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Unified bijections for planar hypermaps

with general cycle-length constraints
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Abstract. We present a general bijective approach to planar hypermaps with two main
results. First we obtain unified bijections for classes of maps or hypermaps defined by face-
degree constraints and girth constraints. To any such class we associate bijectively a class of
plane trees characterized by local constraints. This unifies and greatly generalizes several
bijections for maps and hypermaps. Second, we present yet another level of generalization
of the bijective approach by considering classes of maps with non-uniform girth constraints.
More precisely, we consider well-charged maps, which are maps with an assignment of
charges (real numbers) to vertices and faces, with the constraints that the length of any
cycle of the map is at least equal to the sum of the charges of the vertices and faces enclosed
by the cycle. We obtain a bijection between charged hypermaps and a class of plane trees
characterized by local constraints.
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1. Introduction

A planar map is an embedding of a connected planar graph in the sphere, con-
sidered up to orientation-preserving homeomorphism. A rich literature has been
devoted to the enumerative combinatorics of planar maps by various approaches,
such as Tutte’s method [38] based on generating function equations, the matrix in-
tegral method initiated by Brézin et al. in [15], and the bijective approach initiated
by Cori and Vauquelin [17] and popularized by Schaeffer [36].

Planar hypermaps are a natural generalization of planar maps. Precisely, a
planar hypermap is a planar map in which faces are colored in two colors, say that
there are dark faces and light faces, in such a way that every edge separates a light
face from a dark face. The dark faces of the hypermap play the role of embedded
hyperedges, and as such, hypermaps can be seen as embedded hypergraphs [16],
and classical maps (embedded graphs) identify to hypermaps in which every edge
has been replaced by a dark face of degree 2; see Figure 1(a).

Hypermaps have played a prominent role to tackle various problems: for in-
stance an exact solution of the Ising model on random planar lattices has been
obtained by a reduction to the enumeration of planar hypermaps with control on
the face-degrees [8, 6]; and in a similar spirit different models of hard particles
on random planar lattices have been exactly solved [8, 11]. Hypermaps also en-
compass the notion of constellations, which are a convenient visual encoding of
factorizations in the symmetric group [7, 25]. In particular, the famous Hurwitz
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numbers [25, 22, 31, 18] (which count factorizations into transpositions, or equiv-
alently certain branched coverings of the sphere) are naturally encoded by certain
constellations. Bijective methods have played a crucial role in all these enumera-
tive problems related to hypermaps.

(a)

 !

(b)

Figure 1. (a) A map and the corresponding hypermap (obtained by replacing every edge by
a dark face of degree 2). (b) A general hypermap (with dark faces of arbitrary degrees), of
ingirth 4 (due to the cycle indicated by bold lines).

In this article, we present a unified bijective approach for planar hypermaps.
Our results generalize the bijective approach for maps presented in [4, 5] in two
ways: first we deal with the more general case of hypermaps, and second we
consider more general cycle-length conditions via the new concept of charged

maps. This approach also unifies and greatly generalizes several known bijections
for hypermaps together with several known bijections for maps. We will discuss
in details the relation between our approach and previously known bijections
below (see Figure 3) and in Section 5. However, let us point out already that the
bijections in [8, 10, 11] are recovered as special cases of our framework. These have
applications to solving several statistical mechanics models on maps: Ising model,
hard particle model, forest model, and blocked edge model. It is our hope that the
toolbox we establish in the present article will find many more applications in the
realm of statistical mechanics.

Our strategy is similar to the one developed in [4]. Namely, we first establish a
“master bijection” between a class of oriented hypermaps and a class of plane
trees, that we call hypermobiles (see Figure 2(a) for an example). Then we
specialize this master bijection to obtain our bijective results about classes of
hypermaps defined in terms of face-degree conditions and girth conditions. This
requires to exhibit canonical orientations characterizing these classes of maps,
and then identifying the hypermobiles associated through the master bijection.
To be precise, our canonical orientations and hypermobiles are actually weighted,
that is, each edge carries a weight in R; see Figure 2(a). In [4] we relied on the
concept of minimal ˛-orientations, that is, orientations such that the indegree at
each vertex is fixed by a function ˛, and containing no counterclockwise oriented
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cycle. We mention that Section 10.2 contains a generalizations of this framework
to hypermaps which could be of independent interest.

In the first part of this article (Sections 3–5) we establish the master bijection
and we use it to obtain bijections for classes of hypermaps defined by ingirth

constraints. The ingirth for hypermaps is a generalization of the notion of girth
for maps: it is defined as the smallest length of a cycle C such that all faces
adjacent to C in the interior of C are light (with the “interior” being defined
with respect to a distinguished “outer face”). Similarly as in [5] (which deals
with maps), we exhibit canonical orientations for hypermaps characterizing the
ingirth constraints. Then, by applying the master bijection to canonically oriented
(and weighted) hypermaps we obtain bijections between any class of hypermaps
defined by face-degree constraints and ingirth constraints (with the sole restriction
that the ingirth equals the degree of the outer face, which is dark), and a class
of weighted hypermobiles (characterized by local degree and weight conditions).
We show that the bijections for hypermaps in [7, 8, 10, 11] are special cases of our
construction. In terms of counting, we obtain for any d � 1 an expression for
the generating function of rooted hypermaps of ingirth d and dark outer face of
degree d , with control on the dark and light face degrees.
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Figure 2. (a) Example of correspondence between a planar hypermap of ingirth 4 and a
(weighted) hypermobile. (b) Example of correspondence between a charged hypermap
and a (weighted) hypermobile.
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In a second part of the article (Sections 6–8), we consider charged hypermaps,
which are a generalization of hypermaps well suited to study non-uniform cycle-
length constraints. Roughly speaking, a fittingly charged hypermap is a hypermap
together with an assignment of a real number, called charge, to each vertex and
face such that

� for any cycleC enclosing a setR of faces (possiblyR contains the outer face)
such that C is only incident to light faces of R, the sum of the charges of the
vertices and faces enclosed by R is at most the length of C ,

� the charges of vertices are positive, and the sum of all charges is 0.

See Figure 2(b) for an example of a fittingly charged hypermap, and Section 6
for more precise definitions. We show (again using the master bijection together
with canonical orientations) that there is a bijection between the class of fittingly
charged hypermaps and a class of weighted hypermobiles. This bijection keeps
track of the face-degrees and of all the charges. An example is shown in Fig-
ure 2(b). The bijections in the first part of the article are special cases of the
bijection for charged hypermaps. We also show in Section 7 that the machinery
of charged hypermaps can be used to get bijections for classes of annular hyper-

maps defined by face-degree conditions and two types of ingirth conditions (and
we count these hypermaps in Section 8).

Let us mention that our master bijection comes in three “flavors” ˆC; ˆ� and
ˆ0 (see Theorem 4). The flavor depends on the type of rooting of the hypermap:
the hypermap has either a marked light face, a marked dark face or a marked
vertex. Accordingly, our results for charged hypermaps come in three flavors (see
Theorems 29, 30, and 31).

Charged hypermaps: a preview. The machinery of charged hypermaps proves
well suited to establish unified bijections for hypermaps. We hope that this
machinery will be useful to tackle new problems in the future, and in particular to
prove isoperimetric inequalities for random maps in the spirit of [29, 28]. In order
to give a preview of the notion of charged hypermaps, and illustrate its potential
use, we now state a special case of our results about charged hypermaps. For
simplicity, we will also restrict to the case of charged maps. Given a map M with
a distinguished root-vertex v0, we call partial charge function a function � from
the vertex set V to R. We say that � fits M if the following conditions hold:

(a) for any subset R of faces of M defining a simply connected region of the
sphere (after adding the edges and vertices incident only to faces in R),
the set of edges @R separating a face in R and a face not in R satisfies
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j@Rj � 2 C
P

v inside R.�.v/ � 2/; with strict inequality if v0 is inside R
(a vertex is said to be inside R if all the incident faces are in R),

(b) �.v0/ D 0, �.v/ > 0 for all v ¤ v0, and
P

v2V �.v/ D 2jV j � 4.

We call mobile a plane tree with two types of vertices – round and square –
and with dangling half-edges – called buds – incident to square vertices. The
excess of a mobile is the number of half-edges incident to round vertices minus
the number of buds. We call suitably weighted a mobile with no edge joining two
round vertices, where each edge joining a square vertex to a round vertex carries a
positive weight, such that the sum of weights of edges incident to a square vertex
v is deg.v/� 2 (the weight is 0 for edges joining two square vertices).

Theorem 1 (special case of Theorem 31). There is a bijection between the set of

pairs .M; �/whereM is a map with a distinguished root-vertex, and � is a partial

charge function fitting M , and the set of suitably weighted mobiles of excess 0.

Moreover, faces of degree k of the map correspond bijectively to square vertices

of degree k in the mobile, and vertices of chargew correspond bijectively to round

vertices of weight w (i.e., the incident edge weights sum to w).

We hope that this type of bijections can be used to study cycle lengths in large
random maps, and their scaling limit, the so-called Brownian map [26, 27, 30].
In particular, since typical distances in random maps with n edges scale like
n1=4, it would be interesting to look at a partial charge function � such that
�.v/ D 2 ˙ ˛

n1=4 for all v (for some constant ˛, and with the signs being
independent and uniformly random). In this case, Theorem 1 gives a way of
counting maps such that the boundary of any simply connected set of faces R
satisfies j@Rj � 2 C

P
v inside R �.v/ � 2, which is asymptotically Gaussian of

amplitude ˛
p
ˇn1=4 if R contains ˇn vertices. This may give a bijective method

for proving isoperimetric inequalities in the spirit of [28].

Relation with other bijections for maps and hypermaps. As already said,
the present article generalizes our previous work on maps (again this relies on
the fact that maps are merely hypermaps with all dark faces of degree 2). The
diagram in Figure 3 summarizes the relations between the bijections in the present
article and previous ones. Precisely, the master bijection for hypermaps given in
Section 2 generalizes the master bijection for maps given in [4], and the bijection
for hypermaps of ingirth d , dark outer face of degree d � 1 and control on the
face-degrees, generalizes the bijection for plane maps of outer degree d and girth
d obtained in [5]. The case d D 1 for hypermaps identifies to the bijection of
Bousquet-Mélou and Schaeffer [8] (stated in terms of bipartite maps in [8]) with
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applications to the Ising model and the hard particle model. The case d � 2 admits
a natural specialization to d -constellations, which coincides with the bijection of
Bousquet-Mélou and Schaeffer [7]. And we also provide a special formulation for
the case d D 0, from which we recover the bijection by Bouttier, Di Francesco and
Guitter for vertex-rooted hypermaps [10] and for vertex-rooted hypermaps with
blocked edges [11] (with applications to hard particle models, the Ising model,
and forested maps enumeration).

Moreover, since we generalize the results for maps in [5], we also recover the
various known bijections for maps obtained as specializations in [5]: in particular
the case d D 1 in [5] identifies to the bijection of Bouttier et al. in [9], the
case d D 2 includes the bijections of [35] for bipartite maps and of [32] for
loopless triangulations, the case d D 3 includes the bijection of [21] for simple
triangulations, and the case d D 4 includes the bijection of [36, Section 2.3.3]
for simple quadrangulations. Similarly the bijection for annular hypermaps (two
marked faces) in Section 7 generalizes the bijection for annular maps obtained
in [5, Section 5].

In contrast, the results in the second part of the article (bijection between
hypermobiles and charged hypermaps, allowing to formulate non-uniform girth
constraints) are totally new (the subcase of charged maps is not covered in [5], and
in fact dealing directly with the more general case of charged hypermaps somehow
simplifies the proofs).

We would like to mention two other general combinatorial methods for count-
ing maps. Recall that our master bijection for hypermaps generalizes the master
bijection for maps given in [4]. In the recent article [1], Albenque and Poulalhon
have presented another general bijective approach to maps. The two approaches
are closely related and use essentially the same canonical orientations (exhibited
in [4]). The main difference between the approach in [4] and in [1] is that the mas-
ter bijections between oriented maps and trees are different (one tree is a spanning
tree of the map, while the other is a spanning tree of the quadrangulation of the
map). Both master bijections are actually based on the two types of trees shown to
be associated with “minimal accessible orientations” in the article [2] (which has
been reformulated and extended to higher genus in [3]). The existence of these
two “master bijections” explains why two different bijections have been found for
several classes of maps, one being generalized in [4] and the other in [1]. For in-
stance, [4] and [1] respectively generalize the bijections originally found in [21]
and [33] for simple triangulations (i.e. triangulations of girth 3). It seems however
that the master bijection in [4] is better suited to deal with classes of maps where
several face degrees are allowed.
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Charged hypermaps: Section 6.
Prescribed: cycle lengths in terms of charges: for each light region R:

j@Rj �
X

charges in R:

#

Annular hypermaps: Section 7.
Prescribed: separating ingirth, non-separating ingirth, dark/light face
degrees.

. &

Plane hypermaps: Section 3.
Prescribed: ingirth, dark/light face de-
grees.
Restriction: outer degree = ingirth.
Recovered bijections: d D 0 in [10, 11],
d D 1 in [8], d � 2 for constellations
in [7].

Annular maps: [5, Section 5].
Prescribed: separating girth, non-sepa-
rating girth, face degrees.

& .

Plane maps: [5, Section 4].
Prescribed: girth d , face degrees. Restriction: outer degree = girth.
Recovered bijections: Case d D 1 in [9], d D 2 for bipartite maps
in [35], the case d D 2 for triangulations in [32], the case d D 3 for
triangulations in [21, Section 4], the case d D 4 for quadrangulation in
[36, Section 2.3.3], and more generally the case d � 3 for d -angulation
in [4].

Figure 3. Relation between the bijections in this article and previous ones; arrows indicate
specializations.

Another unified combinatorial approach to maps was developed by Bouttier
and Guitter in [13] (building on [12]). They show that one of the desirable feature
of trees, namely that they are easy to enumerate thanks to their natural recursive
structure, could be directly achieved at the level of the maps themselves via so-
called slice decomposition of maps. With this method, they obtain the generating
function of maps of pseudo girth d (maps in which cycles have length at least d ,
except for the contours of faces, which can be of length d � 1) with control on the
face-degrees, thereby generalizing the counting results of [4] (in which faces of
degree d � 1 were forbidden).

It is unclear if the methods used in [1, 13] can be generalized to hypermaps,
and/or to charged maps.
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Outline. The outline of the paper is as follows. In Section 2, we define hyper-
maps and hypermobiles, and we present the master bijection between a class of
oriented hypermaps and a class of hypermobiles. In Section 3, we consider for
each d � 1 the class Cd of hypermaps of ingirth d with a dark outer face of de-
gree d . By applying the master bijection to canonically oriented maps in Cd we
obtain a bijection between Cd and a class of hypermobiles. In Section 4, we ob-
tain the generating function of the class Cd of hypermaps counted according to
the degree distribution of their faces (by recursively decomposing the associated
hypermobiles). In Section 5, we show that the bijections described in [7, 8, 10, 11]
are special cases of the bijections obtained in Section 3. In Section 6, we obtain
a general bijection for fittingly charged hypermaps. As before, this bijection is
obtained by first characterizing fittingly charged hypermaps by suitable canoni-
cal orientations and then applying the master bijection. In Section 7, we use the
framework of charged hypermaps to obtain bijections for classes of annular hyper-
maps characterized by separating and non separating girth constraint. In Section 8
we obtain the generating function of those classes. In Section 9, we gather some
proofs about the master bijection. In Section 10, we gather our proofs about canon-
ical orientations.

2. Master bijection for hypermaps

2.1. Hypermaps and hyperorientations. A map is a connected graph embed-
ded on the sphere, considered up to continuous deformation. An Eulerian map is a
map such that all vertices have even degree. Such maps are also those whose faces
can be bicolored – say there are dark faces and light faces – in such a way that every
edge separates a dark face from a light face. Note that this bicoloration is unique
up to the choice of the color of a given face. An hypermap is a face-bicolored
Eulerian map; dark faces are also called hyperedges. The underlying map is the
(Eulerian) map obtained from the hypermap by forgetting the face types. A cor-

ner of a map is the an angular section between two consecutive half-edges around
a vertex. The degree of a vertex or face a, denoted by deg.a/, is the number of
incident corners.

A face-rooted hypermap is a hypermap with a marked face (either dark or light)
called the outer face. The other faces are called inner faces. The vertices and edges
are called outer if they are incident to the outer face and inner otherwise. The
outer degree of a face-rooted hypermap is the degree of the outer face. Observe
that face-rooted hypermaps, can also be thought of as hypermaps embedded in the
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plane (with the outer face being infinite), and for this reason they are sometimes
called plane hypermaps. A dark-rooted (resp. light-rooted) hypermap is a face-
rooted hypermap such that the outer face is dark (resp. light). A vertex-rooted

hypermap is a hypermap with a marked vertex called the root-vertex. A corner-

rooted hypermap is a hypermap with a marked corner called the root-corner.

Figure 4. Left: an Eulerian mapM (all vertices ofM have even degree). Right: a hypermap
(having M as underlying Eulerian map) endowed with a hyperorientation.

A hyperorientation O of a hypermap H is a partial orientation (edges are
either oriented or unoriented) of the edges of H such that each oriented edge
has a dark face on its right. Oriented edges are called 1-way, unoriented edges are
called 0-way. Directed outer edges are called cw-outer or ccw-outer respectively,
depending on whether they have the outer face on their left or on their right.
A directed path from u to v is a sequence of 1-way edges e1; : : : ; ek such that
the origin of e1 is u, the end of ek is v, and for all i 2 ¹1; : : : ; k � 1º the end of ei

is the origin of eiC1. This directed path is a circuit if u D v. A circuit is called
simple if the origins of e1; : : : ; ek are all distinct. If H is an hyperoriented face-
rooted hypermap, a simple circuit C is called clockwise if the outer face is in the
region delimited by C on the left ofC , and counterclockwise otherwise. Similarly,
if H is a vertex-rooted hypermap, a simple circuit C is said to be clockwise if
the root-vertex is either on C or in the region delimited by C on the left of C ;
and C is said to be counterclockwise if the root-vertex is either on C or in the
region delimited by C on the right of C (note that a circuit passing by the root-
vertex is clockwise and counterclockwise at the same time). The hyperorientation
is called minimal if it has no counterclockwise circuit, and is called accessible

from a vertex v if every vertex u can be reached from v by a directed path. By a
slight abuse of terminology, we will often refer to a hyperoriented hypermap as a
hyperorientation.

We now define three families of hyperorientions that will play a central role in
the master bijections (see Figure 5). We call face-rooted hyperorientation a face-
rooted hypermap endowed with a hyperorientation. Light-rooted, dark-rooted and
vertex-rooted hyperorientations are defined similarly.
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� We define HC as the family of light-rooted hyperorientations that are ac-
cessible from every outer vertex, minimal, and such that every outer edge is
1-way (the outer face contour is a clockwise circuit, not necessarily a simple
circuit).

� We define H� as the family of dark-rooted hyperorientations that are acces-
sible from every outer vertex, such that the outer face contour is a simple
counterclockwise circuit, and it is the unique counterclockwise circuit in the
hyperorientation.

� We define H0 as the family of vertex-rooted hyperorientations that are ac-
cessible from the root vertex v0, and minimal.

Figure 5. Left: a (light-rooted) hyperorientation in HC. Middle: a (dark-rooted) hyperori-
entation in H�. Right: a (vertex-rooted) hyperorientation in H0.

Remark 2. We point out that if a hyperorientation H is in H�, then there is no
inner edge of H incident to an outer-vertex and oriented 1-way toward that outer
vertex. Indeed, if we suppose by contradiction that such an inner edge e exists,
then becauseH is accessible, there is a path P of inner edges starting at an outer
vertex and ending with the edge e. However, this path P together with the contour
of the outer face creates a counterclockwise cycle; see Figure 6. This gives a
contradiction. Similarly, if a hyperorientation is in H0, then every incidence of an
edge e with the root-vertex v0 is such that e is 0-way or 1-way out of v0.

e

P

Figure 6. The directed path P of inner edges starting at an outer vertex and ending with the
edge e.
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2.2. Master bijection ˆ�. We now define the classes of planes trees which are
in bijection with the classes of hyperorientations in HC, H� and H0. We consider
plane trees with dangling half-edges called buds. An hypermobile is a plane tree
with buds having 3 types of vertices – round, dark square, and light square – and
such that

� buds are incident to light square vertices,

� every edge is incident to exactly one dark square vertex (hence the edge joins
a dark square vertex to either a light square vertex or a round vertex).

The degree of a vertex in the hypermobile is the number of incident half-edges
(including buds, for light square vertices). The excess of the hypermobile is the
number of edges with a round extremity, minus the number of buds. We denote
respectively by TC, T�, and T0 the families of hypermobiles of positive excess,
negative excess, and zero excess.

We now describe the master bijection for hypermaps. Actually, there are 3 bi-
jections denoted byˆC,ˆ� andˆ0, and mapping the classes of hyperorientations
HC, H�, H0 respectively to the classes of hypermobiles having positive, negative,
and zero excess.

Let X be an hyperorientation in H� with � 2 ¹C;�; 0º. The hypermobile
ˆ�.X/ is obtained as follows:

� Place a dark (resp. light) square vertex of ˆ�.X/ in each dark (resp. light)
face of X ; the vertices of X will become the round vertices of ˆ�.X/.

� Create the edges of ˆ�.X/ by applying to each edge of X the local rule
indicated in Figure 7 (ignore the weights w for the time being). Then erase
all the edges of X .

1-way edge 0-way edge

w

in the hypermap

in the hypermobile

w w

w

Figure 7. Local rules applied in the bijections ˆC, ˆ�, ˆ0 to every edge of a hyperori-
entation. The rule for the transfer of a weight w is also indicated (for the edge-weighted
version of the bijections).
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� To complete the construction in the case � D C delete the light square vertex
in the outer face of X (together with the incident buds). To complete the
construction in the case � D �, delete the dark square vertex in the outer face
ofX , all the outer vertices of X and the edges linking them. To complete the
construction in the case � D 0, simply delete the root-vertex of X .

The mappings ˆ�, are illustrated in Figure 8.

Remark 3. ForX 2 HC, all the outer edges are oriented 1-way with the root-face
on their left, hence the local rules of Figure 7 do not create any edge incident to
the light square vertex in the outer face of X (only buds). Thus, the last step to
complete ˆC.X/ only deletes an isolated vertex. Similarly, for X 2 H0, the last
step to complete ˆ0.X/ only deletes an isolated vertex. Lastly, for X 2 H� the
local rules of Figure 7 do not create any edge incident to the outer vertices of X ,
except for the edges joining them to the dark square vertex in the outer face of X
(because by Remark 2 no inner edge is 1-way toward an outer vertex). Hence the
last step to complete ˆ�.X/ only deletes an isolated “star graph” made of these
vertices and edges.

Theorem 4. For � 2 ¹C;�; 0º the mappingˆ� is a bijection between H� and T�.

For ˆC the outer degree of 
 2 HC is equal to the excess of � D ˆC.
/, for ˆ�

the outer degree of 
 2 H� is equal to minus the excess of � D ˆ�.
/.

The proof of Theorem 4 is postponed to Section 9. We will now formulate a
version of the bijections ˆ� for edge-weighted hyperorientations, and explain the
parameter correspondences.

A hyperorientation is weighted by assigning a weight in R to each edge. In that
case, the weight of a vertex is the total weight of its incident ingoing edges, the
weight of a light face is the total weight of its incident 0-way edges, and the weight

of a dark face is the total weight of its incident edges. For hyperorientations is in
H�, we take the convention that all outer edges (which are 1-way) have weight 1.
Similarly a hypermobile is weighted by assigning a weight in R to each of its
(non-bud) edges. The weight of a vertex of a hypermobile M is the total weight
of its incident (non-bud) edges, and the degree of a vertex of M is the number
of incident half-edges (including buds, for light square vertices). The local rule
of Figure 7 can directly be adapted so as to transfer the weight of an edge of the
hypermap to the corresponding edge in the associated hypermobile, see Figure 7.
Hence, Theorem 4 has the following corollary.
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e

e

f

f

Figure 8. The master bijectionˆ� from hyperorientations to hypermobiles (upper part: left
ˆC, middle ˆ�, right ˆ0) and its inverse ‰� (lower part: left ‰C, middle ‰�, right ‰0).
Hypermobile edges are blue or red whether they have a round extremity or not.
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Corollary 5. The mapping ˆC (resp. ˆ�, ˆ0) is a bijection between weighted

hyperorientations fromHC (resp. H�, H0) and weighted hypermobiles of positive

excess (resp. negative excess, zero excess).

We now formulate the parameter correspondences between hypermaps and
hypermobiles. In order to make a formulation valid simultaneously for ˆC, ˆ�

and ˆ0, we first define the frozen vertices, edges and faces of a hyperorientation
H in HC, H� and H0. For H 2 HC, only the outer face is frozen. For H 2 H0,
only the root-vertex is frozen. For H 2 H�, the outer face, all the outer edges
and all the outer vertices are frozen. With this terminology, for � 2 ¹C;�; 0º, for
H 2 H� and T D ˆ�.X/, we have

� each non-frozen light (resp. dark) face of H corresponds to a light (resp.
dark) square vertex of the same degree and same weight in T ;

� each non-frozen edge of H corresponds to a (non-bud) edge of the same
weight in T ;

� each non-frozen vertex of H of weight w and indegree ı corresponds to a
round vertex of T of weight w and degree ı.

2.3. Inverse bijections ‰�. We will now describe the inverses ‰C, ‰�, and ‰0

of the bijections ˆC, ˆ�, and ˆ0. Let T be a hypermobile. We associate with T
an outerplanar map yT (a plane map such that every vertex is incident to the outer
face) as follows:

� for each dark (resp. light) vertex of degree d in T we create a dark (resp.
light) polygon of degree d following the rules illustrated in Figure 9;

� for each edge e of T between a dark square and a light square vertex, we glue
together the two face sides of the corresponding polygons at e;

� for each round vertex v of T of degree d we merge the d neighboring polygon
corners with the vertex v.

Figure 9. Left. Growing a dark polygon at a dark square vertex of a hypermobile. Right.
Growing a light polygon at a light square vertex of a hypermobile.
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See Figure 10 for an example. Note that the inner edges of the outerplanar map yT

are 0-way and the outer edges are 1-way: cw-outer edges of yT correspond to edges
between a round and a dark square vertex in T , ccw-outer edges of yT correspond
to buds of T .

T

yT

(a) (b)

(c) (d)

Figure 10. From a hypermobile T to the associated outerplanar map yT . (a) The hypermo-
bile T . (b) Creating the polygons around square vertices. (c) Gluing polygon-sides corre-
sponding to each edge of T between a dark square and a light square vertex, and merging
polygon-corners neighboring each round vertex of T . (d) The outerplanar map yT .

The mappings ‰C, ‰�, ‰0 (which will be proved to be the inverse bijections
of ˆC, ˆ�, ˆ0 respectively) are defined as follows. Let T be a hypermobile, and
let yT be the associated outerplanar map. We will now define a canonical way of
gluing together the cw-outer and ccw-outer edges of yT ; see Figure 11.

A word w (i.e. sequence of letters) on the alphabet ¹a; Naº is a parenthesis word

if w has as many letters a as letters Na, and for any prefix of w the number of letters
a is at least equal to the number of letters Na. A cyclic word is a word considered
up to cyclic shift of the letters. Given a cyclic word w on the alphabet ¹a; Naº, we
say that a letter a and a letter Na are cw-matching, if the subword of w starting after
the letter a and ending before the letter Na is a (possibly empty) parenthesis word.
An example is given in Figure 11(a). It is easy to see that for any letter a there is
at most one cw-matching letter Na and vice-versa. Moreover if a cyclic word w has
na letters and n Na letters Na with na � n Na (resp. na � n Na), then all the letters are
cw-matching except for na � n Na letters a (resp. n Na � na letters Na).
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We are now ready to define a canonical way of gluing the cw-outer and ccw-
outer edges of yT . We associate a cyclic word wT with the sequence of outer
edges appearing in clockwise order around the outer face of yT by encoding the
cw-outer and ccw-outer edges by the letters a and Na respectively. We say that a
cw-outer edge and a ccw-outer edge of yT are cw-matching if the corresponding
letters a and Na are cw-matching in wT . It is easy to see that all the pairs of cw-
matching edges can be glued together into 1-way edges (that is, there is no breach
of planarity in doing so for every pair of cw-matching edges). An example is given
in Figure 11(b). If the excess � of T is positive, then yT has � more cw-outer edges
than ccw-outer edges. Thus the map obtained after gluing the cw-matching edges
of yT has an outer face of degree � which is incident only to cw-outer edges. Hence
coloring the outer face as light gives an oriented light-rooted hypermap, that we
denote by‰C.T /. Similarly, if the excess � of T is negative, then the map obtained
after gluing the cw-matching edges of yT has an outer face of degree �� which is
incident only to ccw-outer edges. Hence coloring the outer face as dark gives an
oriented dark-rooted hypermap, that we denote ‰�.T /. Lastly, if the excess of T
is 0, then all the outer edges of yT are glued. Moreover, there is a unique vertex
v0 of the glued map without incident ingoing edges. In this case, taking v0 as the
root-vertex gives an oriented vertex-rooted hypermap that we denote by ‰0.T /.
Examples for ˆC, ˆ�, ˆ0 are given in Figure 8.

(a) (b)

Figure 11. (a) The cyclic word aaa Na Naaaa Naa Na Na (represented in clockwise order around a
polygon), and the cw-matching pairs of a’s and Na’s (indicated by the arrows). (b) Gluing
of the cw-matching pairs of edges of the outerplanar maps yT .

Theorem 6. The mappings‰C,‰�, and‰0 are the inverses of the bijectionsˆC,

ˆ�, and ˆ0 respectively.

We shall prove Theorem 6 in Section 9.

2.4. Alternative formulation of the inverse bijections ‰�. For the sake of
completeness, we now give an alternative description of the mappings ‰�, which
is closer to the description of many known bijections (in particular, the bijections
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in [7, 8, 11] discussed in Section 5). Let T be a hypermobile, where buds are
interpreted as outgoing sprouts. Add ingoing sprouts as follows: for each edge
e D ¹u; vº 2 T connecting a round vertex u to a dark square vertex v, insert an
ingoing sprout in the corner following e in counterclockwise order around v. See
Figure 12 for an example. We associate a cyclic word wT with the sequence of
sprouts appearing in clockwise order around the outer face of T (with the outer
face on the left of the walker) by encoding the ingoing and outgoing sprouts by
the letters a and Na respectively. We join the cw-matching ingoing and outgoing
sprouts to form oriented edges, and then remove from T the round vertices and
their incident edges. The embedded partially oriented graph G thus obtained is
called the partial closure of T . If T has nonzero excess �, then there remain j�j

unmatched sprouts in G (which are ingoing if � > 0, outgoing if � < 0). The
complete closure of T , denoted by G0 is defined as follows: if � D 0 then G0 D G,
while if � > 0 (resp. � < 0) G0 is obtained from G by adding a new light (resp.
dark) square vertex v0 in the face containing all the sprouts and connecting these
sprouts to v0 by new edges directed away from v0 (resp. toward v0). Observe
that G0 is a bipartite map since every edge is incident to one dark square vertex.
Finally, we call ‰�.T / (for � 2 ¹C;�; 0º depending on whether the excess � is
positive, negative, or zero) the dual of G0 which is a hypermap (the dual of dark
squares are taken to be dark faces). The edges of ‰�.T / are oriented as follows:
an edge e0 of‰�.T /which is dual to an oriented edge e ofG0 (made by connecting
two sprouts) is oriented 1-way from the right-side of e to the left-side of e, while
an edge of ‰�.T / which is dual to an original edge of T is left unoriented. Lastly,
if the excess � is non-zero we take the dual of the vertex v0 of G0 to be the root-
face of ‰�.T /, while if � D 0 we take the dual of the root-face of G0 to be the
root-vertex of ‰0.T /. See Figure 12 for an example.

2.5. Relation with the master bijection for maps defined in [5]. In a preceding
article [4] we gave master bijections for planar maps. More precisely, we consid-
ered bi-oriented planar maps. A bi-orientation of a map is a choice of a direction
for each half-edge of the map (thus there are 4 ways of bi-orienting any edge).
Seeing maps as a special case of hypermaps, we can describe a bi-orientation as
a hyperorientation of the associated hypermap in the way indicated in Figure 13.

It is easy to see that the formulation with sprouts given here is equivalent to
the formulation with outerplanar maps given above. Indeed, if we superimpose
the hypermobile with the associated outerplanar map, then each cw-matching
operation in one formulation is equivalent to a cw-matching operation in the other
formulation.
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Figure 12. The closure mapping ‰� performed by joining pairs of cw-matching outgoing
and ingoing sprouts, and then taking the dual.

in the map

in the hypermap

in the hyphermobile

2-way edge 1-way edge 0-way edge

Figure 13. Maps identify to hypermaps by blowing each edge e into a dark face f of
degree 2, the middle-line also shows how to naturally transfer the orientation information
so that indegrees are preserved. The bottom line shows that applying the local rules of
Figure 7 to (the two edges �1; �2 of) f is equivalent to applying the local rules given in [4]
to the underlying edge e.

The master bijection in [4] consists of 3 constructions denoted byˆC, ˆ�, ˆ0

operating on 3 families OC, O�, O0 of bi-orientations. It is easy to check that,
under the classical identification of blowing each edge of a map into a dark face
of degree 2, the families OC, O�, O0 of bi-orientations considered in [4] identify
respectively to the subfamilies of HC, H�, H0 where all inner dark faces are of
degree 2. Moreover the local rules to carry out the bijections are equivalent under
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this identification, see Figure 13. Hence Theorems 4 and 6 extend the results given
in [4] about the master bijections for maps.

The proof of Theorems 4 and 6 could actually be obtained using a reduction
to the results about the master bijection for maps established in [4]1. These in
turn, were obtained using results established in [2]. Instead we chose to give a
simplified – self-contained – proof in Section 9.

3. Bijections for plane hypermaps according to the ingirth

We first define the ingirth of a plane hypermapH . A simple cycleC ofH is called
inward if all the faces incident to C and inside C (on the side of C not containing
the outer face) are light. The ingirth ofH is then defined as the minimal length of
inward cycles. Note that the ingirth of a plane hypermap whose dark faces have
degree 2 is equal to the girth of the corresponding map. In this section, we present
bijections for dark-rooted hypermaps with control on the face-degrees and on the
ingirth.

11

00

0 0

0

44

1 1
2

2

2

2

3

3

Figure 14. The bijection of Theorem 10 on an example (case d D 4). Left: a dark-
rooted hypermap endowed with its unique 4-weighted hyperorientation in H�. Right: the
associated 4-weighted hypermobile.

For d � 1 and H a dark-rooted hypermap of outer degree d , a d -weighted

hyperorientation of H is a weighted hyperorientation of H such that:

� the 1-way edges have positive weight, the 0-way edges have non-positive
weight;

� inner vertices have weight d ;

1 In this reduction we would apply the master bijection of [4] to partially oriented maps, and
observe that one can characterize the mobiles which are the image of (hyperoriented) hypermaps
(because bicolorability of the faces can be detected on the associated mobiles).
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� each light face f has weight d � deg.f /;

� each dark inner face f has weight d � deg.f / � d � deg.f /.

� Outer vertices and outer edges have weight 1.

Theorem 7. Let d be a positive integer. A dark-rooted hypermap of outer degree

d can be endowed with a d -weighted hyperorientation if and only if it has ingirth

d . In this case, it has a unique d -weighted hyperorientation in H�.

The proof of this theorem is postponed to Section 10. We now define the
corresponding hypermobiles. For d � 1, a d -weighted hypermobile is a weighted
hypermobile such that:

� edges incident to a round vertex have positive weight, while edges incident
to a light square vertex have non-positive weight;

� round vertices have weight d ;

� each light square vertex v has weight d � deg.v/;

� each dark square vertex v has weight d � deg.v/� d � deg.v/.

Claim 8. Every d -weighted hypermobile has excess �d .

Proof. Let nR; nL; nD be respectively the numbers of round vertices, light square
vertices, and dark square vertices, let eR (resp. eL) be the number of edges with a
round (resp. light square) extremity, and denote by e D eR C eL the total number
of edges (excluding buds), and by b the number of buds (the excess is eR �b). The
total weight at round vertices is dnR, the total weight at light square vertices is
dnL�eL�b, and the total weight at dark square vertices is de�dnD�e. Hence we
have de�dnD �e D dnR C.dnL �eL �b/. Together with nR CnL CnD D eC1,
this gives e � eL � b D �d , hence eR � b D �d . �

Remark 9. The weights of edges in a d -weighted hypermobile are always inte-
gers. Indeed, since every vertex has integer weight, no vertex can be incident to
exactly 1 edge with a non-integer weight. Hence there cannot exist a non-empty
subset of edges with non-integer weights (because any such subset has a vertex
of degree 1). Note also that the same argument shows that if the weights of the
vertices of a hypermobile are all multiples of a number k, then the edge weights
are also multiples of k.

Given Theorem 7 we can apply the master bijection ˆ� for hypermaps. Given
the parameter correspondence forˆ� we obtain the following result; see Figure 14
for an example.
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Theorem 10. Let d be a positive integer. Dark-rooted hypermaps of outer degree

d and ingirth d are in bijection with d -weighted mobiles. Each light (resp. dark)

inner face in the hypermap corresponds to a light (resp. dark) square vertex of

the same degree in the associated hypermobile.

4. Counting plane hypermaps of ingirth d

In this section we determine the generating function Fd of corner-rooted hyper-
maps of ingirth d with a dark outer face of degree d . Via the master bijection
established in Section 3 and Lemma 11 below, this is reduced to counting rooted

d -weighted hypermobiles (whereas counting dark-rooted hypermaps of ingirth d
amounts to counting unrooted d -weighted hypermobile which is harder). Then
using the classical recursive decomposition of trees at their root we determine Fd .

Recall that a corner-rooted hypermap is a hypermap with a marked corner.
For a corner-rooted hypermap, we define the root-face as the face containing the
marked corner, and the ingirth is defined with respect to this face. We now want
to use the bijection of Theorem 10 about dark-rooted hypermaps of ingirth d in
order to count corner-rooted hypermaps of ingirth d . Note that a given face-
rooted hypermap with outer degree d can correspond to less than d corner-rooted
hypermaps if the face-rooted hypermap has some symmetries. However the master
bijection ˆ� behaves nicely with respect to symmetries and we get the following
lemma.

Lemma 11. LetH be a dark-rooted hyperorientation in H� and let T D ˆ�.H/

be the corresponding hypermobile. Let a and b be respectively the number of

distinct marked hypermobiles obtained by marking a bud of T and by marking an

edge of T having a round extremity. Then the number of distinct corner-rooted

maps obtained from H by choosing a root-corner in the root face is c D a � b.

Proof. Let ı be the outer-degree of H . By Theorem 10, T has excess �ı, that
is, its numbers ˛ and ˇ of buds and edges with a round extremity are related by
˛ � ˇ D ı. Moreover it is clear from the definition of ˆ� thatH has a symmetry
of order k (which has to be a rotational symmetry preserving the root face) if and
only if T has a symmetry of order k. In other words, c D ı=k if and only if
a D ˛=k and b D ˇ=k. Thus, c D ı=k D ˛=k � ˇ=k D a � b. �

Let d � 1, and let Fd be the family of corner-rooted hypermaps of ingirth
d with a dark outer face of degree d . Let Fd � Fd .x1; y1I x2; y2I : : :/ be
the generating function of Fd where xk marks the number of light faces of
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degree k, and yk marks the number of dark inner faces of degree k. Let Ad �

Ad .x1; y1I x2; y2I : : :/ (resp. Bd � Bd .x1; y1I x2; y2I : : :/) be the generating
function of d -weighted hypermobiles with a marked bud (resp. with a marked
edge having a round extremity), where xk marks the number of light square
vertices of degree k, and yk marks the number of dark square vertices of degree k.
The bijection of Theorem 10 and Lemma 11 ensure that

Fd D Ad � Bd :

We now calculate Ad and Bd , with the help of auxiliary generating functions.
A planted d -hypermobile is a tree T that can be obtained as one of the two
components after cutting a d -weighted hypermobile at the middle of an edge e.
The extremity of e in the chosen component is called the root-vertex of T , the
half-edge of e in the chosen component is called the root-leg of T , and the weight
of e is called the root-weight of T . For i 2 Z, we denote by Wi (resp. Li ) the
family of planted d -hypermobiles with root-weight i with a root-vertex which is
dark-square (resp. not dark-square). Define Wi � Wi .x1; y1I x2; y2I : : :/ (resp.
Li � Li .x1; y1I x2; y2I : : :/) as the generating function of Wi (resp. Li ) where xk

marks the number of light square vertices of degree k, and yk marks the number
of dark square vertices of degree k. Note that Wi D Li D 0 if i > d . We also
define

W.u/ D uC
X

k�0

Wku
kC1; L.u/ D u�dC1

X

k2Z

Lku
k : (1)

We now write equations specifying the series Wi and Li using the classical
recursive decomposition of trees at the root. As in [4, 5], we will need the
following notation: for k � 0 and s � 0, define the multivariate polynomial
hk.w1; : : : ; ws/ as

hk.w1; : : : ; ws/ D Œtk�
1

1 �
Ps

mD1 t
mwm

:

In other words, hk is the generating function of the compositions of k with weight
wi for each part of size i .

For i � 1 any mobile in Li has a root-vertex v which is round. Hence the
children of v are dark square, and the edges incident to v have positive weight.
Moreover, the total weight at v is d , with a contribution i from the root leg. Hence
the total weight of the edges from v to its children is d � i . This gives

Li D hd�i .W1; : : : ; Wd�1/ for i � 1: (2)
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For i � 0, a mobile in Li has a root-vertex v which is light square. Hence
the children of v are dark square, and the edges incident to v have non-positive
weight. Moreover, the total weight at v is d � deg.v/, with a contribution i from
the root-leg. If v has degree ı, the ı � 1 other half-edges incident to v are either
buds or are on an edge (with non-positive weight) leading to a dark square vertex.
This gives

Li D
X

ı�d�i

xı Œu
d�ı�i �

�
1C

X

k�0

Wku
k
�ı�1

for i � 0:

In other words,

Li D Œud�i�1�
X

ı�d�i

xıW.u/
ı�1 for i � 0: (3)

For i 2 Z, a mobile in Wi has a root-vertex v that is dark square. If v has degree ı
then the weight of v is dı � d � ı, with a contribution i from the root-leg. Hence

Wi D
X

ı�1

yı Œu
dı�d�ı�i �

� X

k2Z

Lku
k
�ı�1

:

In other words,
Wi D Œu�i�1�

X

ı�1

yıL.u/
ı�1 for i 2 Z: (4)

Theorem 12. Ford � 1 the generating functionFd .x; y/ of the classFd of corner-

rooted hypermaps of ingirth d having a dark root-face of degree d is given by

Fd D L0 �
dX

iD1

LiWi ;

where the series Li and Wi are specified by (3) and (4) (with L.u/ and W.u/

defined in (1)).
Moreover

@Fd

@xk

D
d

k
Œud �W.u/k;

@Fd

@yk

D
d

k
Œu�d �L.u/k :

Proof. About the expression of Fd , we have seen that Fd D Ad � Bd . Note that
Ad D L0 (because the marked bud can be turned into a leg of weight 0) and
Bd D

Pd
iD1LiWi (because the marked edge e can have any weight i 2 ¹1::dº,

and cutting e in its middle yields two planted d -hypermobiles that are respectively
in Li and in Wi ). For expressing the partial derivatives of Fd , we note that
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xk
k
d

@Fd

@xk
is the generating function of dark-rooted hypermaps with a dark root face

of degree d , and an additional marked corner in an inner light face of degree k. By
the bijection ˆ� this is also the generating function of d -weighted hypermobiles
with a marked corner at a light square vertex of degree k, which is easily seen to be
xk Œu

d �W.u/k. A similar argument gives the expression for the partial derivative
according to yk . �

Remark 13. The generating function Fd of hypermaps can be specialized into a
generating function of maps. More precisely, the class Gd of corner-rooted maps
of girth d with a root-face of degree d , identifies with the set of hypermaps in
Fd such that every inner dark face has degree 2. Thus the generating Gd of Gd is
obtained from Fd by setting y2 D 1 and yı D 0 for ı ¤ 2. Theorem 12 then gives
the expressions of Gd given in [5] (upon observing that (4) yields Wi D Ld�2�i ,
that is, Li D Wd�2�i ).

For any sets�;�0, the generating functionFd;�;�0 of corner-rooted hypermaps
in Fd with inner light face having degree in � and inner dark face having degree
in �0 is obtained by setting xk D 0 for k … �; yk D 0 for k … �0. We point
out that the generating function Fd;�;�0 is algebraic as soon as �;�0 are both
finite (because only a finite number of auxiliary series Wi ; Li are involved). For
instance, for d D 4, � D ¹4º and �0 D ¹3º, we have

F4;¹4º;¹3º D L0 � L1W1 � L2W2 � L3W3 � L4W4;

where the series ¹L0; L1; L2; L3; L4; W0; W1; W2; W3; W4º are specified by

L0 D x4.1CW0/
3; L1 D W 3

1 C 2W1W2 CW3;

L2 D W 2
1 CW2; L3 D W1;

L4 D 1;

W0 D 2y3L2L3; W1 D y3.2L1L3 C L2
2/;

W2 D 2y3L1L2; W3 D y3L
2
1;

W4 D 2y3L1:

5. Recovering known bijections as specializations

In this section we show that the bijections described in [7, 8] can be recovered by
specializing the bijections of Theorem 10, and the bijections described in [10, 11]
can be recovered by specializing the master bijection ˆ0 (in a way which can be
thought of as the case d D 0 of Theorem 10).
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5.1. The Bousquet-Mélou Schaeffer bijection for bipartite maps. Recall that
a bipartite map is a map whose vertices can be colored in black and white such
that each edge connects a black vertex to a white vertex. A 1-leg bipartite map is a
bipartite map with a marked vertex of degree 1; this vertex is considered as black,
hence it fixes the coloring of all vertices. Note that 1-leg bipartite maps are dual to
dark-rooted hypermaps of outer degree 1. In [8], Bousquet-Mélou and Schaeffer
have given a bijection between 1-leg bipartite maps and so-called well-charged
blossom trees. We show here that the bijection in [8] is equivalent (up to duality)
to the case d D 1 of the bijection of Theorem 10.

A blossom tree is a bipartite plane tree (with black and white vertices) with
dangling half-edges. The dangling half edges at black and white vertices are
called outbuds and inbuds respectively (the terminology in [8] is actually buds

and leaves but this is confusing in the present context). A planted subtree of a
blossom tree T is a subtree that can be obtained as one of the two components
after cutting at the middle of an edge e of T (not at a bud). The extremity of e in
the chosen component is called the root-vertex of the planted subtree. The charge

of a blossom tree or subtree is its number of inbuds minus its number of outbuds2.
A blossom tree is well charged if it has charge 1 and every planted subtree has
charge at most 1 when its root-vertex is black, and at least 0 when its root-vertex
is white. A well-charged blossom tree is represented in Figure 15(b).

We first show that well-charged blossom trees identify to 1-weighted hypermo-
biles, see Figure 15(a)–(b). By definition the round vertices of 1-weighted hyper-
mobiles have weight 1 hence are leaves (i.e., vertices of degree 1). Thus, forgetting
the weights, a 1-weighted hypermobile identifies to a blossom tree by interpret-
ing dark and light square vertices as black and white vertices, round vertices as
outbuds, and buds as inbuds. Hence we define the charge of a 1-weighted hy-
permobile or of a planted 1-hypermobile as its number of buds minus its number
of round vertices. An easy induction (using the same recursive decomposition
as in Section 4) ensures that a planted 1-hypermobile of root-weight w such that
the root-vertex is dark square (resp. light square) has charge �w (resp. w C 1).
Thus the fact that the edge weights of 1-hypermobiles are positive for edges hav-
ing a round endpoint and non-positive otherwise corresponds to the fact that the
associated blossom tree is well charged. Thus well-charged blossom trees identify
to 1-weighted hypermobiles (if one starts from a well-charged blossom tree, the
weights on the corresponding 1-hypermobile are determined: each edge e gets a
weight c�1, where c is the charge of the planted subtree rooted on the dark square
endpoint of e).

2 This notion of charge is taken from [8] and is not related to the notion of charge (which
constraints the cycle-lengths) to be introduced in Section 6.



Unified bijections for planar hypermaps 101

0
1

(a) (b) (c) (d)

1 1
1

1
1

1
1

1

1

1

1

1

0

0

0

0 0

1
1

1
2

2

2

2

3

3
4

Figure 15. (a) A 1-weighted hypermobile T . (b) The corresponding well-charged blossom
tree T 0 (inbuds and outbuds are represented by ingoing and outgoing arrows). (c)–(d) The
closure of T 0, which is the same as the closure of T .

The bijection in [8] associates a 1-leg bipartite map to each well-charged
blossom tree using a closure operation; see Figure 15(b)–(d). More precisely,
for a well-charged blossom tree T one considers the cyclic word wT obtained
by walking clockwise around T and encoding outbuds and inbuds by letters a and
Na respectively. Then, the cw-matching outbuds and inbuds of T are joined into
edges. Since the charge of T is 1, there remains 1 unmatched inbud. The result
of the closure operation is therefore a 1-leg bipartite map, if one interprets the
unmatched inbud as the leg leading to a black vertex of degree 1. Moreover, it is
clear that this closure operation of [8] applied to a well-charged blossom tree is
equivalent to the closure operation of ‰C (as formulated in Section 2.4) applied
to the corresponding 1-weighted hypermobile. To summarize we obtain:

Proposition 14. The blossom trees of [8] identify to 1-weighted hypermobiles.

Under this identification the bijection of [8] is the same as the case d D 1 of the

bijection of Theorem 10.

5.2. The Bousquet-Mélou Schaeffer bijection for constellations. For any
fixed p � 2, we call p-constellation a (planar) hypermap where the degree of
each dark face is p and the degree of each light face is a multiple of p (these maps
encode certain factorizations in the symmetric group; see [25]). In [7], Bousquet-
Mélou and Schaeffer have given a bijection between dark-rooted p-constellations
and so-called p-Eulerian trees. We show here that the bijection in [7] is equiva-
lent to the case d D p of the bijection of Theorem 10 applied to p-constellations.
Before discussing the equivalence, we show that p-constellations have ingirth p.

Lemma 15. A p-constellation has ingirth p.
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Proof. Let K be a p-constellation, and let C be an inward cycle of K. Clearly
the length of C equals A � B , where A is the total degree of all light faces inside
C and B is the total degree of all dark faces inside C . Since all faces (dark or
light) have degree a multiple of p, the length of C is a multiple of p, hence is at
least p. �

We now explicit the equivalence of the bijection in [7] with the the case d D p

of Theorem 10 applied to p-constellations. A p-Eulerian tree is a bipartite plane
tree (with black and white vertices) satisfying:

� Each black inner node (non-leaf vertex) has degree p and has either n D 1

or n D 2 neighbors that are inner nodes. This black vertex is said to be of
type n 2 ¹1; 2º.

� Each white inner node has degree of the form p i with i � 1, and it has i � 1

neighbors that are black inner nodes of type 1.

(a) (b) (c) (d)
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Figure 16. (a) A p-weighted hypermobile T associated with a dark-rooted p-constellation,
after all weights have been divided by p D 3. (b) The corresponding p-Eulerian tree T 0.
(c)–(d) The closure of T 0, which is the same as the closure of T .

We first show that p-Eulerian trees identify with the p-weighted hypermobiles
corresponding to p-constellations. A p-weighted hypermobile T corresponds to
a p-constellation if all dark square vertices have degree p and all light square
vertices have degree multiple of p. In this case, by Remark 9, all the edge weights
of T are multiple of p, and we denote by T 0 the weighted-hypermobile obtained by
dividing every weight by p. In T 0 the weight of each round vertex is 1, the weight
of each dark square vertex is p � 2, and the weight of each light square vertex of
degree p i is 1� i . Since round vertices have weight 1 they are leaves. Since a dark
square vertex has degree p and weight p � 2, it has either p � 1 round neighbors
and n D 1 light square neighbor (and the edge to the light square neighbor has



Unified bijections for planar hypermaps 103

weight �1) or it has p� 2 round neighbors and n D 2 light square neighbors (and
the edges to the light square neighbors have weight 0). This dark square vertex is
said to be of type n 2 ¹1; 2º. Since a light square vertex of degree p i has weight
1� i , it has i � 1 dark square neighbors of type 1. Thus p-weighted hypermobiles
corresponding to p-constellations identify with p-Eulerian trees if one interprets
buds as black leaves, round vertices as white leaves, dark square vertices as black
inner nodes, and light square vertices as white inner nodes. Indeed, if one starts
from a p-Eulerian tree, the corresponding hypermobile is obtained by giving a
weight w to each edge e D .u; v/ connecting a black inner node u to a white inner
node v, where w D �1 if u has type 1 and w D 0 if u has type 2.

The bijection in [7] associates a dark-rooted p-constellation with such a tree T
using a closure operation (see Figure 16(b)–(d)). More precisely, a counterclock-
wise walk around the outer face of T sees a succession of black leaves and white
leaves, and we consider the cw-matching when black leaves are interpreted as let-
ters a, and white leaves as letters Na. The pairs of cw-matching leaves are joined
by edges. It can be shown that a p-Eulerian tree has an excess of p black leaves
over white leaves. Hence after the cw-matching, there remain p unmatched black
leaves (all in the outer face) and these are merged into a black vertex of degree
p taken as the root-vertex. This yields a vertex-rooted bipartite map where black
vertices have degree p and white vertices have degree multiple of p. Hence the
dual of the obtained bipartite map is a dark-rooted p-constellation.

It is clear that the closure mapping (as formulated in Section 2.4) applied to a
p-weighted hypermobile of a p-constellation is equivalent to the closing mapping
of [7] applied to the corresponding p-Eulerian tree. To summarize we obtain:

Proposition 16. For p � 2, the p-Eulerian trees of [7] identify to p-weighted

hypermobiles that are associated with dark-rooted p-constellations. Under this

identification the bijection of [7] is the same as the case d D p of the bijection of

Theorem 10 applied to p-constellations.

Remark 17. Since the two bijections are the same, the inverse mappings from
constellations to decorated trees also coincide. In both cases, the decorated tree
is recovered as the complemented dual of a forest: in our case the forest F is
made of the directed edges of the canonical p-weighted orientation, while in [7]
the forest F 0 is the so-called rank-forest (see [7], in particular Section 5.2 and
Proposition 6.2). Our rules to obtain the p-weighted hypermobile from F can
be checked to coincide with the rules given in [7] to obtain the p-eulerian tree
from F 0. So F is the same as F 0.
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5.3. The Bouttier Di Francesco Guitter bijections for Eulerian maps. In [10],
Bouttier, Di Francesco and Guitter have given a bijection for vertex-rooted hyper-
maps. In [11] this bijection was generalized to vertex-rooted hypermaps with some
“blocked edges”. We show here that these bijections can be obtained as special-
izations of the master bijection ˆ0 (and can be thought of as “the case d D 0” of
Theorem 10).

(a) (b)

Figure 17. (a) A vertex-rooted hypermap endowed with its dark-light orientation. (b) The
same hypermap with some blocked edges, endowed with its dark-light hyperorientation
(blocked edges are 0-way, other edges are 1-way).

geodesic edge non-geodesic edge

iC1

i

i

i

i

ijC1

ijj

Figure 18. Local rules applied to the edges of a vertex-rooted hypermap, according to the
distance-labelling.

Let M be a vertex-rooted hypermap, and let v0 be its root-vertex. The hyper-
orientation � of M such that each edge has a dark face on its right is called the
dark-light hyperorientation of M ; see Figure 17(a). We give to each vertex v of
M the label `.v/ equal to the length of a shortest directed path of� from v0 to v.
For each edge e D .u; v/ (oriented from u to v in�), the labels of u and v clearly
satisfy `.v/ � `.u/C 1. We call e geodesic if `.v/ D `.u/C 1 and non-geodesic

otherwise. One associates withM a hypermobile T without buds, but with labels,
by applying to each edge the rule indicated in Figure 18. More precisely, T has
labels on the round vertices, called vertex labels, and on each side of any edge
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incident to a light square vertex, called edge labels. Moreover, it is easy to see
that T satisfies the following properties:

� Vertex labels are positive and edge labels are non-negative.

� In clockwise order around a dark square vertex, any two consecutive labels
`; `0 satisfy `0 � ` if `; `0 are edge-labels on the same edge, `0 D `C 1 if `0

is a vertex-label, and `0 D ` in the other cases.

� In clockwise order around a light square vertex, any two consecutive edge-
labels `; `0 satisfy `0 � ` if `; `0 are on the same edge, and `0 � ` otherwise.

We call well-labeled mobile a labeled hypermobile satisfying these conditions;
see Figure 19 for an example.
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Figure 19. (a) The bijection of [10] between vertex-rooted hypermaps and well-labeled
hypermobiles. (b) The bijection seen as a specialization of the master bijection ˆ0.

Bouttier, Di Francesco and Guitter have shown in [10] that applying the local
rules of Figure 18 gives a bijection between vertex-rooted hypermaps and well-
labeled mobiles. Now we explain how to reformulate the distance-labelling and
the well-labeled mobiles, and the connection with the master bijection ˆ0.
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First, we show that the distance-labelling can be encoded as a weighted hy-
perorientation; see Figure 19(b). We call geodesic hyperorientation of M the
weighted hyperorientation such that each geodesic edge is 1-way with weight 0,
and each non-geodesic edge e D .u; v/ (with the dark face on its right) is 0-way
with weight `.v/� `.u/� 1. The geodesic hyperorientation satisfies the following
conditions:

� the weight of an edge e is 0 if e is 1-way, and is negative if e is 0-way;

� the weight of a vertex is 0, and the weight of a face f (light or dark) is
� deg.f /.

We call 0-weighted a hyperorientation satisfying these conditions. Note that the
geodesic hyperorientation has two additional properties: it is accessible from v0

and it is acyclic; hence it is in H0.

Lemma 18. A vertex-rooted hypermap M has a unique 0-weighted hyperorien-

tation in H0; it is its geodesic hyperorientation.

Proof. Let M be a vertex-rooted hypermap, and let v0 be its the root-vertex. We
call admissible labelling of M a labelling L of its vertices (each vertex v has a
label L.v/ 2 Z) such that L.v0/ D 0 and for each edge e D .u; v/ (with the
dark face on its right) L.v/ � L.u/C 1. One can associate to such a labelling a 0-
weighted hyperorientation exactly in the same way as we have done for the distance
labelling. And this actually gives a bijection between admissible labellings and
0-weighted hyperorientations of M . We have already seen that the 0-weighted
hyperorientation associated with the distance-labelling is in H0. Note that any
admissible labelling L satisfies L.v/ � `.v/ for all vertices (because the labels
increase by at most 1 along each edge of a geodesic path ending at v). If L is
not equal to `, consider a vertex v such that L.v/ < `.v/ (note that v ¤ v0)
and L.v/ is the smallest possible. Assume there is a neighbor v0 of v such that
L.v0/ < L.v/, that is, L.v0/ D L.v/ � 1. Since `.v0/ � `.v/ � 1 we reach
the contradiction that L.v0/ < `.v0/. Hence v is not accessible from v0 in the
0-weighted hyperorientation associated with L, so the hyperorientation is not
inaffability H0. �

Second, we show that the well-labeled mobiles can be encoded as weighted
(unlabeled) hypermobiles; see Figure 19(b). From a well-labeled mobile T we
construct a weighted hypermobile �.T / as follows. Give weight 0 to each edge
incident to a round vertex, and give weight ` � r � 1 to each edge e incident to a
light square vertex u, where ` and r are the edge labels on the left side and right
side of e looking from u. In each corner c of T at a light square vertex u between



Unified bijections for planar hypermaps 107

two consecutive edges e; e0 (in clockwise order), insert r � ` buds in the corner c
where r is the edge label on the right side of e (looking from u), and ` is the edge
label on the left side of e0. Then delete all the labels. The obtained hypermobile
�.T / satisfies the following conditions:

� edges incident to a round vertex have weight 0 (hence round vertices have
weight 0), while edges incident to a light square vertex have negative weight;

� each square vertex v (light or dark) has weight � deg.v/.

We call 0-weighted a hypermobile satisfying these conditions. Clearly � is a
bijection between well-labeled mobiles and 0-weighted hypermobiles. We can
now show that the bijection of [11] can be obtained as a specialization of ˆ0; see
Figure 19.

Proposition 19. The master bijection ˆ0 yields a bijection between vertex-rooted

hypermaps and 0-weighted hypermobiles. This bijection coincides with the Bout-

tier Di Francesco Guitter bijection, up to the identification of well-labeled mobiles

with 0-weighted hypermobiles.

Remark 20. The bijection [11], as reformulated in Proposition 19, can be thought
of as the “case d D 0” of Theorem 10. Indeed, one can think of a vertex-
rooted hypermap as a dark-rooted hypermap of degree 0. Then the definition
of 0-weighted hyperorientation coincides with the case d D 0 of d -weighted
hyperorientations given in Section 3, except that the weight 0 are authorized
on 1-way edges instead of on 0-way edge. Also the definition of 0-weighted
hypermobile coincides with the case d D 0 of d -weighted hypermobile given
in Section 3, except that the weight 0 is authorized on edges incident to round
vertices instead of on edges incident to light square vertices.

Proof. It is easy to prove that 0-weighted hypermobiles have excess 0. Hence the
master bijection ˆ0 clearly yields a bijection between 0-weighted hypermobiles
and 0-weighted vertex-rooted hyperorientations in H0. By Lemma 18, the latter
family identifies to the family of vertex-rooted hypermaps.

Now one easily verifies from Figure 18 that, if M is a vertex-rooted hypermap
and T is the associated well-labeled mobile, then �.T / is obtained from the
geodesic hyperorientation by applying the local rules of Figure 7, that is, by
applying ˆ0. �

We now discuss the bijection given in [11], which is an extension of the bijection
in [10] for vertex-rooted hypermaps with blocked edges. LetM be a vertex-rooted
hypermap, with v0 the root-vertex, and let X be a subset of the edges ofM called



108 O. Bernardi and É. Fusy

blocked edges. Let �X be the hyperorientation of M where the edges in X are
0-way and the edges not in X are 1-way. The subset X is called admissible if �X

is accessible from v0. A pair .M;X/, with M a vertex-rooted hypermap and X
an admissible subset of edges of M , is shortly called a (vertex-rooted) hypermap
with blocked edges.

The bijection of [11] proceeds similarly as the one above (which corresponds
to the caseX D ;). Namely, we give to each vertex v a label equal to the minimal
length of the directed paths in �X from v0 to v. We call e D .u; v/ (with the
dark face on the right of e) geodesic if it is not blocked and `.v/ D `.u/ C 1,
and non-geodesic otherwise. Then a labeled mobile is associated with .M;X/ by
applying the rule of Figure 18, and marking as blocked the edges of the mobile
corresponding to blocked edges of M . The associated labeled mobiles, called
generalized well-labelled mobiles satisfy the same conditions as well-labelled
mobiles, with the only difference that there can be some blocked edges incident
to light square vertices and that the difference between the edge-labels on the two
sides of a blocked edge is arbitrary.

As above we can encode the distance-labelling by a weighted hyperorientation.
More precisely, we define the geodesic hyperorientation as follows: each geodesic
edge is oriented 1-way and given weight 0, each non-geodesic edge e D .u; v/

(with the dark face on the right of e) is oriented 0-way and given weight `.v/ �

`.u/ � 1. The geodesic hyperorientation satisfies:

� the weight of an edge e is 0 if e is directed, and is negative if e is non-blocked
and 0-way;

� the weight of a vertex is 0, and the weight of a face f (light or dark) is
� deg.f /.

A hyperorientation satisfying these conditions is called a generalized 0-weighted

hyperorientation. The geodesic hyperorientation has two additional properties: it
is accessible from v0 and it is acyclic; hence it is in H0.

Lemma 21. A vertex-rooted hypermap with blocked edges .M;X/ has a unique

generalized 0-weighted hyperorientation in H0; it is the geodesic hyperorienta-

tion.

Proof. The proof is similar to the proof of Lemma 18. Let .M;X/ be a vertex-
rooted hypermap with blocked edges, and let v0 be its root-vertex. We call
admissible labelling of M a labelling L of its vertices such that L.v0/ D 0

and for each non-blocked edge e D .u; v/ (with the dark face on the right
of e) L.v/ � L.u/ C 1. As before there is a bijection between the admissible
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labellings and the generalized 0-weighted hyperorientations of M . Moreover any
admissible labelling L which is not the distance-labelling ` is associated with a
hyperorientation which is not accessible, hence not in H0. �

We call generalized 0-weighted hypermobile a hypermobile with some marked
edges incident to light-square vertices, such that the following conditions hold:

� edges incident to a round vertex have weight 0 (hence each round vertex has
weight 0), and non-marked edges incident to a light square have negative
weight;

� each square vertex v (light or dark) has weight � deg.v/.

Similarly as in the case without blocked edges, generalized well-labeled mobiles
can be identified to generalized 0-weighted hypermobiles. We now state how the
bijection of [11] can be obtained as a specialization of ˆ0; see Figure 20.
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Figure 20. (a) The bijection of [11] between vertex-rooted hypermaps with blocked edges
and generalized well-labeled mobiles. (b) the same bijection seen as a specialization ofˆ0.
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Proposition 22. The master bijectionˆ0 yields a bijection between vertex-rooted

hypermaps with blocked edges and generalized 0-weighted hypermobiles. This

bijection coincides with the bijection of [11], up to the identification of generalized

well-labeled mobiles with generalized 0-weighted hypermobiles.

Proof. The proof is very similar to the one of Proposition 19 and is left to the
reader. �

6. Bijections for hypermaps with general cycle-length constraints

In this section we consider a far-reaching generalization of the girth constraints
considered in Section 3, and obtain bijections for hypermaps satisfying these
constraints.

We call charge function � of a hypermap H the assignment of a real number
�.a/, called charge, to each vertex and face a of H . The pair .H; �/ is called a
charged hypermap. We call total charge, and denote it by �total, the sum of all the
charges of the hypermap. We will now define some cycle-length constraints on
charged hypermaps. A light region of H is a proper subset R of the faces of H
such that any face in R sharing an edge with a face not in R is light. We say that
an edge or a vertex is strictly inside a light region R if all its incident faces are
in R. We denote

�.R/ D
X

f face inside R

�.f / C
X

v vertex strictly inside R

�.v/:

The boundary of a light regionR is the set of edges incident both to a face inR and
to a face not in R. We denote by @R the boundary of R and by j@Rj its cardinality.

Definition 23. Let H be a hypermap, and let � be a charge function. If the
hypermap H is dark-rooted (resp. light-rooted, vertex-rooted), we say that H
satisfies the �-girth condition if every light region R satisfies j@Rj � �.R/ with
strict inequality if all the outer vertices are strictly inside R (resp. if one of the
outer edges is strictly inside R, if the root-vertex is strictly inside R).

Various girth constraints can be realized as a �-girth condition by choosing an
appropriate charge function � ; examples are given in Section 7.

We will now characterize the �-girth condition by the existence of certain
hyperorientations.
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Definition 24. Let .H; �/ be a charged hypermap. If H is light-rooted or vertex-
rooted, we call �-weighted hyperorientation of H a weighted hyperorientation
such that:

(i) the weight of 1-way edges is positive, and the weight of 0-way edges is non-
positive,

(ii) the weight of every light face f is �.f / � deg.f /,

(iii) the weight of every inner dark face f is ��.f / � deg.f /,

(iv) the weight of every vertex v is �.v/.

IfH is dark-rooted, we call �-weighted hyperorientation ofH , a weighted hyper-
orientation satisfying (i), (ii), (iii) and

(iv0) the weight of every inner vertex v is �.v/, the weight of every outer vertex
v is �.v/C 1, the weight of every outer edge is 1, and the weight of the dark
outer face f0 is ��.f0/.

We now state the key result for dark-rooted hypermaps. We say that a charge
function � fits a dark-rooted hypermapH if H satisfies the �-girth condition, the
charge of every inner vertex is positive, the charge of every outer vertex is 0, the
charge of the dark outer face f0 is � deg.f0/, and �total D 0.

Theorem 25. Let H be a dark-rooted hypermap, and let � be a charge function.

The hypermapH admits a �-weighted hyperorientation in H� if and only if � fits

H and the outer face of H is simple. Moreover, in this case H admits a unique

�-weighted hyperorientation in H�.

It will be shown in Section 7 that Theorem 7 is a special case of Theorem 25
corresponding to a particular choice of charge function. We now state the anal-
ogous result for light-rooted and vertex-rooted hypermaps. We say that a charge
function � fits a light-rooted hypermapH ifH satisfies the �-girth condition, the
charge of every vertex is positive, the charge of the light outer face f0 is deg.f0/,
and �total D 0.

Theorem 26. Let H be a light-rooted hypermap, and let � be a charge function.

The hypermap H admits a �-weighted hyperorientation in HC if and only if �

fits H . Moreover, in this case H admits a unique �-weighted hyperorientation

in HC.

We say that a charge function � fits a vertex-rooted hypermap if H satisfies
the �-girth condition, the charge of every non-root vertex is positive, the charge
of the root-vertex is 0, and �total D 0.
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Theorem 27. LetH be a vertex-rooted hypermap, and let � be a charge function.

The hypermap H admits a �-weighted hyperorientation in H0 if and only if �

fits H . Moreover, in this case H admits a unique �-weighted hyperorientation

in H0.

The proof of Theorems 25, 26, and 27 are postponed to Section 10.
We will now obtain bijections for charged hypermaps using the master bijec-

tions ˆ�, ˆC and ˆ0. We call fittingly charged hypermap a charged hypermap
such that � fits H . We call consistently-weighted a hypermobile with weights in
R such that the weights of edges incident to round vertices are positive, while the
weights of edges incident to light square vertices are non-positive. We will now
show that fittingly charged hypermaps are in bijection with consistently-weighted
hypermobiles.

We call charge of a vertex u of a hypermobile the quantity

� w.u/ if u is a round vertex,

� w.u/C deg.u/ if u is a light square vertex,

� �w.u/� deg.u/ if u is a dark square vertex.

We now relate the excess of a hypermobile to the charges.

Lemma 28. The excess of a hypermobile of vertex-set V is �
P

v2V �.v/, where

�.v/ denotes the charge of vertex v.

Proof. Let T be a hypermobile. LetR,D, and L be respectively the sets of round
vertices, dark square vertices, and light square vertices of T . Let b, eR, and eL
be respectively the number of buds, edges incident to a round vertex, and edges
incident to a light square vertex. By definition, the excess of T is eR � b. If we
denote by w.u/ and �.u/ the weight and charge of a vertex u, we get

X

u2R

w.u/ D
X

u2R

�.u/;

X

u2L

w.u/ D �eL � b C
X

u2L

�.u/;

X

u2D

w.u/ D �eR � eL �
X

u2D

�.u/:

Plugging these relations in the formula
P

u2R w.u/C
P

u2Lw.u/ D
P

u2D w.u/

gives eR � b D �
P

v2R[L[D �.v/, as wanted. �
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A hyperorientation is called consistently-weighted if the weight of every 1-way
edge is a positive real number, and the weight of every 0-way edge is a non-positive
real number. By Theorem 25, the set of fittingly charged dark-rooted hypermaps
such that the outer face is simple identifies with the set of consistently-weighted
hyperorientations in H� such that the weight of every outer edge is 1. Moreover,

� the charge of an inner vertex v of H is �.v/ D w.v/,

� the charge of an inner light face f of H is �.f / D w.f /C deg.f /,

� the charge of an inner dark face f of H is �.f / D �w.f / � deg.f /.

Hence by applying the master bijection ˆ� and keeping track of the parameter-
correspondences we obtain:

Theorem 29. The mapping ˆ� gives a bijection between the set of fittingly

charged dark-rooted hypermaps such that the outer face is simple, and the set

of consistently-weighted hypermobiles with negative excess. Moreover, each light

(resp. dark) inner face of degree ı and charge x of the hypermap corresponds to a

light (resp. dark) square vertex of degree ı and charge x of the associated charged

hypermobile. Also each inner vertex of charge x in the hypermap corresponds to

a round vertex of charge x of the associated charged hypermobile. Lastly, the

outer degree of the hypermap corresponds to minus the excess of the associated

hypermobile.

We will see below (see Lemma 37) that Theorem 10 corresponds to a special
case of Theorem 29. We now consider light-rooted hypermaps. Similarly as
above, using Theorem 26 and applying the master master bijectionˆC we obtain:

Theorem 30. The mapping ˆC gives a bijection between the set of fittingly

charged light-rooted hypermaps and the set of consistently-weighted hypermobiles

with positive excess. Moreover, each light (resp. dark) inner face of degree ı and

charge x of the hypermap corresponds to a light (resp. dark) square vertex of

degree ı and charge x of the associated hypermobile. Also each vertex of charge

x in the hypermap corresponds to a round vertex of charge x of the associated

hypermobile. Lastly, the outer degree of the hypermap corresponds to the excess

of the associated hypermobile.

Similarly, using Theorem 27 and applying the master master bijection ˆ0 we
obtain:
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Theorem 31. The mappingˆ0 gives a bijection between the set of fittingly charged

vertex-rooted hypermaps and the set of consistently-weighted hypermobiles with

excess zero. Moreover, each light (resp. dark) face of degree ı and charge x

of the hypermap corresponds to a light (resp. dark) square vertex of degree ı

and charge x of the associated hypermobile. Also each non-root vertex of charge

x in the hypermap corresponds to a round vertex of charge x of the associated

hypermobile.

We will use Theorems 29 and 30 in the next section to count annular hyper-
maps. In the remaining part of this section we give a general lemma about �-girth
conditions, and then explain how to derive Theorem 1 stated in the introduction
from Theorem 31.

A light region R is said to be connected (resp. simply connected) if the union
of the faces in R, and the edges and vertices strictly inside R is a connected (resp.
simply connected) subset of the sphere. For instance, the light region in Figure 21
is simply connected. When we consider the simple connectedness of a light region
containing the outer face, we think of the outer face simply as a marked face of a
hypermap on the sphere, so that this face is finite and simply connected.

Figure 21. A simply connected light region.

The following lemma shows that the �-girth condition can be stated as a con-
dition on simply connected light regions whenever �total D 0 (hence in particular
when � is fitting).

Lemma 32. Let H be a dark-rooted, light-rooted or vertex-rooted hypermap,

and let � be a charge function such that �total D 0. The hypermap satisfies the

�-girth condition if and only if the inequalities and strict inequalities stated in

Definition 23 hold for every simply connected light region R.



Unified bijections for planar hypermaps 115

Remark 33. We point out that, in general (even if �total D 0), the �-girth condition
might not be satisfied even if the inequalities and strict inequalities stated in
Definition 23 hold for every light region R whose boundary is a simple cycle.

Proof. We treat the case in which H is dark-rooted (the cases of light-rooted
and vertex-rooted hypermaps are proved similarly). We suppose that any simply
connected light region R satisfies j@Rj � �.R/ with strict inequality if all of the
outer vertices are strictly inside R. We want to prove that the same property holds
for any light region R. Suppose this does not hold, and take R0 a light region
such that the property does not hold and j@R0j is minimal. If R0 is not connected,
then R0 is the disjoint union of two light regions R1 and R2 (with j@R1j � 1 and
@R2j � 1). We have j@R0j D j@R1j C j@R2j and �.R0/ D �.R1/ C �.R2/ which
contradicts the minimality of j@R0j (note that if the outer vertices are strictly inside
R0, then they are strictly inside either R1 or R2). Now if R0 is connected but not
simply connected, then R0 is the intersection of two light regions R1 and R2 such
that every face ofH is inside R1 or R2 and every vertex ofH is strictly inside R1

or R2. Hence, �.R0/ D �.R1/ C �.R2/ � �total D �.R1/ C �.R2/. Moreover,
@R0 is the disjoint union of @R1 and @R2. Thus j@R0j D j@R1j C j@R2j and this
again contradicts the minimality of j@R0j (note that if the outer vertices are strictly
inside R0, then they are strictly inside both R1 and R2). Thus R0 must be simply
connected, which is a contradiction. �

We now explain how to get Theorem 1 from Theorem 31. Recall that vertex-
rooted maps identify with vertex-rooted hypermaps such that every dark face has
degree 2 (see Figure 1). We can therefore translate the setting of 1 in terms of
hypermaps. Let C be the set of pairs .H; �/ such that H is a vertex-rooted hyper-
map where every dark face has degree 2, and � is a fitting charge function with
�.e/ D �2 for every dark face e and �.f / D 2 for every light face f . We need to
prove the two following claims:

Claim 34. The set C identifies to the set of partially charged maps considered in

Theorem 1.

Claim 35. The weighted hypermobiles associated with the setC by the bijection of

Theorem 31 identify with the suitably weighted mobiles considered in Theorem 1.

We first prove Claim 34. If M is a vertex-rooted map endowed with a partial
charge function � , we let H be the vertex-rooted hypermap identified to M ,
keeping the same �-values at vertices, and setting �.e/ D �2 for every dark
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face e (of degree 2, corresponding to an edge of M ) and �.f / D 2 for every
light face f (corresponding to a face of M ). Note that Condition (b) for a partial
charge function � gives �total D 0 (by the Euler relation). Thus, proving Claim 34
amounts to proving that Condition (a) holds for � if and only if M satisfies the
�-girth condition. If R is a set of faces of the map M , we consider the set E.R/
of edges of M having both incident faces in R. Thus xR D R [ E.R/ identifies
to a light region of H , and it is easily seen that if xR is simply connected then the
Euler relation gives

�. xR/ D 2jRj � 2jE.R/j C
X

v inside R

�.v/ D 2C
X

v inside R

.�.v/� 2/:

Therefore Condition (a) for a partial charge function � can be reformulated as: “for
any simply connected light region ofM of the form xR D R[E.R/, j@ xRj � �. xR/

with strict inequality if the root-vertex v0 is inside xR”. Moreover it is easy to
check that if xR0 D R [ E 0 with E 0 � E.R/, then j@ xR0j � �. xR0/ � j@ xRj � �. xR/.
Thus Condition (a) is equivalent to j@ xRj � �. xR/ (with strict inequality if v0 inside
xR) for any light simply connected region xR of M . This together with Lemma 32
proves Claim 34.

It only remains to prove Claim 35. First note that the hypermobiles associated
with maps have all the dark square vertices of degree 2, hence (upon removing
the dark square vertices) these hypermobiles identify with the mobiles as defined
in the introduction. Hence by Theorem 31 the weighted hypermobiles associated
with the set C are mobiles having excess 0, with weights on half-edges such that

� every half-edge has a positive weight if it is incident to a round vertex and
has a non-positive weight otherwise,

� for every edge e, the weights of the two half-edges of e add up to 0,

� every light square vertex v has weight 2 � deg.v/.

These mobiles clearly identify with the suitably weighted mobiles considered in
Theorem 1 upon replacing the weights on half-edges (summing to 0) by non-
negative weights on edges. This proves Claim 35 and Theorem 1.

7. Applications of the bijection for charged hypermaps

to annular hypermaps

In this section we characterize the �-girth condition for particular choices of the
charge function � , and derive from it bijections for annular hypermaps.
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Given a real number d , we define the charge function �d by

� �d .v/ D d for every vertex v,

� �d .f / D d for every light face f ,

� �d .f / D d � d � deg.f / for every dark face.

Lemma 36. For any simply-connected light region R, �d .R/ D d . Moreover

�d total D 2d .

Proof. Let V;E; F;K be respectively the set of vertices strictly inside R, edges
strictly insideR, light faces insideR, and dark faces insideR. By the Euler relation
we get

�d .R/ D d .jV j C jF j C jKj � jEj/ D d;

because R is simply connected. Similarly, the Euler relation gives

�d total D 2d: �

We now define a charge function, which will make clear that Theorem 7 is a
special case of Theorem 25. Observe that an inward cycle (as defined in Section 3)
is the boundary C D @R of a simply connected light region R not containing the
outer face, such that C is a simple cycle.

Lemma 37. Let d be a positive integer and let H be a dark-rooted hypermap of

outer degree d . Let � be the charge function defined by

� �.v/ D d for every inner vertex v, and �.v/ D 0 for every outer vertex v,

� �.f / D d for every light face f ,

� �.f / D d � d � deg.f / for every inner dark face, and �d .f0/ D �d for the

dark outer face f0.

The hypermapH satisfies the �-girth condition if and only ifH has ingirth d (i.e.,

every inward cycle C ofH has length at least d ). Moreover in this case, the outer

face is simple, and �total D 0.

Let � be the charge function of Lemma 37. It is clear that the definition of
d -weighted hyperorientations coincide with the definition of �-weighted hyper-
orientations. Moreover Lemma 37 together with Theorem 25 implies that H ad-
mits a (unique) �-weighted hyperorientation in H� if and only if it has ingirth at
least d . Thus Theorem 7 is a special case of Theorem 25.
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Instead of proving Lemma 37, we will prove a slight extension which will be
used for counting hypermaps with given ingirth in Section 8. We define an annular

hypermap as a face-rooted hypermap with a marked inner face (henceH has two
distinct marked faces). LetH be an annular hypermap, let f0 be its outer face f0,
and let f1 be its marked inner face. The separating ingirth of H is the minimal
length of the boundary of a light region containing f1 but not f0. Observe that
this minimal length is necessarily achieved for a boundary C which is a simple
cycle, that is, an inward cycle containing f1. We call separating outgirth ofH the
minimal length of the boundary of a light region containing f0 but not f1. This
minimal length is necessarily achieved for a boundary C which is a simple cycle.
We call separating outward cycle a simple cycle which is the boundary of a light
region containing f0 but not f1 (so that the separating outgirth is the minimal
length of separating outward cycles). We call non-separating ingirth of H the
minimal length of the boundary of a simply connected light region containing
neither f0 nor f1. Observe that this minimal length is not necessarily achieved
for a boundary C which is simple (it could be that C is the union of two simple
cycles).

Lemma 38. Let d; e be positive integers. Let H be an annular hypermap with a

dark outer face f0 of degree e and a marked inner face f1. We consider the charge

function � defined by

� �.v/ D d for every inner vertex v, and �.v/ D 0 for every outer vertex v,

� �.f / D d for every non-marked light face f ,

� �.f / D d�d �deg.f / for every non-marked inner dark face, and �.f0/ D �e

for the outer face f0,

� �.f1/ D e if the marked inner face f1 is light, and �.f1/ D e � d � deg.f1/

if f1 is dark.

The hypermap H satisfies the �-girth condition if and only if H has non-

separating ingirth at least d , and separating ingirth e. In this case �total D 0

and the outer face is simple.

Observe that Lemma 37 corresponds to the special case e D d of Lemma 38
(up to forgetting the marked face which plays no particular role).

Proof. Let � 0 be the charge function defined by � 0.f0/ D d e � d � e, � 0.f1/ D

�dCe, � 0.v/ D �d if v is an outer vertex, and � 0.a/ D 0 for any inner vertex and
any non-marked non-root face a. We have � D �d C � 0. Hence by Lemma 36,
we get �.R/ D d C � 0.R/ for any simply connected light region R. Note also
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that if H has separating ingirth e, then it implies that the outer face is simple. In
this case, there are e outer vertices hence � 0

total D �2d , and since by Lemma 36
�d total D 2d we get �total D 0.

Now assume that H satisfies the �-girth condition. For any separating inward
cycle C , we consider the corresponding light region R and get jC j � �.R/ D

d C � 0.R/ D d C � 0.f1/ D e. Similarly and for any non-separating inward cycle
C we get jC j � �.R/ D d C � 0.R/ D d . Thus H has non-separating ingirth at
least d , and separating ingirth e.

Conversely assume thatH has non-separating ingirth at least d , and separating
ingirth e. We want to prove thatH satisfies the �-girth condition. Since �total D 0,
Lemma 32 implies that we can focus on simply connected light regions ofH . For
a simply connected light region R, we know �.R/ D d C � 0.R/, and need to
prove j@Rj > �.R/. First suppose that R does not contain f0. We get �.R/ D e if
f1 2 R and �.R/ D d otherwise. Moreover @R contains an inward cycle C , thus
by hypothesis, j@Rj � jC j � �.R/. Suppose now that R contains f0. Let b be
the number of outer vertices incident to @R (the other outer vertices are all strictly
insideR). We get �.R/ D bd�d if f1 2 R and �.R/ D bd�e otherwise. If b D 0

then �.R/ < 0, hence j@Rj > �.R/ holds trivially. Suppose now that b > 0. In this
case the light regionR0 D Rn¹f0º is the disjoint union of b simply connected light
regionsR1; : : : ; Rb, and @R0 is the disjoint union of their boundaries @R1; : : : ; @Rb.
Each boundary @Ri contains an inward cycle, so j@Ri j � e if Ri contains f1

and j@Ri j � d otherwise. Since j@Rj D j@R0j � e D
Pb

iD1 j@Ri j � e we get
j@Rj � bd � d D �.R/ if R contains f1 and j@Rj � bd � e D �.R/ otherwise.
This completes the proof that H satisfies the �-girth condition. �

We now give a similar result for light-rooted hypermaps.

Lemma 39. Let d; e be positive integers. Let H be an annular hypermap with a

light outer face face f0 of degree e and a marked inner face f1. We consider the

charge function � defined by

� �.v/ D d for every vertex v,

� �.f / D d for every non-marked inner light face f , and �.f0/ D e for the

outer face f0,

� �.f / D d � d � deg.f / for every non-marked inner dark face,

� �.f1/ D �e if the marked face f1 is light, and �.f1/ D �e � d � deg.f1/ if

f1 is dark.

Then �total D 0, and the hypermap H satisfies the �-girth condition if and only if

H has non-separating ingirth at least d , and separating outgirth e and such that

the only outward cycle of length e is the contour of the outer face.
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Proof. We have � D �d C � 0, where � 0.f0/ D �d C e, � 0.f1/ D �d � e, and
� 0.a/ D 0 for any vertex and any non-marked non-root face a. Lemma 36 gives
�total D �d total C � 0.f0/ C � 0.f1/ D 0. Using Lemmas 32 and 36, we easily see
that the �-girth condition translates into the following condition for any simply
connected region R:

(i) j@Rj � d if R contains neither f0 nor f1,

(ii) j@Rj � e if R contains f0 but not f1, with strict inequality if R ¤ ¹f0º,

(iii) j@Rj � �e if R contains f1 but not f0,

(iv) j@Rj > �d if R contains both f0 and f1,

The conditions (iii) and (iv) are void, while the conditions (i) and (ii) are clearly
equivalent to the fact that H has non-separating ingirth at least d , separating
outgirth e, and the contour of the outer face is the only separating outward cycle
of length e. �

We will now use Lemmas 38 and 39 in conjunction with Theorems 29 and 30
to get bijections with classes of hypermobiles. For any integers d; e (where e
is allowed to be negative), we call .d; e/-weighted hypermobile a consistently
weighted hypermobile (that is, a weighted hypermobile such that edges incident to
a round vertex have positive weight, while edges incident to a light square vertex
have non-positive weight), with a marked square vertex, such that

� every round vertex has weight d .

� every unmarked light square vertex v has weight d � deg.v/,

� every unmarked dark square vertex v has weight d � deg.v/� d � deg.v/,

� the marked square vertex v has weight e�deg.v/ if v is light and d �deg.v/�
e � deg.v/ if v is dark.

By similar arguments as in Claim 8 one can check that a .d; e/-weighted hyper-
mobile always has excess �e.

Let B.d;e/ be the family of annular hypermaps with a dark outer face of degree
e, non-separating ingirth at least d and separating ingirth e. Let B0.d;e/ be the set
of fittingly charged annular hypermaps .H; �/ with a dark outer face of degree e,
where the charge � is defined as in Lemma 38. By Lemma 38 we can identify
the sets B.d;e/ and B0.d;e/. Moreover, by Theorem 29, the mapping ˆ� gives a
bijection between B0.d;e/ and the family of .d; e/-weighted hypermobiles. Thus
we obtain the following result (see Figure 22 for an example).
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f0

f1

1 1

2 0
0

0

0
0

0

0

0

1

1

1

1

1

1

2

3
3

3
3

Figure 22. The bijection of Theorem 40 on an example (case d D 3, e D 4, with a dark
marked inner face f1).

Theorem 40. For d and e positive integers, the family B.d;e/ is in bijection with

the family of .d; e/-weighted hypermobiles. Each light (resp. dark) inner face in

the hypermap corresponds to a light (resp. dark) square vertex of the same degree

in the associated hypermobile. Moreover, the marked inner face corresponds to

the marked square vertex.

Remark 41. Theorem 40 generalizes Theorem 7 which corresponds to the case
e D d (by forgetting the marked inner face). Indeed the ingirth of a hypermap with
a marked inner face is the minimum of its separating and non-separating ingirths.
This theorem also generalize the bijection established for so-called annular maps

(planar maps with a root-face and an additional marked face) in [5].

Remark 42. It would be possible to extend Theorem 40 to the case where there
is a marked inner vertex v1 instead of a marked inner face f1. In that case the
separating ingirth is the minimal boundary-length of a light region not containing
f0 but containing v1 in its strict interior. In the associated hypermobiles, the
marked vertex would be round instead of square, and its weight would be e instead
of d . It would also be possible to extend Theorem 40 to the case where there is a
root-vertex v0 instead of a root-face f0: this would correspond to the case e D 0

(no constraint on the separating ingirth) and we would apply ˆ0 instead of ˆ�.
These extensions can be obtained from the charged-map setup in a way similar to
the results proved in this section.

Similarly let C.d;e/ be the set of annular hypermaps with a light outer face of
degree e, non-separating ingirth at least d , separating outgirth e, and such that the
only outward cycle of length e is the contour of the outer face. Let C0.d;e/ be the
set of fittingly charged annular hypermaps .H; �/with a light outer face of degree
e, where the charge � is defined as in Lemma 39. By Lemma 39 we can identify
the sets C.d;e/ and C0.d;e/, and by Theorem 30, the mapping ˆC gives a bijection
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f0

f1
1 1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2
2

2

2

2

23

3

3

3

3

3

3

3

Figure 23. The bijection of Theorem 43 on an example (case d D 3, e D 4, with a dark
marked inner face f1).

between C0.d;e/ and the family of .d;�e/-weighted hypermobiles. In conclusion
we obtain (see Figure 23 for an example):

Theorem 43. For d and e positive integers, the family C.d;e/ is in bijection with

the family of .d;�e/-weighted hypermobiles. Each light (resp. dark) inner face in

the hypermap corresponds to a light (resp. dark) square vertex of the same degree

in the associated hypermobile. Moreover, the marked inner face corresponds to

the marked square vertex.

8. Counting annular hypermaps according to girth parameters

In Section 4 we have counted plane hypermaps with control on the ingirth and the
face degrees, but with the restriction that the outer degree is equal to the ingirth.
Here we will drop this restriction. Our strategy (as in our previous article [5]
dealing with maps) is to consider annular hypermaps instead of plane hypermaps,
and use a canonical decomposition of annular hypermaps into two hypermaps that
can be counted bijectively.

Recall that an annular hypermap is a hypermap with two marked faces: one
called the outer face and the other called the marked inner face. An annular
hypermap is corner-rooted by marking a corner in the outer face and a corner in
the marked inner face. Let EAd;e be the family of corner-rooted annular hypermaps
of separating girth e and non-separating ingirth at least d . Let EBd;e (resp. ECd;e) be
the family of corner-rooted annular hypermaps such that the underlying (unrooted)
annular hypermap is in the family Bd;e (resp. Cd;e) defined in Section 7.

Lemma 44. There is an e-to-1 correspondence between EAd;e and the Cartesian

product ECd;e � EBd;e.
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Proof. We will first define the canonical cycle of an annular hypermapH 2 EAd;e.
For any cyclesC1; C2 that are contours of some light regionsR1; R2 of a hypermap
H , we denote by \.C1; C2/ (resp. [.C1; C2/) the contour of the light region
R1 \R2 (resp. R1 [ R2). It is easy to see that

j [ .C1; C2/j C j \ .C1; C2/j D jC1j C jC2j:

Thus, if C1 and C2 are separating inward cycles of length e, then [.C1; C2/ and
\.C1; C2/ are both separating inward cycles of length e (since H has separating
girth e). Thus H has a separating inward cycle C of length e which is the
outermost (that is, its light region contains the light region of any separating
inward cycle of length e), and we call it the canonical cycle of H .

We now define the e-to-1 correspondence between EAd;e and ECd;e � EBd;e. Let
EA�

d;e
be the set of pairs .H; v/ where H 2 EAd;e and v is a vertex on the canonical

cycle. For .H; v/ 2 EA�
d;e

, with f0 the outer face and f1 the marked inner face
of H , we denote by �.H; v/ the pair .I; J / of corner-rooted annular hypermaps
obtained by cutting along C : the marked inner face of I is f0 and the outer face
of I is delimited by C , while the marked inner face of J is f1 and the outer face
of J is delimited by C (the marked corners in the faces delimited by C are at v).
It is immediate to check that I 2 ECd;e, and J 2 EBd;e. Hence � is a mapping from
EA�

d;e
to ECd;e � EBd;e.

It remains to prove that � is a bijection, which we do by exhibiting the inverse
mapping. For .I; J / 2 ECd;e � EBd;e, we let  .I; J / be the pair .H; v/, where H
is the corner-rooted annular hypermap obtained by patching the outer face of I
with the outer face of J so that their marked outer corners coincide, defining v
as their common incident vertex after patching, and defining the outer face of H
as the marked inner face of I . It is clear that  ı � D Id and we need to prove
� ı D Id. Hence, we need to prove that if .H; v/ D  .I; J / thenH 2 EAd;e and
the cycle C 0 ofH resulting from merging the outer face of I with the outer face of
J is the canonical cycle C ofH . Note that jC 0j D e and jC j � e. Moreover, since
\.C; C 0/ is a separating inward cycle of J , we get j \ .C; C 0/j � e. And since
[.C; C 0/ is a separating outward cycle of I , we get j [ .C; C 0/j � e with equality
if and only if [.C; C 0/ D C 0. Thus jC j C jC 0j D j [ .C; C 0/j C j [ .C; C 0/j � 2e,
and finally jC j D jC 0j D e. This implies that the separating ingirth ofH is e, and
moreover [.C; C 0/ D C 0 which implies that C 0 D C (since C is the outermost
separating inward cycle of length e). It only remains to show that H has non-
separating girth at least d . Let yR be a light region of H not containing the inner
marked face f1 and let yC be the contour of yR. If \.C; yC/ encloses no face, then
yC completely belongs to I , so that j yC j � d . Otherwise, \.C; yC/ completely
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belongs to J and is the contour of a non-empty light region not containing f1,
hence j \ .C; yC/j � d . Moreover [.C; yC/ is a separating outward cycle of I ,
hence j [ .C; yC/j � e. Thus j yC j D j [ .C; yC/j C j \ .C; yC/j � jC j � d . Thus H
has non-separating ingirth d and H 2 EAd;e, which completes the proof that � is
a bijection. �

For k; ` � 1, we define EA�k;˙`

d;e
as the family of corner-rooted annular hyper-

maps of separating ingirth e, non-separating ingirth at least d , where the outer
face is dark of degree k and the marked inner face is light of degree `. Let
A

�k;˙`

d;e
� A

�k;˙`

d;e
.x1; x2; : : : I y1; y2; : : :/ be the generating function of EA�k;˙`

d;e

where xi and yi mark respectively the number of unmarked inner light and dark
faces of degree i . We define the families EA�k;�`

d;e
, EA˙k;�`

d;e
, EA˙k;˙`

d;e
(depending on

the types, light or dark, of the outer face and of the marked inner face) and their
associated generating functions similarly. Let EB�k

d;e
(resp. EC�k

d;e
) be the subfam-

ily of EBd;e (resp. ECd;e) for which the marked inner face is dark of degree k. Let
B

�k

d;e
� B

�k

d;e
.x1; x2; : : : I y1; y2; : : :/ (resp. C�k

d;e
� C

�k

d;e
.x1; x2; : : : I y1; y2; : : :/)

be the generating function of EB�k

d;e
(resp. EC�k

d;e
) where xi and yi mark respectively

the number of light and dark unmarked inner faces of degree i . We define the
families EB˙k

d;e
, EC˙k

d;e
and their generating functions similarly. Lemma 44 gives

A
�k;?`

d;e
D
1

e
C �k

d;eB
?`
d;e:

for � 2 ¹�;˙º and ? 2 ¹�;˙º.
We now use Theorems 40 and 43 to determine B?`

d;e
and C �k

d;e
. Theorem 40

gives a bijection between Bd;e and the family of .d; e/-weighted hypermobiles. It
is easily seen that marking a corner in the marked inner face of an annular hyper-
map in Bd;e corresponds to marking a corner at the marked square vertex of the
associated .d; e/-weighted hypermobile. Thus, there is an e-to-1 correspondence
between EBd;e and the family Td;e of .d; e/-weighted hypermobiles with a marked
corner at the marked square vertex (the factor e correspond to choosing the marked
corner in the outer face of the annular hypermap). Moreover the degree and color
of the marked inner face of the hypermap corresponds to the degree and color
of the marked vertex of the hypermobile. Thus by decomposing hypermobiles in
Td;e at their root-vertex (which yields a sequence of planted d -hypermobiles) we
get

B
˙k

d;e
D eŒue�W.u/k; B

�k

d;e
D eŒu�e�L.u/k;

where W.u/ and L.u/ are defined by (1). Similarly, Theorem 43 leads to

C
˙k

d;e
D eŒu�e�W.u/k; C

�k

d;e
D eŒue�L.u/k :
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We therefore obtain the following result.

Theorem 45. For e; d; k; ` � 1, the generating functions of corner-rootedannular

maps have the following expressions:

A
�k;˙`

d;e
D eŒue�L.u/k Œve�W.v/`; A

˙k;�`

d;e
D eŒu�e�W.u/kŒv�e�L.v/`;

A
�k;�`

d;e
D eŒue�L.u/k Œv�e�L.v/`; A

˙k;˙`

d;e
D eŒu�e�W.u/kŒve�W.v/`;

where L.u/ and W.u/ are specified by (1), (3), and (4).

Remark 46. Under the specialization y2 D 1; yi D 0 for i ¤ 2, the generating
function A˙k;˙`

d;e
counts corner-rooted annular maps with control on the separating

girth, the non-separating girth, and the face degrees. Hence Theorem 45 gives an
extension to annular hypermaps of the counting results obtained in [5] for annular
maps.

Moreover, it is easy to see that the generating function Fd defined in Sec-
tion 4 is related to A�d;?`

d;d
by `@Fd

x`
D A

�d;˙`

d;d
and A�d;�`

d;d
D `@Fd

y`
. Hence the

expressions for the derivatives of Fd given in Theorem 12 are a special case of
Theorem 45.

For any sets�;�0, the generating functionA�k;?`

d;e;�;�0 of hypermaps in EA�k;?`

d;e;�;�0

with inner light faces having degrees in � and inner dark faces having degrees in
�0 is obtained by setting xi D 0 for i … �; yi D 0 for i … �0. This is an algebraic
series as soon as �;�0 are both finite. For instance, for d D 4, e D 2, � D ¹4º,
�0 D ¹3º, we have

A
�4;˙2
4;2 D 2.4L2 C 6L2

3/.1CW0/
2;

where the series ¹L0; L1; L2; L3; L4; W0; W1; W2; W3; W4º (already considered in
the example of Section 4) are specified by

L0 D x4.1CW0/
3; L1 D W 3

1 C 2W1W2 CW3;

L2 D W 2
1 CW2; L3 D W1;

L4 D 1;

W0 D 2y3L2L3; W1 D y3.2L1L3 C L2
2/;

W2 D 2y3L1L2; W3 D y3L
2
1;

W4 D 2y3L1:
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9. Proof of Theorems 4 and 6 about the master bijection

In this section we prove Theorems 4 and 6 about the three master bijections ˆC,
ˆ� andˆ0. The proofs for the three bijections are similar. We give a detailed proof
for ˆC in Section 9.1 and a more succinct proof for ˆ� and ˆ0 in Sections 9.2
and 9.3.

9.1. Proof for ˆC. Let JC be the family of light-rooted hyperorientations such
that all outer edges are 1-way. Note that HC is a subset of JC. We now extend the
definition of the mapping ˆC to JC. For H 2 JC, we define ˆC.H/ as the map
obtained from H by placing a dark (resp. light) square vertex in each dark (resp.
light) face, then applying the local rule of Figure 7 to each edge of H , and then
deleting the edges ofH and the light square vertex corresponding to the outer face
(see Figures 24 and 25 for examples).

Figure 24. If H has a counterclockwise circuit C (shown in bold line on the leftmost
picture), then ˆ.H/ has a cycle outside of C .

Figure 25. If H is not accessible from the outer boundary, there is a cycle C in the dual of
H such that all edges dual to edges on C are either 0-way or 1-way from the inside to the
outside of C ; then ˆ.H/ has a cycle in the area exterior to C (including C ).
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Lemma 47. Let H be an hyoeroriented hypermap in JC, and let T D ˆC.H/.

Then, T is a hypermobile if and only if H 2 HC.

Moreover, in this case the following property holds for each inner 1-way edge

e of H :

.�/ Let u; v be the square vertices in the faces incident to e, and letC be the cycle

contained in T [ ¹e�º, where e� is the edge joining u and v across e. Then

e is oriented from the outside of C to the inside of C (across e�).

Proof. First observe that T is a hypermobile if and only if it is a tree (since the local
conditions of hypermobiles are satisfied by T ). LetNv , Ne ,Nf be the numbers of
vertices, edges, and faces ofH . The map T hasE D Ne edges (because each edge
of H yields an edge in T ), and V D Nv C Nf � 1 vertices (the �1 accounts for
the deletion of the light square vertex in the outer face of H ). The Euler relation
for H gives Nv � Ne C Nf D 2, hence E D V � 1. Thus T is a hypermobile if
and only if it is acyclic.

Now we prove that ifH … HC, then T has a cycle. ForH … HC, eitherH has
a counterclockwise circuit orH is not accessible from the outer vertices. Suppose
first thatH has a counterclockwise circuit C (see Figure 24). Let nv and ne be the
numbers of vertices and edges of H that are on C or outside of C , and let nf be
the number of faces of H that are outside of C . Note that the Euler relation (ap-
plied to H where everything strictly inside C is erased) yields nv � ne C nf D 1.
Let K be the submap of T made of all its vertices on C or outside of C and all
its edges outside of C . Since all edges on C are counterclockwise, the submap K
has E D ne edges (because each edge on C yields an edge of T outside of C ),
and V D nv Cnf � 1 vertices (the �1 accounts for the deletion of the light square
vertex in the outer face). Hence, E D V , so that K has a cycle, and T is not a
tree. Suppose now thatH is not accessible from the outer vertices (see Figure 25).
We consider the dual mapH� which is obtained by placing a vertex f � ofH� in
each face f ofH , and drawing an edge e� ofH� from f �

1 to f �
2 across each edge

e of H separating the faces f1 and f2. An outward cocycle of H is a sequence
D D e1; : : : ; ek of edges such that the dual edgesD� D e�

1 ; : : : ; e
�
k

form a simple
cycle ofH�, and for all i 2 ¹1; : : : ; kº the edge ei is either 0-way or 1-way toward
the outside ofD�. It is not hard to prove that becauseH is not accessible it has an
outward cocycleD D e1; : : : ; ek (to prove the existence ofD start by considering
the set of vertices of H that are reachable from the outer vertices). Let n�

v , n�
e be

the number of vertices and edges of H� that are on D� or outside of D�, and let
n�

f
be the number of faces of H� that are outside of D�. By the Euler relation

applied to H� (where everything strictly inside D� is erased), n�
v � n�

e C n�
f

D 1.
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Let K be the submap of T made of all its vertices on D� or outside of D� and
all its edges on D� or outside of D�. Since all edges in D are 0-way or are 1-way
from the inside to the outside of D�, the submap K has E D n�

e edges (because
each edge inD yields an edge of T onD� or outside ofD�), and V D n�

v Cn�
f

�1

vertices (the �1 accounts for the deletion of the light square vertex in the outer
face of H ). Hence E D V , so that K has a cycle, and T is not a tree.

Next we prove that, if H 2 HC, then T is a hypermobile. We suppose by
contradiction thatH 2 HC and T has a cycle C . We first consider the case where
all vertices on C are squares. In this case, the edges dual to edges on C form
a cocycle of 0-way edges, so the (non-empty) set of vertices of H inside C is
unreachable from the outer vertices of H , a contradiction. We now suppose that
there is a round vertex u0 on C . Let v0 be the (dark square) vertex following
u0 in clockwise order around C , and let e0 be the edge of H following the edge
¹u0; v0º clockwise around u0; see Figure 26(a). By the local rule of Figure 7,
e0 is 1-way toward u0, and by accessibility of H , e0 is the ending edge of some
directed path P0 starting from some outer vertex of H . Let zP0 be the last portion
of P0 inside C , and let u1 2 C be the starting vertex of zP0. Note that u1 ¤ u0,
otherwise zP0 would form a counterclockwise circuit. By the same argument as for
u0, the next vertex v1 after u1 in clockwise order around C is a dark square, and
denoting by e1 the next edge after ¹u1; v1º in clockwise order around u1, there is
a path zP1 inside C that starts from a vertex u2 2 C and ends at e1. Note that u2 is
not on the portion of C going clockwise from u0 to u1 (otherwise it would yield
a counterclockwise cycle in H ). Continuing iteratively we reach a contradiction,
because at each step i , the vertex ui has to avoid a strictly growing portion of C ;
see Figure 26(a).

u1

u2

u3

v1

v2

v3zP0

zP1 zP2

e1

e2

e3

e

u1

u2

u3

u0

u0

v0

e0

(a) (b)

Figure 26. (a) IfH is accessible, then the existence of a cycle inˆ.H/ implies the existence
of a counterclockwise circuit in H . (b) Proof of the property .�/.
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Lastly, the proof of property .�/ follows the exact same line of argument as
above. Assuming by contradiction thatH 2 HC but that .�/ does not hold for an
edge e we consider two cases. First if all vertices of C are square, then the dual of
the edges ofC are 0-way, so the inside ofC is unreachable from the outer vertices,
giving a contradiction. Second, if there is a round vertex u0 2 H on C , then one
can construct a sequence u0; u1; u2; : : : of vertices on C such that ui has to avoid a
strictly growing portion of C , again giving a contradiction; see Figure 26(b). �

Next we prove that the mappings ˆC and ‰C are inverse bijections.

Lemma 48. Let T be a hypermobile of positive excess, and let H D ‰C.T / be

the closure of T . Then T is a tree covering all the vertices ofH and all the square

vertices placed in the inner faces of H .

Proof. To prove the lemma, it is convenient to see the closure mappingˆC as done
“step by step”. Let yT be the outerplanar map associated with T . Starting from yT ,
define a local closure as the operation of gluing a cw-outer edge e1 with a ccw-
outer edge e2 such that e1 and e2 are consecutive edges in clockwise order around
the outer face; see Figure 27. ThenH is obtained as the result of performing local
closure operations greedily until there remains no pair to glue. At each step of the
closure, we call floating a vertex which is the origin of a ccw-outer edge. We now
claim that at each step of the closure, T is a tree covering all the vertices of the

partially closed map except all the floating vertices. Indeed this property is true
for yT . Moreover, it remains true through local closures because each local closure
identifies a floating vertex with another vertex, and the resulting vertex is floating
if both vertices are floating; see Figure 27. �

u v

e1 e2

Figure 27. A local closure glues a cw-outer edge, with a consecutive ccw-outer edge. This
identifies a floating vertex v with another vertex u.

Corollary 49. Let T 2 TC, and let H D ‰C.T /. Then H is in HC, and

ˆC.H/ D T . Moreover, the excess of T equals the outer degree of H .
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Proof. Since the excess � of T is positive, after doing the closure of yT there
remains � cw-outer edge. Thus H is in JC and has outer degree �. Moreover
it is clear that, while superimposing T andH , we have the local rules indicated in
Figure 28 (since these rules are true for the outerplanar map yT and are preserved
by the closure). Since these rules are also those of Figure 7 (disregarding the
incidences with the outer face), we conclude that T D ˆC.H/. Moreover, by
Lemma 48, T is a tree, hence a hypermobile. Thus by Lemma 47,H is inHC. �

Figure 28. The local rules for the configuration of T for each incidence of an inner face
with an edge of H .

Lemma 50. Let H 2 HC, and let T D ˆC.H/. Then T is in TC, and

‰C.T / D H .

Proof. We have proved in Lemma 47 that T is a hypermobile. It remains to show
that ‰C.T / D H . First of all, we claim that there exists a “planar matching” of
the outer edges of the outerplanar map yT of T such that gluing the outer edges of
yT according to this matching yields H . Indeed to obtain the outerplanar map yT

from H , one can apply the following operations illustrated on Figure 29:

(i) Replace each 1-way inner edge ofH by a pair of parallel 1-way edges, thereby
creating a new face of degree 2.

(ii) For each 1-way edge e with a new face on its right, detach from the origin
v of e the sector between e and the next 1-way edge e0 incident to v in
counterclockwise order around v; note that e0 has on its left either a new
face or the outer face (see Figure 29).

In order to prove that ‰C.T / D H it remains to prove that the “planar
matching” of the outer edges of yT giving H corresponds to the cw-matching of
these edges. This is essentially what property .�/ in Lemma 47 ensures. Indeed,
consider a cw-outer edge e0 and a ccw-outer edge e00 of yT glued into an edge e
of H , and the sequence e1; e2; : : : ; en of outer edges of yT appearing between e0

and e00 in clockwise order around the outer face of yT . We need to prove that the
sequence e1; e2; : : : ; en is a parenthesis word (when cw-edges are interpreted as
a’s and ccw-outer edges are interpreted as Na’s). By the property .�/ applied to e,
all the outer edges e1; e2; e3; : : : ; en are glued into edges of H which are inside
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(i) (ii)

(i) (ii)e
e0

Figure 29. Going from an hyperoriented hypermap H (in HC) to the outerplanar map yT

of the hypermobile T D ˆC.H/.

the cycle C contained in T [ ¹e�º, hence they are all matched. Moreover, if ei

and ej are matched into an edge Qe of H , the property .�/ applied to Qe ensures
that i < j (since the cycle zC contained in T [ ¹Qe�º lies inside C ). Thus the
sequence e1; e2; : : : ; en is a parenthesis word. Therefore the “planar matching” of
the outer edges of yT giving H corresponds to the cw-matching of these edges,
that is, H D ‰C.T /. �

Corollary 49 and Lemma 50 conclude the proof of Theorems 4 and 6 for ˆC.

9.2. Proof for ˆ�. The proof for ˆ� follows very similar lines. We highlight
here the main differences. Let J� be the set of dark-rooted hyperorientations such
that the root face contour is simple and every outer edge is ccw-outer, and each
incidence of an inner edge e with an outer vertex v is such that e is either 0-way
or 1-way out of v. Note that H� is a subset of J�. We now extend the definition of
the mapping ˆ� to J�. For H 2 J�, we define ˆ�.H/ as the map obtained from
H by placing a dark (resp. light) square vertex in each dark (resp. light) face,
then applying the local rule of Figure 7 to each edge ofH , and finally deleting the
edges of H , the dark square vertex v0 corresponding to the outer face, the outer
vertices of H and the edges between these vertices and v0.

Lemma 51. Let H be an hyperoriented hypermap in J�, and let T D ˆ�.H/.

Then, T is a hypermobile if and only if H 2 H�. Moreover, in this case the

property .�/ holds for each inner 1-way edge e of H .

Proof. The proof is very similar to the proof of Lemma 47. As in Lemma 47,
the Euler relation implies that ˆ�.H/ is a hypermobile if and only if it is acyclic
and the outer face is simple. Next one shows that if H … H� then ˆ�.H/ has a
cycle. The proof is as forˆC: consider either a counterclockwise cycle or outward
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cocycle C ofH , and can prove using the Euler relation that there is a cycle of T in
the region ofH outside of C . The only difference is that when applying the Euler
relation, one needs to consider the subgraph K of T made of all its inner vertices
outside of C and all its edges outside of C . Lastly one shows that ifH 2 H� then
ˆ�.H/ is acyclic, and property .�/ holds exactly as for ˆC. �

Next we prove that ˆ� and ‰� are inverse of each other.

Lemma 52. Let T be a hypermobile of negative excess, and let H D ‰�.T / be

the closure of T . Then T is a tree covering all the inner vertices of H (but none

of the outer vertices) and all the square vertices placed in the inner faces of H .

Proof. The proof of Lemma 52 is the same as the proof of Lemma 48. �

Corollary 53. Let T 2 T�, and let H D ‰�.T /. Then H is in H�, and

ˆ�.H/ D T . Moreover, the excess of T equals minus the outer degree of H .

Proof. Since the excess � of T is negative, after doing the closure operations on
T there remain �� ccw-outer edge. Moreover since T covers none of the outer
vertices of H , each incidence of an inner edge e of H with an outer vertex v is
such that e is either 0-way or 1-way out of v. ThusH is in J� and has outer degree
��. Moreover it is clear that superimposing T and H we have the local rules
indicated in Figure 28 (since these rules are true for the outerplanar map yT and
are preserved by the closure), hence T D ˆ�.H/. Lastly, by Lemma 48, T is a
tree, hence a hypermobile. Thus by Lemma 51, H is in H�. �

Lemma 54. LetH 2 H�, and let T D ˆ�.H/. Then T is inT�, and‰�.T / D H .

Proof. The proof of Lemma 54 is the same as the proof of Lemma 50. �

Corollary 53 and Lemma 54 conclude the proof of Theorems 4 and 6 for ˆ�.

9.3. Proof for ˆ0. The proof for ˆ0 is again very similar. We define J0 as the
family of vertex-rooted hyperorientations such that for each incidence of an edge
e with the root-vertex v0, e is either 0-way or 1-way out of v0. We extend the
definition of the mapping ˆ0 to J0: for H 2 J0, we define ˆ0.H/ as the map
obtained from H by placing a dark (resp. light) square vertex in each dark (resp.
light) face, then applying the local rule of Figure 7 to each edge of H , and finally
deleting the edges of H , and the root vertex v0. In a similar way as for ˆ�, one
proves:
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Lemma 55. Let H be an hyperoriented hypermap in J0, and let T D ˆ0.H/.

Then, T is a hypermobile if and only if H 2 H0. Moreover, in this case the

following property holds for each inner 1-way edge e of H :

.|/ Let u; v be the square vertices in the faces incident to e, and let C be the

(unique) cycle contained in T [ ¹e�º, where e� is the edge joining u and v

across e. Then e is oriented from the region delimited by C containing the

root-vertex, to the other region delimited by C (across e�).

Then the proof that ˆ0 and‰0 are inverse mappings is similar to the caseˆ�.
It implies Theorems 4 and 6 for ˆ0.

10. Proofs of Theorems 7, 25, 26, and 27 about canonical orientations

Theorems 25, 26, and 27 state that a hypermap H admits a (unique) �-weighted
orientation in H�, HC, or H0 if and only if the charge function � fits H . Recall
that Theorem 25 actually generalizes Theorem 7 about plane hypermaps (see
Lemma 37). In this section, we prove Theorems 25, 26, and 27. The proof is
organized as follows.

� In Section 10.1, we prove the necessity of the fitting condition in Theo-
rems 25, 26, and 27.

� In Section 10.2, we develop some tools useful for proving the existence of
constrained hyperorientations.

� In Section 10.3, we prove Theorem 26 in the case where every light face has
charge equal to its degree.

� In Section 10.4, we complete the proof of Theorem 26 by reduction to the
case treated in Section 10.3.

� In Section 10.5, we complete the proof of Theorems 25 and 27 by reduction
to Theorem 26.

10.1. Necessity of the fitting condition in Theorems 25, 26, and 27. In this
subsection we prove the following lemma.

Lemma 56. If a dark-rooted (resp. light-rooted, vertex-rooted) hypermap H

admits a �-weighted orientation in H� (resp. HC, H0), then � fits H . Moreover

if H is dark-rooted, then the contour of the outer face is simple.
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Proof. LetH be a dark-rooted, light-rooted, or vertex-rooted hypermap, and let �
be a charge function such that H admits a �-weighted hyperorientation � in H�,
HC, or H0. We denote by w.a/ the weight of a vertex, edge, or face a ofH in �.

We first suppose that H is dark-rooted and prove that the contour of the outer

face f0 of H is simple, the charge of every inner vertex is positive, the charge

of every outer vertex is 0, the charge of the dark outer face f0 is � deg.f0/, and

�total D 0. By definition of H� the contour of f0 is a simple cycle, and since the
weight of each outer edge is 1 in�, the weight of the outer face isw.f0/ D deg.f0/.
Since, by definition, w.f0/ D ��.f0/, we get �.f0/ D � deg.f0/. Moreover, by
definition, the weight of any outer vertex v is w.v/ D 1 D �.v/ C 1, hence
�.v/ D 0. Consider now an inner vertex v. Since the orientation � 2 H� is
accessible from the outer vertices there is a 1-way edge e directed toward v, hence
w.v/ � w.e/ > 0. It only remains to prove that �total D 0. Let V , F , and K be
respectively the set of vertices, light faces, and dark faces of H . By definition,

X

v2V

w.v/C
X

f 2F

w.f / D
X

k2K

w.k/;

and since� is �-weighted we get
� X

v2V

�.v/
�

C deg.f0/C
� X

f 2F

�.f / � deg.f /
�

D
� X

k2K

��.k/ � deg.k/
�

C deg.f0/:

Hence,
�total D

X

v2V

�.v/C
X

f 2F

�.f /C
X

k2K

�.k/ D 0:

With similar arguments, one proves that if H is light-rooted then the charge

of every vertex is positive, the charge of the light outer face f0 is deg.f0/, and

�total D 0, and if H is vertex-rooted then the charge of every non-root vertex is

positive, the charge of the root-vertex is 0, and �total D 0.
It only remains to prove thatH satisfies the �-girth condition. We first suppose

thatH is dark-rooted. Let R be a light region. Let V , E, F andK be respectively
the set of vertices strictly inside R, edges strictly inside R, light faces inside R,
and dark faces inside R. We want to prove

j@Rj � �.R/ WD
X

v2V

�.v/C
X

f 2F

�.f /C
X

k2K

�.k/; (5)

with strict inequality if every outer vertex is strictly in R.
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Because� is �-weighted we get
X

v2V

�.v/ D �b C
X

v2V

w.v/;

X

f 2F

�.f / D jEj C j@Rj C
X

f 2F

w.f /;

X

k2K

�.k/ D �jEj C 1f02R � deg.f0/ �
X

k2K

w.k/;

where b is the number of outer vertices in V , and f0 is the dark outer face. Hence

�.R/ D j@Rj � b C 1f02R � deg.f0/C
X

v2V

w.v/C
X

f 2F

w.f / �
X

k2K

w.k/;

and the requirement (5) becomes
X

k2K

w.k/ �
X

v2V

w.v/�
X

f 2F

w.f / � 1f02R � deg.f0/ � b; (6)

Moreover we have
X

k2K

w.k/ �
X

v2V

w.v/�
X

f 2F

w.f / D x � y � x;

where x is the sum of the (positive) weights of the 1-way edges in E oriented
toward vertices incident to edges in @R, and y is the sum of the (non-positive)
weights of the 0-way edges in @R. If f0 … R, then b D 0 and the inequality (6)
holds because x � 0. If f0 2 R and b D deg.f0/ (i.e. every outer vertex is
strictly inside R), then inequality (6) is strict because x > 0 (indeed, since � is
accessible from the outer vertices of H , there exists a 1-way edge in E oriented
toward vertices of @R). Lastly suppose that f0 2 R and b < deg.f0/. Because f0

is a dark face, all the edges incident to f0 are in E, and because � 2 H� these
edges are 1-way and have weight 1. Thus for each outer vertex v on @R there is
an edge in E of weight 1 oriented toward v. Hence x � deg.f0/ � b which is the
number of outer vertices on @R. This proves (6) and completes that proof that H
satisfies the �-girth condition when H is dark-rooted.

The case where H is light-rooted (resp. vertex-rooted) is similar. Indeed, by
the same arguments, we see that the �-girth condition a light region R becomes
the following requirement:

X

k2K

w.k/�
X

v2V

w.v/�
X

f 2F

w.f / � 0;
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with strict inequality if one of the outer edges is strictly inside R (resp. if the root
vertex is strictly inside R). This is easily seen to hold with arguments similar to
the ones above. The only point that requires a special argument is that the equality
is strict ifH is light-rooted and one of the outer edges is strictly inside R. For this
particular case, we need to prove that the sum x of weights of the 1-way edges in
E oriented toward vertices incident to edges of @R is positive. This holds, because
if one of the outer vertices v is strictly insideR then x > 0 because the vertices on
@R are accessible from v, while if none of the outer vertices is strictly in R, then
the outer edge e strictly inside R is a 1-way edge in E oriented toward a vertex of
@R (indeed, e is 1-way because� 2 HC). �

10.2. A preliminary result about ˛-hyperflows. In this subsection we prove a
result akin to the mincut-maxflow theorem for the hyperflows of bipartite graphs.
This result will then be used in Section 10.3.

Throughout this subsection, we fix a (finite, undirected) bipartite graph G D

.X t Y;E/ where every edge e 2 E joins a vertex in X to a vertex in Y . We call
hyperflow of G, a function ' from the edge set E to the set RC of non-negative
real numbers. Let P be a directed path, or cycle, of G and let PX be the subset of
edges ofP oriented toward a vertex inX . Given a hyperflow ' ofG, we say thatP
is '-positive if '.e/ > 0 for every edge e 2 PX . A '-positive path is represented
in Figure 30(a). For a vertex x0 2 X , we say that a hyperflow ' is accessible

from x0 if for all x 2 X there is a '-positive path from x0 to x. For instance, The
hyperflow represented in Figure 30(a) is accessible from x0.

(a) (b) (c)

0

1

2

3

4

5

x0

x

C C

D

f

1
0

0

0

3

3

5

f
D

Figure 30. (a) A bipartite graph endowed with a hyperflow ', and a '-positive directed
path from x0 to x. The vertices in X and Y are represented in light and dark respectively
and the value of ' is indicated on each edge. (b)–(c) The cycles C and D in the proof of
Lemma 59.
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Let ' be a hyperflow of G D .X tY;E/. We call '-flow at a vertex v 2 X tY

the sum
�.v/ WD

X

e2E incident to v

'.e/:

Given a function ˛ from X t Y to R
C, we say that ' is an ˛-hyperflow if the

'-flow at every vertex v 2 X t Y is equal to ˛.v/. We now establish a criterion
for the existence of an accessible ˛-hyperflow:

Lemma 57. Let ˛ be a function from X t Y to R
C. For a subset A � X , let us

denote

˛.A/ WD
X

x2X

˛.x/ �
X

y2YA

˛.y/;

where YA denotes the set of vertices in Y having all their neighbors in A. Then

there exists an ˛-hyperflow of G if and only if

˛.A/ � 0 for all A � X:

with equality for A D X . Moreover for any vertex x0 2 X and any ˛-hyperflow

', the hyperflow ' is accessible from x0 if and only if ˛.A/ > 0 for all non-empty

subset A � X not containing x0.

Proof. First suppose that there exists an ˛-hyperflow ' of G. In this case, for all
A � X , X

x2A

˛.x/ D
X

e incident to A

'.e/ �
X

y2YA

˛.y/;

with equality if A D X . Hence ˛.A/ � 0; with equality for A D X .

We will now prove that an ˛-hyperflow exists whenever ˛.A/ � 0 for all
A � X , with equality for A D X . We make an induction on jX [ Y [ Ej.
The property is trivial when E D ;, hence for the induction step we can assume
E ¤ ;. We consider an edge e0 2 E with endpoints x0 2 X and y0 2 Y . For � � 0

we denote by ˛� the function from X t Y to R
C defined by: ˛�.x0/ D ˛.x0/ � �,

˛�.y0/ D ˛.y0/ � � and ˛�.z/ D ˛.z/ for all z ¤ x0; y0. Observe that if ' is an
˛�-hyperflow of G, then '0 defined by '0.e0/ D '.e0/ C � and '0.e/ D '.e/ for
all e ¤ e0 is an ˛-hyperflow of G. Hence it suffices to prove that there exists an
˛�-hyperflow of G for some � � 0. We choose � maximal such that ˛�.x0/ � 0,
˛�.y0/ � 0, and ˛�.A/ � 0 for all A � X . Clearly, ˛�.X/ D ˛.X/ D 0, and
˛�.A/ � 0 for all A � X . Moreover, we have either ˛�.x0/ D 0, or ˛�.y0/ D 0 or
˛�.A/ D 0 for some A ¤ ;; X . Suppose first ˛�.x0/ D 0. In this case we consider
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the subgraph G0 obtained from G by deleting x0 and the incident edges, and we
denote by ˛0 the restriction of ˛� to G0. Clearly ˛0.A/ � 0 for all A � X n ¹x0º,
with equality for A D X n ¹x0º. Hence by the induction hypothesis, there exists
an ˛0-hyperflow of G0 and this gives an ˛�-hyperflow of G (by setting the flow on
edges incident to x0 to be 0), and hence an ˛-hyperflow ofG. The case ˛�.y0/ D 0

is similar. Suppose lastly that ˛�.A/ D 0 for some subsetA ¤ ;; X . Let xA D XnA

and xYA D Y n YA. Let G1 (resp. G2) be the graph with vertex set A [ YA (resp.
xA [ xYA) and edge set E1 (resp. E2) made of all the edges with both endpoints

in A [ YA (resp. xA [ xYA). Observe that the graph G1 [ G2 is simply obtained
from G by deleting the set E0 of edges having both endpoints in A [ xYA; see
Figure 31. We denote by ˛0 and ˛00 respectively the restriction of ˛� to G1 and G2.
Observe that for all B � A, the set of vertices of G1 with all their neighbors in B
is YB[ xA \ YA D YB . Thus

˛0.B/ D
X

x2B

˛�.x/ �
X

y2YB

˛�.y/ D ˛�.B/:

Hence ˛0.B/ � 0 for all B � A, with equality for B D A. Hence, by the induction
hypothesis, there exists a ˛0-hyperflow '1 of G1. Now for B � xA, the set of
vertices of G2 with all their neighbors in B is YA[B \ xYA. Hence

˛00.B/ D
X

x2B

˛�.x/ �
X

YB[A\ xYA

˛�.y/

D
� X

x2A[B

˛�.x/ �
X

x2A

˛�.x/
�

�
� X

y2YA[B

˛�.y/ �
X

y2YA

˛�.y/
�

D ˛�.A [ B/:

Hence ˛00.B/ � 0 for allB � xA, with equality forB D xA. Hence, by the induction
hypothesis, there exists an ˛00-hyperflow '2 ofG2. We now consider the hyperflow
' ofG defined by '.e/ D 0 if e 2 E0, '.e/ D '1.E/ ifE in E1, and '.e/ D '2.e/

if e 2 E2. It is clear that ' is an ˛�-hyperflow. This completes the proof by
induction.

It remains to prove that an ˛-hyperflow ' is accessible from a vertex x0 2 X

if and only if ˛.A/ > 0 for all non-empty subset A � X not containing x0.
Suppose first that ' is accessible from x0 and let A � X be a non-empty subset
not containing x0. Let P be a '-positive path from x0 to a vertex x 2 A. Let e0

be the first edge of P incident to a vertex in A. This edge of P is directed from its
endpoint y 2 Y to its endpoint a 2 A, hence '.e0/ > 0. Moreover y … YA, hence

X

x2A

˛.x/ D
X

e incident to A

'.e/ � '.e0/C
X

y2YA

˛.y/:
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G1

G2

E1

E2

E0

xA

A

xYA

YA

Figure 31. The bipartite graph G D .X t Y; E/, and the subgraphs G1 and G2. We have
X D A [ xA, Y D YA [ xYA and E D E0 [E1 [E2.

Thus ˛.A/ � '.e0/ > 0, as wanted. Suppose now that ' is not accessible from x0.
Consider the setA of vertices x 2 X such that there exists no '-positive path from
x0 to x. This definition implies that every edge e incident to a vertex x 2 A and a
vertex y 2 Y n YA satisfies '.e/ D 0. Thus

X

x2A

˛.x/ D
X

e incident to A

'.e/ D
X

e incident to YA

'.e/ D
X

y2YA

˛.y/:

Hence ˛.A/ D 0 for a non-empty set A � X not containing x0. �

Remark 58. In the literature, ˛-hyperflows are also known as b-matchings [37,
Chapter 21]. Our existence criterion in Lemma 57 can be checked to be equiv-
alent to Corollary 21.1b from [37] (we have provided our own proof and ter-
minology for completeness and convenience). About efficiently computing an
˛-hyperflow of G D .V; E/, when ˛ only has integer values the problem can
easily be reduced to that of finding a perfect matching in a bipartite graph
G0 D .V 0; E 0/ associated to G (each vertex v 2 G is turned into ˛.v/ copies
in G0, and for each edge .u; v/ 2 G, there is an edge in G0 between every copy
of u and every copy of v). The algorithm of Hopcroft and Karp [23] yields
a perfect matching of G0 in time O.

p
jV 0jjE 0j/, which is O.c

p
jV jjEj/, with

c D .
P

v2V ˛.v//
1=2

P
.u;v/2E ˛.u/˛.v/. A detailed survey on complexity results

(for the general case of flow values in R
C) is given in [37, Chap. 21].

Suppose that a bipartite graph G D .X t Y;E/ is embedded (i.e., drawn
without edge crossings) in the plane. In this case, a directed cycle C of G is
called counterclockwise if the outer face of G lies to the right of C . A hyperflow
' of G is called minimal if there is no '-positive counterclockwise directed cycle
of G. The hyperflow ' represented in Figure 30(a) is not minimal because there
is a '-positive counterclockwise directed cycle of length 4.
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Lemma 59. Let G D .X t Y;E/ be a bipartite graph embedded in the plane. If

˛ is a function from X tY to R
C such that there exists an ˛-hyperflow of G, then

there exists a unique minimal ˛-hyperflow of G.

Proof. We first prove the existence of a minimal ˛-hyperflow. We first define
the operation of pushing a cycle. Let ' be an ˛-hyperflow, and let C be a '-
positive counterclockwise directed cycle. Let CX (resp. CY ) be the subset of
edges of the directed cycle C oriented toward a vertex in X (resp. Y ). Let
m D min¹'.e/; e 2 CX º and let  be the hyperflow defined by  .e/ D '.e/ �m

if e 2 CX ,  .e/ D '.e/Cm if e 2 CY , and  .e/ D '.e/ if e is not in C . Observe
that  is an ˛-hyperflow. We say that  is the ˛-hyperflow obtained from ' by
pushing the cycle C . We will now prove that the minimal ˛-hyperflow can be

obtained from any ˛-hyperflow by repeatedly pushing counterclockwise directed

cycles. For an ˛-hyperflow ' we consider the total numberN.'/ of faces which are
enclosed in (i.e., separated from the outer face by) a '-positive counterclockwise
directed cycle. By definition, an ˛-hyperflow ' is minimal if and only ifN.'/ D 0.
Hence it is sufficient to show that for any non-minimal ˛-hyperflow ' there is an
˛-hyperflow obtained from ' by pushing a '-positive counterclockwise directed
cycle such that N. / < N.'/. Let ' be a non minimal ˛-hyperflow, and let C be
a '-positive counterclockwise directed cycle C enclosing a maximal number of
faces. We consider the ˛-hyperflow  obtained from ' by pushing the cycle C .
Now consider a face f not enclosed by a '-positive counterclockwise directed
cycle. If f is enclosed by a  -positive counterclockwise directed cycle D, then
D must have an edge in CY . But this would imply the existence of a '-positive
counterclockwise directed cycle D0 � C [ D enclosing f and all the faces
inside C : see Figure 30(b). This is impossible by the choice of the cycle C .
Consider now a face f inside C and incident to an edge of C . This face cannot
be inside a  -positive counterclockwise directed cycle D, otherwise D would
cross C , and there would be again a '-positive counterclockwise directed cycle
D0 � C [D enclosing more faces than C : see Figure 30(c). This is impossible
by the choice of the cycle C . Thus N. / < N.'/ as wanted. This proves the
existence to a minimal ˛-hyperflow.

We now prove the uniqueness of the minimal ˛-hyperflow. Suppose that ' and
 are distinct ˛-hyperflows. We want to show that they are not both minimal. Let
e1 be an edge such that '.e1/ <  .e1/. Let x1 2 X and y1 2 Y be the endpoints
of e. Since

X

e incident to y1

'.e/ D ˛.y1/ D
X

e incident to y1

 .e/;
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there exists an edge e0
1 ¤ e1 incident to y1 such that '.e0

1/ >  .e0
1/. Continuing

in this way, one find a directed path made of edges e1; e
0
1; e2; e

0
2; e3; e

0
3; : : : such

that '.ei/ <  .ei / and '.e0
i/ >  .e

0
i /. This path will eventually intersect itself, so

we get a directed simple cycle C of G such that C is  -positive and the directed
cycleC 0 obtained by reversingC is '-positive. EitherC orC 0 is counterclockwise,
hence ' and  are not both minimal. �

Remark 60. When ˛ has only integer values and G has at least one ˛-hyperflow,
more can be said on the structure of the set K of ˛-hyperflows of G such that
all flow-values are integers. By a result of Felsner and Knauer [20, Sec.4.2]
(extending an earlier result by Khuller et al. [24]), the set K carries the structure
of a distributive lattice (their result is formulated on flows of directed graphs with
prescribed flow-excess at each vertex, which are equivalent to our formulation
of ˛-hyperflows upon orienting all the edges from black to white vertices); and
naturally the minimum element in the lattice is the minimal ˛-hyperflow. This is an
extension of a well-known result of Propp [34] and Felsner [19] on ˛-orientations
of planar maps (an ˛-orientation is an orientation where every vertex v has
outdegree ˛.v/): Propp and Felsner have shown that, if non-empty, the set of ˛-
orientations of a map embedded in the plane is a distributive lattice, the minimum
element of which is the unique ˛-orientation with no clockwise cycle.

About algorithmic aspects, it should be doable to compute the minimal ˛-
hyperflow in linear time once an ˛-hyperflow is computed (which has superlinear
complexity as we have seen in Remark 58), by extending the approach described
in [14] for ˛-orientations.

Lastly we prove an additional technical lemma about the minimal hyperflow.

Lemma 61. Let G D .X t Y;E/ and ˛ be as in Lemma 59, and let '0 be the

minimal ˛-hyperflow of G. Let x 2 X , y 2 Y , and let a D .x; y/ be an edge of G

such that the face on the right of a (when oriented from x to y) is the outer face.

If there is an ˛-hyperflow ' such that '.a/ > 0, then '0.a/ > 0.

Proof. Let ' be a ˛-hyperflow such that '.a/ > 0. It was shown in the proof
of Lemma 59, that the minimal ˛-hyperflow '0 can be obtained from ' by
repeatedly pushing counterclockwise directed cycles. Moreover, because the face
on the right of a is the outer face, for any counterclockwise directed cycle C ,
the edge a belongs to the subset CY of edges of C oriented toward a vertex
in Y . Thus pushing cycles will only increase the value of the hyperflow on a,
so '0.a/ � '.a/ > 0. �
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10.3. Proof of Theorem 26 when the charge of every light face is equal to its

degree. This subsection is devoted to the proof of the following result.

Proposition 62. Let H be a light-rooted hypermap. Let � be a charge function

which fits H and such that every light face has charge equal to its degree. Then

H admits a unique �-weighted hyperorientation in HC.

Throughout this subsection .H; �/ is a charged hypermap satisfying the hy-
potheses of Proposition 62. We say that a weighted hyperorientation of H is
R

C-weighted if 0-way edges have weight 0, and 1-way edges have positive real
weights. In fact, the �-weighted hyperorientations of H are precisely the R

C-
weighted hyperorientations such that

� every vertex has weight �.v/,

� every inner dark face f has weight ��.f / � deg.f /.

We will prove Proposition 62 in two steps. First we will establish the existence of
a certain ˛-hyperflow in a related graph GH using Lemma 57, and then we will
use this ˛-hyperflow to define a �-weighted hyperorientation of H .

We call star graph of H the bipartite graph GH (embedded in the plane)
obtained as follows: for each dark face h of H , place a vertex y of GH inside
h and draw an edge e of GH going from y to each corner of h. The construction
is illustrated in Figure 32. We denote by X the vertex set of H , and by Y the
remaining set of vertices of GH (which are placed inside the dark faces of H ).

0

1
2

3

4

H GH

0

0

0

1

1
1 1

1
1

1

2
2 2

2

2

2

2

3

3

3

3

3

3

3
44

4
4

4

4
4

Figure 32. A hypermap H and the associated star graph GH . The bipartite map GH is
endowed with a hyperflow ', whileH is endowed with the R

C-weighted hyperorientation
�.'/.

Given a hyperflow ' ofGH , we define anR
C-weighted hyperorientations �.'/

of H as follows:

� for every edge e of GH , we give weight '.e/ to the edge e0 ofH preceding e
clockwise around the endpoint of e in X ;

� we orient e0 1-way if '.e/ > 0 and 0-way otherwise.
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The mapping � is illustrated in Figure 32. It is clear that � is a bijection between
the hyperflows of GH and the R

C-weighted hyperorientations of H . Moreover,
the '-flow at a vertex v of GH is equal to the weight of the corresponding vertex
or dark face of H in the hyperorientation �.'/. This proves the following result.

Lemma 63. The mapping � is a bijection between the �-weighted hyperorienta-

tions ofH and the ˛-hyperflows of GH , where ˛ is the function defined on X t Y

by

� for every vertex x 2 X , ˛.x/ D �.x/,

� for every vertex y 2 Y , ˛.y/ D ��.fy/� deg.fy/, where fy is the dark face

of H containing y.

We will now prove the existence of a minimal ˛-hyperflow for GH by using
Lemmas 57 and 59.

Lemma 64. Let ˛ be the function defined in Lemma 63. ThenGH admits a unique

minimal ˛-hyperflow '. Moreover this hyperflow is accessible from every outer

vertex of H .

Proof. For A � X , we denote by YA the set of vertices of GH placed in the inner
dark faces of H having all of their incident vertices in A and we let

˛.A/ WD
X

x2A

˛.x/ �
X

y2YA

˛.y/:

By Lemmas 57 and 59, the existence and uniqueness of ' are granted provided
˛.A/ � 0 for allA � X with equality forA D X . We denote byGA D .A[YA; EA/

the subgraph of GH induced by A[ YA (that is, EA is the set of edges of GH with
both endpoints in A[YA). See for instance Figure 33(a). Since ˛.X/ is linear over
the connected components of the subgraph GA, it is sufficient to prove ˛.A/ � 0

when GA is connected (with equality for A D X).
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Figure 33. (a) A subgraphGA D .A[YA; EA/ of the star graphGH : the vertices in A[YA

are represented by big discs and the edges in EA are represented in bold lines. (b) The
hypermap HA.
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Let A � X be such that A ¤ ; and GA is connected. Observe that GA is the
star graph of a hypermapHA with a light outer face: the set of vertices ofHA is A
and the set of dark faces of HA is the set of inner dark faces of H having all their
incident vertices in A. See for instance Figure 33(b). Let DA and LA be the set of
dark and light faces of HA. By definition of ˛, we get

˛.A/ D
X

x2A

�.x/C
X

f 2DA

.�.f /Cdeg.f // D
X

x2A

�.x/C
X

f 2DA

�.f /C
X

`2LA

deg.`/:

Now every face ` 2 LA corresponds to a light region of H , thus the �-girth
condition gives

deg.`/ �
X

x vertex of H strictly inside `

�.x/ C
X

f face of H inside `

�.f /;

with strict inequality for the outer face `0 ofHA if `0 is not equal to the outer face
of H . Thus, X

`2LA

deg.`/ �
X

x vertex of H not in A

�.x/ C
X

f face of H not in DA

�.f /;

with strict inequality if the outer face of HA is not equal to the outer face of H .
This gives

˛.A/ � �total D 0:

Moreover, if one of the outer vertices is not in A, then one of the dark faces
incident to the outer edges is not in DA, hence the inequality is strict: ˛.A/ >
�total D 0. Thus, by Lemmas 57 and 59, the graph GH admits a unique minimal
˛-hyperflow ', and ' is accessible from every outer vertex. �

Next we use lemma 64 to prove the following.

Lemma 65. The hypermap H admits a unique �-weighted hyperorientation �

which is both minimal and accessible from the outer vertices.

Proof. Existence. By Lemma 64, the bipartite graph GH admits a unique min-
imal ˛-hyperflow '. By Lemma 63, we know that � D �.'/ is a �-weighted
hyperorientation of H . We now want to prove that � is both minimal and acces-
sible from the outer vertices.

We first prove that � is minimal. Suppose, by contradiction, that there is a
simple counterclockwise directed cycle C of � distinct from the outer face. We
will show that in this case, there is a '-positive counterclockwise directed cycleD
ofGH ; see Figure 34. Let e1; : : : ; ek be the oriented edges of C . Let fi be the dark
face of H incident to ei (which is on the right of ei ). Let xi ; x

0
i 2 X be the origin
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and end of ei , and let yi 2 Y 0 be the vertex ofGH in the dark face fi . Let ai ; a
0
i be

the oriented edges .xi ; yi/ and .yi ; x
0
i/; see Figure 34. The edges a1; a

0
1; : : : ; ak; a

0
k

form a counterclockwise directed cycleD ofG0
H D .XtY 0; E 0/, hence it contains

a simple counterclockwise directed cycle D0. By definition, the hyperflow '0.a0
i /

is equal to the weight of ei which is positive. Hence the counterclockwise directed
cycle D0 is '-positive. This is a contraction since the hyperflow ' is minimal.

xi

x0
i

ai

a0
i

yi ei

C

D0

Figure 34. A counterclockwise directed cycle C of H (thick lines) and the corresponding
'-positive counterclockwise directed simple cycle D0 of GH (thick dashed lines).

We now want to prove that � is accessible from every outer vertex of H . Let
u0 be an outer vertex of H , and let v be an inner vertex. We want to exhibit a
directed path of H from u0 to v. We know (by Lemma 64) that the hyperflow
' of GH is accessible from u0, hence for every vertex u of H there exists a '-
positive path of GH from u0 to u. For a vertex u ¤ u0 of H , we consider the
set Au of all the edges of GH incident to u which are part of a '-positive simple
directed path of GH from u0 to u. For a 1-way edge e ofH having origin u ¤ u0,
we denote by �.e/ the edge of Au preceding e in clockwise direction around u,
and we denote by �.e/ the edge of H following �.e/ around u; see Figure 35(a).
By definition, '.�.e// > 0 hence �.e/ is a 1-way edge of H directed toward u
in �. Moreover, there exists no '-positive (simple) directed path of GH from
u0 to u ending between e and �.e/ in clockwise direction around u. We now
construct a directed path of H ending at v as follows3. First we choose an edge
a 2 Av and denote by e0 the edge of H following a clockwise around v. The
edge e0 is a 1-way edge oriented toward v. Then we define some edges e1; e2; : : :

as follows: for all i � 0, if the origin of the 1-way edge ei is distinct from u0 we
define eiC1 D �.ei/. We will now prove that there exists i such that the origin

3 Our construction corresponds to the so-called leftmost path which has proved useful for
other bijective results on maps.
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of ei is u0 (so that ei ; ei�1; : : : ; e0 is a directed path from u0 to v). Suppose the
contrary. In this case, there must exist integers i < j such that the origin of ej is
the end of ei , and we consider the least such j . The edges ei ; ei C 1; : : : ; ej form
a simple directed cycle C of H , which is not the outer face of H . And since �
has no counterclockwise directed cycle, except for the outer faces ofH , the cycle
C is directed clockwise. The situation is represented in Figure 35(b). Let u be the
end of ei (also the origin of ej ). By definition of ei , the edge of GH preceding ei

around u is part of a '-positive directed path P of GH from u0 to u. Hence, the
path P must intersect the cycleC . We denote byw the first vertex ofC on the path
P from u0 to u, and by ek the edge of C with origin w (with i � k < j ). Note
that the directed path P arrives at w between ekC1 D �.ek/ and ek in clockwise
direction around w. This is impossible by definition of � . This completes the
proof that there is a directed path from u0 to v in �. Hence the hyperorientation
� is accessible from every outer vertex of H .

e

u0
u0

u
u

v

w

P

C

ei

ej

ek

(a) (b)

Figure 35. (a) Definition of the edge �.e/, for a 1-way edge e of H with origin u ¤

u0. The '-positive paths of GH are represented in dashed lines. (b) The cycle C D

¹ei ; eiC1; : : : ; ej º of H , and the '-positive path P of GH (represented in dashed line).

Uniqueness. Suppose that z� is a �-weighted hyperorientation of H which is
minimal and accessible from every outer vertex of H . We want to prove that
z� D �. It suffices to prove that the hyperflow Q' WD ��1. z�/ of GH is equal to '.
By Lemma 63, we know that Q' is an ˛-hyperflow of GH . Hence by Lemma 59,
it suffices to prove that Q' is minimal. Suppose, by contradiction that Q' is not
minimal, and consider a simple Q'-positive counterclockwise cycle D of G0

H . We
will now exhibit a counterclockwise directed cycle C of z�. For a vertex x of H
on the cycleD we consider the edge ax ofD oriented toward x, and the edge ex of
H following ax clockwise around x; see Figure 36(a). Since '.ax/ > 0, the edge
ex is 1-way oriented toward x in z� D �. Q'/. The origin x0 of ex is either on the
cycle D or strictly inside D. If x0 is strictly inside D, we consider a directed path
of z� going from an outer vertex ofH to x0 (we know that such a path exists since
z� 2 HC). We extract from this path a directed path of z� starting at a vertex on the
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cycleD, staying strictly insideD and ending at x0. We denote byQx the directed
path of � made of Px followed by the edge ex, with the convention that Px is
empty if the origin x0 of ex is on D. With this convention, for all x of H on the
cycle D, the directed path Qx of z� starts at a vertex of D, stays strictly inside D
and ends at x. We now consider a vertex x0 ofH onD, and for all i � 0we denote
by xiC1 the origin of Qxi

. The infinite path
S1

iD0Qxi
stays inside D and must

intersect itself. Let n be the largest integer such that the pathQ D
Sn�1

iD0 Qxi
from

xn to x0 is simple. Since Q is simple, it cuts the interior of the cycle D into two
regions. Moreover, the edge exn

is easily seen to be in the region on the left ofQ.
Therefore the path

Sn
iD0Qxi

contains a counterclockwise cycle; see Figure 36(b).
This implies that z� is not minimal, a contradiction. �

(a) (b)

ax

x
x

0 Qx0

Qx1

Qx2

Qx3

ex

ex3

x3 x2

x1

x0

D D

Figure 36. (a) The counterclockwise cycle D of GH (dashed lines), a vertex x of H on D
and the 1-way edge ex of H . (b) The directed paths Qx0

; Qx1
; : : : ofH inside the cycleD

of GH and a counterclockwise cycle C of H contained in
S3

iD0Qxi
.

Proof of Proposition 62. We now complete the proof of Proposition 62. By
Lemma 65 there is a unique �-weighted hyperorientation � which is both min-
imal and accessible from the outer vertices. In order to complete the proof of
Proposition 62 we need to prove that� is in HC, that is, we need to prove that the
outer face ofH is a clockwise directed cycle. Hence it suffices to prove that every

outer edge of H has positive weight (hence is 1-way).

Let e0 be an outer edge of H . We denote by w.a/ the weight of a vertex,
edge or face a in �. We want to prove w.e0/ > 0. Let us first treat the case
where e0 is a loop. Let f0 be the light outer face and let f be the dark inner
face incident to e0. The light region R D ¹f0; f º satisfies j@Rj D deg.f0/ � 1

and �.R/ D �.f0/C �.f / D deg.f0/C �.f /. Thus the �-girth condition gives
�1 > �.f /. Hence w.e0/ D w.f / D �1� �.f / > 0 as wanted.
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We now suppose that e0 is not a loop and want to prove w.e0/ > 0. We
consider the hypermap H 0 obtained from H by adding two edges e0; e00 with the
same endpoints as e0 in the outer light face of H as indicated in Figure 37(a). In
H 0, the edges e0 and e0 enclose an inner light face f 0 of degree 2, while the edges
e0 and e00 enclose an inner dark face f 00 of degree 2. Let

� D
1

2
min

R
.j@Rj � �.R// :

where R ranges over all light regions containing strictly at least one of the outer
edges. Since H satisfies the �-girth condition, we have � > 0. Let f be
the dark face incident to e0 and let � 0 be the charge function of H 0 defined by
� 0.f / D �.f / C �, � 0.f 0/ D 2, � 0.f 00/ D �2 � �, and � 0.a/ D �.a/ for any
vertex or face a … ¹f; f 0; f 00º of H 0.

f

f0

(a) (b)

H H 0 H 0

e0 e0

e00

e0

e0

e00

e0

f 00

f

f 0 f 0

f0

u1 u2

P

0.f /D C

0 D2

0.f 00/ 2

Figure 37. (a) The hypermap H 0 obtained from H by adding two edges e0; e00 with the
same endpoints as e0 (and conveniently assigning charges for the new faces and the dark
face incident to e0). (b) If e0 was 1-way, by the accessibility properties of HC, it would
yield a P forming with e0 a counterclockwise cycle (shown in red), a contradiction.

Claim 66. The charge function � 0 fits H 0.

Proof. It is easy to see that the charge � 0.v/ D �.v/ of every vertex is positive, the
charge � 0.f0/ D �.f0/ of the light outer face f0 is deg.f0/, and � 0

total D �total D 0.
It remains to prove thatH 0 satisfies the � 0-girth condition. LetR0 be a light region
ofH 0. We need to prove j@R0j � � 0.R0/, with strict inequality ifR0 strictly contains
an outer edge.

First suppose that f 00 2 R0. In this case f0; f
0 2 R0 (because R0 is a light

region). Let R be the light region of H obtained from R0 by removing f 0; f 00.
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If f 2 R, then R strictly contains the outer edge e0 so that

j@R0j D j@Rj � �.R/C 2� D � 0.R0/C 2�;

while if f … R, then

j@R0j D j@Rj � �.R/ D � 0.R0/C �:

Next suppose that f 00 … R0 and f … R0. If f 0 … R0 then R0 is a light region of
H and we get

j@R0j � �.R0/ D � 0.R0/;

with strict inequality if R0 strictly contains an outer edge. If f 0 2 R0 then we
consider the light region R of H obtained from R0 by removing f 0. We get

j@R0j D j@Rj C 2 � �.R0/C 2 D � 0.R/;

with strict inequality if R0 (hence R) strictly contains an outer edge.
Lastly suppose that f 00 … R0 and f 2 R0. In this case f 0 2 R0. If f0 2 R,

we consider the light region R of H obtained from R0 by removing f 0. Since R
strictly contains the outer edge e0 we get

j@R0j D j@Rj C 2 � �.R/C 2� C 2 D � 0.R0/C �

If f0 … R, then we consider the light regionR ofH obtained from R0 by removing
f 0 and adding f0. Since R strictly contains the outer edge e0 we get

j@R0j D j@Rj C 2 � deg.f0/ � �.R/C 2� C 2 � deg.f0/ D � 0.R0/C �: �

Since H 0 satisfies the � 0-girth condition, Lemma 65 implies that H 0 admits
a � 0-weighted hyperorientation �0 which is minimal and accessible from every
outer vertex. Let e1 be the edge preceding e0 in clockwise order around f . We
define a weighted hyperorientation z� of H by setting Qw.e0/ D w0.e0/C w0.e00/,
Qw.e1/ D w0.e1/Cw0.e0/, and Qw.e/ D w0.e/ for all edge e ¤ e0; e1 ofH (as usual
the edge in z� are 1-way if they have positive weight and 0-way otherwise). We
denote by w0.a/ and Qw.a/ respectively the weight of a vertex, edge or face a in�0

and z�. Recall that all the weights w0.a/ are non-negative, hence the weights z�.a/

are non-negative.

Claim 67. The hyperorientation z� is �-weighted. Moreover Qw.e0/ > 0.

Proof. It is easily seen that the weight of every vertex is the same in �0 and z�

(also for the endpoints of e0). Moreover the weight of every face ofH is the same
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in �0 and z� except for the dark face f . For the dark face f we have

Qw.f / D w0.f /C w0.e0/C w0.e00/

D w0.f /C w0.f 00/

D �� 0.f / � deg.f / � � 0.f 00/ � 2

D ��.f / � deg.f /;

as wanted. Since �0 is � 0-weighted, this shows that z� is �-weighted.
It remains to show that Qw.e0/ > 0. It suffices to show w0.e00/ > 0. Suppose by

contradiction that w0.e00/ D 0. In this case w0.e0/ D w0.f 00/ D � > 0, so that e0

is 1-way and e00 is 0-way in the hyperorientation �0. Let u2 and u1 be the origin
and end of e0 as indicated in Figure 37(b). Since �0 is accessible from the outer
vertex u1, there is a directed pathP from u1 to u2. This path does not use the outer
edge e00 which is 0-way, hence the pathP together with e0 form a counterclockwise
directed cycle; see Figure 37(b). This is a contradiction since �0 is minimal. �

We know w.ee0/ > 0 and want to prove w.e0/ > 0. For this we use Lemma 61.
Since the hyperorientation z� ofH is �-weighted, we know by Lemma 63 that the
hyperflow Q' D ��1. z�/ is an ˛-hyperflow of GH . Let a0 be the edge of GH

preceding e0 clockwise around the outer vertex u2 of H . By definition of �,
Q'.a0/ D Qw.e0/ > 0. Hence by Lemma 61, the minimal ˛-hyperflow of GH

satisfies '.a0/ > 0. Moreover the hyperorientation � is equal to �.'/ (see the
proof of Lemma 65). Thus w.e0/ D '.a0/ > 0. This completes the proof of
Proposition 62.

10.4. Proof of Theorem 26. In this section we complete the proof of Theo-
rem 26. We consider a light-rooted hypermap H , and a charge function � fit-
ting H . We want to prove thatH admits a unique �-weighted hyperorientation in
HC. Our strategy is as follows. First, we will construct a related hypermap H .k/

and a fitting charge function � .k/ satisfying the condition of Proposition 62. This
grants the existence of a unique � .k/-weighted hyperorientation �.k/ in HC for
H .k/. We will then construct from�.k/ a hyperorientation� ofH , and prove that
it is the unique �-weighted hyperorientation of H in HC.

Let k be an integer greater than

1C jE0j C
X

a2A

j�.a/j;

where E0 is the set of edges of H , and A is the set of all vertices and faces of H .
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Let Hk be the hypermap obtained from H by subdividing every edge into a path
of length k. Hence, every face of degree ı of H corresponds to a face of degree
kı of Hk. We now consider a hypermap H .k/ obtained by adding a dark face of
degree k.k � 1/ı, called a sea-star, inside each inner light face of degree kı of
Hk; see Figure 38. More precisely,H .k/ is obtained by adding the sea-stars inside
the inner light faces of Hk in such a way that every inner light faces of H .k/ has
degree k and is incident to one edge of Hk and k � 1 edges of a sea-star. We call
sea-edges the edges of H .k/ incident to sea-stars. For an edge e D .u; v/ of Hk,
we call sea-arc associated with e the path of H .k/ made of the k � 1 sea-edges
around the face of H .k/ incident to e. For an edge e D .u; v/ of H , we call sea-

path associated with e the path of H .k/ from u to v (of length k.k � 1/) made of
the k sea-arcs associated with the edges of Hk subdividing e.

We define a charge function � .k/ of H .k/ as follows:

� � .k/.v/ D k�.v0/ if v is a vertex of H .k/ corresponding to a vertex v0 of H
and � .k/.v/ D k otherwise,

� � .k/.f / D deg.f / if f is a light face (hence � .k/.f / D k for every inner
light face f ),

� � .k/.f / D k�.f 0/ � k2ı C kı if f is a dark face of H .k/ of degree kı
corresponding to a dark face f 0 of H (of degree ı),

� � .k/.f / D k�.f 0/ � k2.k � 1/ı if f is a sea-star of degree k.k � 1/ı

corresponding to a light face f 0 of H (of degree ı).

sea-star

sea-edge!

Figure 38. Left. A face f of H . Right. The face f after subdividing each edge into a path
of length k D 4, and adding the sea-star of H .k/ inside f .

Claim 68. The charge function � .k/ fits H .k/.

Proof. First observe that the charge � .k/.v/ D k�.v/ is positive for every vertex v,
and the charge of the outer face is equal to its degree. We now show that � .k/

total D 0.
Let V0, E0, F0, S0, and K0 be respectively the set of vertices, edges, light faces,
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sea-stars, and non-sea-star dark faces of H .k/. Let E1 and E2 be respectively the
set of edges of H .k/ incident to sea-stars, and to non-sea-star dark faces of H .k/.
We have

�
.k/

total D
X

v2V0

� .k/.v/C
X

f 2F0

� .k/.f /C
X

f 2S0

� .k/.f /C
X

f 2K0

� .k/.f /

D k
�
jV0j � jV 0

0j C
X

v02V 0
0

�.v0/
�

C k.jF0j C deg.f 0
0/ � 1/

C k
�

� jE1j C
X

f 02S 0
0

�.f 0/
�

C k
�
jE 0

0j � jE2j C
X

f 02K0
0

�.f 0/
�

D k.jV0j C jF0j � jE0j � jV 0
0j C jE 0

0j � 1C �total/;

where f 0
0 is the outer face of H , and V 0

0, E 0
0, S 0

0, K 0
0 are respectively the set

of vertices, edges, inner light faces, and dark faces of H (the last identity uses
jE0j D jE1j C jE2j and �.f 0

0/ D deg.f 0
0/). The Euler relation gives

jV0j C jF0j � jE0j D �jS0j � jK0j C 2 D �jS 0
0j � jK 0

0j C 2 D jV 0
0j � jE 0

0j C 1;

because jS0j D jS 0
0j and jK0j D jK 0

0j. Moreover �total D 0, hence � .k/

total D 0.
It remains to prove thatH .k/ satisfies the � .k/-girth condition. LetR be a light

region of H .k/. We want to prove j@Rj � � .k/.R/ with strict inequality if one
of the outer edges is strictly contained in R. By Lemma 32 we can assume that
the light region R is simply connected. Let V , E, F , S , and K be respectively
the set of vertices strictly inside R, edges strictly inside R, light faces inside R,
sea-stars inside R, and non-sea-star dark faces inside R. Similarly as in the above
computation of � .k/

total, we have

� .k/.R/ D
X

v2V

� .k/.v/C
X

f 2F

� .k/.f /C
X

f 2K

� .k/.f /C
X

f 2S

� .k/.f /

D k
�
jV j C jF j � jEj � jV 0j C jE 0j

C 1f02R � .deg.f 0
0/ � 1/C

X

a2V 0[S 0[K0

�.a/
�
;

where f0 is the outer face ofH .k/, V 0 is the set of vertices ofH corresponding to
vertices ofH .k/ in V , S 0 is the set of inner light faces ofH corresponding to sea-
stars in S , K 0 is the set of dark faces of H corresponding to dark faces in K, and
E 0 is the set of edges of H incident to faces in K 0. Since R is simply connected,
the Euler relation gives jV j C jF j � jEj D �jS 0j � jK 0j C 1, hence

� .k/.R/ D k
�
jE 0j � jV 0j � jS 0j � jK 0j C 1C 1f02R.deg.f 0

0/ � 1/C
X

a2V 0[S 0[K0

�.a/
�
:

(In particular, by the choice of k, � .k/.R/ < k.k � 1/.)
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We now prove j@Rj � � .k/.R/ with strict inequality if one of the outer edges
is strictly contained in R. Suppose first that R contains an inner light face f but
contains none of the two dark faces incident to f . Since R is connected, we have
R D ¹f º and j@Rj D k D �.R/. Next, suppose that R contains an inner light face
and the incident non-sea-star dark face f , but not the incident sea-star s. Since
f 2 R all the incident light faces are in R (because R is a light region) hence C
contains an entire sea path. Thus j@Rj � k.k � 1/ > � .k/.R/ by the choice of k.
Lastly suppose that for every light face f in R, the sea-star incident to f is also
in R. In this case, we consider the light regionR0 ofH defined byR0 D K 0 [S 0 if
f0 … R and R0 D K 0 [S 0 [ ¹f 0

0º if f0 2 R. We have j@Rj D kj@R0j. Moreover V 0,
E 0, S 0, and K 0 are respectively the sets of vertices strictly inside R0, edges strictly
inside R0, inner light faces inside R0, and dark faces inside R0, so that the Euler
relation gives

jE 0j � jV 0j � jS 0j � jK 0j C 1� 1f02R0 D 0:

Hence, using deg.f 0
0/ D �.f 0

0/ we get

� .k/.R/ D k
�
1f02R0�.f 0

0/C
X

a2V 0[S 0[K0

�.a/
�

D k�.R0/:

Thus j@Rj D kj@R0j � k �.R0/ D � .k/.R/ with strict inequality if one of the outer
edges is strictly contained in R. �

By Claim 68 and Proposition 62, the hypermap H .k/ admits a unique
� .k/-weighted hyperorientation�.k/ in HC. We now establish a few properties of
�.k/. We denote by w.a/ the weight of an edge or face a ofH .k/ in the hyperori-
entation �.k/. Note that all the weights are non-negative because every light face
of H .k/ has degree equal to its charge. Let a be an inner edge of Hk and let P be
the associated sea-arc. The k � 2 first edges of P are forced to have weight k, and
we denote by w0.a/ the weight of the last edge of P ; see Figure 39. Let f be an
inner light face ofH of degree ı, let fk be the corresponding light face ofHk and
let s be the corresponding sea-star of H .k/. For the edges e1; : : : ; ekı incident to
fk we get

w0.e1/C � � � C w0.ekı/ D w.s/ � k2.k � 2/ı

D �� .k/.s/ � deg.s/ � k2.k � 2/ı

D �k�.f /C k2.k � 1/ı � k.k � 1/ı � k2.k � 2/ı

D �k�.f /C kı:

(7)
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e1 u1 e2 u2 e3 u3 ek

uDu0 ukDv

w.v/Dk w.e/Dk

w.u2/Dk w.e3/

w0.e3/

Figure 39. The sea-path associated with an inner edge e D .u; v/ of H for k D 4. The
edges with weights w.ei / and w0.ei / are indicated for i D 3.

Claim 69. Let e be an inner edge of H . Let e1; : : : ; ek be the edges of Hk

subdividing e in clockwise order around the incident dark face. There exists

j 2 ¹1; : : : ; kº such that w.ei/ D k for all i < j , w.ei/ D 0 for all i > j .

Moreover w0.e1/ D 0, and w0.eiC1/ D k � w.ei/ for all i 2 ¹1; : : : ; k � 1º.

The situation described by Claim 69 is represented in Figure 40 (first line).

Proof. We let ei D .ui�1; ui /, with u0 D u, and uk D v. Since for all i 2

¹1; : : : ; k�1º the weight of the vertex ui is k, we getw0.eiC1/ D k�w.ei/. Since
� is minimal, the weights w.ei/ and w0.ei / cannot both be positive (otherwise
the incident light face would be oriented counterclockwise). Thus if w.ei/ ¤ k

for i < k, then w0.eiC1/ ¤ 0, hence w.eiC1/ D 0. This proves the existence of
j 2 ¹1; : : : ; kº such that w.ei/ D k for all i < j , and w.ei/ D 0 for all i > j .
Lastly, suppose by contradiction that w0.e1/ > 0. In this case w.e1/ D 0, and
w0.ei / D k for all i 2 ¹2; : : : ; kº. Thus

w0.e1/C � � � C w0.ek/ D w0.e1/C k.k � 1/ > k.k � 1/:

By our choice of k this contradicts (7). �

We now associate with the weighted hyperorientation�.k/ ofH .k/ a weighted
hyperorientation x� of H ; see Figure 40 (note that, by these rules, an edge e 2 x�

is 1-way iff the associated j defined in Claim 69 is equal to k). Let e be an edge of
H and let e1; : : : ; ek be the edges of Hk subdividing e in clockwise order around
the incident dark face. We define the weight xw.e/ of e in x� to be

xw.e/ D

Pk
iD1w.ei/

k
� .k � 1/

and we orient e 1-way if the weight is positive and 0-way otherwise. Note that for
any outer edge e, the edges e1; : : : ; ek�1 are all 1-way of weight k and ek is also
1-way (because�.k/ 2 HC), so that

xw.e/ D w.ek/=k > 0;

hence e is 1-way.
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u v u v

u v u v
kk w.ej / 0 0 kkk

0000 0 0 0 0 0k

k w.ek/>0

xwDw.ej /=kCj k 0 xwDw.ek/=k>0

Figure 40. Top part. The possible configurations of weights along a sea-path in the
hyperorientation�.k/ ofH .k/, as described by Claim 69. Bottom part. The corresponding
weight in the hyperorientation x� of H . In the case j < k (left) one gets xw.e/ D
.
Pk

iD1 w.ei //

k
� .k � 1/ D w.ej /=k � .j � 1/ � 0, while in the case j D k one gets

xw.e/ D w.ek/=k > 0.

We will now complete the proof of Theorem 26 by proving the following claim.

Claim 70. The hyperorientation x� is the unique �-weighted hyperorientation of

H in HC.

Proof. We denote by w.a/ (resp. xw.a/) the weight of a vertex, edge or face a in
the hyperorientation �.k/ of H .k/ (resp. x� of H ). If e is an inner edge of H ,
adopting the notation of Claim 69 gives

xw.e/ D
1

k

�
w.ek/ �

� kX

iD1

w0.ei /
��
:

Moreover, since w.ek/ > 0 if and only if
Pk

iD1w
0.ei / D 0, we get

max. xw.e/; 0/ D
w.ek/

k
; (8)

and

min. xw.e/; 0/D �

Pk
iD1w

0.ei/

k
: (9)

Now if e is an outer edge e, then the edges e1; : : : ; ek�1 are all 1-way of weight k
and ek is also 1-way (because�.k/ 2 HC), so that

max. xw.e/; 0/ D xw.e/ D w.ek/=k;

and e is oriented 1-way in �.k/.
We will now prove that x� is �-weighted. Let u be a vertex of H . We observe

that Claim 69 (more precisely, the statementw0.e1/ D 0 in this claim) implies that
no sea-edge is oriented 1-way toward u. Thus, the weight w.u/ is equal to the sum
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of the weights of the edges of Hk oriented toward u. Hence (8) gives

xw.u/ D
X

e oriented toward u in H

max. xw.e/; 0/ D
X

e0 oriented toward u in Hk

w.e0/

k
D
w.u/

k
D
� .k/.u/

k
D �.u/;

as wanted. Now let f be a light inner face of H of degree ı, and let f 0 be the
corresponding face in Hk. By (9), the weight of f in x� is

xw.f / D
X

e incident to f in H

min. xw.e/; 0/D �
X

ei incident to f 0 in Hk

w0.ei /

k
:

Hence, (7) gives xw.f / D �.f / � ı as wanted. Now, let f be a dark inner face of
H of degree ı, and let f 0 be the corresponding face of H .k/. The weight of f in
x� is

xw.f / D
X

e incident to f

xw.e/ D
� X

e0 incident to f 0

w.e0/

k

�
� .k � 1/ı D

w.f 0/

k
� .k � 1/ı

D
�� .k/.f 0/ � deg.f 0/

k
� .k � 1/ı D ��.f / � ı;

as wanted. Thus x� is �-weighted.
Next we prove that x� is in HC. As noted above, the outer edges of H are 1-

way in x� (hence they form a clockwise directed cycle), hence it remains to prove
that x� is minimal and accessible from outer vertices. For an edge e D .u; v/ of
H we consider the subgraph Ge of H .k/ made of the path subdividing e together
with the sea-path associated with e. In the hyperorientation �.k/ of Ge the sea-
path cannot be used to go from u to v nor from v to u because of Claim 69
(more precisely, the statement w0.e1/ D 0 in this claim). Moreover, the path
subdividing e is oriented from u to v in �.k/ if and only if e is oriented 1-way
from u to v in the hyperorientation x�; see Figure 40. Thus for any vertices v1; v2

of H , there is a directed path from v1 to v2 in the hyperorientation �.k/ of H .k/

if and only if there is a directed path from v1 to v2 in the hyperorientation x�

of H . Since �.k/ is in HC, we conclude that in the hyperorientation x� of H
every vertex is accessible from every outer vertex. Moreover any simple directed
cycle in the hyperorientation x� ofH corresponds to a directed simple cycle in the
hyperorientation�.k/ ofH .k/. Hence the minimality of the hyperorientation�.k/

implies the minimality of x�. Thus x� is in HC.
Lastly we prove that there does not exist a �-weighted hyperorientation x�0 2

HC of H distinct from x�. Suppose the contrary. By inverting the construction
represented in Figure 40 (using the fact that xw.e/ � �k C 1 by our choice of k),
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one can associate with x�0 a hyperorientation �0 ¤ �.k/ of H .k/ satisfying the
properties described in Claim 69. It is then easy to see using the same relations
as above that �0 is � .k/-weighted. Moreover, by the properties highlighted in
the previous paragraph, it is easily seen that �0 is minimal and accessible from
every outer vertex. Thus we obtain a � .k/-weighted hyperorientation �0 ¤ �.k/

in HC. This is impossible because this contradicts the uniqueness property of
Proposition 62. �

Claim 70 proves that if a charge function � fits a light-rooted hypermap H ,
then H admits a unique �-weighted hyperorientation in HC. This, together with
Lemma 56, completes the proof of Theorem 26.

10.5. Proof of Theorems 25 and 27. In this section we prove Theorems 25
and 27 by a reduction to Theorem 26.

We start with Theorem 25. Let H be a dark-rooted hypermap with a simple
outer face, and let � be a charge function fittingH . We want to prove thatH admits
a unique �-weighted hyperorientation inH�. LetH 0 be the light-rooted hypermap
obtained fromH by adding a dark face of degree 2 along each of the outer edges of
H , and changing the outer face color into light, as indicated in Figure 41. Observe
that the outer faces f0 of H and f 0

0 of H 0 have the same degree. We call outer

digons ofH 0 the added dark faces. We define a charge function � 0 ofH 0 by setting
� 0.f 0

0/ D deg.f 0
0/, �

0.f / D �3 if f is an outer digon, � 0.v/ D 1 if v is an outer
vertex, and � 0.a/ D �.a/ if a is any inner vertex or inner face of H .

(a) (b)
0.f / 3 0.v/D1

H H 0 R0

R1

R2

R3

Figure 41. (a) The hypermap H 0 obtained from H by adding a dark face of degree 2 along
each outer edge. (b) The contour of a simply connected light region R of H 0 containing
the outer face f 0

0
but not all outer vertices. Here deg.f0/ D 9, b D 6, d D 6, and k D 3.
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Claim 71. The charge function � 0 fits H 0.

Proof. First observe that the charge � 0.v/ of any vertex v is positive, and � 0.f 0
0/ D

deg.f 0
0/. Moreover,

� 0
total D �total � �.f0/C � 0.f 0

0/C
X

v outer vertex

� 0.v/C
X

f outer digon

� 0.f / D 0

because �total D 0, ��.f0/ D � 0.f 0
0/ D deg.f0/ and there are deg.f0/ outer

vertices and outer digons.
We now prove thatH 0 satisfies the � 0-girth condition. LetR be a light region of

H 0. We want to prove j@Rj � � 0.R/with strict inequality if an outer edge is strictly
contained in R. By Lemma 32 we can assume that R is simply connected. If
f 0

0 … R, then none of the outer digons is inR. Hence in this caseR is a light region
of H , and j@Rj � �.R/ D � 0.R/ as wanted. We now assume that f 0

0 2 R. First
suppose that every outer vertex is strictly insideR. In this case, all the outer digons
are in R, and we consider the light region R of H obtained from R by replacing
the outer face f 0

0 and the outer digons by f0. We get j@Rj > �.R/ D � 0.R/ as
wanted. Now assume that f 0

0 2 R but b > 0 outer vertices are incident to @R (so
that deg.f0/�b outer-vertices are strictly inside R). Let d be the number of outer
digons inR. By deleting fromR the outer face f 0

0 and the d outer digons inR, one
get a light region of H which decomposes as a disjoint union of k (non-empty)
simply connected light regions R1; R2; : : : ; Rk; see Figure 41(b). The number k
is determined by k C .deg.f0/ � d/ D b. Indeed the contour D of the outer
face of f0 of H decomposes into b paths (joining consecutive vertices incident
to @R) which are either edges of one of the deg.f0/ � d digons not in R, or part
of the boundary of one of the light regions R1; R2; : : : ; Rk (recall that R is simply
connected so that the light regions R1; : : : ; Rk corresponding to different paths of
D are distinct). We have

j@Rj D
kX

iD1

j@Ri j C deg.f0/ � 2d;

and

� 0.R/ D
kX

iD1

�.Ri /C � 0.f 0
0/ � 3d C deg.f0/ � b

D
kX

iD1

�.Ri /C 2 deg.f0/ � 3d � b;



Unified bijections for planar hypermaps 159

hence

j@Rj � � 0.R/ D
� kX

iD1

j@Ri j � �.Ri/
�

C b C d � deg.f0/

D
� kX

iD1

j@Ri j � �.Ri/
�

C k � k:

Thus, j@Rj � � 0.R/ and if one of the outer edges is strictly inside R, then k � 1

and j@Rj > � 0.R/. �

Since � 0 fitsH 0, Theorem 26 ensures thatH 0 has a unique � 0-weighted hyper-
orientation �0 in HC. Let � be the hyperorientation of H such that the weights
and orientations of the inner edges ofH are the same as in�0, and the outer edges
of H form a counterclockwise directed cycle of 1-way edges of weight 1.

Claim 72. The hyperorientation � is the unique �-weighted hyperorientation of

H in H�.

Proof. Letw0.a/ be the weight of a vertex, edge or face in�0. LetD1; : : : ; Ddeg.f0/

be the outer digons of H 0 in clockwise order, and let ei ; e
0
i be the outer and in-

ner edges incident to Di respectively. We will first prove that w0.ei/ D 1 and
w0.e0

i / D 0 for all i 2 ¹1; : : : ; deg.f0/º. First note that for all i 2 ¹1; : : : ; deg.f0/º,
the weight condition on the outer digon Di gives w0.ei / C w0.e0

i/ D w0.Di/ D

�� 0.Di / � 2 D 1. Moreover, since the weight of every outer vertex u is
w0.u/ D � 0.u/ D 1, we get w0.ei/ � 1 and w0.e0

i / � 1. Hence w0.ei / � 0 and
w0.e0

i / � 0, andw0.ei�1/Cw
0.e0

i / � 1 for all i 2 ¹1; : : : ; deg.f0/º with the conven-
tion that e0 D edeg.f0/. Hencew0.ei�1/ � w0.ei/ for all i 2 ¹1; : : : ; deg.f0/º. Thus
w0.ei�1/ D w0.ei/ and w0.e0

i�1/ D w0.e0
i / for all i 2 ¹1; : : : ; deg.f0/º. Moreover,

the hyperorientation �0 has no counterclockwise directed cycle (since�0 2 HC),
hence w0.e0

i / D 0 for all i 2 ¹1; : : : ; deg.f0/º, and w0.ei/ D 1.
Sincew0.ei/ D 1 andw0.e0

i / D 0 for all i 2 ¹1; : : : ; deg.f0/º, the weight of any
vertex, or face ofH is the same in� as in�0. Moreover, the weight of every outer
vertex and outer edge of H in � is 1. Thus � is �-weighted. Moreover, because
the hyperorientation �0 is minimal and accessible from the outer vertices, the
hyperorientation � is also minimal and accessible from the outer vertices. Thus
� is in H�.

Lastly, suppose there is another �-weighted hyperorientation z� ¤ � of H
in H�. We then consider the hyperorientation z�0 of H 0 defined as follows: the
weight of the inner edges of H in z�0 are the same as in z�0, while the weight of
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the edges ei ; e
0
i of the outer digon in z�0 are Qw0.ei / D 1 and Qw0.e0

i / D 0 for all
i 2 ¹1; : : : ; deg.f0/º. It is easily seen that z�0 is a �-weighted hyperorientation
of H 0 distinct from �0. Moreover z�0 is in HC (it is minimal, accessible from
the outer vertices and the outer face of H 0 is a clockwise directed cycle). This
contradicts the uniqueness of �0 given by Theorem 26. �

Claim 72 ensures that any dark-rooted charged hypermap .H; �/ satisfying the
conditions of Theorem 25 admits a unique �-weighted hyperorientation in H�.
This together with Lemma 56 completes the proof of Theorem 25.

We now prove Theorem 27 by a reduction to Theorem 25. LetH be a vertex-
rooted hypermap, and let � be a charge function fitting H . We want to prove
that there exists a unique �-weighted hyperorientation of H in H0. Let v0 be the
root-vertex of H , and let f0 be a light face incident to v0. Let H 0 be the dark-
rooted hypermap (with outer degree 1) obtained fromH by adding a loop edge e0

incident to v0 inside f0 as indicated in Figure 42. The face of degree 1 incident
to e0 thus created (which is dark) is taken as the outer face of H 0, and is denoted
by f1. The light face of H 0 incident to e0 is denoted by f2. We define a charge
function � 0 of H 0 by setting � 0.f1/ D �1, � 0.f2/ D �.f0/C 1 and � 0.a/ D �.a/

for any other face or vertex of H 0.

H H 0

f0

f1

f2

e0

v0

Figure 42. The dark-rooted hypermap H 0 obtained from H by adding a loop edge e0.

Claim 73. The charge function � 0 fits the dark-rooted hypermapH 0.

Proof. Since � fits H , the charge � 0.v/ of every inner vertex v of H 0 is positive.
Moreover the charge of the outer vertex v0 is � 0.v0/ D �.v0/ D 0, and the charge
of the dark outer face f1 is � 0.f1/ D �1 D � deg.f1/. Furthermore,

� 0
total D �total � �.f0/C � 0.f1/C � 0.f2/ D 0:

It remains to prove that H 0 satisfies the � 0-girth condition. Let R0 be a light
region of H 0. First suppose that f2 … R0. In this case f1 … R0, hence R0

is a light region of H and j@R0j � �.R0/ D � 0.R0/ as wanted. Next suppose
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that both f1 and f2 are in R0. In this case, we consider the light region R of
H obtained from R0 by replacing f1 and f2 by f0. Since @R D @R0, we get
j@R0j D j@Rj � �.R/ D � 0.R0/ with strict inequality if v0 is strictly inside R0.
Lastly, suppose that f2 2 R0 and f1 … R0. We consider the light region R of H
obtained from R0 by replacing f2 by f0. Note that e0 2 @R0, and @R D @R0 n ¹e0º.
Thus j@R0j D j@Rj C 1 � �.R/C 1 D � 0.R0/, as wanted. �

Since � 0 fitsH 0, Theorem 25 implies thatH 0 has a unique � 0-weighted hyper-
orientation�0 in H�. Let� be the the restriction toH of the hyperorientation�0.

Claim 74. The hyperorientation � is the unique �-weighted hyperorientation of

H in H0.

Proof. By definition, the weight of v0 and e0 in �0 is 1. Hence the weight of v0

in � is 0 and the weight w.f0/ of f0 in � is the same as the weight w0.f2/ of f2

in �0. Hence w.f0/ D w0.f2/ D � 0.f2/ � deg.f2/ D �.f0/ � deg.f0/. Hence
the hyperorientation � is �-weighted. Moreover because the hyperorientation �0

is minimal and accessible from v0, the hyperorientation � is also minimal and
accessible from v0. Thus � is in H0.

Conversely, suppose that there is another �-weighted hyperorientation z� ¤ �

of H in H0. We then consider the hyperorientation z�0 of H 0 defined as follows:
the weight of e0 is 1 and the weight of the other edges is as in z�. It is easily seen
that z�0 is a �-weighted hyperorientation of H 0 distinct from �0. Moreover z�0 is
in H�. This contradicts the uniqueness of �0 given by Theorem 25. �

Claim 74 shows that if a charge function � fits a vertex-rooted mapH , thenH
admits a unique �-weighted hyperorientation inH0. This together with Lemma 56
completes the proof of Theorem 27.

Acknowledgment. We thank the anonymous referees for their many useful com-
ments and suggestions.
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