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Sign-changing solutions
of boundary value problems
for semilinear A ,-Laplace equations

Duonc TrRoNG LUYEN ()

ABsTrRACT — In this article, we study the multiplicity of weak solutions to the boundary
value problem

—Gqu = g(x,y,u) + f(x,y,u) inQ,
u=20 on 02,
where € is abounded domain with smooth boundary in RY (N > 2),a € N, g(x, y, £),

f(x,,&) are Carathéodory functions and G, is the Grushin operator. We use the lower
bounds of eigenvalues and an abstract theory on sign-changing solutions.
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1. Introduction

Boundary value problems for semilinear elliptic equations were studied in [1, 27]
(see also the references therein). Many publications [4, 5, 6, 7, 8, 10, 11, 12, 18,
26, 29, 31] are devoted to the study of the existence of sign-changing solutions of
classical elliptic boundary value problems such as

—Au= f(x,u) inQ,u=0 ondQ,
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where f € C(Q x R,R), @ ¢ R¥(N > 2) is a bounded domain with smooth
boundary 9€2. There have been several methods developed in studying sign-
changing solutions of nonlinear elliptic equations, such as the invariant sets of
descending flow method developed by Liu and Sun [5, 18, 31], and the minimax
method which is established by Berestycki and Lions in the classical paper [8].

One of the classes of degenerate elliptic equations that has been studied widely
in recent years is the class of equations involving an operator of the Grushin type
(see [14])

Gy = A, + |x|2°‘Ay, o> 0.

Note that Go = A is the Laplacian operator, and G4, when o > 0, is not
elliptic in domains intersecting the surface x = 0. Many aspects of the theory
of degenerate elliptic differential operators are presented in monographs [36, 37]
(see also some recent results in [2, 17, 21, 22, 23, 33, 34, 35, 20, 13, 19, 25]).

In this paper, we consider the existence of sign-changing solutions of the
Dirichlet boundary value problem

(1.1 —Gqu=g(x,y,u)+ f(x,y,u) inQ,

(1.2) u=20 on 092,

where Q is a bounded domain with smooth boundary in RN xRN2 :=RN | Ni, N,
aeN,QN{(x,y)eRY : x =0} # 0, and

Ny

32 82 o
AX:ZZ@’ Ay::Zay—r |x|2a::<2xi2),

i=1 1 j=1"J i=1

and the nonlinearity f is a real Carathéodory function on € x R and satisfies the
following conditions:

(A1) there exist p € (2,2}), and constants C;, C, > 0 such that

| f(x,y,8)| < Cy + C|E[P~!  almost everywhere for (x, y,£) € Q x R,

where 2 := ﬁivfz and Ny ;= Ny + (1 + )Ny > 2;

(A2) f(x,y,£&) = o(|£]), uniformly in (x,y) € Q,as & — Oand f(x,y,£)E >0
forall £ € Randa.e. (x,y) € Q;

(A3) there exists a constant ;& > 2 such that

0<pF(x,y.8) <€f(x,y.6), forall (x,y) €Q, & e R\ {0},

where F(x,y,§) = fos f(x,y.t)dr;
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(A4) f(x,y,—f)=—f(x,y,§)f0rall(x,y,§)€E_ZXIR;

(AS) g:Q xR — R isa Carathéodory function. There exists o < % such that
lg(x, y,6)| < C( + |£]°), forallé € Randa.e. (x,y) € Q.

Moreover, g(x,y,£) = o(|€]), uniformly in (x,y) € Q, as £ — 0 and
g(x,y, )& > 0forall £ € R\{0} and a.e. (x,y) € Q.

Our main result is given by the following theorem.

TueoreM 1.1. Assume that f, g satisfies the conditions (A1)—-(AS) and

2p Iz

Then the problem (1.1)—(1.2) has infinitely many sign-changing solutions.

This article is organized as follows. In section 2, we present some definitions
and preliminary results. Next, combining the lower bounds of eigenvalues and an
abstract theory on sign-changing solutions, we give the proof of Theorem 1.1.

2. Preliminary results

DerINITION 2.1. By S7(€2) we will denote the set of all functions u € L?(2)
0 0
such that a—” € LA(Q), |x|“8—” €LX(Q),i=1,2,....,Ni,j=1,2,....No. We
Xi YV

J
define the norm in this space as follows

1
2
||U||Sl2(g) = {/ (|u|2 + |Vau|2)dX} ,

Q
where

dX =dx;...dxy,dy;...dyn,,

ou ou o Ou ou )

’x ¢ —
i o

Vou=(—,..., —— —_— ..
ot (8x1 0xn, 0y1

L

We can also define the scalar product in S7(Q2) as follows
(M, U)Slz(ﬂ) = (u, v)LZ(Q) + (V(xu, V(xv)LZ(Q)-

The space S7 ((S2) is defined as the closure of C{ (2) in the space S7(£2).
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The following embedding inequality was proved in [33, 37]

1
D
(/|u|”dX) = C(p-Dlulls?
Q

where 1 < p < 2% C(p,2) > 0. The number 2, is the critical Sobolev exponent
of the embedding SIZ,O(Q) — LP(Q) and when 1 < p < 2%, the embedding is
compact.

DeriniTiON 2.2. Let V be a real Banach space with its dual space V*,
® € C'(V,R). We say that ® satisfies the Palais—Smale if for any sequence
{u, "= C V such that ®(u,) is bounded and

|® (up)||vs — 0 asn — oo,

then there exists a subsequence {u,, }’,i:’"o that converges strongly in V.

From Theorem A in [30], we have

ProposITION 2.3. Let V be a Hilbert space and ® € C'(V, R) be of the form
@' = id — K¢ and satisfy the Palais—Smale condition, where K¢ is a continuous
operator. Assume that

ch(:l:i)o) C £Dy
holds, where
Do = {u € V:dist(u, ) < uo}

and

P :={ueV,ulx) >0, fora.e. x € Q}

is the positive cone of V. Let N, M be two closed subspaces of V with dim N < oo
and dim N — codim M > 1. Suppose that

Q(p) :=={u € M:|ully = p} C 8 := V\(=dDo U Dy).
Define

N* = N @ span{u™}, u* =V\N;
N} ={u+ru*:ue Nt >0}



Sign-changing solutions 117

Assume that
i) ®(0) =0;
(ii) there exists a Ry > p such that ®(u) < 0 for allu € N with ||u|v > Ry;
(iii) there exists a Ry > Ry such that ®(u) < 0 for allu € N* with |u|ly > Ro.
Let
F'={peCV,V):¢isodd ¢(—Do U Dy) C (—Do U Dy);
¢ (u) = u if max{®(u), ®(—u)} < 0}.
If

y*=inf sup ®>y*™ =inf sup >0,
¢l p(NINS $eT $(N)NS

then
Kly™ mo+ 110 (V\(=P U P)) # 0,

that is, there is a sign-changing critical point, where

mp :=sup ® < oo,
N*

and

Kly™ mo +1] := {u € Vi®'(u) = 0,y™ =< d(u) < mo + 1}

3. Proof of the main result

Define the Euler-Lagrange functional associated with the problem (1.1)—(1.2) as
follows

1
d(u) = §/|Vau|2dX—/F(x,y,u)dX,
Q Q

and

— 1
d(u) = §/|Vau|2dX—/F(x,y,u)dX—/G(x,y,u)dX
Q Q Q

=®u)— | G(x,y,u)dX.
/

From Proposition 2.2 in [25] and f satisfies (A1), g satisfies (A4), hence ®, e
Cl(Slz’O(SZ), R) with

(@ (u), v) =/Vau'VavdX—/f(x,y,u)vdX—/g(x,y,u)vdX
Q Q Q
forall v € Slz,o(Q).
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Recall that a functionu € S 12,0 (R2) is a weak solution of the problem (1.1)—(1.2)
if
/ Vyu-VyudX = / f(x,y,u)vdX—i—/ g(x,y,u)vdX, forallve Slz,o(Q).
Q Q Q
One can also check that the critical points of ® are weak solutions of the prob-
lem (1.1)—(1.2).
From embedding theorems for weighted Sobolev spaces, it is not difficult to

show that the Grushin type has discrete spectrum in SIZ’O(Q). Let A1,A2,A3,...
be the eigenvalues of the problem

—Gou = Au in 2,
u=0 on dL2.

Then 0 < A; < A, < A3 <---. Let X, be the eigenspace associated to A;. We set
fork >2

Yii=@f,X; and Z = D, X;.
Let
P 1= {u € ST(Q) :ulx,y) = 0forae. (x,y) € 2}

then & (—) is the positive (negative) cone of SIZ’O(Q). We are going to consider
an approximation for 512,0(9) Y, CYy, C---anddimYy < oo foreach k > 2,
define

Cbk = CI>|Yk &)k = CT)|Yk’
then @y, &)k € Cl(Yk,R).

LemMa 3.1. Assume conditions (A1)—(A5) hold. Then ® (and hence )
satisfies the Palais—Smale condition.

Proor. The proof of this lemma is similar to the one of Lemmas 5 in [33]
(or see [25]). We omit the details. O

LemMma 3.2. Under the assumptions of Theorem 1.1, there exist p, > 0 and
Cy > 0 such that

2(po—p)
d(u) > Cz)tlip_Z)(pO_Z) =68k, forueQpx):=1{uc YIJ{_15 ||”||312’0(Q) = Pk},

where p < po < 2, and C, is independent of k. Moreover, py — oo as k — oo.
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Proor. By (A1)—(A5), for any € > 0 small enough, there exists a C, > 0 such
that

F(x,9,6) + G(x,y,8) < €|g|®> + Cc|£|?, forall ¢ e Randae. (x,y) € Q.

Applying Sobolev’s embedding S? 10(Q) = L2 (2), and using the interpolation
inequality, for any u € S? 1.0(€2), we obtain

— 1
300 = 3 / VoulPdX — / (elul? + CelulP)dx

3.1
G-1) ||u||32_0(m Ci ||u||Lz(m||u||Lm(m

1
4
1 —-C

where 5 + 2= =1, po € (p. 23).
Moreover by u € Y;-_,. hence

=1
(3.2) lllz2) = A7 ulls2 (@)

Combining (3.1) and (3.2), for any u € Y,JC-_1 such that

2=
k
] g2 @ = 1 = Pk
Ho (2Cp) P2
we have
_ 2(po—pr)
D(u) > G170, O

For any m > k + 2, let $,, := # N Y}, be the positive cone in Y, and
O (px.m) :={u € Y]Jc__l N Yp: ||u||512_0(9) = Pk}

Since Q(pg,m)is compact in Y, and includes only sign-changing elements, it is
easy to check that

dist(Q (og, m), £Pm) := dp > 0.
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For any pm € (0, dT’”). define
Do(m, ) = {u € Yy, dist(u, Pm) < tm},

then Dy (m, ) is open and convex in Y,,, P, C £Do(m, is) and

(3.3) Q(p,m) C Sm = {Ym\Dm},
where
(3.4) D = —=Do(m, wm) U Do(m, fim)-

Evidently, the gradient of ®,, can be expressed as
@' = id — Proj,, K3,
where Kg: S7,(Q2) — S7 () is given by
Kgu = —Gy ' (f(.u() + g(.u()) forallu € $24(2).
Proj,,, is the projection on Y,, from SIZ,O(Q) and
(Kgu,v) := / (f(x,y,u)+ g(x,y,u))vdX, forallu,ve Slz,o(Q).
RN

LemMmA 3.3. Assume conditions (Al1)—(A3) and (AS) hold. Then there ex-
ists a i € (0,dp/4) such that Proj,, Kg(£Do(m, tm)) C £Do(m, wm) and
Proj,, Ko(£Do(m, pim)) C £Do(m, fim).

Proor. Write ut = max{u,0},u~ = min{u, 0}. For any u € Y,,, 1 € [2,2}),
the exists a C; > 0 such that

+ .
u = min ||u—o
lu™lL (@) L min [ (@)
< i _
(3.5) =G ngl;?)m [ w”SlZ’O(Q)
— 1 qD
= C dlStslz,o(Q)(u’ FPm).

By assumptions (A1), (A2), and (AS5), for any € > 0 small enough, there exists a
C¢ > 0 such that

(3.6) F(x, 9. 6§+ g(x,y.£)§ < €l€]* + C|§|P.
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forall £ € R and a.e. (x,y) € Q. Combining (3.5), (3.6), and f(x,y,§)& > 0,
g(x,y,&)& >0forall £ € R and a.e. (x, y) € R, we have for € > 0 small enough

. +
distg2 () (©, F2m) 0% 52 (@)

+ +
=< [[v=ll {v,v7)

2 =
57 ()

- / (£ Gy + g, y, u®)DvE[dX
]RN

< /(e|ui| b Celut P X

RN
< [% diStS%O(Q)(“’ FPm) +C distslz’o(g)(u, ¢<7)m)p_l] ||Ui||512.0(9)v
that is,
distslz.o(m(Projm K3, FPm)
< % diStS%O(Q)(“’ FPm) + Cs3 diStS%O(Q)(”’ FP)P L.

Therefore, there exists a i, < dT’” such that distslz.o(m(Projm Kg, FPm) < im
for every u € FDo(m, im). The conclusion follows. O

LemmMma 3.4. Assume conditions (A1)—(A3) and (AS) hold. Then there exists a
locally Lipschitz continuous map

—_—

Bo: S74(2) — S74(R)
such that

Bo((£Do(m, ptm)) N ST 4(2)) C £Do(m, pm)

and Vi, (u) = i(u)u — Bo(u) is a pseudo-gradient vector field of ®,,, where

STo(R) := STo(\K, K :={u € S7y(Q): ¥ (u) = 0}.

Moreover, since ®,, and i are even functionals, By (and hence Vy,) can be choose
to be odd.

Proor. By Lemma 3.3, the proof of Lemma 3.4 is the same as the proof of
Lemma 2.1 in [30], so we omit it. O
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Lemma 3.5. Suppose that | satisfies (A1) and g satisfies (AS). Then

lim ®(u) = —o0, lim ®(u) = —oo.
ueYp41, u€Yy 41,
lull o2 —00 llull g2 —00
ST.06) ST,02)

Proor. By the definition of Yz 41, (Al) and (AS), it is easy to verify that

1
lim 2—/ F(x,y,u)dX = oo,
uE€Yk+1 ||u||Sz @
lulg2 | (g)—>00 0

1
27/ G(x,y,u)dX < oo.

Then the conclusions of this lemma follow immediately. O

LemMa 3.6. Suppose that | satisfies (A1)—(A4) and g satisfies (AS). Then for
each fixed m > 0, there exists a C4 > 0 such that

1
||M||L0+I(Q) < Cydnr,

forallu € +Us N {u € Y, ®p(u) < d), where Cy is independent of m,d > 0
and

”&D;’n (u)”(Slz‘O(Q))* }

Proor. We consider two cases.
Case 1. u € Us N{u € Yyu: ®(u) < d}. We have that

LT
3.7 §||u||S12~O(Q) —/F(x,y,u)dX —/G(x,y,u)dX <d,
Q Q
(3.8) ||5;1(“)||(sf!0(9))* < 5”&);;1(“) - qD;n(“)”(Sf!O(Q))*’
and

(@ (). u)| =

0 oy~ [ £ v = [ gt pauax]
Q Q

(3.9 5/ 2
= 195, )|l (57 o(@)* [ ||512’0(Q)

= 81197, () = 5, @0l s2 a1l (-
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From (AS5) hence
8”5;"(”) - q);n(“)||(sl2!0(g))* ||u||§~120(9) = CS(”“”iz(Q) + ||“||ZM(Q))7

we get by (3.9) that

Nl g < / £y, wpudX — / ¢(x, v, upudX
(3.10) Q

Choose o € (2, ). By (3.7) and (3.10), we know that

(%_ 1)||u||S2 @ = /[HOF(X y.u) — f(x,y, uuldx

+ / [10G(x. y. 1) — g(x, y.upuldX

+ Cs (22 + 140l 52 oy + Hod.

This and (A3), (AS) hence give

Ko 2 i
(5= )IulZs g + Colluluga)

I
< (B2 = 1)y gy + [ L0k vt = o Fx 3 0JaX + €
Q

< / (110G (x. y.u) — g(x. y. upuldX

Q
+ CS(”uHiz(Q) + ||u||2u(g))||“||sl2!0(g) + pod + C7

< Csllul gy + CsllullgH 1

+ CS(”u”LZ(Q) + ”u”LM(Q))”u”S%O(Q) + pod + C.

123

By u > 2,u > o + 1, applying Young’s inequalities and Cauchy’s inequalities,

we have

Collul2, (g + Colullne,

= CS(”“”%Z(Q) + ||u||2u(g))||u||312’0(9) + pod + C7

= Cé”“”iZ(Q) + €||u||§120(9) + Ce’”“”i%u‘n + €/||u||§~120(9) + /Lod + C,
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for all €, ¢’ > 0 small enough. By the fact that 20 < 1, we can obtain
[ull Lo+1(@) < CrollullLu@) < Cad .
Case2. u € —Us N{u € Yy: Dp(u) < d}, that is,
1%5, (=052 e < 81®pu (1) = @ (<) (52 @y ANd Bm(0) < d.
Then

5mcﬂo::émuo4—/%60a»u)—cxxda—undx

= d+ CIIHMHLZ(Q) + C11||M| L"'H(Q)’

1
5”””%12’0(9)—/F(x,y,—u)dX—/G(x,y,—u)dX
(3.11) o &

<d+Cn ”uHLZ(Q) + C11||u||L(r+1(Q)’

(B} (-1, )|
= (112 g+ [ £y wuax + [ gy —uuax
1,0
Q Q

(3.12) i
< |5 (=)l (57 o(@)* [ ||§~12 0@

< 8[|, (—u) — @, (_u)”(SlZ‘O(Q))* ||“||§120(Q)-
Note that
8113, (—0) = B, ()52 e Nl gy = CralltlFagg, + 1l

Then we get

—thm)(/ﬂX%—MMX+/g@y,wa
(3.13) Q

+ C12(||u||L2(Q) + ||u||Lu(Q))||u||S12_O(Q)'



Sign-changing solutions 125

Therefore, by (3.11)—(3.13), (A3), and (AS), we obtain

Ko
(5= 1)l g+ Collull ey
B g2 ey
= (52 1)l g + [1-F Gy =0 = o Fr v ldX + €
Q

< / [0G(x. v —u) + g(x. v, —upuldX
Q
+ CoallulZaqgy + e lnllsz (@ + bod +C

= CSHMHiZ(Q) + CS”“”Z:—QI—I(Q)

+ Coolul g + IulE @)l g2 @) + Hod + Cr. O

This gives the desired result.

LemmMma 3.7. Assume conditions (A1)-(AS) hold and assume that u,, € Y, is
sign-changing and satisfies

D (Um) =0, sup | Dy (um)| < 00.
m>1
Then {um}jm—° has a convergent subsequence whose limit is a sign-changing
critical point of ®.

Proor. From Lemma 3.1, we have {u,,}— > has a convergent subsequence
in SIZ’O(Q). We just prove that the limit of the subsequence is also sign-changing.
Let u,ﬁ := max{+tu,,, 0}. Then

I 2 gy = [ LGy + (. youuilax.
Q

By (Al), (A2), and (AS5), we have for any € > 0, there exists a C¢ such that
Sy, 88+ g(x,y,6)§ < €l§> + Cc|§|P, forall§ € Randae. (x,y) € Q.

It follows that

+ + +
12 o) < €l o) + Cellu=12 ).

2 2
57 () (o)

+2
that the limit of the subsequence is also sign-changing. O

Hence, ||u > (i3, where Cy3 is a constant independent of m. This implies
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ProoF oF THEOREM 1.1. Assume that there exists a C;4 > 0 such that ®
has no sign-changing critical point with critical value greater than Cy4. Choose
ko > 0 such that §; > Cy4 for all k > ko, where §; comes from Lemma 3.2. Let
m>k+2>ky+2 Then Y, C Y. Let

N =Yy, M(@m)= Y/J{_lem, O(pk,m) :={u € M(m) : ||”||312’0(Q) = Pk}

Then by (3.3), we obtain

Define

N* = N @ span{u™}, u* € Yii1.u* ¢ Yi;
Ny ={u+rtu*:ueN,t=>0)}.

Then N* N Yy 41 # {0}, and both N* and N are independent of m. Clearly, by
Lemma 3.5, we have

() &)m(o) = 0;
(ii) there exists a R; > pg such that @, (x) < 0 for all u € N with ||u”5120(9) >
Ry; ‘

(iii) there exists a R, > R; > 0 such that ®,,(u) < O for all v € N* with
||”||512’0(Q) > Ro;

Let

T = {p € C(Ym,Ym): ¢ is 0dd, ¢(Dp) C (Dm);
¢ (u) = u if max{®,, (u), ®,n(—u)} < 0}.

Define

Ya(m):= inf  sup @, Y *(m):= inf sup D, >0,
$€lm ¢(NY)INSm ¢€lm ¢(N)NSm

For any ¢ € I',,, by Lemma 1.44 in [28] (or see [3, 32]), we have

(N N Bry) N Q(ok.m) # 0.

and by Lemma 3.2 we can obtain

— _ _2ro=p) _
sup By < inf By < CATOT =4
¢(NNBR,INSm O(pk -m)
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Therefore, we get

2(po—p)
(3.14) Vi (m) = Coa P07 =6 —> 00, ask — oo.
We consider two cases.

Cask 1. For k > ko, if there exists a sequence m; — oo as i — oo such that
Ve (mi) > y"(m;) foralli > 1,
then by Proposition 2.3, there exists a sign-changing critical point u,,, such that

@, (um;) =0 and Co <8 < y*(m;) < P(um,) <sup®+ 1
N*

Here sup y« @ is a constant depending on k and independent of m;. By Lemma 3.7,
{um, }; j’c’o has a convergent subsequence whose limit u is a sign-changing critical
point of ®, and ®(u) > §; > Cy. This contradicts the assumption.

Caskg 2. For all k£ > kg, there exists a mj such that
(3.15) Ve (m) =y *(m) forall m > my.

Let K¢om(m) denote the set of common critical points of &, and . By (AS),

Vs :={u € Y ||u||512.0(g) <4},

and let Us be as in Lemma 3.6, which contains all non-common critical points
of ®,, and ®,,. By Lemma 3.5, there exists a R; > pg such that ®,,(u) < 0 for
all u € N with |ju|| §2,@) = R;. Here R; is independent of m. Combining the
definition of y; (m) and (3.14), we find a ¢¢ € I, such that
_ - . 1

(3.16) sup &= sup O <y (m)+ -.

So(NINSm  $(NENBR)NSm 2
Let

Us (m) := Vs U Us U (—Us).

Then Uy is a symmetric set and contains all critical points of ®,, and ®,,. Define
two non-negative continuous functions:

0, if u € Ujy(m),
1, if u ¢ Ujy(m),

0, if u <0,

1, if u>1,

S1(u) = { (iseven), & (u) = {
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and a vector field
= — o (max{ D (1), Pm(—u)}) &1 () Vin (1),

where the pseudo gradient vector field V;,,comes from Lemma 3.4 obtained for
®,,. Since V},, can be choose to be odd, then V, is odd.
Let ®(z, u) denote the unique (odd in u) solution of the Cauchy initial value
problem:
dO(t,u)
dt

= V(O 1), ©O0,u) =ucYp.
Then O(¢, u) is also a pseudo-gradient flow for ®,, and

d®,, (0(t,u)) <0

(3.17) o

For any u ¢ Uy (m), we have u ¢ +£Us and by Lemma 3.6, we obtain

§+1 -
||q>;n(”)||(312.0(9))* = T”@;n(u)”(sf’o(g))*’

_ )
||q>;n(”)||(sl2.0(g))* = 5T1||q);n(u)||(512’0(9))*-
Further, for all u ¢ Uy (m), we get

(@, (), Vin (1))
= (@3, (). Vin (1)) — (@ (1) — @ (1), Vi (u))

1

_@-n2- 4(8 + 1)

@/
252 |

( )”(SZ ©))*’

and

206+ 1) + ) -

Moreover, since u ¢ U, (m) implies {1 () = 1, we see that @, (u) > 1 implies

&2 (max{ D, (u), Bp(—u)}) = 1.
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We obtain
(3.18)

d®,,(O(t, u))
dt

=0 <d>;n(®(t,u)), (ii_?>‘t=o

= (®,(0(1,u)), Vo (O, u)))|,_,

= (@}, (1), —L2(Max{ @y (O(1, 1)), Py (—O(t, 1))})
£1(O(, 1) Vi (O, w)))) |,

= (@}, (1), —L2(Max{®p (O, 1)), Py (—O(2, 1))})
E1(u) Vin (1))

5/ 2

277

= —(®;,(u), Vn(u)) < ~300

for all u ¢ U, (m) safisfying @, (u) > 1.

We claim that (¢, ¢po(-)) € [y, for any ¢t > 0. In fact, (¢, ¢po(1)) is odd in
u since ¢o(u) and V,r are odd. Recall that ¢g € I'y,. Then, ¢o(u) = u for u with
max{®(u), ®(—u)} < 0. Hence, O(t, ¢po(u)) = O(t,u) and V' (u) = 0 for u with
max{®(u), ®(—u)} < 0. It follows that O(¢, u) = u and then O(¢, ¢ (1)) = u for
u with max{®(u), ®(—u)} < 0. Using Theorem 1 in [9] and Lemma 3.4 similar
to the one of Theorem 2.1 in [30], we obtain

O(t, po(Dp)) C O(t, D) C Dy, forallt > 0.

Therefore, O(¢, po(u)) € Iy, for any ¢+ > 0. For any ¢+ > 0, we can deduce
the following estimates which lead to a contradiction. In fact, by the fact that
O, po(u)) € T'y, is odd,

Ot Bo(NI)) N S © {u € Yot Bu0) = 7" (m) + %}

V>0 is bounded, (3.15)—(3.18), and Lemma 3.6, we have

m)+ - = m) + ~
Vi (m) + > = %k (m) + >
> sup @
¢0(N_T_)nsm
> sup P
Ot b0 (NENNSm

> sup D —( sup P — sup D)
O@,¢o(N*)NNSm O@,¢o(N*)NNSm Ot,¢o(NI)NNSm
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> pir (m) — sup (D(—u) — D(u))
UEeB(t,bo (N2)NSm

> Yy (m) — sup (D(—u) — D(u))
e, do (NN Sm
N{UEY m: By )<y * (m)+ 1}

= Vg (m) = sup [©(-u) — O(w)|
u€B(t.¢o(N3)NSm

N{UEY m: By )<y * (m)+ 1}

= Yip1(m) — sup 1B(—u) — D)
ueUz*Oﬂ{uer; 5m(u)5y,’:*(m)+%}
Z v (m) = sup |®(—u) — ®(u)| — Ci5

uE(—UonUz(l)
N{UEY m: By )<y * (m)+ 1}

> V;:—T-l(m) — sup C8||u| Zjﬂl—l(g) —Cis
ue(—=UzoUUz0)
NUEY m: B )<y ™ (m)+ 1)

1+o0
ZV;:—T—I(m)_CS(V]:*(m)) w —Cys.

Therefore, we get the inequality

*% *x * % 1+o—n
(3.19) Vir1(m) = v (m)(1 + Ca(y™ (m)) ™ #),
for all k > ko.
Then from the condition (1.3), we can take some py € (2,2) and ¢ €

(1@:‘32 2) such that

(3.20)

l+o0—p  2(po—p) (i_Z—Q)<_1
w o (p—=2)(po—2) \Na q
From Theorem 1.3 in [15] (or see [16]), we obtain

(3.21) Ap > Crek Me .

From (3.19)-(3.21), using iteration, we get that

ko+£—1
*k *% *k 1+o—p
Verom) < yerm) [ [+ Cs(rg*m) )
k=ko

ko+£—1

< yiremexp (Y I+ Co(om) )
k=ko
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ko+£—1 +
—M

= i () exp Gy ( )

k=ko

ko+{— 1

+o—u _2(pp—P) 2 2—gq

SV/::(m)expCS( Zk i = (N ))

k=ko

< 00,

for all £ € IN, which yields the desired contradiction. Thus, ® possesses an
unbounded sign-changing sequence of critical values. |

CoroLLARY 3.8. Assume that f satisfies the conditions (A1)—(A3) and there
isao < % such that

| f(x,y,u)— f(x,y,—u)| < C( + |ul’) forallu € Randa.e. (x,y) € Q.
Then the problem
(3.22) —Gqu = f(x,y,u) inQ2, u=0 ondQ,
has an infinite sequence of sign-changing solutions provided that (1.3) holds.

CoroLLARY 3.9. Assume that f satisfies the conditions (A1)—(A3), there exists
a R > 0 such that

f(x7y’_u) = _f(x7y’u) fora.e. (X,y) € Q7|u| = Ra
and

2
P 1>Vv

Na(p—=2) ~ p-—1
Then the problem (3.22) has an infinite sequence of sign-changing solutions in
S70()-
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