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SUR LES PROPRIÉTÉS ARITHMÉTIQUES DES FONCTIONS
ENTIÈRES ET QUASI ENTIÈRES;

Par M. E D M O N D M A I L L E T .

I.

Les polynômes F(.r) à coefficients rationnels jouissent de di-
verses propriétés que l'on pourrait chercher à étendre aux fonc-
tions entières et quasi entières (1). Ainsi :

i° Le produit de deux polynômes à coefficients rationnels a ses
coefficients rationnels;

2° Si x est rationnel ou algébrique, F(.r) l'est également;
3° Si b est rationnel ou algébrique, F(a* 4-&) == o, ordonné

suivant les puissances croissantes de x, a ses coefficients ration-
nels ou algébriques.

Dans quelle mesure ces propriétés existent-elles pour les
fonctions entières ou quasi entières? Nous ne prétendons pas
traiter ici la question d'une façon absolument générale. Nous
pourrons néanmoins, par des exemples suffisamment étendus,
basés surtout sur la considération des fonctions quasi algébriques,

(*) Pour la signification de ce mot, voir notre Communication du 17 fé-
vrier 1902 à l'Académie des Sciences.
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mettre en lumière la différence profonde qui existe arithmétî-
quement entre les trois catégories de fonctions : polynômes,
fonctions entières, fonctions quasi entières.

Dans les exemples que nous indiquons, si la première propriété
peut subsister pour les fonctions entières, les deux autres ne
subsistent pas. Enfin, aucune n'est vraie pour les fonctions quasi
entières.

Nous terminons en montrant qu'il y a une infinité de fractions
continues non algébriques dont l'ensemble a la puissance du con-
tinu et qui sont racines d'équations de la forme

00

1 4- Vn CnX^ == Ô,

1

où lesc/i sont rationnels et décroissent suffisamment vile avec n (1).

II.

FONCTIONS ENTIETRES.

Considérons la fonction entière ex•— a où a est rationnel. On
sait, d'après les théorèmes d'Hermile et de M. Lindemann sur le
nombre e, que e^, par suite e^— a ne peut être algébrique que
si x est transcendant (1). Donc les racines de e^—a = o sont
transcendantes. 11 y a là une véritable réciprocité.

De même ^r+& ===e6 ( 1 + ^ + ^ 4 - . • • ( a tous ses coefficients

transcendants si b est rationnel ou algébrique. Enfin, les racines
d'une fonction entière peuvent être rationnelles sans que ses coef-
ficients le soient. Exemple :

rrr./ Sî\ ît-S Tï3^3 TC^Z9

sm^ = nZIl^-^ ==.———--^-+-^-+....

(1 ) Un résumé de la présente Note a été communiqué à FAcadémiedes Sciences
(19 mai 1902). Sa lecture exige seulement la connaissance du Cours-d'Analyse
de l'École Polytechnique^ de notre Note du Journal de Mathématiques (1901)
sur les équations transcendantes, et de notre Mémoire des Acta mathematica
(1902) sur les nombres è et ic et les équations transcendantes. On peut rapprocher
avec intérêt de ce qui suit diverses Notes de M. P. Staeckel (Math. Ann^ t. 46,
p. 5i3, Comptes rendus, 20-27 mars 1899, et Jahrb. der Deuts. Mat. Ver., t. XI/
1902).
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Considérons de la même manière une fonction quasi algébrique
«

x^^V^»
-̂ — fn

0

où \a,t\ est limité et où tu croît suffisamment vite avec n, a^ et tu
étant entiers : c'est ce que nous pouvons appeler une fonction
X(.r) quasi algébrique. Si x est rationnel, X(.r) est transcen-
dant : les racines de X(.c) === ô sont donc irrationnelles : nous
savons déjà d'ailleurs qu'elles sont transcendantes ('). Il y a encore
là une véritable réciprocité.

On en conclut que la deuxième et la troisième des propriétés
des polynômes indiquées au § 1 ne subsistent pas ici.

Au contraire, il est très possible que la première propriété sub-
siste, à condition de définir avec précision la divisibilité des fonc-
tions entières. En tout cas, le produit de deux fonctions entières
à coefficients rationnels est évidemment une fonction entière à
coefficients rationnels.

III.

FONCTIONS QUASI ENTIÈRES.

Nous allons voir, au contraire, qu'aucune de ces trois pro-
priétés ne paraît subsister pour les fonctions quasi entières que
nous avons surtout en vue ici.

Nous allons d'abord établir le théorème suivant :

THÉORÈME I. — Soit V équation réciproque

(i) /(^+/(^)=^

où a est rationnel, et f{z) est une fonction entière à coeffi-

cients rationnels. Par la transformation u = z + -on obtient

l'équation équivalente y («)===a , où y(^) est une fonction
entière.

1° Si f{z)= ez^ fQ a tous ses coefficients transcendants;
2° Si f(z) est une fonction ̂ (x), c^ est-à-dire une fonction

( 1 ) En sorte que si ç est algébrique, X ( Ç ) est transcendant.
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entière à coefficients CH=S-L rationnels, et si |^|^<r,,, les <r,,tn,
étant donnés, on peut toujours choisir un mode de croissance
des insuffisamment rapide pour que ̂ (u) ait tousses coefficients
transcendants.

Posons
Z -+--== ï M,

Z

Z1— 1UZ - ( -1=0,

Z = U ± ^U'1—— I.

L'équation (i) devient

(2) / ( M - ^ / M 2 — I ) - ^ / ( M — / M 2 — l ) = a.

Le premier membre, si l'on pose ^u2— i==y, ne change pas
quand on y change y en —y. Ce sera donc une fonction paire
de y, par suite une fonction bien déterminée de u et n'ayant qu'une
valeur pour chaque valeur de u, c'est-à-dire une fonction mono-
drome. Le premier membre ne devient infini que pour z === aouoo,
c'est-à-dire u == oo; c'est donc une fonction entière de u ( < )

L'équation (2) est une équation entière

(a6") <p(M)=a.

équivalente à (i) grâce à la transformation z 4- l === u.

Mais cette équation (2^") n^aura probablement pas ses coeffi-
cients rationnels ou même algébriques en général. Nous citerons à
cet égard deux exemples :

i° /00==^;

(i) devient
i.

e^-^ez=a\
<f(u) = e^^^T-i- -̂̂ «=1 = ae" cosv/r^~7?== 'î.eu ̂ (u)

= ? (o) + ̂  ?'(o) + ̂  ̂ (o) 4-...,

(1) La transformation z+ - =•: u rejette les points critiques de ( i ) à l 'infini.
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<p(o), ^(o), . . . seront évidemment des fonctions linéaires à
coefficients rationnels de cos i et sin i. Ainsi

<p(o) == 2COS l,

cp'(o)= [ l e " ^ ^(u)-{- le" <^'(M)]«=o= 2^(0) == 2 cosi,

D^une manière générale

^(u) == 'ieu^{u) -^•'2Cj[.é'M^j/(M) -+- ... -t- ae^^df)

0(^(0) = *î<)/(o )-+-...== 2 cos i4- . . . ,
et

chacun des termes du dernier membre contenant eu facteur cos i
ou sin i multiplié par un nombre rationnel; ^'(o) n'est d'ail-
leurs pas nul en général, sans quoi ç(^) se réduirait à un poly-
nôme, ce qui est absurde, (^(o) est alors de la forme

A cos i -h B sin i,

A et B étant rîuionnels et Pun des deux ̂  o.
Les coefficients de y («) sont alors tous transcendants. En effet,

ei'v-i- e-^
cosa" = ————— •

e1 -4- e-'1cos \

ne peut être algébrique, car e1 le serait, ce qui est impossible, diaprés
M. Lindemann, puisque (Test; sin i ==^/i— cos2! est transcendant
ainsi que A cos i -4- B sin i, sans quoi cos i serait algébrique. Donc
<p^(o) , ,. .' ,^ est algébrique.

Ceci démontre la première partie du théorème.

2° Ce qui précède n'est pas un cas unique : nous allons mon-
trer que, dans un castrés étendu, Féqualion (s615) a ses coeffi-
cients tous transcendants, bien que l'équation (i) ait ses coeffi-
cients tous rationnels.

Soient

f(z) = Co-+- CI^-P ... -4-c,,^4-...,

9(M) =2 CQ-+- Ci ^4-^-+-...4-C,,^"+ •^J -1-...
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ou, en posant

z-=zn+^

ff(lt) =2Co-1-CiZi-^...-+-C,(Z,,4-. .

Calculons le coefficient de u^ dans le développement

9(M)=Yo-+-TlM-+-. . . -+-Y<7^/-4- ....

On a, en général,

U^P ^(z^-^ = Zsp 4-CI,, Z^-2+Cj/, Zîp-44-...4-C^1 Zs-l-C^,

( i \ 2p+l
^/»+i == ^ ̂  ̂ ^ =Z2^i+C^^i Zs,,--i+C|p+i Z,^-3+...^ Cç^ Z3-+-C^i Zi,

et ces formules connues permettent de calculer Z i , Z^ ... par
voie de récurrence.

On obtient

fZ2==^-2 ,

1 Z4-hC{Z2= M*-C^

( Zap-h C^Z2p-2-4- ...+ C^1 Z^ = M2^ - CÇ/,,
d'où

7 _ H2^2^ ~~ T»— ?
^îp

avec

D,p=

I 0 0 . . . .

GÎ l o . . . .

BS^ =

CÇp* . . ... I

l 0 0 ... 0 M2 —— '2

C^ i o ... o u> —C;

cç^ . . . . . c^ ^-c^
Zîp = A^^^/^-t- A^/^ (^-2-4-.. .-h A^f.

De même

Zîp-n = Bîp+i = Ao2^1) M2/^! + ̂ l^u^P-^ -h... 4- A,2/^ n M,

®2p+i sj81111 une expression analogue et les 8 étant des entiers.
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Dès lors,

V^(U) == 2Co-+-CiM-4- C.î(U2— 2)-h. . .-t-(?2p BÎ/,-h (?2/M-1 BS^-H 4- . . ..

Le coefficient de ul est de la forme

T-y = c^y-^- ̂ i ^<7+1) 4- c^ ̂ +2) -4-...-+- cç-^ 8^)-+-....

D'ailleurs, S '̂1'̂  est limité en fonction de q 4- i et croît moins
vite, pour une valeur donnée de q -h /, qu^une certaine fonction
X(? '~^~ ^)? (^l1e^s (^ue soienl y et /. Ceci va nous suffire pour mon-

trer que si les Cn décroissent assez vile avec - et sont convena-
* 7l

blement choisis, les nombres y^ sont en général transcendants.
En effet, nous raisonnerons encore comme Fa fait Liouville

pour montrer Inexistence de nombres transcendants.
Si f{x) === o est une équation algébrique irréductible de degré k

à coefficients entiers,

pw.__L=^^+...._^,8^),
^y+<

avec
Sq^-i

C^i == -—— ,
fq+t

P^o QS£( entiers premiers entre eux, Sq^.i et ^4-1 étant limités en
fonction de q + î, ainsi que P .̂\, Q .̂; Q .̂ divise le dénomi-
nateur commun à Cq, ..., Cq^.i.

Soit |^|^<Ty, quel que soit y, le mode de croissance des Vq
étant donné. Nous supposerons le mode de croissance des passez
rapide pour que

p(^.
——^g <9.1c^S^+n^

quels que soient q et /. La chose est toujours possible, car, pour
chaque valeur de q + <» le nombre d'inégalités auxquelles doit
satisfaire Cy+i+i est limité.

On a, pour q 4- i assez grand,

/p(7^ \ A I

W^w (A """•""•/(
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ou, a fortiori,

p(y), ,m c-8 "^
P^J

si Ç ~" n^7 est < ^ demi- différence entre deux racines de
'<<7+ '

/(^)=0.

M a une limite inférieure fonction de q pour toutes les équa-
tions où les coefficients et le degré sont S y + i. Donc,

|P^ .lo^-s =^

a une limite inférieure \q^.i fonction de y -f- t. Si tq^i croît suf-
fisamment vite avec y+ ^ on peut toujours prendre ^-p+i assez

grand pour que -r\q^i soit < ̂ ^ dès que y + i est assez grand,

quel que soit y, c'est-à-dire pour que (3) soit impossible. En effet,
il suffira

(4) ^\c^^+i^\<^

Donnant alors à q dans yy les valeurs o, 1 ,2 , • . ., q 4- i= q\
on obtient pour T\q^ et, par suite, ̂ .i, y'+ i valeurs; de même
pour S '̂'1'̂ , si on laisse q 4- i constant : il suffira de prendre

| <*y4./4.i |< la plus petite des valeurs —^=— correspondantes pour

que (3) soit impossible pour yo? Yn • • • ? '{q+if P811' suite pour
que YO? Y< » • • •» Y^+i soient transcendants.

On peut donc déterminer un mode de croissance assez rapide
des tj pour que tous les yy soient transcendants (1). C.Q.F.D.

Nous allons maintenant établir le théorème suivant :

(*) On pourrait montrer d'une façon analogue que y de module <i ne peut
00

être racine d'une équation V1 6^*2?"»= o quand les 6^ décroissent assez vite ou
o

quand les o, croissent assez vite, pourvu que les numérateurs des^ 6^ aient leur
croissance limitée.
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THÉORÈME II. — Soit

Vc^+N^y^y^.L
J»â n ^âJS» Â^tn jiàt^ Z"'

0 0 0 0

une fonction quasi entière avec un point singulier essentiel à
l'origine: si \0n\^ \a^a^ les a^, a°, étant donnés, on
peut toujours choisir un mode de croissance assez rapide des

00 00

^, ^ pour que^ Cn^ et ̂  ̂  aient tous leurs coefficients
0 0

transcendants quand a,,, a^, tn, t^ sont entiers.

Soient

^)=2;^ ^fâ-i;^-(^)
0 ' ' 0

?(5) el ?o(^) étant des fonctions entières à coefficients rationnels,

bn = ^» ^ = ̂  (a^, 0%, tn, ̂  entiers).*'» »»

On sait que le produit

^)îo(;)=i—-.i;g.
On a

0 0

cx=S»^^=S?^-<A" A" ^/t-t-X ̂
o o

«•î-S-^rt-'S2^- ;-1;-».^-2^̂
-t-X ^7t

0 0

D'après ce qu'on a vu dans la démonstration du théorème pré-
cédent, c\ et c{ étant précisément de la forme y^, on peut toujours
prendre un mode de croissance suffisamment rapide des tn, t^j
quand les a^, a^ sont donnés, pour que c\ et c^ soient transcen-
dants.

^Remarque. — c^, c^ décroissent alors aussi vite qu'on veut
avec ^r pourvu que 6,,, b\ décroissent suffisamment vite avec ^ •
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Donc, ici,
00 00 00 00

^ c|t zn^ "S ̂  zn sont c[uasl algébriques quand V b°n ̂ > V 6,° 5"
o o o o

le sont.
Il convient, avant (TaHer plus loin, de chercher à étendre ceci

aux fonctions quasi entières générales. Il nous suffira de consi-
dérer tes fonctions quasi entières

F(.) =/(.) +/. (^ +/. (^) = ,(.) y, (^) y, (̂ ) ,

où Fon suppose que co(^), yoC^)» ç^5) sont des fonctions algé-
briques à coefficients rationnels.

Les produits cp(^) (po (;) . <p(^) ?< (r=^) t îo (^) <?, (jéo;)
ont encore leurs coefficients transcendants : on le voit comme
tout à l'heure.

Nous allons établir le théorème suivant :

THÉORÈME I I I . — Soit la fonction quasi entière

•'(">=i—-±-t-i;^î^-it•-iyi(ï^
0 0 0 0 0 0

(ai rationnel) où les 6^, 6,% b^ sont rationnels et égaux à

ç çO ç(i)

r"'^'^' avec \s''\^ \^\^^\ K"!^",
^n "n " n

les Vn-)7 ï\ ̂  étant donnés, on peut toujours choisir un mode
de croissance assez rapide des ^, t^\ t^ pour que le premier
membre possède autant de coefficients transcendants que l'on
veut.

En effet, considérons un cercle Co de petit rayon 7*0 ayant pour
centre Porigine, un cercle Ci de petit rayon r^ ayant pour centre
a<, un cercle y de petit rayon p ayant pour centre un point t quel-
conque du plan extérieur à Co et C<, et enfin le cercle A de rayon R
aussi grand qu^on veut ayant pour centre Forigine et contenant t.

La fonction —w est monodrome à rintérieur de la région S for-
z —~~ (
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mée du cercle A diminué des cercles Co, Ci, y. On aura

r ^a^ r ^ - r ^ - r .
J A Z ^ t ^C, ^C. ^Y/AZ~ " ^Co ^C, ^Y

On a le long de A
! I l T / t <21 T / t <2 \

——; ==+ ~ ( [ - ^ - + - 5 - ^ - • • • ) ît z\ z z^ f• [4--- 4-z — t z t z\ z z^
z

car mod — < i.z
Le long de Co,

i i i i / z ^î
1 / Z Z^ \—A^-^^-y7U+T+-^ +...z—t t z t \ t <2

car ^ y est < ? ;

Le long de G<
i i i i

z — t z — CTI —^ (< — ai) < — ai z — a\————. —— i
t—a,

.^Zl^^.^,},
î — a i \ ' ' <—ai *"/

i / z — ai \=— ——— ( i 4- ;-——- 4-... ),< — a i \ < -—ai /
\z — ai . _ „car -——— y est < i.\ t —— n. • 1 ••< — ai

Dès lors
f=2^F(0,

r^c^^î (\JA JA z 1 JA

= 2 T C l F ( < ) ,

r̂ r F 05 t rv dz
^J^^^J^^-
f==^ fF^+~ fz¥dz+v Çz^dz^-...,

^Co ' ̂  r ^Co t ^Co

f= -J— /'F a^ 4- ——I—— /'(^ — ai) F ̂
Je. ^—^iJci (^—al}2Jc.
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On en conclura la valeur des coefficients Cn, c^\ c^ de /, /o,

f{. Ainsi

^iÏÏjC3""117^-

II reste à prouver que si <p, (po? ?i sont quasi algébriques à coef-
ficients rationnels, c^ est transcendant. Or, soit

oo

?^)= ̂ bnZ^

0

et b^ le premier des coefficients bn qui soit -^é. o. Soit encore aux
environs de z ==. o

/ _ _ » _ \ _ ^<I>^(o) ^i4>^i)(o) .
^^-aj-^^--——.H——+ ^.+,)! +••-

si ^>W(5) est la première des dérivées de 0 qui ne s'annule pas
pour z === o. On aura

"(^"'c'y—)
et, si | 5 [ est suffisamment petit le long de Go,

cy = o7-/ A^1 -h £) Î%02(I + e') ^o ̂ ^w-1^^^,
^ ^o A ! t \^/

| e |, j e ' [ étant aussi petits qu^on veut. On en conclut

4>(A-)/o\
€{tï) = k^ 6P•6"0^)(A+Â» ^ étant fini et ^ o.

Il suffira donc que 0<^(o) soit transcendant pour que ^0) le soit.
Or

<ï> ^)= ^(î^)-
^( .)=- f-———)2^/..^),

\ ^ — a i / • 1 \5-a i /
<!>-(.)= ^(-^)f_ I__^^,^/__•_)(___^3,

1 1 \^-- a i / \ z— ai/ • ^s -a,/ \z — aj 9

• • • • ' • • • • • • • • • • • ^ • • • . • • • . . . . . . . « . . . . . . . . . . . . • ....• • ' • • • • • ;

^)(.)= ̂  (^) p^ ,̂a.-,,(^) p .̂..,

XXX.
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PJ^, P^iî • • • étant des polynômes en •;——— de degré limité en

an numérateur et au dénominateur.z — <%i
Or

CD {———————\-\———by———
^\z-aJ ^t(z—cn)^

0

^ / I \ ̂ V^ ^(71 4-1) . . . (M-h/-~l)
1 1 \ ^—a i / j«l (2—01)"-^

o
Alors

^(o)=^(-^)P^(-^)+...^^P^(-^)^...
o

y 6<,nn(n+,)...(^-.) <„ / _ i \ ^y ,
Ai (—«i)'"-* \ ai/ ^U " -" • •

o *
Or

p^+(___\t'i -——,1 If ~— l 1 "~~ 9 ï r 'lc \z—a^z=Q ay
qui est 7^ o.

Pour les valeurs de n qui dépassent une limite assez grande,
^^(o) est de la forme

2 <-= -̂ï' (-;;) "><•—) -2 <=̂ -- "•<•—)•
s^ étant aussi petit qu'on veut, pourvu que a soit assez grand,
mais étant rationnel quel que soit n. Le coefficient de b^ est
donc -yé. o dès que n dépasse une certaine limite.

D'après ce que nous avons vu dans la démonstration du théo-

rème 1, si b^ = s^ avec | s^ \^^\ et si <r^ est limité en fonc-

tion de 7i, pour un mode de croissance suffisamment rapide de t^
avec TÎ, ̂ ^(o) est de la forme ^q et, par suite, est transcendant
ainsi que c^\

Nous en concluons finalement le théorème annoncé, sans même
chercher à étudier la nature des Cn et c^\ c. Q. r. D.

Remarque. — On peut abréger la démonstration en s'appuyant
sur cette propriété des fonctions quasi algébriques à coefficients
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rationnels .' y< (— — ) est transcendant, par suite 7^0, quand a<

est rationnel; il en résulte de suite k == o.

Nous allons maintenant chercher à montrer que les équations
F(^)==a à coefficients rationnels comme a [F(^) étant de la
même forme qu'au théorème III, mais les c,,, c^\ c\^ étant ra-
tionnels] ne possèdent aucune racine algébrique ou encore que
F(Ç) est transcendant quand Ç est algébrique, pourvu que les c,^
c^\ c^ soient rationnels et que les ^,, t^\ t^ satisfassent à des
conditions semblables décroissance ( f ) .

THÉORÈME IV. — Soit la fonction quasi entière

« oo oo

F(.)=Vc,.^+y-^-+y—^—,— ^CT" ^ -»,)-""
à coefficients rationnels -^é. o ainsi que a {les rs étant entiers),

.-e, .."- ,̂ .."-^
avec

\Sn\^^n. \sy\^^\ |^^|S<J;,1).

Les a-,,, 7^\ cr^ étant donnés, on peut toujours, pour toutes les
fonctions F où les s satisfont aux conditions ci-dessous, choisir
un même mode de croissance assez rapide de t^ t}°\ t^ pou/-
que les/onctions F n'aient aucune racine algébrique; autre-
ment dit, pour que F(Ç) soit transcendant dès que Ç est algé-
brique (2).

.En effet, soit F(Ç) racine d^une équation algébrique irréduc-
tible

«Ï> = AO-+-AI;C-|-. . ,-r- A.n .X^t = 0,

( 1 ) La fonction F(«) du théorème iïï ne possède évidemment aucune racine
algébrique, puisque aucune des trois fonctions dont elle est le produit n'en pos-
sède.

( 2 ) Un théorème similaire a été établi par nous pour les fonctions entières
dans un autre Mémoire {Acta mathematica, 1902).
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à coefficients entiers, Ç élant algébrique et racine (Tune équation
algébrique irréductible à coefficients entiers

^ == Bo -h BI X -+ - . . . -+- ByX^ == o,

(r^ |Aol, ..., |A^|, |Hol, ..., |B,|, [ î l ,

/? i , v étant au plus égaux à une fonction A,, du nombre n arbi-
traire, mais qui croît au moins aussi vite que le nombre n.

Supposons encore qu'en changeant la notation on ait

F(^y^^y^+v -"" ,„
^1— 4A" x^ii •— ( .r a\ )GT^e o o

les c,/, c^\ c^ étant ici tous 7^0, les CT,,, TO^^ w^ entiers et a^
étant un nombre rationnel quelconque dont le numérateur et le
dénominateur sont limités et ^/i.

Posons encore

n n n
w^ ^c-^ ^0) ^— /*( 1 ;

r.(,,̂ '--2;̂ .-2,7 -̂

Enfin supposons or,,, (T^^, (T^ constamment croissants avec /i
el ^A,,. Soient enfin

F,,(0=F«, F(0 ==F,,-+-£,,.

Si le mode de décroissance des c^, c^0', c\^ est suffisamment ra-
pide, on aura toujours

1 s» I < E,,,

E,/ étant la plus grande des quantités

6 | cn^i | A^s 6 | c^ l A^i, 6 | c^ | Af^i.

(considérons alors

(6) 4>(F,t-4-s^)== o=4»(F,/)-h£,,M.

On peut toujours prendre n assez grand etc/^i, c^,, c^< assez
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petits pour que [ £„ | soit plus petit que la demi-différence entre
deux racines de toutes les équations irréductibles <Ï> == o satisfai-
sant aux conditions (5). M est alors ici limité inferieurement
en fonction deAo, A^ ..., A^, par suite de n^ On aura

|6 , ,M|=|<I*(F,,) | ,

(7) 1-1^-

et
^(F^)^o .

Considérons toutes les valeurs de ^>(F^) correspondant aux
valeurs de Ç, des A, des B, de n et v satisfaisant à (5) et aux
diverses valeurs des s ^ aux Œ correspondants. Leur nombre est
limité en fonction de n. ^(F,,) a donc en fonction de n une limite
inférieure qui ne dépend que de Co, c^ ..., c,,, Cp0 , ..., c^S
c^\ ..., c^\ a<, des rs et de A,/. Finalement, le mode de crois-
sance des s^ ^0), ^1), tiy t^\ t^ étant donné jusque Findice n,
e> (F,,) a une limite inférieure fonction de n pour toutes les va-
leurs des sy^v^; \€n\ peut être pris aussi petit qu^on veut
pourvu que Cn^.\ 5 ̂ ^ c\^\ fioient suffisamment petits, c'est-à-dire
assez petits pour que (7) soit impossible, par suite (6).

Supposons maintenant donné le mode de croissance des T.
D'après ce qui précède, on peut toujours déterminer un mode de
croissance des ^, t^\ t^ suffisamment rapide pour que, dès que n
est assez grand, le raisonnement ci-dessus soit applicable quels
que soient 0 elW supposés choisis a priori. Le théorème en ré-
sulte immédiatement, c. Q. F. D.

Enfin, soit b rationnel ; si

^^^-i^-^^ic^-i^^
0 0 0

=/(^^)+/o(,———,)+/.(^^),

on a
f(z 4- &) =/(&) 4- ̂ f'(b) -- ^/'(&.) +... ,

00

f^(b) ̂ ^Cnb^nÇn—i) ... Çn—k-^\).
o
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Les coefficients de /(^+ b) développé suivant les puissances
croissantes de z sont encore tous transcendants.

En résumé, nous trouvons ici en défaut pour les fonctions quasi
entières les propriétés essentielles des polynômes à coefficients
entiers que nous avons signalées dans le § I.

IV.
Soit

¥ (z) •==i^^CnXvsn = CQ-}- C^X^i-^ . . . == 0

une équation quasi algébrique à coefficients rationnels : si le
mode de croissance des Cn est suffisamment rapide, toute racine de

F,^)=o=^ C,, X^n

0

est très voisine d'une racine correspondante de F. Dès lors, on
peut penser à tirer parti de celte remarque pour l'étude du
développement en fraction continue des racines de F(/s). Nous
allons établir la propriété suivante :

THÉORÈME V. — Soit la fraction continue

z = ao -+- -!-
Ot-4-..

où, sur 6 quotients incomplets consécutifs^ il y en a toujours
un au moins qui croit au delà de toute limite et suffisamment
vite quand son indice augmente indéfiniment y les autres res-
tant limités,

On peut déterminer une équation à coefficients rationnels
de la forme

^tl
14-^ c/t.r71 == c

o

ayant Z pour racine; les Cn décroîtront aussi vite et leurs nu-
mérateurs croîtront aussi vite que l7 on voudra, pourvu que la
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croissance des quotients incomplets ci-dessus soit assez rapide,
Enfin, si la croissance de ces quotients est assez rapide,

Z n'est pas algébrique; l'ensemble des fractions Z non algé-
brique a la puissance du continu et est distinct de l'ensemble
analogue des nombres transcendants racines des équations
quasi algébriques

'^==0
1 tn2ï-

0

où \ an \ entier limité, tn entier croissant suffisamment vite avec n.

En effet, considérons l'équation

Fi (a?) = i -+- c^x = o

en supposant Co = i : Fi a la racine ( { )

Soit
Ci q\

Fî(a?) = \-\- ci x 4- Cî-r2 = o;

F 2 aura une racine - rationnelle si Fou détermine c^ par

condition

F, ('&')=...
•(S)-

,+c^ i-2J^
^ _ ___qî ^ __ /^t yi ^ _ îïl€^ÎL''~~JllPÎ .

î'~ /^V ~ /^V ~ „ ^fP^Y f

W W ^^q-J

c^ sera aussi petit qu'on veut pourvu que pl —pl le soit, car

Ci •=—

PI^PI
q\__g4
^i/^y
^1 Wî/

£1 f^
yi w^

Nous poserons jo< q^ — p^ q^ == e, (I e^ [ entier ^A, A étant li-
mité), ce qui est toujours possible pour des valeurs de p^ et q^
aussi grandes qu^on veut si p^ q\ sont premiers entre eux deux

(i) PI, pî, ...,&*,... sont, dans ce qui suit, des fractions irréductibles.
9i 9i 9n
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à deux. Les développements en fraction commue de p l , pî sont
q\ q^

d^illeurs limîtés. On déterminera de la même manière €3, c^ ...
de façon que

Vk(^) == i + a x 4-... -+- cic Xk

ait une racine P^- rationnelle aussi voisine qu'on veut de p^- avec
^k'" ç/c-i

Pk-\ qk —Pk qk-ï = SÂ--I,

qk étant aussi grand qu'on veut par rapport à y^..<.
Considérons

FA-+-I (a') = i + Ci a- -4-. .. 4- c/.-n .y^-n = o

qui a pour racine p——, et développons ^±1 en fraction continue.
ïAf-i-i • yk+i

Nous supposerons que ̂  possède tous les quotients incomplets

de^ .Ona
9k

p^ — ^Â•+1 == Pkqk^\—pk^\qk _ Zk
qk qk+t ~ qk^k+i ~ qk Çk+i '

P^^a^-L- _^.
^k a,-^. i -7-5

(8) :-^ qn1t

l^± l=ao+——— _^^+<-i
^+1 al+t'.- I ^,+^-1'

a^-+-——
.7^1-

( ^Â' -- P^ = ̂ nfc (̂ .̂̂ il -<- g -̂l) — y^ (Pnt^k -^-Pn^l)

/ . 1 ^ '7A+1 ^.(yn^^+^-i)

1 = ^k9nt-i-9ntPnk-l ^ __(—l)^-1

\ y^ (y^y^ -^ y^-i) y^. ( y^ynt + ̂ _i ) "

Pour que la différence pk — pk^- soit aussi petite qu'on veut par

rapport à qj\ il faut que q^ puisse être pris aussi grand qu'on
veut, par suite aussi y^.

Soit

yn^ = o/îi+i -+-
an^-î -+-•• ^ j
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.̂4-1 doit être un entier aussi grand qu^on veut; au contraire,

nous supposerons a^ç, ..., a^ limités, s'ils existent.
En effet,

1 Pnk+l = Pnk a1^ -^Pnk-^

] Pnk+t == Pnk^ ank+t •+" P'n^

1 Pnk+t == Pnk+i-i a/a+l-^- ̂ 4.1-2 î

de même pour les y'. Donc

P'n^ --Pn^^-^P'n^

îpi et (pa ^lant limités si a^, ..., a^ le sont, ainsi que
^A+l — ^A.

^Â-t-l __ Rk __ P'n^ __ P'nt

qk^i q k ~ q'n^ q'n^

^ (/^-hl ?î -^-/?^. ?2) y^. —P'n,(7n^ yi + y^ ^2)

^)l̂ jl+.

?^ (^nn-H g^. —7^^. y^.+i) __ (—l)'^Q\

Or
^nk ^n^ <^ y ̂ 4-1

ŷ .,., = ̂ ni.+l ?1 -h y«i. 02,

et —*—— est évidemment de même ordre de grandeur que
^"t ^/ifc-n
i

qn,, ̂ nk+i
Ceci posé, considérons une fraction continue illimilée

Z — ao +
a\ -+-.

où sur 6 quotients incomplets consécutifs (9 limité) il y en a
toujours un au moins qui croît au delà de toute limite et assez
vite quand Findice augmente indéfiniment, les autres étant limités.
Considérons les réduites successives obtenues en s'arrêtant à ces
quotients incomplets particuliers : on obtient une suite

^, P-\ ..., ^, ..
q\ qî qk

de réduites pour lesquelles (8) a lieu, s^ restant limité.
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Nous pourrons toujours déterminer CA+< de façon que F^^)

ait pour racine pk^-- On aura1 q/c+t

F,(^i)=^c.^+...+^.(^±ir1
WA-H/ ^+1 \q/c+l/

^^•^^(^y-1

\S'A / \y*+i/?* 7 -'Vy^i/
,F,(̂ ,.)̂ .(̂ p

SI 7.
/^-t-1 Pk
qk+\ qu

^ étant aussi petit qu'on veut et pk±l étant limité, Ck^\ est aussiA ^ yk^-i
petit qu'on veut. La série

00

F= I-+-VTIC^^
i

a donc des coefficients qui décroissent aussi vite qu'on veut; FA a
alors une racine^ différant d'aussi peu qu'on veut de"* et quiqk r • qk i

tend vers Z quand k croît indéfiniment, d'après un théorème
connu ( { ) .

Ici
/q^Y^1 p. /Pk+i\^—[p^j ^{^r

Le dénominateur de la quantité rationnelle FA ( p k ^ 1 ) est de laA \ç*-n/
forme

ïît^

et y est limité en fonction de k. On peut toujours prendre q/c^
assez grand pour que c^ ait son numérateur aussi grand qu'on
veut. Les séries

00

I -h^ Cn V^

1

ainsi obtenues ne sont pas de la forme

i?.-
( l } Comptes rendus, 9 décembre 1901, et Acta mathematica, 1902,
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| On | étant un entier limité. Cela devait être, car nous avons vu ( f )
que pour ces dernières le développement en fraction continue
d'une racine a la croissance de ses quotients incomplets limités.
L'ensemble obtenu diffère donc de l'ensemble des racines de ces
équations, il a d'ailleurs aussi la puissance du continu, puis-
qu'on peut attribuer à chacun des quotients incomplets de Z au
moins deux valeurs distinctes (2) .

( 1 ) Comptes rendus, i5 avril 1901, et Journal de Mathématiques ̂  1901, p. 4;.
(2 ) BOREL, Leçons sur la Théorie des fonctions^ p. 33.


