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Feynman amplitudes on moduli spaces of graphs

Marko Berghoff

Abstract. This article introduces moduli spaces of coloured graphs on which Feynman
amplitudes can be viewed as “discrete” volume densities. The basic idea behind this con-
struction is that these moduli spaces decompose into disjoint unions of open cells on which
parametric Feynman integrals are defined in a natural way. Renormalisation of an amplitude
translates then into the task of assigning to every cell a finite volume such that boundary
relations between neighboring cells are respected. It is shown that this can be organized
systematically using a type of Borel-Serre compactification of these moduli spaces. The
key point is that in each compactified cell the newly added boundary components have a
combinatorial description that resembles the forest structure of subdivergences of the cor-
responding Feynman diagram.
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1. Introduction

Understanding the analytic structure of functions defined by Feynman integrals is
a long standing open problem in quantum field theory. Although many techniques
and folklore theorems are being used in everyday practical calculations, our the-
oretical understanding of these structures is still far from satisfying. For instance,
Cutkosky’s theorem on branch cuts and monodromies of Feynman integrals [12]
has been used in calculations for decades, but was proven only recently with the
help of algebro-geometric methods in [6]. In the process, Bloch and Kreimer
mention a new idea to approach further studies of analytic structures in Feynman
integrals using Outer space (and related spaces), a construction from geometric
group theory [13].

Inspired by Teichmiiller theory, the basic idea behind Outer space CV,, and its
variants is to study automorphisms of free groups Fj, by their action on geometric
objects, in this case built out of combinatorial graphs of rank n equipped with
additional (topological) data. These spaces and the corresponding actions have
nice properties, adding geometric and topological methods to the group theorist’s
toolbox. One such property is that the action projects onto an action of Out(F},),
the group of outer automorphisms of F},, which acts on CV,, with finite stabilizers.
Since Outer space is contractible, it follows that the orbit space of this action, the
moduli space of rank n metric graphs, is a rational classifying space for Out(F;,).
It encodes thus its rational homology.

In [19] the homology of Aut(F},) is computed utilizing a cubical cell structure
of the corresponding moduli space of rank n graphs with a marked basepoint (in
this case inner automorphisms act non-trivially). Quite surprisingly, the results
in [6] show that the same structure is found in the study of poles and branch cuts
of Feynman integrals; the combinatorial operations involved in determining these
critical subsets in the space of external momenta of a given Feynman diagram G,
contracting subsets of its edge-set and putting edge-propagators in the Feynman-
integrand on mass-shell, form a similar chain complex of cubes.

The aim of this article is to add another observation to the list of connections
between these two so-far unrelated! fields; the similarity between certain bordifi-
cations of spaces of graphs, as in [3, 8], and the algebraic geometer’s approach to
renormalisation of Feynman integrals, as in [5], based on the methods of [1].

1 A relation between the underlying combinatorial structures of the constructions in [3] and
[1] was already noted in [4], but not further pursued.
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The basic idea is that each Feynman integral /g can be interpreted as the
volume of a cell o in an appropriate moduli space of graphs. If the integral
is divergent, all its divergences sit on certain faces of og or, in the language of
moduli spaces, at infinity. Thus, renormalisation translates in this formulation into
the task of rendering this integral convergent at infinity. This can be formulated
conveniently using distributions on og. First, the cell og is compactified in
the sense of Borel-Serre, in order to have better control of the behaviour of
I at infinity, then the necessary subtractions are employed to take care of the
divergences, now situated at the boundary of the compactified cell, in accordance
with the usual renormalisation schemes.

Moreover, the nature of these moduli spaces of graphs allows to treat all
integrals corresponding to a given rank and number of external edges at once, so
that we can formulate Feynman amplitudes - albeit a rather unphysical version - as
generalized distributions on these spaces. Roughly speaking, one sums over each
cell og, where G is a graph of rank n with k external edges labeled by an external
momentum configuration p, integrated against a density wg (depending on p) that
is determined from G by Feynman rules in their parametric representation,

(unrenormalised) n-loop contribution to A(p) = Z(wG (p) | o).
rank(G)=n

To formulate this precisely and extend it to a renormalised version is the goal
of the present article. The essential ingredient for this to work is the equivalence
of the combinatorics behind renormalisation and the above mentioned compacti-
fication method.

The article is organized as follows. In Section 2 we set up some basic notation
that will be needed throughout the text. The following two sections serve as a very!
short introduction to the central topics, Feynman integrals and renormalisation on
one side and moduli spaces of graphs and their bordifications on the other side.
Since the focus lies on the combinatorial aspects behind both constructions, the
exposition is kept rather basic; for technical details or a more thorough introduc-
tion on each individual topic the interested reader is invited to consult the given
literature references. Section 5 introduces the notions of piecewise distributions
and pseudo complexes which allow to define a sort of discrete integration theory
on such spaces. The next section connects all the previously introduced concepts
by applying this theory to the case of Feynman integrals in their parametric formu-
lation and moduli spaces of metric (coloured) graphs. The final section finishes
with a discussion of the renormalisation problem and its solution.
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2. Preliminaries
We start with some basic definitions and notation conventions.

Definition 2.1. A graph G is a quadruple G = (V, H, s, c) where V is the set of
vertices of G and H its set of half-edges. The map s: H — V attaches each half-
edge to its source vertex, the map c: H — H connects half-edges and satisfies
c? = idy. If c(h) = W' # h the pair e = {h,h'} is called an internal edge of
G. We denote the set of internal edges of G by E = E(G) and its cardinality
by N = Ng. The remaining half-edges, satisfying c(h) = h, are called external
edges or legs or hairs.

An (internal) edge subgraph vy C G is determined by a subset E(y) C E(G)
of the internal edges of G. The vertex set of y consists of all vertices of G that are
connected to edges of y. So y is a graph itself without external edges.

Remark 2.2. In the following it will be convenient to retreat to the “usual”
definition of combinatorial graphs, i.e. as tuples (V, E) with an attaching map
3: E — Sym?(V) and treat legs merely as additional data. In Section 4.1 where we
take a topological point of view we think of graphs simply as of one dimensional
CW-complexes. In this case legs can be modeled either by introducing auxiliary
external vertices of valence one or as additional labels on the vertex set V.

We need two operations on graphs throughout this work, the contraction and
deletion of subgraphs.

Definition 2.3. Let G be a graph and y C G a connected subgraph. The
contracted graph G/y is given by replacing y by a vertex and connecting each
edge in E(G) \ E(y) with it. If y is a disjoint union of subgraphs the contraction
is defined componentwise.

The deletion of y in G is the graph G \ y with V(G \ y) = V(G) but all edges
in E(y) removed, E(G \ y) = E(G) \ E(y).

Some special types of graphs:
Definition 2.4. Let G be a graph. Its rank or loop number will be denoted by
|G| := h(G) = |H1(G)|.
1. G is called core or 1PI if removing any edge reduces its rank, |G \ e| < |G].

2. Aforestin G isasubgraph T C G with |T| = 0. If T is connected it is called
a tree.
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3. A forest or tree in G is spanning if its vertex sets equals V = V(G).

4. A rose graph with n petals is a graph R,, with one vertex and » internal edges.
The case n = 1 is known as a tadpole in physics.

5. An ( proper) edge-colouring of G is a map c: E(G) — C that assigns to
every edge e € E(G) a colour c(e) in a set of colours C such that no two
adjacent edges are assigned the same colour.

3. Feynman integrals

3.1. Parametric Feynman integrals. Let G be a connected graph with N inter-
nal and k external edges. We refer to G as a Feynman diagram if it is equipped with
additional physical data. It describes then a term in the perturbative expansion of
some physical quantity, typically a particle scattering process. Here we consider
the case where one associates to every internal edge a mass m, > 0 and to each
leg a momentum p; € R?. The p; are vectors in d-dimensional Minkowski (or
Euclidean) spacetime for even d € 2IN and satisfy momentum conservation

We abbreviate this external data by (p, m).
Feynman rules assign to a graph G, labeled by (p, m), the integral

Ig(p.m) = / w06 (p.m), 3.1)

oG
where
o =PMRY) ={[x;:...:xy] | x; =0} C P(RY)

is the subset of projective space formed by all points with non-negative homoge-
neous coordinates and the differential form wg is defined using two graph poly-
nomials as follows.

Definition 3.1. Let G be a connected graph. The first Symanzik (or Kirchhoff)

polynomial is defined as
lp‘G = Z H xe,
TCG e¢T

where the sum is over all spanning trees of G.
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The second Symanzik polynomial is defined as
¢G = Z(pT1)2 ng’
T=T1UT>CG e¢TUT>

where the sum is now over all spanning 2-forests T = T7 UT5 - a spanning 2-forest
is a disjoint union of two trees 77 and T, in G with V(G) = V(Ty) U V(T3) - and

PTI = Z Dv
veV(Ty)

is the sum of all external momenta entering the component of G that is spanned
by 7;. By momentum conservation, it equals —p72.

If G = G, U---UG is a disjoint union of graphs, then ¥/ and ¢¢ are defined
by

k k k
vo =[[ve. ¢6 = ¢ [V,
i=1 i=1 j#i

For more on these polynomials and how renormalisability of Feynman inte-
grals crucially depends on some of their properties, see [5]. We cite two important
relations in

Proposition 3.2. Let G be connected. Then

wG|X(),=0 = WG/e’ ¢G|Xe=0 = ¢G/e’ (3'2)
and
Ve = Yy¥Gry + Ry,  d6 = Vyde/y + R, (3.3)

where R, and R, are both of degree strictly greater than deg(yry) = |y| in the
variables x., e € E(y).

Proof. Both statements follow from Definition 3.1 by partitioning the set of all
spanning trees or 2-forests of G into those that do or do not intersect with y. O

Finally, let E ¢ denote the polynomial

N
— 2
E¢ =6 + V6 y_mix;

i=1

and define the differential form wg by

d VG )N—IGI%

w6(rm = Vg (G- vo =t fo(pmve  (34)
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with
N . ——
VG = VN = Z(—l)’xidxl Ao Adxi Ao ANdxy.

i=1
Example 3.3. Let G be the “Dunce’s cap” graph, depicted in Figure 1. Ind = 4

we have N — |G|% = 0and Yg = x3x4 + X2X3 + X2X4 + X1X3 + X1X4, SO that

V4(X1,X2,X3,X4)

1 ,m) = .
6(p.m) (x3x4 + X2X3 + X2X4 + X1X3 + X1X4)?
P(RY)

Note that the denominator vanishes for x3 = x4 = 0 rendering the integral
divergent. This is a general phenomenon which we discuss in the next section.

P4
mj
P1
my
P2 ">
P3

Figure 1. Dunce’s cap.

3.2. Renormalisation. In general the integral /¢ in (3.1) is ill-defined; fg may
have non-integrable singularities at the loci where certain subsets of edge variables
vanish.? The condition for such ultraviolet divergences to appear can be phrased
in terms of the subgraph that is spanned by the edges corresponding to these
variables. It depends only on the topology of that subgraph through its superficial
degree of divergence

sy =d|y| —2N,. (3.5)

There is also the possibility of so-called infrared divergences which we avoid
here by considering only massive diagrams (all m; > 0) or generic external
momentum configurations,

(X:pl-)2 > 0 for all proper subsets @ # I < {1,....k}. (3.6)
iel

For a discussion of infrared divergences in the framework presented here, see [7].

2In the projective representation we are using here a possible overall divergence is hidden
in a prefactor of /¢, cf. Remark 6.3.



210 M. Berghoft

In our case divergences can only appear at zeroes of {¥¢ and we have Wein-
berg’s theorem [23] which is a cornerstone for renormalisation theory.

Proposition 3.4. Under the above conditions, the Feynman integral (3.1) is con-
vergent if and only if for all subgraphsy C G it holds that s, < 0.

Thus, a (sub-)graph y C G is called convergent if s, < 0 and divergent if
sy > 0. In the latter case s, = 0 is referred to as a logarithmic (sub-)divergence
and s, = 1,2,... as linear, quadratic etc. (sub-)divergences.

The remarkable feature of perturbative quantum field theory and the reason for
its success as a physical theory of interacting particles is the fact that, despite being
ill-defined, the integrals /¢ still carry physical meaningful data. Renormalization
is the art of extracting this data in a systematic way. In a nutshell,® the main
approach to renormalise /g is to regularise the integral by adding a complex
parameter z € C and study /g (z) as a complex function. This allows to quantify
the divergences of /¢ = Ig(zo) in a mathematically sound way as poles in its
Laurent expansion around zy. Then one performs a renormalisation operation R
to render /¢ finite, i.e. to pass to the physical limit lim,_, ;, R(I(2)).

There are also methods without using an intermediate regulator, for example
by

- modifying the integration domain og in order to shift it away from the

singularities of the integrand [4];

- modifying the integrand fg in order to get rid of the singularities before
integrating [5].

The common feature of all of these methods is that they can be formulated as
a rescaling of the physical constants in the given theory (in mathematical terms,
the renormalisation procedure can be formulated as a special version of Birkhoff
decomposition, cf. [10]).

We demonstrate the latter approach in the case of at most logarithmic subdi-
vergences. Let G be a connected graph with only logarithmic subdivergences.
Denote by D = {y C G | s, = 0} the set of divergent subgraphs of G and call
F C D aforest of G if

forall y,n € Freithery CnornCyory Nn=4.

We want to define for every y € D a subtraction on the integrand which eliminates
the corresponding divergence of fg. A naive definition term by term would

3 We do not want to dwell here on a precise definition of a physical meaningful renormali-
sation or its philosophical interpretation and refer the reader to the standard literature, e.g. [20].
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not work though as one has to take the nestedness and possible overlaps of
subdivergences into account. It turns out that forests of G are the appropriate
tool to organize this operation. Therefore, we define the renormalised Feynman
integral by Zimmermann’s forest formula [24]

18" =0 [ forve (3.7)

forests F oG

where
o5V + d9VG) T

¢g/glﬁ§ + ¢3Ve/7

_d
fo.5 = (Yg5¥75)” 2 log
with ¥4 := Vg and ¢5 := ¢4 for

F:=J (V/Un)

yeEF neFnly

and the superscript 0 in ¢ denotes evaluation at a fixed renormalisation point
(p,m) = (po, mo).

For a proof that /5" is finite and a derivation of the general forest formula we
refer to [5]. In the case of subdivergences of higher degree simple subtractions are
not enough to render the integrand finite. One has to combine partial integrations
(to reduce the degree of divergence) with subtractions of Taylor polynomials (to
get rid of the resulting boundary terms) in order to renormalise the integrand. The
formulae get considerably more complicated in this case but the overall structure
does not change. The upshot is that renormalisation is still organized by the forest
formula, and thus by a Hopf algebra, cf. [10] and Theorem 8 in [5].

4. Moduli spaces of graphs

4.1. Outer space and moduli spaces of graphs. Let us start with the definition
of Outer space, as introduced by Culler and Vogtmann in [13]. Fix n € IN and call
a graph G admissible if

(1) its rank or loop number |G| = h1(G) equals n,
(2) itis 1PI or core or bridgefree; deleting an edge reduces its loop number,
(3) all (internal) vertices of G have valence greater or equal to three.

Let R, denote the rose graph with n petals, i.e. the graph consisting of a single
vertex and n edges, and consider a space of triples (G, g, A) where G is admissible,
g:G — R, a homotopy equivalence (called a marking) and A a metric on G that
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assigns to each e € G a positive length. Two elements (G, g, 1), (H, h, n) are
considered equivalent if and only if there is a homothety ¢ between the metric
spaces (G, A) and (H,n), such that & o ¢ is homotopic to g. This defines an
equivalence relation on the space of all admissible marked metric graphs of rank
n and we denote the quotient, called (Culler—Vogtmann) Outer space, by CV,,.

There is a natural action of Aut(F},) on this space. An automorphism « acts
on an equivalence class [(G, g, A)] by composing the map g: G — R, with the
homotopy equivalence &: R, — R, that is induced by identifying each (oriented)
petal of R, with a generator of F},. From the above notion of equivalence it follows
that inner automorphisms act trivially, so that effectively it reduces to an action of
Out(Fy,) := Aut(Fy,)/ Inn(F,), the group of outer automorphisms of F;,.

As a topological space, CV,, decomposes into a disjoint union of open sim-
plices in the following way. For each marked graph (G, g) consider the set of
points obtained from changing the metric A, i.e. by varying the edge lengths sub-
ject to the condition of positivity. By the equivalence of scaled metrics we can
restrict to the case where each metric A on G satisfies

vola(G) := Y Ale) = 1.

ecG

Hence, the space of allowed metrics on (G, g) parametrises the interior of an
(JE(G)|—1)-dimensional simplex Ag. A face of Ag lies in CV,, if and only if the
edge set of G on which A vanishes forms a forest in G. Vice versa, missing faces
correspond to metrics vanishing on subgraphs y C G with |y| > 0. Elements of
these faces are called points at infinity.

The whole construction naturally generalizes to the case of graphs with k
additional basepoints. These basepoints can be thought of as external edges in the
sense of Definition 2.1. In this case one considers labeled graphs (G, {v1, ..., v¢}),
markings become homotopy equivalences g: (G, {vi,...,vx}) — (R, {v}) and
two labeled and marked metric graphs are considered to be equivalent if there
is a homothety ¢: (G,{vy,...,v¢}) — (H,{wy,...,wg}) such that h o ¢ =~
g rel {vy,...,vx}. The resulting spaces are denoted by CV,, «.

For k = 0 one recovers the definition of Outer space. The case k = 1
is called Autre or Auter space. It allows to study the full automorphism group
Aut(F,) as the existence of a basepoint makes the action of inner automorphism
nontrivial. For k > 2 one obtains spaces equipped with actions of the groups
Out(n, k) = F¥=1 x Aut(F,), see [9].

The general idea behind all these constructions is to have nice spaces on which
these groups act, allowing to study them using geometric and topological tools.
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A special role is then played by the corresponding orbit space, the quotient
MG, := CVy i /Out(n, k),
the moduli space of rank n metric graphs with k external edges.

4.2. A moduli space of coloured graphs. Unfortunately, the description of
CV,,.k as disjoint union of open simplices does not quite survive the projection
onto M G, k. Indeed, under the quotient operation some open simplices get folded
onto themselves. Heuristically speaking, this is due to the fact that without the
marking, multi-edges between two vertices become indistinguishable.

Although both graph polynomials i and ¢ respect this symmetry as they are
invariant under the corresponding permutations of edge-variables, it will be more
convenient to work on an intermediate moduli space of coloured graphs. We there-
fore consider in the following graphs with their internal edges coloured by injective
maps c: E(G) — {1,...,3(n — 1) 4+ k}.# From a physics viewpoint, the colours
play the role of placeholders for external data such as particle types and masses
(determining the explicit form of the Feynman integrand fs). Mathematically,
they serve as fixed coordinates on the edges of G, thereby removing the above
described symmetry under permutations of multi-edges. Therefore, the resulting
moduli space of coloured graphs will behave combinatorially like a finite version
of CV,, k-

Definition 4.1. Fix n,k € Nandlet C = C(n,k) := {1,...,3(n — 1) + k}.
The moduli space of rank n metric holocoloured graphs with k external edges is
defined as

Xpk :={(G.A.¢) | A: E(G) —> Ry, ¢: E(G) —> C}/

where G is admissible with |G| = n, has k legs and every internal edge is coloured
differently using C as set of colours. The equivalence relation ~ is given by
(G, A) ~ (H,n) if there is a colour-respecting homothety ¢: G — H such that

A =nog.

Remark 4.2. In principle one could further restrict the set of admissible graphs
by bounding the allowed vertex valency from above. This would produce more
missing faces in the resulting moduli spaces. Such spaces make sense for realistic
Feynman amplitudes, but for the toy model presented here we simply consider the
most general case.

4 An admissible graph of rank n with k legs can have at most 3(n — 1) + k internal edges.
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The upshot is that X,  decomposes into a finite disjoint union of open sim-
plices, one for each admissible coloured graph, analogous to the description given
for CV,, x in the previous section.

A convenient bookkeeper for the face relations in X, x is the set of of all rank
n holocoloured graphs with k legs, partially ordered by

(G,c) < (G',c') < there exists a forest F C G’
such that G//F =GAc= C/|E(G’)\E(F)-

Equivalently, it is the set of all open simplices in X,, ; partially ordered by face
relations. We denote this poset by X, . Its colourless variant (or rather its
geometric realization) plays a prominent helpful role in the study of the groups
Out(n, k).

Remark 4.3. The symmetric group S3,—1)+x = Perm(C) =: ¢ acts on X, x
by changing the colours, 0.(G, ¢) := (G, 0 o ¢), and we retrieve the moduli space
of metric graphs M G, x as the orbit space of this action, X, x/Xc = MG, «.

4.3. A compactification of X, . We describe a compactification of X, ; fol-
lowing the work of [3] and [8] for Outer space. The construction will not depend
on the colouring, so we drop it from the notation temporarily.

Faces at infinity in X, x correspond to degenerate metrics in the following
sense. Let

Ag = {(xl,...,xN) ‘ in =1,x > 0}, N = |E(G)|,

denote an open simplex in X}, ; associated to an admissible coloured graph G of
rank n with k legs. In this standard parametrisation every face in the boundary of
Ag is described by a set of vanishing coordinates, or equivalently, by aset S € G
of zero-length edges in G. Such a face is thus an element of X, x if and only if
the graph G/S is still of rank n. This is the case if and only if S is a forest in G.
We conclude that faces at infinity in X, x correspond to pairs (G, y) where G is
admissible and y C G is a subgraph of G with |y| > 0.

Example 4.4. Consider the Dunce’s cap graph of Figure 1 as an element of X5 4
(coloured by {1, 2, 3, 4}). The set of postive metrics of volume one on G describe
an open cell, its closure in X 4 is depicted in gray in Figure 2. Faces in red
correspond to metrics vanishing on subgraphs y C G with |y| > 0, hence lie at
infinity in X> 4.

To construct a compactification of X,, x we proceed simplex by simplex using
a method analogous to the Borel-Serre construction for arithmetic groups. From
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Figure 2. A cellin MG» 4

now on denote by o always a relatively closed simplex in X, , i.e. o¢ is the open
simplex Ag together with all of its faces that correspond to graphs G/F where
F C Gisaforestin G.

Consider a point at infinity x € oG where a subset of edge variables S C G
vanishes. We can restrict our attention to the case where S = G is a 1PI or core
subgraph of G - setting the remaining edge lengths in S \ G to zero describes a
face of oG, (which does not lie at infinity).

Possible directions of approaching x correspond to flags of subgraphs of G in
the following way. The set of metrics on G defines, after rescaling, a new simplex
0G, . If a metric vanishes on another core subgraph G, C G, we can repeat this
construction to obtain a simplex og,, and so on. This process ends after a finite
number of steps since the loop number of the graphs considered must decrease in
every step, |G;| > |G;+1|. A point at infinity in X,, x can thus be described by a
finite sequence of core subgraphs, a flag G = Gy D G1 D G, D --- D Gy, each
equipped with a metric on its edges, normalized to volume one.

For any core subgraph y C G there is a projection map r,:06 — o,. Itis
defined by restricting a metric on G to y and rescaling it to volume one, thereby
defining a point in . The product of these maps forms a composite map

r.og — l_[cr_,,
yCG core
which is an embedding (here G is counted as a core subgraph of itself). The

compactified cell 6 is defined as the closure of the image of r,

5(; = V(UG).

Alternative description of 6¢ (cf.[1,4, 5]). Another way of parametrising the
standard n-dimensional simplex is to describe it as subset of n-dimensional real
projective space,

A" ={[xo:x1:...:xn] | xi =0} C ]p(Rn+1)‘
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In this projective setup let P = P(R”Y). Then we can rephrase the previous
discussion as follows. The compactified cell 6 is the subset of [, P, obtained
from oG by a sequence of blowups along the (strict transforms of ) subspaces

Ly={xe=0|ecy}Cocg={[x1:...:xn5] | x; >0}

where each y is a proper core subgraph of G. The sequence of blowups proceeds
along subspaces of increasing dimension, so it is determined by the inclusion
relation on subgraphs whereas for disjoint subgraphs the order does not matter. We
recover thus the above description of points at infinity by flags of core subgraphs
of G.

Proposition 4.5. Both constructions are equivalent, i.e. for every admissible
graph G both compactified cells are isomorphic (as manifolds with corners).

Proof. The projective simplex A7 is isomorphic to the standard one A{ via the
regular map

1
t A A%, S — (X0, .-, Xn).
¢ P O o xn]i_)xo—i-...—i-xn(xo Xn)
Under this map the family {L, | y C G core} transforms into a linear subspace
arrangement in RV6~1, The compactified cell 5 is a wonderful model for this
arrangement in the sense of De Concini and Procesi [11]. More precisely, it is the
wonderful model for the maximal building set

B ={¢(L,) N AN~ |y C G core}.

The results in [11] show that both descriptions of 6 are equivalent. Moreover, the
construction through a sequence of blowups provides local coordinates> on this
wonderful model using the notion of nested sets which here are given by totally
ordered subsets of B, hence by flags of core subgraphs of G. |

By construction the projection map f: 6g — ¢ is an isomorphism outside of
the exceptional divisor

E=8C:=p""(U, Ly =U,¢&. & :=B"(Ly =PyxPg,.

with its inverse given by the map r. Therefore it makes sense to call the elements
in &, C &g the new faces of 6. In a graphical notation that will be useful later

5 See Section 7.
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we write for a new face v C 0¢, corresponding to the blowup of a L, or to an
intersection of multiple such faces,

T~ (G,FI)~(G=GyDG1 DGy DD Gy, 4.1

where ¥ is aflag G; D G, D --- D Gy, of core subgraphs of G. If m = 1, then the
pair (G,JF) = (G, G1) describes a maximal new face of 6¢g; if m > 1, then (G, F)
describes the intersection of the faces (G, G;) fori = 1,...,m.

All other faces of 6¢ have a description that is induced by the face relation
in X, k.

Lemma 4.6. If G’ = G/F for a forest F C G, then 6g’ is a face of 6¢.

Proof. The face relation in X, ; via contraction of forests F C G defines a map
w:0G — og’. Because of the property

y C Giscore = y/(F Ny)C G is core,

m lifts to a map 77: 66 — 6’ such that

66 —— G

5 l#

oG L) oG’

commutes. O
Lemma 4.7. A vertex v of 6¢g is described by v ~ (G, T, ey, ...,en—1) where T
is a spanning tree T C G and (ey, ..., e,) an ordering of the edges in G\ T.

Proof. Lemma 4.6 shows that the contraction of a spanning tree 7 C G defines a
facet of 6 of maximal codimension, parametrised by the edge variables of G/ T
which is a rose graph with n petals. By (4.1) the vertices of 6,7 are given by
maximal flags of core subgraphs of G/T which can be represented by orderings
of the n petals of G/ T. |

Corollary 4.8. Each cell 6 is the convex hull of its vertices, i.e. a polytope.

Finally, we define the compactification of X, x as the result of gluing together
all the cells 6(g,¢) along their common boundaries.
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Definition 4.9. The compactified moduli space of rank n metric holocoloured
graphs with k external edges is

Xn,k = (U(G,c)exn!k 5(6,6))/~’

where the relation ~ is induced by the face relation on X, ; through the maps &
constructed in Lemma 4.6.

Example 4.10. Figure 3 shows the compactified cell 6¢ for the Dunce’s cap
graph. The dark gray faces are the results of blowing up Ag first along the 0-faces
{x; = 1} fori = 3,4, and then along the 1-face {x3 = x4 = 0} corresponding to
the core subgraph y C G formed by edges 3 and 4.

Figure 3. A compactified cell in X5 4

5. Pseudo complexes and piecewise distributions

This section introduces some notions necessary to formulate and renormalise
Feynman amplitudes on moduli spaces of graphs. For an introduction to simpli-
cial, A- and CW-complexes, and a detailed discussion of the differences between
these notions, see [17]. For an introduction to distributions see [16] or [18].

As discussed in Section 4.3, the spaces X, x are not real A-complexes (also
known as semi-simplicial complexes), but have missing faces. Let us call such
spaces pseudo A-complexes.

Definition 5.1. A topological space K is a pseudo A-complex it K = L\ F for
a finite A-complex L and a F a subcomplex of L. Face relations in K are then
naturally inherited from L. Equivalently, we say K is pseudo if it is the disjoint
union of finitely many open simplices modulo face relations.

We call the elements of K pseudo simplices, i.e. o is a pseudo simplex in K if
there is & € L suchthato =6 \ (U,ep 6 N 7).
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Example 5.2. All spaces X, x with n > 2 are pseudo simplicial complexes - for
instance, all 0-simplices are missing - whereas all X, ; are ordinary A-complex-
es—every edge contraction transforming G € X; x to a coloured rose is allowed.

Remark 5.3. In the simplicial category pairs (L, F) are known as relative sim-
plical complexes, introduced by Stanley in [22]. Since we are dealing with more
general spaces, we will avoid confusion (for instance with the concept of relative
CW complexes) by sticking to the term pseudo.

Every pseudo simplex is locally just a manifold with corners. Therefore,
differential forms and integration can be defined on these objects.® Moreover,
simplices are orientable so that we have a natural identification of distribution
densities and volume forms [21]. This allows to define distributions on (pseudo)
complexes. To formulate amplitudes as evaluations of distributions over the spaces
X, we need to take into account contributions from all of their pieces. Therefore,
we have to integrate over lower dimensional simplices as well, contributions that
are not taken care of by the usual theory of integration. To cope with this anomaly,
we change the definition of a distribution slightly from the usual one.

Definition 5.4. A piecewise distribution on a (pseudo) complex K is a collection
u = {uy | 0 € K} of distributions, one for each of its (pseudo) simplices. The
value of u at a test function ¢ € C>°(K), denoted by (u | ¢), is given by the sum
over all its single contributions

(wle)=> (ol ¢lo).
oekK
A piecewise distribution u is said to respect face relations if the following
holds. If 7 is a face of o € K, then u; = us |, where the restriction of a (regular)
distribution u to a submanifold S is defined by (cf. [16])

loc.

k
S (e = 0) = (uls |9) = [ pCouo) []80a)dn -+
i=1
* 5.1)

Remark 5.5. (1) A piecewise distribution ¥ on a A-complex K of dimension d
defines cochains u’ € C*(K,R) fori =0,...,d by

o= Zajcrj — u'(0) = Zaj(ugj | Xlo;), with y =1 € CZ°(K).
J J

6 See [15] for applications of differential forms on simplicial complexes.
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If K is pure and u respects face relations, then it is completely determined by its
values on the facets of K. In this case we have a sequence

CKRsu? —-u1'— ... 5 uecC®%K,R)

that is induced by the restriction map and carries essentially the same information
as the coboundary operation on C*(K, R).

(2) The definition of piecewise distributions also works for more general
spaces, such as polytopal or CW-complexes and even stratified spaces. The
only important property needed is a notion of integration on each building block
compatible with the corresponding boundary or face relations. In every such
setting distributions, and even differential forms and currents, can be defined as
above.

6. Feynman amplitudes as piecewise distributions

From now on let n, k be fixed. To minimize notation we denote by X = X,  the
moduli space of metric holocoloured graphs of rank » with k legs. Furthermore,
in the following we write simply G for a coloured graph (G, c) € X.

Assume given a set of masses m., one for each colour

ceC={1,...,3(n—1) + k},

and let p € (R%)* denote a generic external momentum configuration. Inspecting
the Feynman integrand fg we conclude from (3.2) that the graph polynomials
respect face relations, i.e. for each coloured edge e € E(G) we have

]

|xe=0.

I;0G/e = W|x3=0, ¢G/e = ¢|x3=0’ EG/e =

On the other hand, fs depends also on sg, the superficial degree of divergence of
G through the exponent of g/ E¢. It is a discontinuous function on og, given
by

56 = d|G|—2N = dn —2( 3 26(x) - 1)

e€E(G)
with 6 the Heaviside distribution
0 ifx <0,
0(x) =491 ifx=0,
1 else.

Therefore, fg respects face relations, although in a discontinuous way, so that we
are naturally led to work within the class of piecewise distributions on X.



Feynman amplitudes on moduli spaces of graphs 221

Definition 6.1. The Feynman piecewise distribution on X is defined as the col-
lection

f=t(p) =116 |G €X}. 1g:CP(06) —> C. ¢ — (i | ) :=[¢wc,
oG

with wg = fg(p,c)vg as defined in (3.4).
This definition is justified by the following

Proposition 6.2. ¢ is a piecewise distribution on CZ°(X) that respects face rela-
tions.

Proof. First, we show that each ¢ is a distribution on og. Let ¢ € C®(og).
Recall the discussion of divergences of the Feynman integral /g in Section 3.2.
As ¢ is compactly supported, it cannot meet the divergent locus of G which is
contained in the missing faces of og. Hence, (t¢g | ¢) is well-defined for all
¢ € CX(0g).

Linearity of T is clear. To probe the continuity of this map, let ¢ be a
sequence in C°(og) converging to a test function ¢. This means, there is a
compact subset K C og with supp(¢r) C K for all k € N and ¢ — ¢ uniformly
on K. Since wg is a smooth differential form away from the divergent locus
of G, all products grwg are compactly supported differential forms, converging
to pwg. More precisely, this holds on the interior of o, but we can neglect the
discontinuity of fg at og \ ¢ since it is still bounded there and thus not seen by
dim(og )-dimensional integration. We conclude

(i |¢k>=/¢m=/¢kwa—>/<pw6=/¢waz<za|<p>.
K K

oG oG
It remains to check that ¢ is compatible with face relations. Let o, C og,
where y is obtained from G by contraction of a forest F C G, i.e. 0y, is the subset
of og where all edge variables associated to F are set to zero. Since each #g is a
regular distribution, its restriction to o, is given by (5.1),

16l CF(0y) 3 ¢ — /(pc?(a,,)a)g,
oG
where integration against 6(o, ) evaluates the integrand at all edge variables of F
set to zero. Therefore, this integral equals

/<P5(0y)1/’;%(g—z)_STGvG = /w(%%(g—z)_T)

oG oy oy
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because both graph polynomials and the superficial degree of divergence respect
face relations. The identity

[ os@v6 = [ plo,,

follows from the definition of the restriction map on distributions using local
coordinates. O

The previous discussion shows that for every generic momentum configuration
p we have a piecewise distribution 7 (p) on X. Eventually we are interested in the
value of 7(p) on the constant function y = 1, the (unrenormalised) Feynman
amplitude A, (of order n at p),

An:p = t(P) | x) =D _{ta(P) | Xlo) = D (t6(P) | Xlog)-
oeX GeX
Thus, renormalisation translates in this picture into the task of finding a well-
defined expression for the limit limg_, o (¢ (p) | ¢x) Where ¢ is a sequence of test
functions converging to the characteristic function y of the space X.

Remark 6.3. (1) This is the algebraic geometer’s definition of an amplitude as a
projective integral. For a comparison to its “real world” version and a derivation
of the latter see [5]. The constructions presented here work equally well in this
case. It is important to note though that if s¢ = 0, then

S

Jolpom) =g (o8 ) ¥ = ygt

Eg(p.m)
does notdepend on (p, m). The amplitude however does, by a multiplicative factor
coming from renormalisation of the overall divergence of G.

(2) By definition, this amplitude sums over all possible distributions of masses
in graphs. If two or more masses are equal, these multiplicities can be taken into
account with the help of appropriate symmetry factors.

(3) As mentioned above, for realistic field theories the valency of each vertex
in an admissible graph is bounded also from above, so that one has to restrict the
definition of a Feynman amplitude to an appropriate subcomplex of X.

7. Renormalisation on the compactification X n,k

To find a renormalised version of the Feynman distribution ¢ we will use the com-
pactification f: X — X. Together with the pullback and pushforward operations
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on distributions this allows to study and control the behaviour of the divergent
parts of each ¢g.
As we have seen above, the compactification X is a polytopal complex.

Definition 7.1. A polytopal complex P is a (finite) collection of polytopes such
that

(1) ifgisafaceof p € P,theng € P;
Q) ifp,pePandpnp #@,thenpnp =qe P.

All of the theory introduced in Section 5 works also in the case of polytopal
complexes (by definition and also because every polytopal complex can be tri-
angulated into a simplicial complex). This allows to view f*r as a piecewise
distribution on the compactification of X. Then, working on each polytope ¢ sep-
arately, we will find its divergent loci at the new faces of & that are indexed by
divergent subgraphs. It is important to note that the ultraviolet divergences we
are considering here are independent of the colouring of G and its subgraphs; as
long as we are dealing with generic external momentum configurations or strictly
positive masses, all possible divergences depend only on the topology of G as
uncoloured graph.

After all of these divergent loci and the corresponding poles are identified,
we will employ the necessary subtraction operations to render each distributional
piece of B*¢ finite. In the end we show that the so obtained distributions fit together
in order to produce a piecewise distribution on X (or X after pushing it back down
along B) that has a finite value when evaluated at y. The result of this whole
operation is then called the renormalised Feynman amplitude A"

As mentioned in the introduction this is nothing new, but merely a reformula-
tion of renormalised parametric Feynman integrals in the context of moduli spaces
of graphs. This problem has been studied long ago and solutions are well under-
stood. Finite renormalised expressions for /¢ are given by various methods in the
literature, see for instance [4, 5] or [20].

Let 6 denote the compactification of a pseudo simplex o as defined in Sec-
tion 4.3 and B: 6 — & the corresponding projection. Recall that o corresponds to
a holocoloured graph G € X, where the colouring determines the explicit form of
the graph polynomial E . On the other hand, the shape of 6 depends only on the
topology of the graph G.

Since distributions can be pulled back along smooth submersions, we have
away from of the exceptional divisor &

(B*ts | @) = (ts 0 B | @).
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Of course, this is defined so far only for ¢ compactly supported on the complement
of € in 6; we have not taken care of the divergences yet. Moreover, note that no
information is lost if we work on the compactification X because for a graph G,
free of subdivergences, we have

/ﬂ*(wa)g) = /(pa)G for all ¢ € C°(0).

0G oG

This follows from the fact that 8 is a smooth isomorphism outside of £ which is a
set of measure zero.

Thus, so far we have a collection 7 = {8*#, | 0 € X} that satisfies the proper-
ties of a piecewise distribution on X, except we have not yet assigned an element
of 7 to every polytope in X . The distributional pieces corresponding to polytopes
in the exceptional divisor £ (and their faces) are still missing. Wherever it is de-
fined, 7 respects face relations, but due to the presence of divergences we cannot
use these relations to determine the value of it at all new faces.

The workaround is to use a regularisation as explained in Section 3.2. To do
so, we consider the constant d in (3.5) as a complex parameter allowing us to
work with finite intermediate piecewise distributions that we can pull back and
extend on the whole space X. Thus, for d € C we define the regularised Feynman
piecewise distribution t¢ on X by

9 =0 o eXy={&|GeX) with (& | ¢) ::/gofgv(;.

e
Since f¢ is given by

SG
2

_d wG)N—|G|g —i<EG)
2 2
G = = = )
f Vo (GG Vo /¢

and the superficial degree of divergence sg is bounded for admissible graphs
G € X, we can choose d € C so that t9 is a piecewise distribution on X for
which the pullback along B delivers finite distributions on each &. Then i can be
extended to a piecewise distribution on the whole space X .

Remark 7.2. The approach presented here is known as dimensional regularisa-
tion. Of course there are many ways to regularise Feynman integrals. Two other
methods regularly used are the following.

- Using a cut-off, i.e. reducing the integration domain 6 to the complement
of an e-neighborhood of the exceptional divisor €. In some sense, this idea is
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implicitly built into our formulation of Feynman integrals as distributions on
moduli spaces of graphs; the support of a compactly supported test function
on X can not intersect with any divergent locus L,, for some y C G € X with
ly| > 0. However, using dimensional regularisation additionally provides
more control to study the divergences of the distributions ¢ in detail. For
an approach that focuses solely on modifying the integration domain o for
regularisation and renormalisation see [4].

- Analytic regularisation which writes the Feynman integral as a Mellin trans-
Jform by replacing the integrand fg with

d — SG
-4 /5G\ 2 _
2 ae—1
Ve ( ) [Txe

V6 ¢€E(G)

One shows that there is an open set A C C¥ such that the integral converges

for (aj,...,an) € A. Renormalisation amounts then to find an analytic
continuation to the point (1,...,1) € CV.
Write

={d|seX)

for the collection of distributions, one for each polytope of X, where

-d {,B*tgl if ¥ = 6 is the blowupofao C X,
T =

(,B*tg)|z if ¥ C &, is a new face in the blowupofao C X.

From now on we fix a (coloured) graph G and consider the distribution fg
on the polytope 6 in X. For the loci of possible divergences, that is for faces
¥ C €g C 6, we use the graphical notation introduced in Section 4.3, eq. (4.1).
There we have for every pair (G, F) with F a flag of core subgraphs of G (with
the induced colouring)

G=GoDG1D--DGy

a distribution 74 such that
-ifm=1,ie. 5 =Gy, thenX = &g, = ﬁ_l(LGI) and fg = ,B*Ig|gcl;
- if m > 1, then fg is given by the restriction of ,B*tg to the common face of
the £, = ¢, indexed by the flag I = (Gy, ..., Gm).

These are the loci of possible divergences of fg. The other faces of X (i.e.
intersections with faces corresponding to non-core subgraphs of G) do not carry
additional information.
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On 6 we use local coordinates to study the distribution fg in the vicinity of
€ C dog. Let t C € be a new face, t ~ (G,F) with F = (Gy,...,Gp), and
define

Ym = Gm. Ym-1:= Gm-1/Gm...v0 := G/G. (7.1
In affine coordinates” x, = 1 for e C yo = G/G; write yo for the vector of edge
variables of yo \ e and y; for those associatedto y; (i = 1,...,m),

Y0 1= (¥0)ecE(ro)s Vi i= (¥{)ecEm)-

Furthermore, choose for every i = 1,...,m a single coordinate y in y; and
denote by y; the vector y; with this coordinate set to 1. Then, following the
wonderful model construction of [11], the blowup sequence from o to & is locally
described by the coordinate transformation p = PF,(yF,....y;) given by

.....

p: (Y0 Y1s - Ym) > (0. Y1 -¥1. (07 ¥3) Yoo oo 0T o) - ¥Ym). (7.2)

Thus, in local coordinates we have 8 = p. In order to detect the poles of p*wg
along  we deduce its scaling behaviour from the contraction-deletion relations
for graph polynomials.

Lemma 7.3. Let p be given by (7.2). The graph polynomials V¢ and ¢g satisfy

W op) () =[N ()

i=1
and

(d6 o p)(») = [[0H'9d(y)

i=1
i T ry ; N-1
with ¥ and ¢ regular functions on R} ™.

Proof. Both statements follow from (3.3) in Proposition 3.2. As first step, we
recall that

Y6 = Y6, ¥6/6, + Ri

with ¥, and ¥ g/, depending only on (y1, ..., yn) and yo, respectively, and R;
of degree d; > deg(y¥g,) = |G1|. Thus,

Ve op =D W6, V66, + RDlyr=1 = DI,

7 In the following we omit the subscript for evaluation at x, = 1.
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where the prime ' denotes evaluation with the edge variables (y», ..., y,) still
scaled by the map p. Because Vg, further factorizes,

wé;l = W/sz/Gl/Gz + R/2’
and because R; is of degree di > |G1| > |G2]| alsoin (yy, ..., ym), We can repeat
the above argument to conclude

V6, V676, T RDlyr=1 = (V6,V6, /6, + RDVG 6, + RDlyr=1 = (75) 9.
After m steps we arrive at the desired equation. The case ¢g works analogous.
O

Proposition 7.4. Consider anew face t C 6g, T ~ (G, F)withF = (G, ..., Gy).
Then the dlﬁ”erentlal form B*wg has poles along t, one for each divergent G,, of
order 25 + 1. Its regular part fG satisfies

d

Fle = W6mVmiGmr - V6r/61) "% fo/61 = (Hlﬂy,) " Fro.
i=1

Proof. Combining the result of Lemma 7.3 with the definition of wg in (3.4) we
find

m
—|G; |4 7
(foop)(») =[N 9% fg
i=1
with fG regular. For the differential form vg we have

N m
p*ve = p*(Z(—l)ixidX1 Ao Adx /\---/\de) = H(y;‘)lE(Gi)l_lvG

i=1 =
Putting everything together we conclude

p oG = 1_[()/ )TIGHIEHEGDIZT foyg = 1_[()/, )__ ' fove. (7.3)

Recall the notation from the proof of Lemma 7.3. At 7, where all y = 0,
every remainder term R] in the factorizations of ¥ and ¢ vanishes. Therefore, the
regular part fg is given at 7 by

f~G|r = ((J’m)_% (g_m)_STG)“y;‘:O}

~—m
SG

m 2
) =0

m

<

= (V6m¥Gm/Gm_1 ' VG2/G1VG/G1) ™ 2(

= (TTw) ol (Lo ™ —(
i=1

€3]]

a
2

%)(% asin (7.1)

:ls

BG/Gy

~.

1
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with
Em = ¢m + (mg(e) + Z mg(e/)Pe/>1/fm
e/ #e
since we are working in affine coordinates with x, = 1. O

Remark 7.5. These poles are only superficial; the integrand fg might actually
be better behaved. For example, consider the “sunrise” graph on two vertices
connected by three internal edges with all m, = 0. For d = 4 it has three
divergent subgraphs, all satisfying |y| = 1 and s, = 0. In this case, the second
graph polynomial ¢ = Egn—¢ scales as x!7I+1 5o that there are no poles at the
faces T ~ (G, y). In any case, we do not need to worry about this as incorporating
trivial subtractions will not affect the final renormalisation.

€1,3

p1 P2

E1,2 €2.3

Figure 4. The “sunrise” graph and its compactified cell 6 C X5

Proposition 7.4 shows that the new faces of 6 encode all the divergent be-
haviour of 7. Viewed as a meromorphic function of d € C it has poles along the
new faces t of 6 corresponding to divergent subgraphs, i.e. T ~ (G = Go D
G1 D --+ D Gy,) with at least one G; divergent. In other words, 7g diverges when
applied to a test function whose support intersects a new face © C 6¢ that is in-
dexed by a divergent subgraph of G. Moreover, we can restrict to the case where
T~ (G,F)and F = (G1 D G, D --- D Gyy) with all G; divergent, other types of
flags do not contain additional information about subdivergences.

In principle, we can now simply apply our favourite renormalisation scheme?
to define a finite version fg" of 7 on each 6. Pushing this collection of distribu-
tions forward along the map B produces then a piecewise distribution ™" = {z5"}
on X, given by

15" C2(06) 3 ¢ V> (B«ig" | @) := (15" | B™¢).

Notice, to obtain the value of ¢"*" at the constant function 1 = y € C*°(X) we
can circumvent this pushforward operation and thereby the need to approximate

8 See, for instance, Theorem 8 in [5]; the formulae are rather long and not very enlightening
per se and therefore omitted here.
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x by a sequence of test functions. Instead, we simply evaluate each 75" at
1 = B*y € C(66). Hence, the renormalised Feynman amplitude A" is given
by
At p— > (i@ (p) | 1),
GeX

Another way to find 77", with the advantage of working entirely in the realm
of piecewise distributions, is to treat renormalisation as an extension problem for
distributions, as in the Epstein-Glaser method in the position space formulation of
quantum field theory [14]. The key identity to start with is the local formula (7.3)
for ig, valid in the vicinity of a new face © ~ (G, F) described by the coordinate
chart p in (7.2),

Broc 'E prog = I1 (yl‘*)_%_lfNGVG-
G;eF
Let U denote the chart domain of p. Equation (7.3) allows to define a renormali-
sation operator Ry that kills all poles in the local expression for §*w in U. Putting
these pieces together using a partition of unity on ¢, subordinate to the charts
(U. p), produces then the desired renormalised distribution 75"

In the following we sketch the construction of R for graphs with only loga-
rithmic subdivergences; details and proofs, including a discussion of a physicality
condition on the proposed solution, can be found in [2]. In the logarithmic case all
the poles in (7.3) are of first order only and the corresponding residua are all in-
dependent of the external data (p, m). Thus, simple subtractions of these residua,
one for each diverging coordinate direction, suffice to produce a finite expression
for which the limit d — dy, i.e. sg; — 0, exists. The operator Ry is defined by

Rulp*we] = :RU[ H(y,-*)_s%_lfcm]
G, eF

= e [J01710 =807 fa(p.m)

G;eTF
=ve [ [0 D DI T80 fa(p.m).
G;eF HCTF GieH

with § the Dirac distribution, operating only on the regular part of p*w¢g and the
test function it is integrated with.

The operator R transforms 7g into a well-defined distribution by removing all
of its poles; if the support of a test function ¢ intersects a divergent new face, then
the corresponding pole of (i | ¢) gets subtracted to make the integral finite. On
the other hand, for every test function ¢ with its support disjoint from any new
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tren

divergent face we have (i&" | ¢) = (i | ¢) because all the subtracted terms

vanish, (§ | ¢) = ¢,x—¢ = 0. Thus, 7" defines an extension of 7g from the

complement of all divergent new faces of 6¢ to the whole cell.

Example 7.6. The formula for R is best understood by studying a concrete exam-
ple. For the Dunce’s cap graph we computed in Section 3.1

Y6 (X1,....X4) = X3X4 + X2X3 + X2X4 + X1X3 + X1 X4.

Locally in an affine chart where x; = 1 we have yo = yo = x2,y1 = ()], y1) =
(X3,X4) and

o(y)

p*wc | ¢ =/a’y(y*)_1 - :
( ) A Yy + yo+ yoyi + 1+ y1)2
R

Therefore, (Ry [p*wg] | ¢) is given by

/dy(yr)_l( o(») ¢Oiyy=0 )
0

OF+y0+ v + 1+ 9102 (Yo + yoy1 + 1+ 31)?

which is a finite expression.

In the general case 8*wg may have poles of arbitrary high order. These can
be reduced to poles of first order by partial integrations at the cost of boundary
terms which in turn are then cured by subtracting terms of the Taylor expansion
around a renormalisation point. Then simple subtractions as above allow to define
a finite renormalised distribution on og. Again, for details the reader is refer to
the exhaustive exposition in [5].
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