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On «-minimizing hypercones
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ABsTrRACT — In this paper we considerably extend the class of known «-minimizing hy-
percones using sub-calibration methods. Indeed, the improvement of previous results
follows from a careful analysis of special cubic and quartic polynomials.
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1. Introduction

Let Py and P; be two distinct points in R x Rs¢ and consider for « > 0 the
variational problem

/y"‘ d¥#'(x,y) — min
within the class
€ = {R:[0, 1] — R x R5¢ Lipschitz s.t. R(0) = Py, &(1) = P1}.

Hence, with o = 0 we are looking for the shortest curve joining Py and P;, with
o= % we gain a parametric version of the brachistochrone-problem, and the case
a = 1 leads to rotationally symmetric minimal surfaces in R3. On the other hand,
the variational integral with o = 1 appears when considering the potential energy
of heavy chains.
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Of course, the shortest path between Py and P; is a line, and the minimizing
curve in the case ¢ = % was named brachistochrone. However, the variational
problem with & = 1 may possess two distinct minimizers, namely a catenary and
a Goldschmidt curve, which consists of three straight lines, cf. [11, Chapter 8§,
Section 4.3].

In order to prove the minimality of the above mentioned curves it is sufficient
to embed the corresponding curve into a field of extremals,! i.e. into a foliation
of extremal curves, cf. [10, Chapter 6, Section 2.3]. In fact, this can be directly
justified by the divergence theorem. For this purpose let us look at the vector field

S(x’y) = ya'v(x’)’),

where v(x, y) are the normal fields orienting the curves from the foliation. Since
all these curves are extremals, the vector field £ is divergence-free. The conclusion
then follows by applying the divergence theorem to the vector field & on the open
set which is bounded by a critical curve and a comparison curve. In geometric
measure theory setting, the critical curve is said being calibrated by &, and the
vector field £ is called calibration.?

In this paper we consider the higher dimensional variational problem and prove
the minimizing property of special hypercones. Therefor we will construct suitable
foliations. The crux hereby is to find an auxiliary function whose level sets are
extremals.

First, we will weaken our considerations and look at “inner” and “outer” vari-
ations separately as in [5]. This gives simplified proofs and yields sub-solutions
and sub-calibrations. The advantage of this weakened ansatz is that we can gain
specific auxiliary functions. Moreover, we will show that a careful analysis of ex-
tremals as in [4] provides better results to our variational problem but loses the
concrete representation of an auxiliary function.

1.1 — The main result

Letm € {2,3,...} and let M be an oriented Lipschitz-hypersurface in R” x Rx¢.
Its a-energy is given by

(1) Ea(M) = / Y d I (),

M

! An argument which goes back to Weierstrass.

2 Such method of conclusion is applicable even in a more general context and is well-known
as Federer’s differential form argument, cf. [9, 5.4.19].
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where we use the notation z := (x,y) € R™ x Rso and denote by H™ the
m-dimensional Hausdorff measure. We show

THEOREM 1.1. There exists an algebraic number o, > % such that the cone

o

CY = {0 <y< . |x|}, with arbitrary a > oy,

m—1
is a local a-perimeter minimizer in R™ x Rxo.

RemAaRrk 1.2. For « an integer, our result is equivalent to the area-minimizing
property of the corresponding rotated cones in R”T%*! Indeed, with our lower

bounds presented in Remark 1.5 we recover the area-minimizing property of all
Lawson’s cones, i.e. of the cones

Cin = {(x,y) € RE xR" | (h = DIx|* = (k = DIy[*)

withk,h > 2andk+h > 9or (k,h) € {(3,5), (5,3), (4,4)},cf. [2, 14, 17], where
k and & take over the parts of m and o 4 1. For further reading on area-minimizing
cones, see also [13] and the references contained therein.

Remark 1.3. Following the minimal surfaces theory we will introduce the
terminology of a local o-perimeter minimizer in the next section. Alternatively,
we could say in Theorem 1.1 that the hypercone

Mg = 0C% ={vVm—1-y = a-|x|}, witharbitrary « > ap,

is o-minimizing in R x R, where the boundary of Cf, is seen with respect to
the induced topology.

RemARrk 1.4. In our proof, we will specify polynomials p,, which characterize

the corresponding «,, as the unique positive root. Moreover, we show «,, < %,

thus «,,, — 0 with m — oo.

Remark 1.5. First (integer) bounds can be found in [6], namely

ar =11, a3=6, ay=as=as=3, a7y=--=ay1 =2,

oy =1, form > 12.
Shortly thereafter, they were corrected in [7] to

=6, az=4, as =3, as=owg=2, o =1, form=>7.
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Our investigations show, that they can be improved to

oy ~ 5.881525129, a7 ~ 0.963594772, a2 ~ 0.357996307,
a3 ~ 3.958758640, as ~ 0.728989161, o13 ~ 0.317117533,
a4 ~ 2.829350458, a9 ~ 0.581153278, s

as ~ 1.969224627, a0 ~ 0.481712568, a2017 ~ 0.001377480,
as ~ 1.352500103, a1 ~ 0.410855526,

ReMARK 1.6. Forallm = 2,3, ... we have m 4+ a,, > 4+ /8, cf. Remark 4.3,
so, direct calculations yield that all hypercones M$,, with & > «,,, are (of course)
Eq-stable, see also [8, p. 168].

RemMARK 1.7. Although M3 is €s-stable, the corresponding cone €3 is not
a (local) 5-perimeter minimizer in R? x Rxo. Similarly, the hypercone M} is
&1-stable, but the cone Gé does not minimize the I-perimeter in R® x R>o,
cf. [7]. Hence, the optimality question of our «,,’s still remains open.

2. Notations and preliminary results

Let 2 € R™ x R0 be open (with respect to the induced topology) and let « > 0.
We say that f € BV*(Q) if f € L;(Q2) and the quantity

/Q y¥|Df| = sup { [ 1@ avends v e cl@rm .y < y“}
Q

is finite. For a Lebesgue measurable set £ € R™ x R we call

Pu(E:2) = [ 71Dl
Q
the a-perimeter of E in Q. Furthermore, we call E an «-Caccioppoli set in Q if

E has alocally finite o-perimeter in 2, i.e. yg € BV} ().

ExampLE 2.1. By the divergence theorem, if £ € R™ x Rs¢ is an open set
with regular boundary, then

Pu(E; Q) = E4(OE N Q)
for all open sets €2.

RemAaRrk 2.2. Of course, several properties of the «-perimeter can be directly
transferred from the known properties of the perimeter, cf. [12, 15].
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Remark 2.3. Note that there are «-Caccioppoli sets which are not Cacciop-
poli, i.e. do not possess a locally finite perimeter: In an arbitrary neighborhood of
the origin consider the set

o0
A::UAn,

n=0

where A, is a triangle with vertices

0 (0 (e e )

Hereby, the A,, are chosen in such a way that

1
04, N (Rx R = —.
| n ( X >0)| n+1

On the other hand, the «-perimeter of A is dominated by the convergent series

3 ! 1 1 a/2
,; (@+ 1) +1) (4(n T2 22,,+4) .

DEeriniTION 2.4. Let E be an a-Caccioppoli set in 2. We say that E is a local
a-perimeter minimizer in Q2 if in all bounded open sets B € Q2 we have

Pu(E; B) <Py (F; B) forall F suchthat F A E CC B.

2.1 — Under weakened conditions

The following definitions and results are analogous to the observations in [5,
Section 1]. We only prove one proposition, which was not used in [5].

DEerintTION 2.5. Let E be an a-Caccioppoli set in 2. We say that E is a local
a-perimeter sub-minimizer in 2 if in all bounded open sets B € Q2 we have

Po(E; B) <Py(F;B) forall F C E suchthat E\F CC B.
The connection with minimizers is given by the following proposition.

ProrosiTioN 2.6. E is a local a-perimeter minimizer in Q if and only if E as
well as Q\ E is a local a-perimeter sub-minimizer in Q.
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The lower semicontinuity of the a-perimeter implies the following result.

ProposiTioN 2.7. Let { E }rew and E be a-Caccioppoli sets in Q with Ey, C E
and suppose that Ey locally converge to E in Q. If all Ey’s are local o-perimeter
sub-minimizers in 2, then E is a local a-perimeter sub-minimizer in Q as well.

Furthermore, the existence of a so called sub-calibration ensures the sub-
minimality.

DEeriNiTION 2.8. Let E C Q be an a-Caccioppoli set in Q with dE N Q € C2.
We call a vector field § € CY(Q,R™*!) an a-sub-calibration of E in Q if it
fulfills

(i) [E(2)| < y* forall z € ,
(ii) E(z)=y% -vg(z) forallz € E N,
(iii) divé(z) <0 forall z € Q,

where vg denotes the exterior unit normal vector field on dE .3

ProvrosiTion 2.9. If € is an a-sub-calibration of E in an open set O C 2, then
E is a local a-perimeter sub-minimizer in all Q.

Note that it suffices to find a sub-calibration on a subset of 2 which contains
E since we only deal with inner deformations. Finally, we add

ProposiTioN 2.10. If the cone C, is a local a-perimeter sub-minimizer in
R™ x Rso\{x = 0}, then C% is also a local a-perimeter sub-minimizer in the
whole R™ x Rxo.

Proor. Firstly, we have for a bounded open set B C R™ x Ro:
?a(e%; E) < Pu(F; E)

for all F < €% such that C\F CC B\{x =0V y = 0}. Let now be F C (G
with C¥\F CC B. For ¢ > 0 we consider the set

F, :=17U(G‘,"nﬂ{|x|<EVy<8}).

3 Note that, in contrast to [4], our vector field has been weighted.
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Hence,
CY\F, cCc B\{x =0V y =0},

thus with the preliminary observation we have
Pa(Chi B) < Pa(Fe: B)
< Pa(F; B) + c1(m, o B) ("% 4 6% + &™)

e\(0 ~ ~
X P (F: B). O

3. First proof of Theorem 1.1

Arguing in this section as in [5] we give a first proof of Theorem 1.1. Unfortu-
nately, this does not lead to our best bounds, but gives the «,,’s as constructible
numbers. This study is based on the analysis of the cubic polynomial

Qo (t) == (m —D*3 = 3(m — 1)?at® = 3(m — )a’t + a*.

2m*? 4+ 3m — 1
LemwMma 3.1. Forall o > % we have
m —

Qma(t) >0 forallt >0.

Proor. Forall admissiblem € {2,3,...}anda > 0, the polynomial Q,, o (—?)
has one sign change in the sequence of its coefficients

—(m—=1* =3m-1D%«, 3(m-—1a? o

Hence, due to Descartes’ rule of signs, Q, o always has one negative root. On the
other hand, Q, o has none, a double or two distinct positive roots.

The number of real roots of the cubic polynomial Q,,  is determined by its
discriminant

O = —=27(m — 1% - {(m — 1)?a? — (6m —2)a + 1 — 4m}.

Summarizing, we have:
i) if ¥ > 0, then Q,, o has one negative and two distinct positive roots;
ii) if & = 0, then Q,, o has one negative and a double positive root;

iii) if ¥ < 0, then Q,, « has only one negative root.
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The statement of the lemma then follows since —¢ has the same sign as the
quadratic polynomial

Q) == (m —1)%a? — (6m —2)a + 1 — 4m,
whose sole positive root is

_2m?4+3m—1

m—1)? -

Proor oF THEOREM 1.1 (WITH CONCRETE BOUNDS). Consider over R” x Rs¢
the function

Fna(2) = e lxl* = (n — 1754,

It is
VFma(z) = (@®|x]*x, —(m — 1)*y).

Moreover, on {|V Fy,, o| # 0} we have

v X2 2x 3at|x|®x
IVEnal  |VEnal |VFnal?
and
0 1 3m—-D*y
30V |VFnal  |VEmal?
Hence,
VF,
diV(— o mﬂ)
Y Vel
B <V yaa2|x|2x> P (m_1)2yot+3
¥ VEnal 3y  |VEnql
o2 2 o2 2
:_mm_<x,vxm>
|V F ol |V F ol

—1)? 3)y*t2 a1
(m ) (a + )y + (m _ 1)2ya+3_
|V Fial 0y |V Fp.ql

= |V Fpal 2 {—(m — Daly®|x[® — (m — D*(m + 2)a y**°|x|?
+ (m— D> + 3)a*y*T2|x|8 + (m — 1)0ay®™?)

2
- y
= IV Final 01 = Doy x| Qa5 el = (m = 12},
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For k € IN consider the sets
Ep = {z € R™ x Rao: Fina(2) > %} c e
They all are a-Caccioppoli sets in R x R~o\{x = 0} since
Fma € C2((R™ x Rxo\{z = 0})\M%,),

whereby M%, = 0C% = {Fu o = 0}. Furthermore, the E;’s locally converge to
G;xn = {Fm,a > 0}'
With Lemma 3.1 we have
2 2m*? 4+ 3m — 1

y
Qm,a(W)zo forallx #0,y > 0, > m—12

consequently, due to the above computation of the divergence, the vector filed

o VEna(2)

S+(2) =~y |VFm,a(Z)|

is an a-sub-calibration for each Ej in {0 < v/m — 1y < J/o|x|}.

Hence, Propositions 2.9, 2.7, and 2.10 ensure that C%, is a local a-perimeter
sub-minimizer in the whole R x R>o.

In view of the characterization of a-perimeter minimizing sets, cf. Proposi-
tion 2.6, the claim of Theorem 1.1 follows for

2m*? 4 3m — 1
«>
- (m-12

after proving the sub-minimality of the complement of C% . We therefor argue as
above considering the sets

1
Dy = {Z € R" X Rxo: Fn,a(z) < _E}

and the vector field

o VFna(2)

O =Y S @)

on {Fy.qo < 0}. O

Remark 3.2. All previous computations were carried out by hand.

3
REMARK 3.3. Form > 14 we have 22 2+3m=1
(m—1)

for our best «;;,’s.

12 12
> <= and .= is an upper bound
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RemARrk 3.4. Improvements of these bounds can be achieved by an alternative
auxiliary function. As seen in the proof, such a function F should fulfill the
following conditions:

1. F e C2((R™ x R>o\{x = 0})\M%) N C°(R™ x Rxo),
2.{F >0} =CS,{F =0} = 9C%, = MY,
3. F-div(—y“%) <0in{VF # 0}.
RemARrk 3.5. In fact, corresponding auxiliary functions can be found in papers

concerning the minimizing property of Lawson’s cones, namely
e in[16]:

F(x,y) = (x> = lyP)(x]> + |y[?). fork =h=4
e in [3]:

F(x,y) = ((h=D|x]> = (k = D|y[?)
((5k —h = 4)(h = D|x|> = (Sh—k —4)(k — D|y]*),
fork + 4 < 5h and (k, h) # (3,5), and for h + 4 < 5k and (k, h) # (5, 3);
e in[1]:

(h=DIx)P in “(F > 0}",

’ = ((h — 2 k — 2y.
F(x,y) (( 1)]x] ( DIy?) {((k_1)|y|2)ﬂ in “{F < 0}”,

where 8 was chosen in a way, that such an argumentation was admissible for
all Lawson’s cones.

e in[5]: F(x,y) = (x> = [y[» (x> + [y|?), fork = h > 4.
Note that

e in [3, 1] computer algebra systems were used to perform the symbolic ma-
nipulations;

o the argumentation using sub-calibration method from [5] is applicable to the
function

1
Flx.y)= 2 ((h— DIx|? = (k = DIyP) (= DIx[> + k= D]yl
and yields the minimality of all Lawson’s cones with

(k,h) £{(2,7),(2,8),(2,9),(2,10),(2,11), (3.5),
(5.3).(7.2).(8.2). (9. 2), (10,2), (11,2)}.
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However, we have already performed such computations above and the ex-
ceptional cases correspond to the given bounds in Lemma 3.1 for integer
values, where k and A take over the parts of m and o + 1.

Remark 3.6. With the aid of a suitable parametrization Davini detected the
existence of an auxiliary function which was applicable to all Lawson’s cones. All
his computations he carried out by hand, cf. [4].

4. Second proof of Theorem 1.1 with better bounds

Since the hypercones M% = 9C¢, are invariant under the action of SO(m) on the
first m components, we will look for a foliation consisting of extremal hypersur-
faces with the same type of symmetry. In fact, recalling (1), a dimension reduction
and the special parametrization*

) lx| =e*® . cost,
y =e'® .sing,

with v € C?(0, Z) yields as Euler—Lagrange equation

—a—1—(m+a—1)cos(2r) ,l.)}

. 2 m
B3) b= (1+1?) {m+a+ G

cf. [4], where m and « take over the parts of k and & — 1.
Hence, with w := 0 the initial problem reduces to a question about the behavior
of solutions of the following ordinary differential equation of first order:

m—a—l—(m+o¢—1)cos(2t).w}

. 2y .
@ = (1 +w?) {m+a+ YT

The existence of a solution follows, for example, from the existence of an upper
and a lower solution of (4). Arguing as Davini we will directly give an upper
solution and the difficult part is in finding the conditions on m and @ under which
a suitable lower solution exists. Note that we push the argumentation from [4] to
the extreme, since « > 0 is real valued and not necessarily an integer. Our study
is based on the analysis of the quartic polynomial

Ppo(y) = asy* +aszy® + azy* + a1y + ao,

4 Note that the simplification in [4] towards the argumentation as in [2] comes from such a
parametrization.
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with
as = (m + a)?,
as = —(m +a)>(m+ o + 1),
a = (m+a)2m+ 60 —4dma — 1),
a, = 4mPa + 40*m —4a% — 50 —m + 1,

ap = —8(m — 1)a.

LemMma 4.1. There exists an algebraic number o, > % such that for all

a > oy, we can find a value yy o € (0, 1— ”Hl_a) with

Pm,a()’m,a) > 0.

Proor. Note that
Ppo(0)=—-8m—1a<0
and

0.

1 ):_8(m—1)a -

P (1—
me m+ o m+ o

Further, for all admissible m € {2,3,...} and o > % the coeflicients of P, o
fulfill:

as = (m+a)’ >0,

azs=—(m+a)*m+a+1) <0,

2

a, = S(x(mT— 1) + 4o (m — 1)+m(%ma— 1) +1>0,

ap = —8(m— 1) <0,

consequently, P, o(—y) has, regardless of the value a,, always one sign change
in the sequence of its coeflicients a4, —as, a», —ay, ag. Hence, due to Descartes’
rule of signs, P, , always has one negative root. Moreover, we have

1 - - - - N
Pm,a()’ +1-— —) = a4y* + sy + ary? + ary + do.
m—+ o
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width
s = (m+a) >0,

as = (m+ a)’(3m + 3a — 5) > 0,

dp = (m —i—oz){(m —2)3m —4) + %(mz—&n + %am)} > 0,

&(m —
B (m 1)o¢<
m+ o

ap = 0,

thus, regardless of the value a;, we always have one sign change in the sequence
of coefficients of the polynomial Py, o (y +1— 52=). In other words, Py, o always
has one root in (1 — —1—. 00).

All in all, P, , has none, a double or two distinct roots in the interval (O,

1-— m+ra) To determine the nature of roots of the quartic equation

5) Pm,(x(]/) =0

we convert it by the change of variable y = u + Z’(fnﬁt; to the depressed quartic
(5%) u* + pu> +qu+r =0,
with coeflicients

1 2 2
— 3 2
+(m —3)(m —1)7},
1
r = _m{m“ + 1720 — 16300 + 204« + 3m* — 180am>® — 20m?>

—36602m? + 1796am? + 34m? — 18003 m + 1988c’m
—1788am + 12m — 45},

and consider its resolvent cubic, namely
(5%%) &> +2p8% + (p* — 41t —q* = 0.
We have p < 0 and p%2 —4r > O as
16(m 4+ a)*(p? — 4r) = 3a* + 4(3m — 5)a® + (274m? — 316m + 50)a>
+ 4(m — 1)(3m? + 52m + 45)«

+ (m —1)2(Bm? — 14m + 19).
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Consequently, (5**) has no negative roots, since there is no sign change in the
sequence of the coefficients —1,2p, 4r — p2, — g2. On the other hand, (5%*) has
one or three positive roots depending on the sign of its discriminant

0 = 41)2(1)2 - 4r)2 - 4(p2 - 4r)3 - 3)61)(1)2 - 4r)q2 + 32p3q2 - 27q4.

In view of the foregoing, it follows:

i) if 6 > 0, then P,, 4 has two distinct roots in (0,1 — ——);

m+o

ii) if 6 = 0, then Py, o has one double root in (0,1 — —1-);

m+o

iii) if 0 < 0, then Py, 4 has no roots in (0,1 — ——).

So, the statement of the lemma follows for such values of m and « for which
0 = 6 () > 0. We have

(m + a)'?
Toamn—1) (@
= 16(m — 1)%a®

—4(m — 1)(8m? + 3)a”

— (16m* —256m> + 584m? — 496m + 153)a®

+2(32m> — 224m* + 1238m> — 2738m? + 2545m — 852)ar®

— (m—1)(16m° 4 48m* — 1712m> + 6672m? — 4321m — 641)a*

—2(16m” —208m® + 250m> + 2302m* — 3214m> — 588m?
+ 1566m — 123)a>

+ (16m® —192m” + 984m® — 2864m> 4 1001m*
+ 4184m> — 3870m* 4 794m — 52)a®

—2(m — 1)(22m® — 148m> + 363m* — 381m> + 185m? — 60m + 2)a
—(m=2>(m—1)’m = pm(a).

Note that the polynomial p,, has three changes of sign in its sequence of coeffi-
cients if m = 2,..., 6 and five changes if m > 7, so that Descartes’ rule of signs
is not applicable to show that p,, has only one positive root. To prove the latter
we will now apply Sturm’s theorem. For that purpose we consider the canonical
Sturm chain

Pmo(®), Ppmi(@), ..., Pms(@)

and count the number of sign changes in these sequences for « = 0 and @ — oo:
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a=0 | a — 00
. i
m = |
Pm,O(a) I +
— m>3 |
— |
c -~ —-~"—-—"—-"""r-"~"=">"=-~=-"=-=-"=—-"=-~= I
= |
o0 Pm,l(a) — | +
x |
__________________ 4o -
|
Pm2(@) + | +
e b __d____________|
|
- =2,...,28
Pm.3() + !
: + m>29
__________________ d - - - - - - - - - - - _{
|
— m = |
Pm,4(a) I -
+ m=>=3 I
|
__________________ G _____|
|
- m=2,3 ! - m=2,...,4
|
Pm,s(@) + m=4,5 I+ m=5,...,10
|
|
__________________ D m o ____]
|
+ m | + m=2, ,22
Pm,s(0t) I
- m>3 | - m>23
|
__________________ Hmmmm e ]
|
+ =2,...,6
Pm.7() : +
- m>7 |
|
e —
|
Pm.g(a) + | +
|
i
sign changes 3 ! 2

Hence, due to Sturm’s theorem, the polynomial p,, has always 3 —2 = 1 positive

root which we denote by «,.
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Moreover we have

2
m® -pm(—) = —25m'* —80m"'3 + 1611m'? — 5114m"" — 2544m*°
m

—19620m° + 65904m® — 135888m’ + 228832m°
—215760m> + 111152m* — 18688m> — 7232m?
— 6656m + 4096 < 0

and
12
m® -pm(—) — 1775m"™ — 23560m'3 + 74111m'2 + 324326m"!
m

— 1065244m'® — 8010880m° + 62969424 m?®
—283180848m” + 790863552m® — 674075520m>

— 1637169408m* + 2203656192m> + 5992869888m>
— 13329432576m + 6879707136 > 0 for all m > 2,

thus,
2 12

— <y < —. O
m m
RemARrk 4.2. The lengthy symbolic manipulations were completed here with
the aid of the Wolfram Language on a Raspberry Pi 2, Model B. The following
computations will again be carried out by hand:

Proor oF THEOREM 1.1. Denoting the right-hand side of (4) by H,, o (¢, w) we
see that

sin(2t)
m+aoa—1)cos(2t)—(m—a —1)

1 m—o—1 o
tm.q ‘= — arccos (7) = arctan ,/ ——.
’ 2 m+aoa—1 m—1

Since gm.o'(f) > 0, the function g, is an upper solution of (4). As we are
interested in a solution of (4), which has the same growth properties as g o, it
is natural to ask for a lower solution of the form y - g,, o wWith y € (0, 1), i.e. we
should have

gma(t) = (m+a)-

fulfills
Hm,oz(ty gm,a(t)) =0 on (01 tm,a) ) (tm,ay

o

where

6)  7-gma'(t) < Hmalt.V - gma(t)) foralltE(O,tm,a)u<tm,a,%).
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For t # t,, o this is equivalent to
(6%) a - cos?(2t) —2b - cos(2t) + ¢ > 0,
with
a=1-y)((m+a—1)=y*m+a)?),
b=m—-a—-1)m+a—1—-ym+a)),
c=0-p)y2’m+a)-2ym+a—1)+1-y)(m—a-—1)>

Note that (6*)is valid on (0, Z) aslongas y € (0, 1—-1—). The latter is equivalent

m+o

to a > 0. Hence, the left hand side of (6¥%) is bounded below by
b2

c— —.
a

In other words, to find an adequate lower solution, it suffices to find conditions on

1

m and o under which a y € (0,1 — =) exists with

2 y€(0,1)
-2 >0 Puay) >0,

m>2,

a2

and Lemma 4.1 yields the desired conclusion. Consequently, we gain for y,, o:

T
VYma gm,(x/([) = Hm,oz(ty Vm,o - gm,a(t)) on (01 tm,a) U (tm,ou 5)7

i.e. the function y,, o - gm.« is a lower solution of (4), so that we can proceed as
in [4]: Due to results from classical ordinary differential equations theory it follows
the existence of a C !-solution wy, ¢ of (4) on (0, tn,¢) U (tm,«. % ). Moreover, wy, o
satisfies

0< Vm,o - gm,a(t) =< wm,a(t) < gm,a(t) on (0, tm,a)

and
T
0> Vm,o gm,a(t) = wm,a(t) > gm,a(t) on (tm,a, §>,
as well as
lim wp () = +o0, lim wpq(t) = —o0,
ttm.« N\t

lim w 1) =0= lim w t).
lim (1) = 0 = lim w1
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Let us denote by v,, o the antiderivative of w, , with

limvye(t) =0 and lim v, () =0.
t\0 t/'%

Reconstructing the auxiliary function from its level curves which are parametrized
by

|x] = A -evme® . cost,
y = A-evma® ging,

with A > 0andz € (0,tm.0) U (tm,a, 5), We gain

_ Y
/|x|2 +y2-e vm.o(arctan o) o arctan|y—| <Ima:
X

— ¥ T
—V|x|2 + y2 - e vmearctan 5g) tma < arctan|y—| <3
X

Fm,(x(xa y) =

Note that, since v,, o satisfies (3), we obtain

VFpa
|V Fp ol

div ( —y¢ ) =0, on(R"™ xRso\{x = 0})\Mj,.

We than conclude as in our first proof above because Fy, , has the desired prop-
erties, cf. Remark 3.4. O

RemaRrk 4.3. The crucial ingredient in our argumentation was to find condi-
tions onm > 2 and @ > O under which a y € (0, 1) exists such that (6¥) is fulfilled
on (0, ty.o) U (tm.a, %). For t — t,, o the inequality (6*) is equivalent to

2m+a—1)
(I_Y)yz(m—l——a)z

The last inequality has solutions in (0, 1) as long as m 4+ « > 4 + /8. Hence,
max{4 —m + /8, 0}

are lower bounds for the optimal «,,,’s. With our values we have already reached
the lower bounds quite close, so, for m = 4 we have

Acknowledgement. This paper is a part of my Ph.D. thesis written under su-
pervision of Prof. Ulrich Dierkes.
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