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SUR CERTAINS ESPACES DE CONFIGURATION ASSOCIES
AUX SOUS-GROUPES FINIS DE PSL,(C)

PAR MOHAMAD MAASSARANI

RESUME. — On étudie des espaces de configuration Cfg(n,PL) liés & I’action d'un
groupe fini d’homographies G de P! (n € N*). On construit une connexion plate sur cet
espace & valeurs dans une algebre de Lie §,,(G). On établit un isomorphisme d’algébres
de Lie filtrées entre p,, (G), 'algébre de Lie de Malcev du groupe fondamental de cet
espace et le complété pour le degré du gradué associé a cette algébre de Lie. Ceci
est obtenu grace a la représentation de monodromie d’une connexion et une étude du
groupe fondamental.

ABSTRACT (On orbit configuration spaces associated to finite subgroups of PSLa(C)).
— We study the configuration spaces Cfg(n,PL) related to the action of a finite group
of homographies G of P! (n € N*). We construct a flat connexion on this space with
values in a Lie algebra p,(G). We prove the existence of an isomorphism of filtered
Lie algebras between §,,(G) and the Lie algebra of Malcev of the fundamental group
of this space. There results are obtained thanks to the monodromy representation of
a connexion and a study of the fundamental group.
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Introduction

L’un des invariants associés a un espace topologique X en homotopie ratio-
nelle est son modele minimal. Le calcul du modele minimal de X, plus préci-
sement du 1-modéle minimal, permet d’obtenir I'algebre de Lie de Malcev de
71(X), le groupe fondamental de X, par un processus de dualisation. Dans [10],
Fulton et MacPherson calculent explicitement des modeles des espaces de confi-
guration Cf,(X) = {(p1,--- ,pn) € X"|p; # pj si ¢ # j}, pour X une variété
projective complexe lisse. Ces modeles sont ensuite simplifiés dans [13], puis
utilisés par Bezrukavnikov ([2]) qui obtient une présentation de ’algébre de Lie
Lie(m (Cf,,(S)) de Malcev de 71 (Cf,,(.S)) pour S une surface de genre supérieur
a un.

Une approche alternative, motivée par [6], repose sur 'utilisation de conne-
xions plates et d’informations sur le groupe fondamental. En utilisant cette
approche, différents résultats sont obtenus :

1. calcul de I'algebre de Lie de Malcev de Cf,,(S) pour S de genre g(S) =1
([3]) puis en genre g(S) > 1 ([9]) ; ce qui donne une autre démonstration
aux présentations obtenues par Bezrukavnikov.

2. calcul de 'algebre de Lie de Malcev d’'espaces de configuration d’or-
bites", au sens de [5], pour les groupes des racines de I'unité opérant sur
C* (7).

Dans ce papier, on considére plus généralement G un groupe fini d’homogra-
phies agissant sur la droite projective complexe P! (vue comme variété analy-
tique) et l'espace associé :

Cfa(n,Py) = {(p1,-- ,pn) € (PL)"Ips # g - p;: pouri # j et g € G},

dans lequel P! est I'ensemble des points de P* & stabilisateur trivial pour G.
En utilisant la méthode des connexions plates, on calcule une présentation de
I'algébre de Lie de Malcev de m1(Cfg(n,PL)) et on montre (théoréme 6.8) que
cette algebre de Lie est isomorphe a la complétion pour le degré de son gradué
associé qui coincide avec une algebre de Lie explicite p,,(G) (définition 1.2). On
obtient par ailleurs la 1-formalité de Cfg(n,PL).

Détaillons les étapes permettant d’obtenir ce résultat. Dans la premiere sec-
tion, on définit une algebre de Lie p,,(G), puis on construit une connexion plate
sur Cfg(n,Pl) & valeurs dans p,(G). Cette connexion nous donne une repré-
sentation de monodromie pg : m1(Cfg(n,PL)) — G(Up,(G)(C)), ot G est le
foncteur qui & une algebre de Hopf associe le groupe de ses éléments diagonaux.

On rappelle en section 2 quelques notions de topologie différentielle qui se-
ront utilisées dans la section 3, laquelle est consacrée a I’étude du groupe fon-
damental d’un espace de configuration d’orbites associé a une surface munie
d’une action d’'un groupe fini. Dans cette section, on donne notamment une
famille génératrice de T, := 71 (Cfg(n,PL)) et des relations entre ces éléments
de T',.
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La quatrieme section est consacrée a des rappels de notions liées aux algebres
de Lie de Malcev et aux algebres de Hopf completes.

Dans la section 5, on utilise le morphisme de monodromie de la section 1
pour construire un morphisme Ly;, , de I'algebre de Lie de Malcev Lie(T',(C))
de T, sur C dans p,,(G)(C). D’autre part, on obtient grace aux générateurs
et relations de T',, un morphisme ¢¢ : p,,(G)(C) — giLie(I',,(C)), ol I'espace
d’arrivée est le complété pour le degré du gradué associé de Lie(I',(C)). En
examinant la composée de Lo, , avec ¢c, on conclut que les trois algebres de
Lie Lie(T',,(C)), grLie(I',,(C)) et p,,(G)(C) sont isomorphes en tant qu’algebres
de Lie filtrées.

Enfin, la derniére section, on construit des torseurs dont la composée ¢¢ o
L2, de la section 5 est un point complexe. Ensuite, on utilise un résultat sur
lexistence de points rationnels de ces torseurs pour déduire que Lie(T',,(Q)),
giLie(I',(Q)) et p,(G)(Q) sont isomorphes comme algebres de Lie filtrées.

Notons que la 1-formalité des espaces Cfg(n,Pl) est également une consé-
quence du résultat principal de [12], et dans le cas ot G est un groupe de
racines de 'unité, une présentation de l'algébre d’holonomie peut également
étre déduite de ce résultat.

1. Connexion sur ’espace de configuration Cfg(n, P1) et représentation de
monodromie.

Dans cette section, on considére une action d’un groupe fini G' sur P! (sec-
tion 1.1). On lui associe un espace de configuration Cfg(n,P!) (section 4) et
une algebre de Lie p,,(G) (section 1.2). Apres des rappels sur les connexions
formelles (section 1.3), on définit une telle structure sur Cfg(n,Pl) associée
a l'algeébre de Lie p,,(G) (section 1.4) et on montre sa platitude (section 1.5).
On calcule alors les termes de bas degré de la représentation de monodromie
associée (section 1.6).

1.1. Le groupe G opérant sur P1.

1.1.1. Action de G sur P'. — On a la suite de morphismes de groupes sui-
vante :

Par ailleurs, on a une action PSLy(C) — Aut(P!) par homographies et une
action SO3(R) — Aut(S?) par rotations. Enfin, il existe un identification P! ~
S? compatible aux actions. L’action de SO3(R) sur S? commute & I'antipode.
De facon analogue, I'action de PSU(C) sur P! commute & I'involution z +
at(z) := =L. Dans la suite, on fixe un sous-groupe fini G de PSL5(C). Le groupe
G est conjugué dans PSLy(C) & un sous-groupe fini de PSU(C) ~ SO3(R). On
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sait donc que G est soit cyclique ou diédral, soit isomorphe & un des groupes
d’isométries des solides platoniciens 2y, G4, Us.

1.1.2. Points fizes et stabilisateurs. — On note P! 'ensemble des points de P!
a stabilisateur trivial pour G.

PROPOSITION 1.1. — Pour tout g € G et p € P!, on pose Fix(g) = {q €
Pl|g-q=q} et on note stab(p) le stabilisateur de p pour l’action de G sur P*.
Alors :

1. L’application at se restreint en une involution de P!\ PL. Pour tout
g # 1, Fix(g) est de la forme {p,at(p)} avec p # at(p).
2. Il existe un sous-ensemble fini Z de PY\P! satisfaisant P\PL = ZUat(Z)

et G\ {1} = U (stab(p) \{1}).

Démonstration. — 1l suffit de montrer la proposition pour G un groupe fini de
rotations de la sphere. Dans ce cadre, ’application at n’est autre que ’antipode
de S2. Ce qui montre (1). L’existence d’'un Z fini satisfaisant P1\P! = Zlat(2)
est immédiate & partir de (1). Un tel ensemble satisfait automatiquement la
derniére condition de (2). En effet, si 'intersection stab(p) Nstab(q) pour p # ¢
est différente de {1}, alors (1) nous meéne a la contradiction ¢ € {p,at(p)}. Ce
qui montre la proposition. O

1.2. L’algebre de Lie p,,(G). — Soit n un entier strictement positif et k un
corps. On note O(p) I'orbite pour G d’un point p € P*.

DEFINITION 1.2. — On définit p,,(G)(k) comme la k-algébre de Lie engendrée
par les éléments X;;(g), pouri # j € [1,n] et g € G, les X;(q) pour i € [1,n]
et ¢ € PL\ PL, soumis auz relations :

(1) Xii(g) = X;i(g™"), pouri,j € [1,n] distincts et g € G,
(2) Z Xi(q) + Z ZXim(g) =0, pouri € [1,n],
geP\PL me[l,n] geG
m##i

(3)  [Xi(9), Xu(g)] =0, pouri,j,k,l e [l,n] distincts et g,¢" € G,

[Xij(9), Xkj(g'9) + Xri(g")] = [Xi(p), Xjx(g")] = 0,
pour i, j, k € [1,n] distincts,

(4) peP\PLetg g cq,
(5) [Xz(p)7Xj (Q)] =0,
(6) Xij(9), X;(p) + Xilg-p)+ Y, Xij(gh)| =0,

hestab(p)
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(7) Xi(p), Xi(g-p)+ > Xi(gh)| =0,
hestab(p)

pour i,j € [1,n] distincts, g € G, p € PL\ P! et g € (PL\PL)\ O(p).

L’algebre p,(G)(k) est munie d'une graduation pour laquelle chaque géné-
rateur X;;(g) et X;(q) est de degré 1. On a :

Pa(G) (k) = D pi(G) (k)

k>0

ot p¥(G)(k) est la composante homogene de degré k. On note p,(G)(k) la
complétion de p,,(G)(k) pour le degré.

D’autre part, 'algebre enveloppante Up,(G)(k) de p,(G)(k), hérite de
pn(G)(k) une structure d’algebre graduée pour le degré. On note ﬁpn(G)(k)
la complétion de cette algebre enveloppante pour le degré. L’algebre p,, (G) (k)
étant engendrée en degré un, la complétion de Up,(G)(k) pour le degré et
la complétion pour les puissances de 'idéal d’augmentation coincident. Enfin,
Up,,(G)(K) est une algebre de Hopf compléte.

Dans la suite on omettra dans les notations G ou Kk, si le contexte est clair.

REMARQUE 1.3. — Le groupe symétriqgue &,, et le groupe G™ agissent sur
Ualgébre de Lie p,(G). Ces actions sont définies par :

g Xij(h) = Xij(g:hg; ), 9-Xi(q) = Xi(gi - 9),

o Xij(h) = Xo(iyos) (), o Xi(q) = Xo() (),

pourg:(gly'.' 7gn)€Gn etJGGn.

1.3. Connexions formelles. — Dans cette sous-section, on passe en revue cer-
taines notions sur les connexions formelles, leur platitude et les représentations
de monodromie induites.

Soit X une variété analytique complexe et A une C-algébre compléte unitaire
graduée (connexe) : A =[]~ Ak telle que 1 € Ay, Ag = C, Ap-A; C Ajqq pour
k,1 € N et que les composantes homogeénes soient de dimension finie. L’algébre
A est supposée munie de la topologie produit. On note Q°(X) lalgebre des
formes holomorphes sur X et Q°*(X)®A la complétion de 'algebre Q*(X) ®¢c A
pour la filtration {Q°*(X) ®c A>k}r>0 (on note Ay =[], >, An). On notera A
le produit de Q2°(X)®A. On se donne aussi une 1-forme holomorphe sur X &
valeurs dans As; (i.e. un élément de Q' (X)®A>;), qu'on notera w.

DEFINITION 1.4. — Le triplet (X, A,w) comme ci-dessus est appelé connezion
formelle sur X, d valeurs dans A. Cette connexion est dite plate si (d®id 4)(w)—
wAw=0.
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THEOREME 1.5. — Soit (V, A, Q) une connerion formelle et v un point de V.
St cette connexion est plate et V' est simplement conneze, alors l’équation :

(d®idg)F = QA F,

d’inconnue F € Q°(V)®A, admet une unique solution dans Q°(V)®A, d condi-
tion initiale fixée (F(v) = f € A). Si f est inversible dans A (f € A*), alors F
est d valeurs dans A*.

Démonstration. — Pour alléger les notations on remplacera d®id4 par d. La
condition sur la forme 2 se traduit par :

dQy — Z Q AQ,, =0, pour k >0,
l+m=k
ou €y, désigne la composante homogene de degré k (selon A) de 2. Notons Fj, la
composante homogene de F' de degré k. L’existence d’une solution de I’équation
dF = Q A F, est équivalente a 'existence de composantes homogenes Fj, tels
que :
dFy = Z WA Fp, Fi(v) = fi- (A4)

l+m=k
On va montrer l'existence de ces composantes par récurrence. Au rang zéro,
Fy est solution de dFy = 0, comme ) est & valeurs dans A>q, et donc £y
est une constante. Supposons les composantes jusqu’au rang k — 1 construites.
Calculons la différentielle, qui ne dépend pas de Fj (comme Qy = 0), de la
forme > W AF,:

l+m=k
d ( > aun Fm> = > ((dUn) A Frm — Qo A dFy )
l+m=k 0<m<k
= > (dU) A Frem
0<m<k
— Z Qo A Z UNFy_pm_
0<m<k 0<I<k—m
= Z (dQs - Z Qi /\Ql> A Fy_s =0.
0<s<k l+m=s

Cette derniére forme est donc fermée et donc exacte d’apres le théoreme de
De Rham, comme V est simplement connexe (on utilise que les composantes
homogenes sont de dimension finie). D’oti, 'existence et I'unicité d’une solu-
tion Fy de (A). On vérifie que F}, satisfait les conditions de Cauchy-Riemann.
Cela montre Pexistence et I'unicité de solutions dans Q°(V)®A. Le début de la
récurrence montre que la composante de degré 0 de F' est une constante égale a
la composante du méme degré de la condition initiale f et donc F est inversible
si et seulement si la condition initiale 1’est, ce qui montre le théoreme. ]
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Dans la suite de cette sous-section, on se donne une connexion plate (X, A,
w) comme dans la définition 1.4. On note r : X — X le revétement universel
de X.

La connexion (X, A, 7*(w)) est une connexion plate sur un espace simple-
ment connexe. On est dans le cadre du théoreme 1.5. Etant donné un point
zo de X, Péquation dF = r*(w) A F, F(xo) = 1 admet une unique solution
qu’on notera F(x,xq). Comme la condition initiale est égale & 1 la solution
F(z,z0) est & valeurs dans 1 + A>q (voir derniére assertion de la preuve du
théoréeme 1.5).

Ainsi, on définit une application pg, : 71 (X, 7(x0)) — 1+ A>1 quia vy €
m1(X,r(xo)) associe F(v - zg,x0), ol v agit via le morphisme de monodromie
du revétement.

PROPOSITION 1.6. — Soit v, 71, 2 € m (X, r(x0)). On fait agir m (X, r(x0))
d gauche sur X, via le morphisme de monodromie du revétement. On a les
égalités suivantes :

L F(y-z,v-y) = F(z,y).

2. F(z,y)F(y,z) = F(x,2).

3. F((")/l’yg) . ,Io,xo) = F(’}/Q - Zo, Io)F(’}/l - Zo, .To).

Démonstration. — Montrons d’abord la premiere égalité : tirons en arriere
par v (vu comme automorphisme du revétement r : X —X ) I’équation sa-
tisfaite par F(x,y-v). On obtient que dF (y-z,v-y) = v*(r*(w))F(y- 2,7 y).
Comme v est un automorphisme de revétement, r o v = r et donc les deux
membres de (1) satisfont la méme équation différentielle. D’autre part, les deux
membres sont égaux pour z = y. L’égalité (1) est donc une conséquence de
I'unicité de solutions. La deuxieme égalité est vraie pour z = y. La différen-
tielle, par rapport & x, du membre de gauche de (2) est : d(F(z,y)F(y,2))) =
(r*(w)F(z,y))F(y,z). Par conséquent, les deux membres de (2) vérifient la
méme équation différentielle. Comme pour (1), 'unicité de la solution donne (2).
Le troisieme point est obtenu en utilisant les deux premiers :

F((m72) 0, 0) = F((7172)-T0, 71-20) F (71-T0, 20) = F(v2-%0, 20) F (710, T0),

ce qui montre (3) et achéve donc la démonstration de la proposition. |

Cette proposition nous permet d’affirmer que si la connexion considérée est
plate alors l'application pg, associée induit un antimorphisme de groupe de
m (X, r(z0)) dans 1+ A>1. On dira que p,, est la représentation de monodromie
associée a la connexion en question en xg.

On termine cette sous-section par un résultat dans le cas ou A est une
algebre de Hopf complete de coproduit noté A. On note P(A) l'ensemble des
primitifs de A et G(A) = {a € A|A(a) = a®a, a € A*} I'ensemble des éléments
diagonaux.
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THEOREME 1.7. — Soit (V, A,w) une connexion formelle, otV est simplement
connexe. Supposons de plus que A est une algébre de Hopf compléte, que w est a
valeurs dans P(A) et que la condition initiale de Uéquation (d®ids)F = QA F
est dans G(A). Alors la solution F du théoréme 1.5 est d valeurs dans G(A).

Démonstration. — On rappelle que A est le produit de I'algebre Q*(V)®A,
on notera - le produit de I’algebre Q'(V)@A@A. En utilisant la multiplicativité
de A on obtient :

[(d@idA§A) o (idQ.(V@A)} (F) = [(idg.(v)ém) o (d@idA@A)} (F)
= [idge(v)®A] (WA F)
= [idas(v)BA] (W) - [idge(1)BA] (F).
Pour S € Q’(V)@A on note S'2 I'image de S par Iapplication qui associe &
a®@b € Q*(V)®A I'dément a®@b®1 € Q*(V)RARA. De méme, on définit 3
comme 'image de S par a®b — a®1Rb.
Calculons la "différentielle” de F'*2 - F'13 :
(d@idA§A) (F2. F13) = (d@idAagA)(Fm)} CP1B 4 13, [(d@idAgA)(Fm)}
=(WAFR)2.FB L F2. (wAF)3
_l2. pl2 I3 18 pl2 pls
= idge (1) DA (W) - (F12 - F13),
car [QO(V),Q%(V)] = 0 et w € Q*(V) ® P(A). Ces calculs montrent que
(idge (v)®A)](F) et F12 . F13 vérifient une méme équation différentielle. Or,
on suppose que la condition initiale de Iéquation (d®ids)F = QA F est de
type groupe. Donc, (idge(v)®A)(F) et F2- F''3 coincident au point ot on fixe

la. condition initiale. Le théoréme 1.5 nous dit que (idgs(v)®A)(F) = F12. F13.
Dong, la solution F' est a valeurs dans G(A) (F est aussi inversible). O

Ainsi, si A est une algébre de Hopf compléte et w est plate et a valeurs dans
P(A), alors la représentation de monodromie associée est & valeurs dans G(A).

1.4. Connexion sur ’espace de configuration Cfg(n,IP’i). — On a une ac-
tion de G sur P!. En considérant cette action on définit I’espace de confi-

guration Cf(n,P}) = {(p1,-- .pn) € (B2)"|pi # gpj;i # j,g € G}. On va
construire une connexion formelle sur Pespace Cfg(n,Pl), & valeurs dans 'al-

gebre Up, (G)(C).

DEFINITION-PROPOSITION 1.8. — II ewiste une unique 1-forme holomorphe
sur Cfg(n,PL) a valeurs dans Up,,(G)(C), qu’on notera w, dont la restriction
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U := (P'\ {cc})" N Cfg(n,PL) est donnée par :
(8)
wo= Y, Y dlog(z + YD dilog(zi—g-2)8Xi,(9),

i€[1,n] pePt\PL i#j€[1,n] g€G
ot lon pose dlog(z — oc0) = 0.

Démonstration. — Pour n > 2, on fixe ¢ une permutation sans aucun point
fixe de &,,. En utilisant la relation (2) de la définition 1.2, on vérifie que :

wr= Y. Y. dlog( __Zm)@X()

i€[l,n] peP\PL

+ > Zd2110g< _ZU())@)X”()

1#j€[l,n] g€G
Or, toutes les 1-formes apparaissant dans cette écriture sont holomorphes sur
Cfg(n,PL). Ce qui montre que w)py est holomorphe pour n > 2. Supposons
que n = 1. Si G = {1}, la forme w)y est triviale et donc holomorphe. Sinon le

cardinal de P!\ (PLU{oo}) est supérieur ou égale a deux (voir proposition 1.1)
et pour g € P\ (P U {c}) :

wr=Y Y dlog <Zl_

i€[Ln] peP\(PLU{q}) T

Z) ®X1(p),

avec la convention d log(M)

= —dlog(z1 — q) (on utilise la relation (2) de la
définition 1.2). Les formes log(Z1=~) étant holomorphes sur P}, la 1-forme wy
est holomorphe sur Cfg(n,PL) = Pi Ce qui montre la proposition. O

Notons que w est a valeurs dans I'ensemble des primitifs de Up,(G)(C).
Enfin, le triplet (Cfg(n,PL), Up,(G)(C), w) est une connexion formelle, au
sens de la sous-section 1.3.

1.5. Platitude de la connexion. — Dans cette sous-section on montre que la
connexion w de la définition 1.8 est plate.

LEMME 1.9. — 1. Soit h un élément de G, on a l’égalité suivante entre
formes méromorphes sur C3 :
dx A\ dy _ dx A dy _ dx N dy
(z—2)y—h-z) (z—-2)y—hz) (e—-h""-y)ly—h-2)
dx A wn(y)
— Aw
T — h-L. Y h\Y),

. dylog(y—h-o00) sih-o0# o0
ot wh(y) = 0 sinon '
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2. Soit p € P! et supposons que h € stab(p) \ {1}. On a I’égalité suivante
entre formes méromorphes sur C :

dz n dz _ dz n dz
z—h-z z—h"l-z z—-p z-—at(p)

ot at est linvolution de la proposition 1.1 et l’on pose ﬁ = 0.
Démonstration. — Notons d’abord que si S = (i Z) € GLy(C), alors :
(a = B)det(S)
S-a—-§5-f=——""—-, Ag
Ps(a)Ps(9) s
oi15~z:% et Pg(z) = cz+d.
Montrons la premiere égalité. Pour y et z génériques, la fraction
1
F(z) =

(z—2)(y—h-=z)
admet exactement deux poles simples (selon x) : x = z et * = h~! - y. Par
conséquent :

A B
Tema) ok ey
A=lim(z —2)F(z) et B= lim (z—h"'-y)F(z).

T—z z—h— 1.y

avec

On vérifie que :

1 —1y\/
L W po VW)
(z—h71-y) h=l.y—=z
ot (h™1)" est la dérivée de h=1. Ce qui donne 1'égalité :
dz A dy dz N dy dr ANd(h™1 - y)

G -ha) @G- he) @ hlghty_z Y

D’autre part, en utilisant (Ag) pour S =h~', a =y, =h -z, on obtient :
hty s e s)det(h)
Pp-1(y)Pp-1(h - 2)
puis en appliquant d, log aux deux membres de 1’égalité, on trouve :
dylog (h™" -y —z) =dylog(y — h - z) — dylog(Py-1(y)). (E2)

Comme

d (h_1 y)
n'est autre que la forme wy(y) de D’énoncé, les équations (Fp) et (Es)
montrent (1).

=dylog(h™" -y —2) et dylog(Py-1(y))
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Montrons (2). On a vu (proposition 1.1) que |Fix(h)| = 2. Posons h(z) =
‘Zj_ts et Fix(h) = {p,at(p)}. On distinguera deux cas :

Si oo ¢ Fix(h), on a ¢ # 0 et p,at(p) sont deux solutions distinctes de
cz*+(d—a)z —b=0. On en déduit que p+at(p) = =% et que p-at(p) = =L.
Par conséquent, on a :

1 1 _ 2z—(p+at(p)) = 2cz+d—a

p z-at)  G-pG-atk) P+d-az—b

En développant —— + — avec h(z) = Zjig, on trouve (2) pour oo ¢
Fix(h).

Si oo € Fix(h), h est de la forme h(z) = ez + f avec e # 1. Un calcul
immédiat donne 1’égalité souhaité. Ce qui montre le lemme. g

Montrons la platitude de la connexion :

PROPOSITION 1.10. — La connezion formelle (Cfg(n,PL),w) est une connezion
plate. La 1-forme w vérifie : (cl@idﬁp Jw=wAw=0.

Démonstration. — 11 suffit de montrer ces égalités sur U = (P \ {oo})" N

Cfe(n,Pl). Les calculs seront effectués dans M(U)&Up, (G)(C), ot M(U)

est 'algébre des formes méromorphes sur U. On note Xw 1’élément w®X €

M(U)&Up,,(G)(C). Pour simplifier la preuve, on utilisera la convention
=0

" La relation (1) de la définition 1.2 donne :

-y Y

i€[l,n] peP\PL %

+) 0 Xii(g) [delog(zi — g - z) + da, log(z — g7 - z1)] -

i<j geG
En posant g(z) = Zgjisg et en simplifiant I’expression ci-dessus, on trouve :
p)dz;
=X 3 TP Y Xula)dos(s))
i€[1,n] peP\PL i<j geG

ou fil = zi(cqzj +dg) — (agzj 4 by). Comme dod = 0 on en déduit que dw = 0.
Passons & ’étude du terme w Aw. On note w' la partie du membre de droite
de (8) contenant dz;. Alors w est donnée par :

(9) w= Z Wt
1=1

En utilisant les relations [X;;(9), Xxi(h)] = [Xi(q), Xm(h)] = 0, X;j(9) =

X;i(g7Y) et [x;(q), zx(p)] = 0 avec ¢ ¢ O(p) (voir définition 1.2), on trouve
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pour i #£ k :
(10)

WA+ AW = |A+B+C+D+ Y (B} +E;+E2) | dei Az,
Jlig{ik}

ou

Xi(p), Xi
Sy oy Besel oy (}_(p) ilg)

pePI\PL qEO(p Zk - q) pEPL\PL, geG z p)(zk —9g- Zz)

_ [Xin(9), Xk(p)] 9), Xpi(h)]
€= peﬂmégec(% —9-2)(2 —p)’ b= g,%;l —g-2)(zk — h-z)
1 [(Xik(9), Xi; (h)] 2 _ [Xi5(9), Xki(h)]
P> (zi—g-2)(zk —h-2) Zp> (zi =g 2)(zk — b~ 2)
=Y ( [Xi;(9), X;(h)]

J =92z —h-z)

g,h€G g,heG

Zi
g,heG
On va décomposer le termes B, D et EJ2 En appliquant (1) du lemme 1.9,
on peut décomposer EJ2 :
B2=% [Xij(9), Xki(h)] " — [Xi;(9), Xii(h)]
P imgez)(me—hg o zy) (5= hTh 2 (2 — hy - 2)

(z; —h= 1 2p)(zkg —h-00)

_|_

On note, dans 'ordre d’apparition, Ef—l, E?Q, EJQ-3 les termes de cette décompo-
sition. En réindexant les termes de E;’, on trouve :
Bipt= Y [Xi5(9), Xi(h) + X (hg)]
DT 2 g )k hg %)

De méme, en réindexant les termes de EJ22 et en utilisant la relation (1) de la
définition 1.2, on trouve :

22 1_ [Xir(9), Xju(h™") + Xji(h™'g™")]
Bl = L T g e b

g,heG

Les relations (4) dans p,(G)(C) impliquent que E? + E?' = E}* + Ej = 0
Ainsi, on peut réduire I’équation (10) &
(11)

WA+ WP A=A+ B+C+ D+ Z Ej23 dz; N\ dzy, pour i # k.
jlig{ik}
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Décomposons B. En appliquant (1) du lemme 1.9 & B, pour z = z;,y = 2 et
z = p, on obtient :

Xl(p Xii(9)] — [Xi(p), Xxi(9)]
b= Z —p)( zk—g-p)+%(2i—g‘1~2k)(2k—g-p)

Xz
Ve el

On note comme avant Bp, Bo, B3 les termes de cette décomposition. Pour
chaque g € O(p), on choisi un g, € G tel que g,-p = ¢ et on note G, 'ensemble
des g4. Ainsi, on peut écrire :

A+ B = Z 3 Z [Xi(p), Xi(9 - p) + Xki(gh)]

g€Gp hestab(p (zi —p)(2k — 9 p)

Ce terme est nul a cause de la relation (7) de la définition 1.2. Ce qui réduit
(11) a
(12)

WA +wF AW = By +Bs+C+ D+ Z Ej??’ dz; \Ndz, pour i # k.
jlig{ik}

Il nous reste a faire la décomposition de D. Le lemme 1.9 donne :

), Xii(h
D= (wilg.h) —walg b +Z (zi —h T )(;k(—)}]l 00)’

gh#1
- [Xir(9), Xpi(h)]
wi(g,h) = (2; —g-21) (2K — hg - z1)
et
- [Xik(9), Xni(h)]
wa(g,h) = (zi —h=1-2k)(zk — hg - 21)°
On pose

D, = Z (w1(g, h) —wa2(g,h)) et Dy=D—D;.
gh#1

Remarquons que la relation en degré un dans p,,(G) implique que la somme
Bs + Dy + Z EJ23
Jlig{ik}
est nulle. Donc :
(13) VAW WP AW = (B2 + C + Dy)dz; Adz, pouri # k.
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On va montrer que By +C + D; est nulle. On peut transformer Dy, puis utiliser
la relation (1) dans p,,(G) pour trouver :

=3 > (wi(g.(gh)") — w2 (ghig™"))

g h#1
1 1 1
=S S o) Xaloh) (o o)
g FiT 9%k k k k k
De plus, en utilisant la proposition 1.1 et (2) du lemme 1.9, D; se simplifie :

D1 = Z Z Z [Xlkt(g)vxzk(gh)]

qGZ hestab(g)\{1}

1 n 1
zk—h-zk Zk—h_1~Zk

1 1 1
:Zg:zi_g'zk 2 (Zk—q " Zk-&t(q)) Y Xilg), Xin(gh)]

q€Z hestab(g)\{1}

X,’ X,L h
:Z Z ([ k(9), Xir(gh)]

ap hestabp)\{1} 0 I zk) (21 — )

Par une réindexation de Bs et l'utilisation de la relation (1) dans p,(G), on
trouve :

By+C+Dy =) Z ()g+2)((gzép_);xik(gh)].

9,P hestab(p)

Le numérateur de la fraction est nul en vertu de la relation (6) dans p,,(G). Ce
qui montre que By +C+ D; = 0. En injectant cette égalité dans (13), on trouve
que pour tout i # k, w' AwF +wF Aw? = 0. Les éléments w’ A w’ étant nuls par
définition de A et compte tenu de I’équation (9), on obtient que w A w = 0, ce
qui termine la démonstration de la proposition. O

1.6. Représentation de monodromie. — On fixe ¢ = (g1, ,¢n) un n-uplet
appartenant & Cfg(n,PL). On a vu que la connexion (Cfg(n,PL), Up,(G)(C),
w) est plate. De plus, w est & valeurs dans les primitifs de IAJpn(G)(C). Donc
une representation de monodromie associée a cette connexion est a valeurs dans
g (Upn( )(C)), ot G désigne le groupe des éléments diagonaux.

Soit r : ¢ — Cfg(n,PL) le revétement universel de Cfg(n, PL), ¢ un point
de la fibre au-dessus de g. On notera p; : 71(Cfa(n, P),q) — G(Up,(G)(C )
la représentation de monodromie obtenue associée a g.

Pour i # j € [I,n] et g € G et p € P\ PL, on définit 77 (resp. ;)
comme un lacet dans P!, basé en ¢; et qui sépare la sphére en deux disques
ouverts, le premier contenant le point g-g; et le deuxiéme contenant les points
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différents de ¢; et g - ¢; (resp. différents de g; et p) appartenant a l’ensemble

(l [U G- q) U P\ PL). On oriente ces lacets comme en figure 10. On définit
S

alors le lacet zf; (resp. zf) de Cfg(n,P}) basé en ¢ comme étant image de 7]
(resp. 77) sous l'application :

Pi \ U G-qx —)Cf(;<n, Pi)
k|k#i

X —>(q17"' 3 qi—1,T, Q4415 7QTL)

On va étudier 'image des classes des 1: - et x¥ par cette représentation.

Figure 1 : Le lacet 77; (ou 7)), dans S* (vue d’extérieur);

le point non indexé est g.g; (ou p)

PROPOSITION 1.11. — Pour 1 <i<j<n, g€ G, ke [l,n] et pecP\PL,
on a les égalités suivantes :

pg (#f;) =1 —=2inX;5(9) + Rij(g9),  pg(x) =1 = 2in Xy (p) + Ri(p),

ot R;j(g) et Ry(p) ne comportent que des termes de degré supérieur ot égale
a deuz.

Démonstration. — On ne montrera 1’égalité que pour x”, lautre cas étant
similaire. Pour calculer la monodromie, il faut s’intéresser a la solution F' de
Péquation dFF = r*(w) A F, avec F(g) = 1 (cf. section 1.3). Soit &; le chemin
de C relevant le lacet a:g] de point de départ g. Son point d’arrivée ebt x “q-
On a pg(af;) = F(z]; - q). Soit F' = Fy + F1 +[deg > 2] le developpement de
F en composantes homogenes. On sait que Fy =1 et on a dF} = r*(w). On en
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déduit :
pa(xf;) =1+ Fi(af; - @) — F1(g) + [deg > 2
:1—|—/~g r*(w) + [deg > 2]
ij
:1+/ w + [deg > 2]
a?,
Pour finir, montrons que fxfj w = —2imX;;(g). Soit

fi i PL\ klkU;éiG - qx — Cfg(n,PL)

I’application du paragraphe précédent la proposition. Comme a?fj = fi(vfj), on

/xg YT /Wq i (@),

fiw = Y R+ Y Y T

pepi\pr” P je(Ln\{i}) 9€G °

On obtient donc en appliquant le théoréme des résidus que :

[, 1) = —2inx).
vy

Ce qui acheve la preuve. O

2. Rappels de topologie différentielle

Cette partie est consacrée a des rappels de topologie différentielle. La notion
de méridien est introduite d’'une maniére adaptée dans 2.1. On termine 2.1 par
une propriété de conjugaison entre méridiens. Enfin, la derniére sous-section 2.2
de cette partie rappelle des propriétés sur les stabilisateurs de certaines actions
de groupes finis sur les surfaces.

Dans cette section les variétés sont sans bord sauf mention du contraire.

2.1. Groupes fondamentaux et méridiens. — Dans cette section, on définit (mo-
tivé par [11, 17]) une classe de lacets appelés méridiens et on compare les classes
d’homotopie de deux méridiens.

Soit M une variété différentielle connexe orientée et N une sous-variété de M
connexe orientée de codimension 2. On considére un disque D C M transverse
a N tel que DN N est réduit a un point p. Soit (vs,- -, vdaimar) une base du
plan T, N tangent & N en p compatible avec I'orientation de IN. On oriente D
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grace a une base (v1,v2) de TpD choisie de maniere que (vi, -+, Udimar) SOit
une base de T, M compatible avec 'orientation de M.

DEFINITION 2.1. — Soit D comme dans le paragraphe précédent muni de
Vorientation ci-dessus. Un méridien m est un lacet m : [0,1] — M qui est
une paramétrisation du bord de D respectant l'orientation. On dira que m est
un méridien au-dessus de p.

PROPOSITION 2.2. — Soit my et mo deux méridiens. Il existe un chemin [ de
M\ N tel que my est homotope (da extrémités fizées) a fmofB~" dans M \ N.
En particulier, si my et mo ont le méme point de base x € M \ N, alors my et
ma sont conjugués dans w1 (M \ N, *).

Démonstration. — D’abord, on vérifie que le lemme est vrai pour M = R"x D
et N = R"™ x {0} avec D un disque centré en zéro : il suffit de montrer que tout
méridien est conjugué par un chemin a un méridien a valeurs dans {0} x D.
Soit m un méridien paramétrant le bord de D; comme dans la définition 2.1.
On note ¢ I'unique point d’intersection (transverse) de D; avec N. Notons 7(?)

la projection naturelle de R™ x D sur {0} x D. L’intersection de Dy avec N
2)
Vg
est injective. En utilisant une isotopie I : Dy x [0,1] — D qui fixe ¢ et qui

envoie Dy dans V,, puis 'isotopie :

étant transverse, on sait qu’il existe un voisinage V, de ¢ dans D; tel que 7

(1—t)z +tr@(x), pourzeV,ettel0,1],

on trouve que m est conjugué par un chemin & un méridien dans {0} x D. Ceci
montre le lemme dans le cas M = R"™ x D et N = R" x {0}.

Passons au cas général. Soit m : V' — NN un fibré en disques qui est un
voisinage de N dans M et p un point de N. On peut trouver un voisinage U,
de p dans N, difféomorphe & RY™YN et au-dessus duquel V est trivial. On a
71 (Up) ~ RIMN x D et U, s’identifie a R4™N x {0}.

Tout méridien m au-dessus d'un point de U, est conjugué par un chemin
dans M \ N a un méridien de 7~1(U,). En effet, il suffit de rétrécir le disque
contenant m par une isotopie. Par conséquent, compte tenu du cas M = R x D
et N =R" x {0}, tous les méridiens au-dessus des points de U,, sont conjugués
les uns aux autres par des chemins dans M \ N.

On a donc une relation d’équivalence R sur N donnée par :

TRy <= les méridiens au-dessus de = sont conjugués a ceux au-dessus de vy,

dont les classes d’équivalence sont ouvertes. Comme N est connexe, on n’a
qu’une seule classe. Ceci montre la proposition. (]

COROLLAIRE 2.3. — Si 7y est un chemin du point de base %1 de my vers celui
de mo alors my et ymay~! sont conjugués dans wi (M \ N, *1).
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2.2. Groupe fini agissant sur une surface. — Soit .S une surface orientée, com-
pacte, sans bord, munie d’une action fidele par difféomorphismes (conservant
Porientation) d’un groupe fini H. On note S, ’ensemble des points de S a
stabilisateur trivial pour l'action de H sur S. Comme H est fini et préserve
Pensemble S\ S, est fini (voir le dernier paragraphe de cette sous-section).

PROPOSITION 2.4. — Soit p un point de S. Le stabilisateur stab(p) de p est
un sous-groupe cyclique de H. De plus, il existe un disque D, autour de p tel
que :

1. Le groupe stab(p) agit sur D, cette action est équivalente d l’action par
multiplication de py sur C, ot N = |stab(p)].
2. D, N (H -q) =stab(p) - q, pour g € D,

Démonstration. —  Soit m une métrique riemannienne H-invariante sur S (on
peut en obtenir en faisant la moyenne d’une métrique quelconque). Le groupe
stab(p) agit naturellement par isométries sur 7,,S; on a donc un morphisme
T, : stab(p) — O(T},S), injectif d’apres la proposition 3.11 de [14]. Plus
précisément, stab(p) est inclus dans SO(7},S) ~ S* car H préserve l'orientation.
Ainsi, stab(p) est isomorphe & uy avec N = |stab(p)|. De plus, pour tout
disque D, C T,S centré en zéro de rayon r inférieur au rayon d’injectivité
de l'application exponentielle Exp, : TS — S, 'exponentielle établit un
difféomorphisme entre D, et D,(r) = Exp,(D;). De plus, Exp,, vérifie :

Vh € stab(p), Exp, o T,(h) = h o Exp,.

En effet, si v est la géodésique d’origine p et de vecteur v € 1,5, alors h o~y
est la géodésique de vecteur T,(h)(v) d’origine h(p) = p. On voit donc que
stab(p) agit sur D,(r) et que cette action est équivalente a celle de py par
multiplication sur D,.. Ce qui montre (1).

Montrons que certains des disques D,(r) satisfont également I’assertion (2).
Si le contraire était vrai, on aurait pour tout k£ > 1, existence de ¢x € Dp(%) et
gr € H \ stab(p) tels que gi(qx) € Dp(1). Comme H est fini, on peut extraire
une suite (gx, )i>0 de (gx)r>0 telle que (gx,)i>o est constante égale & un certain
g € H \ stab(p). Comme (g, );>0 tend vers p, en passant a la limite, on trouve
la contradiction p = g(p). a

En particulier, pour p un point a stabilisateur trivial, D, ne contient pas
deux éléments d’'une méme orbite.

Remarquons que la premiere assertion de la proposition prouve que les points
fixés par un élément non trivial de H sont isolés. De plus, I’ensemble des points
fixes d'un élément de H est fermé. Comme H est fini et S est compact, ’en-
semble S\ S, est fini.
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3. Etude de groupes fondamentaux

La présente section a pour but de donner des générateurs de w1 (Cfgr(n, Sy))
et des relations entres ces générateurs, pour S et H comme dans la section 2.
Pour ce faire, on définit dans la sous-section 3.1 des lacets qui engendrent
m1(Cfg(n, Sy)). Une identification de ces générateurs a des méridiens (sous-
section 3.2), nous permet de décrire 'action de H"™ sur les classes de conjugaison
de w1 (Cfp(n, Sy)) (sous-section 3.3). Enfin, dans la sous-section 3.4, on établit
des relations quadratiques dans 71 (Cfz(n, Sy)).

3.1. Générateurs de m;(Cfg(n, S.),q). — Dans cette partie, on construit
une famille de générateurs de m1(Cfg(n,Sy)). En particulier, on trouve une
famille génératrice de I'espace de configuration d’orbites Cfg(n,PL) introduit
dans la section 1.

Fixons un point ¢ = (g1, ,qn) € Cfy(n,Sy). Pour définir des lacets, on
voit S comme une surface dans R? de la maniére usuelle. On oriente S en
prenant la normale vers 'extérieur.

Choisissons ¢ € [1,n] et posons E; = (S\ Sy) U (U2 H -¢;). Pour p € E;, on
considére un disque fermé D contenant ¢; dans son bord et p dans son intérieur
tel que DN E; = {¢i,p}. On note v;(p) le lacet basé en ¢; paramétrant le
bord de D dans le sens inverse & celui induit par la normale. Si S est de genre
g(S) > 0, on consideére les lacets 7} - - _%29(5)7 générateurs usuels de (S, ¢;)
évitant les points de E;. On suppose que les lacets v;(p) (pour p € E;) et
At (pour I € [1,2¢(S)]) sont choisis de fagon & ce qu'ils engendrent le groupe
fondamental de S, \ (U2 H - q;)-

DEFINITION 3.1. — Pour i € [1,n|, j € [i +1,n], m € [1,2¢9(S)], h € H et
q € S\ S, les lacets z;;(h), x;(q) et )" de Cf(n,Sy) sont définis par :

L xlj(h)(t) = (Qn—k—l-la e an‘—1>’Yi(h : Qj)(t)aqi-l-la te 7Qn); pour tout t €

[07 1] 5
L4 xz(q)(t) = ((Zn—k+17 e a%‘—h%‘(Q)(t)a qi+1y " >Qn); pour tout t € [O’ 1} 5
L4 -/E:n(t) = (Qn—k:-‘rla o 7qi—1afy1m(t)a qit+1,° " 7qn); pour tout t € [Oa 1] ;

ot les v;(p) et les v ont été définis dans le paragraphe précédent.

Remarquons que ceci définit des lacets a conjugaison pres dans
m1(Cfg(n, Si)). On fixe un choix de tels lacets pour la suite. Pour montrer
que les classes des lacets ainsi définis engendrent 71 (Cf g (n, S.)), on va utiliser
le résultat suivant :

THEOREME 3.2 ([5]). — Si M est une variété sans bord munie d’une action
libre d’un groupe fini H, alors, pour n > 2, la projection p™ : Cfy(n, M) —
Cfg(n—1,M) surles n—1 derniéres composantes est une fibration localement
triviale.
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On peut trouver une preuve de ce théoréme dans [4] (Théoreme 2.1.2). Vu
les hypotheéses imposées sur les couples (S, H), ce théoréme s’applique aux

Ctr(n, S,).

PROPOSITION 3.3. — Le groupe m(Cfr(n,S.)) est engendré par les classes
des z;j(h) (1 <i<j<nethe H), desz;(q) (i € [1,n]etqe S\ Si) et des
" (1 € [1,n] et m € [1,2¢9(9))).

Démonstration. — On va montrer la proposition par récurrence. La proposi-
tion est vraie pour n = 1. Supposons qu’elle soit vraie au rang n—1. Considérons
la fibration :

(Fibs,q,) — (Cfu(n,5.),q,) == (Ctu(n - 1,5.),q, ),

ol g = (g1, s qn), q, | = (g2, ,qn) et Fib, est la fibre au-dessus de

q, - Observons la suite exacte de cette fibration :

oo —> mi(Fibn, g ) — mi(Ctu(n, S, q,)
— m(Cfuy(n—1,8),q, ) —1— .

Soit z;;(h), xz;(q) et " les lacets de Cfg(n,S,) définis plus haut. Les images
de ces lacets par p™ sont des lacets analogues de Cfg(n—1,.5), dont on sait par
hypothese de récurrence qu’ils engendrent le groupe. Il s’ensuit que les classes
des :

p"(zi5(h)), p" (xi(q)) et celles des p" (x7"),
pour i € [2,n],j € [i+1,n],h € H,qg € S\ Sx et m € [1,29(S)], engendrent le
groupe m (Cfg(n —1,54),q, ).

Enfin, on sait que les z1 j(h), z1(q) et les 7", pour j € [2,n],h € H,q € S\ S,
et m € [1,2¢(5)], engendrent le groupe fondamental de Fib,, ~ {p € Si|p ¢
H -gqj, j = 2,---,n}. La proposition est alors une conséquence du résultat
suivant : Si K — G — H — 1 est une suite exacte de groupes, Fi est une
famille génératrice de K et Fg est une famille de G telle que Im(Fg € G — H)
est génératrice de H, alors Fj, U Fg (F est 'image de Fx dans G) est une
famille génératrice de G. |

Pour S = P! et H = G, on obtient :

PROPOSITION 3.4. — Le groupe m1(Cfa(n,PL)) est engendré par les classes
des 7;(g) (1 <i<j<netgeq) etdeszi(q) (i €[1,n]etqeP\Pl).

REMARQUE 3.5. — Si le point q utilisé ici est le méme que celui de la sous-
section 1.6, alors les lacets x;;(g) et x;(q) sont respectivement conjugués dans
m(Cta(n,Py)) a af; etz de 1.6.
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3.2. Les tresses z;;(g) en tant que méridiens. — Dans ce paragraphe, on iden-
tifie les lacets introduits dans la sous-section 3.1 a des méridiens pour des
variétés liées & Cfr(n, Sy).

Pour h € H, k € [1,n], i,5 € [1,n] avec i < j, et ¢ € S\ S«, on pose
D(Z’]?h) = {(yla"' ’yn) € Sn‘yl = hy]} et D(kaq) = {(yla"' 7y7l) €
Sy = q}. Pour o € E:={(4,j,h)|1 <i<j<m,he H}U([1,n]x (S\S,)),
on définit les deux sous-variétés de S™ :

M(a)= 8" U D et N(a)=D(a)NM(a).
@=5"\ (0, ,D®) et N@)=D(@)nMa)

N(a) est une sous-variété de codimension réelle deux dans M(a) et
Cfy(n, Ss) est le complémentaire de N(«) dans M (). De plus, M («) et N(«)
sont connexes.

Remarquons que z;;(h) est le bord d’un disque de M (¢, j, h) coupant N (4, j, h)
en un unique point g’ :

q/ = (QIa o 7qi—1ah g5y Qi1 aQTL)

Cette intersection est transverse. On oriente M (4,7, h) et N (7,7, h) d'une ma-
niére que z;;(h) devient un méridien au sens de la définition 2.1. On fait la
méme chose pour que xj(g) soit un méridien au sens de 2.1 (pour M = M (k, q)
et N = N(k,q)).

DEFINITION 3.6. — Soit a comme ci-dessus. Un lacet m de Cfy(n,S.) est dit
méridien pour o st m satisfait la définition 2.1, pour M = M(a) et N = N(«)
munies de l'orientation ci-dessus.

PROPOSITION 3.7. — Tout méridien pour (i,j,h) est conjugué par un chemin
au lacet z;;(h) et tout méridien pour (k, q) est conjugué par un chemin & xx(q).

Démonstration. — Cette proposition est une conséquence de la proposi-
tion 2.2. O
3.3. Action de H™ sur les classes de conjugaison de w1 (Cf g (n, Si)). — Dans

cette sous-section, on décrit I’action de H™ sur les classes de conjugaison des
xi;(h) et des x(q) de w1 (Cfy(n,S,)) donnés dans la proposition 3.4.

On a vu que H™ agit naturellement sur Cfg(n,S,) et on avait choisi un
point de base ¢ de Cfy(n,S,). On considére 'ensemble des couples (b, C) ol
h € H™ et C est une classe d’homotopie d’un chemin dans Cfgy(n,S,) de
point de départ g et de point d’arrivée h - g. On munit cet ensemble de la
multiplication : (h,C) - (h',C") = (hh',C(h o C")), ot C(ho C") est le résultat
de la concaténation des lacets C' et (ho C’) (ho C’ désignant la composée du
lacet C” & valeurs dans Cf g (n, S,) avec le difféomorphisme de Cf g (n, S,) induit
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par h). On obtient ainsi le groupe m¢™ (Cf 5 (n, Sy)/H™,q) (qui est exactement
le groupe fondamental de Cfg(n,S.)/H™) qui s'insere dans la suite exacte :

(14) 1 — m(Cli(n,S.),q) 2 79 (Cly(n, S.)/H",q) = H" — 1.

ou ¢(v) = (1,7) et 0(h,C) = h. Toute section ensembliste o de cette suite
donne une application ensembliste :

(15) fo : H"—Aut (7r1 (CfH(n,S*),g)) ,

qui & h associe la conjugaison par o(h).

Pour ¢ € [1,n], h; désignera I'image de h € H par l'inclusion canonique de
H dans H™ qui envoie H en i-éme position. La relation de conjugaison dans
m1(Cfg(n, S.), q) sera notée ~.

PROPOSITION 3.8. — On a :
(16)

xp(h-q) sir=k

zij(hg) sir=i
( xzp(q)  sinon

g
Fo () (@is(@) ~ 3 wolgh™1) sit =3, fr(h)(@n(a)) ~ {

zi;(9) sinon
pourl <i<j<m, krell,n],gh€HetqeS\S..

Démonstration. — Soit o, 7,1, j, g, h comme dans I’énoncé. On sait que o (h,.) =
(hy, Cy) avec C, une classe d'un chemin reliant ¢ & h,. - g. Par définition, on a :

A7) folhe)(2ij(9)) = o(hy) (L, 2i5(9))o(he) ™h = (1, Cphr 0 245(9))C) -
Le membre de droite s’identifie & C.(h, o 2;;(¢g))C,~' dans 71 (Cfg(n, S), q).
Posons h/(r) = hg sir =i, h/(r) = gh™! si r = j et h/(r) = g sinon.

Comme H est un difféomorphisme de S conservant 1’orientation et comme
hy(N(3,7,9) = N(i,j,h/(r)), on trouve que h, o z;;(g) est un méridien pour
(4,4, h/(r)). Donc, d’apres le corollaire 2.3 f,(h,)(zi;(g)) est un conjugué de
x;; (W (r)). Ce qui montre 1’égalité de gauche. De facon similaire, on démontre
I’égalité de droite. g

Enfin, l'application f, induit une action de H™ sur ’ensemble des classes de
conjugaison de 71 (Cf g (n, Sk), q), autrement dit :

(18) fo(B)(a) ~ fo(h)(d'), sia ~d’.

Cette action est indépendante de o.

3.4. Relations dans 71 (Cfg(n, Si),q). — Dans cette partie on donne des
relations entre les x;(g), zx(g) : une premiére famille générale, et une deuxieme
famille valable dans le cas ot S = S2.

Considérons Iespace Cf,,, (2,C*) ol le groupe uy est le groupe des racines
N-éme de I'unité agissant par multiplication sur C :
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LEMME 3.9. — Pourk € [1, N —1] et j € [1,2], il existe un x'5(k) conjugué a
T12(e*N") et 2(0) conjugué a x;(0) dans m1(Cf,y(2,C*),(2,1)) tel que :
1. les deuz lacets § := x5 (1)x]5(2) - - - 25 (N —1)2 (0) et 25(0) commutent
a homotopie pres.
2. les deux lacets o := x5(0)x)5(1)x)5(2) - - - @) (N — 1)1 (0) et 2i5(1) com-
mutent d homotopie pres.

Démonstration. — On choisit des x5 (k) et les 2(0) tels que B soit égale &
(71,1) et 25(0) soit égale & ( , ol 71,2 sont représentés dans la figure 3 :

Figure 2 : Les lacets v et 7

Les lacets (et 5(0) ainsi choisis commutent dans 71 (Cf,, (2,C*),(2,1)). En
effet, il sont & image dans Im(y1) x Im(vy2) C Cf,,, (2,C*). Ce qui montre (1).
Montrons (2). Soit Hy : [0,1] x [0,2] — Cf, (2,C*) une homotopie entre
x12(1)* et xx12(1), ot * est le lacet constant (voir figure 2).

1 2
q_
l \l l \o =92
1 2 b=
Figure 3 : Graphes en fonction du temps de H(0,-) (gauche)
et de Hy(1,-) (droite)

—_

L’homotopie tordue H : [0, 1] x [0,2] — Cf,,(2,C*) définie par :
H(S, t) — e_Qiﬂ(s—H')I[IJ](S-H')Ho (S, t),

ott 7y o) est I'indicatrice de I'intervalle [1, 2], est une homotopie entre H (0, -) =
z12(1)a’ et H(1,) = o/z12(1), ott o est défini par o/(t) = (227, e=2imt)
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pour ¢ € [0,1]. Or, & est homotope & un lacet du méme type que a. Ce qui
montre (2). O

REMARQUE 3.10. — Les relations du lemme 3.9 ressemblent aux relations :
(Xo2212(0) - - - 212(N —1) Xo1, 212(0)) = (Xo2212(0) - - - 212(N —1) X1, Xo2) = 1

de la proposition 1.1 de [7]. Ce type de relations peut aussi apparaitre en genre
supérieur dans beaucoup de cas ot l’on a une courbe simple stable de S pour
Paction de H. Par exemple, quand on fait agir le groupe pn sur le tore S x
St on retrouve les relations (23) et (24) dans lesquelles x;(g - q) et x;(p)
sont remplacés par des lacets (des z]" et zy" bien choisis) représentés par des
courbes simples stables.

On emploie dans la proposition qui suit 'expression ”(ay|- - - |a,, by| -+ |bs)™
= 17 pour dire que pour a;,b; € m(Cfy(n,Ss),q) (i € [1,r],j € [1,s]), ils
existent a; ~ a;,b; ~ b; (i,j dans le méme ensemble) tels que :

(@, al b b)) =1,
ot (a,b) = aba=b~1.

ProproSITION 3.11. — On a les relations suivantes dans le groupe
7T1(CfH(TL,S*),g) M

(19)  (zij(9), zra(h)™ = (wi(9), 2k ()™ = (wir(9), z;(h))™ = 1,
pourl <i<j<k<l<netg,heH,

(i (9), zik(gh) |z (R)™ = (@)K (h), i (9)| ik (gh))™

(20) = (zir(gh), zjk(h)|2i;(9))~ =1,
(21) (zi(p), zjn(9))™ = (z(p), zix(9))™ = (z(p), 2i;(9))~ = 1,
pourl<i<j<k<mn,gh€HetpeS\S,

(22) (zi(p), zx(q))™ =1,

pour 1 <i<k<m,petqdans S\ S, avec ¢ ¢ O(p).

(23)

~

(xj(p)|$ij (gho) | (ghl) |- |wij (9h|5tab(p)|_1> lzi (9 p) ,l“ij(g)) =1,
(24) (xz‘j (gho) ’zij (9h1)| ‘xij <9h|5tab(p)|71) ‘ Iz‘(g 'p)ailfj(P)) =1,
pour1<i<j<n,g€ H,pe S\ S, et h un générateur de stab(p),
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pour tout i € [1,n], S = S?%, ul, -+, ul est une énumération des éléments de
{(k,1,9) € [1,n]> x Gk < 1,i € {k,1}} U(P'\P}), X,; est un conjugué de
zri(g) siul, = (k,1,g) ou un conjugué de x;(q) si ul, = q € (P \ PL).

Démonstration. — On a vu que les z;;(g) et les z;(¢) sont des méridiens
pour certaines variétés. Donc, pour montrer la proposition, il suffit de montrer
chacune des relations pour un ¢ arbitraire (voir corollaire 2.3).

Supposons que les composantes de ¢ sont concentrées dans un disque ne
contenant pas deux éléments d’une méme orbite pour Paction de H. Vu ’hypo-
these imposée a g, les z;;(1) vérifient & conjugaison pres les relations de tresses
pures (voir [1] pour la définition des relations de tresses pures), c’est a dire :

(i (1), 2 (1) = (za(1), 255(1))™ = (zi(1), 2 (1))~ = 1,

(i (1), zik (V)] 251 (1)™ = (25k(1), 245 (1)]2ik (1))~
= (zik(1), zj6(1)]zi;(1))~ =1,

dans 7 (Cfg(n, Si), q). Pour montrer (19) et (20), il suffit de calculer a l'aide
de la proposition 3.8 I'image du premier commutateur par f,(g;hx), 'image du
deuxiéme et du troisiéme par f,(g;h;) et celle des trois derniers par fo, (gihgl).

On va montrer la relation (z;(p),z;x(g9))~ = 1 de (21), les deux autres
relations de la méme équation étant similaires. On commence par prendre un
petit disque D autour de p, puis on choisit ¢ tel que ¢; soit dans D et les ¢,
soient & Dextérieur de H - D (r # ). Ensuite, on choisit un 2% (9) (conjugué
de z;(g)) dont les r-iéme composantes (r # ¢) ne coupent pas H - D, puis un
conjugué z%(p) de z;(p) dont la i-éme composante est & image dans D \ {p}.
Les lacets z;(p) et 27 (g) ainsi obtenus commutent.

Soit p et ¢ dans S\ S, avec ¢ ¢ O(p). Compte tenu de 'hypotheése sur p
et ¢, on peut trouver deux disques D, et D, centrés respectivement en p et ¢
tels que D, N (H - D,) = 0. Choisissons ¢ de fagon & ce que g; soit dans D,, g
soit dans D, et les autres composantes soient a lexterieur de H - (D, U D).
Enfin, prenons des v;(p), vr(¢) (les lacets qui permettent de définir x;(p) et
zk(q)), tels que Im(v;(p)) C D, et Im(yx(q)) C Dy. Les lacets z;(p) et zx(q)
ainsi choisis commutent. Ce qui prouve (22).

Démontrons (23) et (24). Soit D, un disque autour de p comme dans la
proposition 2.4. Notons w : C —» D, et w :un = stab(p) les identifications
qui établissent 1’équivalence entre Iaction de py sur C et celle de stab(p) sur
D,,. Choisissons un ¢ tel que ¢; = w(2), ¢; = w(l) et ¢, ¢ thh - D,, pour

r #4,j. En utilisant (2) de la proposition 2.4, on voit qu’on a une inclusion :
Wij - CfHN(Q,(C) — CfH('fL,S*)
(CU, y) — (Q17 e aqi717w(x)7 qit+1," " 7qj717w(y)a qj+1; T 7Qn)
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Remarquons que w;; o £12(¢), pour ¢ € pn est un méridien pour (i, 7, w’(¢)).
Donc, (1) et (2) du lemme 3.9 donnent aprés application de wj; :

(23033 (1) sy (' (%)) |-+ Jrss (' (57| wio)swis(0) =1,

(xij(l) Tij (w’ (ezzivﬂ)) ’ o (w’ (ew>> ‘ xi(p),xj(p))N .

Ce qui montre (23) et (24) pour g = 1. Pour obtenir (23) et (24) pour g
quelconque, il suffit de calculer 'image par f,(g;) des deux derniéres relations
obtenues.

Pour montrer la dernieére relation, observons I’ensemble :

Fib®") = Cfy(n, 82) N ({1} x -+ x {gi—1} x S x {gip1} x -~ x {qn}) -

C’est S? privée de I'union E; := Ug;(H - g). Donc, un lacet contractile de

Fib() g’écrit comme un produit des lacets a; (p), pour p parcourant E; et S?\S2,
a;(p) est basé en ¢; et fait un tour autour de p en évitant les autres points de
E;. Soit p de la forme p = h - g; pour un certain h € H et un j € [1,n] \ {i}.
Sij > 14, le lacet a;(p) n’est qu'un conjugué de z;;(h). Sinon, «;(p) est un
méridien pour (j,4,h~!) et donc il est conjugué & zj;(h~!). Ce qui montre la
derniére relation. O

4. Rappels sur I’algebre de Lie de Malcev d’un groupe

On rappelle des notions reliées a ’algebre de Lie de Malcev d’un groupe. Ce
matériel provient de [16] et [15].

Soit k un corps de caractéristique nulle et A une algebre de Hopf com-
plete sur k. Par définition, A est munie d’une filtration décroissante {FjA}r>o
multiplicative de sous-espaces vectoriels, telle que FpA = A, F1 A est 'idéal
d’augmentation et la diagonale A : A — A®A est un morphisme d’algebres
filtrés. Cette filtration induit sur I’ensemble des éléments primitifs de A une
filtration d’algebre de Lie :

(26) F,P(A) =P(A) N FLA, pour k > 1,

c’est-a-dire [F,,P(A), FP(A)] C Frn+iP(A), pour m,l > 1. En particulier,
le k-ieme terme de la filtration centrale descendante de P(A) est inclus dans
FyP(A).
log
De plus, on a les bijections inverses G(A) = P(A), ou log et exp sont les

exp
séries usuelles. La multiplication sur G(A) est donnée par :

exp(x) exp(y) = exp(h(x,y)), pour z,y € P(A)

ou h(z,y) =z +y+ 5[z, y] + h>3(z,y) avec h>3(z,y) € F3P(A) est la série de
Baker-Campbell-Hausdorff.
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On considérera les complétions de deux types d’algebres de Hopf relative-
ment aux puissances de leur idéal d’augmentation : 'algébre k[I'] d’un groupe

I ou l’algebre enveloppante U(g) d’une ’algébre de Lie g. On notera k[I'] et
ﬁ(g) ces complétés.

La k-algebre de Lie de Malcev du groupe I' est 'algébre de Lie Lie(I'(k))
formée des primitifs de k[F]A, munie de la filtration {FjLie(I'(k))}xr>1 comme
dans (26). C’est une algebre de Lie complete :

Lie(I'(k)) = lim Lie(I'(k))/ FyLie('(k)).

On note grLie(T'(k)) le gradué associé de Lie(T'(k)) pour la filtration
{FyLie(T'(k)) }x>1. L’algebre de Lie :

(27) grLie(T'(k)) = @M gr;, Lie(T'(k))

est engendrée par sa composante de degré un gr, Lie(I'(k)). Soit I I'idéal d’aug-
mentation de k[I']. On a la suite d’isomorphismes :

(28) gr,Lie(T(k)) == I/I? =5 T% @,k

qui pour z € T, identifient la classe de log(z) dans gryLie(T'(k)) & [z] ® 1 dans
I'** @7 k ou [x] est la classe de x dans I’abélianisé I'** de T.

5. L’isomorphisme entre Lie(T,,(C)), grLie(T',,(C)) et p,,(G)(C)

Dans cette section on établit 'isomorphisme entre les trois algebres de Lie
Lie(T',,(C)), giLie(T',(C)) et p,(G)(C). En s’appuyant sur les relations dans
I, := 71 (Cfg(n,PL)) obtenues dans la section 3, on construit (sous-section 5.1)
un morphisme surjectif ¢ de p,,(G)(k) dans giLie(T',,(k)), pour k un corps de
caractéristique nulle (ces objets sont définis dans la sous-section 1.2 et la sec-
tion 4). Dans la sous-section 5.2, on utilise la représentation de monodromie de
la section 1 pour obtenir un morphisme de Lie surjectif Lo;r , : Lie(I',(C)) —
P»(G)(C). Enfin, dans la sous-section 5.3, on utilise ces deux morphismes pour
montrer I'isomorphisme annoncé.

Pour alléger les notations, on utilisera parfois (dans les démonstrations) p,,
pour désigner p,(G)(k) et on omettra k dans Lie(T',(k)). La classe de = €
FyLie(T',,(k)) dans grLie(T,,(k)) sera notée [z];. On notera y 'image de y € T

~

dans k[I'] .

5.1. Construction d’un morphisme p,,(G)(k) — grLie(T,(k)). — Dans
cette sous-section on construit le morphisme annoncé, pour k un corps de ca-
ractéristique nulle. On commence par démontrer que p,,(G) admet une variante
de la présentation de la définition 1.2 :
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LEMME 5.1. — L’algébre de Lie t,,(G) engendrée par les X (g) et X*(q), pour
1<i<j<n,g€G, kec[l,n] etqecP'\PL, soumis aux relations :

(29) X+ Y | DX+ Y Xg) | =0,

qEPT\P, 9€G  \jli>i jli<i
pour i € [1,n],
(30) (X7 (g), X (n)] = [X"(9), X7*(h)] = [X™"(g), X’'(h)] =0,
pourl <i<j<k<l<netghegdG,
(X7 (g), X" (gh) + X" (h)] = [X7*(R), X7 (g) + X" (gh)]
= [X™(gh), X7*(h) + X" (g)] =0,

(31) (X" (p), X7"(9)] = [X7(p), X" (9)] = [X*(p), X" (g)] =
pourl<i<j<k<netghed,
(32) [(X'(p), X7 (q)] =0,
(33) X9(g), X' (p)+ X'(g-p)+ >, X(gh)| =0,
hestab(p)
(34) X(p), X'(g-p)+ >, XY(gh)| =0,
hestab(p)

pour i,5 € [1,n] aveci < j, g € G, p € PL\ P! et q € (PL\ P1)\ O(p),
est isomorphe d p,(G). L’isomorphisme est donné par X" (g) — X;;(g) (pour
i<jetgeqG)etX¥(q)— Xi(q) (pour k € [1,n] et g € PL\ PL).

Démonstration. — On adjoint a t,,(G) les éléments X7 (g) pour 1 <i < j <n
et g € G et on impose la relation :
(35) X(g) = X7"(g7").

Cela ne change pas t,,(G). En utilisant la nouvelle relation X% (g) = X7(g~1),
on vérifie qu’on peut transformer les relations (29) jusqu’a (33) de ce lemme
en les relations (2) jusqu’a (6) de la définition 1.2 via I'identification X (g)
Xan(g), X¢(q) — Xc(q) (pour a,b,c € [1,n], avec a # b).

On s’intéresse a la relation (34) (satisfaite pour ¢ < j) qui est similaire & (7)
(satisfaite pour ¢ # j). L’antisymétrie du crochet donne :

[X7(p), X] + [X'(g-p), X]+ > [XY(g),X] =0,
h/€Estab(p)
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pour
X=X +X'(g-p+ Y, X(gh).
hestab(p)

Or, le crochet [X7(p), X| est nul d’apres (34) et [X(gh'), X| est nul d’apres
(33). D'o :

X'g-p), X' () + X' (g-p)+ >, X9(gh)| =0.
hestab(p)

En appliquant X% (g) = X7%(g~1) et en réindexant, on trouve :

XYq), X (g™ )+ Y, XV(g')| =0

hestab(q)
ol ¢ = g - p. Donc la relation (7) est aussi satisfaite dans t,(G) (via l'identifi-
cation précédente). Ce qui montre le lemme. ]
PROPOSITION 5.2. — On a un morphisme d’algébres de Lie filtrées :

Ok : En(G) (k) — gArLie(Fn(]k)),
donné par

$(Xij(9)) = [log(wij(9)lr et ¢(Xi(p)) = [log(zx(p))1,

pour 1 <i<j<mn,ke[ln], g G etpecP\PL oules complétions et les
filtrations sont induites par le degré.
Démonstration. — Posons X% (g) = [log(z;(g))]1 et X (p) = [log(z;(p))]i-

La formule de Campbell-Baker-Hausdorff montre que pour z,y € G(k[[',] ) et

a’,y" des conjugués respectifs de z et y dans G(k[T',] ), on a :

(36) [[log(x)] , [log(y)],] € [log (2, y")], + FsLie(T',, (k)).

En effet, F;Lie(T',,(k)) contient le i-éme terme de la suite centrale descen-
dante de Lie(T',(k)). En appliquant cette égalité aux relations de la proposi-
tion 3.11, on trouve que les X% (g) et X*(q) ainsi définit satisfont les relations
du lemme 5.1 (dans gryLie(T',,)). Ce qui donne le morphisme de la proposi-
tion. |

5.2. Un morphisme de Lie(T,,(C)) dans p,,(G)(C). — On va construire un
morphisme surjectif d’algebres de Lie filtrées Lie(T',,(C)) — p,.(G)(C).

LEMME 5.3. — On a un isomorphisme entre P(U(p,(G)(k))) et pn(G)(K) qui
fait correspondre la filtration (26) de P(U(p,(G)(k))) d la filtration induite par
le degré de p,(G)(k).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



152 M. MAASSARANI

PROPOSITION 5.4. — On a un morphisme surjectif d’algébres de Lie filtrées
Laix,p @ Lie(T'(C)) — pn(C) , vérifiant pour i < j et g € G, k € [1,n] et
g eP\PL:

Loin,p(log(2ij(9))) = Xij(9)) + Rij(9),  Laix,p(log(xx(9))) = Xi(q) + Ri(9);
ot R;;(g) et Ri(q) appartiennent a FyLie(T',,(C)).

Démonstration. — Dans la section 1.6 on a construit un anti-morphisme pj :
I',, — G(Up,,). On définit le morphisme j opposé de pg, par p(z) = pg(z)~'.
Le morphisme ainsi obtenu s’étend en un morphisme compatible avec les struc-
tures de Hopf f : C[[',] — ﬁpn. En considérant la complétion de C[T',,], on
obtient un morphisme f : (C[l"n]A — IAJpn d’algebres de Hopf complétes. En
restreignant f aux primitifs, on trouve le morphisme d’algebres de Lie filtrées
Lie(p) : Lie(T',(C)) — P(Up,,), satisfaisant :

log(z) = log(p()),

pour z € I',. Comme les lacets z;;(g) et 21 (q) sont similaires aux z7; et aux
z] de la sous-section 1.6, on obtient en utilisant la proposition 1.11 :

Lie(p)(log(zi;(g))) = 2in Xi;(g) + [deg > 2],
Lie(p)(log(xk(q))) = 2im Xk (q) + [deg = 2].

Enfin, on a un isomorphisme canonique d’algebres de Lie filtrées entre ’P(ﬁpn)
et p,(C) ; le morphisme Ly;. , annoncé est obtenu en composant Lie(p) par
I'automorphisme de p,,(C) donné par 2irX;;(g) — Xi;(9), 2it Xy (q) = Xk(q).

Montrons la surjectivité de Lo;, ,. L’espace vectoriel grip,, = pJ, est engendré
par les X;;(g) (i < j) et les Xy(p), qui appartiennent & 'image de grLo;r ,.
En effet, grLair([l0g(e:;(9)1) = Xi(9) et grLoim,,(log(ar(p)) = Xi(p).
Ainsi, grLo;r , est surjectif car p, est engendrée en degré un. Par conséquent,
Loir,, est surjectif. O

5.3. L’isomorphisme sur C. —

LEMME 5.5. — L’espace griLie(T',(k)) est engendré par les classes des
log(zj(g)) (pour 1 < i < j < mnetg € G) et celles des log(xr(q)) pour
ke [l,n] et g€ P\ PL.

Démonstration. — 1l suffit d’appliquer (28) & T',, en tenant compte de la pro-
position 3.4. O

PROPOSITION 5.6. — Les morphismes ¢y : p,,(G)(k) — grLie(I',,(k)) et Loirp :
Lie(T',,(C)) — pn(G)(C) sont des isomorphismes d’algébres de Lie filtrées (on
k est un corps de caractéristique nulle).

TOME 147 — 2019 — N° 1



ESPACES DE CONFIGURATION TORDUS EN GENRE 0 153

Démonstration. — Posons § = ¢¢ o Lo ,. On a les égalités :

gri([log(xi;(9)]1) = [log(zi;(9)) et gro({log(xi(q)];) = [log(xi(q))]; -

Donc, grf est I'identité d’apres le lemme 5.5. On en déduit que grLo;r , est
un isomorphisme (on a vu que grLg;, , est surjectif) et donc groc est aussi un
isomorphisme. Compte tenu de la construction de ¢¢, on en déduit que ’appli-
cation greg est un isomorphisme ce qui implique que grey est un isomorphisme
pour tout k de caractéristique nulle. Ce qui prouve que les isomorphismes de
la proposition sont des isomorphismes d’algebres de Lie filtrées. O

6. L’isomorphisme entre Lie(T',,(Q)), grLie(T', (Q)) et p.(G)(Q)

Dans cette section, on montre que les algebres de Lie Lie(T',(Q)),
giLie(I',(Q)) et p,(G)(Q) sont isomorphes. Pour cela, on construit un schéma
Iso,(g,h) et un schéma en groupes Aut,(g) (sous-section 6.1) associés & des
algebres de Lie g et b, et on montre que Iso, (g, h) est un torseur sous Aut,(g)
(sous-section 6.2). On montre que l'isomorphisme construit en proposition 5.6
est un point complexe de Iso, (g, ). On rappelle un résultat permettant d’éta-
blir l'existence de points rationnels dans certains torseurs (sous-section 6.2).
On en déduit existence de I’isomorphisme annoncé (sous-section 6.3) .

6.1. Les schémas Iso, (g, h) et Aut, (g). — Dans cette sous-section, on cons-
truit des schémas conduisant a la définition d’un systeme projectif de torseurs.
On considere deux Q-algebres de Lie g et h filtrées completes de filtrations
respectives {Fjg}i>1 et {Fih}i>1. On suppose que gr g et gr h sont engendrées
par leurs composantes de degré un, que ces composantes sont de dimension finie
et qu’on a un isomorphisme fixé ¢ : g/Fog — h/Fh entre ces composantes de
degré un. On pose g; = g/F;g et h; = bh/F;h. Ainsi, on a : g = {iLngi et h=
1<iLn h;. Pour K une algebre de Lie et k£ > 1, on note Ci R le k-ieme terme de la

suite centrale descendante : C18 = 8 et Cr118 = [Ci R, R].

Enfin, un Q-schéma affine est vu comme un foncteur représentable des Q-
anneaux dans les ensembles et on définit un Q-schéma en groupes pro-unipotent
comme la limite inverse d’un systeme projectif de Q-schémas en groupes al-
gébriques unipotents. On utilisera parfois Q-groupe au lieu de Q-schéma en
groupes.

6.1.1. Le schéma Iso;(g,h). — On va définir un systéme projectif de Q-sché-
mas affines; on définira Iso,(g,h) comme la limite inverse de ce systéme pro-
jectif.

LEMME 6.1. — L’image de F.g dans g; est C.g;, le r-iéme terme de la suite
centrale descendante de g;.
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Démonstration. — Notons F,.g; I'image de F,.g dans g; et montrons que C,g =
F,.g;. Comme la filtration F,g est décroissante et que C;g C F;g , il suit de la
définition de g; que C.g; = F,.g; = 0, pour r > i. Ce qui montre la proposition
pour r > i. Le fait que gr g soit engendrée en degré un est équivalent a dire
que C,g+ F,4119 = F,.g pour r > 1. Donc, par projection on a C.g; + Fr18; =
F..g;. Cette derniere égalité pour r = ¢ — 1 donne C;_19; = Ci—19; + Cig; =
F;_19; car F;g;, = C;g;. Enfin, une récurrence descendante sur » < ¢ montre la
proposition. O

Soit Iso; (g:, h;) le Q@-schéma algébrique qui & un Q-anneau R associe en-
semble Iso, (g;, ;) (R) des isomorphismes de g; ® R dans bj; ® R dont ’abélianisé
s'identifie & Y ®idg : g2® R — ha® R via les identifications canoniques g#° ~ go
et h2* ~ by (voir lemme 6.1).

PROPOSITION 6.2. — Les schémas Iso,(g:,b:) forment naturellement un sys-
teme projectif :

-+ — Is0, (g2, h2) — Iso; (g1, b1);
on notera Iso; (g, h) la limite de ce systéme. Pour R un Q-anneau, Iso, (g, h)(R)
est Uensemble des isomorphismes d’algébres de Lie filtrées g9 R — HBR qui
induisent l’isomorphisme 1 Q idg.

Démonstration. — L’image des idéaux Firg C g (respectivement Fph C B)
dans g, (respectivement b;) étant les idéaux caractéristiques Crg; (lemme 6.1),
les Iso; (gi, b;) forment un systéme projectif comme annoncé.

Enfin, un isomorphisme filtré f de g® R dans hQR est enticrement déterminé
par la donnée d’isomorphismes f; faisant commuter le diagramme :

=g QR=—gi 11 QO R<~—gi412 QR <~—---
fil fi+1i szl
=— O R<~—h 11 @ R<=—D0h 120 Q R<—---

ou les fleches horizontales sont les projections canoniques. La condition ”f
induit Y ®idg : go @ R — ho ® R” correspond & " f; induit ¢ ®idg : go® R —
h2 ® R via les identifications canoniques g¢® ~ gy et h2® ~ h,”. Ce qui montre

la derniere assertion de la proposition et acheve la démonstration. O
6.1.2. Le schéma Aut,(g). — On va construire le Q-schéma en groupes
Aut, (g).

Soit Aut(g;) le foncteur qui associe & un Q-anneau R le groupe des au-
tomorphismes d’algébre de Lie de g; ® R. C’est un Q-groupe algébrique. En
effet, Aut(g;) est un sous-foncteur en groupes de GL(g;), représentable par
un quotient de O(GL(g;)), I'anneau de coordonnées de GL(g;). On définit le
Q-groupe algébrique Aut,(g;) comme étant le noyau du morphisme naturel
Aut(g;) — GL(g?).
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PROPOSITION 6.3. — Les Aut, (g;) sont des Q-groupes algébriques unipotents,
ils forment naturellement un systéme projectif :

oo — Aut; (92) — Auty(g1),

de limite Aut,(g) pro-unipotente. Pour un anneau Q-anneau R, Aut,(g)(R)
est l'ensemble des automorphismes d’algebre de Lie filtrée de g®R induisant
Uidentité sur g/Fag.

Démonstration. — Le monomorphisme naturel Aut,(g;) — GL(g;) fournit
une représentation linéaire fidele de dimension finie de Aut,(g;), lequel est
algébrique. Le drapeau C,,g9; C Cp,—19; C -+ C Cog; = ¢; (n; est la classe
de nilpotence de g;) est stable par Aut(g;). Comme Aut,(g;) est le noyau de
Aut(g;) — GL(g¢?), il agit trivialement sur Cg;/Cr+19; pour 1 < k < n;. Ce
qui montre que Aut, (g;) est unipotent.

Enfin, remarquons que Aut, (g) n’est autre que Iso,(g,h) pour h =g et ¢ =
idg,. Donc, le reste de la proposition est une conséquence de la proposition 6.2
et de la définition d’un groupe pro-unipotent. |

6.2. Torseurs et algebres de Lie. — Dans cette partie on rappelle la notion de
torseur, on montre que Iso;(g,h) est un torseur sous Aut,(g) et on montre
qu’un tel torseur a des points rationnels dans certaines conditions.

DEFINITION 6.4. — Un Q-torseur est un Q-schéma X, muni d’une action d
gauche d’un Q-schéma en groupes H telle que laction de H(k) sur X (k) est
libre et transitive quand X (k) est non-vide. On dit que X est un torseur sous H.

Soit -+ — X5 — X7 un systeme projectif de Q-schémas, X = lim X; sa
—

limite projective et H = lim H; un Q-schéma en groupes pro-unipotent.
—

PROPOSITION 6.5 ([8]). — Supposons que les X; forment un systéme de tor-
seurs compatible sous les H; et que X(C) est non vide, alors X(Q) est non
vide.

PROPOSITION 6.6. — Chaque Iso,(g:,h;) est un torseur sous laction de
Aut, (g;) ; leur limite inverse est Iso,(g,h) qui est un torseur sous action de

Aut, (g)
Démonstration. — Immédiat. g
En combinant les propositions 6.5 et 6.6, on obtient :

COROLLAIRE 6.7. — SiIso,(g,h)(C) # 0 alors g et b sont isomorphes en tant
qu’algébres de Lie filtrées.
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6.3. Preuve. — On va montrer :

THEOREME 6.8. — Les algébres de Lie Lie(T',(Q)), giLie(T',(Q)) et p.(G)(Q)
sont isomorphes en tant qu’algébres de Lie filtrées.

Démonstration. — Le quotient Lie(T',(Q))/FzLie(I',(Q)) s’identifie canoni-
quement & lespace grqLie(T',(Q)) = grLie(T',,(Q))/F> grLie(I',,(Q)). Notons
1y, cette identification. Considérons le Q-schéma

Xl"n = Ib&l (Lie(rn((@))v é\rLie(Fn(Q)))

comme dans la section précédente pour ¢ = 1. L’isomorphisme 6 = ¢coLair ,
(de la proposition 5.6 et sa preuve) est un élément de X, (C). En effet, on a

Lie(I's(C)) = Lie(I'(Q))&C, giLie(I'x(C)) = grLie(I's(Q))®C

et on a vu que grf est I'identité et donc il induit ¢,,. Par conséquent, Lie(T',,(Q))
et grLie(T',(Q)) sont isomorphes en tant qu’algeébres de Lie filtrées d’apres le
corollaire 6.7. Le fait que ¢g : pn(G)(Q) — giLie(T',,(Q)) est un isomorphisme
provient de la proposition 5.6. |

Remerciements. — Je tiens a remercier Benjamin Enriquez pour sa lecture
critique et ses nombreux conseils.
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