal complex C. We say that C (elementarily) collapses onto C — o,
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Figure 3. The complex on the left has four free edges (in red). The deletion of any of them is
callled an ‘elementary collapse’. It yields a complex with two fewer faces and same homotopy
type (right). Such complex still has free faces, so the simplification process can be carried out
further.

and write C N\, C — 0. We also say that C collapses to a subcomplex C’, and
write C \, C’, if C can be reduced to C’ by a sequence of elementary collapses.
A collapsible complex is a complex that collapses onto a single vertex. Collapsi-
bility is a combinatorial property (i.e. it only depends on the combinatorial type),
and does not depend on the geometric realization of a polytopal complex.

A pure polytopal complex is one where all facets have the same dimension.
Elementary collapses may make a pure complex non-pure (Figure 3), and vice
versa. A variant of collapsibility where purity is maintained is the following.
A pure d -dimensional simplicial complex with N facets is called shellable if either
d(N —1) = 0, or there is an order Fy, ..., Fy of its facets such that for each j > 2
the intersection F; N U,j=1 F; is a pure (d — 1)-dimensional subcomplex of 9F;. It
is easy to see that for pure contractible complexes, shellable implies collapsible.
The converse is false, as shown by two triangles glued together at a vertex. We
have however the following results:

Theorem 1.1 (Adiprasito and Benedetti [3, 4]). Let C be a simplicial complex
either in R¢ or in $¢. If the underlying space of C is convex, then the second
derived subdivision of C is shellable. Moreover, if C is convex in R?, the first
derived subdivision of C is collapsible.

2. Geometric triangulations

If we want to reach exponential bounds for triangulations of d-manifolds, and
d is at least two, we must add some geometric or topological assumption. In
fact, already for d = 2, it is easy to construct g! combinatorially inequivalent
triangulations with 14g + 5 triangles of the genus-g surface, cf. Figure 4. Setting
N = 14g + 5, clearly L%J ! grows faster than any exponential. This motivates the
search for an exponential upper bound to the number of triangulations with extra
geometric properties.
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Figure 4. To construct g! triangulations of the genus-g surface, fix a bijection =: {1,..., g}

— {1,...,g’}. Take a strip of 2¢g + 3 triangles as above, and cone off its boundary
to get a 2-sphere with 4g + 5 triangles. Now remove the interiors of the 2g triangles
I,...,g,1',..., ¢, and create a genus-g surface by attaching handles between the hole
i and the hole 7 (i), for all i. Since every handle can be triangulated using 12 triangles, this
yields a triangulation T, with 14g + 5 triangles of the genus-g surface. By inspecting the
link of the highest-degree vertex, from 7 we can recover &, which implies that different
permutations yield different triangulations.

Let us recall the notion of endo-collapsibility, introduced in [9]. A triangula-
tion C of a d-manifold with non-empty boundary is called endo-collapsible if C
minus some d-face ¥ collapses onto dC. A triangulation C of a d-manifold with
empty boundary is called endo-collapsible if C minus some d-face X collapses
onto some vertex v. (The choice of ¥ and that of v do not matter: if a sphere
C is endo-collapsible, then for any face A and for any vertex w, one has that C
minus A collapses onto w.) If C is an endo-collapsible ball with endo-collapsible
boundary, then C is collapsible. The converse is false. However, there is a partial
converse statement:

Figure 5. A d-ball is endo-collapsible if it collapses to the boundary after removing the
interior of some d-simplex (it does not matter which). In dimension 2, all disks are endo-
collapsible. We represent an elementary collapse (o, X) by drawing an arrow between the
barycenters of the two faces, with its tail on the lower-dimensional one.
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Lemma 2.1 (Benedetti [9, Corollary 3.21]). Let B be a collapsible triangulation
of the d-ball. If sdLk(o, B) is endo-collapsible for every face o, then sd B is
endo-collapsible.

This notion is of interest to us for the following exponential upper bound:

Theorem 2.2 (Benedetti and Ziegler [11]). For fixed d, in terms of the number N
of facets, there are at most 2% =N endo-collapsible triangulations of d-manifolds
with N facets.

Not all triangulations of balls and spheres are endo-collapsible, cf. [11, Theo-
rem 3]. An even stronger fact is that many triangulated spheres are still not endo-
collapsible after two barycentric subdivisions [9]. However, Theorem 1.1 and the
fact that all shellable manifolds are endocollapsible [9] immediately imply the
following:

Proposition 2.3. Letd > 2. Let C be a geometric triangulation of a convex subset
of S¢ or R%. Then sd® C is endo-collapsible.

Remark 2.4. For geometric triangulations of convex balls in R¢, the bound of
Proposition 2.3 can be improved by one: that is, already sd C is endo-collapsible.
This follows from part (C) of the following recent result:

Theorem 2.5 ([4], cf. also [1, Chapter I1.2]). Let C be any convex polytopal
d-complex in S¢. Let Hy be a closed hemisphere of S¢ in general position with
respect to C.

(A) If0C N Hy = @, then N(R(C, Hy), C) is collapsible.
(B) If 9C N H is nonempty, and C does not lie in Hy, then N(R(C, H,), C)
collapses to the subcomplex N(R(dC, Hy), dC).

(C) If C lies in Hy, there is a facet F of sddC such that sdC collapses to
sdoC — F.

Remark 2.6. One may wonder if Proposition 2.3 can be extended to star-shaped
d-balls in R?. The shellability argument above does not extend. However, if C is
a star-shaped ball in R4, the authors in [4, Theorem 3.0.6] showed that sdé2¢C
is collapsible; the same proof shows also that the link of any face inside sd?2C
is collapsible as well. So we are in the position to apply Lemma 2.1. This proves
the following:

Proposition 2.7. Letd > 2. Let C be any star-shaped triangulation of the d-ball
in RY. Then sd*~' C is endo-collapsible.
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Using the bound from Theorem 2.2, our next goal is to achieve exponential
bounds for the number of convex or star-shaped triangulations. We start with a
simple lemma.

Lemma 2.8 (following Bayer [8, Theorem 3]). Let A and B be two triangulations
of the same manifold. If sd A = sd B, then A = B.

Proof. We make the stronger claim that the barycentric subdivision of any poly-
topal complex T determines 7" up to duality. The claim immediately implies the
conclusion, because if two complexes are dual to one another, only one of them
can be simplicial. To prove our claim, we proceed by induction on dim 7". Without
loss of generality, assume T is connected. Also, assume T is not a single simplex.
Following Bayer [8], consider a minimal coloring of the complex sd 7. Choose
a vertex v of sd 7. Decompose Lk(v, sd7T") minimally into color classes so that
Lk(v,sdT) is a join of the complexes induced by these color classes. If this de-
composition is trivial, v corresponds to either a vertex or a facet of 7. List all the
vertices with trivial decomposition. By the assumption, the induced complex on
these vertices is a 2-colorable graph with an edge, with endpoints a and b. If a is
a vertex of 7', then b must correspond to a facet of 7. By inductive assumption we
can determine Lk(a, T') from Lk(a, sd T); in particular, T is determined by sd 7.
The other (dual) option is if a is a facet; in this case b is a vertex of T and again
by induction we can determine Lk(b, T') from Lk(b, sd T). |

Theorem 2.9. In terms of the number N of facets, there are

o less than 24°-@+DEN geometric triangulations of convex balls in R?,
o less than 247 (@+DH*N geometric triangulations of S4,
o less than 24> @+DD™2N 100 shaped balls in RY.

Proof. We only prove the first item here, the other ones can be proven analogously.
Let C be any simplicial subdivision of a convex d-polytope. By Remark 2.4, the
derived subdivision sd C is endo-collapsible. Furthermore, if C has N facets,
then sd C has (d + 1)! - N facets. Hence, by Theorem 2.2, sd C is one of at most
2d%@+DIN combinatorial types. Since simplicial complexes with isomorphic
derived subdivisions are isomorphic by Lemma 2.8, we conclude that C is one of
at most 2¢7@+D'N combinatorial types. O
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3. Triangulated space forms with bounded geometry

In this section, we wish to study space forms, which are Riemannian manifolds
of constant sectional curvature [17]. We focus on space forms with “bounded
geometry”, with the goal of establishing an exponential upper bound for the
number of triangulations. The following Lemma is well known:

Lemma 3.1. Let M be a space form of dimension d > 2. There are at least
exponentially many triangulations of M.

This motivates the search for an upper bound to the number of such geometric
triangulations. We will show that Lemma 3.1 is best possible, in the sense that
these triangulations are also at most exponentially many (Theorem 3.5).

Our idea is to chop a geometric triangulation of a space form with bounded
geometry into a bounded number of endo-collapsible balls. The key for this is
given by the following two lemmas: One is Cheeger’s bound on the injectivity
radius, the other a direct consequence of Toponogov’s theorem.

Lemma 3.2 (Cheeger [16]). Let —o0o < k < oo and D,V > 0. There exists
a positive number C(k, D, V) > 0 such that every Riemannian d-manifold with

curvature > k, diameter < D and volume > V', has no closed geodesic of length
less than C(k, D, V).

By a well-known result of Klingenberg (cf. [26]), the injectivity radius is larger
than the minimum of half the length of the shortest closed geodesic and v'K,
where K is the supremum of sectional curvatures on the Riemannian manifold in
question. From this we conclude:

Corollary 3.3. Let —0c0 < k < oo and D,V > 0. There exists an integer
C(k, D, V) > 0 such that every d-dimensional space form with curvature > k,
diameter < D and volume >V has injectivity radius at least C(k, D, V).

Finally, we need a lemma to cover a Riemannian manifold by disks.

Lemma 3.4. Let —oo < k < oo. Let D > 0. Let d be a positive integer. For every
e > 0, there exists a positive integer N such that every Riemannian d-manifold
with curvature bounded below by k and diameter at most D can be covered with
at most Ng balls of radius e.

Proof. Let X be a Riemannian manifold satisfying the assumptions. Let x be a
point of X. Let Bg be a ball of radius D in the d-dimensional space of constant
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curvature m = min{k,0}. The ball Bg has a cover with N, balls of diameter
e. Consider the map exp, exp~!, where €xp is the exponential map in Bg with
respect to the center and exp, is the exponential map in X with respect to x, cf.
[17, Chapter 1, Section 2]. By the assumption, X has curvature bounded below
by k. By Toponogov’s Theorem, for all a, b C B¢, we have

—

|(expy &Xp ') (a) (expy exp ™) (b)| < labl;
in other words, exp, exp~! is a non-expansive map. Thus, the images of the N,

balls that cover Bg are contained in N, balls of radius at most ¢. O

We are ready for the proof of the main theorem.

Theorem 3.5. Fix any real number k, positive real numbers D,V , and a positive
integer d. In terms of the number N of facets, there are only exponentially many
intrinsic simplicial complexes whose underlying spaces are d -dimensional space
Jorms of curvature bounded below by k, of diameter < D and of volume > V.

Proof. Our proof has three parts:

I. we cover a space form X satisfying the constraints above with convex open
balls;

II. we count the number of geometric triangulations restricted to each ball;

III. we assemble the triangulated balls together, thus estimating the number of
triangulations of X.

Note that convex polyhedra in hyperbolic, spherical and euclidean spaces are
related by stereographic projection. Hence, in items (II) and (III), the negatively
(resp. positively) curved case is reduced to the zero-curvature case.

Figure 6. The restriction of the triangulation to each of the B; (i € S), up to taking two
barycentric subdivisions, is shellable. By counting the number of ways in which two of the
B;’s can be glued to one another, we determine an upper bound on the number of triangulations.
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(D Let X be a space form of dimension d satisfying the Cheeger constraints
(k, D, V). By Lemma 3.4, there exists aset S of s = s(k, D, V) points in such that
every point in X lies in distance less than ¢ := w of S. With this choice,
any ball of radius ¢ in X is isometric to a convex ball of radius ¢ in the unique
simply-connected space form of curvature equal to the curvature of X. Let T be
a triangulation of X into N simplices. Let (B;);e1,..,s) be the family of open
convex balls with radius &, centered at the points of S.

(II) For any subset A C X, let V4 denote the vertices of sd T’ corresponding to
faces of T intersecting A. Define T4 to be the subcomplex of sd 7" induced by V4.

Let now B; be one of the convex balls as above. Choose a geometric realization
of the derived subdivision of 7" such that the vertices of Vp, lie in B;. Consider
the complex 7/ := N(Tp,,sdT). Via Theorem 1.1, we obtain that sd? T/ is
shellable, and in particular endo-collapsible, as it can naturally be identified with a
triangulation of a hemisphere via stereographic projection. (With some extra work
one can show that already sd* T/ is endo-collapsible. In fact, 7} is collapsible by
Theorem 2.5(A); and since for every face o of T/, sd? Lk(o, T7) is endo-collapsible
by Proposition 2.3, it follows via Lemma 2.1 that sd* T/ is endo-collapsible.)

Hence, Theorem 2.2 provides a constant « such that the number of combina-

torial types of 7/ is bounded above by e<V.

(IIT) When two endo-collapsible balls are glued by identifying two combina-
torially equivalent, endo-collapsible (d — 1)-subcomplexes of their boundary, the
resulting “union” is also endo-collapsible [9]. So since we chopped it into endo-
collapsible balls, sd* T is endo-collapsible.

Now, the triangulation sd? T of X is completely determined by

(i) the triangulation of each 7},
(i) the triangulation 7/ N T, /./ and its position in 7/ and T /./ . (This means we have
to specify which of the faces of 7 are faces of 7/ N 77, t0o.)

As we saw in Part II, we have ¢V choices for triangulating each 77. Since 7/ N T;
is a disk, it has connected dual graph; hence, if we specify the location of one facet
A of T/ N Tj/ in Tj/ and T} (including its orientation), this suffices to determine
the position of 7/ N 7] in T and 7;. For this, we have at most (d + HI*N2
possibilities.

In conclusion, the number of geometric triangulations 7' of d-dimensional
space forms with N facets, diameter < D, volume > v, and curvature bounded
below by k is bounded above by

e/csN((d + 1)!2N)S(S—1)‘
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