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Feynman amplitudes on moduli spaces of graphs

Marko Berghoff

Abstract. This article introduces moduli spaces of coloured graphs on which Feynman

amplitudes can be viewed as “discrete” volume densities. The basic idea behind this con-

struction is that these moduli spaces decompose into disjoint unions of open cells on which

parametric Feynman integrals are defined in a natural way. Renormalisation of an amplitude

translates then into the task of assigning to every cell a finite volume such that boundary

relations between neighboring cells are respected. It is shown that this can be organized

systematically using a type of Borel–Serre compactification of these moduli spaces. The

key point is that in each compactified cell the newly added boundary components have a

combinatorial description that resembles the forest structure of subdivergences of the cor-

responding Feynman diagram.
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1. Introduction

Understanding the analytic structure of functions defined by Feynman integrals is

a long standing open problem in quantum field theory. Although many techniques

and folklore theorems are being used in everyday practical calculations, our the-

oretical understanding of these structures is still far from satisfying. For instance,

Cutkosky’s theorem on branch cuts and monodromies of Feynman integrals [12]

has been used in calculations for decades, but was proven only recently with the

help of algebro-geometric methods in [6]. In the process, Bloch and Kreimer

mention a new idea to approach further studies of analytic structures in Feynman

integrals using Outer space (and related spaces), a construction from geometric

group theory [13].

Inspired by Teichmüller theory, the basic idea behind Outer space CVn and its

variants is to study automorphisms of free groups Fn by their action on geometric

objects, in this case built out of combinatorial graphs of rank n equipped with

additional (topological) data. These spaces and the corresponding actions have

nice properties, adding geometric and topological methods to the group theorist’s

toolbox. One such property is that the action projects onto an action of Out.Fn/,

the group of outer automorphisms of Fn, which acts on CVn with finite stabilizers.

Since Outer space is contractible, it follows that the orbit space of this action, the

moduli space of rank n metric graphs, is a rational classifying space for Out.Fn/.

It encodes thus its rational homology.

In [19] the homology of Aut.Fn/ is computed utilizing a cubical cell structure

of the corresponding moduli space of rank n graphs with a marked basepoint (in

this case inner automorphisms act non-trivially). Quite surprisingly, the results

in [6] show that the same structure is found in the study of poles and branch cuts

of Feynman integrals; the combinatorial operations involved in determining these

critical subsets in the space of external momenta of a given Feynman diagram G,

contracting subsets of its edge-set and putting edge-propagators in the Feynman-

integrand on mass-shell, form a similar chain complex of cubes.

The aim of this article is to add another observation to the list of connections

between these two so-far unrelated1 fields; the similarity between certain bordifi-

cations of spaces of graphs, as in [3, 8], and the algebraic geometer’s approach to

renormalisation of Feynman integrals, as in [5], based on the methods of [1].

1 A relation between the underlying combinatorial structures of the constructions in [3] and

[1] was already noted in [4], but not further pursued.
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The basic idea is that each Feynman integral IG can be interpreted as the

volume of a cell �G in an appropriate moduli space of graphs. If the integral

is divergent, all its divergences sit on certain faces of �G or, in the language of

moduli spaces, at infinity. Thus, renormalisation translates in this formulation into

the task of rendering this integral convergent at infinity. This can be formulated

conveniently using distributions on �G . First, the cell �G is compactified in

the sense of Borel–Serre, in order to have better control of the behaviour of

IG at infinity, then the necessary subtractions are employed to take care of the

divergences, now situated at the boundary of the compactified cell, in accordance

with the usual renormalisation schemes.

Moreover, the nature of these moduli spaces of graphs allows to treat all

integrals corresponding to a given rank and number of external edges at once, so

that we can formulate Feynman amplitudes - albeit a rather unphysical version - as

generalized distributions on these spaces. Roughly speaking, one sums over each

cell �G , where G is a graph of rank nwith k external edges labeled by an external

momentum configurationp, integrated against a density!G (depending on p) that

is determined from G by Feynman rules in their parametric representation,

(unrenormalised) n-loop contribution to A.p/ D
X

rank.G/Dn

h!G.p/ j �Gi:

To formulate this precisely and extend it to a renormalised version is the goal

of the present article. The essential ingredient for this to work is the equivalence

of the combinatorics behind renormalisation and the above mentioned compacti-

fication method.

The article is organized as follows. In Section 2 we set up some basic notation

that will be needed throughout the text. The following two sections serve as a very!

short introduction to the central topics, Feynman integrals and renormalisation on

one side and moduli spaces of graphs and their bordifications on the other side.

Since the focus lies on the combinatorial aspects behind both constructions, the

exposition is kept rather basic; for technical details or a more thorough introduc-

tion on each individual topic the interested reader is invited to consult the given

literature references. Section 5 introduces the notions of piecewise distributions

and pseudo complexes which allow to define a sort of discrete integration theory

on such spaces. The next section connects all the previously introduced concepts

by applying this theory to the case of Feynman integrals in their parametric formu-

lation and moduli spaces of metric (coloured) graphs. The final section finishes

with a discussion of the renormalisation problem and its solution.
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2. Preliminaries

We start with some basic definitions and notation conventions.

Definition 2.1. A graph G is a quadruple G D .V;H; s; c/ where V is the set of

vertices of G and H its set of half-edges. The map sWH ! V attaches each half-

edge to its source vertex, the map cWH ! H connects half-edges and satisfies

c2 D idH . If c.h/ D h0 ¤ h the pair e D ¹h; h0º is called an internal edge of

G. We denote the set of internal edges of G by E D E.G/ and its cardinality

by N D NG . The remaining half-edges, satisfying c.h/ D h, are called external

edges or legs or hairs.

An (internal) edge subgraph 
 � G is determined by a subset E.
/ � E.G/

of the internal edges of G. The vertex set of 
 consists of all vertices ofG that are

connected to edges of 
 . So 
 is a graph itself without external edges.

Remark 2.2. In the following it will be convenient to retreat to the “usual”

definition of combinatorial graphs, i.e. as tuples .V; E/ with an attaching map

@WE ! Sym2.V / and treat legs merely as additional data. In Section 4.1 where we

take a topological point of view we think of graphs simply as of one dimensional

CW-complexes. In this case legs can be modeled either by introducing auxiliary

external vertices of valence one or as additional labels on the vertex set V .

We need two operations on graphs throughout this work, the contraction and

deletion of subgraphs.

Definition 2.3. Let G be a graph and 
 � G a connected subgraph. The

contracted graph G=
 is given by replacing 
 by a vertex and connecting each

edge in E.G/ nE.
/ with it. If 
 is a disjoint union of subgraphs the contraction

is defined componentwise.

The deletion of 
 in G is the graph G n 
 with V.G n 
/ D V.G/ but all edges

in E.
/ removed, E.G n 
/ D E.G/ nE.
/.

Some special types of graphs:

Definition 2.4. Let G be a graph. Its rank or loop number will be denoted by

jGj WD h1.G/ D jH1.G/j:

1. G is called core or 1PI if removing any edge reduces its rank, jG n ej < jGj.

2. A forest inG is a subgraph T � G with jT j D 0. If T is connected it is called

a tree.
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3. A forest or tree in G is spanning if its vertex sets equals V D V.G/.

4. A rose graph with n petals is a graphRn with one vertex and n internal edges.

The case n D 1 is known as a tadpole in physics.

5. An ( proper) edge-colouring of G is a map cWE.G/ ! C that assigns to

every edge e 2 E.G/ a colour c.e/ in a set of colours C such that no two

adjacent edges are assigned the same colour.

3. Feynman integrals

3.1. Parametric Feynman integrals. Let G be a connected graph with N inter-

nal and k external edges. We refer toG as a Feynman diagram if it is equipped with

additional physical data. It describes then a term in the perturbative expansion of

some physical quantity, typically a particle scattering process. Here we consider

the case where one associates to every internal edge a mass me � 0 and to each

leg a momentum pi 2 R
d . The pi are vectors in d -dimensional Minkowski (or

Euclidean) spacetime for even d 2 2N and satisfy momentum conservation

k
X

iD1

pi D 0:

We abbreviate this external data by .p;m/.

Feynman rules assign to a graph G, labeled by .p;m/, the integral

IG.p;m/ WD

Z

�G

!G.p;m/; (3.1)

where

�G D P.RN
C / D ¹Œx1 W : : : W xN � j xi � 0º � P.RN /

is the subset of projective space formed by all points with non-negative homoge-

neous coordinates and the differential form !G is defined using two graph poly-

nomials as follows.

Definition 3.1. Let G be a connected graph. The first Symanzik (or Kirchhoff )

polynomial is defined as

 G D
X

T �G

Y

e…T

xe;

where the sum is over all spanning trees of G.



208 M. Berghoff

The second Symanzik polynomial is defined as

�G D
X

T DT1[T2�G

.pT1/2
Y

e…T1[T2

xe;

where the sum is now over all spanning 2-forests T D T1[T2 - a spanning 2-forest

is a disjoint union of two trees T1 and T2 in G with V.G/ D V.T1/ P[ V.T2/ - and

pT1 WD
X

v2V.T1/

pv

is the sum of all external momenta entering the component of G that is spanned

by T1. By momentum conservation, it equals �pT2 .

If G D G1 P[ � � � P[Gk is a disjoint union of graphs, then  G and �G are defined

by

 G D

k
Y

iD1

 Gi
; �G D

k
X

iD1

�Gi

k
Y

j ¤i

 Gj
:

For more on these polynomials and how renormalisability of Feynman inte-

grals crucially depends on some of their properties, see [5]. We cite two important

relations in

Proposition 3.2. Let G be connected. Then

 G jxeD0 D  G=e; �G jxeD0 D �G=e; (3.2)

and

 G D  
 G=
 CR
 ; �G D  
�G=
 CR
0

 ; (3.3)

where R
 and R0

 are both of degree strictly greater than deg. 
 / D j
 j in the

variables xe, e 2 E.
/.

Proof. Both statements follow from Definition 3.1 by partitioning the set of all

spanning trees or 2-forests of G into those that do or do not intersect with 
 . �

Finally, let „G denote the polynomial

„G D �G C  G

N
X

iD1

m2
i xi

and define the differential form !G by

!G.p;m/ D  
� d

2

G

�  G

„G.p;m/

�N �jGj d
2

�G DW fG.p;m/�G (3.4)
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with

�G D �N D

N
X

iD1

.�1/ixidx1 ^ � � � ^bdxi ^ � � � ^ dxN :

Example 3.3. Let G be the “Dunce’s cap” graph, depicted in Figure 1. In d D 4

we have N � jGjd
2
D 0 and  G D x3x4 C x2x3 C x2x4 C x1x3 C x1x4, so that

IG.p;m/ D

Z

P.R4
C

/

�4.x1; x2; x3; x4/

.x3x4 C x2x3 C x2x4 C x1x3 C x1x4/2
:

Note that the denominator vanishes for x3 D x4 D 0 rendering the integral

divergent. This is a general phenomenon which we discuss in the next section.

p3

p4

p1

p2 m2

m1

m3 m4

Figure 1. Dunce’s cap.

3.2. Renormalisation. In general the integral IG in (3.1) is ill-defined; fG may

have non-integrable singularities at the loci where certain subsets of edge variables

vanish.2 The condition for such ultraviolet divergences to appear can be phrased

in terms of the subgraph that is spanned by the edges corresponding to these

variables. It depends only on the topology of that subgraph through its superficial

degree of divergence

s
 D d j
 j � 2N
 : (3.5)

There is also the possibility of so-called infrared divergences which we avoid

here by considering only massive diagrams (all mi > 0) or generic external

momentum configurations,

�

X

i2I

pi

�2
> 0 for all proper subsets ; ¤ I ¨ ¹1; : : : ; kº: (3.6)

For a discussion of infrared divergences in the framework presented here, see [7].

2 In the projective representation we are using here a possible overall divergence is hidden

in a prefactor of IG , cf. Remark 6.3.
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In our case divergences can only appear at zeroes of  G and we have Wein-

berg’s theorem [23] which is a cornerstone for renormalisation theory.

Proposition 3.4. Under the above conditions, the Feynman integral (3.1) is con-

vergent if and only if for all subgraphs 
 � G it holds that s
 < 0.

Thus, a (sub-)graph 
 � G is called convergent if s
 < 0 and divergent if

s
 � 0. In the latter case s
 D 0 is referred to as a logarithmic (sub-)divergence

and s
 D 1; 2; : : : as linear, quadratic etc. (sub-)divergences.

The remarkable feature of perturbative quantum field theory and the reason for

its success as a physical theory of interacting particles is the fact that, despite being

ill-defined, the integrals IG still carry physical meaningful data. Renormalization

is the art of extracting this data in a systematic way. In a nutshell,3 the main

approach to renormalise IG is to regularise the integral by adding a complex

parameter z 2 C and study IG.z/ as a complex function. This allows to quantify

the divergences of IG D IG.z0/ in a mathematically sound way as poles in its

Laurent expansion around z0. Then one performs a renormalisation operation R

to render IG finite, i.e. to pass to the physical limit limz!z0
R.IG.z//.

There are also methods without using an intermediate regulator, for example

by

- modifying the integration domain �G in order to shift it away from the

singularities of the integrand [4];

- modifying the integrand fG in order to get rid of the singularities before

integrating [5].

The common feature of all of these methods is that they can be formulated as

a rescaling of the physical constants in the given theory (in mathematical terms,

the renormalisation procedure can be formulated as a special version of Birkhoff

decomposition, cf. [10]).

We demonstrate the latter approach in the case of at most logarithmic subdi-

vergences. Let G be a connected graph with only logarithmic subdivergences.

Denote by D D ¹
 � G j s
 D 0º the set of divergent subgraphs of G and call

F � D a forest of G if

for all 
; � 2 FW either 
 � � or � � 
 or 
 \ � D ;:

We want to define for every 
 2 D a subtraction on the integrand which eliminates

the corresponding divergence of fG . A naive definition term by term would

3 We do not want to dwell here on a precise definition of a physical meaningful renormali-

sation or its philosophical interpretation and refer the reader to the standard literature, e.g. [20].
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not work though as one has to take the nestedness and possible overlaps of

subdivergences into account. It turns out that forests of G are the appropriate

tool to organize this operation. Therefore, we define the renormalised Feynman

integral by Zimmermann’s forest formula [24]

I ren
G D

X

forests F

.�1/jFj

Z

�G

fG;F�G (3.7)

where

fG;F D . G=F F/
� d

2 log
�G=F F C �

0
F
 G=F

�0
G=F

 F C �
0
F
 G=F

with  F WD  F0 and �F WD �F0 for

F
0 WD

[


2F

�


=
[

�2F;�¨


�
�

and the superscript 0 in � denotes evaluation at a fixed renormalisation point

.p;m/ D .p0; m0/.

For a proof that I ren
G is finite and a derivation of the general forest formula we

refer to [5]. In the case of subdivergences of higher degree simple subtractions are

not enough to render the integrand finite. One has to combine partial integrations

(to reduce the degree of divergence) with subtractions of Taylor polynomials (to

get rid of the resulting boundary terms) in order to renormalise the integrand. The

formulae get considerably more complicated in this case but the overall structure

does not change. The upshot is that renormalisation is still organized by the forest

formula, and thus by a Hopf algebra, cf. [10] and Theorem 8 in [5].

4. Moduli spaces of graphs

4.1. Outer space and moduli spaces of graphs. Let us start with the definition

of Outer space, as introduced by Culler and Vogtmann in [13]. Fix n 2 N and call

a graph G admissible if

(1) its rank or loop number jGj D h1.G/ equals n,

(2) it is 1PI or core or bridgefree; deleting an edge reduces its loop number,

(3) all (internal) vertices of G have valence greater or equal to three.

LetRn denote the rose graph with n petals, i.e. the graph consisting of a single

vertex and n edges, and consider a space of triples .G; g; �/whereG is admissible,

gWG ! Rn a homotopy equivalence (called a marking) and � a metric on G that



212 M. Berghoff

assigns to each e 2 G a positive length. Two elements .G; g; �/; .H; h; �/ are

considered equivalent if and only if there is a homothety ' between the metric

spaces .G; �/ and .H; �/, such that h ı ' is homotopic to g. This defines an

equivalence relation on the space of all admissible marked metric graphs of rank

n and we denote the quotient, called (Culler–Vogtmann) Outer space, by CVn.

There is a natural action of Aut.Fn/ on this space. An automorphism ˛ acts

on an equivalence class Œ.G; g; �/� by composing the map gWG ! Rn with the

homotopy equivalence Q̨ WRn! Rn that is induced by identifying each (oriented)

petal ofRn with a generator ofFn. From the above notion of equivalence it follows

that inner automorphisms act trivially, so that effectively it reduces to an action of

Out.Fn/ WD Aut.Fn/= Inn.Fn/, the group of outer automorphisms of Fn.

As a topological space, CVn decomposes into a disjoint union of open sim-

plices in the following way. For each marked graph .G; g/ consider the set of

points obtained from changing the metric �, i.e. by varying the edge lengths sub-

ject to the condition of positivity. By the equivalence of scaled metrics we can

restrict to the case where each metric � on G satisfies

vol�.G/ WD
X

e2G

�.e/ D 1:

Hence, the space of allowed metrics on .G; g/ parametrises the interior of an

.jE.G/j�1/-dimensional simplex�G . A face of�G lies in CVn if and only if the

edge set of G on which � vanishes forms a forest in G. Vice versa, missing faces

correspond to metrics vanishing on subgraphs 
 � G with j
 j > 0. Elements of

these faces are called points at infinity.

The whole construction naturally generalizes to the case of graphs with k

additional basepoints. These basepoints can be thought of as external edges in the

sense of Definition 2.1. In this case one considers labeled graphs .G; ¹v1; : : : ; vkº/,

markings become homotopy equivalences gW .G; ¹v1; : : : ; vkº/ ! .Rn; ¹vº/ and

two labeled and marked metric graphs are considered to be equivalent if there

is a homothety 'W .G; ¹v1; : : : ; vkº/ ! .H; ¹w1; : : : ; wkº/ such that h ı ' '

g rel ¹v1; : : : ; vkº. The resulting spaces are denoted by CVn;k .

For k D 0 one recovers the definition of Outer space. The case k D 1

is called Autre or Auter space. It allows to study the full automorphism group

Aut.Fn/ as the existence of a basepoint makes the action of inner automorphism

nontrivial. For k � 2 one obtains spaces equipped with actions of the groups

Out.n; k/ Š F k�1
n Ì Aut.Fn/, see [9].

The general idea behind all these constructions is to have nice spaces on which

these groups act, allowing to study them using geometric and topological tools.
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A special role is then played by the corresponding orbit space, the quotient

MGn;k WD CVn;k =Out.n; k/;

the moduli space of rank n metric graphs with k external edges.

4.2. A moduli space of coloured graphs. Unfortunately, the description of

CVn;k as disjoint union of open simplices does not quite survive the projection

ontoMGn;k . Indeed, under the quotient operation some open simplices get folded

onto themselves. Heuristically speaking, this is due to the fact that without the

marking, multi-edges between two vertices become indistinguishable.

Although both graph polynomials  and � respect this symmetry as they are

invariant under the corresponding permutations of edge-variables, it will be more

convenient to work on an intermediate moduli space of coloured graphs. We there-

fore consider in the following graphs with their internal edges coloured by injective

maps cWE.G/ ! ¹1; : : : ; 3.n � 1/ C kº.4 From a physics viewpoint, the colours

play the role of placeholders for external data such as particle types and masses

(determining the explicit form of the Feynman integrand fG). Mathematically,

they serve as fixed coordinates on the edges of G, thereby removing the above

described symmetry under permutations of multi-edges. Therefore, the resulting

moduli space of coloured graphs will behave combinatorially like a finite version

of CVn;k.

Definition 4.1. Fix n; k 2 N and let C D C.n; k/ WD ¹1; : : : ; 3.n � 1/ C kº.

The moduli space of rank n metric holocoloured graphs with k external edges is

defined as

Xn;k WD ¹.G; �; c/ j �WE.G/ �! RC; cWE.G/ �! C º=�

whereG is admissible with jGj D n, has k legs and every internal edge is coloured

differently using C as set of colours. The equivalence relation � is given by

.G; �/ � .H; �/ if there is a colour-respecting homothety 'WG ! H such that

� D � ı '.

Remark 4.2. In principle one could further restrict the set of admissible graphs

by bounding the allowed vertex valency from above. This would produce more

missing faces in the resulting moduli spaces. Such spaces make sense for realistic

Feynman amplitudes, but for the toy model presented here we simply consider the

most general case.

4 An admissible graph of rank n with k legs can have at most 3.n � 1/ C k internal edges.
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The upshot is that Xn;k decomposes into a finite disjoint union of open sim-

plices, one for each admissible coloured graph, analogous to the description given

for CVn;k in the previous section.

A convenient bookkeeper for the face relations in Xn;k is the set of of all rank

n holocoloured graphs with k legs, partially ordered by

.G; c/ � .G0; c0/ () there exists a forest F � G0

such that G0=F D G ^ c D c0jE.G0/nE.F /:

Equivalently, it is the set of all open simplices in Xn;k partially ordered by face

relations. We denote this poset by Xn;k . Its colourless variant (or rather its

geometric realization) plays a prominent helpful role in the study of the groups

Out.n; k/.

Remark 4.3. The symmetric group S3.n�1/Ck Š Perm.C / DW †C acts on Xn;k

by changing the colours, �:.G; c/ WD .G; � ı c/, and we retrieve the moduli space

of metric graphs MGn;k as the orbit space of this action, Xn;k=†C DMGn;k.

4.3. A compactification of Xn;k. We describe a compactification of Xn;k fol-

lowing the work of [3] and [8] for Outer space. The construction will not depend

on the colouring, so we drop it from the notation temporarily.

Faces at infinity in Xn;k correspond to degenerate metrics in the following

sense. Let

P�G D
°

.x1; : : : ; xN /
ˇ

ˇ

ˇ

X

xi D 1; xi > 0
±

; N D jE.G/j;

denote an open simplex in Xn;k associated to an admissible coloured graph G of

rank n with k legs. In this standard parametrisation every face in the boundary of
P�G is described by a set of vanishing coordinates, or equivalently, by a set S � G

of zero-length edges in G. Such a face is thus an element of Xn;k if and only if

the graph G=S is still of rank n. This is the case if and only if S is a forest in G.

We conclude that faces at infinity in Xn;k correspond to pairs .G; 
/ where G is

admissible and 
 � G is a subgraph of G with j
 j > 0.

Example 4.4. Consider the Dunce’s cap graph of Figure 1 as an element of X2;4

(coloured by ¹1; 2; 3; 4º). The set of postive metrics of volume one on G describe

an open cell, its closure in X2;4 is depicted in gray in Figure 2. Faces in red

correspond to metrics vanishing on subgraphs 
 � G with j
 j > 0, hence lie at

infinity in X2;4.

To construct a compactification of Xn;k we proceed simplex by simplex using

a method analogous to the Borel–Serre construction for arithmetic groups. From
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Figure 2. A cell in MG2;4

now on denote by �G always a relatively closed simplex inXn;k , i.e. �G is the open

simplex P�G together with all of its faces that correspond to graphs G=F where

F � G is a forest in G.

Consider a point at infinity x 2 �G where a subset of edge variables S � G

vanishes. We can restrict our attention to the case where S D G1 is a 1PI or core

subgraph of G - setting the remaining edge lengths in S n G1 to zero describes a

face of �G1
(which does not lie at infinity).

Possible directions of approaching x correspond to flags of subgraphs of G in

the following way. The set of metrics onG1 defines, after rescaling, a new simplex

�G1
. If a metric vanishes on another core subgraph G2 � G1, we can repeat this

construction to obtain a simplex �G2
, and so on. This process ends after a finite

number of steps since the loop number of the graphs considered must decrease in

every step, jGi j > jGiC1j. A point at infinity in Xn;k can thus be described by a

finite sequence of core subgraphs, a flag G D G0 � G1 � G2 � � � � � Gm, each

equipped with a metric on its edges, normalized to volume one.

For any core subgraph 
 � G there is a projection map r
 W �G ! �
 . It is

defined by restricting a metric on G to 
 and rescaling it to volume one, thereby

defining a point in �
 . The product of these maps forms a composite map

r W �G �!
Y


�G core

�


which is an embedding (here G is counted as a core subgraph of itself ). The

compactified cell Q�G is defined as the closure of the image of r ,

Q�G WD r.�G/:

Alternative description of Q�G (cf. [1, 4, 5]). Another way of parametrising the

standard n-dimensional simplex is to describe it as subset of n-dimensional real

projective space,

�n D ¹Œx0 W x1 W : : : W xn� j xi � 0º � P.RnC1/:
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In this projective setup let PG D P.RN /. Then we can rephrase the previous

discussion as follows. The compactified cell Q�G is the subset of
Q


 P
 obtained

from �G by a sequence of blowups along the (strict transforms of ) subspaces

L
 D ¹xe D 0 j e 2 
º � �G D ¹Œx1 W : : : W xN � j xi � 0º

where each 
 is a proper core subgraph of G. The sequence of blowups proceeds

along subspaces of increasing dimension, so it is determined by the inclusion

relation on subgraphs whereas for disjoint subgraphs the order does not matter. We

recover thus the above description of points at infinity by flags of core subgraphs

of G.

Proposition 4.5. Both constructions are equivalent, i.e. for every admissible

graph G both compactified cells are isomorphic (as manifolds with corners).

Proof. The projective simplex �n
p is isomorphic to the standard one �n

s via the

regular map

�W�n
p �! �n

s ; Œx0 W : : : W xn� 7�!
1

x0 C : : :C xn

.x0; : : : ; xn/:

Under this map the family ¹L
 j 
 � G coreº transforms into a linear subspace

arrangement in R
NG�1. The compactified cell Q�G is a wonderful model for this

arrangement in the sense of De Concini and Procesi [11]. More precisely, it is the

wonderful model for the maximal building set

B D ¹�.L
/ \�
NG�1
s j 
 � G coreº:

The results in [11] show that both descriptions of Q�G are equivalent. Moreover, the

construction through a sequence of blowups provides local coordinates5 on this

wonderful model using the notion of nested sets which here are given by totally

ordered subsets of B, hence by flags of core subgraphs of G. �

By construction the projection map ˇW Q�G ! �G is an isomorphism outside of

the exceptional divisor

E D EG WD ˇ
�1

�
S


 L


�

D
S


 E
 ; E
 WD ˇ
�1.L
 / Š P
 � PG=
 ;

with its inverse given by the map r . Therefore it makes sense to call the elements

in E
 � EG the new faces of Q�G . In a graphical notation that will be useful later

5 See Section 7.
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we write for a new face � � Q�G , corresponding to the blowup of a L
 or to an

intersection of multiple such faces,

� � .G;F/ � .G D G0 � G1 � G2 � � � � � Gm/; (4.1)

where F is a flagG1 � G2 � � � � � Gm of core subgraphs ofG. Ifm D 1, then the

pair .G;F/ D .G;G1/ describes a maximal new face of Q�G ; if m > 1, then .G;F/

describes the intersection of the faces .G;Gi/ for i D 1; : : : ; m.

All other faces of Q�G have a description that is induced by the face relation

in Xn;k .

Lemma 4.6. If G0 D G=F for a forest F � G, then Q�G0 is a face of Q�G .

Proof. The face relation in Xn;k via contraction of forests F � G defines a map

� W �G ! �G0 . Because of the property


 � G is core H) 
=.F \ 
/ � G0 is core,

� lifts to a map Q� W Q�G ! Q�G0 such that

Q�G Q�G0

�G �G0

 

!
Q�

 !ˇ  ! ˇ 0

 

!
�

commutes. �

Lemma 4.7. A vertex � of Q�G is described by � � .G; T; e0; : : : ; en�1/ where T

is a spanning tree T � G and .e1; : : : ; en/ an ordering of the edges in G n T .

Proof. Lemma 4.6 shows that the contraction of a spanning tree T � G defines a

facet of Q�G of maximal codimension, parametrised by the edge variables of G=T

which is a rose graph with n petals. By (4.1) the vertices of Q�G=T are given by

maximal flags of core subgraphs of G=T which can be represented by orderings

of the n petals of G=T . �

Corollary 4.8. Each cell Q�G is the convex hull of its vertices, i.e. a polytope.

Finally, we define the compactification of Xn;k as the result of gluing together

all the cells Q�.G;c/ along their common boundaries.
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Definition 4.9. The compactified moduli space of rank n metric holocoloured

graphs with k external edges is

QXn;k WD
�

PS
.G;c/2Xn;k

Q�.G;c/

�

=�
;

where the relation � is induced by the face relation on Xn;k through the maps Q�

constructed in Lemma 4.6.

Example 4.10. Figure 3 shows the compactified cell Q�G for the Dunce’s cap

graph. The dark gray faces are the results of blowing up�G first along the 0-faces

¹xi D 1º for i D 3; 4, and then along the 1-face ¹x3 D x4 D 0º corresponding to

the core subgraph 
 � G formed by edges 3 and 4.

Figure 3. A compactified cell in QX2;4

5. Pseudo complexes and piecewise distributions

This section introduces some notions necessary to formulate and renormalise

Feynman amplitudes on moduli spaces of graphs. For an introduction to simpli-

cial, �- and CW-complexes, and a detailed discussion of the differences between

these notions, see [17]. For an introduction to distributions see [16] or [18].

As discussed in Section 4.3, the spaces Xn;k are not real �-complexes (also

known as semi-simplicial complexes), but have missing faces. Let us call such

spaces pseudo �-complexes.

Definition 5.1. A topological space K is a pseudo �-complex if K D L n F for

a finite �-complex L and a F a subcomplex of L. Face relations in K are then

naturally inherited from L. Equivalently, we say K is pseudo if it is the disjoint

union of finitely many open simplices modulo face relations.

We call the elements of K pseudo simplices, i.e. � is a pseudo simplex in K if

there is Q� 2 L such that � D Q� n
�

S

�2F Q� \ �
�

.
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Example 5.2. All spaces Xn;k with n � 2 are pseudo simplicial complexes - for

instance, all 0-simplices are missing - whereas all X1;k are ordinary �-complex-

es—every edge contraction transforming G 2 X1;k to a coloured rose is allowed.

Remark 5.3. In the simplicial category pairs .L; F / are known as relative sim-

plical complexes, introduced by Stanley in [22]. Since we are dealing with more

general spaces, we will avoid confusion (for instance with the concept of relative

CW complexes) by sticking to the term pseudo.

Every pseudo simplex is locally just a manifold with corners. Therefore,

differential forms and integration can be defined on these objects.6 Moreover,

simplices are orientable so that we have a natural identification of distribution

densities and volume forms [21]. This allows to define distributions on (pseudo)

complexes. To formulate amplitudes as evaluations of distributions over the spaces

Xn;k we need to take into account contributions from all of their pieces. Therefore,

we have to integrate over lower dimensional simplices as well, contributions that

are not taken care of by the usual theory of integration. To cope with this anomaly,

we change the definition of a distribution slightly from the usual one.

Definition 5.4. A piecewise distribution on a (pseudo) complexK is a collection

u D ¹u� j � 2 Kº of distributions, one for each of its (pseudo) simplices. The

value of u at a test function ' 2 C1
c .K/, denoted by hu j 'i, is given by the sum

over all its single contributions

hu j 'i WD
X

�2K

hu� j 'j� i:

A piecewise distribution u is said to respect face relations if the following

holds. If � is a face of � 2 K, then u� D u� j� , where the restriction of a (regular)

distribution u to a submanifold S is defined by (cf. [16])

S
loc.
D ¹x1; : : : ; xk D 0º H) hujS j 'i D

Z

S

'.x/u.x/

k
Y

iD1

ı.xi /dx1 � � �dxn:

(5.1)

Remark 5.5. (1) A piecewise distribution u on a �-complex K of dimension d

defines cochains ui 2 C i .K;R/ for i D 0; : : : ; d by

� D
X

j

aj�j 7�! ui .�/ WD
X

j

aj hu�j
j �j�j

i; with � � 1 2 C1
c .K/:

6 See [15] for applications of differential forms on simplicial complexes.
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If K is pure and u respects face relations, then it is completely determined by its

values on the facets of K. In this case we have a sequence

C d .K;R/ 3 ud �! ud�1 �! � � � �! u0 2 C 0.K;R/

that is induced by the restriction map and carries essentially the same information

as the coboundary operation on C �.K;R/.

(2) The definition of piecewise distributions also works for more general

spaces, such as polytopal or CW-complexes and even stratified spaces. The

only important property needed is a notion of integration on each building block

compatible with the corresponding boundary or face relations. In every such

setting distributions, and even differential forms and currents, can be defined as

above.

6. Feynman amplitudes as piecewise distributions

From now on let n; k be fixed. To minimize notation we denote by X D Xn;k the

moduli space of metric holocoloured graphs of rank n with k legs. Furthermore,

in the following we write simply G for a coloured graph .G; c/ 2 X.

Assume given a set of masses mc , one for each colour

c 2 C D ¹1; : : : ; 3.n� 1/C kº;

and let p 2 .Rd /k denote a generic external momentum configuration. Inspecting

the Feynman integrand fG we conclude from (3.2) that the graph polynomials

respect face relations, i.e. for each coloured edge e 2 E.G/ we have

 G=e D  jxeD0; �G=e D �jxeD0; „G=e D „jxeD0:

On the other hand, fG depends also on sG , the superficial degree of divergence of

G through the exponent of  G=„G . It is a discontinuous function on �G , given

by

sG D d jGj � 2N D dn � 2
�

X

e2E.G/

2�.xe/ � 1
�

with � the Heaviside distribution

�.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if x < 0;

1
2

if x D 0;

1 else.

Therefore, fG respects face relations, although in a discontinuous way, so that we

are naturally led to work within the class of piecewise distributions on X .
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Definition 6.1. The Feynman piecewise distribution on X is defined as the col-

lection

t D t .p/ D ¹tG j G 2 Xº; tG WC
1
c .�G/ �! C; ' 7�! htG j 'i WD

Z

�G

'!G ;

with !G D fG.p; c/�G as defined in (3.4).

This definition is justified by the following

Proposition 6.2. t is a piecewise distribution on C1
c .X/ that respects face rela-

tions.

Proof. First, we show that each tG is a distribution on �G . Let ' 2 C1
c .�G/.

Recall the discussion of divergences of the Feynman integral IG in Section 3.2.

As ' is compactly supported, it cannot meet the divergent locus of G which is

contained in the missing faces of �G . Hence, htG j 'i is well-defined for all

' 2 C1
c .�G/.

Linearity of TG is clear. To probe the continuity of this map, let 'k be a

sequence in C1
c .�G/ converging to a test function '. This means, there is a

compact subsetK � �G with supp.'k/ � K for all k 2 N and 'k ! ' uniformly

on K. Since !G is a smooth differential form away from the divergent locus

of G, all products 'k!G are compactly supported differential forms, converging

to '!G . More precisely, this holds on the interior of �G , but we can neglect the

discontinuity of fG at �G n P�G since it is still bounded there and thus not seen by

dim.�G/-dimensional integration. We conclude

htG j 'ki D

Z

�G

'k!G D

Z

K

'k!G �!

Z

K

'!G D

Z

�G

'!G D htG j 'i:

It remains to check that t is compatible with face relations. Let �
 � �G ,

where 
 is obtained from G by contraction of a forest F � G, i.e. �
 is the subset

of �G where all edge variables associated to F are set to zero. Since each tG is a

regular distribution, its restriction to �
 is given by (5.1),

tG j�

WC1

c .�
 / 3 ' 7�!

Z

�G

'ı.�
 /!G ;

where integration against ı.�
 / evaluates the integrand at all edge variables of F

set to zero. Therefore, this integral equals
Z

�G

'ı.�
 / 
� d

2

G

� G

„G

��
sG
2

�G D

Z

�


'
�

 
� d

2

G

� G

„G

��
sG
2

�ˇ

ˇ

ˇ

xeD0;e2F
�
 D

Z

�


'!
 ;
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because both graph polynomials and the superficial degree of divergence respect

face relations. The identity
Z

'ı.�
 /�G D

Z

'j�

�


follows from the definition of the restriction map on distributions using local

coordinates. �

The previous discussion shows that for every generic momentum configuration

p we have a piecewise distribution t .p/ on X . Eventually we are interested in the

value of t .p/ on the constant function � � 1, the (unrenormalised) Feynman

amplitude An (of order n at p),

AnWp 7�! ht .p/ j �i WD
X

�2X

ht� .p/ j �j�i D
X

G2X

htG.p/ j �j�G
i:

Thus, renormalisation translates in this picture into the task of finding a well-

defined expression for the limit limk!1ht .p/ j 'ki where 'k is a sequence of test

functions converging to the characteristic function � of the space X .

Remark 6.3. (1) This is the algebraic geometer’s definition of an amplitude as a

projective integral. For a comparison to its “real world” version and a derivation

of the latter see [5]. The constructions presented here work equally well in this

case. It is important to note though that if sG D 0, then

fG.p;m/ D  
� d

2

G

�  G

„G.p;m/

��
sG
2

D  
� d

2

G

does not depend on .p;m/. The amplitude however does, by a multiplicative factor

coming from renormalisation of the overall divergence of G.

(2) By definition, this amplitude sums over all possible distributions of masses

in graphs. If two or more masses are equal, these multiplicities can be taken into

account with the help of appropriate symmetry factors.

(3) As mentioned above, for realistic field theories the valency of each vertex

in an admissible graph is bounded also from above, so that one has to restrict the

definition of a Feynman amplitude to an appropriate subcomplex of X .

7. Renormalisation on the compactification zXn;k

To find a renormalised version of the Feynman distribution t we will use the com-

pactification ˇW zX ! X . Together with the pullback and pushforward operations
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on distributions this allows to study and control the behaviour of the divergent

parts of each tG .

As we have seen above, the compactification zX is a polytopal complex.

Definition 7.1. A polytopal complex P is a (finite) collection of polytopes such

that

(1) if q is a face of p 2 P , then q 2 P ;

(2) if p; p0 2 P and p \ p0 ¤ ;, then p \ p0 D q 2 P .

All of the theory introduced in Section 5 works also in the case of polytopal

complexes (by definition and also because every polytopal complex can be tri-

angulated into a simplicial complex). This allows to view ˇ�t as a piecewise

distribution on the compactification ofX . Then, working on each polytope Q� sep-

arately, we will find its divergent loci at the new faces of Q� that are indexed by

divergent subgraphs. It is important to note that the ultraviolet divergences we

are considering here are independent of the colouring of G and its subgraphs; as

long as we are dealing with generic external momentum configurations or strictly

positive masses, all possible divergences depend only on the topology of G as

uncoloured graph.

After all of these divergent loci and the corresponding poles are identified,

we will employ the necessary subtraction operations to render each distributional

piece ofˇ�t finite. In the end we show that the so obtained distributions fit together

in order to produce a piecewise distribution on zX (orX after pushing it back down

along ˇ) that has a finite value when evaluated at �. The result of this whole

operation is then called the renormalised Feynman amplitude A
ren
n .

As mentioned in the introduction this is nothing new, but merely a reformula-

tion of renormalised parametric Feynman integrals in the context of moduli spaces

of graphs. This problem has been studied long ago and solutions are well under-

stood. Finite renormalised expressions for IG are given by various methods in the

literature, see for instance [4, 5] or [20].

Let Q� denote the compactification of a pseudo simplex � as defined in Sec-

tion 4.3 and ˇW Q� ! N� the corresponding projection. Recall that � corresponds to

a holocoloured graph G 2 X, where the colouring determines the explicit form of

the graph polynomial„G . On the other hand, the shape of Q� depends only on the

topology of the graph G.

Since distributions can be pulled back along smooth submersions, we have

away from of the exceptional divisor E

hˇ�t� j 'i D ht� ı ˇ j 'i:



224 M. Berghoff

Of course, this is defined so far only for ' compactly supported on the complement

of E in Q� ; we have not taken care of the divergences yet. Moreover, note that no

information is lost if we work on the compactification zX because for a graph G,

free of subdivergences, we have

Z

Q�G

ˇ�.'!G/ D

Z

�G

'!G for all ' 2 C1
c .�/:

This follows from the fact that ˇ is a smooth isomorphism outside of E which is a

set of measure zero.

Thus, so far we have a collection Qt D ¹ˇ�t� j � 2 Xº that satisfies the proper-

ties of a piecewise distribution on zX , except we have not yet assigned an element

of Qt to every polytope in zX . The distributional pieces corresponding to polytopes

in the exceptional divisor E (and their faces) are still missing. Wherever it is de-

fined, Qt respects face relations, but due to the presence of divergences we cannot

use these relations to determine the value of it at all new faces.

The workaround is to use a regularisation as explained in Section 3.2. To do

so, we consider the constant d in (3.5) as a complex parameter allowing us to

work with finite intermediate piecewise distributions that we can pull back and

extend on the whole space zX . Thus, for d 2 C we define the regularised Feynman

piecewise distribution td on X by

td D ¹td� j � 2 Xº D ¹t
d
G j G 2 Xº with htdG j 'i WD

Z

�G

'f d
G �G :

Since fG is given by

fG D  
� d

2

G

� G

„G

�N �jGj d
2

D  
� d

2

G

�„G

 G

�

sG
2

;

and the superficial degree of divergence sG is bounded for admissible graphs

G 2 X, we can choose d 2 C so that td is a piecewise distribution on X for

which the pullback along ˇ delivers finite distributions on each Q� . Then Qtd can be

extended to a piecewise distribution on the whole space zX .

Remark 7.2. The approach presented here is known as dimensional regularisa-

tion. Of course there are many ways to regularise Feynman integrals. Two other

methods regularly used are the following.

- Using a cut-off, i.e. reducing the integration domain Q�G to the complement

of an �-neighborhood of the exceptional divisor E. In some sense, this idea is
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implicitly built into our formulation of Feynman integrals as distributions on

moduli spaces of graphs; the support of a compactly supported test function

onX can not intersect with any divergent locusL
 for some 
 � G 2 X with

j
 j > 0. However, using dimensional regularisation additionally provides

more control to study the divergences of the distributions tG in detail. For

an approach that focuses solely on modifying the integration domain �G for

regularisation and renormalisation see [4].

- Analytic regularisation which writes the Feynman integral as a Mellin trans-

form by replacing the integrand fG with

 
� d

2

G

�„G

 G

�

sG
2

Y

e2E.G/

xae�1
e :

One shows that there is an open set A � C
N such that the integral converges

for .a1; : : : ; aN / 2 A. Renormalisation amounts then to find an analytic

continuation to the point .1; : : : ; 1/ 2 C
N .

Write

Qtd D ¹Qtd† j † 2
zXº

for the collection of distributions, one for each polytope of zX , where

Qtd† WD

´

ˇ�td� if † D Q� is the blowup of a � � X ,

.ˇ�td� /j† if † � E� is a new face in the blowup of a � � X .

From now on we fix a (coloured) graph G and consider the distribution QtdG
on the polytope Q�G in zX . For the loci of possible divergences, that is for faces

† � EG � Q�G , we use the graphical notation introduced in Section 4.3, eq. (4.1).

There we have for every pair .G;F/ with F a flag of core subgraphs of G (with

the induced colouring)

G D G0 � G1 � � � � � Gm

a distribution Qtd† such that

- if m D 1, i.e. F D G1, then † D EG1
D ˇ�1.LG1

/ and Qtd† D ˇ
�tdG jEG1

;

- if m > 1, then Qtd† is given by the restriction of ˇ�tdG to the common face of

the EGi
D Q�Gi

indexed by the flag F D .G1; : : : ; Gm/.

These are the loci of possible divergences of Qtd†. The other faces of † (i.e.

intersections with faces corresponding to non-core subgraphs of G) do not carry

additional information.
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On Q�G we use local coordinates to study the distribution QtdG in the vicinity of

E � @ Q�G . Let � � E be a new face, � � .G;F/ with F D .G1; : : : ; Gm/, and

define


m WD Gm; 
m�1 WD Gm�1=Gm : : : 
0 WD G=G1: (7.1)

In affine coordinates7 xe D 1 for e � 
0 D G=G1 write y0 for the vector of edge

variables of 
0 n e and yi for those associated to 
i (i D 1; : : : ; m),

y0 WD .y
e
0/e2E.
0/; yi WD .y

e
i /e2E.
i /:

Furthermore, choose for every i D 1; : : : ; m a single coordinate y�
i in yi and

denote by yi the vector yi with this coordinate set to 1. Then, following the

wonderful model construction of [11], the blowup sequence from � to Q� is locally

described by the coordinate transformation � D �F;.y�
1

;:::;y�
n/ given by

�W .y0; y1; : : : ; ym/ 7�! .y0; y
�
1 � y1; .y

�
1y

�
2 / � y2; : : : ; .y

�
1 � � �y

�
m/ � ym/: (7.2)

Thus, in local coordinates we have ˇ D �. In order to detect the poles of ��!G

along � we deduce its scaling behaviour from the contraction-deletion relations

for graph polynomials.

Lemma 7.3. Let � be given by (7.2). The graph polynomials  G and �G satisfy

. G ı �/.y/ D

m
Y

iD1

.y�
i /

jGi j Q .y/

and

.�G ı �/.y/ D

m
Y

iD1

.y�
i /

jGi j Q�.y/

with Q and Q� regular functions on R
N �1
C .

Proof. Both statements follow from (3.3) in Proposition 3.2. As first step, we

recall that

 G D  G1
 G=G1

CR1

with  G1
and  G=G1

depending only on .y1; : : : ; ym/ and y0, respectively, andR1

of degree d1 > deg. G1
/ D jG1j. Thus,

 G ı � D .y
�
1 /

jG1j. 0
G1
 0

G=G1
CR0

1/jy�
i

D1 DW .y
�
1 /

jG1j Q 1;

7 In the following we omit the subscript for evaluation at xe D 1.
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where the prime 0 denotes evaluation with the edge variables .y2; : : : ; ym/ still

scaled by the map �. Because  G1
further factorizes,

 0
G1
D  0

G2
 0

G1=G2
CR0

2;

and becauseR1 is of degree d1 > jG1j > jG2j also in .y2; : : : ; ym/, we can repeat

the above argument to conclude

. 0
G1
 0

G=G1
CR0

1/jy�
1

D1 D .. 
0
G2
 0

G1=G2
CR0

2/ 
0
G=G1

CR0
1/jy�

1
D1 D .y

�
2 /

jG2j Q 2:

Afterm steps we arrive at the desired equation. The case �G works analogous.

�

Proposition 7.4. Consider a new face � � Q�G , � � .G;F/withF D .G1; : : : ; Gm/.

Then the differential form ˇ�!G has poles along � , one for each divergent Gi , of

order
sGi

2
C 1. Its regular part QfG satisfies

Qf G j� D . Gm
 Gm=Gm�1

� � � G2=G1
/�

d
2 fG=G1

D
�

m
Y

iD1

 
i

�� d
2

f
0
:

Proof. Combining the result of Lemma 7.3 with the definition of !G in (3.4) we

find

.fG ı �/.y/ D

m
Y

iD1

.y�
i /

�jGi j d
2 QfG

with QfG regular. For the differential form �G we have

���G D �
�
�

N
X

iD1

.�1/ixidx1 ^ � � � ^bdxi ^ � � � ^ dxN

�

D

m
Y

iD1

.y�
i /

jE.Gi /j�1�G :

Putting everything together we conclude

��!G D

m
Y

iD1

.y�
i /

�jGi j d
2

CjE.Gi /j�1 QfG�G D

m
Y

iD1

.y�
i /

�
sGi

2
�1 QfG�G : (7.3)

Recall the notation from the proof of Lemma 7.3. At � , where all y�
i D 0,

every remainder term R0
i in the factorizations of  and � vanishes. Therefore, the

regular part QfG is given at � by

Qf G j� D
�

. Q m/
� d

2

� Q m

z„m

��
sG
2

�

j¹y�
i

D0º

D . Gm
 Gm=Gm�1

� � � G2=G1
 G=G1

/�
d
2

� Q m

z„m

��
sG
2

j¹y�
i

D0º

D
�

m
Y

iD1

 
i

�� d
2

 
� d

2

G=G1

� G=G1

„G=G1

��
sG
2

D
�

m
Y

iD1

 
i

�� d
2

f
0
as in (7.1)
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with
z„m D Q�m C

�

m2
c.e/ C

X

e0¤e

m2
c.e0/�e0

�

Q m

since we are working in affine coordinates with xe D 1. �

Remark 7.5. These poles are only superficial; the integrand fG might actually

be better behaved. For example, consider the “sunrise” graph on two vertices

connected by three internal edges with all me D 0. For d D 4 it has three

divergent subgraphs, all satisfying j
 j D 1 and s
 D 0. In this case, the second

graph polynomial �G D „G jmD0 scales as xj
 jC1, so that there are no poles at the

faces � � .G; 
/. In any case, we do not need to worry about this as incorporating

trivial subtractions will not affect the final renormalisation.

1

2

3
p1 p2

E1;2 E2;3

E1;3

Figure 4. The “sunrise” graph and its compactified cell Q�G � zX2;2

Proposition 7.4 shows that the new faces of Q�G encode all the divergent be-

haviour of QtG . Viewed as a meromorphic function of d 2 C it has poles along the

new faces � of Q�G corresponding to divergent subgraphs, i.e. � � .G D G0 �

G1 � � � � � Gm/ with at least one Gi divergent. In other words, QtG diverges when

applied to a test function whose support intersects a new face � � Q�G that is in-

dexed by a divergent subgraph of G. Moreover, we can restrict to the case where

� � .G;F/ and F D .G1 � G2 � � � � � Gm/ with all Gi divergent, other types of

flags do not contain additional information about subdivergences.

In principle, we can now simply apply our favourite renormalisation scheme8

to define a finite version Qt ren
G of QtG on each Q�G . Pushing this collection of distribu-

tions forward along the map ˇ produces then a piecewise distribution t ren D ¹t ren
G º

on X , given by

t ren
G WC

1
c .�G/ 3 ' 7�! hˇ� Qt

ren
G j 'i WD hQt ren

G j ˇ�'i:

Notice, to obtain the value of t ren at the constant function 1 � � 2 C1.X/ we

can circumvent this pushforward operation and thereby the need to approximate

8 See, for instance, Theorem 8 in [5]; the formulae are rather long and not very enlightening

per se and therefore omitted here.
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� by a sequence of test functions. Instead, we simply evaluate each Qt ren
G at

1 � ˇ�� 2 C1
c . Q�G/. Hence, the renormalised Feynman amplitude A

ren
n is given

by

A
ren
n Wp 7�!

X

G2X

hQt ren
G .p/ j 1i:

Another way to find Qt ren, with the advantage of working entirely in the realm

of piecewise distributions, is to treat renormalisation as an extension problem for

distributions, as in the Epstein-Glaser method in the position space formulation of

quantum field theory [14]. The key identity to start with is the local formula (7.3)

for QtG , valid in the vicinity of a new face � � .G;F/ described by the coordinate

chart � in (7.2),

ˇ�!G
loc.
D ��!G D

Y

Gi 2F

.y�
i /

�
sGi

2
�1 QfG�G :

Let U denote the chart domain of �. Equation (7.3) allows to define a renormali-

sation operator RU that kills all poles in the local expression for ˇ�! inU . Putting

these pieces together using a partition of unity on Q�G , subordinate to the charts

.U; �/, produces then the desired renormalised distribution Qt ren
G .

In the following we sketch the construction of R for graphs with only loga-

rithmic subdivergences; details and proofs, including a discussion of a physicality

condition on the proposed solution, can be found in [2]. In the logarithmic case all

the poles in (7.3) are of first order only and the corresponding residua are all in-

dependent of the external data .p;m/. Thus, simple subtractions of these residua,

one for each diverging coordinate direction, suffice to produce a finite expression

for which the limit d ! d0, i.e. sGi
! 0, exists. The operator RU is defined by

RU Œ�
�!G � D RU

h

Y

Gi 2F

.y�
i /

�
sGi

2
�1 QfG�G

i

WD �G

Y

Gi 2F

.y�
i /

�1.1 � ı.y�
i //
QfG.p;m/

D �G

Y

Gi 2F

.y�
i /

�1
X

H�F

.�1/jHj
Y

Gi 2H

ı.y�
i /
QfG.p;m/;

with ı the Dirac distribution, operating only on the regular part of ��!G and the

test function it is integrated with.

The operator R transforms QtG into a well-defined distribution by removing all

of its poles; if the support of a test function ' intersects a divergent new face, then

the corresponding pole of hQtG j 'i gets subtracted to make the integral finite. On

the other hand, for every test function ' with its support disjoint from any new
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divergent face we have hQt ren
G j 'i D hQtG j 'i because all the subtracted terms

vanish, hı j 'i D 'jy�
i

D0 D 0. Thus, Qt ren
G defines an extension of QtG from the

complement of all divergent new faces of Q�G to the whole cell.

Example 7.6. The formula for R is best understood by studying a concrete exam-

ple. For the Dunce’s cap graph we computed in Section 3.1

 G.x1; : : : ; x4/ D x3x4 C x2x3 C x2x4 C x1x3 C x1x4:

Locally in an affine chart where x1 D 1 we have y0 D y0 D x2, y1 D .y
�
1 ; y1/ D

.x3; x4/ and

h��!G j 'i D

Z

R
3
C

dy.y�
1 /

�1 '.y/

.y1y
�
1 C y0 C y0y1 C 1C y1/2

:

Therefore, hRU Œ�
�!G � j 'i is given by

Z

R
3
C

dy.y�
1 /

�1
� '.y/

.y1y
�
1 C y0 C y0y1 C 1C y1/2

�
'.y/jy�

1
D0

.y0 C y0y1 C 1C y1/2

�

;

which is a finite expression.

In the general case ˇ�!G may have poles of arbitrary high order. These can

be reduced to poles of first order by partial integrations at the cost of boundary

terms which in turn are then cured by subtracting terms of the Taylor expansion

around a renormalisation point. Then simple subtractions as above allow to define

a finite renormalised distribution on �G . Again, for details the reader is refer to

the exhaustive exposition in [5].
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