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SOUR LES PROPRIETES ARITHMETIQUES DES FONCTIONS
ENTIERES ET QUASI ENTIERES;

Par M. Epmonp MarLLET.
I.

Les polynomes F(z) a coefficients rationnels jouissent de di-
verses propriétés que l'on pourrait chercher a étendre aux fonc-
tions entiéres et quasi entiéres ('), Ainsi :

1° Le produit de deux polynomes a coefficients rationnels a ses
coefficients rationnels;

2° Si z est rationnel ou algébrique, F(z) l'est également;

3° Si b est rationnel ou algébrique, F(z + b) = o, ordonné
suivant les puissances croissantes de x, a ses coefficients ration-
nels ou algébriques.

Dans quelle mesure ces propriétés existent-elles pour les
fonctions entiéres ou quasi entiéres? Nous ne prétendons pas
traiter ici la question d’une fagon absolument générale. Nous
pourrons néanmoins, par des exemples suffisamment étendus,
basés surtout sur la considération des fonctions quasi algébriques,

(') Pour la signification de ce mot, voir notre Communication du 17 fé-
vrier 19o2 & I’Académie des Sciences.
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mettre en lumiére la différence profonde qui existe arithméti-
quement entre les trois calégories de fonctions : polynomes,
fonctions entiéres, fonctions quasi entiéres.

~ Dans les exemples que nous indiquons, si la premiére propriété
peut subsister pour les fonctions entiéres, les deux autres ne
subsistent pas. Enfin, aucune n’est vraie pour les fonctions quasi
entiéres.

Nous terminons en montrant qu’il y a une infinité de fractions

continues non algébriques dont I'ensemble a la puissance du con-
tinu et qui sont racines d’équations de la forme

@
1+ Enc,,.z‘":o,
1

ou les ¢, sont rationnels et décroissent suffisamment vite avec  (*).

II.
FONCTIONS ENTIERES.

Considérons la fonction entiére e*— a ou a est rationnel. On
sait, d’aprés les théorémes d’Hermite et de M. Lindemann sur le
nombre e, que eZ, par suite e*— a ne peul étre algébrique que
si z est transcendant (*). Donc les racines de ¢*— a=o sont
transcendantes. 1l y a 1a une véritable réciprocité.

2 \ .
De méme e*tb = eb(l +?-—I— ':—‘ +.. ) a tous ses coelficients

transcendants si b est rationnel ou algébrique. Enfin, les racines
d’une fonction entiére peuvent étre rationnelles sans que ses coef-
ficients le soient. Exemple :

+ .o

3?2 nz T333 wizd
k)

sinnz:wZIl(!—-— =3T3

(') Un résumé de la présente Note a été communiqué & ’Académie des Sciences
(19 mai rgo2). Sa lecture exige seulement la connaissance du Cours-d’Analyse
de U’Ecole Polytechnigue, de notre Note du Journal de Mathématiques (1go1)
sur les équations transcendantes, et de notre Mémoire des Acta mathematica
(1go2) sur les nombres e et & et les équations transcendantes. On peut rapprocher
avec intérét de ce qui suit diverses Notes de M. P. Staeckel (Math. Ann., t. 46,
p- 513, Comptes rendus, 20-27 mars 1899, et Jahrb. der Deuts. Mat. Ver., t. XL,
1902 ).
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Considérons de la méme maniére une fonction quasi algébrique

ou |a,,| est limité et ou ¢, croit suffisamment vite avec n, a, et ¢,
étant entiers : c’est ce que nous pouvons appeler une fonction
X(z) quasi algébrique. Siz est rationnel, X(z) est transcen-
dant : les racines de X(x)=o0 sont donc irrationnelles : nous
savons déja d’ailleurs qu’elles sont transcendantes ('). Il y a encore
14 une véritable réciprocité.

On en conclut (ue la deuxiéme et la troisi¢éme des propriétés
des polynomes indiquées au § [ ne subsistent pas ici.

Au contraire, il est trés possible que la premiére propriété sub-
siste, & condition de définir avec précision la divisibilité des fonc-
tions entiéres. En tout cas, le produit de deux fonctions entiéres
a coefficients rationnels est évidemment une fonction entiére &
coefficients rationnels.

1II.

FONCTIONS QUASI ENTIERES.

Nous allons voir, au contraire, qu’aucune de ces trois pro-
priétés ne parait subsister pour les fonctions quasi entiéres que
nous avons surtoul en vue ici.

Nous allons d’abord établir le théoréme suivant :

Tatorkme I. — Soit I’équation réciproque
: 2N

() s +f(3)=a
ot a est rationnel, et f(z) est une fonction entiére & coeffi-

. . o 1 .
cients rationnels. Par la transformation u = 3 + Zon obtient
Uéquation équivalente ¢(u)=a, o ¢(u) est une fonction
ensiére.

1° Si f(3) = e®, o a tous ses coefficients transcendants;
2° Si f(z) est une fonction X (z), c’est-a-dire une fonction

(') En sorte que si § est algébrique, X (§) est transcendant.
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.y N . s . .
entiére a coefficients c, = ;’1 rationnels, et si |s,|Sc,, les o,
n

étant donnés, on peut toujours choisir un mode de croissance
des tysuffisamment rapide pour que ¢(u) ait tous ses coefficients
transcendants.

Posons
Z4+ - =au,
z :
32—2uz+1=0,
Z=uxtyur—i.
L’équation (1) devient
(2) flu+ Ve =1) + f(u—yu—1) = a.

Le premier membre, si 'on pose \/u?— 1=y, ne change pas
quand on y change y en — y. Ce sera donc une fonction paire
de y, par suite une fonction bien déterminée de u et n’ayant qu’une
valeur pour chaque valeur de u, c’est-a-dire une fonction rmono-
drome. Le premier membre ne devient infini que pour 5 = oiouco,
c’est-a-dire u = o0; c’est donc une fonction enti¢re de u (')

L’équation (2) est une équation entiére

(26%s) o(u)=a.

. a A A . i
équivalente a (1) grace a la transformation 5 + - = u.

Mais cette équation (2%) n’aura probablement pas ses coeffi-
cients rationnels ou méme algébriques en général. Nous citerons i
cet égard deux exemples :

° - Sf(z)= e
(1) devient
1
e+ ef=a;

@(u) = e* V=T 4 "Vl = geu cosy/1— ut = 2% Y(u)

2
=c‘n(o)+l‘—‘q>'(o)+ -g—!tp'(o)—i—...,

(1) La transformation z + % == u rejette les points critiques de (1) & I'infini.
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[

¢(0), ¢'(0), ... seront évidemment des fonctions linéaires
coefficients rationnels de cos1 et sin 1. Ainsi

¢(0) =2cosiI,
o' (0)=[2e*¢(u)+ 2% ' (%)]u=0=2¢(0) =2cos1,

D’une maniére générale

oW (u) =22 §(u) +2Cler §'(u) + ... +2e* W (u)
ct
oW (o) =2¢(0)+...=2cosr—+...,

chacun des termes du dernier membre contenant en facteur cos 1
ou sin1 multiplié par un nombre rationnel; ¢*'(0) n’est d’ail-
leurs pas nul en général, sans quoi ¢ («) se réduirait a un poly-
nome, ce qui est absurde. ¢* (o) est alors de la forme

Acost+ Bsinr,

A et B étant rationnels et 'un des deux 3£ o.
Les coeflicients de ¢ () sont alors tous transcendants. En effet,

elx4 e—ix
cosx = ———;
2
el 4 et
COoS 1 =
2

ne peut étre algébrique, car e’ le serait, ce qui estimpossible, d’aprés
M. Lindemann, puisque i1'est; sin 1 =/1— cos?1 est transcendant

ainsi que A cos 1+ Bsini, sans quoi cos1 serait algébrique. Donc

?(k’(o)
k!

Ceci démontre la premiére partie du théoréme.

est algébrique.

2° Ce qui précéde n’est pas un cas unique : nous allons mon-
trer que, dans un cas trés étendu, 1'équation (2%%) a ses coeffi-
cients tous transcendants, bien que I'équation (1) ait ses coeffi-
cients Lous rationnels. :

Soient

Sf(B)=co+c1a3+...+cp3t+...,

I I
o(u) =2co+ ¢4 <z+z>+...+c,,(z"+ ;)-l—
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ou, en posant
Z,= 3"+ -Ln’
9(u) =2¢0+C12+...+cply+.
Calculons le coefficient de u¢ dans le développement
o(u)="o+Y1lt+ ... +Yqud+....

On a, en général,

1\2pr ) _
utp =<z+2) =Zyp +Cl ZapatCly ZapyrootClpt Zy+CE,

/

1\ 2p+1
ur+t = (z -+ ") = Zzp+1 -+ C;P-H z![,.-g +C§p+. ng_a—i- oo C’;;}l, Z3+ Cgp-&-l Z1,

2
et ces formules connues permettent de calculer Z,, Z,, ... par
voie de récurrence.
On obtient

g Zz= u’—Q,
Z5+ Cz Zg= ut — },
Zop+Clplopo+ ...+ COPV Ly = utr — Cf,
d’out
By,
ZQ; = i ’
! D!p
avec
1 o o
Gl 1 o .
D!pz + =1,
Copt . 1|
1 o o u*— v
B. — C, 1 o ... o ut—C
ap = )
- 1 2
Gt . . ... Gl wr—0GC4,
Zyp = ARP 2P 4~ QP up—2 ., .+ AP
De méme

Z”H_‘ o B2p+| = Ai,”’*’”u’l"'" -+ A‘f’”’”u’l’—‘—f—. .o+ A(ﬁ:/{ui} u,

B,p.41 ayant une expression analogue el les & étant des entiers.
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Dés lors,

w(u) =200+ cru+ca(U2—2)+...4 Cop Byp+ Capr1Bapis+....
Le coefficient de u9 est de la forme
Yg = €g847 4 Coug 8THD - g SHD) el L - cguy SJTTD4- L,

D’ailleurs, 39+ est limité en fonction de ¢ -+ ¢ et croit moins
vite, pour une valeur donnée de ¢ + i, qu’une certaine fonction
% (g =+ ), quels que soient g et i. Ceci va nous suffire pour mon-

. . . I
trer que si les Cn décroissent assez vile avec 7 et sont convena-

blement choisis, les nombres y, sont en général transcendants.
En effet, nous raisonnerons encore comme l'a fait Liouville
pour montrer 'existence de nombres transcendants.

Si f(z) = o est une équation algébrique irréductible de degré &
a coefficients entiers,

p('l)
I _ e, 8 (gD
QW cqo”+...+cq+,8i9 )
g+i
avec
Sq+i
Co+i = 2,
tg+i

P70, QJ); entiers premiers entre eux, sq.; et £ ; étant limités en

(g @ . @ divi 1 s
fonction de g -+, ainsi que P7;, Q7;; Q) divise le d¢nomi
nateur commun a Cg, ..., Coyi-

Soit | s4|S ey, quel que soit ¢, le mode de croissance des o,
étant donné. Nous supposerons le mode de croissance des ¢, assez
rapide pour que

)
r Pgﬂ-z

s Q(q)

+,
< 2| eqriv1 87 iy,

quels que soient ¢ et i. La chose est toujours possible, car, pour
chaque valeur de ¢ + 7, le nombre d’inégalités auxquelles doit
satisfaire ¢g i, est limité.

On a, pour ¢ + i assez grand,

P2 A I
f( "(“) — 2 (A entier # o)
o) ’
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ou, a fortiori,

Py, .
3) —t| Mz
iz Qi
. s -
si |E— Q‘{""I est << la demi-différence entre deux racines de

f(z)=o. |
M a une limite inférieure fonction de g pour toutes les équa-
tions ou les coefficients et le degré sont £ g + ¢. Donc,

p(q)

—& I = No+i

a une limite inférieure Ay ; fonction de g + i. Si ¢4,; croit suf-
fisammenl vite avec ¢ - Z, on peut toujours prendre t,,;,, assez
. 1 .
grand pour que N4, soit < Mz dés que g + ¢ est assez grand,
q+
quel que soit g, c’est-a-dire pour que (3) soit impossible. En effet,

il suffira

(4) 2 | Cqit STHHD | < Mg

Donnant alors & g dans vy, les valeurs o, 1, 2, ..., g +i=¢/,
on obtient POUT Mgy, €L, par suite, Xg4, ¢+ 1 valeurs; de méme
pour 39+, si on laisse ¢ -+ i constant : il suffira de prendre

A
| ¢g4isr | < la plus petite des valeurs E%L%correspondanles pour
14

que (3) soit impossible pour Yo, Y, ..., Yg4i, Par suite pour
que Yo, Y1y -+ +y Yq+i SOlent transcendants.

On peut donc déterminer un mode de croissance assez rapide
des ¢; pour que tous les y; soient transcendants (*). c.Q.F.p.

Nous allons maintenant établir le théoréme suivant :

(') On pourrait montrer d’'une fagon analogue que y, de module <1 ne peut
- .
- &tre racine d’une équation 2 0, 2®» = o quand les 0, décroissent assez vite ou
. ) ° )
quand les @, croissent assez vite, pourvu que les numérateurs des 0, aient leur
croissance limitée.
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Tratorime II. — Soit

© ®
al 1
aeSd-FeaFds
Z " 19 zn

[} °

une fonction quasi entiére avec un point singulier essentiel a

Uorigine : si |an|San, |a)|Sal, les an, ol étant donnés, on

peut toujours chois[r un mode de croissance assez rapide des
tny, ty pour quez Cn 3" et E ° gient tous leurs coefficients
transcendants quand Ay, AYy t,,, t) sont entiers.

Soient
(P(Zo) =2 b,,zﬂ, ?0<;-) = z"’
0 0

©(3) et 9o (2) étant des fonctions entiéres a coefficients rationnels,

0
all-
bn=—, b?l=

0. (an, a3, tn, t) entiers).
tn iy

On sait que le produit

?(2) 90 (;) =2cnzn+i%_
0

[]

On a

S An+) @]
— n P N
C\ = 2 bni2 03 Y t°

a a
e = - n+l n,
)= E nb,bY, = E TR

D’aprés ce qu’'on a vu dans la démonstration du théoréme pré-
cédent, ¢, et ¢} étant précisément de la forme v,, on peut toujours
prendre un mode de croissance suffisamment rapide des ¢, ¢y,
quand les a,, a) sont donnés, pour que c, et ¢} soient transcen-
dants.

Remarque. — o, ¢} décroissent alors aussi vite qu'on veut

avec » pourvu que b,, b3 décroissent suffisamment vite avec —-
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Donc, ici,

® L] @ =
Z Cn 3", 2 ¢, 3" sont quasi algébriques quand 2 b, z*, 2 by z"
0 0 (] 0

le sont.

Il convient, avant d’aller plus loin, de chercher a étendre ceci
aux fonctions quasi entiéres générales. Il nous suffira de consi-
dérer les fonctions quasi entiéres

F =7+ (3)+h(=7) =s@e (Do (22)

ou 'on suppose que 9(3), 9o(2), @,(2) sont des fonctions algé-
briques & coefficients rationnels.

Lesproduitscp(z)?o(i>, cp(@(p.(z_'_al) ‘Po() (z_la‘>

ont encore leurs coefficients transcendants : on le voit comme
tout a ’heure.
Nous allons établir le théoréme suivant :

Tatorkme 1. — Soit la fonction quasi entiére

c O cf 3 (2%
F(a)=Rensn+ X3 =X e ¥ 2 Xy
(=) n 3"+ Zuzn (z—ap)» 3 (53— ay)»
0 0 0 0 0 0
(@, rationnel) oi les by, b}, b))’ sont rationnels et égaux a

Sn o s) st
e,

F t° -t(—”’ avec |5n lécm lsw) l 20'},0’, |s},” Ii"h”,
n R

les apya (P, ol é

étant donnés, on peut toujours choisir un mode
de croissance assez rapide des t,, t{, t\" pour que le premier
membre posséde autant de coefficients transcendants que l'on

veut.

En effet, considérons un cercle ¢, de petit rayon r, ayant pour
centre ’origine, un cercle ¢, de petit rayon r; ayant pour centre
a,, un cercle y de petit rayon p ayant pour centre un point ¢ quel-
conque du plan extérieur a G, et C,, et enfin le cercle A de rayon R
aussi grand qu’on veut ayanl pour centre ’origine et contenant ¢.

( )

La fonction —= est monodrome 4 l'intérieur de la région S for-
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mée du cercle A diminué des cercles Gy, C,, y. On aura

! 1 1 1/ t 2
—_— = =\t —= 4. )
z 3

¢
car mod‘;l< I.

car

l y est <13
Le long de C,

I _ 1 _ 1 . 1
z—t z—ai—(t—a) t—a3 z—a
t— ay

—1I

A t—alf dz—l— a),f(z—ai)Fdz+....
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i : (0) (1)
On en conclura la valeur des coefficients c,, ¢}, ¢’ de f, fi,
fi. Ainsi

i
e =— [ zn—1F(3)dz.
ami
0

Il reste & prouver que si ¢, ¢o, ¢, sont quasi algébriques a coef-
ficients rationnels, c¢{” est transcendant. Or, soit

o(z)= ib,,z",
)

et by le premier des coefficients b, qui soit 3£ 0. Soit encore aux
environs de z =0

N _ ZM@W(0) | gk+1 U+ (o)
?'<z-—a,)‘q’("’— ARV E)

si ®® (z) est la premiére des dérivées de ® qui ne s’annule pas
pour z=o. On aura

() = ()

et, si|z| est suffisamment petit le long de C,,

21'!!

c'°) =— /bu(l +¢) o® (O)(x+e)oo (;>~"—‘+P-+kdz,

|e], | ¢'| étant aussi petits qu’on veut. On en conclut

d) (o , .
i) = ( )bub" ks k étant fini et 20

Il suffira donc que ®®* (o) soit transcendant pour que c.” le soit.
Or

PH(z) = o} (

XXX.
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P, P, ... étant des polynomes en —— de degré limité en
I—a;

au numérateur et au dénominateur.

Z— ay
Or
I = b
LS <z—at> T e (5 —ay)"
)
& T\ - b$,“n(n+l)...(n+k—l).
1 (z——m) _2 (z — ay)n+k
Alors

\ o (1)
W (o) = o® | — L) pww (L - by (k) (__‘_>
Pk (0) = of ( a‘)P,‘ ( al)—i—.. ;(-a,)nPO a “+...

+2 b n(n+1)...(n+k—1) PP <_£_i> =Z b QW (ay).
- [)

(__ a‘)n+k

Or

2k
PP o+ (! =,
u z—ay)z;=0 alk

qui est 3£ o.
Pour les valeurs de n qui dépassent une limite assez grande,
®*) (0) est de la forme

b

bi,i) 1 .
> P%ﬂ <— ;;) nk(1+¢en) = (— ay)3k+n né(1-+en),

(__ a‘)n+k

¢n étant aussi petit qu’on veut, pourvu que n soit assez grand,
mais étant rationnel quel que soit n. Le coefficient de & est
donc 7 o dés que n dépasse une certaine limite.

D’aprés ce que nous avons vu dans la démonstration du théo-

1)
\ ) Sm (1] < ) s N
réme 1, s1 b} = i avec | s 26, et si o) est limité en fonc-

tion de n, pour un mode de croissance suffisamment rapide de ¢
avec n, ®® (o) est de la forme y, et, par suite, est transcendant
ainsi que c’.

Nous en concluons finalement le théoréme annoncé, sans méme
chercher a étudier la nature des ¢, et c{. C.Q.F.D.

Remarque. — On peut abréger la démonstration en s’appuyant
sur cette propriété des fonctions quasi algébriques a coefficients
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rationnels : ¢, <—- é) est transcendant, par suite 3% o0, quand a,
1

est rationnel; il en résulte de suite £ = o.

Nous allons maintenant chercher & montrer que les équations
F(z)= a a coefficients rationnels comme a [F(z) étant de Ia
méme forme qu’au théoréme 1II, mais les c,, ¢, ¢!’ étant ra-
tionnels] ne possédent aucune racine algébrique ou encore que
F (%) est transcendant quand § est algébrique, pourvu que les ¢,,
c?, ¢! soient rationnels et que les ¢,, ¢, ¢!’ satisfassent a des
conditions semblables de croissance (').

Tatorkime IV. — Soit la fonction quasi entiére

) cm
S O D e e
Z‘— a,)on

a coeffficients rationnels = o ainsi que a (les w étant entiers),

(0) (1)
Sn § s
—_ (0) — n 1) —
Cp = —> Cp' = ’ Cp' = ’
» i g
avec
< (0) | < gt0
|3n|:anv |Su),q:°'>;)1 IS;LHI_S_G%)'

Les oy, a\0, o'V étant donnés, on peut toujours, pour toutes les
JSonctions F o les s satisfont aux conditions ci-dessous, choisir
un méme mode de croissance assez rapide de t,, t\", ¢\ pour
que les fonctions F n’aient aucune racine algébrique; autre-

ment dit, pour que F (L) soit transcendant dés que § est algé-
brique (*).

_En effet, soit F({) racine d’une équation algébrique irréduc-
tible
P =A)+Ajz+...+ A,,l.z-'h =0,

(') La fonction F(z) du théoréme IIT ne posséde évidemment aucune racine
algébrique, puisque aucune des trois fonctions dont elle est le produit n’en pos-
séde.

(2) Un théoréme similaire a été établi par nous pour les fonctions entiéres
dans un autre Mémoire ( Acta mathematica, 19o2).
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a coefficients entiers, { élant algébrique et racine d’une équation
algébrique irréductible i coefficients entiers

= Bo+ B X +...+B,X¥=o,

(5 [Aol, «oos [An | IBols ooy [ Byl 120

1y, v étant au plus égaux a une fonction A, du nombre n arbi-
traire, mais.qui croil au moins aussi vite que le nombre n.
Supposons encore qu’en changeant la notation on ait

c(o) (,;1'.
F( )::EC,;.Z‘wn-—F E E t T
’I‘Un (- -a)®n

les cuy ¢, ¢!} étant ici tous £ o, les ®,, ©l’, w!’ entiers et a,

élant un nombre rationnel quelconque dont le numérateur et le
dénominateur sont limités et < n.
Posons encore

n n
ol
Fu(s)= EI CpTBm - E o E
x%n (r — al)ﬂu
)

Enfin supposons ¢, o, ¢!’ constamment croissants avec n
et £A,. Soient enfin

Fn(:)=Fna F({)=F,+z,.

)

Si le mode de décroissance des c,, ¢\, ¢!’ est suffisamment ra-

pide, on aura toujours
I sll I < EI},
E, éiant la plus grande des quantités

@(0) , &)
6] cnrr| AT, 6 e ] Apnvt, 6 el | Ay nrt.

Considérons alors
(6) P(Fp+cen)=0=P(F,)+¢e, M.

On peut toujours prendre n assez grand etc ., ¢y, , ), assez
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petits pour que | €n Lsoit plus petit que la demi-différence entre
deux racines de toutes les équations irréductibles ® = o satisfai-
sant aux conditions (3). M est alors ici limité inféricurement
en fonction de Ay, Ay, ..., A, , par suite de n,. On aura

leaM|=|P(Fn)|,

@ (F,
(7) la”]z_ (M )’
et
‘I’<Fn)'7f0-

Considérons toutes les valeurs de ® (F,) correspondant aux
valeurs de §, des A, des B, de n et v satisfaisant a (5) et aux
diverses valeurs des s < aux o correspondants. Leur nombre est
limité en fonction de n. ® (F,)a donc en fonction de 2 une limite
inférieure qui ne dépend que de co, ¢y, ..., Cuy Yy ..., €y
eV ..., e, ay, des w et de A,. Finalement, le mode de crois-
sance des s;, s{, sV, ¢;, £V, t{" étant donné jusqu’a l'indice n,
® (F,) a une limite inférieure fonction de n pour toutes les va-
leurs des s‘-f’So-(f)' |e,,| peut étre pris aussi petit qu'on veut
pourvu que Cpyi, €2, , cirl, soient suffisamment pelits, ¢’est-a-dire
assez petits pour que (7) soit impossible, par suite (6).

Supposons maintenant donné le mode de croissance des o.
D’aprés ce qui précéde, on peut toujours déterminer un mode de
croissance des ¢;, £\, ¢{" suffisamment rapide pour que, dés que n
esl assez grand, le raisonnement ci-dessus soit applicable quels
que soient ® et W supposés choisis @ priori. Le théoréme en ré-

sulte immédiatement. C. Q. F. p.

Enfin, soit b rationnel; si

©

L1
F(z+b)—zcn(5+b)‘+2( —-l—-b)”_'—z(b“(ll + 3 )

0

._f(z+b)+fo< >+fi<—__m\)

on a

fE+0)=f @)+ 2f0) + Z by,

f(l'.)(b) =Ec,,b"—kn(_n —1)...(n—k+1).

0
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Les coefficients de f(z+ b) développé suivant les puissances
croissantes de 5 sont encore tous transcendants.

En résumé, nous trouvons ici en défaut pour les fonctions quasi
entiéres les propriétés essentielles des polynomes a coefficients
entiers que nous avons signalées dans le § I.

1V.
Soit

@
F(z)= E CpnTBn=Cy~+ C; T 1 ~+...= 0
]

une équation quasi algébrique & coefficients rationnels : si le
mode de croissance des ¢, est suffisamment rapide, toute racine de

n
Fu.(z)=o0 =E Cn TBn
0

est trés voisine d’une racine correspondante de F. Dés lors, on
peut penser a lirer parti de cette remarque pour l'étude du
développement en fraction continue des racines de F(z). Nous
allons établir la propriété suivante :

Tatorime V. — Soit la fraction continue

ou, sur § quotients incomplets consécutifs, il y en a toujours
un au moins qui croit au dela de toute limite et suffisamment
vite quand son indice augmente indéfiniment, les autres res-
tant limités.

On peut déterminer une équation & coefficients rationnels

de la forme
e n
l+2 Cp = ¢
(]

ayant L pour racine; les ¢, décroltront aussi vite et leurs nu-
mérateurs croltront aussi vite que l’on voudra, pourvu que la
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croissance des quotients incomplets ci-dessus soit asses rapide.

Enfin, si la croissance de ces quotients est asses rapide,
Z n’est pas algébrique; ’ensemble des fractions 7 non algé-
brique a la puissance du continu et est distinct de ’ensemble
analogue des nombres transcendants racines des équations

quasi algébriques
@
2 @ gn = o
tn
0

ot |a,|entier limité, t,entiercroissant suffisammentvite avec n.
En effet, considérons I’équation
Fi(z)=14+cix =0

en supposant ¢o =1 : F, ala racine (')

r=— L =P,
. Cq g1
Soit
Fo(z) =14+ c12 +cax?=0;
F, aura une racine ';2 rationnelle si 'on détermine ¢, par la
2
condition
(g
1+c,£’ (—(—]—' P2
q: Pr 9 __ P192—q1P2

Cq == — = — = g H
N (@)
(q, 92 P
¢, sera aussi petit qu'on veut pourvu que ? —? le soit, car
1 2

pr_ P2
q1 q: .

1)
91\ 92
Nous poserons p, g, — p2 ¢y =z¢, (| &,| entier SA, A étant li-

mité), ce qui est toujours possible pour des valeurs de p, et ¢,
aussi grandes qu’on veut si p,, ¢, sont premiers entre eux deux

Cy = —

") 5.!, ;l’, ceny %‘, ... sont, dans ce qui suit, des fractions irréductibles.
1 2 n
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i deux. Les développemenls en fraction continue de P! % sont
2

d'ailleurs limités. On déterminera de la méme maniére c,, Chy oo
de fagon que
Fir(z)=14+c12+...+cras

ait une racine pk ratlonnelle aussi voisine qu'on veut de 2 q_ avec

k—1

Prk-19k— Pk -1 = Ek—1,

qx étant aussi grand qu’on veut par rapport 3 gx._,.
Considérons

Fra(z)=1+cy2+... 4 cppxbri=0

qui a pour racine sk—, et développons Z'I““ en fraction continue.
+1 +

Nous supposerons que p/.+1 posséde tous les quotients incomplets
de - Ona
Pk Pk+1 — Pk Qk+1—— Pk+1 Qk €k
qk q k+1 qk qk+1 9k 9k+1
Ij—k = Q¢ + ‘——-—I = p_"k,
% . L q;-k
(8) S Any,
P+ =ag+ 1 pm,y"k_'_Pnl—l
q k+1 ag .. ___‘__ an Yy -+ qn}——
1
ap, + —
! Y ym
‘ PI. . PIH—I Pnk (qnl Y+ an—x) q:q (p:u‘.y"k +p:1k—l)
qx Fh+1 an(an.y'll- -+ 9;.,,—1)
< , A ’ '
' P In—1— Dny Prp—1 __ (—1)m—t
\

T I @mImt Gm) I (I Y D)

Pour que la différence Z ’;':" soit aussi petite qu’on veut par
k +1

rapport a gi!, il faut que g4, puisse étre pris aussi grand qu’on
veut, par suite aussi y,, .
Soit

ny = Aty + ——————
y k ﬂnx.-.‘.g . . 1

(L7 T
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@y 41 doit étre un entier aussi grand qu’on veut; au conlraire,
nous SUPPOSErons @y, .. ..., d, limités, s’ils existent.

- En effet,
( P;nk+1 = P;.k @ pkyq +P,’,k_l,

' it '
Pri+2= Pus1@nias + Ppps

de méme pour les ¢’. Donc

, . ’
.an., = P+ 91 +Pn; P2,

®1 et o, étant limités si a,.,, ..., a,,, le sont, ainsi que
Rpyy — Ng.
’ !
Pk+1 Pk _ Pnpw Py
- !
qk+1 9k ‘]LH, 9 nye
U ’ ’ r ’
([)nl—o—l Q1= ?2) 9 n;, _pnx-(ql’u-+l Q1+ Gy ?2)
= T 7
D D nxss
% (P:u.+l q:.k "'1”;1& q;u.-o-l) _ (— 1) )

’ ’ ’ ’
9 ny q"x-_‘,. an quk.,_,

Or
o '
9 iy = Ing+1 @1 Gy O

et;,—?—q'—,——- est évidemment de méme ordre de grandeur que
ng 4 ngyy

I
sy
an 9nk+l

Ceci posé, considérons une fraction continue illimitée

1
Z:ao+————
a

‘)

ou sur § quotients incomplets consécutifs (8 limité) il y en a
toujours un au moins qui croit au dela de toute limite et assez
vite quand I'indice augmente indéfiniment, les autres étant limités.
Considérons les réduites successives obtenues en s’arrétant a ces
quotients incomplets particuliers : on obtient une suite

P P2 Pk
91 q2 9k

de réduites pour lesquelles (8) a lieu, ¢ restant limité.
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Nous pourrons toujours déterminer cx,, de facon que Fi . (z)
Pkt
k+1

k+1
F~<&'l"—’-)=x_+c Pret 4o (&."1)
k G k+1 ! q k+1 ket 9 k+1

L\ A+
() e (52
9k qh+1
ket
=nF2(P +9m)+ck+.(’-'1ﬂ>+’
9k

\ q k+1
Ph+1 _ Bf.
q k+1 qr
7, étant aussi petit qu’on veut et g"“ étant limité, ¢z, estaussi
k+1
petit qu’on veut. La série

@
F=1 +2n cpxh
1

a donc des coefficients qui décroissent aussi vite qu’on veut; Fya

ait pour racine =—==. On aura

S17, =

alors une racine Z" différant d’aussi peu qu'on veut de {;’; et qui
" Lo

tend vers Z quand k croit indéfiniment, d’aprés un théoréme

connu (').
(=Y (Plc+1>.
Gkt = (pku) & q i+1

Ici
Le dénominateur de la quantité rationnelle Fy (5’:’:) est de la
+
forme

79115441

et y est limité en fonction de k. On peut toujours prendre @i
assez grand pour que czy, ait son numérateur aussi grand qu’'on

veut. Les séries
«©
1 +2 Cp
-

ainsi obtenues ne sont pas de la forme

Z_wn

(1) Comptes rendus, g décembre 1901, et Acta mathematica, 1902.
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| @ | étant un entier limité. Cela devait étre, car nous avons vu (*)
que pour ces derniéres le développement en fraction continuec
d’une racine a la croissance de ses quotients incomplets limités.
L’ensemble obtenu différe donc de I’ensemble des racines de ces
équations; il a d’ailleurs aussi la puissance du continu, puis-
qu'on peut attribuer a chacun des quotients incomplets de Z au
moins deux valeurs distinctes (2).

(') Comptes rendus, 15 avril 1901, et Journal de Mathematiques,1got, p. 4.
(2) BorEwr, Legons sur la Théorie des fonctions, p. 33.



