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Sign-changing solutions

of boundary value problems

for semilinear �
-Laplace equations

Duong Trong Luyen (�)

Abstract – In this article, we study the multiplicity of weak solutions to the boundary

value problem
8

<

:

�G˛u D g.x; y; u/ C f .x; y; u/ in �;

u D 0 on @�;

where � is a bounded domain with smooth boundary inR
N .N � 2/; ˛ 2 N; g.x; y; �/;

f .x; y; �/ are Carathéodory functions and G˛ is the Grushin operator. We use the lower

bounds of eigenvalues and an abstract theory on sign-changing solutions.
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1. Introduction

Boundary value problems for semilinear elliptic equations were studied in [1, 27]

(see also the references therein). Many publications [4, 5, 6, 7, 8, 10, 11, 12, 18,

26, 29, 31] are devoted to the study of the existence of sign-changing solutions of

classical elliptic boundary value problems such as

��u D f .x; u/ in �; u D 0 on @�;
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where f 2 C. x� � R;R/, � � R
N .N � 2/ is a bounded domain with smooth

boundary @�. There have been several methods developed in studying sign-

changing solutions of nonlinear elliptic equations, such as the invariant sets of

descending flow method developed by Liu and Sun [5, 18, 31], and the minimax

method which is established by Berestycki and Lions in the classical paper [8].

One of the classes of degenerate elliptic equations that has been studied widely

in recent years is the class of equations involving an operator of the Grushin type

(see [14])

G˛ WD �x C jxj2˛�y; ˛ � 0:

Note that G0 � � is the Laplacian operator, and G˛, when ˛ > 0, is not

elliptic in domains intersecting the surface x D 0. Many aspects of the theory

of degenerate elliptic differential operators are presented in monographs [36, 37]

(see also some recent results in [2, 17, 21, 22, 23, 33, 34, 35, 20, 13, 19, 25]).

In this paper, we consider the existence of sign-changing solutions of the

Dirichlet boundary value problem

�G˛u D g.x; y; u/ C f .x; y; u/ in �;(1.1)

u D 0 on @�;(1.2)

where � is a bounded domain with smooth boundary inR
N1 �R

N2 WDR
N ; N1; N2;

˛ 2 N; � \ ¹.x; y/ 2 R
N W x D 0º ¤ ;; and

�x WD

N1
X

iD1

@2

@x2
i

; �y WD

N2
X

j D1

@2

@y2
j

; jxj2˛ WD
�

N1
X

iD1

x2
i

�˛

;

and the nonlinearity f is a real Carathéodory function on � � R and satisfies the

following conditions:

(A1) there exist p 2 .2; 2�
˛/, and constants C1; C2 > 0 such that

jf .x; y; �/j � C1 C C2j�jp�1 almost everywhere for .x; y; �/ 2 � � R;

where 2�
˛ WD 2N˛

N˛�2
and N˛ WD N1 C .1 C ˛/N2 > 2I

(A2) f .x; y; �/ D ı.j�j/, uniformly in .x; y/ 2 x�, as � ! 0 and f .x; y; �/� � 0

for all � 2 R and a.e. .x; y/ 2 �;

(A3) there exists a constant � > 2 such that

0 � �F.x; y; �/ � �f .x; y; �/; for all .x; y/ 2 x�; � 2 R n ¹0º;

where F.x; y; �/ D
R �

0
f .x; y; �/d� ;
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(A4) f .x; y; ��/ D �f .x; y; �/ for all .x; y; �/ 2 x� � R;

(A5) g W � � R ! R is a Carathéodory function. There exists � < �
2

such that

jg.x; y; �/j � C.1 C j�j� /; for all � 2 R and a.e. .x; y/ 2 �:

Moreover, g.x; y; �/ D ı.j�j/, uniformly in .x; y/ 2 x�, as � ! 0 and

g.x; y; �/� > 0 for all � 2 Rn¹0º and a.e. .x; y/ 2 �.

Our main result is given by the following theorem.

Theorem 1.1. Assume that f; g satisfies the conditions (A1)–(A5) and

2p

N˛.p � 2/
� 1 >

�

� � � � 1
:(1.3)

Then the problem (1.1)–(1.2) has infinitely many sign-changing solutions.

This article is organized as follows. In section 2, we present some definitions

and preliminary results. Next, combining the lower bounds of eigenvalues and an

abstract theory on sign-changing solutions, we give the proof of Theorem 1.1.

2. Preliminary results

Definition 2.1. By S2
1 .�/ we will denote the set of all functions u 2 L2.�/

such that
@u

@xi

2 L2.�/; jxj˛
@u

@yj

2 L2.�/; i D 1; 2; : : : ; N1; j D 1; 2; : : : ; N2: We

define the norm in this space as follows

kukS2
1

.�/ D

² Z

�

�

juj2 C jr˛uj2
�

dX

³
1
2

;

where

dX D dx1 : : : dxN1
dy1 : : : dyN2

;

r˛u D
� @u

@x1

; : : : ;
@u

@xN1

; jxj˛
@u

@y1

; : : : ; jxj˛
@u

@yN2

�

:

We can also define the scalar product in S2
1 .�/ as follows

.u; v/S2
1

.�/ D .u; v/L2.�/ C .r˛u; r˛v/L2.�/:

The space S2
1;0.�/ is defined as the closure of C 1

0 .�/ in the space S2
1 .�/.
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The following embedding inequality was proved in [33, 37]

� Z

�

jujpdX

�
1
p

� C.p; �/kukS2
1;0

.�/;

where 1 � p � 2�
˛; C.p; �/ > 0. The number 2�

˛ is the critical Sobolev exponent

of the embedding S2
1;0.�/ ,! Lp.�/ and when 1 � p < 2�

˛; the embedding is

compact.

Definition 2.2. Let V be a real Banach space with its dual space V
�,

ˆ 2 C 1.V;R/. We say that ˆ satisfies the Palais–Smale if for any sequence

¹unºnDC1
nD1 � V such that ˆ.un/ is bounded and

kˆ0.un/kV� �! 0 as n ! 1;

then there exists a subsequence ¹unk
ºkDC1

kD1
that converges strongly in V.

From Theorem A in [30], we have

Proposition 2.3. Let V be a Hilbert space and ˆ 2 C 1.V;R/ be of the form

ˆ0 D id �Kˆ and satisfy the Palais–Smale condition, where Kˆ is a continuous

operator. Assume that

Kˆ.˙D0/ � ˙D0

holds, where

D0 D ¹u 2 VW dist.u; P / < �0º

and

P WD ¹u 2 V; u.x/ � 0; for a.e. x 2 �º

is the positive cone of V. Let N; M be two closed subspaces of V with dim N < 1

and dim N � codim M � 1: Suppose that

Q.�/ WD ¹u 2 M W kukV D �º � � WD Vn.�D0 [ D0/:

Define

N � D N ˚ span¹u�º; u� D VnN I

N �
C D ¹u C tu�W u 2 N; t � 0º:
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Assume that

(i) ˆ.0/ D 0I

(ii) there exists a R1 > � such that ˆ.u/ � 0 for all u 2 N with kukV � R1;

(iii) there exists a R2 � R1 such that ˆ.u/ � 0 for all u 2 N � with kukV � R2.

Let

� D ¹� 2 C.V;V/W � is odd, �.�D0 [ D0/ � .�D0 [ D0/I

�.u/ D u if max¹ˆ.u/; ˆ.�u/º � 0º:

If


� D inf
�2�

sup
�.N �

C
/\�

ˆ > 
�� D inf
�2�

sup
�.N /\�

ˆ > 0;

then

KŒ
��; m0 C 1� \ .Vn.�P [ P // ¤ ;;

that is, there is a sign-changing critical point, where

m0 WD sup
N �

ˆ < 1;

and

KŒ
��; m0 C 1� WD ¹u 2 VW ˆ0.u/ D 0; 
�� � ˆ.u/ � m0 C 1º:

3. Proof of the main result

Define the Euler–Lagrange functional associated with the problem (1.1)–(1.2) as

follows

ˆ.u/ WD
1

2

Z

�

jr˛uj2dX �

Z

�

F.x; y; u/dX;

and

x̂ .u/ WD
1

2

Z

�

jr˛uj2dX �

Z

�

F.x; y; u/dX �

Z

�

G.x; y; u/dX

D ˆ.u/ �

Z

�

G.x; y; u/dX:

From Proposition 2.2 in [25] and f satisfies (A1), g satisfies (A4), hence ˆ; x̂ 2

C 1.S2
1;0.�/;R/ with

h x̂ 0.u/; vi D

Z

�

r˛u � r˛vdX �

Z

�

f .x; y; u/vdX �

Z

�

g.x; y; u/vdX

for all v 2 S2
1;0.�/:
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Recall that a function u 2 S2
1;0.�/ is a weak solution of the problem (1.1)–(1.2)

if
Z

�

r
u � r
vdX D

Z

�

f .x; y; u/vdX C

Z

�

g.x; y; u/vdX; for all v 2 S2
1;0.�/:

One can also check that the critical points of x̂ are weak solutions of the prob-

lem (1.1)–(1.2).

From embedding theorems for weighted Sobolev spaces, it is not difficult to

show that the Grushin type has discrete spectrum in S2
1;0.�/. Let �1; �2; �3; : : :

be the eigenvalues of the problem

�G˛u D �u in �;

u D 0 on @�:

Then 0 < �1 < �2 � �3 � � � � . Let Xj be the eigenspace associated to �j . We set

for k � 2

Yk WD
Lk

j D1 Xj and Zk D
L1

j Dk Xj :

Let

P WD ¹u 2 S2
1;0.�/ W u.x; y/ � 0 for a.e. .x; y/ 2 �º

then P .�P / is the positive (negative) cone of S2
1;0.�/: We are going to consider

an approximation for S2
1;0.�/ W Y1 � Y2 � � � � and dim Yk < 1 for each k > 2,

define

ˆk WD ˆ
ˇ

ˇ

Yk

x̂
k WD x̂

ˇ

ˇ

Yk
;

then ˆk ; x̂
k 2 C 1.Yk ;R/.

Lemma 3.1. Assume conditions (A1)–(A5) hold. Then x̂
k (and hence ˆk)

satisfies the Palais–Smale condition.

Proof. The proof of this lemma is similar to the one of Lemmas 5 in [33]

(or see [25]). We omit the details. �

Lemma 3.2. Under the assumptions of Theorem 1.1, there exist �k > 0 and

C2 > 0 such that

x̂ .u/ � C2�

2.p0�p/

.p�2/.p0�2/

k
WD ık ; for u 2 Q.�k/ WD ¹u 2 Y?

k�1W kukS2
1;0

.�/ D �kº;

where p < p0 < 2�
˛, and C2 is independent of k. Moreover, �k ! 1 as k ! 1.
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Proof. By (A1)–(A5), for any � > 0 small enough, there exists a C� > 0 such

that

F.x; y; �/ C G.x; y; �/ � �j�j2 C C�j�jp ; for all � 2 R and a.e. .x; y/ 2 �:

Applying Sobolev’s embedding S2
1;0.�/ ,! L2�

˛ .�/, and using the interpolation

inequality, for any u 2 S2
1;0.�/, we obtain

x̂ .u/ �
1

2

Z

�

jr˛uj2dX �

Z

�

.�juj2 C C�jujp/dX

�
1

4
kuk2

S2
1;0

.�/
� C1kukr

L2.�/
kuk

p�r

Lp0 .�/

�
1

4
kuk2

S2
1;0

.�/
� C2kukr

L2.�/
kuk

p�r

S2
1;0

.�/
;

(3.1)

where r
2

C p�r
p0

D 1; p0 2 .p; 2�
˛/.

Moreover by u 2 Y?
k�1

; hence

kukL2.�/ � �
�1
2

k
kukS2

1;0
.�/:(3.2)

Combining (3.1) and (3.2), for any u 2 Y?
k�1

such that

kukS2
1;0

.�/ D
�

r
2.p�2/

k

.2C2p/
1

p�2

WD �k;

we have

x̂ .u/ � C2�

2.p0�p/

.p�2/.p0�2/

k
: �

For any m > k C 2, let Pm WD P \ Ym be the positive cone in Ym and

Q.�k; m/ WD ¹u 2 Y?
k�1 \ YmW kukS2

1;0
.�/ D �kº:

Since Q.�k; m/is compact in Ym and includes only sign-changing elements, it is

easy to check that

dist.Q.�k; m/; ˙Pm/ WD dm > 0:
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For any �m 2
�

0; dm

4

�

. define

D0.m; �m/ WD ¹u 2 YmW dist.u; Pm/ < �mº;

then D0.m; �m/ is open and convex in Ym, ˙Pm � ˙D0.m; �m/ and

Q.�; m/ � �m WD ¹YmnDmº;(3.3)

where

Dm WD �D0.m; �m/ [ D0.m; �m/:(3.4)

Evidently, the gradient of x̂
m can be expressed as

x̂ 0 D id � Projm K x̂ ;

where K x̂ W S2
1;0.�/ ! S2

1;0.�/ is given by

K x̂ u D �G�1
˛ .f .�; u.�// C g.�; u.�/// for all u 2 S2

1;0.�/:

Projm is the projection on Ym from S2
1;0.�/ and

hK x̂ u; vi WD

Z

RN

.f .x; y; u/ C g.x; y; u//vdX; for all u; v 2 S2
1;0.�/:

Lemma 3.3. Assume conditions (A1)–(A3) and (A5) hold. Then there ex-

ists a �m 2 .0; dm=4/ such that Projm K x̂ .˙D0.m; �m// � ˙D0.m; �m/ and

Projm Kˆ.˙D0.m; �m// � ˙D0.m; �m/:

Proof. Write uC D max¹u; 0º; u� D min¹u; 0º. For any u 2 Ym; t 2 Œ2; 2�
˛/,

the exists a Ct > 0 such that

ku˙kLt .�/ D min
!2�Pm

ku � !kLt .�/

� Ct min
!2�Pm

ku � !kS2
1;0

.�/

D Ct distS2
1;0

.�/.u; �Pm/:

(3.5)

By assumptions (A1), (A2), and (A5), for any � > 0 small enough, there exists a

C� > 0 such that

f .x; y; �/� C g.x; y; �/� � �j�j2 C C�j�jp ;(3.6)
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for all � 2 R and a.e. .x; y/ 2 �. Combining (3.5), (3.6), and f .x; y; �/� � 0,

g.x; y; �/� � 0 for all � 2 R and a.e. .x; y/ 2 �, we have for � > 0 small enough

distS2
1;0

.�/.v; �Pm/kv˙kS2
1;0

.�/

� kv˙k2

S2
1;0

.�/
D hv; v˙i

D

Z

RN

.jf .x; y; u˙/j C jg.x; y; u˙/j/jv˙jdX

�

Z

RN

.�ju˙j C C�ju˙jp�1/jv˙jdX

�
h2

5
distS2

1;0
.�/.u; �Pm/ C C distS2

1;0
.�/.u; �Pm/p�1

i

kv˙kS2
1;0

.�/;

that is,

distS2
1;0

.�/.Projm K x̂ ; �Pm/

�
2

5
distS2

1;0
.�/.u; �Pm/ C C3 distS2

1;0
.�/.u; �Pm/p�1:

Therefore, there exists a �m < dm

4
such that distS2

1;0
.�/.Projm K x̂ ; �Pm/ � �m

for every u 2 �D0.m; �m/. The conclusion follows. �

Lemma 3.4. Assume conditions (A1)–(A3) and (A5) hold. Then there exists a

locally Lipschitz continuous map

B0W BS2
1;0.�/ �! S2

1;0.�/

such that

B0..˙D0.m; �m// \ BS2
1;0.�// � ˙D0.m; �m/

and Vm.u/ WD i.u/u � B0.u/ is a pseudo-gradient vector field of ˆm, where

BS2
1;0.�/ WD S2

1;0.�/nK; K WD ¹u 2 S2
1;0.�/W ˆ0.u/ D 0º:

Moreover, since ˆm and i are even functionals, B0 (and hence Vm) can be choose

to be odd.

Proof. By Lemma 3.3, the proof of Lemma 3.4 is the same as the proof of

Lemma 2.1 in [30], so we omit it. �
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Lemma 3.5. Suppose that f satisfies (A1) and g satisfies (A5). Then

lim
u2YkC1;

kuk
S2

1;0
.�/

!1

x̂ .u/ D �1; lim
u2YkC1;

kuk
S2

1;0
.�/

!1

ˆ.u/ D �1:

Proof. By the definition of YkC1, (A1) and (A5), it is easy to verify that

lim
u2YkC1;

kuk
S2

1;0
.�/

!1

1

kuk2

S2
1;0

.�/

Z

�

F.x; y; u/dX D 1;

lim
u2YkC1;

kuk
S2

1;0
.�/

!1

1

kuk2

S2
1;0

.�/

Z

�

G.x; y; u/dX � 1:

Then the conclusions of this lemma follow immediately. �

Lemma 3.6. Suppose that f satisfies (A1)–(A4) and g satisfies (A5). Then for

each fixed m > 0, there exists a C4 > 0 such that

kukL�C1.�/ � C4d
1
� ;

for all u 2 ˙Uı \ ¹u 2 YmW x̂
m.u/ � dº, where C4 is independent of m; d > 0

and

Uı WD

²

u 2 YmW k x̂ 0
m.u/ � ˆ0

m.u/k.S2
1;0

.�//� >
k x̂ 0

m.u/k.S2
1;0

.�//�

ı

³

:

Proof. We consider two cases.

Case 1. u 2 Uı \ ¹u 2 YmW x̂
m.u/ � dº. We have that

1

2
kuk2

S2
1;0

.�/
�

Z

�

F.x; y; u/dX �

Z

�

G.x; y; u/dX � d;(3.7)

k x̂ 0
m.u/k.S2

1;0
.�//� < ık x̂ 0

m.u/ � ˆ0
m.u/k.S2

1;0
.�//� ;(3.8)

and

jh x̂ 0
m.u/; uij D

ˇ

ˇ

ˇ

ˇ

kuk2

S2
1;0

.�/
�

Z

�

f .x; y; u/udX �

Z

�

g.x; y; u/udX

ˇ

ˇ

ˇ

ˇ

� kx̂ 0
m.u/k.S2

1;0
.�//�kuk2

S2
1;0

.�/

� ık x̂ 0
m.u/ � ˆ0

m.u/k.S2
1;0

.�//�kuk2

S2
1;0

.�/
:

(3.9)
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From (A5) hence

ık x̂ 0
m.u/ � ˆ0

m.u/k.S2
1;0

.�//�kuk2

S2
1;0

.�/
� C5.kuk2

L2.�/
C kuk�

L�.�//;

we get by (3.9) that

�kuk2

S2
1;0

.�/
� �

Z

�

f .x; y; u/udX �

Z

�

g.x; y; u/udX

C C5.kuk2
L2.�/

C kuk�
L�.�//kukS2

1;0
.�/:

(3.10)

Choose �0 2 .2; �/. By (3.7) and (3.10), we know that

��0

2
� 1

�

kuk2

S2
1;0

.�/
�

Z

�

Œ�0F.x; y; u/ � f .x; y; u/u�dX

C

Z

�

Œ�0G.x; y; u/ � g.x; y; u/u�dX

C C5.kuk2
L2.�/

C kuk�
L�.�//kukS2

1;0
.�/ C �0d:

This and (A3), (A5) hence give

��0

2
� 1

�

kuk2

S2
1;0

.�/
C C6kuk

�

L�.�/

�
��0

2
� 1

�

kuk2

S2
1;0

.�/
C

Z

�

Œf .x; y; u/u � �0F.x; y; u/�dX C C7

�

Z

�

Œ�0G.x; y; u/ � g.x; y; u/u�dX

C C5.kuk2
L2.�/

C kuk�
L�.�//kukS2

1;0
.�/ C �0d C C7

� C8kuk2
L2.�/

C C8kuk�C1

L�C1.�/

C C5.kuk2
L2.�/

C kuk�
L�.�//kukS2

1;0
.�/ C �0d C C7:

By � > 2; � > � C 1, applying Young’s inequalities and Cauchy’s inequalities,

we have

C8kuk2

S2
1;0

.�/
C C9kuk

�

L�.�/

� C5.kuk2
L2.�/

C kuk�
L�.�//kukS2

1;0
.�/ C �0d C C7

� C�kuk2
L2.�/

C �kuk2

S2
1;0

.�/
C C�0kuk2�

L2.�/
C �0kuk2

S2
1;0

.�/
C �0d C C7;
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for all �; �0 > 0 small enough. By the fact that 2� < �, we can obtain

kukL�C1.�/ � C10kukL�.�/ � C4d
1
� :

Case 2. u 2 �Uı \ ¹u 2 YmW x̂
m.u/ � dº, that is,

k x̂ 0
m.�u/k.S2

1;0
.�//� < ık x̂ 0

m.�u/ � ˆ0
m.�u/k.S2

1;0
.�//� and x̂

m.u/ � d:

Then

x̂
m.�u/ D x̂

m.u/ C

Z

�

ŒG.x; y; u/ � G.x; y; �u/�dX

� d C C11kuk2
L2.�/

C C11kuk�C1

L�C1.�/
;

1

2
kuk2

S2
1;0

.�/
�

Z

�

F.x; y; �u/dX �

Z

�

G.x; y; �u/dX

� d C C11kuk2
L2.�/

C C11kuk�C1

L�C1.�/
;

(3.11)

jh x̂ 0
m.�u/; �uij

D

ˇ

ˇ

ˇ

ˇ

kuk2

S2
1;0

.�/
C

Z

�

f .x; y; �u/udX C

Z

�

g.x; y; �u/udX

ˇ

ˇ

ˇ

ˇ

� kx̂ 0
m.�u/k.S2

1;0
.�//�kuk2

S2
1;0

.�/

� ık x̂ 0
m.�u/ � ˆ0

m.�u/k.S2
1;0

.�//�kuk2

S2
1;0

.�/
:

(3.12)

Note that

ık x̂ 0
m.�u/ � ˆ0

m.�u/k.S2
1;0

.�//�kuk2

S2
1;0

.�/
� C12.kuk2

L2.�/
C kuk�

L�.�//:

Then we get

�kuk2

S2
1;0

.�/
�

Z

�

f .x; y; �u/udX C

Z

�

g.x; y; �u/udX

C C12.kuk2
L2.�/

C kuk�
L�.�//kukS2

1;0
.�/:

(3.13)
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Therefore, by (3.11)–(3.13), (A3), and (A5), we obtain

��0

2
� 1

�

kuk2

S2
1;0

.�/
C C6kuk

�

L�.�/

�
��0

2
� 1

�

kuk2

S2
1;0

.�/
C

Z

�

Œ�f .x; y; �u/u � �0F.x; y; u/�dX C C7

�

Z

�

Œ�0G.x; y; �u/ C g.x; y; �u/u�dX

C C12.kuk2
L2.�/

C kuk�
L�.�//kukS2

1;0
.�/ C �0d C C7

� C8kuk2
L2.�/

C C8kuk�C1

L�C1.�/

C C12.kuk2
L2.�/

C kuk�
L�.�//kukS2

1;0
.�/ C �0d C C7: �

This gives the desired result.

Lemma 3.7. Assume conditions (A1)-(A5) hold and assume that um 2 Ym is

sign-changing and satisfies

x̂ 0
m.um/ D 0; sup

m�1

j x̂m.um/j < 1:

Then ¹umºmD 1
mD1 has a convergent subsequence whose limit is a sign-changing

critical point of x̂ :

Proof. From Lemma 3.1, we have ¹umºmD 1
mD1 has a convergent subsequence

in S2
1;0.�/. We just prove that the limit of the subsequence is also sign-changing.

Let u˙
m WD max¹˙um; 0º. Then

ku˙
mk2

S2
1;0

.�/
D

Z

�

Œf .x; y; u˙
m/u˙

m C g.x; y; u˙
m/u˙

m�dX:

By (A1), (A2), and (A5), we have for any � > 0; there exists a C� such that

f .x; y; �/� C g.x; y; �/� � �j�j2 C C�j�jp; for all � 2 R and a.e. .x; y/ 2 �:

It follows that

ku˙
mk2

S2
1;0

.�/
� �ku˙k2

S2
1;0

.�/
C C�ku˙k

p

Lp.�/
:

Hence, ku˙
mk2

S2
1;0

.�/
� C13; where C13 is a constant independent of m. This implies

that the limit of the subsequence is also sign-changing. �
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Proof of Theorem 1.1. Assume that there exists a C14 > 0 such that x̂

has no sign-changing critical point with critical value greater than C14. Choose

k0 > 0 such that ık > C14 for all k > k0, where ık comes from Lemma 3.2. Let

m > k C 2 > k0 C 2. Then Yk � Ym. Let

N WD Yk ; M.m/ D Y?
k�1\Ym; Q.�k; m/ WD ¹u 2 M.m/ W kukS2

1;0
.�/ D �kº:

Then by (3.3), we obtain

Q.�k; m/ � �m:

Define

N � D N ˚ span¹u�º; u� 2 YkC1; u� … Yk I

N �
C D ¹u C tu�W u 2 N; t � 0º:

Then N � \ YkC1 ¤ ¹0º, and both N � and N �
C are independent of m. Clearly, by

Lemma 3.5, we have

(i) x̂
m.0/ D 0I

(ii) there exists a R1 > �k such that x̂
m.u/ � 0 for all u 2 N with kukS2

1;0
.�/ �

R1;

(iii) there exists a R2 � R1 > 0 such that x̂
m.u/ � 0 for all u 2 N � with

kukS2
1;0

.�/ � R2;

Let

�m WD ¹� 2 C.Ym; Ym/W � is odd, �.Dm/ � .Dm/I

�.u/ D u if max¹ x̂
m.u/; x̂

m.�u/º � 0º:

Define


�
k .m/ WD inf

�2�m

sup
�.N �

C
/\�m

x̂
m; 
��

k .m/ WD inf
�2�m

sup
�.N /\�m

x̂
m > 0;

For any � 2 �m, by Lemma 1.44 in [28] (or see [3, 32]), we have

�.N \ BR1
/ \ Q.�k; m/ ¤ ;;

and by Lemma 3.2 we can obtain

sup
�.N \BR1

/\�m

x̂
m � inf

Q.�k ;m/

x̂
m � C2�

2.p0�p/

.p�2/.p0�2/

k
WD ık :
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Therefore, we get


��
k .m/ � C2�

2.p0�p/

.p�2/.p0�2/

k
WD ık �! 1; as k ! 1:(3.14)

We consider two cases.

Case 1. For k � k0, if there exists a sequence mi ! 1 as i ! 1 such that


�
k .mi / > 
��

k .mi / for all i > 1;

then by Proposition 2.3, there exists a sign-changing critical point umi
such that

x̂ 0
mi

.umi
/ D 0 and C0 < ık � 
��

k .mi / � x̂ .umi
/ � sup

N �

x̂ C 1

Here supN �
x̂ is a constant depending on k and independent of mi . By Lemma 3.7,

¹umi
ºiDC1

iD1 has a convergent subsequence whose limit u is a sign-changing critical

point of x̂ , and x̂ .u/ � ık > C0: This contradicts the assumption.

Case 2. For all k � k0, there exists a mk such that


�
k .m/ D 
��

k .m/ for all m > mk :(3.15)

Let Kcom.m/ denote the set of common critical points of ˆm and x̂
m. By (A5),

Kcom.m/ D ¹0º: Define

Vı WD ¹u 2 YmW kukS2
1;0

.�/ � ıº;

and let Uı be as in Lemma 3.6, which contains all non-common critical points

of ˆm and x̂
m. By Lemma 3.5, there exists a R1 > �k such that x̂

m.u/ � 0 for

all u 2 N with kukS2
1;0

.�/ � R1. Here R1 is independent of m. Combining the

definition of 
�
k

.m/ and (3.14), we find a �0 2 �m such that

sup
�0.N �

C
/\�m

x̂ D sup
�.N �

C
\BR1

/\�m

x̂ � 
�
k .m/ C

1

2
:(3.16)

Let

U �
ı .m/ WD Vı [ Uı [ .�Uı/:

Then Uı is a symmetric set and contains all critical points of ˆm and x̂
m. Define

two non-negative continuous functions:

�1.u/ D

´

0; if u 2 U �
10.m/;

1; if u … U �
20.m/;

.is even /; �2.u/ D

´

0; if u � 0;

1; if u � 1;
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and a vector field

V �
m WD ��2.max¹ x̂

m.u/; x̂
m.�u/º/�1.u/Vm.u/;

where the pseudo gradient vector field Vmcomes from Lemma 3.4 obtained for

ˆm. Since Vm can be choose to be odd, then V �
m is odd.

Let ‚.t; u/ denote the unique (odd in u) solution of the Cauchy initial value

problem:

d‚.t; u/

dt
D V �

m.‚.t; u//; ‚.0; u/ D u 2 Ym:

Then ‚.t; u/ is also a pseudo-gradient flow for x̂
m and

d x̂
m.‚.t; u//

dt
� 0:(3.17)

For any u … U �
ı

.m/, we have u … ˙Uı and by Lemma 3.6, we obtain

kˆ0
m.u/k.S2

1;0
.�//� �

ı C 1

ı
k x̂ 0

m.u/k.S2
1;0

.�//� ;

k x̂ 0
m.u/k.S2

1;0
.�//� �

ı

ı � 1
kˆ0

m.u/k.S2
1;0

.�//� :

Further, for all u … U �
ı

.m/, we get

h x̂ 0
m.u/; Vm.u/i

D hˆ0
m.u/; Vm.u/i � hˆ0

m.u/ � x̂ 0
m.u/; Vm.u/i

�
1

2
kˆ0

m.u/k2

.S2
1;0

.�//� � 2kˆ0
m.u/k2

.S2
1;0

.�//�kˆ0
m.u/ � Vm.u/k2

.S2
1;0

.�//�

�
.ı � 1/2 � 4.ı C 1/

2ı2
k x̂ 0

m.u/k2

.S2
1;0

.�//�
;

and

kVm.u/k.S2
1;0

.�//� � 2kˆ0
m.u/k2

.S2
1;0

.�//� �
2.ı C 1/

ı
k x̂ 0

m.u/k2

.S2
1;0

.�//� :

Moreover, since u … U �
20.m/ implies �1.u/ D 1, we see that x̂

m.u/ > 1 implies

�2.max¹ x̂
m.u/; x̂

m.�u/º/ D 1:
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We obtain

d x̂
m.‚.t; u//

dt

ˇ

ˇ

ˇ

tD0
D

D

x̂ 0
m.‚.t; u//;

d‚

dt

Eˇ

ˇ

ˇ

tD0

D hx̂ 0
m.‚.t; u//; V �

m.‚.t; u//i
ˇ

ˇ

tD0

D hx̂ 0
m.u/; ��2.max¹ x̂

m.‚.t; u//; x̂
m.�‚.t; u//º/

�1.‚.t; u//Vm.‚.t; u///i
ˇ

ˇ

tD0

D hx̂ 0
m.u/; ��2.max¹ x̂

m.‚.t; u//; x̂
m.�‚.t; u//º/

�1.u/Vm.u//i

D �h x̂ 0
m.u/; Vm.u/i � �

277

800
k x̂ 0

m.u/k2

.S2
1;0

.�//�

(3.18)

for all u … U �
20.m/ safisfying x̂

m.u/ > 1:

We claim that ‚.t; �0.�// 2 �m for any t � 0. In fact, ‚.t; �0.u// is odd in

u since �0.u/ and V �
m are odd. Recall that �0 2 �m: Then, �0.u/ D u for u with

max¹ x̂ .u/; x̂ .�u/º � 0: Hence, ‚.t; �0.u// D ‚.t; u/ and V �
m.u/ D 0 for u with

max¹ x̂ .u/; x̂ .�u/º � 0: It follows that ‚.t; u/ D u and then ‚.t; �0.u// D u for

u with max¹ x̂ .u/; x̂ .�u/º � 0: Using Theorem 1 in [9] and Lemma 3.4 similar

to the one of Theorem 2.1 in [30], we obtain

‚.t; �0.Dm// � ‚.t; Dm/ � Dm; for all t � 0:

Therefore, ‚.t; �0.u// 2 �m for any t � 0. For any t � 0, we can deduce

the following estimates which lead to a contradiction. In fact, by the fact that

‚.t; �0.u// 2 �m is odd,

‚.t; �0.N �
C// \ �m �

°

u 2 YmW x̂
m.u/ � 
��

k .m/ C
1

2

±

;

V20 is bounded, (3.15)–(3.18), and Lemma 3.6, we have


�
k .m/ C

1

2
D 
��

k .m/ C
1

2

� sup
�0.N �

C
/\�m

x̂

� sup
‚.t;�0.N �

C
//\�m

x̂

� sup
‚.t;�0.N �//\�m

x̂ � . sup
‚.t;�0.N �//\�m

x̂ � sup
‚.t;�0.N �

C
//\�m

x̂ /



130 D. T. Luyen

� 
��
kC1.m/ � sup

u2‚.t;�0.N �
C

//\�m

. x̂ .�u/ � x̂ .u//

� 
��
kC1.m/ � sup

u2‚.t;�0.N �
C

//\�m

\¹u2YmW x̂
m.u/�
��

k
.m/C 1

2 º

. x̂ .�u/ � x̂ .u//

� 
��
kC1.m/ � sup

u2‚.t;�0.N �
C

//\�m

\¹u2YmW x̂
m.u/�
��

k
.m/C 1

2
º

j x̂ .�u/ � x̂ .u/j

� 
��
kC1.m/ � sup

u2U �
20

\¹u2YmW x̂
m.u/�
��

k
.m/C 1

2
º

j x̂ .�u/ � x̂ .u/j

� 
��
kC1.m/ � sup

u2.�U20[U20/

\¹u2YmW x̂
m.u/�
��

k
.m/C 1

2
º

j x̂ .�u/ � x̂ .u/j � C15

� 
��
kC1.m/ � sup

u2.�U20[U20/

\¹u2YmW x̂
m.u/�
��

k
.m/C 1

2
º

C8kuk�C1

L�C1.�/
� C15

� 
��
kC1.m/ � C8.
��

k .m//
1C�

� � C15:

Therefore, we get the inequality


��
kC1.m/ � 
��

k .m/.1 C C8.
��
k .m//

1C���
� /;(3.19)

for all k � k0.

Then from the condition (1.3), we can take some p0 2 .2; 2�
˛/ and q 2

�

2N˛

N˛C2
; 2

�

such that

1 C � � �

�

2.p0 � p/

.p � 2/.p0 � 2/

� 2

N˛

�
2 � q

q

�

< �1:(3.20)

From Theorem 1.3 in [15] (or see [16]), we obtain

�k � C16k
2

N˛ :(3.21)

From (3.19)–(3.21), using iteration, we get that


��
k0C`.m/ � 
��

k0
.m/

k0C`�1
Y

kDk0

.1 C C8.
��
k .m//

1C���
� /

� 
��
k0

.m/ exp
�

k0C`�1
X

kDk0

ln.1 C C8.
��
k .m//

1C���
� /

�
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� 
��
k0

.m/ exp C8

�

k0C`�1
X

kDk0

.
��
k .m//

1C���
�

�

� 
��
k0

.m/ exp C8

�

k0C`�1
X

kDk0

k
1C���

�

2.p0�p/

.p�2/.p0�2/
. 2

N˛
�

2�q
q /

�

< 1;

for all ` 2 N, which yields the desired contradiction. Thus, x̂ possesses an

unbounded sign-changing sequence of critical values. �

Corollary 3.8. Assume that f satisfies the conditions (A1)–(A3) and there

is a � < �
2

such that

jf .x; y; u/ � f .x; y; �u/j � C.1 C juj� / for all u 2 R and a.e. .x; y/ 2 �:

Then the problem

(3.22) � G˛u D f .x; y; u/ in �; u D 0 on @�;

has an infinite sequence of sign-changing solutions provided that (1.3) holds.

Corollary 3.9. Assume that f satisfies the conditions (A1)–(A3), there exists

a R > 0 such that

f .x; y; �u/ D �f .x; y; u/ for a.e. .x; y/ 2 �; juj � R;

and

2p

N˛.p � 2/
� 1 >

�

� � 1
:

Then the problem (3.22) has an infinite sequence of sign-changing solutions in

S2
1;0.�/:
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