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On ˛-minimizing hypercones
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Abstract – In this paper we considerably extend the class of known ˛-minimizing hy-

percones using sub-calibration methods. Indeed, the improvement of previous results

follows from a careful analysis of special cubic and quartic polynomials.
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1. Introduction

Let P0 and P1 be two distinct points in R � R�0 and consider for ˛ � 0 the

variational problem
Z

y˛ dH
1.x; y/ �! min

within the class

C WD ¹KW Œ0; 1� �! R � R�0 Lipschitz s.t. K.0/ D P0;K.1/ D P1º:

Hence, with ˛ D 0 we are looking for the shortest curve joining P0 and P1, with

˛ D 1
2

we gain a parametric version of the brachistochrone-problem, and the case

˛ D 1 leads to rotationally symmetric minimal surfaces in R
3. On the other hand,

the variational integral with ˛ D 1 appears when considering the potential energy

of heavy chains.
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Of course, the shortest path between P0 and P1 is a line, and the minimizing

curve in the case ˛ D 1
2

was named brachistochrone. However, the variational

problem with ˛ D 1 may possess two distinct minimizers, namely a catenary and

a Goldschmidt curve, which consists of three straight lines, cf. [11, Chapter 8,

Section 4.3].

In order to prove the minimality of the above mentioned curves it is sufficient

to embed the corresponding curve into a field of extremals,1 i.e. into a foliation

of extremal curves, cf. [10, Chapter 6, Section 2.3]. In fact, this can be directly

justified by the divergence theorem. For this purpose let us look at the vector field

�.x; y/ WD y˛ � �.x; y/;

where �.x; y/ are the normal fields orienting the curves from the foliation. Since

all these curves are extremals, the vector field � is divergence-free. The conclusion

then follows by applying the divergence theorem to the vector field � on the open

set which is bounded by a critical curve and a comparison curve. In geometric

measure theory setting, the critical curve is said being calibrated by �, and the

vector field � is called calibration.2

In this paper we consider the higher dimensional variational problem and prove

the minimizing property of special hypercones. Therefor we will construct suitable

foliations. The crux hereby is to find an auxiliary function whose level sets are

extremals.

First, we will weaken our considerations and look at “inner” and “outer” vari-

ations separately as in [5]. This gives simplified proofs and yields sub-solutions

and sub-calibrations. The advantage of this weakened ansatz is that we can gain

specific auxiliary functions. Moreover, we will show that a careful analysis of ex-

tremals as in [4] provides better results to our variational problem but loses the

concrete representation of an auxiliary function.

1.1 – The main result

Letm 2 ¹2; 3; : : : º and let M be an oriented Lipschitz-hypersurface in R
m �R�0.

Its ˛-energy is given by

(1) E˛.M/ WD
Z

M

y˛dH
m.z/;

1 An argument which goes back to Weierstrass.

2 Such method of conclusion is applicable even in a more general context and is well-known

as Federer’s differential form argument, cf. [9, 5.4.19].
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where we use the notation z WD .x; y/ 2 R
m � R�0 and denote by H

m the

m-dimensional Hausdorff measure. We show

Theorem 1.1. There exists an algebraic number ˛m > 2
m

such that the cone

C
˛
m WD

°

0 � y �
r

˛

m � 1 � jxj
±

; with arbitrary ˛ � ˛m,

is a local ˛-perimeter minimizer in R
m � R�0.

Remark 1.2. For ˛ an integer, our result is equivalent to the area-minimizing

property of the corresponding rotated cones in R
mC˛C1. Indeed, with our lower

bounds presented in Remark 1.5 we recover the area-minimizing property of all

Lawson’s cones, i.e. of the cones

Ck;h WD ¹.x; y/ 2 R
k � R

h j .h � 1/jxj2 D .k � 1/jyj2º

with k; h � 2 and kCh � 9 or .k; h/ 2 ¹.3; 5/; .5; 3/; .4; 4/º, cf. [2, 14, 17], where

k and h take over the parts ofm and ˛C1. For further reading on area-minimizing

cones, see also [13] and the references contained therein.

Remark 1.3. Following the minimal surfaces theory we will introduce the

terminology of a local ˛-perimeter minimizer in the next section. Alternatively,

we could say in Theorem 1.1 that the hypercone

M
˛
m WD @C˛

m D ¹
p
m � 1 � y D

p
˛ � jxjº; with arbitrary ˛ � ˛m,

is ˛-minimizing in R
m � R�0, where the boundary of C˛

m is seen with respect to

the induced topology.

Remark 1.4. In our proof, we will specify polynomials pm which characterize

the corresponding ˛m as the unique positive root. Moreover, we show ˛m < 12
m

,

thus ˛m ! 0 with m ! 1.

Remark 1.5. First (integer) bounds can be found in [6], namely

˛2 D 11; ˛3 D 6; ˛4 D ˛5 D ˛6 D 3; ˛7 D � � � D ˛11 D 2;

˛m D 1; for m � 12:

Shortly thereafter, they were corrected in [7] to

˛2 D 6; ˛3 D 4; ˛4 D 3; ˛5 D ˛6 D 2; ˛m D 1; for m � 7:
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Our investigations show, that they can be improved to

˛2 � 5.881525129,

˛3 � 3.958758640,

˛4 � 2.829350458,

˛5 � 1.969224627,

˛6 � 1.352500103,

˛7 � 0.963594772,

˛8 � 0.728989161,

˛9 � 0.581153278,

˛10 � 0.481712568,

˛11 � 0.410855526,

˛12 � 0.357996307,

˛13 � 0.317117533,

. . . ,

˛2017 � 0.001377480,

. . . .

Remark 1.6. For allm D 2; 3; : : : we havemC˛m � 4C
p
8, cf. Remark 4.3,

so, direct calculations yield that all hypercones M˛
m, with ˛ � ˛m, are (of course)

E˛-stable, see also [8, p. 168].

Remark 1.7. Although M5
2 is E5-stable, the corresponding cone C5

2 is not

a (local) 5-perimeter minimizer in R
2 � R�0. Similarly, the hypercone M1

6 is

E1-stable, but the cone C1
6 does not minimize the 1-perimeter in R

6 � R�0,

cf. [7]. Hence, the optimality question of our ˛m’s still remains open.

2. Notations and preliminary results

Let� � R
m �R�0 be open (with respect to the induced topology) and let ˛ > 0.

We say that f 2 BV ˛.�/ if f 2 L1.�/ and the quantity

Z

�

y˛jDf j WD sup

² Z

�

f .z/ div. .z//dz W  2 C 1
c .�;R

mC1/; j .z/j � y˛

³

is finite. For a Lebesgue measurable set E � R
m � R�0 we call

P˛.EI�/ WD
Z

�

y˛jD�E j

the ˛-perimeter of E in �. Furthermore, we call E an ˛-Caccioppoli set in � if

E has a locally finite ˛-perimeter in �, i.e. �E 2 BV ˛
loc
.�/.

Example 2.1. By the divergence theorem, if E � R
m � R�0 is an open set

with regular boundary, then

P˛.EI�/ D E˛.@E \�/

for all open sets �.

Remark 2.2. Of course, several properties of the ˛-perimeter can be directly

transferred from the known properties of the perimeter, cf. [12, 15].
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Remark 2.3. Note that there are ˛-Caccioppoli sets which are not Cacciop-

poli, i.e. do not possess a locally finite perimeter: In an arbitrary neighborhood of

the origin consider the set

A WD
1
[

nD0

An;

where An is a triangle with vertices

� 1

2nC1
; 0

�

;
� 1

2n
; 0

�

;
� 3

2nC2
;

s

1

4.nC 1/2
� 1

22nC4

�

:

Hereby, the An are chosen in such a way that

j@An \ .R � R>0/j D 1

nC 1
:

On the other hand, the ˛-perimeter of A is dominated by the convergent series

1
X

nD0

1

.˛ C 1/.nC 1/

� 1

4.nC 1/2
� 1

22nC4

� =̨2

:

Definition 2.4. Let E be an ˛-Caccioppoli set in �. We say that E is a local

˛-perimeter minimizer in � if in all bounded open sets B � � we have

P˛.EIB/ � P˛.F IB/ for all F such that F 4E �� B .

2.1 – Under weakened conditions

The following definitions and results are analogous to the observations in [5,

Section 1]. We only prove one proposition, which was not used in [5].

Definition 2.5. Let E be an ˛-Caccioppoli set in �. We say that E is a local

˛-perimeter sub-minimizer in � if in all bounded open sets B � � we have

P˛.EIB/ � P˛.F IB/ for all F � E such that EnF �� B .

The connection with minimizers is given by the following proposition.

Proposition 2.6. E is a local ˛-perimeter minimizer in � if and only if E as

well as �nE is a local ˛-perimeter sub-minimizer in �.
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The lower semicontinuity of the ˛-perimeter implies the following result.

Proposition 2.7. Let ¹Ekºk2N andE be ˛-Caccioppoli sets in�withEk � E

and suppose that Ek locally converge to E in �. If all Ek’s are local ˛-perimeter

sub-minimizers in �, then E is a local ˛-perimeter sub-minimizer in � as well.

Furthermore, the existence of a so called sub-calibration ensures the sub-

minimality.

Definition 2.8. Let E � � be an ˛-Caccioppoli set in � with @E \� 2 C 2.

We call a vector field � 2 C 1.�;RmC1/ an ˛-sub-calibration of E in � if it

fulfills

j�.z/j � y˛ for all z 2 �;(i)

�.z/D y˛ � �E .z/ for all z 2 @E \�;(ii)

div �.z/ � 0 for all z 2 �;(iii)

where �E denotes the exterior unit normal vector field on @E.3

Proposition 2.9. If � is an ˛-sub-calibration of E in an open set O � �, then

E is a local ˛-perimeter sub-minimizer in all �.

Note that it suffices to find a sub-calibration on a subset of � which contains

E since we only deal with inner deformations. Finally, we add

Proposition 2.10. If the cone C˛
m is a local ˛-perimeter sub-minimizer in

R
m � R>0n¹x D 0º, then C˛

m is also a local ˛-perimeter sub-minimizer in the

whole R
m � R�0.

Proof. Firstly, we have for a bounded open set zB � R
m � R�0:

P˛.C
˛
mI zB/ � P˛.F I zB/

for all F � C˛
m such that C˛

mnF �� zBn¹x D 0 _ y D 0º. Let now be zF � C˛
m

with C˛
mn zF �� zB . For " > 0 we consider the set

zF" WD zF [ .C˛
m \ ¹jxj < " _ y < "º/:

3 Note that, in contrast to [4], our vector field has been weighted.
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Hence,

C
˛
mn zF" �� zBn¹x D 0 _ y D 0º;

thus with the preliminary observation we have

P˛.C
˛
mI zB/ � P˛. zF"I zB/

� P˛. zF I zB/C c1.m; ˛; zB/ � ¹"mC˛ C "˛ C "m�1º
"&0
���! P˛. zF I zB/: �

3. First proof of Theorem 1.1

Arguing in this section as in [5] we give a first proof of Theorem 1.1. Unfortu-

nately, this does not lead to our best bounds, but gives the ˛m’s as constructible

numbers. This study is based on the analysis of the cubic polynomial

Qm;˛.t / WD .m � 1/4t3 � 3.m � 1/2˛t2 � 3.m � 1/˛2t C ˛4:

Lemma 3.1. For all ˛ � 2m
3=2 C 3m � 1
.m � 1/2 , we have

Qm;˛.t / � 0 for all t � 0.

Proof. For all admissiblem 2 ¹2; 3; : : : º and ˛ > 0, the polynomial Qm;˛.�t /
has one sign change in the sequence of its coefficients

�.m � 1/4; �3.m � 1/2˛; 3.m � 1/˛2; ˛4:

Hence, due to Descartes’ rule of signs, Qm;˛ always has one negative root. On the

other hand, Qm;˛ has none, a double or two distinct positive roots.

The number of real roots of the cubic polynomial Qm;˛ is determined by its

discriminant

# D �27.m � 1/6˛6 � ¹.m� 1/2˛2 � .6m � 2/˛ C 1 � 4mº:

Summarizing, we have:

i) if # > 0, then Qm;˛ has one negative and two distinct positive roots;

ii) if # D 0, then Qm;˛ has one negative and a double positive root;

iii) if # < 0, then Qm;˛ has only one negative root.
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The statement of the lemma then follows since �# has the same sign as the

quadratic polynomial

qm.˛/ WD .m � 1/2˛2 � .6m � 2/˛ C 1� 4m;

whose sole positive root is

˛ D 2m
3=2 C 3m � 1

.m � 1/2
: �

Proof of Theorem 1.1 (with concrete bounds). Consider over Rm � R�0

the function

Fm;˛.z/ WD 1

4
¹˛2jxj4 � .m � 1/2y4º:

It is

rFm;˛.z/ D .˛2jxj2x;�.m � 1/2y3/:

Moreover, on ¹jrFm;˛ j ¤ 0º we have

rx

jxj2
jrFm;˛j D 2x

jrFm;˛ j � 3˛4jxj6x
jrFm;˛ j3

and

@

@y

1

jrFm;˛j D �3.m � 1/4y5

jrFm;˛j3 :

Hence,

div
�

� y˛ rFm;˛

jrFm;˛j

�

D �
D

rx;
y˛˛2jxj2x
jrFm;˛ j

E

C @

@y

.m � 1/2y˛C3

jrFm;˛ j

D �my
˛˛2jxj2

jrFm;˛ j �
D

x;rx

y˛˛2jxj2
jrFm;˛j

E

C .m � 1/2.˛ C 3/y˛C2

jrFm;˛j C .m � 1/2y˛C3 @

@y

1

jrFm;˛j

D jrFm;˛j�3¹�.m� 1/˛6y˛jxj8 � .m � 1/4.mC 2/˛2y˛C6jxj2

C .m � 1/2.˛ C 3/˛4y˛C2jxj6 C .m � 1/6˛y˛C8º

D �jrFm;˛j�3.m � 1/˛y˛jxj6Qm;˛

� y2

jxj2
�

¹˛jxj2 � .m � 1/y2º:



On ˛-minimizing hypercones 235

For k 2 N consider the sets

Ek WD
°

z 2 R
m � R�0WFm;˛.z/ � 1

k

±

� C
˛
m:

They all are ˛-Caccioppoli sets in R
m � R>0n¹x D 0º since

Fm;˛ 2 C 2..Rm � R>0n¹z D 0º/nM˛
m/;

whereby M˛
m D @C˛

m D ¹Fm;˛ D 0º. Furthermore, the Ek’s locally converge to

C˛
m D ¹Fm;˛ � 0º.

With Lemma 3.1 we have

Qm;˛

� y2

jxj2
�

� 0 for all x ¤ 0; y � 0; ˛ � 2m
3=2 C 3m � 1
.m � 1/2 ;

consequently, due to the above computation of the divergence, the vector filed

�C.z/ WD �y˛ rFm;˛.z/

jrFm;˛.z/j

is an ˛-sub-calibration for each Ek in ¹0 <
p
m � 1y <

p
˛jxjº.

Hence, Propositions 2.9, 2.7, and 2.10 ensure that C˛
m is a local ˛-perimeter

sub-minimizer in the whole R
m � R�0.

In view of the characterization of ˛-perimeter minimizing sets, cf. Proposi-

tion 2.6, the claim of Theorem 1.1 follows for

˛ � 2m
3=2 C 3m � 1

.m � 1/2
;

after proving the sub-minimality of the complement of C˛
m. We therefor argue as

above considering the sets

Dk WD
°

z 2 R
m � R�0WFm;˛.z/ � � 1

k

±

and the vector field

��.z/ WD y˛ rFm;˛.z/

jrFm;˛.z/j
on ¹Fm;˛ < 0º. �

Remark 3.2. All previous computations were carried out by hand.

Remark 3.3. Form � 14we have 2m
3=2C3m�1
.m�1/2 > 12

m
and 12

m
is an upper bound

for our best ˛m’s.
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Remark 3.4. Improvements of these bounds can be achieved by an alternative

auxiliary function. As seen in the proof, such a function F should fulfill the

following conditions:

1. F 2 C 2.
�

R
m � R>0n¹x D 0º

�

nM˛
m/ \ C 0.Rm � R�0/,

2. ¹F � 0º D C˛
m, ¹F D 0º D @C˛

m D M˛
m,

3. F � div
�

� y˛ rF
jrF j

�

� 0 in ¹rF ¤ 0º.

Remark 3.5. In fact, corresponding auxiliary functions can be found in papers

concerning the minimizing property of Lawson’s cones, namely

� in [16]:

F.x; y/ D .jxj2 � jyj2/.jxj2 C jyj2/; for k D h D 4;

� in [3]:

F.x; y/ D ..h � 1/jxj2 � .k � 1/jyj2/
� ..5k � h � 4/.h � 1/jxj2 � .5h � k � 4/.k � 1/jyj2/;

for k C 4 < 5h and .k; h/ ¤ .3; 5/, and for hC 4 < 5k and .k; h/ ¤ .5; 3/;

� in [1]:

F.x; y/ D ..h � 1/jxj2 � .k � 1/jyj2/ �
´

..h � 1/jxj2/ˇ in “¹F > 0º”,

..k � 1/jyj2/ˇ in “¹F < 0º”,

where ˇ was chosen in a way, that such an argumentation was admissible for

all Lawson’s cones.

� in [5]: F.x; y/ D 1
4
.jxj2 � jyj2/.jxj2 C jyj2/, for k D h � 4.

Note that

� in [3, 1] computer algebra systems were used to perform the symbolic ma-

nipulations;

� the argumentation using sub-calibration method from [5] is applicable to the

function

F.x; y/ D 1

4
..h � 1/jxj2 � .k � 1/jyj2

��

.h � 1/jxj2 C .k � 1/jyj2/

and yields the minimality of all Lawson’s cones with

.k; h/ … ¹.2; 7/; .2; 8/; .2; 9/; .2; 10/; .2; 11/; .3; 5/;
.5; 3/; .7; 2/; .8; 2/; .9; 2/; .10; 2/; .11; 2/º:
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However, we have already performed such computations above and the ex-

ceptional cases correspond to the given bounds in Lemma 3.1 for integer

values, where k and h take over the parts of m and ˛ C 1.

Remark 3.6. With the aid of a suitable parametrization Davini detected the

existence of an auxiliary function which was applicable to all Lawson’s cones. All

his computations he carried out by hand, cf. [4].

4. Second proof of Theorem 1.1 with better bounds

Since the hypercones M˛
m D @C˛

m are invariant under the action of SO.m/ on the

first m components, we will look for a foliation consisting of extremal hypersur-

faces with the same type of symmetry. In fact, recalling (1), a dimension reduction

and the special parametrization4

(2)

´

jxj D ev.t/ � cos t;

y D ev.t/ � sin t;

with v 2 C 2.0; �
2
/ yields as Euler–Lagrange equation

(3) Rv D .1C Pv2/ �
°

mC ˛ C m � ˛ � 1� .mC ˛ � 1/ cos.2t/

sin.2t/
� Pv

±

;

cf. [4], where m and ˛ take over the parts of k and h � 1.

Hence, withw WD Pv the initial problem reduces to a question about the behavior

of solutions of the following ordinary differential equation of first order:

(4) Pw D .1C w2/ �
°

mC ˛ C m � ˛ � 1 � .mC ˛ � 1/ cos.2t/

sin.2t/
�w

±

:

The existence of a solution follows, for example, from the existence of an upper

and a lower solution of (4). Arguing as Davini we will directly give an upper

solution and the difficult part is in finding the conditions on m and ˛ under which

a suitable lower solution exists. Note that we push the argumentation from [4] to

the extreme, since ˛ > 0 is real valued and not necessarily an integer. Our study

is based on the analysis of the quartic polynomial

Pm;˛.
/ WD a4

4 C a3


3 C a2

2 C a1
 C a0;

4 Note that the simplification in [4] towards the argumentation as in [2] comes from such a

parametrization.
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with

a4 D .mC ˛/3;

a3 D �.mC ˛/2.mC ˛ C 1/;

a2 D .mC ˛/.2mC 6˛ � 4m˛ � 1/;

a1 D 4m2˛ C 4˛2m � 4˛2 � 5˛ �mC 1;

a0 D �8.m� 1/˛:

Lemma 4.1. There exists an algebraic number ˛m > 2
m

such that for all

˛ � ˛m we can find a value 
m;˛ 2
�

0; 1� 1
mC˛

�

with

Pm;˛.
m;˛/ � 0:

Proof. Note that

Pm;˛.0/ D �8.m� 1/˛ < 0

and

Pm;˛

�

1� 1

mC ˛

�

D �8.m� 1/˛
mC ˛

< 0:

Further, for all admissible m 2 ¹2; 3; : : : º and ˛ > 2
m

the coefficients of Pm;˛

fulfill:

a4 D .mC ˛/3 > 0;

a3 D �.mC ˛/2.mC ˛ C 1/ < 0;

a1 D 5˛
�m2

4
� 1

�

C 4˛2.m� 1/Cm
�11

4
m˛ � 1

�

C 1 > 0;

a0 D �8.m � 1/˛ < 0;

consequently, Pm;˛.�
/ has, regardless of the value a2, always one sign change

in the sequence of its coefficients a4; � a3; a2; � a1; a0. Hence, due to Descartes’

rule of signs, Pm;˛ always has one negative root. Moreover, we have

Pm;˛

�


 C 1� 1

mC ˛

�

D Qa4

4 C Qa3


3 C Qa2

2 C Qa1
 C Qa0;
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width

Qa4 D .mC ˛/3 > 0;

Qa3 D .mC ˛/2.3mC 3˛ � 5/ > 0;

Qa2 D .mC ˛/
°

.m � 2/.3m � 4/C 2˛

m

�

m2 � 3mC 3

2
˛m

�±

> 0;

Qa0 D �8.m � 1/˛
mC ˛

< 0;

thus, regardless of the value Qa1, we always have one sign change in the sequence

of coefficients of the polynomial Pm;˛

�


C1� 1
mC˛

�

. In other words, Pm;˛ always

has one root in
�

1 � 1
mC˛

;1
�

.

All in all, Pm;˛ has none, a double or two distinct roots in the interval
�

0;

1 � 1
mC˛

�

. To determine the nature of roots of the quartic equation

(5) Pm;˛.
/ D 0

we convert it by the change of variable 
 D uC mC˛C1
4.mC˛/

to the depressed quartic

(5*) u4 C pu2 C quC r D 0;

with coefficients

p D � 1

8.mC ˛/2
¹3m2 � 10mC 11C 3˛2 C 2.19m� 21/˛º < 0;

q D � 1

8.mC ˛/3
¹˛3 C ˛2.11� 13m/ � ˛.m� 1/.13mC 23/

C.m � 3/.m � 1/2º;

r D � 1

256.mC ˛/4
¹3˛4 C 172˛3 � 1630˛2 C 204˛ C 3m4 � 180˛m3 � 20m3

�366˛2m2 C 1796˛m2 C 34m2 � 180˛3mC 1988˛2m

�1788˛mC 12m� 45º;

and consider its resolvent cubic, namely

(5**) �3 C 2p�2 C .p2 � 4r/� � q2 D 0:

We have p < 0 and p2 � 4r > 0 as

16.mC ˛/4.p2 � 4r/ D 3˛4 C 4.3m� 5/˛3 C .274m2 � 316mC 50/˛2

C 4.m � 1/.3m2 C 52mC 45/˛

C .m � 1/2.3m2 � 14mC 19/:
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Consequently, (5**) has no negative roots, since there is no sign change in the

sequence of the coefficients �1; 2p; 4r � p2; � q2. On the other hand, (5**) has

one or three positive roots depending on the sign of its discriminant

� D 4p2.p2 � 4r/2 � 4.p2 � 4r/3 � 36p.p2 � 4r/q2 C 32p3q2 � 27q4:

In view of the foregoing, it follows:

i) if � > 0, then Pm;˛ has two distinct roots in
�

0; 1� 1
mC˛

�

;

ii) if � D 0, then Pm;˛ has one double root in
�

0; 1� 1
mC˛

�

;

iii) if � < 0, then Pm;˛ has no roots in
�

0; 1� 1
mC˛

�

.

So, the statement of the lemma follows for such values of m and ˛ for which

� D �m.˛/ � 0. We have

.mC ˛/12

16˛.m � 1/ � �m.˛/

D 16.m � 1/2˛8

� 4.m� 1/.8m2 C 3/˛7

� .16m4 � 256m3 C 584m2 � 496mC 153/˛6

C 2.32m5 � 224m4 C 1238m3 � 2738m2 C 2545m � 852/˛5

� .m � 1/.16m5 C 48m4 � 1712m3 C 6672m2 � 4321m � 641/˛4

� 2.16m7 � 208m6 C 250m5 C 2302m4 � 3214m3 � 588m2

C 1566m � 123/˛3

C .16m8 � 192m7 C 984m6 � 2864m5 C 1001m4

C 4184m3 � 3870m2 C 794m� 52/˛2

� 2.m� 1/.22m6 � 148m5 C 363m4 � 381m3 C 185m2 � 60mC 2/˛

� .m � 2/3.m � 1/2m DW pm.˛/:

Note that the polynomial pm has three changes of sign in its sequence of coeffi-

cients if m D 2; : : : ; 6 and five changes if m � 7, so that Descartes’ rule of signs

is not applicable to show that pm has only one positive root. To prove the latter

we will now apply Sturm’s theorem. For that purpose we consider the canonical

Sturm chain

pm;0.˛/; pm;1.˛/; : : : ; pm;8.˛/

and count the number of sign changes in these sequences for ˛ D 0 and ˛ ! 1:
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˛ D 0 ˛ ! 1
si

g
n

o
f

pm;0.˛/
0 m D 2

� m � 3
C

pm;1.˛/ � C

pm;2.˛/ C C

pm;3.˛/ C � m D 2; : : : ; 28

C m � 29

pm;4.˛/
� m D 2

C m � 3
�

pm;5.˛/

� m D 2; 3

C m D 4; 5

� m � 6

� m D 2; : : : ; 4

C m D 5; : : : ; 10

� m � 11

pm;6.˛/
C m D 2

� m � 3

C m D 2; : : : ; 22

� m � 23

pm;7.˛/
C m D 2; : : : ; 6

� m � 7
C

pm;8.˛/ C C

sign changes 3 2

Hence, due to Sturm’s theorem, the polynomial pm has always 3� 2 D 1 positive

root which we denote by ˛m.
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Moreover we have

m8 � pm

� 2

m

�

D � 25m14 � 80m13 C 1611m12 � 5114m11 � 2544m10

� 19620m9 C 65904m8 � 135888m7 C 228832m6

� 215760m5 C 111152m4 � 18688m3 � 7232m2

� 6656mC 4096 < 0

and

m8 � pm

�12

m

�

D 1775m14 � 23560m13 C 74111m12 C 324326m11

� 1065244m10 � 8010880m9 C 62969424m8

� 283180848m7 C 790863552m6 � 674075520m5

� 1637169408m4 C 2203656192m3 C 5992869888m2

� 13329432576mC 6879707136 > 0 for all m � 2,

thus,
2

m
< ˛m <

12

m
: �

Remark 4.2. The lengthy symbolic manipulations were completed here with

the aid of the Wolfram Language on a Raspberry Pi 2, Model B. The following

computations will again be carried out by hand:

Proof of Theorem 1.1. Denoting the right-hand side of (4) byHm;˛.t; w/we

see that

gm;˛.t / WD .mC ˛/ � sin.2t/

.mC ˛ � 1/ cos.2t/� .m � ˛ � 1/

fulfills

Hm;˛.t; gm;˛.t // D 0 on .0; tm;˛/ [
�

tm;˛ ;
�

2

�

;

where

tm;˛ WD 1

2
arccos

�m � ˛ � 1
mC ˛ � 1

�

D arctan

r

˛

m � 1:

Since gm;˛
0.t / � 0, the function gm;˛ is an upper solution of (4). As we are

interested in a solution of (4), which has the same growth properties as gm;˛ , it

is natural to ask for a lower solution of the form 
 � gm;˛ with 
 2 .0; 1/, i.e. we

should have

(6) 
 � gm;˛
0.t / � Hm;˛.t; 
 � gm;˛.t // for all t 2 .0; tm;˛/ [

�

tm;˛;
�

2

�

.
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For t ¤ tm;˛ this is equivalent to

(6*) a � cos2.2t/� 2b � cos.2t/C c � 0;

with

a D .1 � 
/..mC ˛ � 1/2 � 
2.mC ˛/2/;

b D .m � ˛ � 1/.mC ˛ � 1 � 
.mC ˛//;

c D .1 � 
/
2.mC ˛/2 � 2
.mC ˛ � 1/C .1� 
/.m� ˛ � 1/2:

Note that (6*) is valid on
�

0; �
2

�

as long as 
 2
�

0; 1� 1
mC˛

�

. The latter is equivalent

to a > 0. Hence, the left hand side of (6*) is bounded below by

c � b2

a
:

In other words, to find an adequate lower solution, it suffices to find conditions on

m and ˛ under which a 
 2
�

0; 1� 1
mC˛

�

exists with

c � b2

a
� 0 Pm;˛.
/ � 0;

))
m�2;

˛> 2
m


2.0;1/

and Lemma 4.1 yields the desired conclusion. Consequently, we gain for 
m;˛:


m;˛ � gm;˛
0.t / � Hm;˛.t;
m;˛ � gm;˛.t // on .0; tm;˛/ [

�

tm;˛;
�

2

�

;

i.e. the function 
m;˛ � gm;˛ is a lower solution of (4), so that we can proceed as

in [4]: Due to results from classical ordinary differential equations theory it follows

the existence of aC 1-solution wm;˛ of (4) on .0; tm;˛/[
�

tm;˛;
�
2

�

. Moreover, wm;˛

satisfies

0 < 
m;˛ � gm;˛.t / � wm;˛.t / � gm;˛.t / on .0; tm;˛/

and

0 > 
m;˛ � gm;˛.t / � wm;˛.t / � gm;˛.t / on
�

tm;˛ ;
�

2

�

;

as well as

lim
t%tm;˛

wm;˛.t / D C1; lim
t&tm;˛

wm;˛.t / D �1;

lim
t&0

wm;˛.t / D 0 D lim
t% �

2

wm;˛.t /:
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Let us denote by vm;˛ the antiderivative of wm;˛ with

lim
t&0

vm;˛.t / D 0 and lim
t% �

2

vm;˛.t / D 0:

Reconstructing the auxiliary function from its level curves which are parametrized

by
´

jxj D � � evm;˛.t/ � cos t;

y D � � evm;˛.t/ � sin t;

with � > 0 and t 2 .0; tm;˛/ [ .tm;˛;
�
2
/, we gain

Fm;˛.x; y/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

p

jxj2 C y2 � e�vm;˛.arctan y
jxj

/
; 0 < arctan

y

jxj < tm;˛;

�
p

jxj2 C y2 � e�vm;˛.arctan y
jxj

/
; tm;˛ < arctan

y

jxj <
�

2
:

Note that, since vm;˛ satisfies (3), we obtain

div
�

� y˛ rFm;˛

jrFm;˛j

�

D 0; on .Rm � R>0n¹x D 0º/nM˛
m:

We than conclude as in our first proof above because Fm;˛ has the desired prop-

erties, cf. Remark 3.4. �

Remark 4.3. The crucial ingredient in our argumentation was to find condi-

tions onm � 2 and ˛ > 0 under which a 
 2 .0; 1/ exists such that (6*) is fulfilled

on .0; tm;˛/ [ .tm;˛;
�
2
/. For t ! tm;˛ the inequality (6*) is equivalent to

.1� 
/
 � 2.mC ˛ � 1/

.mC ˛/2
:

The last inequality has solutions in .0; 1/ as long as mC ˛ � 4C
p
8. Hence,

max¹4�mC
p
8; 0º

are lower bounds for the optimal ˛m’s. With our values we have already reached

the lower bounds quite close, so, for m D 4 we have

˛4 �
p
8 <

1

1000
:
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