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Abstract. Applying the quantum group method developed in [50], we construct solutions

to the Benoit & Saint-Aubin partial differential equations with boundary conditions given

by specific recursive asymptotics properties. Our results generalize solutions constructed

in [49, 55], known as the pure partition functions of multiple Schramm-Loewner evolutions.

The generalization is reminiscent of fusion in conformal field theory, and our solutions can

be thought of as partition functions of systems of random curves, where many curves may

emerge from the same point.
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1. Introduction

Conformal field theories (CFT) are expected to describe scaling limits of criti-

cal models of statistical mechanics. In particular, scaling limits of correlations

in discrete critical systems should be CFT correlation functions. Many correla-

tion functions of interest satisfy linear homogeneous partial differential equations

(PDEs), which in CFT arise from the presence of singular vectors in representa-

tions of the Virasoro algebra [6, 12, 24, 16].

Such PDEs of second order frequently appear also in the theory of Schramm-

Loewner evolutions (SLE). In this probabilistic context, they arise from stochastic

differentials of certain local martingales. Solutions to systems of these second

order PDEs are known as partition functions for multiple SLEs [3, 20, 48, 49, 55].

On the other hand, the higher order PDEs of CFT seem not to have a direct

probabilistic interpretation, but can in some cases be understood in terms of

scaling limits, as in [35, 42], SLE observables, as in [8, 52], or generalizations

of multiple SLE measures [34, 46, 33, 47, 22]. See also [7, 14, 63, 1, 2, 18, 19, 60,

27, 31, 41, 55] for further examples.

In this article, we consider solutions to the class of Benoit & Saint-Aubin type

PDE systems [9, 4], corresponding to singular vectors with conformal weights of

type h1;s in the Kac table. We assume throughout that the parameter � in the

central charge c D c.�/ D 1
2�
.6 � �/.3� � 8/ is non-rational. We construct

solutions which satisfy particular boundary conditions given in terms of specified

asymptotic behavior, recursive in the number of variables. In the articles [41,

49, 42, 52, 55], examples of such functions were constructed for applications

concerning Schramm-Loewner evolutions (see also [43] for solutions relevant in

CFT). In these applications, the choice of boundary conditions is motivated by

properties of the random curves, which in CFT language means specific fusion

channels for the fields; see also [13, 14, 63, 1, 2, 3, 35, 8, 22].

To construct our solutions with the particular boundary conditions, we apply

the quantum group method developed in [50]. We consider spaces of highest

weight vectors in tensor product representations of the quantum group Uq.sl2/

in the generic, semisimple case.1 We construct particular bases for these vector

spaces, specified by projections to subrepresentations. Then, via the “spin chain –

Coulomb gas correspondence” of [50], we obtain the sought solutions to the

Benoit & Saint-Aubin PDE systems.

1 By the generic case we mean that the deformation parameter q is not a root of unity.

The parameter � and the deformation parameter of the quantum group Uq.sl2/ are related by

q D ei�4=� .
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Our results provide a generalization of the pure partition functions of multiple

SLEs [49, 55]. They are solutions to a system of second order Benoit & Saint-

Aubin PDEs, and their recursive boundary conditions are related to multiple

SLE processes having deterministic connectivities of the random curves. For

statistical physics models, the pure partition functions give formulas for crossing

probabilities, see [14, 1, 46, 3, 31, 38, 42, 55]. Analogously, our solutions can be

thought of as partition functions for systems of random curves, where packets of

curves grow from boundary points of a simply connected domain. In statistical

physics, this corresponds to boundary arm events. Thus, probabilities of such

events should be given by our more general partition functions. In CFT point

of view, this kind of events should arise from insertions of boundary changing

operators with Kac conformal weights of type h1;s at the starting points of the

curves. In this sense, our generalization of the pure partition functions of multiple

SLEs is reminiscent of fusion in CFT.

J. Dubédat studied related questions in his articles [21, 22], with emphasis on a

priori regularity of the partition functions, as well as on the construction of a very

general framework for the relationship of random SLE type curves and represen-

tations of the Virasoro algebra. His work is based on the approach of Virasoro uni-

formization initiated by M. Kontsevich [45, 46, 33, 47], and hypoellipticity [37, 10]

and stochastic flow arguments.

1.1. Description of the main results. We now give an overview of the main

results of the present article, in a slightly informal manner. The detailed formula-

tions are given later, as referred to below.

1.1.1. Solutions with particular asymptotics. The main result of this article is

the construction of translation invariant, homogeneous solutions

F W ¹.x1; : : : ; xp/ 2 Rp j x1 < � � � < xpº �! C

to the Benoit & Saint-Aubin PDE systems, determined by boundary conditions

which concern the asymptotic behavior of the functions. The PDE system contains

p linear, homogeneous PDEs of orders d1; d2; : : : ; dp,

D
.j /

dj
F .x1; : : : ; xp/ D 0; for all j 2 ¹1; 2; : : : ; pº; (PDE)

and the partial differential operators D
.j /

dj
of interest are given in equation (5.1) in

Section 5.
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The particular asymptotics properties of the solutions are recursive in the

number of variables. The collection .F!/ of solutions satisfying these properties

is indexed by planar link patterns

! D
°

a1 b1

; : : : ;
a` b`

±

[
°

c1

; : : : ;
cs

±

;

which are defined as collections of ` links
a b

and s defects
c

in the upper

half-plane, with endpoints a1; : : : ; a`; b1; : : : ; b`; c1; : : : ; cs on the real axis – see

Section 2.5 for details.2 The set of links in ! is a multiset, and for a link
a b

, we

denote by `a;b D `a;b.!/ its multiplicity in !.

The homogeneity degree of the solution F! is related to the number s of

defects in !, as explained in Section 5. The asymptotic boundary conditions for

F! are given in terms of removing links from the link pattern !. Removal of m

links
a b

from ! results in a planar link pattern with .` � m/ links, denoted by

O! D !=.m �
a b

/, as illustrated in Figure 2.5 and explained in Section 2.7.2.

Theorem (Theorem 5.3). There exists a collection .F!/ of translation invariant,

homogeneous solutions to the Benoit & Saint-Aubin PDE system (PDE) such that

each function F! has the asymptotic behavior

F!.x1; : : : ; xp/ � Cj � .xj C1 � xj /
�j � F O!.x1; : : : ; xj �1; �; xj C2 : : : ; xp/;

as xj ; xj C1 ! �, for any j 2 ¹1; 2; : : : ; p � 1º and � 2 .xj �1; xj C2/, where

O! D !=. j̀;j C1 � j j C1
/ denotes the link pattern obtained from ! by removing

all the links
j j C1

, and the constant Cj D C. j̀;j C1I dj ; dj C1/ and exponent

�j D �. j̀;j C1I dj ; dj C1/ are explicitly given in Section 5.

We prove in [30] that the solutions .F!/ are in fact linearly independent, and

hence, indeed form a basis of a solution space for the Benoit & Saint-Aubin PDE

system (PDE). A special case is already established in Proposition 6.3 of the

present article.

Examples of solutions with asymptotics as above were considered in [41, 49,

42, 55] with applications to SLEs: the multiple SLE pure partition functions

Z˛.x1; : : : ; x2N / / F˛.x1; : : : ; x2N /, where ˛ is a planar pair partition (thought of

as a link pattern with ` D N links and s D 0 defects), and the chordal SLE bound-

ary visit probability amplitudes �!.xI y1; y2; : : : ; yn/ D F!.xI y1; y2; : : : ; yn/,

where the link pattern ! encodes the order of visits of the SLE curve started from

2 The parameters dj are the degrees of the partial differential operators in (PDE). They are

related to the link patterns ! in such a way that the total number of lines in ! attached to each

index j equals sj D dj � 1.
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x to the boundary points y1; y2; : : : ; yn. We discuss the pure partition functions

Z˛ briefly in Section 6, but refer to the literature for details about the boundary

visit amplitudes �!; see [41, 49].

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.1. Example of a planar .36; 15/-link pattern of p D 14 points.

In Section 5, we also prove a further property of the functions F! , concerning

limits when taking several variables together simultaneously. In terms of the link

pattern !, this means removing several links simultaneously. Such asymptotics

pertains to general boundary behavior of the solutions.

Theorem (Proposition 5.6). For any 1 � j < k � p and � 2 .xj �1; xkC1/, we

have

lim
xj ;xj C1;:::;xk!�

F!.x1; : : : ; xp/

F� .xj ; : : : ; xk/
D F!=�.x1; : : : ; xj �1; �; xkC1; : : : ; xp/;

where � denotes the sub-link pattern of! between the indices j; k and!=� denotes

the link pattern obtained from ! by removing � , as detailed in Section 5.3.

1.1.2. Cyclic permutation symmetry. Solutions of the Benoit & Saint-Aubin

PDEs enjoying Möbius covariance play a special role in conformal field theory.

In particular, physical correlation functions should transform covariantly under all

Möbius maps, by conformal invariance of the theory. In applications to the theory

of SLEs, observables such as the multiple SLE (pure) partition functions also have

this property. More generally, in Theorem 5.3 we show also that the solutions F!

corresponding to link patterns ! with zero defects are Möbius covariant. These

functions also behave nicely in the limits x1 ! �1 and xp ! C1, in the

following sense.

Proposition (Proposition 5.8). For any link pattern ! with no defects (s D 0), we

have

lim
y!C1

.y2h � F!.x1; : : : ; xp�1; y// D lim
y!�1

.jyj2h � FS.!/.y; x2; : : : ; xp//;
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where h D h1;dp
is a Kac weight associated to the point xp , and S.!/ is a planar

link pattern obtained from ! by a cyclic permutation, as defined in equation (4.4)

in Section 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.2. Example of a planar pair partition of 2N D 14 points.

1.1.3. Application to multiple SLE pure partition functions. As a special

case of the cyclic permutation symmetry, it follows that the multiple SLE pure

partition functions Z˛.x1; : : : ; x2N / satisfy a cascade property when x1 ! �1

and x2N ! C1. In terms of the probability measures of the random curves, we

have a natural cascade property concerning the removal of one curve, see [48, 49,

55].

Corollary. (Corollary 6.2) For any planar pair partition ˛, we have

lim
x1!�1;

x2N !C1

jx2N � x1j
2h1;2 � Z˛.x1; : : : ; x2N /

D

8

ˆ

<

ˆ

:

0 if
1 2N

… ˛;

Z Ǫ .x2; : : : ; x2N �1/ if
1 2N

2 ˛;

where Ǫ D ˛=
1 2N

, and h1;2 D
6��
2�

, and � 2 .0; 8/ n Q is the parameter of the

SLE� .

1.2. Organization. Our most important results are given in Section 5 (Theo-

rem 5.3 & Proposition 5.6): construction of the solutions F! to the Benoit &

Saint-Aubin PDEs, Section 6 (Corollary 6.1): application to the multiple SLE

pure partition functions, and Section 3 (Theorem 3.1): construction of certain basis

vectors v! in tensor product representations of the quantum group Uq.sl2/, which

serve as building blocks for the solutions F! with the “spin chain – Coulomb gas

correspondence” of [50].

Sections 2–4 concern the representation theory of the quantum group Uq.sl2/

and the construction and properties of the vectors v! . Sections 5–6 treat the so-

lutions F! themselves. In Section 5, we also very briefly discuss the quantum
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group method of the article [50]. Appendices A and B contain auxiliary calcula-

tions which are needed in the proofs in Section 3. Appendix C constitutes some

additional tools needed to prove the general limiting behavior of the basis func-

tions F! .

Acknowledgments. During this work, the author was supported by Vilho, Yrjö

and Kalle Väisälä Foundation and affiliated with the University of Helsinki. She

wishes to especially thank Steven Flores and Kalle Kytölä for many inspiring dis-

cussions and ideas. She has also enjoyed stimulating and helpful discussions with

Michel Bauer, Dmitry Chelkak, Julien Dubédat, Bertrand Duplantier, Philippe

Di Francesco, Clément Hongler, Konstantin Izyurov, Jesper Jacobsen, Fredrik

Johansson-Viklund, Rinat Kedem, Antti Kemppainen, Jonatan Lenells, Jason

Miller, Wei Qian, Hubert Saleur, and Hao Wu. She thanks Roland Friedrich for

pointing out important references.

2. Preliminaries: the quantum group Uq.sl2/ and some combinatorics

In this section, we discuss preliminaries concerning the quantum group Uq.sl2/

and its representations, as well as the set of planar link patterns ! and some

combinatorial results. We also introduce notations which will be used and referred

to throughout this article.

Fix a parameter q 2 C n ¹0º, and assume that qm ¤ 1 for all m 2 Z n ¹0º, i.e.,

that q is not a root of unity. Let m 2 Z, and n; k 2 N, with 0 � k � n. We define

the q-integers as

Œm� D
qm � q�m

q � q�1
D qm�1 C qm�3 C � � � C q3�m C q1�m

and the q-factorials and q-binomial coefficients as

Œn�Š D

n
Y

mD1

Œm� and
h n

k

i

D
Œn�Š

Œk�Š Œn � k�Š
:

2.1. The quantum group. We define the quantum group Uq.sl2/ as the as-

sociative unital algebra over the field C of complex numbers, with generators

K;K�1; E; F and relations

KK�1 D 1 D K�1K; KE D q2EK; KF D q�2FK;

EF � FE D
1

q � q�1
.K �K�1/:
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The algebra homomorphism

�WUq.sl2/ �! Uq.sl2/˝ Uq.sl2/;

defined by its values on the generators,

�.E/ D E ˝K C 1˝E; �.K/ D K ˝K; �.F / D F ˝ 1CK�1 ˝ F;

(2.1)

gives a coproduct on Uq.sl2/, and it determines the unique Hopf algebra structure

on the quantum group. Furthermore, using the the coproduct �, tensor products

of representations of Uq.sl2/ can be equipped with a representation structure as

follows. If M 0 and M 00 are two representations, and we have

�.X/ D
X

i

X 0
i ˝X

00
i 2 Uq.sl2/˝ Uq.sl2/;

we define the action of X 2 Uq.sl2/ on the tensor product M 0 ˝M 00 by linear

extension of the formula

X:.v0˝ v00/ D
X

i

.X 0
i :v

0/˝ .X 00
i :v

00/ 2 M 0 ˝M 00

for any v0 2 M 0, v00 2 M 00. We similarly define tensor product representations

with n tensor components using the .n � 1/-fold coproduct

�.n/WUq.sl2/! .Uq.sl2//
˝n;

�.n/ D .�˝ id˝.n�2// ı .�˝ id˝.n�3// ı � � � ı .�˝ id/ ı�;

and by the coassociativity property .id˝�/ ı� D .�˝ id/ ı� of the coproduct,

there is no need to specify the order in which the tensor products are formed. The

multiple coproducts of the generators have the following formulas (see e.g. [50,

Lemma 2.2]):

�.n/.K/ D K˝n;

�.n/.E/ D

n
X

iD1

1˝.i�1/ ˝E ˝K˝.n�i/;

�.n/.F / D

n
X

iD1

.K�1/˝.i�1/ ˝ F ˝ 1˝.n�i/:

(2.2)
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2.2. Representations of the quantum group. The quantum group Uq.sl2/ has

irreducible representations of any dimension d 2 Z>0. Given d , we always denote

s D d � 1. A d -dimensional representation Md of highest weight qs is obtained

by suitably q-deforming the irreducible representation of dimension d and highest

weight s of the semisimple Lie algebra sl2.C/: Md has a basis e
.d/
0 ; e

.d/
1 ; : : : ; e

.d/
s

with action

K:e
.d/

l
D qs�2l e

.d/

l
;

F:e
.d/

l
D

´

e
.d/

lC1
if l ¤ s;

0 if l D s;

E:e
.d/

l
D

´

Œl � Œs � l C 1� e
.d/

l�1
if l ¤ 0;

0 if l D 0;

of the generatorsE;F;K. For simplicity, we usually drop the superscript notation

from the basis vectors, writing e
.d/

l
D el . It is well known that Md are irreducible,

see, e.g., [50, Lemma 2.3].

When q is generic (not a root of unity), the representation theory of Uq.sl2/ is

semisimple, and in particular, tensor products of representations decompose into

direct sums of irreducible subrepresentations. We will make use of the following

quantum Clebsch–Gordan decomposition.

Lemma 2.1 (see e.g. [50, Lemma 2.4]). Let d1; d2 2 Z>0 and m 2 ¹0; 1; : : : ;

min.s1; s2/º, where we denote d D d1Cd2�1�2m and s1 D d1�1, s2 D d2�1.

In the representation Md2
˝ Md1

, the vector

�
.d Id1;d2/
0 D

min.s1;s2/
X

l1;l2D0

ıl1Cl2;m � .�1/
l1
Œs1 � l1�Š Œs2 � l2�Š

Œl1�Š Œs1�Š Œl2�Š Œs2�Š

ql1.s1�l1C1/

.q � q�1/m
� .el2

˝ el1
/;

(2.3)

is a highest weight vector of a subrepresentation isomorphic to Md , that is, we

have

E:�
.d Id1;d2/
0 D 0 and K:�

.d Id1;d2/
0 D qs �

.d Id1;d2/
0 :

The space Md2
˝Md1

has the following decomposition according to the d -dimen-

sional subrepresentations:

Md2
˝ Md1

Š Md1Cd2�1 ˚ Md1Cd2�3 ˚ � � � ˚ Mjd1�d2jC3 ˚ Mjd1�d2jC1: (2.4)
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For each d , the subrepresentation Md � Md2
˝ Md1

is generated by the

highest weight vector �
.d Id1;d2/
0 , and we denote by �

.d Id1;d2/

l
D F l :�

.d Id1;d2/
0 the

corresponding basis, with l 2 ¹0; 1; : : : ; sº.

2.3. Tensor products of representations. In this article, we consider tensor

products

p
O

iD1

Mdi
D Mdp

˝ Mdp�1
˝ � � � ˝ Md2

˝ Md1
(2.5)

of irreducible representations of the quantum group Uq.sl2/, and we use the

convention of [49, 50] for the order of tensorands, as explicitly written on the

right hand side. We occasionally abbreviate the tensor product as above, in which

case the reverse order of tensorands is implicit. By the coassociativity property

of the coproduct, repeated application of the decomposition (2.4) gives the direct

sum formula

Mdp
˝ � � � ˝ Md1

Š
M

d

md Md ; (2.6)

where the subrepresentations isomorphic to Md now have multiplicities md D

md .d1; : : : ; dp/.

Throughout this article, it is convenient to denote by

s D d � 1;

si D di � 1 for all i 2 ¹1; 2; : : : ; pº;

& D .s1; s2; : : : ; sp/ 2 Z
p
�0:

(2.7)

For d D s C 1, the md copies of Md are generated by highest weight vectors of

weight qs. We denote by

H
.s/
& D

°

v 2

p
O

iD1

Mdi

ˇ

ˇ

ˇ
E:v D 0; K:v D qs v

±

(2.8)

the md -dimensional subspace consisting of such vectors. The dimensions md

satisfy a recursion equation, given in Lemma 2.2, and they can be calculated by

counting certain type of planar link patterns.

2.4. Projections to subrepresentations. Fix j 2 ¹1; 2; : : : ; p � 1º. We decom-

pose the j th and .j C 1/st tensor components in (2.5) according to the quantum
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Clebsch–Gordan formula (2.4), and denote the embedding of the d -dimensional

component in the j th and .j C 1/st tensor positions by

�
.d/
j D �

.d Idj ;dj C1/

j;j C1 W
�

p
O

iDj C2

Mdi

�

˝ Md ˝
�

j �1
O

iD1

Mdi

�

�!

p
O

iD1

Mdi
;

�
.d/
j .elp ˝ � � � ˝ elj C2

˝ el ˝ elj �1
˝ � � � ˝ el1

/

D elp ˝ � � � ˝ elj C2
˝ �

.d Idj ;dj C1/

l
˝ elj �1

˝ � � � ˝ el1
:

(2.9)

Via the embedding (2.9), we identify the shorter tensor product as a subrepresen-

tation of (2.5),

�

p
O

iDj C2

Mdi

�

˝ Md ˝
�

j �1
O

iD1

Mdi

�

�

p
O

iD1

Mdi
; (2.10)

and denote by

�
.d/
j D �

.d Idj ;dj C1/

j;j C1 W

p
O

iD1

Mdi
�!

p
O

iD1

Mdi
(2.11)

the projection to this subrepresentation – by definition, a vector v 2
Np

iD1 Mdi

lies in the subrepresentation (2.10) if and only if we have �
.d/
j .v/ D v. We further

let

O�
.d/
j D O�

.d Idj ;dj C1/

j;j C1 W

p
O

iD1

Mdi
�!

�

p
O

iDj C2

Mdi

�

˝ Md ˝
�

j �1
O

iD1

Mdi

�

denote the projection (2.11) combined with the identification (2.10) – the identity

�
.d/
j D �

.d/
j ı O�

.d/
j then holds.

More generally, for m 2 ¹0; 1; : : : ;min.dj ; dj C1/ � 1º and

d D dj C dj C1 � 1� 2m;

we define the map

Q�
.d/
j D Q�

.d Idj ;dj C1/

j;j C1 W

p
O

iD1

Mdi

�!
�

p
O

iDj C2

Mdi

�

˝ Mdj C1�m ˝ Mdj �m ˝
�

j �1
O

iD1

Mdi

�

;

Q�
.d Idj ;dj C1/

j;j C1 WD �
.d Idj �m;dj C1�m/

j;j C1 ı O�
.d Idj ;dj C1/

j;j C1 ;

(2.12)



12 E. Peltola

whose image is a subrepresentation of type (2.10), having the subrepresentation

of Mdj C1�m ˝ Mdj �m isomorphic to Md in the j th and .j C 1/st tensor positions.

The trivial representation M1 is the neutral element for tensor products of

representations. We always identify it with the complex numbers C, via

�
.1Idj ;dj C1/

0 7�! 1;

and omit it from the tensor products. The image of the projection O�
.1/
j thus

lies in the shorter tensor product
�
Np

iDj C2 Mdi

�

˝
�
Nj �1

iD1 Mdi

�

, and for m D

min.dj ; dj C1/ � 1, the embedding �
.d Idj �m;dj C1�m/

j;j C1 reduces to the identity map.

2.5. Planar link patterns. Tensor product representations of type (2.6) have

bases indexed by planar link patterns, where each highest weight vector cor-

responds to a link pattern, and the other basis elements are obtained by ac-

tion of the generator F . For example, a relatively well-known fact is that

the tensor power M˝n
2 of two-dimensional irreducibles has such a basis; see

e.g. [40, 53, 54, 32, 56, 57]. In this case, for each s 2 Z�0 the space (2.8) of highest

weight vectors inM˝n
2 admits a natural diagrammatic action of the Temperley-Lieb

algebra, known as the link-state representation. For s D 0, n is even, and the link

states are indexed by planar pair partitions of n=2 points, see Figure 1.2. For s > 0,

there are also additional lines called defects, see Figure 2.1.

In the present article, we consider general link patterns, which are useful

in calculations concerning general tensor product representations of type (2.6).

The planar pair partitions then arise as a special case. A word of warning is in

order here: the bases of the tensor product representations of type (2.6) which

we construct in Section 3 do not carry the “usual” link-state action of diagram

algebras such as the Temperley-Lieb algebra, even in the special case of M˝n
2 . In

fact, the basis we construct in the present article is the dual basis of the “canonical

basis” [53, 32].3 However, we will not pursue this direction here – our interests

lie in constructing solutions to the Benoit & Saint-Aubin PDE systems with given

asymptotics properties, using the quantum group rather as a tool.

Denote the upper half-plane by H D ¹z 2 C j =m.z/ > 0º. Fix a multiindex

& D .s1; : : : ; sp/ 2 Z
p
>0, and let ` 2 Z�0 be an integer such that 2` � n, where we

denote

n D j& j WD

p
X

iD1

si and s D n � 2` 2 Z�0: (2.13)

3 General link patterns do not span representations of the Temperley-Lieb algebra, but they

admit a natural action of a generalized diagram algebra, discussed in [28, 29].
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We define planar (n;`)-link patterns ofp points with index valences &D.s1; : : : ; sp/

as collections

! D
°

a1 b1

; : : : ;
a` b`

±

[
°

c1

; : : : ;
cs

±

of

� ` links of type
a b

in H, which connect a pair a < b of indices a; b 2

¹1; 2; : : : ; pº, and

� s D n � 2` defects of type
c

in H, attached to an index c 2 ¹1; 2; : : : ; pº,

such that

� for any i 2 ¹1; 2; : : : ; pº, the index i is an endpoint of exactly si links and

defects,

� all the defects lie in the unbounded component of the complement of the set

of links in H, and

� none of the links and defects intersect in H, but only at their common

endpoints in N � R.

Figure 1.1 shows an example of a planar link pattern. We denote by LP.s/
& the set

of planar (n; `)-link patterns of p points with index valences & D .s1; : : : ; sp/,

having s D n � 2` defects. We usually omit the word “planar” when we speak of

link patterns.

Because the planar pair partitions play a special role in this article, we denote

the set of them by

PPN WD LP
.0/

.1;1;:::;1;1/
for N 2 Z>0;

PP0 WD LP
.0/

./
D ¹;º for N D 0:

We also set PP D
F

N �0 PPN .

More generally, if & D .1; 1; : : : ; 1; 1/ 2 Zn for n D 2N C s, we denote by

PP
.s/
N WD LP

.s/

.1;1;:::;1;1/
the set of planar .n; N /-link patterns each of which consists

of a planar pair partition of 2N points and s defects – see Figure 2.1 for an example.

The set of planar pair partitions then corresponds to PPN D PP
.0/
N .

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2.1. Example of a planar pair partition with defects.
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Next, we consider the tensor product representation (2.5), with dimensions

d1; : : : ; dp � 2 related to the multiindex & as in (2.7). The dimension of the

subspaceH
.s/
& of highest weight vectors of weight qs can be calculated by counting

the planar link patterns in LP.s/
& .

Lemma 2.2. For each s 2 Z�0, we have dimH
.s/
& D #LP.s/

& .

Proof. Fix s 2 Z�0. The claim follows from the fact that both sides of the asserted

equation,

D.s/
& WD dimH.s/

& and N .s/
& WD #LP.s/

& ;

satisfy the same recursion with the same initial condition. If p D 1, then obvi-

ously D
.s/

.s1/
D ıs;s1

D N
.s/

.s1/
. For general & D .s1; : : : ; sp/ 2 Z

p
>0, consider first

the dimension D
.s/
& of H

.s/
& . Using the notations (2.7), the direct sum decomposi-

tion (2.6) of p irreducibles, with md D D
.s/
& , can be written recursively as

M

d

D.s/
& Md D Mdp

˝ .Mdp�1
˝ � � � ˝ Md1

/

D Mdp
˝
�

M

Od

D
.Os/

O&
M Od

�

D
M

Od

D
.Os/

O&
.Mdp

˝ M Od
/;

(2.14)

where Os D Od � 1 and O& D .s1; : : : ; sp�1/, by the coassociativity property of the

coproduct of Uq.sl2/. Using the explicit decomposition (2.4) of the tensor product

of two irreducibles, we obtain the recursion

D.s/
& D

X

k�0

D
.s�spC2k/

O&
;

where the numbers D
.s�spC2k/

O&
are zero when k is large enough (and for small k

in some cases).

Consider then the number N
.s/
& of link patterns with s defects. We classify the

link patterns ! 2 LP.s/
& according to the number k of links having the endpoint p

(so there are sp � k defects having the endpoint p). Imagine cutting the point p

off from the link pattern !. Then, the remaining points 1; 2; : : : ; p � 1 will have

Os D s � .sp � k/C k D s � sp C 2k defects in total – see Figure 2.2 – namely, the

s � .sp � k/ defects inherited from ! and in addition k defects attached to the k
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links which had the endpoint p. This gives the same recursion as above:

N .s/
& D

X

k�0

N
.s�spC2k/

O&
:

It follows that D
.s/
& D N

.s/
& , as claimed. �

k
sp k

p

Figure 2.2. Illustration of the recursion used in the proof of Lemma 2.2. When cutting the

point p off from the link pattern, the blue links become defects.

2.6. Combinatorial maps. We next define a natural map, which associates to

each planar link pattern ! 2 LP.s/
& a planar pair partition ˛ D ˛.!/ 2 PPN , such

that

N D
1

2

�

p
X

iD1

si C s
�

D
nC s

2
D `C s: (2.15)

This map, denoted by

' W LP.s/
& ! PPN ; ! 7! ˛.!/; (2.16)

is defined as a composition ' D I ıR�1
C of the two combinatorial maps

R
�1
C D .R

.s/
C /�1 W LP.s/

& ! LP
.0/

.&;s/
; and I D I.&;s/ W LP

.0/

.&;s/
! PPN ;

which we define shortly – see also Figure 2.3 for an illustration.

We first define R�1
C and its inverse map RCWLP

.0/

.&;s/
! LP.s/

& . Consider a link

pattern

! D
°

a1 b1

; : : : ;
a` b`

±

[
°

c1

; : : : ;
cs

±

2 LP.s/
& :
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˛.!/

!

!

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.3. Illustration of the map 'W! 7! ˛.!/, defined as the composition ' D I ı R�1
C

.

The middle figure illustrates the image of ! under the first map, that is, !0 D R
�1
C
.!/,

where the defects of ! are attached to an additional index pC1 on the right of all the other

indices. The lowest figure depicts the planar pair partition ˛.!/, which is obtained from !0

by “opening up” all the points, that is, splitting each index i to si new indices and taking

the lines of i along with the points.

Introduce an additional index pC 1, of valence spC1 D s, and connect the defects

of ! to it, to form

!0 D
°

a1 b1

; : : : ;
a` b`

;
c1 pC1

;
c2 pC1

; : : : ;
cs pC1

±

2 LP
.0/

.&;s/
;

a link pattern of p C 1 points having index valences .&; s/ WD .s1; : : : ; sp; s/ and

zero defects. Set

R
�1
C .!/ WD !0:

This defines the map R�1
C WLP.s/

& ! LP
.0/

.&;s/
. It has an obvious inverse map

RC D R
.s/
C WLP

.0/

.&;s/
! LP.s/

& obtained by removing the last index p C 1 of

valence s so that the links attached to it become defects. We similarly define
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R� D R.s/
� WLP

.0/

.s;&/
! LP.s/

& and its inverse map R�1
� D .R

.s/
� /�1WLP.s/

& ! LP
.0/

.s;&/

by removing (resp. adding) the index 1 and relabeling the other indices from left

to right by 1; 2; : : : ; p (resp. 2; 3; : : : ; p C 1).

To define the map I D I.&;s/, split each index i 2 ¹1; 2; : : : ; p C 1º of !0 to si

distinct indices, with spC1 D s, and attach the si links ending at i in !0 to these

new si indices, so that each of them has valence one (see Figure 2.3). This results

in a diagram with 2N D
Pp

iD1 si C s indices, each of which has valence one.

Label these indices from left to right by 1; 2; : : : ; 2N , to obtain the planar pair

partition

I.!0/ D ˛.!/ 2 LP
.0/

.1;1;:::;1;1/
D PPN :

This finally defines the map IWLP
.0/

.&;s/
! PPN and thus the map ' D I ıR�1

C .

2.7. Properties of the link patterns. To finish, we introduce some notation

concerning the recursive structure of the set of planar link patterns, to be used

throughout this article.

1 2 3 4 5 6

Figure 2.4. Example of a link pattern´� for a partition � D .4; 3; 2; 5; 1; 4/.

2.7.1. Defects and partitions. Integer partitions � D .s1; : : : ; sj�j/ of s corre-

spond naturally to endpoints of defects in planar link patterns. A partition � of s

determines a unique .s; 0/-link pattern denoted by´� 2 LP
.s/

�
, which consists of

s defects with endpoints i D 1; 2 : : : ; j�j, having valences si D si specified by �,

as in Figure 2.4. We also include the .0; 0/-link pattern´./ D ; for s D 0.

Conversely, let & 2 Z
p
>0 and consider an .n; `/-link pattern with s D n � 2`

defects, with notations (2.13),

! D
°

a1 b1

; : : : ;
a` b`

±

[
°

c1

; : : : ;
cs

±

2 LP.s/
& :

When s � 1, the set
®

c1

; : : : ;
cs

¯

of defects in ! defines naturally a partition

of s as follows: if ¹u1; : : : ; utº � ¹1; : : : ; pº, for u1 < : : : < ut , denote the

distinct endpoints of the defects in ! with multiplicities given by the number

ri .!/ D # ¹k j ck D ui º � 1 of defects ending at the index ui , then we have

s D
Pt

iD1 ri .!/, and the numbers ri .!/ thus define a partition of s into t positive
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integers,

�.!/ D .r1.!/; : : : ; rt.!//:

We denote the set of all planar link patterns with a fixed number s 2 Z�0 of

defects by

LP.s/ D
G

p2N;

&2Z
p
>0

LP.s/
& ;

and, for a fixed partition � D .s1; : : : ; sj�j/ of s, we denote by

LP.s/.�/ D ¹! 2 LP.s/ j �.!/ D �º and LP.0/./ D LP.0/

the set of all planar link patterns whose defects
®

c1

; : : : ;
cs

¯

define the partition

�.!/ D �.

2.7.2. Removing links. Also the links in the .n; `/-link pattern

! D
°

a1 b1

; : : : ;
a` b`

±

[
°

c1

; : : : ;
cs

±

2 LP.s/
&

appear with multiplicity. For two indices a < b, we denote by `a;b D `a;b.!/ the

multiplicity of the link
a b

in !, that is, we have `a;b D # ¹i j ai D a; bi D bº

and ` D
P

k;l `k;l . In particular, the links of ! can be regarded as a multiset of

k � ` D
P

a;b `a;b elements,

L.!/ D
°

`a1;b1
�

a1 b1

; : : : ; `ak ;bk
�

ak bk

±

:

Removing one link from an .n; `/-link pattern determines an .n � 2; ` � 1/-link

pattern. If the removed link had an endpoint with valence one, then the endpoint

must be removed as well, and the remaining indices must be relabeled so as to

form the endpoints of the smaller link pattern, as illustrated in Figure 2.5. We

denote the removal of a link
a b

from a link pattern ! by !=
a b

.

More generally, if the link
a b

appears in ! 2 LP.s/
& with multiplicity `a;b,

we can remove m � `a;b links from !. The removal of m links
a b

from ! is

then denoted by !=.m �
a b

/. In this case, if sj D m or sj C1 D m, we have to

also remove the index j or j C 1, respectively (or both), and relabel the indices

of the remaining links and defects, as also illustrated in Figure 2.5.
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Figure 2.5. Removal of links between the indices a D 4 and b D 5. In the left figure, all

three links are removed, so the index 5 has to be removed as well (because it becomes empty,

i.e., its valence becomes equal to zero), and the remaining indices are labeled accordingly.

On the right, only two links are removed, so the indices remain the same.

3. Basis vectors in quantum group representations

In this section, we construct a basis for each highest weight vector space H
.s/
&

(defined in equation (2.8)) whose vectors are uniquely characterized by certain

recursive properties, concerning projections onto subrepresentations. These basis

vectors are crucial in our construction of the basis for solutions to the Benoit &

Saint-Aubin PDEs in Section 5. The defining properties of the basis vectors

correspond to the asymptotic boundary conditions for the basis functions, as

explained in Section 5.

In view of Lemma 2.2, it is natural to index the basis vectors v! by link

patterns !. Specifically, we consider the following system of equations for vectors

v! 2
Np

iD1 Mdi
, with ! 2 LP.s/

& :

K:v! D q
s v! (3.1)

E:v! D 0; (3.2)

Q�
.ı/
j .v!/ D

8

<

:

1
C.mIsj ;sj C1/

� v O! if there are at least m links
j j C1

in !;

0 otherwise,
(3.3)

for all j 2 ¹1; 2; : : : ; p � 1º, m 2 ¹1; 2; : : : ;min.sj ; sj C1/º, and

ı D sj C sj C1 C 1� 2m;
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where O! D !=.m �
j j C1

/, and the constants in (3.3) are non-zero and explicit:

C.mI sj ; sj C1/ D

�

sj �m
�

Š
�

sj C1 �m
�

Š
�

sj C sj C1 �mC 1
�

Š

Œ2�m
�

sj
�

Š
�

sj C1

�

Š
�

sj C sj C1 � 2mC 1
�

Š

D

h sj C sj C1 �mC 1

m

i

Œ2�m Œm�Š
h sj

m

ih sj C1

m

i

;

(3.4)

and where we use, by default, the notations (2.7) for the parameters s, sj , sj C1,

and d D s C 1.

Equations (3.1) and (3.2) state that each v! belongs to the highest weight

vector spaceH
.s/
& . Equations (3.3) concern projections of v! to subrepresentations,

corresponding to removing links from the link pattern !.

Theorem 3.1. (a) For each integer s � 0, there exists a unique collection

.v!/!2LP.s/ of vectors such that the system of equations (3.1)–(3.3) holds for all

! 2 LP.s/, we have v; D 1, and

v´�
D

1

.q � q�1/s
Œ2�s

Œs C 1�Š
� .e

.sj�jC1/

0 ˝ � � � ˝ e
.s1C1/
0 / 2 H

.s/

�
(3.5)

for any partition � D .s1; : : : ; sj�j/ of s � 1.

(b) For fixed & 2 Z
p
>0, the collection .v!/!2LP

.s/
&

is a basis of the vector

space H
.s/
& . In particular,

¹F l :v! j ! 2 LP.s/
& ; l 2 ¹0; 1; : : : ; sºº

is a basis of the subrepresentation md Md �
Np

iD1 Mdi
, with d D s C 1 and

md D #LP.s/
& .

A special case of the above problem was considered in [49, Theorem 3.1]

where a particular basis for the trivial subrepresentation H
.0/

.1;1;:::;1;1/
� M

˝2N
2 was

constructed. We state the result below in Theorem 3.4. In this case, all valences in

& D .1; 1; : : : ; 1; 1/ are equal to one: si D 1 for all i . The solution to this special

case is crucial in the proof of the general case in Section 3.3.

Remark 3.2. Let � D .s1; : : : ; sj�j/ be a partition of s � 1. Then, the space H
.s/

�

is one-dimensional: by Lemma 2.2, we have dimH
.s/

�
D #LP

.s/

�
D # ¹´�º D 1.

In the the tensor product (2.5), the vector v´�
2 H

.s/

�
generates the highest

dimensional subrepresentation isomorphic to MsC1 with multiplicity one. It is

sometimes convenient to identify the space H
.s/

�
with C, via the map v´�

7! 1 2 C.
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The somewhat lengthy proof of Theorem 3.1 is distributed in the next sub-

sections. The results obtained in sections 3.1–3.6 are put together in Section 3.7,

which constitutes a summary of the proof.

We begin with introducing needed results concerning tensor products of two-

dimensional irreducible representations of Uq.sl2/. Throughout, we use the nota-

tions from (2.7) and (2.13).

3.1. Tensor powers of two-dimensional irreducibles. The tensor powerM˝s
2 of

two-dimensional irreducible representations of Uq.sl2/ contains a unique subrep-

resentation of highest dimension, generated by the highest weight vector (a special

case of the vectors in Remark 3.2)

�
.s/
0 WD e

.2/
0 ˝ � � � ˝ e

.2/
0 2 M

˝s
2 :

This subrepresentation is isomorphic to Md , with s D d � 1. For its basis, we use

the notation

�
.s/

l
WD F l :�

.s/
0 ; for l 2 ¹0; 1; : : : sº;

with convention �
.s/

l
D 0 when l < 0 or l > s. Using this basis, we define the

projections

p D p.s/WM˝s
2 �! M

˝s
2 and Op.s/WM˝s

2 �! Md (3.6)

as follows. The map p.s/ is the projection onto the subrepresentation isomorphic

to Md , so that we have

p.s/.�
.s/

l
/D �

.s/

l
for l 2 ¹0; 1; : : : ; sº

and

p.s/.v/D 0 for v … span¹�
.s/
0 ; : : : ; � .s/

s º Š Md :

The map Op.s/ is defined as a composition of p.s/ with the identification �
.s/

l
7! e

.s/

l

of its image andMd , so that we have I.s/ ı Op.s/ D p.s/, where I.s/ is the embedding

I.s/WMd ,�! M
˝s
2 ;

I.s/.e
.d/

l
/ WD �

.s/

l
for l 2 ¹0; 1; : : : ; sº:

Vectors of Md � M
˝s
2 can be characterized in terms of projections to subrepre-

sentations in two consecutive tensorands. This property is used repeatedly in the

proof of Theorem 3.1.
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Lemma 3.3 (see e.g. [49, Lemma 2.4 & Corollary 2.5]). For any v 2 M
˝s
2 ,

s D d � 1 2 Z>0, the following two conditions are equivalent:

(a) O�
.1/
j .v/ D 0 for all j 2 ¹1; 2; : : : ; s � 1º;

(b) v 2 Md � M
˝s
2 .

In particular, if we have E:v D 0, K:v D v, and O�
.1/
j .v/ D 0 for all j 2

¹1; 2; : : : ; s � 1º, then v D 0:

Consider now the tensor product (2.5) with & D .1; 1; : : : ; 1; 1/ 2 Zn
>0. By the

decomposition (2.4), we can write this tensor product in the form

M
˝n
2 Š

M

d

m
.n/

d
Md ;

where, by Lemma 2.2, the multiplicities arem
.n/

d
D #PP

.s/
N , withN D 1

2
.n�s/ and

s D d �1. These numbers can be calculated explicitly (see e.g. [49, Lemma 2.2]):

we have

m
.n/

d
D #PP

.s/
N

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

2d

nC d C 1

 

n
nCd�1

2

!

D
s C 1

N C s C 1

 

2N C s

N C s

!

if nC s 2 2Z�0 and 0 � s � n;

0 otherwise.

In particular, when n D 2N (i.e., s D 0), the dimension of the trivial subrepre-

sentation

H
.0/
2N WD ¹v 2 M

˝2N
2 j E:v D 0;K:v D vº � M

˝2N
2

is the Catalan numberm
.2N /
1 D CN D

1
N C1

�

2N
N

�

. For convenience, we also denote

by H
.s/
n D H

.s/

.1;1;:::;1;1/
the m

.n/

d
-dimensional spaces of highest weight vectors

in M˝n
2 .

3.2. The special case & D .1; 1; : : : ; 1; 1/. In the proof of Theorem 3.1, we

make use of results of the article [49] concerning a particular basis of the trivial

subrepresentation H
.0/
2N � M

˝2N
2 . Then, the basis vectors v˛ are indexed by planar

pair partitions ˛ 2 PPN of 2N points. They are uniquely characterized by the

projection properties (3.9) given below – a special case of (3.3).
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Now, we consider the following linear system of equations for vectors v˛ 2

M
˝2N
2 , with ˛ 2 PPN :

K:v˛ D v˛; (3.7)

E:v˛ D 0; (3.8)

O�
.1/
j .v˛/ D

8

ˆ

<

ˆ

:

0 if
j j C1

… ˛;

v Ǫ if
j j C1

2 ˛;
for all j 2 ¹1; 2; : : : ; 2N � 1º; (3.9)

where Ǫ D ˛=
j j C1

2 PPN �1.

Theorem 3.4. [49, Theorem 3.1 & Proposition 3.7] There exists a unique collec-

tion .v˛/˛2PP of vectors such that the system of equations (3.7)–(3.9) holds for all

˛ 2 PP, and we have v; D 1. For any N 2 Z�0, the collection .v˛/˛2PPN
is a

basis of H
.0/
2N .

The vectors v˛ are related to the pure partition functions Z˛.x1; : : : ; x2N / of

multiple SLE� , with parameter � associated to the deformation parameter q by

q D ei�4=� ; see Section 6, and [49] for details. Our general Theorem 3.1 concerns

basis vectors v! of the space H
.s/
& , with & 2 Z

p
>0. To these vectors, we can also

associate functions F!.x1; : : : ; xp/, as stated in Theorem 5.3. These functions are

solutions to the Benoit & Saint-Aubin PDEs, and they can be interpreted as pure

partition functions for systems of random curves, where many curves may emerge

from the same point, see [22].

N N C11 2N

Figure 3.1. The rainbow pattern (planar pair partition) of 2N points.

For the special case concerning the rainbow pattern defined by e0 D ; and

eN D

²

1 2N
; : : : ;

N �1 N C2
;

N N C1

³

2 PPN for N 2 Z>0;



24 E. Peltola

(see also Figure 3.1), the equations (3.7)–(3.9) involve only the rainbow patterns

eN and eN �1:

.K � 1/:veN
D 0 (3.10)

E:veN
D 0 (3.11)

O�
.1/
N .veN

/ D veN�1
and O�

.1/
j .veN

/ D 0 for j ¤ N: (3.12)

Therefore, the formula for veN
is particularly simple.

Proposition 3.5. [49, Proposition 3.3] The vectors

veN
WD

1

.q�2 � 1/N
Œ2�N

ŒN C 1�Š

N
X

lD0

.�1/lql.N �l�1/ � .�
.N /

l
˝ �

.N /

N �l
/ 2 M˝2N

2

(3.13)

for N 2 Z�0 determine the unique solution to (3.10)–(3.12) with v; D 1.

3.3. Construction. Now we construct the basis vectors v! of Theorem 3.1. In

the construction, we use the vectors v˛ of Theorem 3.4, withN D 1
2
.nCs/ chosen

as in (2.15), and the map (2.16),

LP.s/
& �! PPN ; ! 7�! ˛.!/;

see also Figure 2.3 in Section 2.6.

For a link pattern! 2 LP.s/
& , the basis vector v! 2 H

.s/
& �

Np
iD1 Mdi

is obtained

from the vector v˛.!/ 2 H
.0/
2N � M

˝2N
2 as follows: we let

v! WD R
.s/
C .Op.&;s/.v˛.!///; (3.14)

with

H
.0/
2N

Op.&;s/

�!
 �-
I.&;s/

H
.0/

.&;s/

R
.s/
C

�! H
.s/
& ; v˛.!/

Op.&;s/

7�!7�!

I.&;s/

v1
!

R
.s/
C

7�! v!;

where

� Op.&;s/ WD Op.s/˝ Op.sp/˝� � �˝ Op.s1/ and I.&;s/ WD I.s/˝I.sp/˝� � �˝I.s1/ (recall

Section 3.1),

� we denote by v1
! WD Op

.&;s/.v˛.!//, and

� R
.s/
C WH

.0/

.&;s/
! H

.s/
& is a linear isomorphism, which will be defined in more

detail in Section 3.4.
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The idea is to think the tensor power M˝2N
2 of as a chain of blocks of smaller

tensor powers of M2,

M
˝2N
2 D M

˝s
2 ˝ M

˝sp

2 ˝ M
˝sp�1

2 ˝ � � � ˝ M
˝s2

2 ˝ M
˝s1

2 ;

where each block M
˝r
2 is mapped onto the ı D r C 1-dimensional irreducible

representationMı under the map Op.&;s/WM˝2N
2 ! Md˝Mdp

˝� � �˝Md1
. Conversely,

the image of the embedding I.&;s/ can be characterized by projection properties

inside the blocks, as we show next.

Proposition 3.6. The image of the space H
.0/

.&;s/
under the embedding I.&;s/ is the

space

J
.&;s/
N WD

°

v 2 H
.0/
2N

ˇ

ˇ

ˇ
O�

.1/
j .v/ D 0

for all j 2 ¹1; : : : ; 2N � 1º n
°

k
X

iD1

si

ˇ

ˇ

ˇ
1 � k � p

±±

:

The projection Op.&;s/ defines an isomorphism of representations of Uq.sl2/,

Op.&;s/W J
.&;s/
N �! H

.0/

.&;s/
;

and its inverse is I.&;s/. For any ! 2 LP.s/
& , the vector v˛.!/ lies in the space J

.&;s/
N

and, in particular,

I.&;s/.Op.&;s/.v˛.!/// D I.&;s/.v1
! / D v˛.!/: (3.15)

Proof. The property I.&;s/.H
.0/

.&;s/
/ D J

.&;s/
N follows from Lemma 3.3 and the fact

that I.&;s/ commutes with the action of the algebra Uq.sl2/. Since Op.&;s/ also

commutes with the action of Uq.sl2/, it follows that restricted to J
.&;s/
N , it is an

isomorphism of representations, with inverse I.&;s/.

Let then ! 2 LP.s/
& . By definition of the map ! 7! ˛.!/ in Section 2.6, the

planar pair partition ˛.!/ can contain a link of type
j j C1

only if these points

correspond to different points in the link pattern !, that is, if j 2
®
Pk

iD1 si
ˇ

ˇ 1 �

k � p
¯

. In particular, by the projection properties (3.9) of v˛.!/, we have

O�
.1/
j .v˛.!// D 0 for all j …

®
Pk

iD1 si
ˇ

ˇ 1 � k � p
¯

, so v˛.!/ 2 J
.&;s/
N . This

concludes the proof. �

It now follows almost immediately from the definitions that the vectors (3.14)

form a basis of the highest weight vector space. This proves part (b) of Theo-

rem 3.1.
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Proposition 3.7. The collection .v!/!2LP
.s/
&

defined in (3.14) is a basis of the

vector space H
.s/
& .

Proof. BecauseR
.s/
C WH

.0/

.&;s/
! H

.s/
& is a linear isomorphism (by [50, Lemma 5.3]),

the vectors v! WD R
.s/
C

�

Op.&;s/.v˛.!//
�

belong to the space H
.s/
& by construction.

Their linear independence follows the facts that, first, the maps R
.s/
C and Op.&;s/

are linear isomorphisms, by [50, Lemma 5.3(a)] and Proposition 3.6, respectively,

and second, the vectors v˛.!/ are linearly independent, by Theorem 3.4. Finally,

by Lemma 2.2, the linear span of the vectors v! for ! 2 LP.s/
& has the correct

dimension #LP.s/
& D dimH

.s/
& . �

To prove part (a) of Theorem 3.1, we still have to show that the vectors v!

satisfy (3.3)–(3.5). The projection properties (3.3) will be verified in Section 3.5.

The normalization conditions (3.5) follow by considering the action of the map

R
.s/
C on the vectors ves

, associated to the rainbow link patterns es.

3.4. Normalization. For any partition � of s, the vectors v´�
correspond to veN

with N D s under the map ! 7! ˛.!/ – see Figure 3.2 for an illustration. This

observation gives rise to the normalization constant in (3.5), as we show next.

´

es

1 2 19 20 37 38

1 2 3 4 5 6

Figure 3.2. For the link pattern ´�, consisting of s defects, the corresponding planar pair

partition ˛.´�/ is the rainbow pattern es D ˛.´�/.

First, we give the precise definition of the linear isomorphism R
.s/
C already

used above in equation (3.14). By [50, Lemma 5.3(a)], any vector v 2 H
.0/

.&;s/
can
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be written in the form

v D

s
X

lD0

.�1/s�lq.lC1/.s�l/ � .e
.d/

l
˝ F s�l :�C

0 /;

for a unique vector �C
0 2 H

.s/
& , with d D s C 1. The map (compare with R

.s/
C in

Section 2.6)

RC D R
.s/
C WH

.0/

.&;s/
�! H

.s/
& ; R

.s/
C .v/ WD �C

0 ; (3.16)

is thus well defined. It was shown in [50, Lemma 5.3] that R
.s/
C is a linear

isomorphism.

Remark 3.8. The mapR
.s/
C commutes with the maps Q�

.ı/
j defined in (2.12), for any

j 2 ¹1; 2; : : : ; p� 1º,m 2 ¹0; 1; : : : ;min.sj ; sj C1/º, and ı D sj C sj C1C 1� 2m,

because the maps Q�
.ı/
j act on the tensor components .j; jC1/ of the tensor product

Md ˝ Mdp
˝ Mdp�1

˝ � � � ˝ Md2
˝ Md1

, away from the tensor position involving

Md – see also [50, Lemma 5.3 and equation (5.2)].

Lemma 3.9. Let � D .s1; : : : ; sj�j/ be a partition of s 2 Z>0. Then we have

˛.´�/ D es, and

v´�
WD R

.s/
C .Op.�;s/.ves

//

D
1

.q � q�1/s
Œ2�s

Œs C 1�Š
� .e

.sj�jC1/

0 ˝ � � � ˝ e
.s1C1/
0 / 2 H

.s/

�
:

Proof. The first assertion ˛.´�/ D es is immediate from the definition of the

map ! 7! ˛.!/. For the second assertion, using the formula (3.13) for the

vector ves
, we calculate the image of ves

under the map Op.�;s/ D Op.s/ ˝ Op� D

Op.s/ ˝ .Op.sj�j/ ˝ � � � ˝ Op.s1//:

Op.�;s/.ves
/ D

1

.q�2 � 1/s
Œ2�s

Œs C 1�Š

s
X

lD0

.�1/lql.s�l�1/ � .Op.s/.�
.s/

l
/˝ Op�.�

.s/

s�l
//

D
1

.q�2 � 1/s
Œ2�s

Œs C 1�Š

s
X

lD0

.�1/lql.s�l�1/

� .e
.d/

l
˝ F s�l :.e

.sj�jC1/

0 ˝ � � � ˝ e
.s1C1/
0 //:

The second assertion now follows from the definition of the map R
.s/
C in (3.16).

�
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3.5. Projection properties. We show next that the vectors v! defined by (3.14)

indeed satisfy the projection properties (3.3). To establish this, we need some aux-

iliary calculations, given in Appendix B. The crucial observation is the following

commutative diagram.

Lemma 3.10. Let s1; s2 2 Z>0 and m 2 ¹1; 2; : : : ;min.s1; s2/º, and denote

r D s1 C s2 � 2m and ı D r C 1. The following diagram commutes, up to a

non-zero multiplicative constant, given below:

M
˝s2

2 ˝ M
˝s1

2 Md2
˝ Md1

M
˝.s2�1/
2 ˝ M

˝.s1�1/
2

:::

M
˝.s2�mC1/
2 ˝ M

˝.s1�mC1/
2

M
˝r
2

Mı Mı

!

 -
I.s2/˝I.s1/

 !O�
.1/
s1

 

!

O�.ı/

 !O�
.1/
s1�1

 !O�
.1/
s1�mC2

 !O�
.1/
s1�mC1

 !Op.r/

!

!
Š

More precisely, we have

Op.r/ ı . O�
.1/
s1�mC1 ı � � � ı O�

.1/
s1�1 ı O�

.1/
s1
/ ı .I.s2/ ˝ I.s1// D C.mI s1; s2/ � O�

.ı/;

where the non-zero constant equals

C.mI s1; s2/ D
Œs1 �m�Š Œs2 �m�Š Œs1 C s2 �mC 1�Š

Œ2�m Œs1�Š Œs2�Š Œs1 C s2 � 2mC 1�Š
D

h s1 C s2 �mC 1

m

i

Œ2�m Œm�Š
h s1

m

ih s2

m

i

:

Proof. The subrepresentation isomorphic to Mı appears in the tensor product

Md2
˝ Md1

with multiplicity one. By Schur’s lemma, to prove that the diagram

commutes, it therefore suffices to show that the map

Op.r/ ı . O�
.1/
s1�mC1 ı � � � ı O�

.1/
s1�1 ı O�

.1/
s1
/ ı .I.s2/ ˝ I.s1//
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is non-zero. But, by Lemma B.5, the vector �
.ıId1;d2/
0 2 Md2

˝Md1
maps to a non-

zero multiple of e
.ı/
0 2 Mı in this map, with the explicit, non-zero proportionality

constant C.mI s1; s2/. This finishes the proof. �

Proposition 3.11. The collection of vectors .v!/!2LP.s/ , defined in (3.14), satisfies

the equations (3.3).

Proof. By Remark 3.8, the maps Q�
.ı/
j appearing in the equations (3.3) com-

mute with the linear isomorphism R
.s/
C , for any j 2 ¹1; 2; : : : ; p � 1º, m 2

¹0; 1; : : : ;min.sj ; sj C1/º, and ı D sj C sj C1 C 1 � 2m. Therefore, it suffices

to show that the vector v1
! WD Op

.&;s/.v˛.!// satisfies the properties (3.3). Using

the commutative diagram of Lemma 3.10 together with Proposition 3.6, the prop-

erties (3.3) can be written in terms of v˛.!/, which, in turn, are known to satisfy

the properties (3.9), by Theorem 3.4.

Fix j 2 ¹1; 2; : : : ; p � 1º, m 2 ¹1; 2; : : : ;min.sj ; sj C1/º, and denote by

kj D
Pj

iD1 si . We first note that, by definition of the map ! ! ˛.!/ (see

Section 2.6), the link pattern ˛.!/ contains the nested links

kj kj C1

;
kj �1 kj C2

; : : : ;
kj �mC1 kj Cm

if and only if the link pattern ! contains at least m links
j j C1

, and if this is the

case, then we have

˛.!/ =
kj kj C1

=
kj �1 kj C2

= : : : =
kj �mC1 kj Cm

D ˛
�

!=
�

m �
j j C1

��

D ˛. O!/;

where we denote by O! D !=.m �
j j C1

/. The projection properties (3.9) for the

vector v˛.!/ show that

. O�
.1/

kj �mC1
ı � � � ı O�

.1/

kj �1
ı O�

.1/

kj
/.v˛.!//

D

8

<

:

v˛. O!/ if there are at least m links
j j C1

in !;

0 otherwise.

(3.17)

Denote by r D ı � 1 D sj C sj C1 � 2m and O& D .s1; : : : ; sj �1; r; sj C2; : : : ; sp/.
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Using the commutative diagram of Lemma 3.10, equation (3.15), and equa-

tion (3.17), we obtain

C.mI sj ; sj C1/ � O�
.ı/
j .v1

! /

D .Op. O&;s/ ı . O�
.1/

kj �mC1
ı � � � ı O�

.1/

kj �1
ı O�

.1/

kj
/ ı I.&;s//.v1

! /

D .Op. O&;s/ ı . O�
.1/

kj �mC1
ı � � � ı O�

.1/

kj �1
ı O�

.1/

kj
//.v˛.!//

D

8

<

:

Op. O&;s/.v˛. O!// if there are at least m links
j j C1

in !;

0 otherwise.

(3.18)

Now, it follows directly from the definitions that we have

Op.sj C1�m/ ˝ Op.sj �m/ D �.ı/ ı Op.r/WM˝r
2 �! Mdj C1�m ˝ Mdj �m; (3.19)

where the maps

Op.r/WM˝r
2 �! Mı and �.ı/ D �.ıIdj �m;dj C1�m/WMı ,�! Mdj C1�m ˝ Mdj �m

were defined in (3.6) and (2.9), respectively. Using equation (2.12), equa-

tion (3.18), and equation (3.19), we obtain

C.mI sj ; sj C1/ � Q�
.ı/
j .v1

! /

D C.mI sj ; sj C1/ � �
.ı/
j . O�

.ı/
j .v1

! //

D

8

<

:

.�
.ı/
j ı Op

. O&;s//.v˛. O!// if there are at least m links
j j C1

in !;

0 otherwise

D

8

<

:

Op.Q&;s/.v˛. O!// if there are at least m links
j j C1

in !;

0 otherwise

D

8

<

:

v1
O!

if there are at least m links
j j C1

in !;

0 otherwise;

where Q& D .s1; : : : ; sj �1; sj �m; sj C1 �m; sj C2; : : : ; sp/, and v1
O!
D Op.Q&;s/.v˛. O!//.

This is the property (3.3) for v1
! . Finally, we obtain the asserted property for v!

by applying the map R
.s/
C :

Q�
.ı/
j .v!/ D

8

<

:

1
C.mIsj ;sj C1/

� v O! if there are at least m links
j j C1

in !

0; otherwise: �
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3.6. Uniqueness. We finish by proving that the solutions to (3.1)–(3.3) are nec-

essarily unique, up to normalization. Fixing the normalization (3.5), uniqueness

follows from the observation that the homogeneous system, in which all of the pro-

jections vanish, admits a non-trivial solution only when n D
Pp

iD1 si D s, and in

this case, the spaceH
.s/
& is one-dimensional and spanned by v´&

(see Remark 3.2).

Lemma 3.12. Assume that n > s and that the vector v 2
Np

iD1Mdi
satisfies

E:v D 0, K:v D qs v, and Q�
.ı/
j .v/ D 0 for all j 2 ¹1; 2; : : : ; p � 1º, all

ı D sj C sj C1 C 1 � 2m, and all m 2 ¹1; 2; : : : ;min.sj C1; sj /º. Then we have

v D 0:

Proof. The properties E:v D 0 andK:v D qs v show that v belongs to the highest

weight vector space H
.s/
& , so we have I.&/.v/ D .I.sp/ ˝ � � � ˝ I.s1//.v/ 2 H

.s/
n

as well. Furthermore, the properties Q�
.ı/
j .v/ D 0 for all j , ı, and m imply

that in the tensor product (2.5), in the direct sum decomposition of any two

consecutive tensorands Mdj C1
˝ Mdj

into irreducibles, the vector v lies in the

highest dimensional subrepresentation isomorphic to Mdj Cdj C1�1. For the vector

I.&/.v/, this and Lemma 3.3 show that we have

O�
.1/

k
.I.&/.v// D 0 for all k 2 ¹1; 2; : : : ; n� 1º:

Therefore, Lemma 3.3 applied to the whole tensor product M˝n
2 shows that the

vector I.&/.v/ belongs to the highest dimensional subrepresentationMnC1 � M
˝n
2 .

We conclude that

I.&/.v/ 2 MsC1 \ MnC1 � M
˝n
2 :

Now, by assumption n > s, we have MsC1 \ MnC1 D ¹0º, so we get I.&/.v/ D 0,

and v D 0 as well. �

Proposition 3.13. Let s 2 Z�0, and let .v!/!2LP.s/ and .v0
!/!2LP.s/ be two

collections of solutions to (3.1)–(3.3), such that we have v´�
; v0
´�
¤ 0 for all

partitions � of s. Then, there are constants c� 2 C n ¹0º such that

v0
! D c� v! for all ! 2 LP.s/.�/:

Proof. Fix a partition � of s. By assumption, we have v0
´�
D c� v´�

for some

c� 2 C n ¹0º, because the vectors v0
´�

and v´�
belong to a one-dimensional

space (see Remark 3.2). Suppose then that the condition v0 D c� v� holds for

all � 2 LP.s/.�/ \ LP.s/
% for which the multiindex % D .r1; : : : ; rt/ satisfies

Pt
iD1 ri D n � s. Then, for any ! 2 LP.s/.�/ \ LP.s/

& with & D .s1; : : : ; sp/ such

that
Pp

iD1 si D nC 1, the equations (3.1)–(3.3) for v0
! and c� v! coincide. It thus

follows from Lemma 3.12 that we have v0
! D c� v! for all ! 2 LP.s/.�/ \ LP.s/

& .

The assertion then follows by induction on n. �
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3.7. Proof of Theorem 3.1. For ! 2 LP.s/, the vectors v! defined in equa-

tion (3.14) are solutions to (3.1)–(3.3); see Proposition 3.7 for the conditions (3.1)

and (3.2), and Proposition 3.11 for (3.3). By Lemma 3.9, the vectors v´�
satisfy

the asserted normalization (3.5), for all partitions � of s. Uniqueness of the so-

lutions follows from Proposition 3.13. This proves part (a). Part (b) follows from

Proposition 3.7. This concludes the proof of Theorem 3.1. �

4. Cyclic permutation symmetry of the basis vectors

Next, we derive a further property of the basis vectors v! , also very natural in

terms of the link patterns !. This is a symmetry property under cyclic per-

mutations of the tensor components Mdi
in the trivial subrepresentation H

.0/
& �

Np
iD1 Mdi

. We show in Corollary 4.2 that under such a cyclic permutation, the

vectors v! 2 H
.0/
& , with & D .s1; : : : ; sp/, are mapped to constant multiples of

similar vectors v!0 2 H
.0/
& 0 , where the link pattern !0 2 LP

.0/
& 0 is obtained by ap-

plying the combinatorial bijections RC and R� of Section 2.6, so that we either

have & 0 D .sp; s1; s2; : : : ; sp�1/ or & 0 D .s2; s3; : : : ; sp; s1/, depending on the ori-

entation of the permutation – see Figure 4.1 for an illustration of the former case.

From this property, it also follows (Corollary 4.3) that the pth iterate of the cyclic

permutation of the tensor components is a constant multiple of the identity map

on H
.0/
& .

4.1. Placing tensor components at infinity. We now consider the linear isomor-

phism RC defined in Section 3.4, and a similar linear isomorphism

R� D R
.s/
� WH

.0/

.s;&/
�! H

.s/
& ; R.s/

� .v/ WD ��
0 ; (4.1)

where ��
0 2 H

.s/
& is the unique vector such that we have

v D

s
X

lD0

.�1/s�lq.l�1/.s�l/ � .F s�l :��
0 ˝ e

.d/

l
/;

with d D s C 1, see [50, Lemma 5.3] (compare also with RC and R� in

Section 2.6).

We also define the composed map S D R�1
� ı RC, permuting the tensor

components cyclically,

S D S .s/WH
.0/

.&;s/
�! H

.0/

.s;&/
: (4.2)



Basis for solutions of the Benoit & Saint-Aubin PDEs 33

Iterating the map S , we define a linear map on H
.0/
& , with & D .s1; : : : ; sp/,

S .s1/ ı S .s2/ ı � � � ı S .sp�1/ ı S .sp/WH.0/
& �! H

.0/
& : (4.3)

Analogously to the map (4.2), we denote the composition of the maps defined

in Section 2.6 by

S D S
.s/WLP

.0/

.&;s/
�! LP

.0/

.s;&/
; S WD R

�1
� ıRC: (4.4)

When & D .s1; : : : ; sp/, the link pattern S.!/ is obtained from ! 2 LP
.0/

.&;s/
by

moving the rightmost index p C 1 of ! (with valence s) to the left of all others,

and relabeling the indices from left to right by 1; 2; 3; : : : ; pC1. This is illustrated

in Figure 4.1.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 4.1. In the cyclic permutation S D R
�1
� ı RC, the rightmost point p C 1 D 8 is

moved to the left of all others, and the points are relabeled by 1; 2; : : : ; 8.

4.2. Cyclic permutations of tensor components. In Section 3.3, we con-

structed the vectors v! using the map RC, see (3.14). It follows from Proposi-

tion 3.13 below that the construction could have been established as well using the

map R� instead, only changing the normalization (3.5) of v! .

Let N be chosen as in (2.15) and recall the map ! 7! ˛.!/ from Section 2.6,

illustrated in Figure 2.3. For convenience, we denote the sth iterate of the map

S.1/WPPN ! PPN by Sıs D S.1/ ı � � � ı S.1/. We then define, for any ! 2 LP.s/
& ,

the following vectors (compare with equation (3.14)):

v0
! WD R

.s/
� .Op.s;&/.v˛0.!///; where ˛0.!/ D S

ıs.˛.!//:

Proposition 4.1. We have v0
! D .�q/

s v! for all ! 2 LP.s/.

Proof. For any ! 2 LP.s/
& , the vector v0

! belongs to the space H
.s/
& by construc-

tion. Also, similarly as in the proof of Proposition 3.11, we see that the col-

lection .v0
!/!2LP.s/ , satisfies the equations (3.3). Therefore, v0

! satisfy the sys-

tem (3.1)–(3.3) of equations, and it follows from Proposition 3.13 that, for all par-

titions � of s, there are constants c� 2 C n ¹0º such that we have v0
! D c�v! for
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all ! 2 LP.s/.�/. We evaluate the constants c� by studying the pattern ! D ´�

consisting of defects only.

By Lemma 3.9, for any partition � D .s1; : : : ; sj�j/ of s, we have

˛.´�/ D es D S
ıs.es/ D S

ıs.˛.´�// D ˛
0.´�/;

where we used the observation that the link pattern es is invariant under the

map Sıs. Similarly as in the proof of Lemma 3.9, using the formula (3.13)

for the vector ves
, we calculate the action of the map Op.s;�/ D Op� ˝ Op.s/ D

.Op.sj�j/ ˝ � � � ˝ Op.s1//˝ Op.s/,

Op.s;�/.ves
/ D

1

.q�2 � 1/s
Œ2�s

Œs C 1�Š

s
X

lD0

.�1/lql.s�l�1/ � .Op�.�
.s/

l
/˝ Op.s/.�

.s/

s�l
//

D
1

.q�2 � 1/s
Œ2�s

Œs C 1�Š

s
X

lD0

.�1/lql.s�l�1/

� .F l :.e
.sj�jC1/

0 ˝ � � � ˝ e
.s1C1/
0 /˝ e

.d/

s�l
/

D
1

.q�2 � 1/s
Œ2�s

Œs C 1�Š

s
X

lD0

.�1/s�lq.s�l/.l�1/

� .F s�l :.e
.sj�jC1/

0 ˝ � � � ˝ e
.s1C1/
0 /˝ e

.d/

l
/:

It now follows from the definition of the map R.s/
� and Lemma 3.9 that we have

v0
´�
D R.s/

� .Op.s;�/.ves
//

D
1

.q�2 � 1/s
Œ2�s

Œs C 1�Š
� .e

.sj�jC1/

0 ˝ � � � ˝ e
.s1C1/
0 /

D .�q/sv´�
;

so c� D .�q/
s, independently of the partition �. This concludes the proof. �

The above observation gives the cyclic permutation symmetry of the basis

vectors v! of the trivial subrepresentation H
.0/
& . (Note that for H

.s/
& with s � 1,

the statement would not make sense.)

Corollary 4.2. The vectors v! 2 H
.0/
& satisfy

vS.!/ D .�q/
spS .sp/.v!/:
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Proof. By definition, we have v! D Op
.&/.v˛.!//. On the other hand, we have

vS.!/ D Op
.& 0/.v˛0.!//, where & 0 D .sp; s1; : : : ; sp�1/ and ˛0.!/ D Sısp.˛.!//.

Proposition 4.1 now gives

R.sp/
� .vS.!// D R

.sp/
� .Op.& 0/.v˛0.!///

D .�q/spR
.sp/

C .Op.&/.v˛.!///

D .�q/spR
.sp/

C .v!/:

Applying the map .R.sp/
� /�1 to both sides and using the definition (4.2) of the map

S we get

vS.!/ D .�q/
sp..R.sp/

� /�1 ı R
.sp/

C /.v!/ D .�q/
spS .sp/.v!/: �

Corollary 4.3. The composed map (4.3) is a constant multiple of the identity: we

have

S .s1/ ı S .s2/ ı � � � ı S .sp�1/ ı S .sp/ D
�

p
Y

iD1

.�q/�si

�

� id
H

.0/
&
:

Proof. By Theorem 3.1, the vectors v! with ! 2 LP.0/
& form a basis of the trivial

subrepresentation H
.0/
& . The assertion follows by iterating Corollary 4.2 for each

basis vector v! and noticing that we have

S
.s1/ ı S.s2/ ı � � � ı S.sp�1/ ı S.sp/.!/ D !: �

5. Solutions to the Benoit & Saint-Aubin PDEs

with particular asymptotics properties

Now we construct solutions to partial differential equations of Benoit & Saint-

Aubin type [9]. These PDEs have been well known in CFT for many decades.

From statistical physics point of view, scaling limits of correlations in critical

models have been observed to satisfy this type of PDEs, in, e.g., [7, 14, 63, 1, 35],

with a few rigorous results now established too [19, 60, 8, 42, 52, 55]. Solutions

to such PDEs have also been associated with of random curves, in, e.g., [34, 46,

33, 3, 20, 47, 22, 49, 55].

The main result of this article is the construction of particular solutions to these

PDEs, with specific asymptotic boundary conditions, given in Theorem 5.3. Such

asymptotics can be thought of as specifying the fusion channels if the solutions

are thought of as CFT correlation functions. In terms of random curves, this

corresponds to coalescing the starting points of the curves.
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As the main tool in our construction, we use the quantum group method

developed in the article [50] and summarized in Theorem 5.1, together with the

results obtained in Section 3. The basis functions F! of our main Theorem 5.3 are

constructed from the vectors v! of Theorem 3.1 as

F!.x1; : : : ; xp/ D FŒv! �.x1; : : : ; xp/;

where F denotes a map from the highest weight vector space H
.s/
& to the solution

space of the PDEs. In this map, the projection properties (3.3) of the vectors

v! correspond with the required asymptotics properties of the basis functions, as

stated explicitly in theorems 5.1 and 5.3.

In Lemma 5.5 and Propositions 5.6 and 5.8, we prove additional properties

of the basis functions F! , concerning asymptotics when taking several variables

together simultaneously, or taking a variable to infinity. These properties are

needed in further applications, e.g., in Section 6 and [30].

5.1. Solutions to the Benoit & Saint-Aubin PDEs. Fix a parameter � > 0.

Given a multiindex &D .s1; : : : ; sp/ 2 Z
p
>0, we use the notations of (2.7) and (2.13)

throughout. We also denote

h1;d WD
.d � 1/.2.d C 1/ � �/

2�
and �

d1;:::;dp

d
WD h1;d �

p
X

iD1

h1;di
:

For fixed j 2 ¹1; 2; : : : ; pº, the Benoit & Saint-Aubin partial differential operators

D
.j /

dj
WD

dj
X

kD1

X

n1;:::;nk�1
n1C:::CnkDdj

.�4=�/dj �k .dj � 1/Š
2

Qk�1
j D1.

Pj
iD1 ni /.

Pk
iDj C1 ni /

� L
.j /
�n1
� � �L.j /

�nk
; (5.1)

homogeneous of order dj , are defined in terms of the first order differential

operators4

L
.j /
m WD �

X

i¤j

�

.xi � xj /
1Cm @

@xi

C .1Cm/h1;di
.xi � xj /

m
�

:

We are interested in solutions F WXp ! C to the PDE system

D
.j /

dj
F .x1; : : : ; xp/ D 0 for all j 2 ¹1; 2; : : : ; pº; (PDE)

4 The operators L
.j /
m are related to the generators of the Virasoro algebra [16, 4], and the

formulas (5.1) are obtained from the similar formulas for singular vectors in representations of

the Virasoro algebra found by L. Benoit and Y. Saint-Aubin in [9].
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defined on the chamber domain

Xp WD ¹.x1; : : : ; xp/ 2 RpW x1 < � � � < xpº: (5.2)

We very briefly summarize the method of [50] for constructing solutions to the

Benoit & Saint-Aubin PDE systems (PDE). For details about this method, we refer

to Sections 3 and 4 in the article [50]. The idea is to construct solutions in terms

of Dotsenko-Fateev (Feigin-Fuchs) integrals [17], which appear in the Coulomb

gas formalism of CFT. The solutions are of the form

F.x/ D

Z

�

f .`/.xIw/dw1 � � �dw`; (5.3)

with w D .w1; : : : ; w`/, defined for x D .x1; : : : ; xp/ 2 Xp as follows. First, for

.xIw/ 2 Xp�X`, the integrand f .`/.xIw/ is a branch of the following multivalued

function, a product of powers of differences,

f .`/.xIw/ D
Y

1�i<j �p

.xj � xi /
2
�

si sj

Y

1�i�p

1�r�`

.wr � xi /
� 4

�
si

Y

1�r<s�`

.ws � wr/
8
� ; (5.4)

with parameters si 2 Z�0 for i D 1; : : : ; p, and � > 0, and ` 2 Z�0. Second, the

integration contours � are closed `-surfaces which can be written as linear combi-

nations of surfaces corresponding to the natural basis ¹e
.dp/

lp
˝ � � �˝ e

.d2/

l2
˝ e

.d1/

l1
º

of the tensor product representation (2.5) of the quantum group Uq.sl2/, with di-

mensions di of the tensorands related to the parameters si as in (2.7), and with

` D
Pp

iD1 li . For the detailed relation, see Figure 5.1 and [50, Sections 3.3 and 4.1].

In the figure, an auxiliary point x0 appears; however by [50, Proposition 4.5], the

functions F! constructed in this article do not depend on x0.

The relation of vectors in the tensor product representation (2.5) and functions

of type (5.3) is called in [50] “the spin chain – Coulomb gas correspondence” F.

We state its main features in Theorem 5.1 below. We restrict our attention to

the space H
.s/
& of highest weight vectors, because these are the vectors that yield

solutions to (PDE). We will prove in [30] that F is in fact injective on H
.s/
& when

q is not a root of unity.

Theorem 5.1. [50, Theorem 4.17] Let � 2 .0;1/ n Q and q D ei�4=� , and

s 2 Z�0. There exist linear maps FWH
.s/
& ! C1.Xp/, for all & 2 Z

p
>0, such

that the following holds for any v 2 H
.s/
& .

(PDE) The function FŒv�WXp ! C satisfies the system (PDE) of partial differen-

tial equations.
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(COV) The function FŒv� is translation invariant and homogeneous of degree

� D �
d1;:::;dp

d
:

FŒv�.�x1 C �; : : : ; �xp C �/ D �
� � FŒv�.x1; : : : ; xp/ (5.5)

for any � 2 R and � 2 R>0. Moreover, if s D 0, then FŒv� satisfies

the following covariance property under any Möbius transformation

�WH! H such that �.x1/ < �.x2/ < � � � < �.xp/:

FŒv�.x1; : : : ; xp/ D

p
Y

iD1

�0.xi /
h1;di � FŒv�.�.x1/; : : : ; �.xp//: (5.6)

(ASY) Let j 2 ¹1; 2; : : : ; p � 1º and

m D
1

2
.dj C dj C1 � ı � 1/ 2 ¹0; 1; : : : ;min.dj ; dj C1/ � 1º;

and suppose that we have �
.ı/
j .v/ D v. Then, the function FŒv�WXp ! C

has the asymptotics

lim
xj ;xj C1!�

FŒv�.x1; : : : ; xp/

jxj C1 � xj j
�

dj ;dj C1

ı

D B
dj ;dj C1

ı
� FŒ O�

.ı/
j .v/�.x1; : : : ; xj �1; �; xj C2 : : : ; xp/;

for any � 2 .xj �1; xj C2/, where FŒ1� D 1 in the case p D 2, and the

multiplicative constant is

B
dj ;dj C1

ı
D

1

mŠ

m
Y

uD1

�.1� 4
�
.dj � u//�.1 �

4
�
.dj C1 � u//�.1C

4
�
u/

�.1C 4
�
/�.2� 4

�
.dj C dj C1 �m � u//

:

(5.7)

We record an explicit formula of a special case.

Lemma 5.2. For any partition � D .s1; : : : ; sj�j/ of s 2 Z�0, the image of the

vector v´�
2 H

.s/

�
has the explicit formula

FŒv´�
�.x1; : : : ; xj�j/ D

1

.q � q�1/s
Œ2�s

Œs C 1�Š
�
Y

1�i<j �j�j

.xj � xi /
2
�

si sj :

Proof. The assertion follows immediately from the definition of the correspon-

dence map F given in [50, Section 4.1] and the formula (3.5) of v´�
. �
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Images of more general vectors v 2 H
.s/
& under the map F have a similar form,

but we need to integrate over ` so-called screening variables, as in (5.3), where `

is the number of links in the link patterns in LP.s/
& , as in (2.13). The integration

`-surface is determined by the vector v as explained in the article [50].

l1 l2 lp

x0 x1 xpx2

Figure 5.1. Illustration of the integration surface for a “basis integral function”

'
.x0/

l1;l2;:::;lp
.x1; x2; : : : ; xp/, that is, a Coulomb gas integral of type (5.3) with � the sur-

face depicted in the figure. The red circles indicate a choice of branch for the integrand

in (5.3), so that it is real and positive when the integration variables lie at those points,

see [50] for details. These integrals are the images under the spin chain – Coulomb gas

correspondence map F of the natural basis vectors e
.dp/

lp
˝ � � �˝ e

.d2/

l2
˝ e

.d1/

l1
of the tensor

product representation (2.5), with ` D
Pp

iD1
li .

5.2. The solutions with particular asymptotics. By Theorem 5.1, the projec-

tion properties (3.3) of the vectors v! of Theorem 3.1 give explicit asymptotic

behavior for the solutions F! D FŒv! � when two variables xj ; xj C1 tend to a

common limit. Furthermore, in Proposition 5.6 in the next section, we establish

similar recursive asymptotics when taking many variables to a common limit.

Recall that, for a link pattern !, we denote by j̀;j C1 D j̀;j C1.!/ the multi-

plicity of the link
j j C1

in !.

Theorem 5.3. Let � 2 .0; 8/ n Q. The functions F! D FŒv! �WXp ! C have the

following properties.

(1) For any ! 2 LP.s/
& , the function F! satisfies the Benoit & Saint-Aubin PDE

system (PDE).

(2) The function F! is translation invariant and homogeneous as in (5.5), with

d D s C 1.

(3) If s D 0, then F! satisfies the full Möbius covariance (5.6).

(4) For any j 2 ¹1; 2; : : : ; p � 1º and

m D
1

2
.sj C sj C1 � ı C 1/ 2 ¹0; 1; : : : ;min.sj ; sj C1/º;
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and � 2 .xj �1; xj C2/, the function F! has the asymptotics

lim
xj ;xj C1!�

F!.x1; : : : ; xp/

jxj C1 � xj j
�

dj ;dj C1

ı

D

8

<

:

0 if j̀;j C1 < m;

B
dj ;dj C1

ı

C.mIsj ;sj C1/
� F O!.x1; : : : ; xj �1; �; xj C2 : : : ; xp/ if j̀;j C1 D m;

(5.8)

where O! D !=.m �
j j C1

/, and the constants B
dj ;dj C1

ı
, given in equa-

tion (5.7), and C.mI sj ; sj C1/, given in equation (3.4), are non-zero.

Proof. Assertions (1)–(3) follow immediately from the properties (3.1)–(3.2) of

the basis vectors v! of Theorem 3.1, and (PDE) and (COV) parts of Theorem 5.1.

To prove assertion (4), we first note that, when � 2 .0; 8/, then the exponents in the

property (ASY) in Theorem 5.1 satisfy �
dj ;dj C1

ı
< �

dj ;dj C1

ı0 , for any 2 � ı < ı0,

and for ı D 1 and ı0 � 3, we also have �
dj ;dj C1

ı0 � �
dj ;dj C1

1 > 0. Because

in (5.8), ı increases in steps of two, we conclude that assertion (4) follows from

the properties (3.3) of the basis vectors v! of Theorem 3.1 and the (ASY) part of

Theorem 5.1. This concludes the proof. �

We remark that in the above theorem, the range of the parameter � is restricted

to .0; 8/ nQ. The restriction to the interval .0; 8� is necessary in order to establish

the asymptotics property (4). Indeed, when � > 8, the mutual order of the

exponents in the formula (5.8) may change, resulting in the leading powers in the

asymptotics to change. On the other hand, we expect the statement of Theorem 5.3

to be morally true also when � 2 .0; 8/\Q: functions F! with properties (1)–(4)

should still exist. In principle, the functions of Theorem 5.3 can be analytically

continued to rational values of � – to do this systematically, further care would be

needed.

Corollary 5.4. The functions F! are not identically zero.

Proof. This follows from Theorem 5.3 by induction on n D
Pp

iD1 si DW j& j for

the link pattern ! 2 LP.s/
& with & D .s1; : : : ; sp/. By Lemma 5.2, the base case

is immediate, as F; D FŒv;� D FŒ1� D 1. Fix s 2 Z�0 and assume that no

function F� with � 2 LP.s/
% and j%j � n is identically zero. Consider a function

F! with ! 2 LP.s/
& , and j& j D n C 1. First, if ! D ´� only consists of defects,

then the function F! D F´�
is not identically zero, by the explicit formula in
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Lemma 5.2. On the other hand, if ! contains links, then there is an innermost

link
j j C1

2 !. Applying the asymptotics property (5.8) with m D j̀;j C1, the

induction hypothesis shows that F! cannot be identically zero. �

5.3. Limits when collapsing several variables. We now consider the limit of

the function F! as several of its variables tend to a common limit simultaneously.

For this, we need some notation.

Fix a link pattern

! D
°

a1 b1

; : : : ;
a` b`

±

[
°

c1

; : : : ;
cs

±

2 LP.s/
&

and indices 1 � j < k � p, and denote by

Aj;k WD ¹ai j ai 2 ¹j; j C 1; : : : ; kº ;

bi … ¹j; j C 1; : : : ; kºº � ¹a1; a2; : : : ; a`º;

Bj;k WD ¹bi j ai … ¹j; j C 1; : : : ; kº ;

bi 2 ¹j; j C 1; : : : ; kºº � ¹b1; b2; : : : ; b`º ;

Cj;k WD ¹ci j ci 2 ¹j; j C 1; : : : ; kºº � ¹c1; c2; : : : ; csº ;

and r D #Aj;k C #Bj;k C #Cj;k, and let � 2 LP.r/
&j;k

be the sub-link pattern of !

with index valences &j;k D .sj ; sj C1 : : : ; sk/, consisting of the lines of ! attached

to the indices j; j C 1; : : : ; k, that is,

� D �j;k.!/ D
°

ai bi

ˇ

ˇ

ˇ ai ; bi 2 ¹j; j C 1; : : : ; kº
±

[
°

c

ˇ

ˇ

ˇ
c 2 Aj;k [Bj;k [ Cj;k

±

2 LP.r/
&j;k

;

see Figure 5.2. Also, denote by!=� the link pattern obtained from! by “removing

�”, that is, removing from ! the links
a b

with indices a; b 2 ¹j; j C 1; : : : ; kº,

collapsing the indices j; jC1; : : : ; k of! into one point, and relabeling the indices

thus obtained from left to right by 1; 2; : : :, as emphasized in Figure 5.2.

The function F! has the following limiting behavior.

Lemma 5.5. Let 1 � j < k � p and xj �1 < � < xkC1, and suppose that

xj ; xj C1; : : : ; xk �! � (5.9)

in such a way that

xi � xj

xk � xj

�! �i for i 2 ¹j; j C 1; : : : ; kº;
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 61 2 3 4 5 6 7 8 9

Figure 5.2. The sub-link pattern � of a link pattern !, and the link pattern !=� , obtained

from ! by removing the links of � and collapsing the indices involved in � into one point,

colored in green. The lines which are colored in blue are common in both � and !=� – note

that in � , these links are cut when separating � from ! and they become defects, whereas

!=� has equally many defects as !, and the blue links remain.

with 0 D �j < �j C1 < � � � < �k�1 < �k D 1: Denote � D �
dj ;:::;dk

ı
, with

ı D r C 1. Then, in the limit (5.9), we have

F!.x1; : : : ; xp/

jxk � xj j�
�! F� .�j ; : : : ; �k/ � F!=� .x1; : : : ; xj �1; �; xkC1; : : : ; xp/:

Proof. By Lemma C.3, for some constants cl1;:::;lj �1IlIlkC1;:::;lp 2 C, we have

v! D

r
X

lD0

X

l1;:::;lj �1;

lkC1;:::;lp

cl1;:::;lj �1IlIlkC1;:::;lp

� .elp ˝ � � � ˝ elkC1
˝ F l :v� ˝ elj �1

˝ � � � ˝ el1
/;

(5.10)

v!=� D

r
X

lD0

X

l1;:::;lj �1;

lkC1;:::;lp

cl1;:::;lj �1IlIlkC1;:::;lp

� .elp ˝ � � � ˝ elkC1
˝ el ˝ elj �1

˝ � � � ˝ el1
/:

(5.11)

Therefore, by [50, Proposition 5.1], the limit (5.9) has the asserted form,

FŒv! �.x1; : : : ; xp/

jxk � xj j�

�! FŒv� �.�j ; : : : ; �k/ � FŒv!=� �.x1; : : : ; xj �1; �; xkC1; : : : ; xp/: �



Basis for solutions of the Benoit & Saint-Aubin PDEs 43

In the proof of Lemma 5.5, we use [50, Proposition 5.1]. To prove the latter,

the idea is to rearrange the integrations in the Coulomb gas type integral repre-

sentation (5.3) of the function F! D FŒv! � in such a way that the collapsing vari-

ables xj ; : : : ; xk are surrounded by nested contours – see Figure 5.3. After this

rearranging, also “hypercube type” integrations between the variables xj ; : : : ; xk

might occur. Now, if the limit xj ; : : : ; xk ! � is taken as in (5.9), then the func-

tion (5.3) with integration surface of Figure 5.3(top) converges to a function of

type (5.3) with integration surface of Figure 5.3(bottom) times a constant which

depends on the convergence rate (5.9). This multiplicative constant results in the

constant F� .�j ; : : : ; �k/ in Lemma 5.5. From its dependence on the convergence

rate (5.9), we see that if the variables xj ; : : : ; xk tend to � in a different way, the

limit can be different or fail to exist.

However, in some cases, no integrations between the collapsing variables

xj ; : : : ; xk occur, and then the limit Lemma 5.5 in fact exists along any sequence

xj ; : : : ; xk ! � and not only along sequences of type (5.9). Indeed, if in Figure 5.3

there are no contours between xj ; : : : ; xk, but only around them, then similarly

as in the proof of [50, Proposition 5.1], dominated convergence theorem allows

us to collapse these variables inside the integration in (5.3) along any sequence

xj ; : : : ; xk ! �.

By changing the normalization of the function F! in Lemma 5.5, we can

remove the restriction (5.9).

Proposition 5.6. Let 1 � j < k � p, and xj �1 < � < xkC1. Then we have

lim
xj ;xj C1;:::;xk!�

F!.x1; : : : ; xp/

F� .xj ; : : : ; xk/
D F!=�.x1; : : : ; xj �1; �; xkC1; : : : ; xp/: (5.12)

Proof. First, by [50, Proposition 4.5], we can write F� D FŒv� � in the form

FŒv� �.xj ; : : : ; xk/ D
X

mj C1;:::;mk�0

amj C1;:::;mk
� Q�0;mj C1;:::;mk

.xj ; : : : ; xk/;

where amj C1;:::;mk
2 C are some constants, each Q�0;mj C1;:::;mk

denotes a Coulomb

gas integral of type (5.3) with � a surface of type depicted in Figure 5.4, and

mj C1 C � � � Cmk D
1

2

�

k
X

iDj

di � k C j � ı
�

: (5.13)
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mmjm C1

xj xj C1 xk

l1

l1

ln

ln

l

l

x0 x1 xp

x0 x1 xp

Figure 5.3. To deal with limits xj ; : : : ; xk ! � , the main idea is to write the integration

surface � of (5.3) as a linear combination of surfaces appearing in the top figure, where a

number l � 0 of non-intersecting nested loops surround the collapsing points xj ; : : : ; xk

and there are mj C1; : : : ; mk � 0 contours between these points. The latter form a

“deformed hypercube integral” Q�0;mj C1;:::;mk
.xj ; : : : ; xk/, illustrated in Figure 5.4, which

can in some cases be evaluated explicitly. The red circles indicate a choice of branch for the

integrand in (5.3), so that it is real and positive when the integration variables lie at those

points, see [50] for details. The integral function (5.3) with surface � as in the top figure

is denoted by ˛.x0/

l1;:::lj �1Il;¹mj C1;:::;mkºIlkC1;:::;lp
.x1; : : : ; xp/.

xj xj C1 xj C2 xk 1 xk

mj C1 mj C2 mk

Figure 5.4. Illustration of the integration surface for a “deformed hypercube integral”

Q�0;mj C1;:::;mk
.xj ; : : : ; xk/. The red circles indicate a choice of branch for the integrand

in (5.3), so that it is real and positive when the integration variables lie at those points,

see [50] for details.
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Second, by [50, Proof of Proposition 5.1], we can write the functions F.x0/Œv�

for vectors

v D .elp ˝ � � � ˝ elkC1
˝ F l :v� ˝ elj �1

˝ � � � ˝ el1
/

in the form

F
.x0/Œv�.x1; : : : ; xp/

D
X

mj C1;:::;mk�0

amj C1;:::;mk
� ˛

.x0/

l1;:::;lj �1Il;¹mj C1;:::;mkºIlkC1;:::;lp
.x1; : : : ; xp/;

where each ˛
.x0/

��� Il;¹mj C1;:::;mkºI���
denotes a Coulomb gas integral of type (5.3) with

� a surface of type depicted in Figure 5.3(top). We note that these integration

surfaces a priori depend on an auxiliary point x0, but as proved in [50, Proposi-

tion 4.5], all solutions to (PDE) are independent of x0.

All in all, we can write the ratio appearing in the asserted equation (5.12) in

the form

FŒv! �.x1; : : : ; xp/

FŒv� �.xj ; : : : ; xk/
D

r
X

lD0

X

l1;:::;lj �1;

lkC1;:::;lp

cl1;:::;lj �1IlIlkC1;:::;lp

S1

S2

;

with

S1 WD
X

mj C1;:::;mk�0

amj C1;:::;mk
� ˛

.x0/

l1;:::;lj �1Il;¹mj C1;:::;mkºIlkC1;:::;lp
.x1; : : : ; xp/;

S1 WD
X

mj C1;:::;mk�0

amj C1;:::;mk
� Q�0;mj C1;:::;mk

.xj ; : : : ; xk/;

where we also used equation (5.10).

Then, using equation (5.11), we write the right hand side of the asserted

equation (5.12) in the form

FŒv!=� �.x1; : : : ; xj �1; �; xkC1; : : : ; xp/

D

r
X

lD0

X

l1;:::;lj �1;

lkC1;:::;lp

cl1;:::;lj �1IlIlkC1;:::;lp

� '
.x0/

l1;:::;lj �1;l;lkC1;:::;lp
.x1; : : : ; xj �1; �; xkC1; : : : ; xp/;

where each '
.x0/

l1;:::;lj �1;l;lkC1;:::;lp
denotes a Coulomb gas integral of type (5.3) with

� a surface of type depicted in Figure 5.1.
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Now, to evaluate the limit (5.12), we can apply dominated convergence the-

orem to the integration over all variables in ˛
.x0/

��� Il;¹mj C1;:::;mkºI���
whose contour

is a loop, since these contours remain bounded away from the points xj ; : : : ; xk

and any hypercube type integration contours between them. On the other hand,

we note that the hypercube integrals are the same in ˛
.x0/

��� Il;¹mj C1;:::;mkºI���
and in

Q�0;mj C1;:::;mk
, and they cancel each other in the limit in equation (5.12). We also

note that the remaining loop integrals in ˛
.x0/

��� Il;¹mj C1;:::;mkºI���
are the same as in

'
.x0/

l1;:::;lj �1;l;lkC1;:::;lp
.

To finish, we consider the integrand (5.4) for ˛
.x0/

��� Il;¹mj C1;:::;mkºI���
.x1; : : : ; xp/:

Y

1�i<j �p

.xj � xi /
2
�

si sj

Y

1�i�p
1�r�`

.wr � xi /
� 4

�
si

Y

1�r<s�`

.ws � wr/
8
� :

Using the identity (5.13), we see that as xj ; : : : ; xk ! �, the factors contain-

ing these variables converge to the corresponding factors in the integrand for

'
.x0/

l1;:::;lj �1;l;lkC1;:::;lp
.x1; : : : ; xj �1; �; xkC1; : : : ; xp/, where those terms have the

form .� � xi /
2
�

si .ı�1/ and .wr � �/
� 4

�
si .ı�1/. This gives the asserted result. �

As a final remark, we observe that the functions F! of Theorem 5.3 can be

realized as limits of functions F˛.!/ D FŒv˛.!/�where! 7! ˛.!/ is the map (2.16)

and v˛ are the vectors of Theorem 3.4. For the precise statement, we denote

n D j& j WD
Pp

iD1 si , as in (2.13), and for each 1 � i � p, by �i the partition

of si into positive integers with size j�i j D si , that is, �i D .1; 1; : : : ; 1/ with si

parts all equal to one.

Corollary 5.7. Along any sequence .y1; : : : ; yn/2Xn converging to .x1; : : : ; xp/2

Xp as shown,

F!.x1; : : : ; xp/ D lim
y1;:::;ys1

!x1
ys1C1;:::;ys2

!x2

:::
yn�spC1;:::;yn!xp

F˛.!/.y1; : : : ; yn/=.F´�1
.y1; : : : ; ys1

/

F´�2
.ys1C1; : : : ; ys2

/ � � �

F´�p
.yn�spC1; : : : ; yn//:

Proof. This follows from definitions and Proposition 5.6. The integral forms of

the functions guarantee that we can take the limits in any order, and Proposition 5.6

that the limits exist along any sequence. �
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The statement of Corollary 5.7 is very natural in the sense of fusion in CFT.

Indeed, viewed as correlation functions, the solutions F! should be obtained by

fusion from the solutions F˛.!/. We also note that the functions F´�i
appearing

in the denominator in Corollary 5.7 have a simple form, given by Lemma 5.2.

5.4. Limits when taking variables to infinity. From the cyclic permutation

symmetry of the vectors v! 2 H
.0/
& (Corollary 4.2) we can derive a similar

property for the Möbius covariant functions F! D FŒv! �, concerning the limit

when the rightmost variable tends to C1. Indeed, this limit is equal to the

limit of the function FS.!/ as its leftmost variable tends to �1, where S is the

cyclic permutation map defined in equation (4.4) in Section 4, and illustrated in

Figure 4.1.

Proposition 5.8. For any ! 2 LP
.0/

.&;s/
, we have (with d D s C 1)

lim
y!C1

.y2h1;d � FŒv! �.x1; : : : ; xp; y//

D lim
y!�1

.jyj2h1;d � FŒvS.!/�.y; x1; : : : ; xp//:

Proof. By [50, Proposition 5.4], we have

lim
y!C1

.y2h1;d � FŒv! �.x1; : : : ; xp; y//

D .q � q�1/d�1 Œd � 1�Š2 � B
d;d
1 � FŒR

.s/
C .v!/�.x1; : : : ; xp/;

lim
y!�1

.jyj2h1;d � FŒvS.!/�.y; x1; : : : ; xp//

D .q�2 � 1/d�1 Œd � 1�Š2 � B
d;d
1 � FŒR.s/

� .vS.!//�.x1; : : : ; xp/;

where B
d;d
1 is the constant defined in (5.7). Using Corollary 4.2, we calculate

lim
y!�1

.jyj2h1;d � FŒvS.!/�.y; x1; : : : ; xp//

D
.q�2 � 1/d�1 Œd � 1�Š2 � B

d;d
1 � .�q/d�1

.q � q�1/d�1 Œd � 1�Š2 � B
d;d
1

lim
y!C1

.y2h1;d � FŒv! �.x1; : : : ; xp; y//

D lim
y!C1

.y2h1;d � FŒv! �.x1; : : : ; xp; y//: �
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6. Cyclic permutation symmetry

of the pure partition functions of multiple SLEs

Multiple .SLE�/��0 is a collection of random conformally invariant curves started

from given boundary points of a simply connected domain, and connecting them

pairwise without crossing [3, 20, 48, 49, 55]. Such curves describe scaling

limits of interfaces in statistical mechanics models. Indeed, convergence of a

single interface to the SLE� has now been proven for a number of models, see,

e.g., [61, 51, 59, 62, 64, 36, 15], and convergence of several interfaces to multiple

SLEs has also been established in some cases [11, 39, 5, 44].

A multiple SLE can be constructed as a growth process encoded in a Loewner

chain, see [58, 20, 49, 55]. As an input for the construction, one uses a function

ZWX2N ! R>0, called a partition function of the multiple SLE� . This function

appears in the Radon-Nikodym derivative of the multiple SLE� measure with

respect to the product measure of independent SLE� curves. It must satisfy the

second order PDE system

h�

2

@2

@x2
i

C
X

j ¤i

� 2

xj � xi

@

@xj

�
2h1;2

.xj � xi /2

�i

Z.x1; : : : ; x2N / D 0 (6.1)

for all i 2 ¹1; 2; : : : ; 2N º. With translation invariance, (6.1) are equivalent to the

second order Benoit & Saint-Aubin PDEs. Furthermore, by conformal invariance

of the multiple SLE� , the partition function Z must be covariant under all Möbius

transformations �WH! H such that �.x1/ < �.x2/ < � � � < �.xp/:

Z.x1; : : : ; x2N / D

2N
Y

iD1

�0.xi /
h1;2 � Z .�.x1/; : : : ; �.x2N // :

The law of the multiple SLE� is not unique, for the random curves may have

several topological connectivities of the marked boundary points. The connec-

tivities are encoded in planar pair partitions ˛ 2 PPN . In fact, the convex set

of probability measures of (local) multiple SLE� processes is in one-to-one cor-

respondence with the set of positive (and normalized) partition functions Z –

see [20, 49]. The extremal points of this convex set correspond to the different

possible connectivities [55].

Pertaining to the construction of the extremal processes, in [49] a basis

.Z˛/˛2PPN
of Möbius covariant solutions to the PDE system (6.1) was constructed,

using Theorem 5.1 and the vectors v˛ of Theorem 3.4. A defining property of the
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basis functions Z˛ is the recursive asymptotics property

lim
xj ;xj C1!�

Z˛.x1; : : : ; x2N /

jxj C1 � xj j�2h1;2

D

8

ˆ

<

ˆ

:

0 if
j j C1

… ˛;

Z Ǫ .x1; : : : ; xj �1; xj C2; : : : ; x2N / if
j j C1

2 ˛;

(6.2)

with Ǫ D ˛=
j j C1

, for any xj �1 < � < xj C2 and j 2 ¹1; 2; : : : ; 2N � 1º, and

� 2 .0; 8/ nQ.

In [49], these functions Z˛ were called the pure partition functions of the

multiple SLE� . They were argued to be the partition functions of the extremal

multiple SLE� processes, with the deterministic connectivities ˛. A proof for this

fact appeared recently in [55] in the case 0 < � � 4.

Specifically, with q D ei�4=� , the pure partition functions were constructed

in [49] as

Z˛ WD .B
2;2
1 /�N

FŒv˛�; for ˛ 2 PPN ;

with the normalization constant chosen in such a way that the functions Z˛

satisfy the asymptotics (6.2) with no constants in front. The property (6.2) is

in fact a special case of Theorem 5.3, and indeed, the more general functions

F! D FŒv! � should provide pure partition functions of systems of multiple SLE�

curves growing from the boundary, in the spirit of [34, 46, 33, 23, 47, 22]. Also, the

functions F! describe observables concerning geometric properties of interfaces

– see, e.g., [35, 8, 22, 41, 42, 52, 55].

In Corollary 6.2 we show that the property (6.2) of the pure partition functions

Z˛ is also true when taking the limit x1 ! �1 and x2N ! C1, corresponding

to the removal of the link
1 2N

. We also consider the more general pure partition

functions

Z˛ WD .B
2;2
1 /�N

F˛; for ˛ 2 PP
.s/
N ; (6.3)

which are homogeneous solutions to the second order PDEs (6.1), but, when

s > 0, not covariant under all Möbius maps in the covariance formula (5.6). We

prove in Proposition 6.3 that these functions are linearly independent, and thus

obtain a basis of a solution space of the PDE system (6.1).

6.1. Cyclic permutation symmetry. Corollary 4.2 gives a general cyclic per-

mutation symmetry of the vectors v! 2 H
.0/
& �

Np
iD1 Mdi

in the trivial subrep-

resentation. The special case of n D 2N , with di D 2 for all i , can be used in

applications to the properties of the pure partition functions Z˛.
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First, from Proposition 5.8 we immediately get the following corollary.

Corollary 6.1. Let � 2 .0;1/ nQ. Then, we have

lim
y!C1

.y2h1;2 � Z˛.x1; : : : ; x2N �1; y//

D lim
y!�1

.jyj2h1;2 � ZS.˛/.y; x1; : : : ; x2N �1//:

Proof. The assertion follows directly from the definition Z˛ WD .B
2;2
1 /�NFŒv˛�

and Proposition 5.8. �

Using this, we can extend the cascade property (6.2) for the pure partition

functions to j D 2N .

Corollary 6.2. Let � 2 .0; 8/ nQ. Denote by Ǫ D ˛=
1 2N

. Then, we have

lim
x1!�1;

x2N !C1

jx2N � x1j
2h1;2 � Z˛.x1; : : : ; x2N /

D

8

ˆ

<

ˆ

:

0 if
1 2N

… ˛;

Z Ǫ .x2; : : : ; x2N �1/ if
1 2N

2 ˛:

Proof. We can take either limit first and get the same result. Observe first that we

have
1 2N
2 ˛ if and only if

1 2
2 S.˛/, and in that case, S.˛/=

1 2
D ˛=

1 2N
.

Using Corollary 6.1, the asymptotics property (6.2) for ZS.˛/, and the above

observation concerning the links, we can calculate the limit

lim
x1!�1

lim
x2N !C1

jx2N � x1j
2h1;2 � Z˛.x1; : : : ; x2N /

D lim
x1!�1

lim
x2N !�1

jx2N � x1j
2h1;2 � ZS.˛/.x2N ; x1; x2 : : : ; x2N �1/

D

8

ˆ

<

ˆ

:

0 if
1 2

… S.˛/;

ZS.˛/=
1 2

.x2; : : : ; x2N �1/ if
1 2

2 S.˛/;

D

8

ˆ

<

ˆ

:

0 if
1 2N

… ˛;

Z˛=
1 2N

.x2; : : : ; x2N �1/ if
1 2N

2 ˛:
�
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Corollary 6.2 combined with equation (6.2) shows that linear combinations of

the basis functions Z˛ have a cascade property with respect to removing any link

connecting consecutive points, when the boundary @H D R is viewed as the circle

S1 D ¹z 2 C j jzj D 1º, say. Such a property is natural for the random SLE� type

curves – see Figure 6.1 for an illustration. In fact, this cascade property can be

taken as a defining property of a global multiple SLE� , see [48, 55].

x1 x2 x3 x4 x5 x6 x7 x8
1

2

3

4

5

6

8

7

Figure 6.1. The probability measure of multiple SLE� curves is conformally invariant. The

figure depicts how a connectivity of the curves is mapped under a conformal map from the

upper half-plane H to the disc D. The starting points x1 < x2 < : : : < x2N of the curves

in H are mapped to the points �1; �2; : : : ; �2N appearing in counterclockwise order along

the boundary of D. The cascade property (6.2) given in Corollary 6.2 for the outermost

link connecting x1 and x2N is manifest in the disc on the right.

6.2. Linear independence for solutions to second order PDEs. We now con-

sider the functions Z˛, with ˛ 2 PP
.s/
N , defined in equation (6.3). These functions

form a basis of the solution space of the second order PDE system (6.1), consisting

of homogeneous solutions, in the sense of items (1) and (2) in Theorem 5.3. With

n D 2N C s, this solution space is the image FŒH
.s/
n � of the highest weight vector

space H
.s/
n under the map F of Theorem 5.1. We prove the linear independence of

the functions Z˛ by constructing a basis for the dual space

FŒH.s/
n �� D ¹ WH.s/

n ! C j  is a linear mapº;

using similar ideas as in [49, Section 4.2], where the case s D 0 was treated.

Proposition 6.3. Let � 2 .0; 8/ n Q, s 2 Z�0, and n D 2N C s 2 Z>0.

The collection .Z˛/˛2PP
.s/
N

is a basis of the solution space FŒH
.s/
n � of dimension

sC1
N CsC1

�

2N Cs
N Cs

�

.

Proof. The case s D 0 was proved in [49, Proposition 4.2]. The case s > 0 is

very similar, so we only give the idea of the proof. We consider the links in the

link pattern

˛ D
°

a1 b1

; : : : ;
aN bN

±

[
°

c1

; : : : ;
cs

±

2 PP
.s/
N
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1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7

1 2 3 4 5

1 2 3

1 2 3

4 5

6 7

8 9

10 11

Figure 6.2. Example of an allowable ordering to remove links. After the removal of all the

links, the defects remain. Notice also the relabeling of the indices after each step.
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as an ordered set, see Appendix C and [49, Section 3.5] for details. We say that the

ordering of the links is allowable for ˛ if all links of ˛ can be removed in such a way

that at each step, the link to be removed connects two consecutive indices – see

Figure 6.2 for an illustration. The precise definition of “allowability” was given in

[49, Section 3.5] for the case s D 0, but as the defects of ˛ play no role in the link

removal and no defects lie inside any link, the notion of an allowable ordering of

links is the same for any ˛ 2 PP
.s/
N .

Suppose that the ordering of the links in ˛ is allowable. Then, by Theorem 5.3,

the iterated limit

L˛.FŒv�/ WD lim
xaN

;xbN
!�N

� � � lim
xa1

;xb1
!�1

.xbN
� xaN

/2h1;2 � � � .xb1
� xa1

/2h1;2

� FŒv�.x1; : : : ; xn/

exists for any v 2 H
.s/
n . Consider the image F˛ D FŒv˛� of the basis vector

v˛ 2 H
.s/
n . Suppose that c1 < c2 < � � � < cs , and denote by yi D xci

for

i 2 ¹1; 2; : : : ; sº. Using the property (5.8) of F˛ with the constant C.1I 1; 1/ D 1

given by equation (3.4), we evaluate the limit L˛.F˛/ as

L˛.F˛/.y1; : : : ; ys/ D .B
2;2
1 /N � F´�

.y1; : : : ; ys/; for ˛ 2 PP
.s/
N ;

where � D .1; 1; : : : ; 1; 1/ 2 Zs and F´�
has the explicit formula given in

Lemma 5.2. With the identification v´�
7! 1 as in Remark 3.2, and the formula

in Lemma 5.2, we may interpret L˛.Z˛/ D 1.

On the other hand, if ˇ ¤ ˛, then the limit L˛.Fˇ / evaluates to zero, because

of the property (5.8) and the fact that when ˇ ¤ ˛, then we have
aj bj

… ˇ for

some link
aj bj

2 ˛ in the allowable ordering.

It follows that the map L˛WFŒH
.s/
n �! C is well defined and independent of the

choice of the allowable ordering for ˛. In particular, the collection .L˛/˛2PP
.s/
N

is

a basis of the dual space FŒH
.s/
n ��, such that

L˛.Zˇ / D ı˛;ˇ D

´

1 if ˇ D ˛;

0 if ˇ ¤ ˛:

Therefore, .Z˛/˛2PP
.s/
N

is a basis of the solution space FŒH
.s/
n �, dual to .L˛/˛2PP

.s/
N

.

The formula for the dimension of this space follows from Lemma 2.2 and [49,

Lemma 2.2]: #PP
.s/
N D

sC1
N CsC1

�

2N Cs
N Cs

�

. �
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The linear independence of the functions Z˛ immediately gives injectivity

of the “spin chain – Coulomb gas correspondence” map F in the case of & D

.1; 1; : : : ; 1; 1/ and s � 0. This generalizes the previous injectivity result [49,

Corollary 4.3]. We prove the injectivity of F in full generality in forthcoming

work [30], where we study solution spaces of the Benoit & Saint-Aubin PDEs in

detail.

Corollary 6.4. For s 2 Z�0 and n D 2N C s 2 Z>0, the map FWH
.s/
n ! C1.Xn/

is injective.

Proof. The assertion follows by linearity from Propositions 3.7 and 6.3 – the

images F˛ D FŒv˛ � of the basis vectors v˛ of H
.s/
n are linearly independent,

because the functions Z˛ D .B
2;2
1 /�NFŒv˛� are. �

Appendices

A. q-combinatorics

In this appendix, we prove “q-combinatorial formulas” needed in this article. We

first recall the definitions

Œm� D
qm � q�m

q � q�1
; Œn�Š D

n
Y

mD1

Œm� ;
h n

k

i

D
Œn�Š

Œk�Š Œn � k�Š
;

for q 2 C n ¹0º not a root of unity, and m 2 Z, and n; k 2 N, with 0 � k � n.

Lemma A.1. (a) The q-binomial coefficients satisfy the recursion

h n

k

i

D qk
h n � 1

k

i

C qk�n
h n � 1

k � 1

i

:

(b) [50, Lemma 2.1(b)] For a permutation � 2 Sn of ¹1; 2; : : : ; nº, denote by

inv.�/ D ¹.i; j / j i < j and �.i/ > �.j /º

the set of inversions of � . Then we have

X

�2Sn

q2�#inv.�/ D q.
n
2/ Œn�Š:
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(c) For any �1; �2 2 Z�0 and n 2 N, we have

n
X

kD0

h n

k

i

qk.2n��1��2�2/ Œ�1 � nC k�Š Œ�2 � k�Š

D qn.n��1�1/ Œ�1 � n�Š Œ�2 � n�Š Œ�1 C �2 � nC 1�Š

Œ�1 C �2 � 2nC 1�Š
:

(d) For any �1; �2 2 Z�0 and n 2 N, we have

n
X

kD0

h n

k

i

qk.�1C�2�2nC2/ Œ�1 � k�Š Œ�2 � nC k�Š

D qn.�2C1�n/ Œ�1 � n�Š Œ�2 � n�Š Œ�1 C �2 � nC 1�Š

Œ�1 C �2 � 2nC 1�Š
:

Proof. The proof of (a) is a straightforward calculation using the definition of

q-integers. Part (b) was proved in [50, Lemma 2.1(b)]. To prove part (c), we

proceed by induction on n. For n D 0, both sides of the equation are equal to

Œ�1�Š Œ�2�Š. Denote by Ln.�1; �2/ andRn.�1; �2/ the left and right hand sides of the

asserted equation, respectively, and assume that we have Ln.�1; �2/ D Rn.�1; �2/

for any �1; �2 2 Z�0. Using part (a), we write LnC1.�1; �2/ as

LnC1.�1; �2/

D

n
X

kD0

h n

k

i

qk.2nC1��1��2/ Œ�1 � nC k�Š Œ�2 � k�Š

� 1

Œ�1 � nC k�
C qn��1��2

1

Œ�2 � k�

�

D

n
X

kD0

h n

k

i

qk.2n��1��2/ Œ�1 � nC k�Š Œ�2 � k�Š q
n��1

Œ�1 C �2 � n�

Œ�2 � k� Œ�1 � nC k�

D Œ�1 C �2 � n� q
n��1

�

n
X

kD0

h n

k

i

qk.2n��1��2/ Œ�1 � 1 � nC k�Š Œ�2 � 1 � k�Š;

where we used the identity

qn�k��1 Œ�1 C �2 � n� D Œ�2 � k�C q
n��1��2 Œ�1 � nC k� :
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By the induction hypothesis, the above sum is equal to

Ln.�1 � 1; �2 � 1/ D Rn.�1 � 1; �2 � 1/;

so

LnC1.�1; �2/ D Œ�1 C �2 � n� q
n��1 � Rn.�1 � 1; �2 � 1/

D Œ�1 C �2 � n� q
n��1

� qn.n��1/ Œ�1 � 1� n�Š Œ�2 � 1 � n�Š Œ�1 C �2 � n � 1�Š

Œ�1 C �2 � 2n� 1�Š

D RnC1.�1; �2/;

as claimed. This concludes the proof of (c).

Assertion (d) follows immediately from (c) and the symmetries q $ q�1 and

�1 $ �2 of the identity. �

B. Some auxiliary calculations

In this appendix, we perform some auxiliary calculations needed in the proof of

Lemma 3.10 and Proposition 3.11. We will repeatedly use the notations (2.7),

s D d � 1;

si D di � 1 for all i 2 ¹1; 2; : : : ; pº;

and

& D .s1; s2; : : : ; sp/ 2 Z
p
�0:

In the calculations, we consider the embedding from Section 3.1, defined for any

s D d � 1 2 Z>0 as

I.s/WMd ,�! M
˝s
2 ;

I.s/.e
.d/

l
/ WD �

.s/

l
for l 2 ¹0; 1; : : : ; sº:

The vectors �
.s/

l
can be written explicitly as follows.

Lemma B.1. In the tensor product M˝s
2 , we have

I.s/.e
.d/

k
/ D �

.s/

k
D q.

k
2/ Œk�Š

X

1�r1<���<rk�s

q
Pk

iD1.1�ri / � .el1.%/ ˝ � � � ˝ els.%//;
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0 � k � s D d � 1, where we denote .r1; : : : ; rk/ D %, and, for each

i 2 ¹1; 2; : : : ; sº,

li .%/ D

´

1 when i 2 ¹r1; : : : ; rkº ;

0 otherwise:

Proof. Using the coproduct (2.2) of F , and simplifying with Lemma A.1(b), we

calculate

�
.s/

k
D F k :�

.s/
0

D
X

�2Sk

q2�#inv.�/
X

1�r1<���<rk�s

q
Pk

iD1.1�ri / � .el1.%/ ˝ � � � ˝ els.%//

D q.
k
2/ Œk�Š

X

1�r1<���<rk�s

q
Pk

iD1.1�ri / � .el1.%/ ˝ � � � ˝ els.%//: �

We will make use of the following formulas for the projection O� WM2˝M2 ! C.

Lemma B.2 ([49, Lemma 2.3]). For any v 2 M2 ˝ M2, we have

O�.1/.e0 ˝ e0/D 0; O�.1/.e1 ˝ e1/D 0;

O�.1/.e0 ˝ e1/D
q�1 � q

Œ2�
; O�.1/.e1 ˝ e0/D

1 � q�2

Œ2�
:

The next two lemmas explain how to calculate the projections appearing in the

left column of the commutative diagram in Lemma 3.10.

Lemma B.3. Let s1; s2 2 Z>0. Interpreting �
.s/
�1 D 0, we have

O�.1/
s1
.�

.s2/

l
˝ �

.s1/

k
/ D

.q � q�1/

Œ2�
.ql�s2�1�k Œl � � .�

.s2�1/

l�1
˝ �

.s1�1/

k
/

� Œk� � .�
.s2�1/

l
˝ �

.s1�1/

k�1
//:

Proof. Using Lemma B.1, we write

�
.s2/

l
˝ �

.s1/

k

D q.
l
2/ Œl�Šq.

k
2/ Œk�Š

X

1�r1<���<rl �s2

1�t1<���<tk�s1

q
Pl

j D1.1�rj /C
Pk

j D1.1�tj /

� .el1.%/ ˝ � � � ˝ els2
.%/ ˝ ek1.#/ ˝ � � � ˝ eks1

.#//;
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where .r1; : : : ; rl/ D %, and .t1; : : : ; tk/ D # , and

li .%/ D

´

1 when i 2 ¹r1; : : : ; rlº ;

0 otherwise,

and

ki .#/ D

´

1 when i 2 ¹t1; : : : ; tkº ;

0 otherwise.

Using Lemma B.2, we calculate the action of the middle projection O�
.1/
s1

on each

term in the sum,

O�.1/.els2
.%/ ˝ ek1.#// D

q�1 � q

Œ2�
.ıls2

.%/;0ık1.#/;1 � q
�1ıls2

.%/;1ık1.#/;0/:

Not all terms survive. First, when k1.#/ D 1, we must have t1 D 1, and similarly,

when ls2
.%/ D 1, we must have rl D s2. On the other hand, when ls2

.%/ D 0, then

rl ¤ s2, so rl � s2 � 1, and similarly, when k1.#/ D 0, then t1 ¤ 1, so 2 � t1.

We thus obtain

O�.1/
s1
.�

.s2/

l
˝ �

.s1/

k
/

D q.
l
2/ Œl�Š q.

k
2/ Œk�Š �

X

1�r1<���<rl�1�s2�1

2�t1<���<tk�s1

ıls2
.%/;1 ık1.#/;0 � q1�s2C

Pl�1
j D1.1�rj /C

Pk
j D1.1�tj /

� O�.1/
s1
.el1.%/ ˝ � � � ˝ els2�1.%/ ˝ e1

˝ e0 ˝ ek2.#/ ˝ � � � ˝ eks1
.#//

C q.
l
2/ Œl�Š q.

k
2/ Œk�Š �

X

1�r1<���<rl �s2�1

2�t2<���<tk�s1

ıls2
.%/;0ık1.#/;1 � q

Pl
j D1.1�rj /C

Pk
j D2.1�tj /

� O�.1/
s1
.el1.%/ ˝ � � � ˝ els2�1.%/ ˝ e0

˝ e1 ˝ ek2.#/ ˝ � � � ˝ eks1
.#//

D
q.

l
2/ Œl�Šq.

k
2/ Œk�Š q�s2

Œ2�
.q � q�1/ �

X

1�r1<���<rl�1�s2�1

2�t1<���<tk�s1

q
Pl�1

j D1.1�rj /C
Pk

j D1.1�tj /

� .el1.%/ ˝ � � � ˝ els2�1.%/

˝ ek2.#/ ˝ � � � ˝ eks1
.#//

�
q.

l
2/ Œl�Š q.

k
2/ Œk�Š

Œ2�
.q � q�1/ �

X

1�r1<���<rl�s2�1

2�t2<���<tk�s1

q
Pl

j D1.1�rj /C
Pk

j D2.1�tj /

� .el1.%/ ˝ � � � ˝ els2�1.%/

˝ ek2.#/ ˝ � � � ˝ eks1
.#//:
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Changing the summation indices by tj 7! tj � 1 in the first sum and rj 7! rj � 1

in the second sum, and using the formula from Lemma B.1 for the vectors �
.s2�1/

l

and �
.s1�1/

k
, we simplify the above as

q.
l
2/ Œl�Šq.

k
2/ Œk�Šq�s2

Œ2�
.q � q�1/ �

X

1�r1<���<rl�1�s2�1

1�t1<���<tk�s1�1

q�kC
Pl�1

j D1.1�rj /C
Pk

j D1.1�tj /

� .el1.%/ ˝ � � � ˝ els2�1.%/ ˝ ek2.#/ ˝ � � � ˝ eks1
.#//

�
q.

l
2/ Œl�Šq.

k
2/ Œk�Š

Œ2�
.q � q�1/ �

X

1�r1<���<rl�s2�1

1�t2<���<tk�s1�1

q1�kC
Pl

j D1.1�rj /C
Pk

j D2.1�tj /

� .el1.%/ ˝ � � � ˝ els2�1.%/ ˝ ek2.#/ ˝ � � � ˝ eks1
.#//

D
q.

l
2/ Œl�Š q.

k
2/ Œk�Š

Œ2�
.q � q�1/

�
�q�s2�k � .�

.s2�1/

l�1
˝ �

.s1�1/

k
/

q.
l�1

2 /q.
k
2/Œl � 1�ŠŒk�Š

�
q1�k � .�

.s2�1/

l
˝ �

.s1�1/

k�1
/

q.
l
2/q.

k�1
2 /Œl�ŠŒk � 1�Š

�

D
.q � q�1/

Œ2�
.ql�s2�1�k Œl � � .�

.s2�1/

l�1
˝ �

.s1�1/

k
/ � Œk� � .�

.s2�1/

l
˝ �

.s1�1/

k�1
//:

which concludes the proof. �

We generalize the above calculation in the next lemma.

Lemma B.4. Let s1; s2 2 Z>0 and m 2 ¹1; 2; : : : ;min.s1; s2/º. Interpreting

�
.s/
�1 D 0, we have

. O�
.1/
s1�mC1 ı � � � ı O�

.1/
s1�1 ı O�

.1/
s1
/.�

.s2/

l
˝ �

.s1/

k
/

D
.q � q�1/m

Œ2�m

�

m
X

j D0

h m

j

i

.�1/jq.m�j /.j Cl�s2�1�k/
�

j �1
Y

rD0

Œk � r�
��

m�j �1
Y

sD0

Œl � s�
�

� .e
.s2�m/

l�mCj
˝ e

.s1�m/

k�j
/:
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Proof. We prove the asserted formula by induction on m. The base case is given

by Lemma B.3. Assume that the asserted formula holds for m. Applying the

induction hypothesis and Lemma B.3, we calculate

. O�.1/
s1�m ı O�

.1/
s1�mC1 ı � � � ı O�

.1/
s1�1 ı O�

.1/
s1
/.�

.s2/

l
˝ �

.s1/

k
/

D
.q � q�1/m

Œ2�m

�

m
X

j D0

.�1/jq.m�j /.j Cl�s2�1�k/
h m

j

i�

j �1
Y

rD0

Œk � r�
��

m�j �1
Y

sD0

Œl � s�
�

� O�.1/
s1�m.�

.s2�m/

l�mCj
˝ �

.s1�m/

k�j
/

D
.q � q�1/mC1

Œ2�mC1

�

m
X

j D0

.�1/jq.m�j /.j Cl�s2�1�k/
h m

j

i�

j �1
Y

rD0

Œk � r�
��

m�j �1
Y

sD0

Œl � s�
�

� .ql�k�1�s2C2j Œl �mC j � � .�
.s2�.mC1//

l�.mC1/Cj
˝ �

.s1�.mC1//

k�j
/

� Œk � j � � .�
.s2�.mC1//

l�mCj
˝ �

.s1�.mC1//

k�j �1
//:

Changing the summation index in the second term by j 7! j � 1, we simplify the

above as

.q � q�1/mC1

Œ2�mC1

�

mC1
X

j D0

.�1/jq.m�j /.j Cl�s2�1�k/
h m

j

i�

j �1
Y

rD0

Œk � r�
��

m�j �1
Y

sD0

Œl � s�
�

� .ql�k�1�s2C2j Œl �mC j � � .�
.s2�.mC1//

l�.mC1/Cj
˝ �

.s1�.mC1//

k�j
/

� Œk � j � � .�
.s2�.mC1//

l�mCj
˝ �

.s1�.mC1//

k�j �1
//

D
.q � q�1/mC1

Œ2�mC1

�

mC1
X

j D0

.�1/jq.mC1�j /.j Cl�s2�1�k/
�

j �1
Y

rD0

Œk � r�
��

.mC1/�j �1
Y

sD0

Œl � s�
�

�
�

qj
h m

j

i

C q�.mC1�j /
h m

j � 1

i�

� .�
.s2�.mC1//

l�.mC1/Cj
˝ �

.s1�.mC1//

k�j
/;

which gives the asserted formula by the recursion of Lemma A.1(a) for the q-bi-

nomial coefficients. �
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The next lemma gives the explicit non-zero constant in the commutative dia-

gram in Lemma 3.10.

Lemma B.5. Let s1; s2 2 Z>0 and m 2 ¹1; 2; : : : ;min.s1; s2/º, and denote

r D s1 C s2 � 2m and ı D r C 1. We have

. O�
.1/
s1�mC1 ı � � � ı O�

.1/
s1�1 ı O�

.1/
s1
/..I.s2/ ˝ I.s1//.�

.ıId1;d2/
0 //

D C.mI s1; s2/ � I.r/.e
.ı/
0 /;

where

C.mI s1; s2/ D
Œs1 �m�Š Œs2 �m�Š Œs1 C s2 �mC 1�Š

Œ2�m Œs1�Š Œs2�Š Œs1 C s2 � 2mC 1�Š

D

h s1 C s2 �mC 1

m

i

Œ2�m Œm�Š
h s1

m

ih s2

m

i

¤ 0:

Proof. Recall from Lemma 2.1 the formulas (2.3):

�
.ıId1;d2/
0 D

X

l1;l2

T
l1;l2

0Im .s1; s2/ � .e
.d2/

l2
˝ e

.d1/

l1
/; (B.1)

where

T
l1;l2

0Im .s1; s2/ D ıl1Cl2;m � .�1/
l1
Œs1 � l1�Š Œs2 � l2�Š

Œl1�Š Œs1�Š Œl2�Š Œs2�Š

ql1.s1�l1C1/

.q � q�1/m
:

By Lemma B.4, we have

. O�
.1/
s1�mC1 ı � � � ı O�

.1/
s1�1 ı O�

.1/
s1
/..I.s2/ ˝ I.s1//.�

.ıId1;d2/
0 //

D
.q � q�1/m

Œ2�m

�
X

l1;l2

T
l1;l2

0Im .s1; s2/ �

m
X

j D0

h m

j

i

.�1/jq.m�j /.j Cl2�s2�1�l1/

�
�

j �1
Y

rD0

Œl1 � r�
��

m�j �1
Y

sD0

Œl2 � s�
�

� .�
.s2�m/

l2�mCj
˝ �

.s1�m/

l1�j
/:



62 E. Peltola

Now, by the formula (B.1), we have l1 C l2 D m in the sum. Therefore, only the

terms with j D l1 D m � l2 are non-zero. We denote k D l1 and simplify the

above expression as

.q � q�1/m

Œ2�m
�

m
X

kD0

.�1/k
Œs1 � k�Š Œs2 �mC k�Š

Œk�Š Œs1�Š Œm � k�Š Œs2�Š

qk.s1�kC1/

.q � q�1/m

�
h m

k

i

.�1/kq.m�k/.m�k�s2�1/

�
�

k�1
Y

rD0

Œk � r�
��

m�k�1
Y

sD0

Œm � k � s�
�

� .�
.s2�m/
0 ˝ �

.s1�m/
0 /

D
qm.m�s2�1/

Œ2�m Œs1�Š Œs2�Š

�

m
X

kD0

h m

k

i

qk.s1Cs2�2mC2/ Œs1 � k�Š Œs2 �mC k�Š � I.r/.e
.ı/
0 /:

Using Lemma A.1(d), with �i D si , i D 1; 2, and n D m, we simplify this to the

asserted form. �

C. Dual elements

This appendix contains results needed in the proof of Lemma 5.5 and Proposi-

tion 5.6, concerning the limit of the solution F! of the Benoit & Saint-Aubin PDE

system (PDE) as several of its variables tend to a common limit simultaneously.

The core idea in the proof is to construct suitable dual elements which allow us to

evaluate the limit. The same idea was also used in a simpler setup in the proof of

Proposition 6.3, where we constructed dual elements for the basis functions F˛,

for ˛ 2 PP
.s/
N , as iterated limits.

Using the projection properties (3.3) of the vectors v! , we will define iterated

projections, which provide the (unnormalized) dual basis of v! 2 H
.s/
& . We follow

the approach of [49, Section 3.5], where such dual elements for the special case

of v˛ 2 H
.0/
2N , for ˛ 2 PPN , were constructed. Therefore, we only give the rough

reasoning of the general case – the details are the same as in [49, Section 3.5],

but the notation for this simple construction becomes unnecessarily complicated

in the general case.
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C.1. Allowable orderings of links. We consider the links in the link pattern

! D
°

a1 b1

; : : : ;
a` b`

±

[
°

c1

; : : : ;
cs

±

;

as an ordered multiset of k � ` D
P

a;b `a;b elements,

L.!/ D
°

`a1;b1
�

a1 b1

; : : : ; `ak ;bk
�

ak bk

±

: (C.1)

For instance, if & D .1; 1; : : : ; 1; 1/, that is, all indices of ! have valence

one, then k D ` and the links can be ordered by their left endpoints, such that

a1 < a2 < � � � < a`. If some other ordering is chosen, there is a permutation

� 2 S` such that we have a�.1/ < a�.2/ < � � � < a�.`/. The choice of the ordering

of the links is thus encoded in the unique permutation � with the above property.

For link patterns with sj � 2 for some j in & D .s1; : : : ; sp/, the ordering of

the links amounts to ordering the multiset L.!/. For example, we can first order

the links in groups by their left endpoints as above, and then, in each group of

links with the same left endpoint, we may choose the ordering according to the

right endpoint so that the link(s)
a b

among the group with the smallest b get

the smallest running number. Again, choosing some other ordering amounts to

choosing a permutation � 2 Sk of the multiset of the links.

Recall that the removal of m � j̀;j C1 links
j j C1

from ! is denoted by

!=.m �
j j C1

/, and if sj D m or sj C1 D m, we also have to remove the index j

or j C 1, respectively (or both), and relabel the indices of the remaining links and

defects as illustrated in Figure 2.5. Slightly informally, we say that the ordering

of the links is allowable for ! if all links of ! can be removed in such a way

that at each step, the links `a;b � a b
to be removed connect two consecutive

indices a D j and b D j C 1 (when the indices are relabeled after each removal)

– see Figure C.1 for an illustration. The concept of “allowability” was defined

more formally in [49, Section 3.5] in the special case of ˛ 2 PPN , but the only

differences in the present case are that, first, the links come with multiplicity,

which only results in complications in the notation, and, second, ! might have

defects
c

, which play no role in the link removal and cannot lie inside any link

a b
in the sense that a < c < b.

C.2. Dual elements. Let ! 2 LP.s/
& and suppose � 2 Sk is an allowable

ordering of the k links of ! (with multiplicity), see (C.1) and Figure C.1. After

removal of all the links of ! in the order � , one is left with the link pattern´�.!/,

which consists of s defects only, determined by the partition �.!/ of the defects of

! (recall Section 2.7). In terms of the vector v! , the link removal can be realized
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as projections to subrepresentations, using the properties (3.3) of v! – since the

ordering � is allowable, the links are removed in such a way that the removed links

always connect two consecutive indices j; j C 1.

As in Remark 3.2, we identify the one-dimensional space H
.s/

�.!/
with C, via

v´�.!/
7! 1. This identification is implicitly used in the following definition. We

set

 .�/
! WH

.s/
& �! C;  .�/

! WD Q�
.ık/

ak.k�1/
ı � � � ı Q�

.ı2/

a2.1/
ı Q�.ı1/

a1
;

where

ıj WD d
.j �1/

bj
C d .j �1/

aj
� 1� 2`aj ;bj

; d .j /
c WD dc �

X

i2¹1;2;:::;j º

cDai or cDbi

`ai ;bi
(C.2)

so that d
.j /
a � 1 denotes the valence of the point a after removal of the j links

`a1;b1
�

a1 b1

, : : :, `aj ;bj
�

aj bj

from ! in the order � , and aj .j � 1/ denotes the

relabeled endpoint of the j th link
aj bj

after removal of the j�1 links `a1;b1
�

a1 b1

,

: : :, `aj �1;bj �1
�

aj �1 bj �1

; see also Figure C.1.

We next show that  
.�/
! is in fact independent of the choice of allowable

ordering � for !, and thus gives rise to a well-defined linear map

 ! WD  
.�/
! WH

.s/
& �! C (C.3)

for any choice of allowable ordering � of the links in !. Moreover, we show that

. !/!2LP
.s/
&

is a basis of the dual space .H
.s/
& /�, namely the (unnormalized) dual

basis of .v!/!2LP
.s/
&

.

Proposition C.1 (see also [49, Proposition 3.7]). (a) Let ! 2 LP.s/
& . For any two

allowable orderings � and � 0 of the links in ! we have

 .�/
! D  .� 0/

! :

Thus, the linear functional  ! 2 .H
.s/
& /� in (C.3) is well defined.

(b) For any !; � 2 LP.s/
& , we have

 !.v� / D const: � ı!;� where ı!;� D

´

1 if � D !;

0 if � ¤ !;
(C.4)

and the constant is non-zero and depends only on !.

In particular, . !/!2LP
.s/
&

is a basis of the dual space .H
.s/
& /�.
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54321

54321

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

321

21

Figure C.1. Example of an allowable ordering to remove links from a planar link pattern.

Notice in particular the relabeling of the indices after each step, and the fact that after each

removal, the valences of the endpoints of the removed link decrease, as in equation (C.2).

Furthermore, if after the removal the endpoint becomes empty, then it is removed as well.

After the removal of all the links, the defects remain.
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Proof. We use the notations introduced in equation (C.2). Let !; � 2 LP.s/
& , and

let � be any allowable ordering of the links of !. Consider  
.�/
! .v� /. If � D !,

then by the projection property (3.3), we have

Q�.ı1/
a1

.v!/ D
1

C.`a1;b1
I sb1

; sa1
/
� v

!=.`a1;b1
�

a1 b1

/
;

and recursively,

. Q�
.ıj /

aj .j �1/
ı � � � ı Q�

.ı2/

a2.1/
ı Q�.ı1/

a1
/.v!/ D const:� v

!=.`a1;b1
�

a1 b1

/=���=.`aj ;bj
�

aj bj

/

for a non-zero constant which is a product of the constants appearing in the

projection properties (3.3).

For j D k, the above formula gives  
.�/
! .v!/ D const: � v´�.!/

, which we

identify with the constant times 1 2 C, via v´�.!/
7! 1, as in Remark 3.2. On

the other hand, if � ¤ !, then for some j , the link pattern � does not contain

`aj ;bj
links

aj bj

, and by the property (3.3) we then similarly get  
.�/
! .v� / D 0.

Summarizing, we have  !.v� / D const: � ı!;� , independently of the choice of

allowable ordering � , and the constant is non-zero and only depends on !. This

proves equation (C.4) and assertion (b).

By Proposition 3.7, the vectors v� , with � 2 LP.s/
& , form a basis of the space

H
.s/
& . It thus follows from equation (C.4) that the value of the operator  

.�/
!

is independent of the choice of an allowable ordering � of the links, and that

. !/!2LP
.s/
&

is a basis of the dual space .H
.s/
& /�. This concludes the proof. �

Remark C.2. For fixed !, by Theorem 3.1(b), the maps  ! WH
.s/
& ! C also define

(unnormalized) projectors

O ! W

p
O

iD1

Mdi
�! Md ;

O !.F
l :v� / WD

´

 !.v� / � e
.d/

l
for any l 2 ¹0; 1; : : : ; sº if � 2 LP.s/

& ;

0 otherwise,

from the tensor product (2.5) onto the s C 1 D d -dimensional irreducible repre-

sentation Md of Uq.sl2/. For a chosen � 2 LP.s/
& , combining O ! with the embed-

ding Md ,!
Np

iD1 Mdi
given by e

.d/

l
7! F l :v� , we can define the (unnormalized)
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projectors

Q �
! W

p
O

iD1

Mdi
�!

p
O

iD1

Mdi
;

Q �
! .F

l :v� / WD

´

 !.v� / � F
l :v� for any l 2 ¹0; 1; : : : ; sº if � 2 LP.s/

& ;

0 otherwise,

onto the subrepresentations of the tensor product (2.5) isomorphic to Md , gener-

ated by v� . This gives rise to
P

s�0.#LP.s/
& /2 linearly independent maps Q �

! , with

!; � 2 LP.s/
& , that belong to the commutant algebra EndUq.sl2/

�
Np

iD1 Mdi

�

. We

discuss this commutant algebra in forthcoming work [29].

C.3. Some details for the proofs of Lemma 5.5 and Proposition 5.6. Let

1 � j < k � p and ! 2 LP.s/
& , and let � 2 LP.r/

&j;k
be the sub-link pattern

of ! with index valences &j;k D .sj ; sj C1 : : : ; sk/, consisting of the lines of !

attached to the indices j; j C 1; : : : ; k, as in Section 5.3, and let !=� denote the

link pattern obtained from ! by “removing �”, that is, removing from ! the links

a b
with indices a; b 2 ¹j; j C 1; : : : ; kº, collapsing the indices j; j C 1; : : : ; k

of ! into one point, and relabeling the indices thus obtained from left to right by

1; 2; : : : (see Section 5.3).

Lemma C.3. Let ! 2 LP.s/
& , � 2 LP.r/

&j;k
, and !=� be as in Section 5.3. Then, we

have

v! D

r
X

lD0

X

l1;:::;lj �1;

lkC1;:::;lp

cl1;:::;lj �1IlIlkC1;:::;lp

� .elp ˝ � � � ˝ elkC1
˝ F l :v� ˝ elj �1

˝ � � � ˝ el1
/;

v!=� D

r
X

lD0

X

l1;:::;lj �1;

lkC1;:::;lp

cl1;:::;lj �1IlIlkC1;:::;lp

� .elp ˝ � � � ˝ elkC1
˝ el ˝ elj �1

˝ � � � ˝ el1
/;

for some constants cl1;:::;lj �1IlIlkC1;:::;lp 2 C.
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Proof. By Theorem 3.1(b), the vector v! can be written as a linear combination

v! D
X

t�0

X

�2LP
.t/
&j;k

t
X

lD0

X

l1;:::;lj �1;

lkC1;:::;lp

c
t;�

l1;:::;lj �1IlIlkC1;:::;lp

� .elp ˝ � � � ˝ elkC1
˝ F l :v� ˝ elj �1

˝ � � � ˝ el1
/;

for some constants c
t;�
l1;:::;lj �1IlIlkC1;:::;lp

2 C. For any � 2 LP.t/
&j;k

, we apply the

map

. O �/j;k D id˝.p�k/ ˝ O � ˝ id˝.j �1/W

p
O

iD1

Mdi
�! .Mdp

˝ � � � ˝ MdkC1
/˝ MtC1 ˝ .Mdj �1

˝ � � � ˝ Md1
/

to both sides of the above expression for v! . By the projection properties (3.3)

of v! , the vector . O �/j;k.v!/ equals zero unless � D � , and if � D � , then we

have . O � /j;k.v!/ D  � .v� /� v!=� , by similar arguments as in the proof of Propo-

sition C.1. Analogous properties hold for . Q �
� /j;k , which picks the component

generated by v� in the tensor positions j; j C 1; : : : ; k. Therefore, we have

v! D

r
X

lD0

X

l1;:::;lj �1;

lkC1;:::;lp

cl1;:::;lj �1IlIlkC1;:::;lp

� .elp ˝ � � � ˝ elkC1
˝ F l :v� ˝ elj �1

˝ � � � ˝ el1
/;

where cl1;:::;lj �1IlIlkC1;:::;lp D c
r;�

l1;:::;lj �1IlIlkC1;:::;lp
, and in particular,

v!=� D

r
X

lD0

X

l1;:::;lj �1;

lkC1;:::;lp

cl1;:::;lj �1IlIlkC1;:::;lp

� .elp ˝ � � � ˝ elkC1
˝ el ˝ elj �1

˝ � � � ˝ el1
/: �

References

[1] M. Bauer and D. Bernard, Conformal field theories of stochastic Loewner evolutions.

Comm. Math. Phys. 239 (2003), no. 3, 493–521. MR 2000927 Zbl 1046.81091

[2] M. Bauer and D. Bernard, SLE, CFT, and zig-zag probabilities. Proceedings of the

conference “Conformal Invariance and Random Spatial Processes,” Edinburgh, 2003.

http://www.ams.org/mathscinet-getitem?mr=2000927
http://zbmath.org/?q=an:1046.81091


Basis for solutions of the Benoit & Saint-Aubin PDEs 69

[3] M. Bauer, D. Bernard, and K. Kytölä, Multiple Schramm–Loewner evolutions and

statistical mechanics martingales. J. Stat. Phys. 120 (2005), no. 5-6, 1125–1163.

MR 2187598 Zbl 1094.82016

[4] M. Bauer, P. Di Francesco, C. Itzykson, and J. B. Zuber, Covariant differential equa-

tions and singular vectors in Virasoro representations. Nuclear Phys. B 362 (1991),

no. 3, 515–562. MR 1123211 Zbl 0957.17508

[5] V. Beffara, E. Peltola, and H. Wu, On the uniqueness of global multiple SLEs.

Preprint, 2018. arXiv:1801.07699 [math.PR]

[6] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal sym-

metry in two-dimensional quantum field theory. Nuclear Phys. B 241 (1984), no. 2,

333–380. MR 0757857

[7] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal sym-

metry of critical fluctuations in two dimensions. J. Statist. Phys. 34 (1984), no. 5-6,

763–774. MR 0751712

[8] D. Beliaev and F. Johansson-Viklund, Some remarks on SLE bubbles and Schramm’s

two-point observable. Comm. Math. Phys. 320 (2013), no. 2, 379–394. MR 3053765

Zbl 1268.60105

[9] L. Benoit and Y. Saint-Aubin, Degenerate conformal field theories and explicit ex-

pressions for some null vectors. Phys. Lett. B 215 (1988), no. 3, 517–522. MR 0972438

Zbl 0957.17509

[10] J. M. Bony, Principe du maximum, inégalite de Harnack et unicité du problème de

Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19,

no. 1 (1969), 277–304. MR 0262881 Zbl 0176.09703

[11] F. Camia and C. M. Newman, Two-dimensional critical percolation: the full scaling

limit. Comm. Math. Phys. 268 (2006), no. 1, 1–38. MR 2249794 Zbl 1117.60086

[12] J. L. Cardy, Conformal invariance and surface critical behavior. Nuclear Phys. B 240

(1984), no. 4, 514–532.

[13] J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula. Nuclear

Phys. B 324 (1989), no. 3, 581–596. MR 1019724

[14] J. L. Cardy, Critical percolation in finite geometries. J. Phys. A 25 (1992), no. 4,

L201–L206. MR 1151081 Zbl 0965.82501

[15] D. Chelkak, H. Duminil-Copin, C. Hongler, A. Kemppainen, and S. Smirnov, Conver-

gence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris 352

(2014), no. 2, 157–161. MR 3151886 Zbl 1294.82007

[16] P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory. Gradu-

ate texts in contemporary physics. Springer-Verlag, New York, 1997. MR 1424041

Zbl 0869.53052

http://www.ams.org/mathscinet-getitem?mr=2187598
http://zbmath.org/?q=an:1094.82016
http://www.ams.org/mathscinet-getitem?mr=1123211
http://zbmath.org/?q=an:0957.17508
http://arxiv.org/abs/1801.07699
http://www.ams.org/mathscinet-getitem?mr=0757857
http://www.ams.org/mathscinet-getitem?mr=0751712
http://www.ams.org/mathscinet-getitem?mr=3053765
http://zbmath.org/?q=an:1268.60105
http://www.ams.org/mathscinet-getitem?mr=0972438
http://zbmath.org/?q=an:0957.17509
http://www.ams.org/mathscinet-getitem?mr=0262881
http://zbmath.org/?q=an:0176.09703
http://www.ams.org/mathscinet-getitem?mr=2249794
http://zbmath.org/?q=an:1117.60086
http://www.ams.org/mathscinet-getitem?mr=1019724
http://www.ams.org/mathscinet-getitem?mr=1151081
http://zbmath.org/?q=an:0965.82501
http://www.ams.org/mathscinet-getitem?mr=3151886
http://zbmath.org/?q=an:1294.82007
http://www.ams.org/mathscinet-getitem?mr=1424041
http://zbmath.org/?q=an:0869.53052


70 E. Peltola

[17] V. S. Dotsenko and V. A. Fateev, Conformal algebra and multipoint correlation

functions in 2D statistical models. Nuclear Phys. B 240 (1984), no. 3, 312–348.

MR 0762194

[18] J. Dubédat, Euler integrals for commuting SLEs. J. Stat. Phys. 123 (2006), no. 6,

1183–1218. MR 2253875 Zbl 1113.82064

[19] J. Dubédat, Excursion decompositions for SLE and Watts’ crossing formula. Probab.

Theory Related Fields 134 (2006), no. 3, 453–488. MR 2226888 Zbl 1112.60032

[20] J. Dubédat, Commutation relations for SLE. Comm. Pure Appl. Math. 60 (2007),

no. 12, 1792–1847. MR 2358649 Zbl 1137.82009

[21] J. Dubédat, SLE and Virasoro representations: localization. Comm. Math. Phys. 336

(2015), no. 2, 695–760. MR 3322385 Zbl 1318.82007

[22] J. Dubédat, SLE and Virasoro representations: fusion. Comm. Math. Phys. 336

(2015), no. 2, 761–809. MR 3322386 Zbl 1319.81073

[23] B. Duplantier, Conformal random geometry. In A. Bovier, F. Dunlop, A. van Enter,

F. den Hollander and J. Dalibard (eds.), Mathematical statistical physics. Papers from

the 83rd Session of the Summer School in Physics held in Les Houches, July 4–29,

2005. Elsevier, Amsterdam, 2006, 101–217. MR 2581884 Zbl 1370.60013

[24] B. L. Feı̆gin and D. B. Fuchs, Verma modules over the Virasoro algebra. In

L. D. Faddeev and A. A. Mal0cev (eds.), Topology. Proceedings of the interna-

tional topological conference held in Leningrad, August 23–27, 1982. Lecture

Notes in Mathematics, 1060. Springer-Verlag, Berlin, 1984, 230–245. MR 0770243

Zbl 0549.17010

[25] G. Felder and C. Wieczerkowski, Topological representations of the quantum group

Uq.sl2/. Comm. Math. Phys. 138 (1991), no. 3, 583–605. MR 1110457 Zbl 0722.55005

[26] S. M. Flores and P. Kleban, A solution space for a system of null-state partial dif-

ferential equations 3. Comm. Math. Phys. 333 (2015), no. 2, 597–667. MR 3296159

Zbl 1311.35314

[27] S. M. Flores and P. Kleban, A solution space for a system of null-state partial dif-

ferential equations 4. Comm. Math. Phys. 333 (2015), no. 2, 669–715. MR 3296160

Zbl 1314.35190

[28] S. M. Flores and E. Peltola, Standard modules, radicals, and the valenced Temperley–

Lieb algebra Preprint, 2018. arXiv:1801.10003 [math-ph]

[29] S. M. Flores and E. Peltola, Higher quantum and classical Schur–Weyl duality for

sl.2/. In preparation.

[30] S. M. Flores and E. Peltola, Solution spaces for the Benoit & Saint-Aubin partial

differential equations. In preparation.

[31] S. M. Flores, J. J. H. Simmons, and P. Kleban, Multiple-SLE� connectivity weights

for rectangles, hexagons, and octagons. Preprint 2015. arXiv:1505.07756 [math-ph]

http://www.ams.org/mathscinet-getitem?mr=0762194
http://www.ams.org/mathscinet-getitem?mr=2253875
http://zbmath.org/?q=an:1113.82064
http://www.ams.org/mathscinet-getitem?mr=2226888
http://zbmath.org/?q=an:1112.60032
http://www.ams.org/mathscinet-getitem?mr=2358649
http://zbmath.org/?q=an:1137.82009
http://www.ams.org/mathscinet-getitem?mr=3322385
http://zbmath.org/?q=an:1318.82007
http://www.ams.org/mathscinet-getitem?mr=3322386
http://zbmath.org/?q=an:1319.81073
http://www.ams.org/mathscinet-getitem?mr=2581884
http://zbmath.org/?q=an:1370.60013
http://www.ams.org/mathscinet-getitem?mr=0770243
http://zbmath.org/?q=an:0549.17010
http://www.ams.org/mathscinet-getitem?mr=1110457
http://zbmath.org/?q=an:0722.55005
http://www.ams.org/mathscinet-getitem?mr=3296159
http://zbmath.org/?q=an:1311.35314
http://www.ams.org/mathscinet-getitem?mr=3296160
http://zbmath.org/?q=an:1314.35190
http://arxiv.org/abs/1801.10003
http://arxiv.org/abs/1505.07756


Basis for solutions of the Benoit & Saint-Aubin PDEs 71

[32] I. B. Frenkel and M. G. Khovanov, Canonical bases in tensor products and graph-

ical calculus for Uq.sl2/. Duke Math. J. 87 (1997), no. 3, 409–480. MR 1446615

Zbl 0883.17013

[33] R. Friedrich and J. Kalkkinen, On conformal field theory and stochastic Loewner

evolution. Nuclear Phys. B 687 (2004), no. 3, 279–302. MR 2059141 Zbl 1149.81352

[34] R. Friedrich and W. Werner, Conformal restriction, highest weight representa-

tions and SLE. Comm. Math. Phys. 243 (2003), no. 1, 105–122. MR 2020222

Zbl 1030.60095

[35] A. Gamsa and J. L. Cardy, The scaling limit of two cluster boundaries in critical

lattice models. J. Stat. Mech. Theory Exp. 2005, no. 12, P12009, 26 pp. MR 2205510

Zbl 07077880

[36] C. Hongler and K. Kytölä, Ising interfaces and free boundary conditions. J. Amer.

Math. Soc. 26 (2013), no. 4, 1107–1189. MR 3073886 Zbl 1284.82021

[37] L. Hörmander, Hypoelliptic second-order differential equations. Acta Math. 119

(1967), 147–171. MR 0222474 Zbl 0156.10701

[38] K. Izyurov, Smirnov’s observable for free boundary conditions, interfaces and cross-

ing probabilities. Comm. Math. Phys. 337 (2015), no. 1, 225–252. MR 3324162

Zbl 1318.82010

[39] K. Izyurov, Critical Ising interfaces in multiply-connected domains. Probab. Theory

Related Fields 167 (2017), no. 1-2, 379–415. MR 3602850 Zbl 1364.82012

[40] M. Jimbo, A q analog of U.gl.nC 1//, Hecke algebra and the Yang–Baxter equation.

Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 0841713 Zbl 0602.17005

[41] N. Jokela, M. Järvinen, and K. Kytölä, SLE boundary visits. Ann. Henri Poincaré 17

(2016), no. 6, 1263–1330. MR 3500215 Zbl 1346.82012

[42] A. Karrila, K. Kytölä, and E. Peltola, Boundary correlations in planar LERW and

UST. Comm. Math. Phys., online first. doi: 10.1007/s00220-019-03615-0

[43] A. Karrila, K. Kytölä, and E. Peltola, Conformal blocks, q-combinatorics, and

quantum group symmetry. Ann. Inst. Henri Poincaré D 6 (2019), no. 3, 449–487.

MR 4002673 Zbl 07117741

[44] A. Kemppainen and S. Smirnov, Configurations of FK Ising interfaces and hypergeo-

metric SLE. Math. Res. Lett. 25 (2018), no. 3, 875–889. MR 3847338 Zbl 1418.82002

[45] M. L. Kontsevich, Virasoro algebra and Teichmüller spaces. Funktsional. Anal. i

Prilozhen. 21 (1987), no. 2, 78–79. In Russian. English translation, Functional Anal.

Appl. 21 (1987), no. 2, 156–157. MR 0902301 Zbl 0647.58012

[46] M. L. Kontsevich, CFT, SLE, and phase boundaries. Oberwolfach Arbeitstagung,

2003.

[47] M. L. Kontsevich and Y. Suhov, On Malliavin measures, SLE, and CFT. Tr. Mat. Inst.

Steklova 258 (2007), Anal. i Osob. Ch. 1, 107–153. Reprinted in Proc. Steklov Inst.

Math. 258 (2007), no. 1, 100–146. MR 2400527 Zbl 1155.81367

http://www.ams.org/mathscinet-getitem?mr=1446615
http://zbmath.org/?q=an:0883.17013
http://www.ams.org/mathscinet-getitem?mr=2059141
http://zbmath.org/?q=an:1149.81352
http://www.ams.org/mathscinet-getitem?mr=2020222
http://zbmath.org/?q=an:1030.60095
http://www.ams.org/mathscinet-getitem?mr=2205510
http://zbmath.org/?q=an:07077880
http://www.ams.org/mathscinet-getitem?mr=3073886
http://zbmath.org/?q=an:1284.82021
http://www.ams.org/mathscinet-getitem?mr=0222474
http://zbmath.org/?q=an:0156.10701
http://www.ams.org/mathscinet-getitem?mr=3324162
http://zbmath.org/?q=an:1318.82010
http://www.ams.org/mathscinet-getitem?mr=3602850
http://zbmath.org/?q=an:1364.82012
http://www.ams.org/mathscinet-getitem?mr=0841713
http://zbmath.org/?q=an:0602.17005
http://www.ams.org/mathscinet-getitem?mr=3500215
http://zbmath.org/?q=an:1346.82012
http://dx.doi.org/10.1007/s00220-019-03615-0
http://www.ams.org/mathscinet-getitem?mr=4002673
http://zbmath.org/?q=an:07117741
http://www.ams.org/mathscinet-getitem?mr=3847338
http://zbmath.org/?q=an:1418.82002
http://www.ams.org/mathscinet-getitem?mr=0902301
http://zbmath.org/?q=an:0647.58012
http://www.ams.org/mathscinet-getitem?mr=2400527
http://zbmath.org/?q=an:1155.81367


72 E. Peltola

[48] M. J. Kozdron and G. F. Lawler, The configurational measure on mutually avoiding

SLE paths. In I. Binder and D. Kreimer (eds.), Universality and renormalization.

From stochastic evolution to renormalization of quantum fields. Proceedings of the

Workshop on Percolation, SLE and Related Topics held September 20–24, 2005,

and the Workshop on Renormalization and Universality in Mathematical Physics

held October 18–22, 2005 in Toronto, ON. Fields Institute Communications, 50.

American Mathematical Society, Providence, RI, and, Fields Institute for Research in

Mathematical Sciences, Toronto, ON, 2007, 199–224. MR 2310306 Zbl 1133.60023

[49] K. Kytölä and E. Peltola, Pure partition functions of multiple SLEs. Comm. Math.

Phys. 346 (2016), no. 1, 237–292. MR 3528421 Zbl 1358.82012

[50] K. Kytölä and E. Peltola, Conformally covariant boundary correlation functions with

a quantum group. J. Eur. Math. Soc. (JEMS) 22 (2020), no. 1, 55–118. MR 4046010

[51] G. F. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar loop-

erased random walks and uniform spanning trees. Ann. Probab. 32 (2004), no. 1B,

939–995. MR 2044671 Zbl 1126.82011

[52] J. Lenells and F. Viklund, (1) Schramm’s formula and the Green’s function for multiple

SLE. J. Stat. Phys. 176 (2019), no. 4, 873–931. (2) Asymptotic analysis of Dotsenko–

Fateev integrals. Ann. Henri Poincaré 20 (2019), no. 11, 3799–3848. MR 3990218 (1)

MR 4019203 (2) Zbl 07115579 (1) Zbl 1428.30040 (2)

[53] G. Lusztig, Canonical bases in tensor products. Proc. Nat. Acad. Sci. U.S.A. 89 (1992),

no. 17, 8177–8179. MR 118003 Zbl 0760.17011

[54] P. P. Martin, On Schur–Weyl duality, An Hecke algebras and quantum sl.N / on

˝nC1Cn. Int. J. Mod. Phys. A 7 (1992), Suppl. 1b, 645–673. Zbl 0925.17013

[55] E. Peltola and H. Wu, Global and local multiple SLEs for � � 4 and connection

probabilities for level lines of GFF. Comm. Math. Phys. 366 (2019), no. 2, 469–536.

MR 3922531 Zbl 1422.60142

[56] G. Provencher and Y. Saint-Aubin, The idempotents of the TLn-module ˝nC2 in

terms of elements of Uq.sl2/. Ann. Henri Poincaré 15 (2014), no. + 11, 2203–2240.

MR 3268828 Zbl 1305.82020

[57] D. Ridout and Y. Saint-Aubin, Standard modules, induction and the structure of

the Temperley–Lieb algebra. Adv. Theor. Math. Phys. 18 (2014), no. 5, 957–1041.

MR 3281274 Zbl 1308.82015

[58] O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees.

Israel J. Math. 118 (2000), 221–288. MR 1776084 Zbl 0968.60093

[59] O. Schramm and S. Sheffield, Harmonic explorer and its convergence to SLE4. Ann.

Probab. 33 (2005), no. 6, 2127–2148. MR 2184093 Zbl 1095.60007

[60] S. Sheffield and D. Wilson, Schramm’s proof of Watts’ formula. Ann. Probab. 39

(2011), no. 5, 1844–1863. MR 2884875 Zbl 1238.60089

[61] S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s for-

mula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239–244.

MR 1851632 Zbl 0985.60090 Updated 2009, arXiv:0909.4499 [math.PR]

http://www.ams.org/mathscinet-getitem?mr=2310306
http://zbmath.org/?q=an:1133.60023
http://www.ams.org/mathscinet-getitem?mr=3528421
http://zbmath.org/?q=an:1358.82012
http://www.ams.org/mathscinet-getitem?mr=4046010
http://www.ams.org/mathscinet-getitem?mr=2044671
http://zbmath.org/?q=an:1126.82011
http://www.ams.org/mathscinet-getitem?mr=3990218
http://www.ams.org/mathscinet-getitem?mr=4019203
http://zbmath.org/?q=an:07115579
http://zbmath.org/?q=an:1428.30040
http://www.ams.org/mathscinet-getitem?mr=118003
http://zbmath.org/?q=an:0760.17011
http://zbmath.org/?q=an:0925.17013
http://www.ams.org/mathscinet-getitem?mr=3922531
http://zbmath.org/?q=an:1422.60142
http://www.ams.org/mathscinet-getitem?mr=3268828
http://zbmath.org/?q=an:1305.82020
http://www.ams.org/mathscinet-getitem?mr=3281274
http://zbmath.org/?q=an:1308.82015
http://www.ams.org/mathscinet-getitem?mr=1776084
http://zbmath.org/?q=an:0968.60093
http://www.ams.org/mathscinet-getitem?mr=2184093
http://zbmath.org/?q=an:1095.60007
http://www.ams.org/mathscinet-getitem?mr=2884875
http://zbmath.org/?q=an:1238.60089
http://www.ams.org/mathscinet-getitem?mr=1851632
http://zbmath.org/?q=an:0985.60090
http://arxiv.org/abs/0909.4499


Basis for solutions of the Benoit & Saint-Aubin PDEs 73

[62] S. Smirnov, Towards conformal invariance of 2D lattice models. In M. Sanz-Solé,

J. Soria, J. L. Varona, and J. Verdera (eds.), International Congress of Mathemati-

cians. Vol. II. Invited lectures. Proceedings of the congress held in Madrid, Au-

gust 22–30, 2006. European Mathematical Society (EMS), Zürich, 2006, 1421–1451.

MR 2275653 Zbl 1112.82014

[63] G. Watts, A crossing probability for critical percolation in two dimensions.

J. Phys. A 29 (1996), no. 14, L363–L368. MR 1406907 Zbl 0904.60078

[64] D. Zhan, The scaling limits of planar LERW in finitely connected domains. Ann.

Probab. 36 (2008), no. 2, 467–529. MR 2393989 Zbl 1153.60057

© European Mathematical Society

Communicated by Adrian Tanasă

Received September 8, 2017; accepted January 27, 2018

Eveliina Peltola, Section de Mathématiques, Université de Genève, 2–4 rue du Lièvre,

C.P. 64, 1211 Genève 4, Switzerland

e-mail: eveliina.peltola@unige.ch

http://www.ams.org/mathscinet-getitem?mr=2275653
http://zbmath.org/?q=an:1112.82014
http://www.ams.org/mathscinet-getitem?mr=1406907
http://zbmath.org/?q=an:0904.60078
http://www.ams.org/mathscinet-getitem?mr=2393989
http://zbmath.org/?q=an:1153.60057
mailto:eveliina.peltola@unige.ch

	Introduction
	Acknowledgments
	Preliminaries: the quantum group U_q(sl_2) and some combinatorics
	Basis vectors in quantum group representations
	Cyclic permutation symmetry of the basis vectors
	Solutions to the Benoit & Saint-Aubin PDEs with particular asymptotics properties
	Cyclic permutation symmetry of the pure partition functions of multiple SLEs
	Appendices
	q-combinatorics
	Some auxiliary calculations
	Dual elements

	References

