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Abstract. Applying the quantum group method developed in [50], we construct solutions
to the Benoit & Saint-Aubin partial differential equations with boundary conditions given
by specific recursive asymptotics properties. Our results generalize solutions constructed
in [49, 55], known as the pure partition functions of multiple Schramm-Loewner evolutions.
The generalization is reminiscent of fusion in conformal field theory, and our solutions can
be thought of as partition functions of systems of random curves, where many curves may
emerge from the same point.
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2 E. Peltola

1. Introduction

Conformal field theories (CFT) are expected to describe scaling limits of criti-
cal models of statistical mechanics. In particular, scaling limits of correlations
in discrete critical systems should be CFT correlation functions. Many correla-
tion functions of interest satisfy linear homogeneous partial differential equations
(PDEs), which in CFT arise from the presence of singular vectors in representa-
tions of the Virasoro algebra [6, 12, 24, 16].

Such PDEs of second order frequently appear also in the theory of Schramm-
Loewner evolutions (SLE). In this probabilistic context, they arise from stochastic
differentials of certain local martingales. Solutions to systems of these second
order PDEs are known as partition functions for multiple SLEs [3, 20, 48, 49, 55].
On the other hand, the higher order PDEs of CFT seem not to have a direct
probabilistic interpretation, but can in some cases be understood in terms of
scaling limits, as in [35, 42], SLE observables, as in [8, 52], or generalizations
of multiple SLE measures [34, 46, 33, 47, 22]. See also [7, 14, 63,1, 2, 18, 19, 60,
27, 31, 41, 55] for further examples.

In this article, we consider solutions to the class of Benoit & Saint-Aubin type
PDE systems [9, 4], corresponding to singular vectors with conformal weights of
type h1s in the Kac table. We assume throughout that the parameter « in the
central charge ¢ = c(k) = %(6 — k)(3k — 8) is non-rational. We construct
solutions which satisfy particular boundary conditions given in terms of specified
asymptotic behavior, recursive in the number of variables. In the articles [4],
49, 42, 52, 55], examples of such functions were constructed for applications
concerning Schramm-Loewner evolutions (see also [43] for solutions relevant in
CFT). In these applications, the choice of boundary conditions is motivated by
properties of the random curves, which in CFT language means specific fusion
channels for the fields; see also [13, 14, 63,1, 2, 3, 35, 8, 22].

To construct our solutions with the particular boundary conditions, we apply
the quantum group method developed in [50]. We consider spaces of highest
weight vectors in tensor product representations of the quantum group Uy (sl2)
in the generic, semisimple case.! We construct particular bases for these vector
spaces, specified by projections to subrepresentations. Then, via the “spin chain —
Coulomb gas correspondence” of [50], we obtain the sought solutions to the
Benoit & Saint-Aubin PDE systems.

1By the generic case we mean that the deformation parameter g is not a root of unity.

The parameter « and the deformation parameter of the quantum group U, (sl>) are related by
q= ein4/K_
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Our results provide a generalization of the pure partition functions of multiple
SLEs [49, 55]. They are solutions to a system of second order Benoit & Saint-
Aubin PDEs, and their recursive boundary conditions are related to multiple
SLE processes having deterministic connectivities of the random curves. For
statistical physics models, the pure partition functions give formulas for crossing
probabilities, see [14, 1, 46, 3, 31, 38, 42, 55]. Analogously, our solutions can be
thought of as partition functions for systems of random curves, where packets of
curves grow from boundary points of a simply connected domain. In statistical
physics, this corresponds to boundary arm events. Thus, probabilities of such
events should be given by our more general partition functions. In CFT point
of view, this kind of events should arise from insertions of boundary changing
operators with Kac conformal weights of type /s at the starting points of the
curves. In this sense, our generalization of the pure partition functions of multiple
SLEs is reminiscent of fusion in CFT.

J. Dubédat studied related questions in his articles [21, 22], with emphasis on a
priori regularity of the partition functions, as well as on the construction of a very
general framework for the relationship of random SLE type curves and represen-
tations of the Virasoro algebra. His work is based on the approach of Virasoro uni-
formization initiated by M. Kontsevich [45, 46, 33, 47], and hypoellipticity [37,10]
and stochastic flow arguments.

1.1. Description of the main results. We now give an overview of the main
results of the present article, in a slightly informal manner. The detailed formula-
tions are given later, as referred to below.

1.1.1. Solutions with particular asymptotics. The main result of this article is
the construction of translation invariant, homogeneous solutions

F{(x1,....xp) eRP | x; <--- <xp} — C

to the Benoit & Saint-Aubin PDE systems, determined by boundary conditions
which concern the asymptotic behavior of the functions. The PDE system contains

p linear, homogeneous PDEs of orders d, d>. . ... dp,
Dg)ﬁ(xl,...,x,,) =0, forallje{l,2,...,p} (PDE)

and the partial differential operators @y ) of interest are given in equation (5.1) in
J
Section 5.
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The particular asymptotics properties of the solutions are recursive in the
number of variables. The collection (¥,,) of solutions satisfying these properties
is indexed by planar link patterns

o=l AU,
a; by ag by c Cs

which are defined as collections of £ links 4=~ and s defects - in the upper

half-plane, with endpoints a1, ...,az, b1,...,b¢, c1,...,cs on the real axis — see

Section 2.5 for details.2 The set of links in w is a multiset, and for a link %, we

denote by £, ;, = £, p(w) its multiplicity in w.

The homogeneity degree of the solution ¥, is related to the number s of
defects in w, as explained in Section 5. The asymptotic boundary conditions for
¥ are given in terms of removing links from the link pattern w. Removal of m
links £ from  results in a planar link pattern with (¢ —m) links, denoted by
o =w/(mx (), as illustrated in Figure 2.5 and explained in Section 2.7.2.

Theorem (Theorem 5.3). There exists a collection (¥,) of translation invariant,
homogeneous solutions to the Benoit & Saint-Aubin PDE system (PDE) such that
each function ¥, has the asymptotic behavior

Folx1,....xp) ~ Cj x (xj4+1 —xj)Af X Fo(X1, ... Xj—1, 6, Xj42 ..., Xp),

as xj,xj+1 — & forany j € {1,2,....,p — 1} and § € (xj_1.Xj42), where
o = o/l j+1 % I |) denotes the link pattern obtained from w by removing
all the links -, and the constant Cj = C({jjy1:dj.dj+1) and exponent
Aj = A, j+1:dj,dj+1) are explicitly given in Section 5.

We prove in [30] that the solutions (¥,,) are in fact linearly independent, and
hence, indeed form a basis of a solution space for the Benoit & Saint-Aubin PDE
system (PDE). A special case is already established in Proposition 6.3 of the
present article.

Examples of solutions with asymptotics as above were considered in [41, 49,
42, 55] with applications to SLEs: the multiple SLE pure partition functions
Zo(X1,...,X2N) X Fu(x1,...,X2n), Where « is a planar pair partition (thought of
as a link pattern with £ = N links and s = 0 defects), and the chordal SLE bound-
ary visit probability amplitudes {,(x;y1,¥2,..-»Vn) = Fo(X:¥1,Y2,---, Yn),
where the link pattern o encodes the order of visits of the SLE curve started from

2The parameters d; are the degrees of the partial differential operators in (PDE). They are
related to the link patterns w in such a way that the total number of lines in @ attached to each
index j equals s; =d; — 1.
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x to the boundary points yi, y2, ..., y,. We discuss the pure partition functions
Zy briefly in Section 6, but refer to the literature for details about the boundary
visit amplitudes ¢, ; see [41, 49].

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.1. Example of a planar (36, 15)-link pattern of p = 14 points.

In Section 5, we also prove a further property of the functions %,,, concerning
limits when taking several variables together simultaneously. In terms of the link
pattern w, this means removing several links simultaneously. Such asymptotics
pertains to general boundary behavior of the solutions.

Theorem (Proposition 5.6). Forany 1 < j <k < pand & € (xj_1, Xg+1), we
have

Fo(x1,...,Xp)
lim (V’—’p=? (X1s e s Xjm1s E X1 v - 0 Xp)s
XjoXjg]seees xi—>& f’r(x]',...,)(fk) o/t / r
where T denotes the sub-link pattern of w between the indices j, k and w/t denotes
the link pattern obtained from w by removing t, as detailed in Section 5.3.

1.1.2. Cyclic permutation symmetry. Solutions of the Benoit & Saint-Aubin
PDEs enjoying Mobius covariance play a special role in conformal field theory.
In particular, physical correlation functions should transform covariantly under all
Mobius maps, by conformal invariance of the theory. In applications to the theory
of SLEs, observables such as the multiple SLE (pure) partition functions also have
this property. More generally, in Theorem 5.3 we show also that the solutions %,
corresponding to link patterns @ with zero defects are Mobius covariant. These
functions also behave nicely in the limits x; — —oo and x, — +o00, in the
following sense.

Proposition (Proposition 5.8). For any link pattern w with no defects (s = 0), we
have

lim (y?" x Fp(x1, ..., Xp—1,¥)) = lim (|y[*" x Fs@y(v, X2, ..., Xp)),
y—>+o0 y—>—00
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where h = hy 4, is a Kac weight associated to the point xp, and $(w) is a planar
link pattern obtained from w by a cyclic permutation, as defined in equation (4.4)
in Section 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.2. Example of a planar pair partition of 2N = 14 points.

1.1.3. Application to multiple SLE pure partition functions. As a special
case of the cyclic permutation symmetry, it follows that the multiple SLE pure
partition functions Zy(x1, ..., xon) satisfy a cascade property when x; — —oo
and x,y — 4o00. In terms of the probability measures of the random curves, we
have a natural cascade property concerning the removal of one curve, see [48, 49,
55].

Corollary. (Corollary 6.2) For any planar pair partition o, we have

. _ 2h1!2
xll_l)llloo’ [xon — x1] X Zg(X1,....X2N)
X2 N —>+00
0 if M\ ¢a,
_ 1 2N
Zg(x2,....xan—1) I M\ €a,
1 2N

where & = o/ o and hy, = 62;K", and k € (0,8) \ Q is the parameter of the
SLE..

1.2. Organization. Our most important results are given in Section 5 (Theo-
rem 5.3 & Proposition 5.6): construction of the solutions %, to the Benoit &
Saint-Aubin PDEs, Section 6 (Corollary 6.1): application to the multiple SLE
pure partition functions, and Section 3 (Theorem 3.1): construction of certain basis
vectors v, in tensor product representations of the quantum group Uy (sl>), which
serve as building blocks for the solutions ¥, with the “spin chain — Coulomb gas
correspondence” of [50].

Sections 2—4 concern the representation theory of the quantum group U, (sl,)
and the construction and properties of the vectors v,,. Sections 5-6 treat the so-
lutions ¥, themselves. In Section 5, we also very briefly discuss the quantum
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group method of the article [50]. Appendices A and B contain auxiliary calcula-
tions which are needed in the proofs in Section 3. Appendix C constitutes some
additional tools needed to prove the general limiting behavior of the basis func-
tions F,.

Acknowledgments. During this work, the author was supported by Vilho, Yrjo
and Kalle Viiséld Foundation and affiliated with the University of Helsinki. She
wishes to especially thank Steven Flores and Kalle Kytola for many inspiring dis-
cussions and ideas. She has also enjoyed stimulating and helpful discussions with
Michel Bauer, Dmitry Chelkak, Julien Dubédat, Bertrand Duplantier, Philippe
Di Francesco, Clément Hongler, Konstantin Izyurov, Jesper Jacobsen, Fredrik
Johansson-Viklund, Rinat Kedem, Antti Kemppainen, Jonatan Lenells, Jason
Miller, Wei Qian, Hubert Saleur, and Hao Wu. She thanks Roland Friedrich for
pointing out important references.

2. Preliminaries: the quantum group U, (sl2) and some combinatorics

In this section, we discuss preliminaries concerning the quantum group Uy, (sl>)
and its representations, as well as the set of planar link patterns @ and some
combinatorial results. We also introduce notations which will be used and referred
to throughout this article.

Fix a parameter g € C \ {0}, and assume that g™ # 1 for all m € Z \ {0}, i.e.,
that ¢ is not a root of unity. Let m € Z, and n, k € IN, with 0 < k < n. We define
the g-integers as

" =4 _
q—q"
and the g-factorials and g-binomial coefficients as

[m] — +qm—3 4. +q3—m +q1—m

z n [n]!
[I’l]' = ”ll:[l [m] and [ k ] = m

2.1. The quantum group. We define the quantum group U,(slz) as the as-
sociative unital algebra over the field C of complex numbers, with generators
K, K1, E, F and relations

KK'=1=K"'K, KE=q*EK, KF =q2FK,

EF — FE = (K — K.

q—q!
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The algebra homomorphism
A:Uy(sh) — Uy (sh) @ Ugy(sly),
defined by its values on the generators,

AME)y=E®K+1®E, AK)=K®K, AF)=F®l+K '®F,
2.1)

gives a coproduct on Uy (sl»), and it determines the unique Hopf algebra structure
on the quantum group. Furthermore, using the the coproduct A, tensor products
of representations of U, (sl>) can be equipped with a representation structure as
follows. If M" and M" are two representations, and we have

AX) =Y X ® X/ € Ug(sh) ® Ug(sha),

4

we define the action of X € U,(sl2) on the tensor product M’ ® M” by linear
extension of the formula

X' @)=Y (X/v)® X/ ) e MM’
i
1

for any v’ € M’, v € M”. We similarly define tensor product representations
with n tensor components using the (n — 1)-fold coproduct

AM U, (sh) — (Uy(slp)®",
A = (A®id®" )0 (A®id®" V)0 0 (A®id) oA,

and by the coassociativity property (id ® A) o A = (A ® id) o A of the coproduct,
there is no need to specify the order in which the tensor products are formed. The
multiple coproducts of the generators have the following formulas (see e.g. [50,
Lemma 2.2]):

AM(K) = K®",

n
A(”)(E) — Z 1®(i—l) QE® K®(n—i)’

i=1

(2.2)

n
A(n)(F) — Z(K—1)®(i—1) RF® 1®(n—i)‘

i=1
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2.2. Representations of the quantum group. The quantum group U, (sl) has
irreducible representations of any dimension d € Z... Given d, we always denote
s = d — 1. A d-dimensional representation My of highest weight ¢° is obtained
by suitably g-deforming the irreducible representation of dimension d and highest
weight s of the semisimple Lie algebra sl>(C): My has a basis eéd), e%d) el®
with action

)

d — d
Ke® = g+ @

s

d .

@) el if [ 75 S,
F.e’ = +1 ]

0 if ] =3,

£o@ _ s —=1+1] e if 1 #£0,
: 0 ifl =0,

of the generators E, F, K. For simplicity, we usually drop the superscript notation
from the basis vectors, writing el(d) = ¢;. It is well known that M, are irreducible,
see, e.g., [50, Lemma 2.3].

When ¢ is generic (not a root of unity), the representation theory of U, (sl) is
semisimple, and in particular, tensor products of representations decompose into
direct sums of irreducible subrepresentations. We will make use of the following
quantum Clebsch—Gordan decomposition.

Lemma 2.1 (see e.g. [50, Lemma 2.4]). Let dy,dy € Z~o and m € {0,1,...,
min(sy, 52)}, where we denoted = dy+dr,—1—2mands; =dy—1, s, = dp,— 1.
In the representation Mg, ® Mg, , the vector

min(sy,s2) 1y (s1—1, +1)
(d3d1,d2) _ 1, 51 =4 [s2 = B]! gt Th
K _IZ, St X ) T T )t (@ —g Dy 2@ en)
1,12=0
(2.3)

is a highest weight vector of a subrepresentation isomorphic to My, that is, we
have

E.r(gd;dl d2) _ 0 and K.T(gd;dladz) _ qs r(gd;dl’dZ).

The space Mg, ® My, has the following decomposition according to the d-dimen-
sional subrepresentations:

Md, ® Mg, = My, +d—1 D May+dr,—3 B - B Mg —dy+3 ® Mg —dy+1-  (24)
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For each d, the subrepresentation My C Mg, ® My, is generated by the

highest weight vector 7$¢*/"*%2) and we denote by rl(d;dl’dZ) = Fl &9 he
corresponding basis, with / € {0, 1, ..., s}.

2.3. Tensor products of representations. In this article, we consider tensor
products

p
® Mdl = Mdp ® Mdp—l ® e ® Md2 ® Mdl (25)

i=1

of irreducible representations of the quantum group U,(sl;), and we use the
convention of [49, 50] for the order of tensorands, as explicitly written on the
right hand side. We occasionally abbreviate the tensor product as above, in which
case the reverse order of tensorands is implicit. By the coassociativity property
of the coproduct, repeated application of the decomposition (2.4) gives the direct
sum formula

M, ® -+ ® Ma, 2= @) ma Mg, (2.6)
d

where the subrepresentations isomorphic to M; now have multiplicities mg; =
mg(dy,....dp).
Throughout this article, it is convenient to denote by

s=d—1,
si=di—1 foralli e{l,2,....p}, 2.7)
¢ = (51.52,....8p) € ZZ,.

For d = s + 1, the my copies of My are generated by highest weight vectors of
weight ¢°. We denote by

14
() _
HY —{ve®Mdl.

i=1

Ev=0, K.v:qsv} 2.8)

the mg-dimensional subspace consisting of such vectors. The dimensions mgy
satisfy a recursion equation, given in Lemma 2.2, and they can be calculated by
counting certain type of planar link patterns.

2.4. Projections to subrepresentations. Fix j € {1,2,..., p — 1}. We decom-
pose the j™ and (j + 1)* tensor components in (2.5) according to the quantum
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Clebsch—Gordan formula (2.4), and denote the embedding of the d-dimensional
component in the j® and (j + 1) tensor positions by

)4 j—1 D
d didj.djt1),
(D = Jddin (@ Md,-)®Md®<®Mdi>—>®Md,w
i=1

i=j+2 i=1
@ (2.9)
Lo, ®--Qep,,®e®e, | Q--Qey)
did; d;
:elp®"'®elj+2®fl( J ]+1)®€lj_1®"'®ell'

Via the embedding (2.9), we identify the shorter tensor product as a subrepresen-
tation of (2.5),

4 Jj—1
( 0% Mdl.)®Md®(® ) ®Mdl, (2.10)
i=j+2 i=1 i=1
and denote by
7@ = g G, ®Md —>®Md 2.11)

i=1 i=1

the projection to this subrepresentation — by definition, a vector v € @?_, Mg,

lies in the subrepresentation (2.10) if and only if we have n}d) (v) = v. We further
let

p j—1
7@ A(d ).
10 = A QM — (@) Ba @ (@)

i=1 i=j+2 i=1
denote the projection (2.11) combined with the identification (2.10) — the identity

n]@ — Lj.d) o ﬁ}d) then holds.

More generally, for m € {0, 1, ..., min(dj,dj+1) — 1} and
d=dj+djt1—1-2m,

we define the map

(@) _ -Wid;dyy),
T Ty j+1 ’ ®Md
i=1

— v Mg ) @ Mg, —m ® Mg,—m ® j_IMd., (2.12)
(( QMa) @M, - ® (QMa,)

i=j+2 i=1

~(didj.diyy) . (didj—m,d;ji1—m) A(did;.djyi1)
Tjj+1 =g+t O j+1 ,
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whose image is a subrepresentation of type (2.10), having the subrepresentation

of Mg; ., —m ® Mg, isomorphic to My in the j™and (j + 1)™ tensor positions.
The trivial representation M; is the neutral element for tensor products of

representations. We always identify it with the complex numbers C, via

1;d;,d;
Té j>dj+1) 1.

and omit it from the tensor products. The image of the projection fr}l) thus

lies in the shorter tensor product (®/_;,,Ma;) ® ( /=1 My.), and for m =

min(d;, d;+1) — 1, the embedding Lﬁfij;ijl_m’dj 17 reduces to the identity map.
2.5. Planar link patterns. Tensor product representations of type (2.6) have
bases indexed by planar link patterns, where each highest weight vector cor-
responds to a link pattern, and the other basis elements are obtained by ac-
tion of the generator F. For example, a relatively well-known fact is that
the tensor power M$" of two-dimensional irreducibles has such a basis; see
e.g. [40, 53, 54,32, 56, 57]. In this case, for each s € Zx the space (2.8) of highest
weight vectors in M?" admits a natural diagrammatic action of the Temperley-Lieb
algebra, known as the link-state representation. For s = 0, n is even, and the link
states are indexed by planar pair partitions of n/2 points, see Figure 1.2. For s > 0,
there are also additional lines called defects, see Figure 2.1.

In the present article, we consider general link patterns, which are useful
in calculations concerning general tensor product representations of type (2.6).
The planar pair partitions then arise as a special case. A word of warning is in
order here: the bases of the tensor product representations of type (2.6) which
we construct in Section 3 do not carry the “usual” link-state action of diagram
algebras such as the Temperley-Lieb algebra, even in the special case of M$". In
fact, the basis we construct in the present article is the dual basis of the “canonical
basis” [53, 32].3 However, we will not pursue this direction here — our interests
lie in constructing solutions to the Benoit & Saint-Aubin PDE systems with given
asymptotics properties, using the quantum group rather as a tool.

Denote the upper half-plane by H = {z € C | 3m(z) > 0}. Fix a multiindex
¢ = (s1,...,5) € ZZ ), and let £ € Z> be an integer such that 2¢ < n, where we
denote

P
n:|g|::Zs,~ and s =n— 2L € Zxy. (2.13)

i=1

3 General link patterns do not span representations of the Temperley-Lieb algebra, but they
admit a natural action of a generalized diagram algebra, discussed in [28, 29].
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We define planar (n,£)-link patterns of p points with index valences ¢ =(s1, ..., sp)
as collections

air by ag by C1 Cs

of

e ( links of type ¢ in H, which connect a pair a < b of indices a,b €
{1,2,..., p},and

o 5 =n — 2{ defects of type | in H, attached to an index ¢ € {1,2,..., p},
such that

e foranyi € {1,2,..., p}, the index i is an endpoint of exactly s; links and
defects,

e all the defects lie in the unbounded component of the complement of the set
of links in H, and

e none of the links and defects intersect in H, but only at their common
endpoints in N C R.

Figure 1.1 shows an example of a planar link pattern. We denote by LPgS) the set
of planar (n, {)-link patterns of p points with index valences ¢ = (s1,...,5p),
having s = n — 2{ defects. We usually omit the word “planar” when we speak of
link patterns.

Because the planar pair partitions play a special role in this article, we denote
the set of them by

PPy :=LP{, | forN € Zs

PPy := LP{) = (¢} for N =0.

We also set PP = | |y, PPn.

More generally, ifE = (1,1,...,1,1) € Z" forn = 2N + s, we denote by
PPE{,) = LPEi),l,...,l,l) the set of planar (n, N)-link patterns each of which consists
of a planar pair partition of 2N points and s defects — see Figure 2.1 for an example.

The set of planar pair partitions then corresponds to PPy = PPE\?).

Al A ll A

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2.1. Example of a planar pair partition with defects.
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Next, we consider the tensor product representation (2.5), with dimensions
di,...,dp, > 2 related to the multiindex ¢ as in (2.7). The dimension of the
subspace Hg) of highest weight vectors of weight ¢* can be calculated by counting

the planar link patterns in LP;S ).

Lemma 2.2. For each s € Z>¢, we have dimHés) = #LPS).

Proof. Fix s € Zx¢. The claim follows from the fact that both sides of the asserted
equation,

(€) BT (s) (s) ._ (s)
Dgs = dlmHgs and Ngs = #LPZ”,

satisfy the same recursion with the same initial condition. If p = 1, then obvi-
ously Dg?) = 855y = N((Ssl)). For general ¢ = (s1,...,s,) € Z2,, consider first

the dimension Dés) of HS). Using the notations (2.7), the direct sum decomposi-
tion (2.6) of p irreducibles, with my = Dés), can be written recursively as

@DS)Md = Mg, ® Mg,_, ®---® Mg,)
d

= My, ® (@D?Mci) (2.14)

d

=D DMy, ® M),
i

where § = d — 1 and ¢ = (81,....8p—1), by the coassociativity property of the
coproduct of Uy (sl2). Using the explicit decomposition (2.4) of the tensor product
of two irreducibles, we obtain the recursion

Dés) _ Z DéS—Sp‘l‘zk)’
k>0
where the numbers Dés_s” +2k)
in some cases).

Consider then the number Ng(s) of link patterns with s defects. We classify the
link patterns w € LPS ) according to the number & of links having the endpoint p
(so there are s, — k defects having the endpoint p). Imagine cutting the point p
off from the link pattern w. Then, the remaining points 1,2, ..., p — 1 will have
§ =s5—(sp —k)+k =5 —s5, + 2k defects in total — see Figure 2.2 — namely, the
s — (sp — k) defects inherited from w and in addition k defects attached to the k

are zero when k is large enough (and for small &
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links which had the endpoint p. This gives the same recursion as above:

N(s) Z N(s sp+2k)
k>0

It follows that D(S) Ng(s), as claimed. O

---.;----
]
=

Figure 2.2. [llustration of the recursion used in the proof of Lemma 2.2. When cutting the
point p off from the link pattern, the blue links become defects.

2.6. Combinatorial maps. We next define a natural map, which associates to
each planar link pattern w € LPS) a planar pair partition ¢ = a(w) € PPy, such
that

(Zsl+s>:n+s—€+s. (2.15)
i=1
This map, denoted by
¢:LPY PPy, w0 a(w), (2.16)

is defined as a composition ¢ = J o R7! of the two combinatorial maps

R = @) LP® — LPY — PPy,

o and  J=1J: LPY

(55)

which we define shortly — see also Figure 2.3 for an illustration.
We first define R7! and its inverse map R.: LPE?S) — LP(;). Consider a link
pattern

o={o ool ) e P,

a; by ag by 1
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1 2 3 4 5 6 7 8 9 10 11 12

@
N
1 2 3 4 5 6 7 8

9 10 11 12 13

a(w)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 2.3. Illustration of the map ¢:w +— a(w), defined as the composition ¢ = J o IRI_I.
The middle figure illustrates the image of @ under the first map, that is, @’ = iR:Ll (w),
where the defects of w are attached to an additional index p + 1 on the right of all the other
indices. The lowest figure depicts the planar pair partition «(w), which is obtained from «’
by “opening up” all the points, that is, splitting each index i to s; new indices and taking
the lines of i along with the points.

Introduce an additional index p + 1, of valence 5,41 = s, and connect the defects
of w to it, to form

o=l A A b ep?
ay by ag by €1 pHl cx p+l cs p+1 s
a link pattern of p + 1 points having index valences (g, s) := (s1,...,5p,s) and

zero defects. Set

RN (w) =o'
This defines the map J%j_lzLPgs) — LPES)S).
Ry = Rgf):LPEg)S) — LPS) obtained by removing the last index p + 1 of
valence s so that the links attached to it become defects. We similarly define

It has an obvious inverse map
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R_ = RE): Lng’)g) — LPS) and its inverse map R~ = (R(_S))_I:LPS) — LPESL)
by removing (resp. adding) the index 1 and relabeling the other indices from left
torightby 1,2,..., p (resp. 2,3,...,p + 1).

To define the map J = J( ), spliteachindex i € {1,2,...,p + 1} of o' to s;
distinct indices, with 5,41 = s, and attach the s; links ending at i in o’ to these
new s; indices, so that each of them has valence one (see Figure 2.3). This results
in a diagram with 2N = Zf’zl s; + s indices, each of which has valence one.
Label these indices from left to right by 1,2,...,2N, to obtain the planar pair
partition

I(0) = a(w) € LPE(I)?LW,I,I) — PPy.

This finally defines the map J: LPE? 5 — PPw and thus the map ¢ =J o 9%11.

2.7. Properties of the link patterns. To finish, we introduce some notation
concerning the recursive structure of the set of planar link patterns, to be used
throughout this article.

VY Y vy

5 6

Figure 2.4. Example of a link pattern LU, for a partition A = (4,3,2,5, 1, 4).

2.7.1. Defects and partitions. Integer partitions A = (sq,...,s)3) of s corre-
spond naturally to endpoints of defects in planar link patterns. A partition A of s
determines a unique (s, 0)-link pattern denoted by L, € LP(S), which consists of
s defects with endpoints i = 1,2...,|A|, having valences s; = s; specified by A,
as in Figure 2.4. We also include the (0, 0)-link pattern L1y = @ for s = 0.

Conversely, let ¢ € 7, and consider an (1, £)-link pattern with s = n — 2¢
defects, with notations (2.13),

o={ ..ol L) erp.

a; by ag by 1 Cs

When s > 1, the set {f e 04} of defects in w defines naturally a partition
of s as follows: if {uy,...,u;} C {1,...,p}, foru; < ... < u;, denote the
distinct endpoints of the defects in w with multiplicities given by the number
ri(w) = #{k | cx =u;} > 1 of defects ending at the index u;, then we have
s = Zf’=1 ri (@), and the numbers r; (w) thus define a partition of s into ¢ positive
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integers,

Mw) = (rn(w),...,r(w)).

We denote the set of all planar link patterns with a fixed number s € Zx¢ of
defects by

LP® = | |LPY
g b
DPEN,
sezl,
and, for a fixed partition A = (sq, ..., sj|) of s, we denote by
LP® () = {w € LP® | A(w) = A} and LP©@() =LpP©®
the set of all planar link patterns whose defects {71L - ;L} define the partition

Aw) = A.

2.7.2. Removing links. Also the links in the (#, £)-link pattern

w={ SN }u{*%} e LPY

ai by ag by

appear with multiplicity. For two indices a < b, we denote by £, ;, = £, (w) the
multiplicity of the link /™) in o, that is, we have £, = #{i | a; = a,b; = b}
and £ = Y ;4. In partlcular the links of w can be regarded as a multiset of
k<t=73,,%ap clements,

>3(a)):{eal,b1 XN b X O .

a; by ar bg

Removing one link from an (n, £)-link pattern determines an (n — 2, — 1)-link
pattern. If the removed link had an endpoint with valence one, then the endpoint
must be removed as well, and the remaining indices must be relabeled so as to
form the endpoints of the smaller link pattern, as illustrated in Figure 2.5. We
denote the removal of a link 4= from a link pattern @ by w/-=-.

More generally, if the link - appears in w € LP(;) with multiplicity £, p.,
we can remove m < {, 3 links from . The removal of m links T from w is
then denoted by w/(m x -=-). In this case, if 5; = m or s;41 = m, we have to
also remove the index j or j + 1, respectively (or both), and relabel the indices
of the remaining links and defects, as also illustrated in Figure 2.5.
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vm vm

4 4
Wm Wm
1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Figure 2.5. Removal of links between the indices a = 4 and b = 5. In the left figure, all
three links are removed, so the index 5 has to be removed as well (because it becomes empty,
i.e., its valence becomes equal to zero), and the remaining indices are labeled accordingly.
On the right, only two links are removed, so the indices remain the same.

3. Basis vectors in quantum group representations

In this section, we construct a basis for each highest weight vector space Hés)
(defined in equation (2.8)) whose vectors are uniquely characterized by certain
recursive properties, concerning projections onto subrepresentations. These basis
vectors are crucial in our construction of the basis for solutions to the Benoit &
Saint-Aubin PDEs in Section 5. The defining properties of the basis vectors
correspond to the asymptotic boundary conditions for the basis functions, as
explained in Section 5.

In view of Lemma 2.2, it is natural to index the basis vectors v, by link

patterns w. Specifically, we consider the following system of equations for vectors
vw € @7, Mg, , with @ € LP;S):

Koo, =¢q°v, 3.1

E.v, =0, (3.2)
—L1  _xv, ifthere are at least m links /™ in w,

ﬁ}‘”(nw) _ JEOmsjsn 7 e FE (33)

0 otherwise,
forall j e{1,2,....p—1},m e {1,2,...,min(s;,s;4+1)}, and

§=sj+sj+1+1-2m,
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where ® = w/(m x o 1), and the constants in (3.3) are non-zero and explicit:

[sj —m]t[sj+1 = m]![sj + 55401 —m + 1]t
217 [s;]! [sj+1]t[s; + sj41 —2m + 1]!

C(m;sj,8j41) =

[ Si+sj+1—m+1 ] (3.4)
= m ,
5]

and where we use, by default, the notations (2.7) for the parameters s, s;, sj 41,
andd =s + 1.

Equations (3.1) and (3.2) state that each v, belongs to the highest weight
vector space H gs). Equations (3.3) concern projections of v, to subrepresentations,
corresponding to removing links from the link pattern .

Theorem 3.1. (a) For each integer s > 0, there exists a unique collection
(v0) e pto» Of vectors such that the system of equations (3.1)—~(3.3) holds for all
w € LP® we have vy = 1, and

1 [2° (sp1+1) (s1+1) )
P T G ) o TR ®e' ) € HY 3.5)
for any partition A = (s1,...,8)) of s > 1.

(b) For fixed ¢ € 7%, the collection (00) o pw IS a basis of the vector
S

space Hés). In particular,
{Flog |w e LPY 1 € {0.1,....5}}

is a basis of the subrepresentation mg Mg C (X)f:l Mg;, withd = s + 1 and
mq = #LPY).

A special case of the above problem was considered in [49, Theorem 3.1]
where a particular basis for the trivial subrepresentation HE(I)?I,...,I,I) - M§’2N
constructed. We state the result below in Theorem 3.4. In this case, all valences in
¢ =(1,1,...,1,1) are equal to one: s; = 1 for all i. The solution to this special

case is crucial in the proof of the general case in Section 3.3.

was

Remark 3.2. Let A = (s1,...,s)5) be a partition of s > 1. Then, the space Hfls)

is one-dimensional: by Lemma 2.2, we have dimHis) = #LPis) = #{u,)} = L
In the the tensor product (2.5), the vector v, € His) generates the highest
dimensional subrepresentation isomorphic to Ms41 with multiplicity one. It is
sometimes convenient to identify the space Hfls) with C, via the map v, — 1 € C.
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The somewhat lengthy proof of Theorem 3.1 is distributed in the next sub-
sections. The results obtained in sections 3.1-3.6 are put together in Section 3.7,
which constitutes a summary of the proof.

We begin with introducing needed results concerning tensor products of two-
dimensional irreducible representations of Uy (sl>). Throughout, we use the nota-
tions from (2.7) and (2.13).

3.1. Tensor powers of two-dimensional irreducibles. The tensor power M3* of
two-dimensional irreducible representations of U, (sl,) contains a unique subrep-
resentation of highest dimension, generated by the highest weight vector (a special
case of the vectors in Remark 3.2)

Gés) = e(()z) ®---®e(()2) e M$s.

This subrepresentation is isomorphic to My, with s = d — 1. For its basis, we use
the notation

0 = FL.O, forl €{0,1,...5),

with convention Ql(s) = 0 when/ < 0or!/ > s. Using this basis, we define the
projections

p=p9:MP —MP and HY:MP— My (3.6)

as follows. The map p'®) is the projection onto the subrepresentation isomorphic
to Mg, so that we have

PO =0 forl €{0,1,...,5}
and

pO@)=0  forv ¢ span{6”, ... 60} = m,.

The map p*®) is defined as a composition of p®) with the identification Gl(s) > el(s)

of its image and M, so that we have J Q) oﬁ(s) = p(s), where 3¢ is the embedding
j(s)i Mg — M®s,
I D) =0 forl €{0,1,...,s).
Vectors of My C Mf’s can be characterized in terms of projections to subrepre-

sentations in two consecutive tensorands. This property is used repeatedly in the
proof of Theorem 3.1.
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Lemma 3.3 (see e.g. [49, Lemma 2.4 & Corollary 2.5]). For any v € M?S,
s =d — 1 € Zsy, the following two conditions are equivalent:

@ # V(W) =0forall j €{1.2,....s—1};
(b) v eMg CMP.

In particular, if we have Ev = 0, K.v = v, and fr}l)(v) = 0forall j €
{1,2,...,5s — 1}, then v = 0.

Consider now the tensor product (2.5) with¢ = (1,1,...,1,1) € ZZ ,. By the
decomposition (2.4), we can write this tensor product in the form

M?n >~ @mc(in) Mg,
d

where, by Lemma 2.2, the multiplicities are mc(in) = #PPE\S,), with N = %(n —s) and
s = d — 1. These numbers can be calculated explicitly (see e.g. [49, Lemma 2.2]):
we have

m( = #pPYy)
2d n s+ 2N +
n+d+ 1\ T N s+ 1\ N+
ifn+se2Zspand0 <s <n,

0 otherwise.

In particular, when n = 2N (i.e., s = 0), the dimension of the trivial subrepre-
sentation

Hg;z, ={weMPN | Ev=0,Kv=0v}cmMPN

@N) _ _ _1
1 =Cnv =5
1 the mc(in)—dimensional spaces of highest weight vectors

is the Catalan number m (2]3’ ) For convenience, we also denote

by HY = Hg)ll
in M3,

3.2. The special case ¢ = (1,1,...,1,1). In the proof of Theorem 3.1, we
make use of results of the article [49] concerning a particular basis of the trivial
subrepresentation Hg;z, C M;@’ZN . Then, the basis vectors v, are indexed by planar
pair partitions « € PPy of 2N points. They are uniquely characterized by the
projection properties (3.9) given below — a special case of (3.3).
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Now, we consider the following linear system of equations for vectors v, €
M?ﬂv, with « € PPy :

K-Uoz = Vg, (37)
Evy =0, (3.8)
0 if M\ ¢a,
A0 (vg) = J U+l forall j € {1,2,....2N =1},  (3.9)
: vg if _/ ™\ €a,
jj+t

where & = o/ jfj}rl € PPy_1.

Theorem 3.4. [49, Theorem 3.1 & Proposition 3.7] There exists a unique collec-
tion (vy),epp Of vectors such that the system of equations (3.7)—(3.9) holds for all
« € PP, and we have vy = 1. For any N € Zx, the collection (vy)yepp, is a

basis of Hg;\),.

The vectors v, are related to the pure partition functions Zy(x1, ..., xan5) of
multiple SLE,., with parameter « associated to the deformation parameter g by
q= e\™4/¥: see Section 6, and [49] for details. Our general Theorem 3.1 concerns
basis vectors v, of the space HS), with ¢ € Z2 . To these vectors, we can also
associate functions ¥, (x1, ..., xp), as stated in Theorem 5.3. These functions are
solutions to the Benoit & Saint-Aubin PDEs, and they can be interpreted as pure
partition functions for systems of random curves, where many curves may emerge

from the same point, see [22].

1 N N4+1 - 2N

Figure 3.1. The rainbow pattern (planar pair partition) of 2N points.

For the special case concerning the rainbow pattern defined by @y = @ and

@N:{ms'-'y ) m }EPPN fOI‘]\/EZ>01
1 2N N—-1 N+2 N N+1
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(see also Figure 3.1), the equations (3.7)—(3.9) involve only the rainbow patterns
My and My_;:

(K—1.vay =0 (3.10)
E.U@N =0 (3'11)
ﬁl(\})(v@N) =vay_, and ﬁ;I)(v@N) =0 forj #N. (3.12)

Therefore, the formula for va,, is particularly simple.

Proposition 3.5. [49, Proposition 3.3] The vectors

N

- N N
' Z(_l)lql(N I-1) o (01( ) Q 9](\/—)1) c M£®2N
" 1=0

! 21"
T =DV N ]

(3.13)

for N € Zs determine the unique solution to (3.10)—(3.12) with vg = 1.

3.3. Construction. Now we construct the basis vectors v, of Theorem 3.1. In
the construction, we use the vectors v, of Theorem 3.4, with N = %(n +s) chosen
as in (2.15), and the map (2.16),

LPS) —> PPy, o+— a(w),

see also Figure 2.3 in Section 2.6.

For a link pattern & € LPY, the basis vectorv,, € Y € ®7_, My, is obtained

from the vector vy () € Hg;\), C M§’2N as follows: we let

v := R (P (Vo)) (3.14)
with
ﬁ(g,S) R(S) A(c.s) R(s)
(0) ) “+ P +
Hyy <= Higyy — H(gs)’ Va(w) 2, bg > Vo,
3(s.5) (s.8)
where

o 1) = p PP Q...@p6) and 3 1= IO @I @ ... TGV (recall
Section 3.1),

e we denote by v%° := p&9) (v4(,)), and

. Rgf): Hﬁg)s) — Hg) is a linear isomorphism, which will be defined in more
detail in Section 3.4.
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®2N
M2

The idea is to think the tensor power of as a chain of blocks of smaller

tensor powers of M,

M;@2N — M?S ® M?sp ® M;Z)sp_1 R ® M;@sz ® Mgbsl ’
where each block M$” is mapped onto the § = r + 1-dimensional irreducible
representation Mg under the map p): M$*V — M;®M,4, ®---®M,, . Conversely,
the image of the embedding J**) can be characterized by projection properties
inside the blocks, as we show next.

Proposition 3.6. The image of the space Hég) s) under the embedding 3 is the
space

Je = {v e ) fr;l)(v) =0

k

forall e{l,...,2N—1}\{Zs,-

i=1

1§k§p}}.

The projection $(S%) defines an isomorphism of representations of Uy (sl2),

~(s.s). (5,9) (0)
p Ny — H(g, 5)?

and its inverse is 3. For any o € LP(;), the vector vy () lies in the space J%’s)

and, in particular,

I EE) (Va)) = I (0F) = vaw)- (3.15)

Proof. The property J¢ ’S)(Hgg?s)) = J%’S) follows from Lemma 3.3 and the fact
that 3¢ commutes with the action of the algebra Uy (sl2). Since p9) also
commutes with the action of U, (sl), it follows that restricted to J%’s), it is an
isomorphism of representations, with inverse J(>),

Let then w € LP(;). By definition of the map w +— a(w) in Section 2.6, the
planar pair partition «(w) can contain a link of type o only if these points

correspond to different points in the link pattern w, that is, if j € {Zf;l S | 1<
k < p}. In particular, by the projection properties (3.9) of vy (), we have
A Wa@)) = 0forall j ¢ {1 5|1 <k < p}, 50 vaw € J§*. This
concludes the proof. |

It now follows almost immediately from the definitions that the vectors (3.14)
form a basis of the highest weight vector space. This proves part (b) of Theo-
rem 3.1.
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Proposition 3.7. The collection (vy),, pw> defined in (3.14) is a basis of the
S

vector space H és).

Proof. Because Rgf): Hgg)s) — Hgs) is a linear isomorphism (by [50, Lemma 5.3]),

the vectors v, := R'” () (v4(v))) belong to the space HE) by construction.
Their linear independence follows the facts that, first, the maps Rgf) and ﬁ(5’s)
are linear isomorphisms, by [50, Lemma 5.3(a)] and Proposition 3.6, respectively,
and second, the vectors vy () are linearly independent, by Theorem 3.4. Finally,
by Lemma 2.2, the linear span of the vectors v, for o € LPS) has the correct

dimension #LPY) = dimHY. a

To prove part (a) of Theorem 3.1, we still have to show that the vectors v,
satisfy (3.3)—(3.5). The projection properties (3.3) will be verified in Section 3.5.
The normalization conditions (3.5) follow by considering the action of the map
Rg“f) on the vectors va,, associated to the rainbow link patterns @j.

3.4. Normalization. For any partition A of s, the vectors v,,,, correspond to va
with N = s under the map w — «(w) — see Figure 3.2 for an illustration. This
observation gives rise to the normalization constant in (3.5), as we show next.

1 2 e 19 20 - . .. 3738

4 5 6

VY Y WY

Figure 3.2. For the link pattern L1y, consisting of s defects, the corresponding planar pair
partition (LU ) is the rainbow pattern @y = a(LLy).

First, we give the precise definition of the linear isomorphism Rif) already
©

used above in equation (3.14). By [50, Lemma 5.3(a)], any vector v € H(g 5)
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be written in the form

s
v = Z(—l)s_lq(l+l)(s_l) % (el(d) ® Fs—l.,[(;l—)’
=0

for a unique vector 7, € HS), with d = s 4+ 1. The map (compare with R(j) in

Section 2.6)
Ry =RYHD —HY, RP@) =1, (3.16)

is thus well defined. It was shown in [50, Lemma 5.3] that RSf) is a linear
isomorphism.

Remark 3.8. Themap R Sf) commutes with the maps ]@) definedin (2.12), for any
jel{l,2,....p—1},me{0,1,....,min(s;,s;4+1)}, and § = s; +sj4+1 + 1 —2m,
because the maps J@) act on the tensor components (j, j +1) of the tensor product
Mg ® Mg, ® Mg,_; ® -+ ® Mg, ® My,, away from the tensor position involving
Mg — see also [50, Lemma 5.3 and equation (5.2)].

Lemma 3.9. Let A = (s1,...,5)x) be a partition of s € Zso. Then we have
a(lly) = My, and

oy, 1= R (G (va,))

_ 1 [2]° % e(Serl)
(=g D Is+1)0 " °

Proof. The first assertion «(1y) = M is immediate from the definition of the
map w +— «o(w). For the second assertion, using the formula (3.13) for the
vector va,, we calculate the image of va, under the map p*9) = p() ® p* =
ﬁ(S) ® (ﬁ(SIM) R ® ﬁ(sl)):

®R-® e(()S1+l)) c HELS)'

N

N 1 2] - A ~
(A.9) _ N G—I=1) o (80) (n O o 2A ()
#4000 = T DT X GO @ )

B 1 [2]° Xs:( 1)l g—1=D
T srqe
x (e @ Fl (e g ... g el1Ty),

The second assertion now follows from the definition of the map Rg“f) in (3.16).
|
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3.5. Projection properties. We show next that the vectors v, defined by (3.14)
indeed satisfy the projection properties (3.3). To establish this, we need some aux-
iliary calculations, given in Appendix B. The crucial observation is the following
commutative diagram.

Lemma 3.10. Let 51,5, € Z-o and m € {1,2,...,min(sy, s3)}, and denote
r=s1+sy—2mand$§ = r + 1. The following diagram commutes, up to a
non-zero multiplicative constant, given below:

j(s2)®j(sl)
MP2 @M LB My, @ My,

~ (1
n.ﬁ(‘l)

M?(SZ_I) ® M?(Sl -1)

~ (1)
”S’l—l

~ (1) 7(8)
s —m+2 s

M;@(sz—m—l—l) Q M?(sl —m+1)

~ (1)
7.lsl—m—i-l

Qr
M2

ﬁ(r)

Ms

Ms

Il

More precisely, we have

P70 (L 00 (L, 02 D) 0 (302 @ 36V) = Cmi sy, 50) x 7P,

where the non-zero constant equals

[S1+S2—m+1]
Cm: s s):[Sl_m]![sz—m]![sl+S2—m+1]!= m
;81,82 21" [s1]! [s2]! [s1 + s2 —2m + 1]! o [m]![ ;i ][ Snj ]

Proof. The subrepresentation isomorphic to Mg appears in the tensor product
Mg, ® Mg, with multiplicity one. By Schur’s lemma, to prove that the diagram
commutes, it therefore suffices to show that the map

N A (1 ~(1 fa ~ ~
p(r) o (j-[s(l)_m+1 0.-+0 j'[s(l)_l o j-[s(ll)) o (J(Sz) ® J(Sl))
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is non-zero. But, by Lemma B.5, the vector ré‘g;d‘ 42) ¢ Mg, ® Mgz, maps to a non-

zero multiple of e(()‘g) € Mg in this map, with the explicit, non-zero proportionality
constant C(m; s1, s»). This finishes the proof. O

Proposition 3.11. The collection of vectors (04)
the equations (3.3).

p), definedin (3.14), satisfies

wel.

Proof. By Remark 3.8, the maps ﬁ;‘g) appearing in the equations (3.3) com-

mute with the linear isomorphism Rg“f), forany j € {1,2,....,p— 1}, m €
{0,1,...,min(s;,s;+1)}, and § = s; + sj+1 + 1 — 2m. Therefore, it suffices

to show that the vector v)X := ﬁ(5’s)(va(w)) satisfies the properties (3.3). Using
the commutative diagram of Lemma 3.10 together with Proposition 3.6, the prop-
erties (3.3) can be written in terms of vy (), Which, in turn, are known to satisfy
the properties (3.9), by Theorem 3.4.

Fix j € {1,2,....p — 1}, m € {1,2,...,min(s;,sj+1)}, and denote by
ki = sz:l s;. We first note that, by definition of the map w — «a(w) (see
Section 2.6), the link pattern «(w) contains the nested links

kj kj+1 k=1 k;+2 kj—m+1 kj+m

if and only if the link pattern w contains at least m links 20 and if this is the
case, then we have

e/ ) N ) o =a(o/(mx ) =),

kj kj-‘rl kj—l kj+2 kj—m+1 kj+m j Jj+1

where we denote by & = w/(m x I .)- The projection properties (3.9) for the
VECLOT Vg () Show that

e (1 (1
000 03
Va(a) if there are atleast m links (™ in o, (3.17)
= J j+1
0 otherwise.

Denoteby r =8 -1 =s; +sj41 —2mand ¢ = (S1,...,8 1,7, Sj42....,5p)-
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Using the commutative diagram of Lemma 3.10, equation (3.15), and equa-
tion (3.17), we obtain

~ (6
C(m; sj,8j41) X n]( )(Ufff’)

a(¢ ~(1 A~ (1 ~ (1 ~
= (B9 0 (5], 00 7, 0 7)) 096 0F)
A (& ~(1 ~(1 ~ (1
= (Y o (), 00y 021 (Va(w) (3.18)

pe =s)(va((;))) if there are at least m links _/ ™\ in w,
= ji+1
0 otherwise.

Now, it follows directly from the definitions that we have
perr1=m @ 6= = () 6 fOMET 5 My, ® Mg, i, (3.19)
where the maps
pOMPT — My and (D) = (ST AT Mg < My @ My,

were defined in (3.6) and (2.9), respectively. Using equation (2.12), equa-
tion (3.18), and equation (3.19), we obtain

~ (6
Clm:sj.s5j+1) X 7 (0)
8) A~ (8
= C(m:sj.s741) X 1) (7 (05))

(LJ(.S) 0 pC))(vy(py)  if there are at least m links _/ ™\ in o,
_ J o+
0 otherwise

p©) (vy(py)  if there are at least m links ™\ in w,
= JJj+1
0 otherwise

ng’ if there are at least m links (™ in w,
= Jj i+
0 otherwise,

where & = (s1,....8j-1,8 —m.sj11—m,sj42,....5), and 12 = P& (v4(4)).
This is the property (3.3) for vS°. Finally, we obtain the asserted property for v,,
by applying the map Rg“f):
—1  _xv, ifthere are at least m links /™ inw
7D (0,) = ) T j i
0, otherwise. O
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3.6. Uniqueness. We finish by proving that the solutions to (3.1)—(3.3) are nec-
essarily unique, up to normalization. Fixing the normalization (3.5), uniqueness
follows from the observation that the homogeneous system, in which all of the pro-
jections vanish, admits a non-trivial solution only when n = Zf’zl s; = s, and in
this case, the space Hg) is one-dimensional and spanned by v, (see Remark 3.2).
Lemma 3.12. Assume that n > s and that the vector v € @QF_, My, satisfies
Ev =0, Kv = ¢g%v, and fr]@(v) = O0forall j € {1,2,...,p — 1}, all
§ =5 +sjy1+1—2m,andallm € {1,2,... ,min(s;j4+1,5;)}. Then we have
v=20.

Proof. The properties E.v = 0 and K.v = ¢* v show that v belongs to the highest
weight vector space Hés), so we have 3&(v) = (3¢9 ® .- ® IV (v) € HE)
as well. Furthermore, the properties fr}‘g)(v) = 0 for all j, §, and m imply
that in the tensor product (2.5), in the direct sum decomposition of any two
consecutive tensorands Md;,, ® Mg, into irreducibles, the vector v lies in the
highest dimensional subrepresentation isomorphic to M dj+d; ., —1- For the vector
3()(v), this and Lemma 3.3 show that we have

ﬁ]gl)(j@)(v)) =0 forallk € {1,2,...,n—1}.

Therefore, Lemma 3.3 applied to the whole tensor product M$" shows that the
vector J) (v) belongs to the highest dimensional subrepresentation M, 1 C M$”.
We conclude that

3(§)(v) € Mg+1 NMp41 C M?n.
Now, by assumption n > s, we have My N M,y = {0}, so we get 3 (v) = 0,
and v = 0 as well. O

Proposition 3.13. Let s € Zxo, and let (vy), pts) and (v,,), . pe be two
collections of solutions to (3.1)—(3.3), such that we have v, , v/, N # 0 for all
partitions A of s. Then, there are constants c; € C\ {0} such that

ol =cpo, forallw € LPO().

Proof. Fix a partition A of s. By assumption, we have v/, = c; oy, for some
ca € €\ {0}, because the vectors v],,, and v,,, belong to a one-dimensional
space (see Remark 3.2). Suppose then that the condition v’ = ¢ v, holds for
all T € LPOY) N LPS) for which the multiindex ¢ = (ry,...,r;) satisfies
S _,ri =n > s. Then, for any @ € LP®) (1) N LPgS) with ¢ = (s1,...,sp) such
that }F_ 's; = n + 1, the equations (3.1)—(3.3) for v}, and ¢, v, coincide. It thus
follows from Lemma 3.12 that we have v/, = ¢; v,, for all € LP® (1) N LP(;).
The assertion then follows by induction on 7. |
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3.7. Proof of Theorem 3.1. For w € LPY, the vectors v, defined in equa-
tion (3.14) are solutions to (3.1)—(3.3); see Proposition 3.7 for the conditions (3.1)
and (3.2), and Proposition 3.11 for (3.3). By Lemma 3.9, the vectors v, satisfy
the asserted normalization (3.5), for all partitions A of s. Uniqueness of the so-
lutions follows from Proposition 3.13. This proves part (a). Part (b) follows from
Proposition 3.7. This concludes the proof of Theorem 3.1. |

4. Cyclic permutation symmetry of the basis vectors

Next, we derive a further property of the basis vectors v, also very natural in
terms of the link patterns w. This is a symmetry property under cyclic per-
mutations of the tensor components My, in the trivial subrepresentation Hg)) -
&Q?_, Mg,. We show in Corollary 4.2 that under such a cyclic permutation, the
vectors v, € H(go), with ¢ = (s1,...,5p), are mapped to constant multiples of
similar vectors v, € H(g(f), where the link pattern o’ € LPS) is obtained by ap-
plying the combinatorial bijections R4+ and R_ of Section 2.6, so that we either
have ¢’ = (sp, 51,52, ....8p—1) or ¢’ = (52,53, ...,Sp,51), depending on the ori-
entation of the permutation — see Figure 4.1 for an illustration of the former case.
From this property, it also follows (Corollary 4.3) that the p'" iterate of the cyclic
perm(u;[ation of the tensor components is a constant multiple of the identity map
on Hg0 .

4.1. Placing tensor components at infinity. We now consider the linear isomor-
phism R, defined in Section 3.4, and a similar linear isomorphism

R KOO . RO = 5, m

where 75 € Hg) is the unique vector such that we have

S
v = Z(_l)s—lq(l—l)(s—l) < (Fs_l.ro_ ® el(d))’
=0

with d = s + 1, see [50, Lemma 5.3] (compare also with R4 and R_ in
Section 2.6).

We also define the composed map S = RZ”! o R, permuting the tensor
components cyclically,

S =8W: H(O?s — H® 4.2)

(s55) (s,6)°
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Iterating the map S, we define a linear map on H(go), with ¢ = (51,....5p),
S61) 5 962) ... 0 §6p-1) 5 §6p). 4O __, H(0) (4.3)
‘He ¢ - .

Analogously to the map (4.2), we denote the composition of the maps defined
in Section 2.6 by

. . 0) 0) . p—1
$=8W:LPY — LPY . $:=R"'oR,. (4.4)

When ¢ = (s1,....5p), the link pattern 8(w) is obtained from w € LPEE?S) by
moving the rightmost index p + 1 of w (with valence s) to the left of all others,
and relabeling the indices from left to right by 1,2, 3, ..., p+ 1. This is illustrated

in Figure 4.1.

@Hm
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 4.1. In the cyclic permutation § = R”! o R, the rightmost point p + 1 = 8 is
moved to the left of all others, and the points are relabeled by 1,2, ...,8.

4.2. Cyclic permutations of tensor components. In Section 3.3, we con-
structed the vectors v, using the map R4, see (3.14). It follows from Proposi-
tion 3.13 below that the construction could have been established as well using the
map R_ instead, only changing the normalization (3.5) of v,,.

Let N be chosen as in (2.15) and recall the map v +— a(w) from Section 2.6,
illustrated in Figure 2.3. For convenience, we denote the s™ iterate of the map
8M:PPy — PPy by 8% = 8M o... 0 8(). We then define, for any » € LPY,
the following vectors (compare with equation (3.14)):

v, = RO G (0(@))),  where o/ (0) = 8 (a(w)).
Proposition 4.1. We have v], = (—q)* v, for all ® € LP®.

Proof. For any w € LPS), the vector v/, belongs to the space Hés) by construc-
tion. Also, similarly as in the proof of Proposition 3.11, we see that the col-
lection (v,), . pw, satisfies the equations (3.3). Therefore, v;, satisfy the sys-
tem (3.1)—(3.3) of equations, and it follows from Proposition 3.13 that, for all par-
titions A of s, there are constants ¢; € C \ {0} such that we have v/ = ¢, v, for
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all o € LP®) (). We evaluate the constants c;, by studying the pattern w = L,
consisting of defects only.
By Lemma 3.9, for any partition A = (sy,...,s)3) of s, we have

a(Wwy) = Ay = 8%(Ms) = 8> (a (W) = o' (L),

where we used the observation that the link pattern @M, is invariant under the
map 8°°. Similarly as in the proof of Lemma 3.9, using the formula (3.13)
for the vector va,, we calculate the action of the map P = pr @ P =
(ﬁ(sm) R -® ﬁ(sl)) ® ﬁ(s),

1 2 < S o () s
@2—1s [+] 1]! ;(_l)lql(s_l_l) x (3%(0") @B 0,)

B 1 2] XS:( 1)lgl6=1=1
@D+ 1=0 ! (s +1) 1 d
= X (F(eg™ ®---®e((,sl+ ))®e(_)l)

N

pOH (vay) =

_ 1 2)° XS:( 1)s—l (s=D(I-1)
I S et qz S+ D) 14Dy o ()
X (F 7 eg @ ®e' ) ®e”).

It now follows from the definition of the map R*) and Lemma 3.9 that we have

v, = RYEH (va,))

1 [Z]S (A +1) (s1+1)
T Qo s e ®--®e' )

= (_Q)Snu_u )

so ¢; = (—¢q)*, independently of the partition A. This concludes the proof. |

The above observation gives the cyclic permutation symmetry of the basis
vectors v, of the trivial subrepresentation Héo). (Note that for Hg) with s > 1,
the statement would not make sense.)

Corollary 4.2. The vectors v, € Hgo) satisfy

Vs@) = (—q)7 S (v,).
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Proof. By definition, we have v, = ﬁ(g)(va(w)). On the other hand, we have
Vs(w) = ﬁ(S/)(va/(w)), where ¢’ = (sp,s1,...,5p—1) and &/(0) = 87 (x(w)).
Proposition 4.1 now gives

RE (05()) = RE () (vg/(0)))
= (=) RS (5 (va(w)))
= (=) R (v0).

Applying the map (R®»))~1 to both sides and using the definition (4.2) of the map
S we get

bs) = (=) (R¥)™ o R$”)(0,) = (—9)” S (v,,). O

Corollary 4.3. The composed map (4.3) is a constant multiple of the identity: we
have

p
S61 65 562) 5., 6 §6p-1) 5 §b») — (H(_q)—si) % idH(go)‘
i=1

Proof. By Theorem 3.1, the vectors v, with @ € LP(go) form a basis of the trivial

subrepresentation Héo). The assertion follows by iterating Corollary 4.2 for each
basis vector v, and noticing that we have

8§61 6 862) ... 6 §6r—1) ¢ S(Sp)(w) - w. 0

5. Solutions to the Benoit & Saint-Aubin PDEs
with particular asymptotics properties

Now we construct solutions to partial differential equations of Benoit & Saint-
Aubin type [9]. These PDEs have been well known in CFT for many decades.
From statistical physics point of view, scaling limits of correlations in critical
models have been observed to satisfy this type of PDEs, in, e.g., [7, 14, 63, 1, 35],
with a few rigorous results now established too [19, 60, 8, 42, 52, 55]. Solutions
to such PDEs have also been associated with of random curves, in, e.g., [34, 46,
33, 3,20, 47, 22, 49, 55].

The main result of this article is the construction of particular solutions to these
PDEs, with specific asymptotic boundary conditions, given in Theorem 5.3. Such
asymptotics can be thought of as specifying the fusion channels if the solutions
are thought of as CFT correlation functions. In terms of random curves, this
corresponds to coalescing the starting points of the curves.
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As the main tool in our construction, we use the quantum group method
developed in the article [50] and summarized in Theorem 5.1, together with the
results obtained in Section 3. The basis functions ¥, of our main Theorem 5.3 are
constructed from the vectors v, of Theorem 3.1 as

Fox1,....xp) = Fop] (X1, ..., Xp),

where F denotes a map from the highest weight vector space Hés) to the solution
space of the PDEs. In this map, the projection properties (3.3) of the vectors
v, correspond with the required asymptotics properties of the basis functions, as
stated explicitly in theorems 5.1 and 5.3.

In Lemma 5.5 and Propositions 5.6 and 5.8, we prove additional properties
of the basis functions ¥, concerning asymptotics when taking several variables
together simultaneously, or taking a variable to infinity. These properties are
needed in further applications, e.g., in Section 6 and [30].

5.1. Solutions to the Benoit & Saint-Aubin PDEs. Fix a parameter x > 0.
Given amultiindex ¢ = (s1,...,5p) € Z? ., we use the notations of (2.7) and (2.13)
throughout. We also denote

>0

. d-1)Q2d+1)—«)
d =
2K

p
and  AGY = hy g~ hyg,.

i=1

For fixed j € {1,2,..., p}, the Benoit & Saint-Aubin partial differential operators

dj—k . 2
Dfij) Z Z (=4/K)% " (d; k_ D! x £ .o oU) (5.1
. —ni —ng’ ‘
g k=1 np,..ng>1 H/—I(Zz—l l')(Zi=j+l ni)
ni+..+ng=d;

homogeneous of order d;, are defined in terms of the first order differential
operators#

. 0
S = =0 (=) (L g, (= x)").
i) ’
We are interested in solutions ¥: X, — C to the PDE system

Dg)ﬁ(xl,...,x,,) =0 forallj e{l,2,...,p}, (PDE)

4 The operators Lf,{ ) are related to the generators of the Virasoro algebra [16, 4], and the
formulas (5.1) are obtained from the similar formulas for singular vectors in representations of
the Virasoro algebra found by L. Benoit and Y. Saint-Aubin in [9].
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defined on the chamber domain
Xp i={(x1,....xp) € RP:x1 <-++ < xp}. (5.2)

We very briefly summarize the method of [50] for constructing solutions to the
Benoit & Saint-Aubin PDE systems (PDE). For details about this method, we refer
to Sections 3 and 4 in the article [50]. The idea is to construct solutions in terms
of Dotsenko-Fateev (Feigin-Fuchs) integrals [17], which appear in the Coulomb
gas formalism of CFT. The solutions are of the form

F(x) = /f“)(x;w)dwl---dwg, (5.3)
r

with w = (wy, ..., wy), defined for x = (x1,...,x,) € X, as follows. First, for
(x;w) € X, xXy, theintegrand f © (x; w) is a branch of the following multivalued
function, a product of powers of differences,

FOw) = [Teg =) [T, —x) 7% [Jans—wn*,  (5.4)

1<i<j<p 1<i<p 1<r<s</{
1<r<{
with parameters s; € Zso fori = 1,..., p,and « > 0, and £ € Zs>,. Second, the
integration contours I are closed £-surfaces which can be written as linear combi-

nations of surfaces corresponding to the natural basis {el(j” ) R el(;h) ® el(:il)}

of the tensor product representation (2.5) of the quantum group Uy (sl>), with di-
mensions d; of the tensorands related to the parameters s; as in (2.7), and with
L= Zf’zl [;. For the detailed relation, see Figure 5.1 and [50, Sections 3.3 and 4.1].
In the figure, an auxiliary point x¢ appears; however by [50, Proposition 4.5], the
functions ¥, constructed in this article do not depend on xy.

The relation of vectors in the tensor product representation (2.5) and functions
of type (5.3) is called in [50] “the spin chain — Coulomb gas correspondence” &F.
We state its main features in Theorem 5.1 below. We restrict our attention to
the space Hés) of highest weight vectors, because these are the vectors that yield
solutions to (PDE). We will prove in [30] that F is in fact injective on HS) when

q is not a root of unity.

Theorem 5.1. [50, Theorem 4.17] Let k € (0,00) \ Q and ¢ = e™*/*, and
s € Zso. There exist linear maps J: Hgs) — CX(Xp), forall ¢ € 72,
that the following holds for any v € H(gs).

(PDE) The function Fv]: X, — C satisfies the system (PDE) of partial differen-
tial equations.

such
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(COV) The function Fv] is translation invariant and homogeneous of degree
dp.

F)Axy + &, ... Axp + &) = A2 X F](x1,....x,)  (5.5)

for any & € R and A € Rsg. Moreover, if s = 0, then F[v] satisfies
the following covariance property under any Mobius transformation
w:H — H such that 1(x1) < p(x2) < -+ < p(xp):

p
Flxr. ... xp) = [/ G x Fl(u(x). ... n(xp).  (5.6)
i=1

(ASY) Let j €{1,2,...,p— 1} and
1
m = 5(d,- +dig1—8—1)€{0,1,...,min(d;,dj4+1) — 1},

and suppose that we have n}‘g)(v) = v. Then, the function Fv]:X, — C
has the asymptotics

Fl(x1,...,xp)

dj-dj1
g — x|

lim
XjXj4

d;,d; ~ (8
= By ) FAD )]Gt X1 E X2 LX),

for any & € (xj—1,xj42), where F[1] = 1 in the case p = 2, and the
multiplicative constant is

g 1 DU =2 =T = 2(dj1 —u)T( + Fu)
BYYT = 1] |

m! T(1+HTQ2—2(dj +djy1 —m —u))
(5.7)
We record an explicit formula of a special case.
Lemma 5.2. For any partition A = (s1,...,83) of s € Zxo, the image of the

vector v, € Hfls) has the explicit formula

?[Uu_u]()ﬂ, .. wle) = 7 _1q_1)s [s [i] 1]' % l_[(Xj —xl-)%sisj‘

1<i<j<|Al

Proof. The assertion follows immediately from the definition of the correspon-
dence map J given in [50, Section 4.1] and the formula (3.5) of v, . O
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Images of more general vectors v € Hés) under the map F have a similar form,

but we need to integrate over £ so-called screening variables, as in (5.3), where ¢
is the number of links in the link patterns in LP(S), as in (2.13). The integration
£-surface is determined by the vector v as explained in the article [50].

Figure 5.1. Illustration of the integration surface for a “basis integral function”

l(lx‘}; ..... I, (x1,x2,...,xp), that is, a Coulomb gas integral of type (5.3) with I" the sur-
face depicted in the figure. The red circles indicate a choice of branch for the integrand
in (5.3), so that it is real and positive when the integration variables lie at those points,

see [50] for details. These integrals are the images under the spin chain — Coulomb gas

(dp) (d2) (d1)

correspondence map F of the natural basis vectors e 1, ®®e” Qe of the tensor

product representation (2.5), with £ = > 7__ I;.

i=1

5.2. The solutions with particular asymptotics. By Theorem 5.1, the projec-
tion properties (3.3) of the vectors v, of Theorem 3.1 give explicit asymptotic
behavior for the solutions ¥, = J[v,] when two variables x;,x;4+; tend to a
common limit. Furthermore, in Proposition 5.6 in the next section, we establish
similar recursive asymptotics when taking many variables to a common limit.

Recall that, for a link pattern @, we denote by ¢; j+1 = ¢; j+1(w) the multi-
plicity of the link ) ino.

Theorem 5.3. Let k € (0,8) \ Q. The functions ¥, = F[v,]: X, — C have the
Jollowing properties.

(1) Forany w € LP(;), the function ¥, satisfies the Benoit & Saint-Aubin PDE
system (PDE).

(2) The function ¥, is translation invariant and homogeneous as in (5.5), with
d=s+1

3) If s = 0, then ¥, satisfies the full Mobius covariance (5.6).
4) Forany j €{1,2,...,p— 1} and

1
m = E(Sj +sj41—06+1)€{0,1,...,min(s;,s;4+1)}.
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and § € (xj—1.Xj42), the function ¥4, has the asymptotics

o
. Folx1,....xp)
lim
Xj,xj41—~>€ Adj'dH'1
|xj+1 — x| 78
0 iféj,jﬂ <m,
= B§j~dj+1 )
Cons 50 X Foxi,oo o xj—1,6,. X142, xp) i) j41 =m,
(5.8)
. didis, ..
where & = w/(m X %) and the constants By , given in equa-

tion (5.7), and C(m; s;, 'sj'+1), given in equation (3.4), are non-zero.

Proof. Assertions (1)—(3) follow immediately from the properties (3.1)-(3.2) of
the basis vectors v,, of Theorem 3.1, and (PDE) and (COV) parts of Theorem 5.1.
To prove assertion (4), we first note that, when « € (0, 8), then the exponents in the
property (ASY) in Theorem 5.1 satisfy A?j it - A?,j At forany 2 < § < 8,
and for § = 1 and §’ > 3, we also have A;l,j’dﬂrl — ADUT S 0. Because
in (5.8), § increases in steps of two, we conclude that assertion (4) follows from
the properties (3.3) of the basis vectors v, of Theorem 3.1 and the (ASY) part of
Theorem 5.1. This concludes the proof. O

We remark that in the above theorem, the range of the parameter « is restricted
to (0, 8) \ Q. The restriction to the interval (0, 8] is necessary in order to establish
the asymptotics property (4). Indeed, when « > 8, the mutual order of the
exponents in the formula (5.8) may change, resulting in the leading powers in the
asymptotics to change. On the other hand, we expect the statement of Theorem 5.3
to be morally true also when « € (0, 8) N Q: functions ¥, with properties (1)—(4)
should still exist. In principle, the functions of Theorem 5.3 can be analytically
continued to rational values of x — to do this systematically, further care would be
needed.

Corollary 5.4. The functions ¥,, are not identically zero.

Proof. This follows from Theorem 5.3 by induction onn = Y%_,s; =: |¢| for
the link pattern w € LPS) with ¢ = (s1,...,5p). By Lemma 5.2, the base case
is immediate, as g = F[og] = F[1] = 1. Fix s € Zx¢ and assume that no

function ¥; with 7 € LPS) and |o| < n is identically zero. Consider a function
Fo With w € LP(;), and |¢| = n + 1. First, if ® = L) only consists of defects,
then the function ¥, = %, is not identically zero, by the explicit formula in
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Lemma 5.2. On the other hand, if w contains links, then there is an innermost
link £ € o. Applying the asymptotics property (5.8) with m = {; ;1 , the
induction hypothesis shows that ¥, cannot be identically zero. O

5.3. Limits when collapsing several variables. We now consider the limit of
the function ¥, as several of its variables tend to a common limit simultaneously.
For this, we need some notation.

Fix a link pattern

wz{ N e N }u{ Lo, l}eLP(;)

a; by ag by cl Cs
and indices 1 < j < k < p, and denote by
Wik =A{a; |a; €{j.j+1.....k},
bi ¢{j.J +1.....k}} Clar.az, ... a4,
Bk :=1{bilai ¢{j.j+1.....k},
bie{j,j+1,....k}} C{b1,bs,..., by},
<k ={ci|ciel{j.j+1,....k}} Clcr.ca, ... cs),

and r = #;; +#B;x + #C;;, and let T € LPg}k be the sub-link pattern of @
with index valences ¢; x = (s;,Sj+1...,5k), consisting of the lines of w attached
to the indices j, j + 1,...,k, that s,

r:rj,k(w)Z{ M ‘ai,bi G{j,j+1,...,k}}

a; b;

Uf 1 |eeuumnue,) eLpy)

. 9
pa Sj.k

see Figure 5.2. Also, denote by w/t the link pattern obtained from w by “removing

7, that is, removing from w the links 42— with indices a,b € {j,j + 1.... k},
collapsing the indices j, j +1, ..., k of w into one point, and relabeling the indices

thus obtained from left to right by 1,2, ..., as emphasized in Figure 5.2.
The function %, has the following limiting behavior.

LemmaS.5. Let1 < j <k < pandx;_1 < § < Xy41, and suppose that
Xjy Xjglseoos Xk —> § (5.9)

in such a way that

xi—xj

— 1 Jorielj,j+1,....k},
X — Xj
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T w/t

Figure 5.2. The sub-link pattern t of a link pattern w, and the link pattern w/t, obtained
from w by removing the links of ¢ and collapsing the indices involved in 7 into one point,
colored in green. The lines which are colored in blue are common in both 7 and @/t — note
that in 7, these links are cut when separating ¢ from » and they become defects, whereas
/7 has equally many defects as w, and the blue links remain.

with 0 = 1j < nj4+1 < -++ < k=1 < Nk = 1. Denote A = Asdj""’dk, with
8 = r + 1. Then, in the limit (5.9), we have
Fo(X1,...,Xp)
a|)xk——x'|Ap — Fr(Mj, i) X Fooye (X1, X1, 8 X1 -, Xp).
J

Proof. By Lemma C.3, for some constants ¢;, . ;

il 15,
r
Ua) = Z Zcl],...,lj_l;l;lk+1,...,lp

1=0 I1,...,0;_q,
l/IH_],.]..,llp X (elp ®--® elk+1 ® FI'UT ® elj—l Q- ® 611),
(5.10)

’
Ua)/r = Z Z Cl],...,lj_l;l;lk+1,...,lp (511)

1=0 11,...,lj_1,
lk+1,...,lp X (elp ® tee ® elk+1 ® el ® elj—l ® e ® ell)‘

Therefore, by [50, Proposition 5.1], the limit (5.9) has the asserted form,
?[Uw](xl, ey xP)
|xx — x;j|A

- ?[Ur](ﬂj’ R Uk) X ?[Uw/r](xl, s Xj—1, E’xk-i-l’ s ’xp)- O

1, € C, we have
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In the proof of Lemma 5.5, we use [50, Proposition 5.1]. To prove the latter,
the idea is to rearrange the integrations in the Coulomb gas type integral repre-
sentation (5.3) of the function ¥, = F[v,,] in such a way that the collapsing vari-
ables x;, ..., xx are surrounded by nested contours — see Figure 5.3. After this
rearranging, also “hypercube type” integrations between the variables x;, ..., xx
might occur. Now, if the limit x;, ..., xx — £ is taken as in (5.9), then the func-
tion (5.3) with integration surface of Figure 5.3(top) converges to a function of
type (5.3) with integration surface of Figure 5.3(bottom) times a constant which
depends on the convergence rate (5.9). This multiplicative constant results in the
constant ¥z (n;, ..., nr) in Lemma 5.5. From its dependence on the convergence
rate (5.9), we see that if the variables x;, ..., x; tend to £ in a different way, the
limit can be different or fail to exist.

However, in some cases, no integrations between the collapsing variables

Xj, ..., X occur, and then the limit Lemma 5.5 in fact exists along any sequence
Xj,...,xx — & and not only along sequences of type (5.9). Indeed, if in Figure 5.3
there are no contours between xj, ..., xg, but only around them, then similarly

as in the proof of [50, Proposition 5.1], dominated convergence theorem allows
us to collapse these variables inside the integration in (5.3) along any sequence
Xj, ..., xxg = &.

By changing the normalization of the function %, in Lemma 5.5, we can
remove the restriction (5.9).

Proposition 5.6. Let1 < j <k < p, and xj—1 < & < Xg41. Then we have

lim Folxt,....xp)

— = Fore(x1,. . X1, E X1, Xp). (5.12)
XjoXjg 15X —>E J“r(xj,---,xk) ol ! ?

Proof. First, by [50, Proposition 4.5], we can write ¥; = F[v,] in the form

EF[UT](XJ’ ctt xk) = Zamj_H,...,mk X ﬁO,Mj+1,...,mk (-xjs LR .xk),
mj4q,....mx>0

where am; ., ....m, € Care some constants, each po.m; . ..my denotes a Coulomb
gas integral of type (5.3) with I" a surface of type depicted in Figure 5.4, and

k
mj+1+...+mk=%<Zd,~—k+j—8). (5.13)
i=j
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Figure 5.3. To deal with limits x;,...,xx — §, the main idea is to write the integration
surface I' of (5.3) as a linear combination of surfaces appearing in the top figure, where a
number [ > 0 of non-intersecting nested loops surround the collapsing points x;, ..., xx
and there are m;y,....,mr > 0 contours between these points. The latter form a
“deformed hypercube integral” 5o, ;....mi (X, - . ., Xk ), illustrated in Figure 5.4, which
can in some cases be evaluated explicitly. The red circles indicate a choice of branch for the
integrand in (5.3), so that it is real and positive when the integration variables lie at those
points, see [50] for details. The integral function (5.3) with surface I" as in the top figure

: (x0)
1sdenotedbyallwlj_l;l’{mjﬂ ..... Mgt lp(xl,...,xp).

Xk—1 Xk

Figure 5.4. Mllustration of the integration surface for a “deformed hypercube integral”
P0.m;41....mi (Xj, ..., xx). The red circles indicate a choice of branch for the integrand
in (5.3), so that it is real and positive when the integration variables lie at those points,
see [50] for details.
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Second, by [50, Proof of Proposition 5.1], we can write the functions F0)[v]
for vectors

v=1_(e,® ®ep ®F . 0:Qe¢,  ® - ®e,)

in the form

2 : (x0)
= Am : X o X1yeour X
Mj+15eMk l],...,lj_l;l,{mj_H ..... mk};lk+1 ..... lp( L ’ p)a

(o)
;l,{mj+1,...,mk};---
I' a surface of type depicted in Figure 5.3(top). We note that these integration

surfaces a priori depend on an auxiliary point x¢, but as proved in [50, Proposi-
tion 4.5], all solutions to (PDE) are independent of x.

All in all, we can write the ratio appearing in the asserted equation (5.12) in
the form

where each « denotes a Coulomb gas integral of type (5.3) with

r

Flow](x1,....xp) G
?[Ur](x]', = Z chls---slj—l;l;lk+la---alp6_2’

e, X
%) 1=011,..1;_1,
lk+1,...,lp
with
S = E am; x o0 X1,..W X
1 Mj4q,eMk l],...,lj_l;l,{mj+1 ..... mk};lk_H ..... lp( L ’ P)!
Mjgqseees my >0
61 = § amj_H,...,mk X,OO,mj_H,...,mk(xjw--1xk)7

where we also used equation (5.10).
Then, using equation (5.11), we write the right hand side of the asserted
equation (5.12) in the form

Fow/ (X1, X1, 8, Xkg1s -+ Xp)
r
= Z Z cll,...,lj_l;l;lk+1 ..... lp
=0 l],...,lj_l, (x0)
lk+1 ..... lp X(pll7-~-7lj—1:l:lk+l _____ lp(x17""xj—lvg7xk+17'--’xp)’

where each cpl(lx") Lt Ll sl denotes a Coulomb gas integral of type (5.3) with

I" a surface of type depicted in Figure 5.1.
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Now, to evaluate the limit (5.12), we can apply dominated convergence the-

orem to the integration over all variables in o0 whose contour
"';l,{mj+1 ..... mk};---

is a loop, since these contours remain bounded away from the points x;, ..., xx
and any hypercube type integration contours between them. On the other hand,

we note that the hypercube integrals are the same in o0 and in
;l,{mj+1,...,mk};---

00,m 4 1,...my » and they cancel each other in the limit in equation (5.12). We also

(xo) )., are the same as in

note that the remaining loop integrals in «
g p g ---;l,{mj_H,...,mk je

(x0)
9011,...,lj_l,l,lk+1,...,lp'
To finish, we consider the integrand (5.4) for o**) X1seesXp)t
g G4 "';l,{mj+1,---,mk};'"( ! p)
2.5 _ag 8
[ [ = xoesis [ Jwr — xi) 7% [ J(ws — we)%.
1<i<j<p 1<i<p 1<r<s<{
1<r=<¢t
Using the identity (5.13), we see that as x;,...,xx — §&, the factors contain-
ing these variables converge to the corresponding factors in the integrand for
gol(lx‘)) Ly bdkgrody (1o Xj=1, 6. Xkt1, ... Xp), Where those terms have the
seeesbj—15bs seees

form (£ — x;)7%@=D and (w, — £)"%%©6=D_ This gives the asserted result. [

As a final remark, we observe that the functions %, of Theorem 5.3 can be
realized as limits of functions Fy () = F[va ()] Where o = a(w) is the map (2.16)
and v, are the vectors of Theorem 3.4. For the precise statement, we denote
n=lcl|:= Zle si, as in (2.13), and for each 1 < i < p, by A; the partition
of s; into positive integers with size |A;| = s;, thatis, A; = (1,1,...,1) with s;
parts all equal to one.

Corollary 5.7. Along any sequence (y1, . .., yn) € X, convergingto (xy, ..., xp) €
X, as shown,

Folxt,....xp) =lm Fo@)(y1, ..o yn)/(Fuy, 15 ¥sy)

yls---sYSl_)xl lrod
Vs 4 1s0Ysy X2 ‘fu-lxz(ysl-H""’ySz)"'

5 7 - yees .

Yn—sp+1sYn—>Xp HAp n—sp+1 n))
Proof. This follows from definitions and Proposition 5.6. The integral forms of
the functions guarantee that we can take the limits in any order, and Proposition 5.6
that the limits exist along any sequence. |
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The statement of Corollary 5.7 is very natural in the sense of fusion in CFT.
Indeed, viewed as correlation functions, the solutions ¥, should be obtained by
fusion from the solutions ¥y (,). We also note that the functions #..,; appearing
in the denominator in Corollary 5.7 have a simple form, given by Lemma 5.2.

5.4. Limits when taking variables to infinity. From the cyclic permutation
symmetry of the vectors v, € Héo) (Corollary 4.2) we can derive a similar
property for the Mdobius covariant functions ¥, = F[v,], concerning the limit
when the rightmost variable tends to +oo. Indeed, this limit is equal to the
limit of the function Fg(,) as its leftmost variable tends to —oo, where § is the
cyclic permutation map defined in equation (4.4) in Section 4, and illustrated in
Figure 4.1.

Proposition 5.8. Forany w € LPEE?S), we have (withd = s + 1)

lim (y?"14 x Foe](x1, .. S Xp, )

y—>+o0

= lim (|y)*"14 x Flog(w)] (v, X1, . . ., xp)).
y—>—00

Proof. By [50, Proposition 5.4], we have

lim (y?"14 x Foy](x1, . . S Xp, )

y—>+o0
= (g —q )% d = 1] x BE x FRY (0,)](x1, - .., Xp),
lim |y x Flog@)] (3, X1, -+ -, Xp))
y—>—00

= (¢ 2= D d — 112 x BE x FRO (03] (X1, - - -, Xp),
where Bfl’d is the constant defined in (5.7). Using Corollary 4.2, we calculate

lim_ (|14 x Fos)] (7. x1. - . X))
y—>—00

(g2 =)' [d — 1] x B x (—g)*""!
— — d,d
(¢ —g~1)4="[d —1]1* x B

lim (y?"14 x Fo,](x1. . caXp,Y))
y—>+o0

= lim (y*M« X T[] (X1, ... Xp. ¥)). |

y—>+o0
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6. Cyclic permutation symmetry
of the pure partition functions of multiple SLEs

Multiple (SLEy)>0 is a collection of random conformally invariant curves started
from given boundary points of a simply connected domain, and connecting them
pairwise without crossing [3, 20, 48, 49, 55]. Such curves describe scaling
limits of interfaces in statistical mechanics models. Indeed, convergence of a
single interface to the SLE, has now been proven for a number of models, see,
e.g., [61, 51, 59, 62, 64, 36, 15], and convergence of several interfaces to multiple
SLEs has also been established in some cases [11, 39, 5, 44].

A multiple SLE can be constructed as a growth process encoded in a Loewner
chain, see [58, 20, 49, 55]. As an input for the construction, one uses a function
Z: X8 — Rso, called a partition function of the multiple SLE,.. This function
appears in the Radon-Nikodym derivative of the multiple SLE, measure with
respect to the product measure of independent SLE, curves. It must satisfy the
second order PDE system

[K 92 +Z< 2 i—£>]z(xl,---,X2N)=O ©6.1)

20x7 o\ — i 0xg (=)

foralli € {1,2,...,2N}. With translation invariance, (6.1) are equivalent to the
second order Benoit & Saint-Aubin PDEs. Furthermore, by conformal invariance
of the multiple SLE,, the partition function Z must be covariant under all Mobius
transformations p: H — H such that pu(x) < p(xz2) <--- < u(xp):

2N
2(eroxaw) = [/ @)™ 2 x 2 (). Gan)).

i=1

The law of the multiple SLE, is not unique, for the random curves may have
several topological connectivities of the marked boundary points. The connec-
tivities are encoded in planar pair partitions ¢« € PPy. In fact, the convex set
of probability measures of (local) multiple SLE,. processes is in one-to-one cor-
respondence with the set of positive (and normalized) partition functions Z —
see [20, 49]. The extremal points of this convex set correspond to the different
possible connectivities [55].

Pertaining to the construction of the extremal processes, in [49] a basis
(Za)gepp,, Of MObius covariant solutions to the PDE system (6.1) was constructed,
using Theorem 5.1 and the vectors v, of Theorem 3.4. A defining property of the
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basis functions Z,, is the recursive asymptotics property

1. Za(xls'-'7x2N)
im —
xXjxj 1€ |Xj 41 — X[ T2
0 it M\ ¢a, (6.2)
_ joj+1
Zg(X1, ... Xj—1,Xj42,....,x2n) if /M €a,
j i+l
with ¢ = «/ oy forany x; < & < xj4pand j € {1,2,....2N — 1}, and

Kk €(0,8)\Q.

In [49], these functions Z, were called the pure partition functions of the
multiple SLE,.. They were argued to be the partition functions of the extremal
multiple SLE, processes, with the deterministic connectivities «. A proof for this
fact appeared recently in [55] in the case 0 < « < 4.

Specifically, with ¢ = e™*/¥ the pure partition functions were constructed
in [49] as

2o = (Bi?) N Fv,], fora € PPy,

with the normalization constant chosen in such a way that the functions Z4
satisfy the asymptotics (6.2) with no constants in front. The property (6.2) is
in fact a special case of Theorem 5.3, and indeed, the more general functions
Fo = JF[v,] should provide pure partition functions of systems of multiple SLE,
curves growing from the boundary, in the spirit of [34, 46, 33,23, 47, 22]. Also, the
functions ¥, describe observables concerning geometric properties of interfaces
—see, e.g., [35, 8, 22, 41, 42, 52, 55].

In Corollary 6.2 we show that the property (6.2) of the pure partition functions
Zq is also true when taking the limit x; — —oo and x5 — 400, corresponding
to the removal of the link ¢ . We also consider the more general pure partition
functions

Zg = (B*?)NF,, fora PPy, (6.3)

which are homogeneous solutions to the second order PDEs (6.1), but, when
s > 0, not covariant under all M&bius maps in the covariance formula (5.6). We
prove in Proposition 6.3 that these functions are linearly independent, and thus
obtain a basis of a solution space of the PDE system (6.1).

6.1. Cyclic permutation symmetry. Corollary 4.2 gives a general cyclic per-
mutation symmetry of the vectors v,, € Héo) C ®?_, Mg, in the trivial subrep-
resentation. The special case of n = 2N, with d; = 2 for all i/, can be used in
applications to the properties of the pure partition functions Z.



50 E. Peltola

First, from Proposition 5.8 we immediately get the following corollary.

Corollary 6.1. Let k € (0,00) \ Q. Then, we have

lim (y2h1‘2 X Zg(X1,. .., X2N=1,)))
y—>+o0o
= lim (P2 x Zsa) (7.1 Xan-).
y—>—00

Proof. The assertion follows directly from the definition Z, := (Bl2 2) N Flvg]
and Proposition 5.8. |

Using this, we can extend the cascade property (6.2) for the pure partition
functions to j = 2N.

Corollary 6.2. Let k € (0,8) \ Q. Denote by & = a/ €. Then, we have

. _ 2h1.2
x11—1>r£100, [xon — x1] X Za(X1,....X2N)
X2 N —>+00
0 if 1\ ¢a,
_ 1 2N
Z&(Xz,...,XzN_l) lf [\ €.
1 2N

Proof. We can take either limit first and get the same result. Observe first that we
have - € a if and only if - € S(«), and in that case, $(a) /- = /-

Using Corollary 6.1, the asymptotics property (6.2) for Zg(y), and the above
observation concerning the links, we can calculate the limit

lim lim  |xon — xl|2h1~2 X Za(X1,...,X2N)
X]1—>—00 XN —>+00

= lim lim  |xon — X172 X Zg() (X2n, X1, X2 ..., X2N—1)
X1—>—00 XN —>—0O0

0 if M\ ¢ 8(a),
1 2
Z‘S((Z)/lf\z (x27 .- "sz—l) lf% € 8(“)7

0 it ™ ¢a,
— 1 2N
Z‘(X/f\ (x27""x2N—1) lfﬁf €. D
12N 1 2N
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Corollary 6.2 combined with equation (6.2) shows that linear combinations of
the basis functions Z,, have a cascade property with respect to removing any link
connecting consecutive points, when the boundary dH = R is viewed as the circle
S! = {z € C | |z| = 1}, say. Such a property is natural for the random SLE, type
curves — see Figure 6.1 for an illustration. In fact, this cascade property can be
taken as a defining property of a global multiple SLE,., see [48, 55].

&
153 £

f\\ & &
N X >
o

X1 X2 X3 X4 X5 Xg X7 X8 1)

Figure 6.1. The probability measure of multiple SLE,. curves is conformally invariant. The
figure depicts how a connectivity of the curves is mapped under a conformal map from the
upper half-plane H to the disc D. The starting points x; < x2 < ... < xox of the curves
in H are mapped to the points &1, &>, ..., &2y appearing in counterclockwise order along
the boundary of D. The cascade property (6.2) given in Corollary 6.2 for the outermost
link connecting x| and x, is manifest in the disc on the right.

6.2. Linear independence for solutions to second order PDEs. We now con-
sider the functions Z,, with @ € PP;S,), defined in equation (6.3). These functions
form a basis of the solution space of the second order PDE system (6.1), consisting
of homogeneous solutions, in the sense of items (1) and (2) in Theorem 5.3. With
n = 2N + s, this solution space is the image JF [H,(f)] of the highest weight vector
space Hg,s) under the map F of Theorem 5.1. We prove the linear independence of
the functions Z,, by constructing a basis for the dual space

FIHOT* = {¥:HY) — C | ¢ is a linear map},
using similar ideas as in [49, Section 4.2], where the case s = 0 was treated.

Proposition 6.3. Let « € (0,8) \ Q, s € Zso, andn = 2N + s € Zsy.
The collection (Zq) ,ppts) IS a basis of the solution space F [H,(,S)]
N

s+1 2N +s
N+S+1(N+s )

of dimension

Proof. The case s = 0 was proved in [49, Proposition 4.2]. The case s > 0 is
very similar, so we only give the idea of the proof. We consider the links in the
link pattern

a:{ W }u{ . 1}ePP§;‘,)

C1 Cs
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DA
|

~ ¢
9]
(o))
~

)
w
N
wn

| | |

1 2 3

Figure 6.2. Example of an allowable ordering to remove links. After the removal of all the
links, the defects remain. Notice also the relabeling of the indices after each step.
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as an ordered set, see Appendix C and [49, Section 3.5] for details. We say that the
ordering of the links is allowable for « if all links of « can be removed in such a way
that at each step, the link to be removed connects two consecutive indices — see
Figure 6.2 for an illustration. The precise definition of “allowability” was given in
[49, Section 3.5] for the case s = 0, but as the defects of « play no role in the link
removal and no defects lie inside any link, the notion of an allowable ordering of
links is the same for any « € PPg\s,).

Suppose that the ordering of the links in « is allowable. Then, by Theorem 5.3,
the iterated limit

Lo(F]) := lim oo lim o (xpy — Xap )2 (xp, — Xgy )2
Xapn Xby >EN  Xay,Xp; 61

X Flv](x1, ..., Xn)

exists for any v € Hf,s). Consider the image ¥, = JF[vy] of the basis vector
by € HY. Suppose that ¢; < ¢, < --- < ¢, and denote by y; = x, for

i €{1,2,...,s}. Using the property (5.8) of ¥, with the constant C(1;1,1) =1
given by equation (3.4), we evaluate the limit £, (Fy) as

Lo(F)V1,...,y5) = (B12’2)N X Fu, iy, ys), fora e PPE\S,),

where A = (1,1,...,1,1) € Z° and ¥, has the explicit formula given in
Lemma 5.2. With the identification v,,,, + 1 as in Remark 3.2, and the formula
in Lemma 5.2, we may interpret &£4(2y) = 1.

On the other hand, if B # «, then the limit £, () evaluates to zero, because
of the property (5.8) and the fact that when 8 # «, then we have % ¢ B for
some link /) € « in the allowable ordering.

aj bj
It follows that the map &£4: F[H f,s)] — Cis well defined and independent of the

choice of the allowable ordering for «. In particular, the collection (éﬁa)a <pp®) is
N

a basis of the dual space F[H]*, such that

1 ifg=aq,

LalZp) = bap = {o if B+ a.

Therefore, (Zq),ppts) is a basis of the solution space J [HS,S)], dual to (£4)
N

aePP
The formula for the dimension of this space follows from Lemma 2.2 and [411V9,
Lemma 2.2]: #PP{) = g3+l (20Hs), m




54 E. Peltola

The linear independence of the functions Z, immediately gives injectivity
of the “spin chain — Coulomb gas correspondence” map & in the case of ¢ =
(1,1,...,1,1) and s > 0. This generalizes the previous injectivity result [49,
Corollary 4.3]. We prove the injectivity of F in full generality in forthcoming
work [30], where we study solution spaces of the Benoit & Saint-Aubin PDEs in
detail.

Corollary 6.4. Fors € Z>o andn = 2N + s € Zq, the map F: H,(,s) — C®(%,)
is injective.

Proof. The assertion follows by linearity from Propositions 3.7 and 6.3 — the

images ¥, = J[v,] of the basis vectors v, of H,(f) are linearly independent,
because the functions Z, = (Bl2’2)_N Floy] are. |
Appendices

A. g-combinatorics

In this appendix, we prove “g-combinatorial formulas” needed in this article. We
first recall the definitions

_q9"—q™" T g —_
[m]_ﬁ’ [”]!—Wl;ll[m]’ [k]_m’

for g € C\ {0} not a root of unity, and m € Z, and n,k € IN, with 0 < k < n.

Lemma A.l. (a) The g-binomial coefficients satisfy the recursion

(1= [ i)
(b) [50, Lemma 2.1(b)] For a permutation 0 € S, of {1,2,...,n}, denote by
inv(o) ={G. /) |i < jando(i) > a(j)}
the set of inversions of o. Then we have

Zqzx#inv(o) — C](g) []".

oe6,
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(c) Foranyvy,vy € Zso and n € N, we have

n
Y[ % Ja e o = kit -
k=0
nn—v;—1) V1 =0 va —n]!vi + vo —n +1]!
[vi +v2 —2n +1]!

=q

(d) Forany vy, vy € Zso and n € N, we have

n
Z [ Z ]qk(v1+v2—2n+2) [Vl _ k]! [Vz —n+ k]!
k=0
nwat1—m) V1 = 1] vz —=n]! v +vo —n + 1]!
[Vl + vy —2n + 1]'

=4

Proof. The proof of (a) is a straightforward calculation using the definition of
g-integers. Part (b) was proved in [50, Lemma 2.1(b)]. To prove part (c), we
proceed by induction on n. For n = 0, both sides of the equation are equal to
[v1]! [v2]!. Denote by L, (v1, v2) and R, (vy, v2) the left and right hand sides of the
asserted equation, respectively, and assume that we have L, (v, v2) = R,(v1, v2)
for any vy, v2 € Zs¢. Using part (a), we write L,1(vy, v2) as

Lyy1(vy.v2)

= [ Z ]qk<2n+1—w—vﬂ [vi — 7 + k]! vz — k]!
k=0

1 n—vi—vo 1
([vl—n+k]+q [vz—k])

= Z [ Z ]qk(Zn—Vl—Vz) [vi —n 4+ k]! [vs — k]l g" "1 [vi + va — 1]
k=0

[v2 —k][vi —n + k]

n—vy

= [vi +v2 —n]gq

- n k(2n—vi—v5)
xkzo[k]q T2 vy —1—n+ k] v — 1 — k]!,

where we used the identity

¢ o1 s =] = [v2 = K]+ " oy — ],
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By the induction hypothesis, the above sum is equal to
Ly(vi—1,va,—1)=R,(v1 — 1,vp— 1),

SO

Ly+1(v1,v2) =[v1 +v2—n]g" "' x Ry(vi — 1,vp— 1)

n—vy

= [v1 +va—nlgq
vi—1—=n]'[va—1—n]'[vi +v2—n—1]!
[vi +v2 —2n—1]!

n(n—vy)

xXq
= Rp+1(v1.v2),

as claimed. This concludes the proof of (c).
Assertion (d) follows immediately from (c) and the symmetries ¢ <> ¢~ and
V1 <> 1, of the identity. O

1

B. Some auxiliary calculations

In this appendix, we perform some auxiliary calculations needed in the proof of
Lemma 3.10 and Proposition 3.11. We will repeatedly use the notations (2.7),

s=d—1,
si=d;—1 foralli €{1,2,...,p},

and
¢ =(51,52,...,8) € Zgo-

In the calculations, we consider the embedding from Section 3.1, defined for any
s=d—1€Z-pas

3. Mg «—> M®s,

I ®) =6 forl €{0,1,...,s).
The vectors Gl(s) can be written explicitly as follows.
Lemma B.1. In the tensor product M®®, we have

), K -
30y = 0 = @ k)1 g =107 x (e, ® -+ ® e,

1<ri<-<rg<s
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0 <k < s = d — 1, where we denote (r1,...,rx) = o, and, for each
ie{l,2,...,s}

1 wheni €{ry,....ri},
li(e) = )
0 otherwise.

Proof. Using the coproduct (2.2) of F, and simplifying with Lemma A.I(b), we
calculate

0(5) Fk 6(5‘)

_ K q_.
=Y gPHVO N gLim1 07D (e, ® +++ ® €l ()

oeSy 1<ri<--<rig<s

k k .
= qQ K1Y =107 x e,y @ - @ e, 0)- 0

1<ri<-<rg<s

We will make use of the following formulas for the projection 7: M, ® My — C.

Lemma B.2 ([49, Lemma 2.3]). For any v € My ® Ma, we have

7W(eq ® eg) = 0, 7W(e; ® 1) =0,

-1 -2

4 ﬁ(l)(el ® eg) =

~ (1) _ 4 1-
7 (eo ®ey) = 2 2]

The next two lemmas explain how to calculate the projections appearing in the
left column of the commutative diagram in Lemma 3.10.

Lemma B.3. Let 51,52 € Z~y. Interpreting 0_1 = 0, we have

FD(662) g g) = (q [2611 1)( =sam1k 1] (99271 g g1
_ [k] X (0[(52 1) ® 0(51 1)))

Proof. Using Lemma B.1, we write

(s2) (s1)
012 ®0k1

— ¢® g ® [ Zqzﬁ_l(l—rjﬁzf_l(l—tj
Lsri<m<rissy X (€l)(g) ® @ €1y, () ® ey (9) ® @ ek ()

1<t] <<t <s1
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where (r1,...,r;) = 0,and (¢1,...,t) = ¥, and

1 wheni € {r,...,r},
li(o) = .
0 otherwise,

and

ki (9) = {1 wheni € {t,...,%},

0 otherwise.

()

Using Lemma B.2, we calculate the action of the middle projection 7g,” on each

term in the sum,

—1
~ q —q _
2D (er, ) ® ex, ) = o G0k @~ 1814, ().18%, 9).0)-

Not all terms survive. First, when k() = 1, we must have #; = 1, and similarly,
when /s, (0) = 1, we must have r; = s,. On the other hand, when /,, (0) = 0, then
r; # sz, 50 r; < 55 — 1, and similarly, when k;(¢) = 0, then ¢; # 1,02 < 1;.
We thus obtain

A(l)(e(sz) Q 9(81))

T I NN S
= ¢@ 11 ¢® K] x Zglsz(g)’l Sy (.0 X q IR A=A (=)
1<ri<-<rj_1<s>—1 ~
ez x 7D (e @ ® e, o ® e
® €0 ® ek, (3) ® - ® ek, ()
() ®) i A=rp)+Ek (1))
+qO 11 gD [k Y 81, (0).08k 9.1 x qEr=1 T TR=2 0

1<ri<-<r;<s;—1 (1)( ® - ® ®
2<ty <<t} <51 €l (o) €ls,—1(0) @ €0

Re1 ®ep,w) Q-+ ® Cks, ®))

:qénmﬁﬁmuf' g—q) x Y gER Tl A
2

Isri<e<r_j<s2-1 X (e[ ® -+ ® €ls,—1(0)
2<t] <<t <s§1

® err () @ -+ @ ey, ®))

(q — q_l) X Zq2§=1(l—rj)+2§=2(1_,j)

I<ri<w<r<s—=1 X (e ® - ® e, (o)
2<tr <<t <s§1

q@ g ke
2]

® k) ® -+ ® ek, (9))-
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Changing the summation indices by #; > ; — I in the first sum and r; = r; — 1
in the second sum, and using the formula from Lemma B.1 for the vectors Gl(sz_l)
and 0,?‘ . we simplify the above as

I k s
@ (1119 @ [k]1g— @ —q") x Zq—k+z§;‘1(1—r,-)+z§=1(1—zj)
2]

1<ri<-<rj—1<s2-—1
1<t) <<t <s1—1
X (e1(0) ® - ® e, 1(0) ® hr ) B+ ® €y, ()
g@ 1119 ® [k]!

-1 1—k+Yh_ =rp)+X5_,(1—1))
4=4 )% 4 T =
2] Z

1<ri<-<r;<s»—1
1<tr<-<tp<s1—1

X (e1(0) ® - e, (o) ® ) B+ ® ek, ()

_ a9 g® e

o] -q7
(q—sz—k % (6(5‘2 1) ® 6}531—1)) ql—k % (91(52—1) ® 0(51 1))
X —
¢2g Oy — 1)y g@q 2K -1
— (¢ _[2?_1)( [—so—1—k [1] x (0(32 1) Q 0]&51—1)) — [k] x (0(52 1) ® 0(51 1)))
which concludes the proof. |

We generalize the above calculation in the next lemma.

Lemma B4, Let 51,50 € Z>o and m € {1,2,...,min(sy,s2)}. Interpreting
Gfsl) = 0, we have

(j':[(l) 0--0 ﬁs(l) o JT(I))(Q(SZ) ® 9(51))

s1—m+1
g—qH"
e
XZ[ ]( 1)/ gm=NU+=s2=1= k)(l—[[k )(ml—/[ l_s]>
r=0 s=0

X (el(ssz; ® e,(cslj m))
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Proof. We prove the asserted formula by induction on m. The base case is given
by Lemma B.3. Assume that the asserted formula holds for m. Applying the
induction hypothesis and Lemma B.3, we calculate

GO 0 x) 007 o2 1)O5? ® 6°)

1= si—m+1
_—a "
(21"
3 m . m—j—1
_ 1)/ gm=7)G+l=s2—1-k) B B
XZ:( /g [j](lj[k r])( U[l s])
Jj=0 " 11
A (s2—m) (s1—m)
x A0, 075 @ 60 ™)
(q—q~"ymt!
G
3 m J71 m—j—1
S A 11 (1 )
— ; ] ]
Jj=0 ol 1
X (ql—k—1—sz+2j [[—m+ j]x (Ql(iz(;lTl-i)-_ll_)]) ® elgs_lj—(m-i-n))
—[k—jIx (gl@zm—J(:;gH)) ® ngs_ljf_(rlrl+1))))'

Changing the summation index in the second term by j — j — 1, we simplify the
above as

(C] _ q—l)m—H
[2]m+1
m+1 _ o m Jj—1 m—j—1
x Y (-1 gDl P (TT e =) ([T -41)
j=0 J r=0 s=0
X (g I —m ] O, ® 6T
—lk = 1< @25 @6 )
(C] _ q—l)m—H
= [2]m+1
m+1 _ o Jj—1 m+1)—j-1
< Z (_1)1q(m+1—1)(1+l—S2—1—k)( [k — r])( 1_[ [l — s])
Jj=0 r=0 s=0

[ m —_ i m — —
(L5 T[T ) < et e o

which gives the asserted formula by the recursion of Lemma A.I(a) for the g-bi-
nomial coefficients. U
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The next lemma gives the explicit non-zero constant in the commutative dia-

gram in Lemma 3.10.

Lemma B.5. Let 51,52 € Z-o and m € {1,2,...,min(sy,s2)}, and denote

r=s1+sy—2mandé =r + 1. We have

~ (1 A (1 ~ ~ ~ §;d1,d
(n( ) 6---0 ”s(l)—l ° ”s(ll))((J(SZ) ® J(“))(ré 1 2)))

s1—m—+1

= C(m; s1, 52) X 3(’)(6(()5)),

where

[s1 —m]! [so —m]![s1 + 2 —m + 1]!
21" [s1]! [s2]! [s1 + s2 — 2m + 1]!

C(m; s1,82) =

[S1+S2—m+l]
m

x £ 0.
e ][ ]

Proof. Recall from Lemma 2.1 the formulas (2.3):

(5 dy,d2) __ Z T11512(S1’S2) % (eldz) ® e(dl))
110>
where
11 (s1 =11 +1)
Tl 5 51 = 0! [s2 = D] g
51,582) = 081, 41 (=D™ :
(51920 = Stttz X CUT g WLl (@ — g7
By Lemma B.4, we have
8:dq,d
(g 00 2 Ly 0 #NOED @ 96 (g 1))
_g—qH"
2]
Zrm
Il i (m—j)(j+l2—s2—1-11)
X Toln? (s1,82) X [ . ](—1)"(]

m—j—1

<(TTw=)( L) <6252, @47,
r=0

(B.1)
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Now, by the formula (B.1), we have /; + I, = m in the sum. Therefore, only the
terms with j = [; = m — [, are non-zero. We denote k = /; and simplify the
above expression as

(g—q~H" q & k[sl k]! [s2 — m + k]! gkG1=k+D)

X Z( 1) l[ ] [S2]! (C] _q_l)m

X [ IZ ](_l)kq(m—k)(rl’l—k—sz—l)
k—1 m—k—1

(o) (TT k) s g
r=0 s=0

qm(m—sz—l)
Rt

m m . By
xS0 ke s — s, — m 4 k1 3O,

Using Lemma A.1(d), with v; = s;,i = 1,2, and n = m, we simplify this to the
asserted form. O

C. Dual elements

This appendix contains results needed in the proof of Lemma 5.5 and Proposi-
tion 5.6, concerning the limit of the solution ¥, of the Benoit & Saint-Aubin PDE
system (PDE) as several of its variables tend to a common limit simultaneously.
The core idea in the proof is to construct suitable dual elements which allow us to
evaluate the limit. The same idea was also used in a simpler setup in the proof of
Proposition 6.3, where we constructed dual elements for the basis functions %y,
fora € PPE\S,), as iterated limits.

Using the projection properties (3.3) of the vectors v,,, we will define iterated
projections, which provide the (unnormalized) dual basis of v, € H gs). We follow
the approach of [49, Section 3.5], where such dual elements for the special case
of vy € Hg;\),, for « € PPy, were constructed. Therefore, we only give the rough
reasoning of the general case — the details are the same as in [49, Section 3.5],
but the notation for this simple construction becomes unnecessarily complicated

in the general case.
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C.1. Allowable orderings of links. We consider the links in the link pattern

a):{ /R R }U{ | l},

ay by ag by C1 Cs

as an ordered multiset of k < £ =}, £, elements,

20) = {laypy X N Ly X O, (C.1)

ar by ar bi
For instance, if ¢ = (1,1,...,1,1), that is, all indices of w have valence
one, then k = £ and the links can be ordered by their left endpoints, such that
ay; < az < --+ < ay. If some other ordering is chosen, there is a permutation

o € &, such that we have a,(1) < dg(2) < -+ < ag(). The choice of the ordering
of the links is thus encoded in the unique permutation o with the above property.

For link patterns with s; > 2 for some j in ¢ = (s1,...,5p), the ordering of
the links amounts to ordering the multiset £(w). For example, we can first order
the links in groups by their left endpoints as above, and then, in each group of
links with the same left endpoint, we may choose the ordering according to the
right endpoint so that the link(s) /) among the group with the smallest b get
the smallest running number. Again, choosing some other ordering amounts to
choosing a permutation o € &y of the multiset of the links.

Recall that the removal of m < {; 1 links - from w is denoted by
w/(m x 1@1)’ and if s; = m or 541 = m, we also have to remove the index j
or j + 1, respectively (or both), and relabel the indices of the remaining links and
defects as illustrated in Figure 2.5. Slightly informally, we say that the ordering
of the links is allowable for w if all links of @ can be removed in such a way
that at each step, the links £, 5 x £ to be removed connect two consecutive
indicesa = j and b = j + 1 (when the indices are relabeled after each removal)
— see Figure C.1 for an illustration. The concept of “allowability” was defined
more formally in [49, Section 3.5] in the special case of @ € PPy, but the only
differences in the present case are that, first, the links come with multiplicity,
which only results in complications in the notation, and, second, ® might have
defects -, which play no role in the link removal and cannot lie inside any link

£ in the sense thata < ¢ < b.

C.2. Dual elements. Let v € LPS) and suppose 0 € G is an allowable
ordering of the k links of w (with multiplicity), see (C.1) and Figure C.1. After
removal of all the links of w in the order o, one is left with the link pattern L ),
which consists of s defects only, determined by the partition A(w) of the defects of
w (recall Section 2.7). In terms of the vector v, the link removal can be realized
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as projections to subrepresentations, using the properties (3.3) of v, — since the
ordering o is allowable, the links are removed in such a way that the removed links
always connect two consecutive indices j, j + 1.

As in Remark 3.2, we identify the one-dimensional space Hfls()w) with C, via
Y@ —> 1. This identification is implicitly used in the following definition. We
set

YOHY — ¢ gy = F60 o762 26D

ax (k—1) Tar(1) © Tay
where
 G-D i .
§i=dy) A+ dITV — 120y, dP i=de =) lap, (C.2)

i€{1,2,...,j}
c=a; or c=b;

so that déj ) _ 1 denotes the valence of the point a after removal of the j links

La, by X AR PR TR Fb, from w in the order o, and a; (j — 1) denotes the

relabeled endpoint of the j hnkﬁ after removal of the j —1 links £4, 5, X,
¢ by X aﬁl; see also Figure C.1.

cooda;
We next show that w(f,a) is in fact independent of the choice of allowable

ordering o for w, and thus gives rise to a well-defined linear map
Vo =y HY — € (C.3)

for any choice of allowable ordering o of the links in w. Moreover, we show that
(Vo) o p 18 @ basis of the dual space (Hgs))*, namely the (unnormalized) dual
S

basis of (b $).
( C")weLP‘;’

Proposition C.1 (see also [49, Proposition 3.7]). (a) Letw € LPS). For any two
allowable orderings o and o’ of the links in w we have

©) — @)
w w °

Thus, the linear functional V¥, € (H(gs))* in (C.3) is well defined.
(b) Forany w,t € LPY, we have
1 ift=ow,

»(br) = const. X § where 8.1 = C4
w ( f) w,T w,T {O l:f-[ # a)’ ( )

and the constant is non-zero and depends only on w.

In particular, (V) ,; pto s a basis of the dual space (H(gs))*.
S
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Figure C.1. Example of an allowable ordering to remove links from a planar link pattern.
Notice in particular the relabeling of the indices after each step, and the fact that after each
removal, the valences of the endpoints of the removed link decrease, as in equation (C.2).
Furthermore, if after the removal the endpoint becomes empty, then it is removed as well.

After the removal of all the links, the defects remain.
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Proof. We use the notations introduced in equation (C.2). Let w, 1 € LP(;), and

let o be any allowable ordering of the links of w. Consider w(a) (vy). If 7 = w,
then by the projection property (3.3), we have

1

(5‘)0 = X0
00) = Gl smrsa) ol arx )

and recursively,

~(8) ~ (82) 1) —
(7 Mo Gi-1) © " o7, 2(1)071 ) (vy) = const. an/(falblxaf\ ol a1y % /\)

for a non-zero constant which is a product of the constants appearing in the
projection properties (3.3).

For j = k, the above formula gives w(a) (vy) = const. X v, ,,, which we
identify with the constant times 1 € C, via vy, ., + 1, as in Remark 3.2. On
the other hand, if ¢ # w, then for some j, the link pattern r does not contain
a; p; links (\ and by the property (3.3) we then similarly get w(“) (v;) = 0.
Summarlzlng, we have ¥, (b;) = const. X §, ;, independently of the choice of
allowable ordering o, and the constant is non-zero and only depends on . This
proves equation (C.4) and assertion (b).

By Proposition 3.7, the vectors v, with t € LP(S) form a basis of the space
Hés). It thus follows from equation (C.4) that the value of the operator w(“)
is independent of the choice of an allowable ordering o of the links, and that
Vo), eLp®) is a basis of the dual space (H(gs))*. This concludes the proof. O

Remark C.2. For fixed w, by Theorem 3.1(b), the maps . H(gs) — C also define
(unnormalized) projectors

p
1Z’aﬂ@l\/ldi —> My,

i=1

1)&w(Fl-t’r) =

Ye(bg) X el(d)foranyl €{0,1,...,s} ifteLPY,
otherwise,

Sfrom the tensor product (2.5) onto the s + 1 = d-dimensional irreducible repre-
sentation Mg of U, (sl). For a chosen v € LPY, combining v, with the embed-

ding Mg — ®f’:1 My, given by el(d) — F!.v,, we can define the (unnormalized)
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projectors

p p
IZ(LJZ@Mdi —>®Mdl.,

i=1 i=1

YU(Floy) = {(‘)/’w(br) x Floy foranyl €{0,1,...,s} ift € LPY,

otherwise,

onto the subrepresentations of the tensor product (2.5) isomorphic to My, gener-
ated by v,,. This gives riseto Y SZO(#LPS))Z linearly independent maps 1}5 , With
W,V € LPS), that belong to the commutant algebra Endy, (s1,)( ®7_; Mg; ). We
discuss this commutant algebra in forthcoming work [29].

C.3. Some details for the proofs of Lemma 5.5 and Proposition 5.6. Let
l <j<k=<pado < LP(;), and let T € LPg?k be the sub-link pattern
of w with index valences ¢jx = (sj,Sj+1...,5k), consisting of the lines of w
attached to the indices j, j + 1,...,k, as in Section 5.3, and let w /7 denote the
link pattern obtained from w by “removing 7, that is, removing from w the links
—~- with indices a,b € {j,j + 1....,k}, collapsing the indices j, j + 1,....k
of w into one point, and relabeling the indices thus obtained from left to right by
1,2,...(see Section 5.3).

Lemma C.3. Let w € LP(;), T € LP(grj,? . and /7 be as in Section 5.3. Then, we
have

r
U(1) = Z ZCll,...,lj_l;l;lk+1,...,lp

=0 l],...,lj_l,
lg41,001p

x (e, ® ®e,, ®Flo.®e,_ @ ®eyp),

r

Uw/r=z X:Cll,...,lj_l;l;lkJrl ..... I

I1=0 I, ,...,lj_l,
lg41,001p

X (e1, ® - ® ey, ®e ®eyp;_, ®---Qep),

for some constants Cly ool 1330k 1 ool
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Proof. By Theorem 3.1(b), the vector v,, can be written as a linear combination

U‘”_Z Z Z Z 11, i1l 15e00p

t>0ueLP(’)kl =0 I,
lk+1 ..... l,,

X(elp®"'®elk+1 ®Fl.bv®elj_l ®---Qey),

€ C. Forany v € LPY | we apply the

t,v
for some constants c; ik’

Lseeoslj— 15305 k4 1 5ol
map
(Fo)yi = 14°0 @ 1, 10

QR Ms, — Mg, ® - @My, ) @M1 ® (Mg,_, ® - ® Mg,)
i=1
to both sides of the above expression for v,,. By the projection properties (3.3)
of v, the vector (&U)j,k(nw) equals zero unless v = t, and if v = 7, then we
have (1}7)]',]( (v0) = Y (b7) X 04/, by similar arguments as in the proof of Propo-
sition C.1. Analogous properties hold for (¥?) k> which picks the component

generated by v, in the tensor positions j, j + 1,..., k. Therefore, we have
vy = Z chl Li—1slilig1selp
1=0 11,...,lj_1,
leg1,e00p

x (e, ® ®e,, ®Flo.®e,_ @ ®eyp),

where ¢;, ;. » and in particular,

7---=lj—1;l§lk+l ===== lp = cll,...,lj_l;l;lk+1 ..... »

Yo/t = Z chl Ji— Ul 1endp

1=0 o1,
Lt 1 sl
X(elp®"'®elk+1®el®elj_1®"'®ell)' O
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