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SUR CERTAINS ESPACES DE CONFIGURATION ASSOCIÉS
AUX SOUS-GROUPES FINIS DE PSL2(C)

par Mohamad Maassarani

Résumé. — On étudie des espaces de configuration CfG(n,P1
∗) liés à l’action d’un

groupe fini d’homographies G de P1 (n ∈ N∗). On construit une connexion plate sur cet
espace à valeurs dans une algèbre de Lie p̂n(G). On établit un isomorphisme d’algèbres
de Lie filtrées entre p̂n(G), l’algèbre de Lie de Malcev du groupe fondamental de cet
espace et le complété pour le degré du gradué associé à cette algèbre de Lie. Ceci
est obtenu grâce à la représentation de monodromie d’une connexion et une étude du
groupe fondamental.

Abstract (On orbit configuration spaces associated to finite subgroups of PSL2(C)).
— We study the configuration spaces CfG(n,P1

∗) related to the action of a finite group
of homographies G of P1 (n ∈ N∗). We construct a flat connexion on this space with
values in a Lie algebra p̂n(G). We prove the existence of an isomorphism of filtered
Lie algebras between p̂n(G) and the Lie algebra of Malcev of the fundamental group
of this space. There results are obtained thanks to the monodromy representation of
a connexion and a study of the fundamental group.
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Introduction

L’un des invariants associés à un espace topologique X en homotopie ratio-
nelle est son modèle minimal. Le calcul du modèle minimal de X, plus préci-
sement du 1-modèle minimal, permet d’obtenir l’algèbre de Lie de Malcev de
π1(X), le groupe fondamental de X, par un processus de dualisation. Dans [10],
Fulton et MacPherson calculent explicitement des modèles des espaces de confi-
guration Cfn(X) = {(p1, · · · , pn) ∈ Xn|pi 6= pj si i 6= j}, pour X une variété
projective complexe lisse. Ces modèles sont ensuite simplifiés dans [13], puis
utilisés par Bezrukavnikov ([2]) qui obtient une présentation de l’algèbre de Lie
Lie(π1(Cfn(S)) de Malcev de π1(Cfn(S)) pour S une surface de genre supérieur
à un.

Une approche alternative, motivée par [6], repose sur l’utilisation de conne-
xions plates et d’informations sur le groupe fondamental. En utilisant cette
approche, différents résultats sont obtenus :

1. calcul de l’algèbre de Lie de Malcev de Cfn(S) pour S de genre g(S) = 1
([3]) puis en genre g(S) > 1 ([9]) ; ce qui donne une autre démonstration
aux présentations obtenues par Bezrukavnikov.

2. calcul de l’algèbre de Lie de Malcev d’"espaces de configuration d’or-
bites", au sens de [5], pour les groupes des racines de l’unité opérant sur
C× ([7]).

Dans ce papier, on considère plus généralement G un groupe fini d’homogra-
phies agissant sur la droite projective complexe P1 (vue comme variété analy-
tique) et l’espace associé :

CfG(n,P1
∗) = {(p1, · · · , pn) ∈ (P1

∗)n|pi 6= g · pj ; pour i 6= j et g ∈ G},

dans lequel P1
∗ est l’ensemble des points de P1 à stabilisateur trivial pour G.

En utilisant la méthode des connexions plates, on calcule une présentation de
l’algèbre de Lie de Malcev de π1(CfG(n,P1

∗)) et on montre (théorème 6.8) que
cette algèbre de Lie est isomorphe à la complétion pour le degré de son gradué
associé qui coïncide avec une algèbre de Lie explicite p̂n(G) (définition 1.2). On
obtient par ailleurs la 1-formalité de CfG(n,P1

∗).
Détaillons les étapes permettant d’obtenir ce résultat. Dans la première sec-

tion, on définit une algèbre de Lie pn(G), puis on construit une connexion plate
sur CfG(n,P1

∗) à valeurs dans pn(G). Cette connexion nous donne une repré-
sentation de monodromie ρq̃ : π1(CfG(n,P1

∗)) −→ G(Upn(G)(C)), où G est le
foncteur qui à une algèbre de Hopf associe le groupe de ses éléments diagonaux.

On rappelle en section 2 quelques notions de topologie différentielle qui se-
ront utilisées dans la section 3, laquelle est consacrée à l’étude du groupe fon-
damental d’un espace de configuration d’orbites associé à une surface munie
d’une action d’un groupe fini. Dans cette section, on donne notamment une
famille génératrice de Γn := π1(CfG(n,P1

∗)) et des relations entre ces éléments
de Γn.
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La quatrième section est consacrée à des rappels de notions liées aux algèbres
de Lie de Malcev et aux algèbres de Hopf complètes.

Dans la section 5, on utilise le morphisme de monodromie de la section 1
pour construire un morphisme L2iπ,ρ de l’algèbre de Lie de Malcev Lie(Γn(C))
de Γn sur C dans p̂n(G)(C). D’autre part, on obtient grâce aux générateurs
et relations de Γn un morphisme φC : p̂n(G)(C) → ĝrLie(Γn(C)), où l’espace
d’arrivée est le complété pour le degré du gradué associé de Lie(Γn(C)). En
examinant la composée de L2iπ,ρ avec φC, on conclut que les trois algèbres de
Lie Lie(Γn(C)), ĝrLie(Γn(C)) et p̂n(G)(C) sont isomorphes en tant qu’algèbres
de Lie filtrées.

Enfin, la dernière section, on construit des torseurs dont la composée φC ◦
L2iπ,ρ de la section 5 est un point complexe. Ensuite, on utilise un résultat sur
l’existence de points rationnels de ces torseurs pour déduire que Lie(Γn(Q)),
ĝrLie(Γn(Q)) et p̂n(G)(Q) sont isomorphes comme algèbres de Lie filtrées.

Notons que la 1-formalité des espaces CfG(n,P1
∗) est également une consé-

quence du résultat principal de [12], et dans le cas où G est un groupe de
racines de l’unité, une présentation de l’algèbre d’holonomie peut également
être déduite de ce résultat.

1. Connexion sur l’espace de configuration CfG(n, P1
∗) et représentation de

monodromie.

Dans cette section, on considère une action d’un groupe fini G sur P1 (sec-
tion 1.1). On lui associe un espace de configuration CfG(n,P1

∗) (section 4) et
une algèbre de Lie pn(G) (section 1.2). Après des rappels sur les connexions
formelles (section 1.3), on définit une telle structure sur CfG(n,P1

∗) associée
à l’algèbre de Lie pn(G) (section 1.4) et on montre sa platitude (section 1.5).
On calcule alors les termes de bas degré de la représentation de monodromie
associée (section 1.6).

1.1. Le groupeG opérant sur P1.

1.1.1. Action de G sur P1. — On a la suite de morphismes de groupes sui-
vante :

SO3(R) ' PSU2(C) �
� // PSL2(C)

Par ailleurs, on a une action PSL2(C) → Aut(P1) par homographies et une
action SO3(R)→ Aut(S2) par rotations. Enfin, il existe un identification P1 '
S2 compatible aux actions. L’action de SO3(R) sur S2 commute à l’antipode.
De façon analogue, l’action de PSU2(C) sur P1 commute à l’involution z 7→
at(z) := −1

z̄ . Dans la suite, on fixe un sous-groupe fini G de PSL2(C). Le groupe
G est conjugué dans PSL2(C) à un sous-groupe fini de PSU2(C) ' SO3(R). On
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sait donc que G est soit cyclique ou diédral, soit isomorphe à un des groupes
d’isométries des solides platoniciens A4, S4, A5.
1.1.2. Points fixes et stabilisateurs. — On note P1

∗ l’ensemble des points de P1

à stabilisateur trivial pour G.

Proposition 1.1. — Pour tout g ∈ G et p ∈ P1, on pose Fix(g) = {q ∈
P1 | g · q = q} et on note stab(p) le stabilisateur de p pour l’action de G sur P1.
Alors :

1. L’application at se restreint en une involution de P1 \ P1
∗. Pour tout

g 6= 1, Fix(g) est de la forme {p, at(p)} avec p 6= at(p).
2. Il existe un sous-ensemble fini Z de P1\P1

∗ satisfaisant P1\P1
∗ = Ztat(Z)

et G \ {1} = t
p∈Z

(stab(p) \ {1}).

Démonstration. — Il suffit de montrer la proposition pour G un groupe fini de
rotations de la sphère. Dans ce cadre, l’application at n’est autre que l’antipode
de S2. Ce qui montre (1). L’existence d’un Z fini satisfaisant P1\P1

∗ = Ztat(Z)
est immédiate à partir de (1). Un tel ensemble satisfait automatiquement la
dernière condition de (2). En effet, si l’intersection stab(p)∩ stab(q) pour p 6= q
est différente de {1}, alors (1) nous mène à la contradiction q ∈ {p, at(p)}. Ce
qui montre la proposition. �

1.2. L’algèbre de Lie pn(G). — Soit n un entier strictement positif et k un
corps. On note O(p) l’orbite pour G d’un point p ∈ P1.

Définition 1.2. — On définit pn(G)(k) comme la k-algèbre de Lie engendrée
par les éléments Xij(g), pour i 6= j ∈ [1, n] et g ∈ G, les Xi(q) pour i ∈ [1, n]
et q ∈ P1 \ P1

∗, soumis aux relations :
(1) Xij(g) = Xji(g−1), pour i, j ∈ [1, n] distincts et g ∈ G,

(2)
∑

q∈P1\P1
∗

Xi(q) +
∑

m∈[1,n]
m 6=i

∑
g∈G

Xim(g) = 0, pour i ∈ [1, n],

(3) [Xij(g), Xkl(g′)] = 0, pour i, j, k, l ∈ [1, n] distincts et g, g′ ∈ G,

[Xij(g), Xkj(g′g) +Xki(g′)] = [Xi(p), Xjk(g′)] = 0,
pour i, j, k ∈ [1, n] distincts,
p ∈ P1 \ P1

∗ et g, g′ ∈ G,(4)

(5) [Xi(p), Xj(q)] = 0,

(6)

Xij(g), Xj(p) +Xi(g · p) +
∑

h∈stab(p)

Xij(gh)

 = 0,
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(7)

Xj(p), Xi(g · p) +
∑

h∈stab(p)

Xij(gh)

 = 0,

pour i, j ∈ [1, n] distincts, g ∈ G, p ∈ P1 \ P1
∗ et q ∈ (P1 \ P1

∗) \ O(p).

L’algèbre pn(G)(k) est munie d’une graduation pour laquelle chaque géné-
rateur Xij(g) et Xi(q) est de degré 1. On a :

pn(G)(k) =
⊕
k>0

pkn(G)(k),

où pkn(G)(k) est la composante homogène de degré k. On note p̂n(G)(k) la
complétion de pn(G)(k) pour le degré.

D’autre part, l’algèbre enveloppante Upn(G)(k) de pn(G)(k), hérite de
pn(G)(k) une structure d’algèbre graduée pour le degré. On note Ûpn(G)(k)
la complétion de cette algèbre enveloppante pour le degré. L’algèbre pn(G)(k)
étant engendrée en degré un, la complétion de Upn(G)(k) pour le degré et
la complétion pour les puissances de l’idéal d’augmentation coïncident. Enfin,
Ûpn(G)(k) est une algèbre de Hopf complète.

Dans la suite on omettra dans les notations G ou k, si le contexte est clair.

Remarque 1.3. — Le groupe symétrique Sn et le groupe Gn agissent sur
l’algèbre de Lie pn(G). Ces actions sont définies par :

g ·Xij(h) = Xij(gihg−1
j ), g ·Xi(q) = Xi(gi · q),

σ ·Xij(h) = Xσ(i)σ(j)(h), σ ·Xi(q) = Xσ(i)(q),

pour g = (g1, · · · , gn) ∈ Gn et σ ∈ Sn.

1.3. Connexions formelles. — Dans cette sous-section, on passe en revue cer-
taines notions sur les connexions formelles, leur platitude et les représentations
de monodromie induites.

SoitX une variété analytique complexe et A une C-algèbre complète unitaire
graduée (connexe) : A =

∏
k≥0Ak telle que 1 ∈ A0, A0 = C, Ak ·Al ⊂ Ak+l pour

k, l ∈ N et que les composantes homogènes soient de dimension finie. L’algèbre
A est supposée munie de la topologie produit. On note Ω•(X) l’algèbre des
formes holomorphes sur X et Ω•(X)⊗̂A la complétion de l’algèbre Ω•(X)⊗CA
pour la filtration {Ω•(X)⊗C A≥k}k≥0 (on note Ak =

∏
n≥k An). On notera ∧

le produit de Ω•(X)⊗̂A. On se donne aussi une 1-forme holomorphe sur X à
valeurs dans A≥1 (i.e. un élément de Ω1(X)⊗̂A≥1), qu’on notera ω.

Définition 1.4. — Le triplet (X,A, ω) comme ci-dessus est appelé connexion
formelle sur X, à valeurs dans A. Cette connexion est dite plate si (d⊗̂idA)(ω)−
ω ∧ ω = 0.
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Théorème 1.5. — Soit (V,A,Ω) une connexion formelle et v un point de V .
Si cette connexion est plate et V est simplement connexe, alors l’équation :

(d⊗̂idA)F = Ω ∧ F,
d’inconnue F ∈ Ω0(V )⊗̂A, admet une unique solution dans Ω0(V )⊗̂A, à condi-
tion initiale fixée (F (v) = f ∈ A). Si f est inversible dans A (f ∈ A×), alors F
est à valeurs dans A×.

Démonstration. — Pour alléger les notations on remplacera d⊗̂idA par d. La
condition sur la forme Ω se traduit par :

dΩk −
∑

l+m=k
Ωl ∧ Ωm = 0, pour k ≥ 0,

où Ωk désigne la composante homogène de degré k (selon A) de Ω. Notons Fk la
composante homogène de F de degré k. L’existence d’une solution de l’équation
dF = Ω ∧ F , est équivalente à l’existence de composantes homogènes Fk tels
que :

dFk =
∑

l+m=k
Ωl ∧ Fm, Fk(v) = fk. (A)

On va montrer l’existence de ces composantes par récurrence. Au rang zéro,
F0 est solution de dF0 = 0, comme Ω est à valeurs dans A≥1, et donc F0
est une constante. Supposons les composantes jusqu’au rang k− 1 construites.
Calculons la différentielle, qui ne dépend pas de Fk (comme Ω0 = 0), de la
forme

∑
l+m=k

Ωl ∧ Fm :

d

( ∑
l+m=k

Ωl ∧ Fm

)
=

∑
0≤m≤k

((dΩm) ∧ Fk−m − Ωm ∧ dFk−m)

=
∑

0≤m≤k
(dΩm) ∧ Fk−m

−
∑

0≤m≤k
Ωm ∧

∑
0≤l≤k−m

Ωl ∧ Fk−m−l

=
∑

0≤s≤k

(
dΩs −

∑
l+m=s

Ωm ∧ Ωl

)
∧ Fk−s = 0.

Cette dernière forme est donc fermée et donc exacte d’après le théorème de
De Rham, comme V est simplement connexe (on utilise que les composantes
homogènes sont de dimension finie). D’où, l’existence et l’unicité d’une solu-
tion Fk de (A). On vérifie que Fk satisfait les conditions de Cauchy-Riemann.
Cela montre l’existence et l’unicité de solutions dans Ω0(V )⊗̂A. Le début de la
récurrence montre que la composante de degré 0 de F est une constante égale à
la composante du même degré de la condition initiale f et donc F est inversible
si et seulement si la condition initiale l’est, ce qui montre le théorème. �
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Dans la suite de cette sous-section, on se donne une connexion plate (X, A,
ω) comme dans la définition 1.4. On note r : X̃ −→ X le revêtement universel
de X.

La connexion (X̃, A, r∗(ω)) est une connexion plate sur un espace simple-
ment connexe. On est dans le cadre du théorème 1.5. Étant donné un point
x0 de X̃, l’équation dF = r∗(ω) ∧ F , F (x0) = 1 admet une unique solution
qu’on notera F (x, x0). Comme la condition initiale est égale à 1 la solution
F (x, x0) est à valeurs dans 1 + A≥1 (voir dernière assertion de la preuve du
théorème 1.5).

Ainsi, on définit une application ρx0 : π1(X, r(x0)) −→ 1 + A≥1 qui à γ ∈
π1(X, r(x0)) associe F (γ · x0, x0), où γ agit via le morphisme de monodromie
du revêtement.

Proposition 1.6. — Soit γ, γ1, γ2 ∈ π1(X, r(x0)). On fait agir π1(X, r(x0))
à gauche sur X̃, via le morphisme de monodromie du revêtement. On a les
égalités suivantes :

1. F (γ · x, γ · y) = F (x, y).
2. F (x, y)F (y, z) = F (x, z).
3. F ((γ1γ2) · x0, x0) = F (γ2 · x0, x0)F (γ1 · x0, x0).

Démonstration. — Montrons d’abord la première égalité : tirons en arrière
par γ (vu comme automorphisme du revêtement r : X̃ −→ X) l’équation sa-
tisfaite par F (x, y · γ). On obtient que dF (γ · x, γ · y) = γ∗(r∗(ω))F (γ · x, γ · y).
Comme γ est un automorphisme de revêtement, r ◦ γ = r et donc les deux
membres de (1) satisfont la même équation différentielle. D’autre part, les deux
membres sont égaux pour x = y. L’égalité (1) est donc une conséquence de
l’unicité de solutions. La deuxième égalité est vraie pour x = y. La différen-
tielle, par rapport à x, du membre de gauche de (2) est : d(F (x, y)F (y, z))) =
(r∗(ω)F (x, y))F (y, z). Par conséquent, les deux membres de (2) vérifient la
même équation différentielle. Comme pour (1), l’unicité de la solution donne (2).
Le troisième point est obtenu en utilisant les deux premiers :

F ((γ1γ2)·x0, x0) = F ((γ1γ2)·x0, γ1·x0)F (γ1·x0, x0) = F (γ2·x0, x0)F (γ1·x0, x0),

ce qui montre (3) et achève donc la démonstration de la proposition. �

Cette proposition nous permet d’affirmer que si la connexion considérée est
plate alors l’application ρx0 associée induit un antimorphisme de groupe de
π1(X, r(x0)) dans 1+A≥1. On dira que ρx0 est la représentation de monodromie
associée à la connexion en question en x0.

On termine cette sous-section par un résultat dans le cas où A est une
algèbre de Hopf complète de coproduit noté ∆. On note P(A) l’ensemble des
primitifs de A et G(A) = {a ∈ A|∆(a) = a⊗̂a, a ∈ A×} l’ensemble des éléments
diagonaux.
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Théorème 1.7. — Soit (V,A, ω) une connexion formelle, où V est simplement
connexe. Supposons de plus que A est une algèbre de Hopf complète, que ω est à
valeurs dans P(A) et que la condition initiale de l’équation (d⊗̂idA)F = Ω∧F
est dans G(A). Alors la solution F du théorème 1.5 est à valeurs dans G(A).

Démonstration. — On rappelle que ∧ est le produit de l’algèbre Ω•(V )⊗̂A,
on notera · le produit de l’algèbre Ω•(V )⊗̂A⊗̂A. En utilisant la multiplicativité
de ∆ on obtient :[

(d⊗̂id
A⊗̂A) ◦ (idΩ•(V )⊗̂∆)

]
(F ) =

[
(idΩ•(V )⊗̂∆) ◦ (d⊗̂id

A⊗̂A)
]

(F )

=
[
idΩ•(V )⊗̂∆

]
(ω ∧ F )

=
[
idΩ•(V )⊗̂∆

]
(ω) ·

[
idΩ•(V )⊗̂∆

]
(F ).

Pour S ∈ Ω•(V )⊗̂A on note S12 l’image de S par l’application qui associe à
a⊗̂b ∈ Ω•(V )⊗̂A l’élément a⊗̂b⊗̂1 ∈ Ω•(V )⊗̂A⊗̂A. De même, on définit S13

comme l’image de S par a⊗̂b 7→ a⊗̂1⊗̂b.
Calculons la ”différentielle” de F 12 · F 13 :(
d⊗̂id

A⊗̂A

)
(F 12 · F 13) =

[
(d⊗̂id

A⊗̂A)(F 12)
]
· F 13 + F 13 ·

[
(d⊗̂id

A⊗̂A)(F 12)
]

= (ω ∧ F )12 · F 13 + F 12 · (ω ∧ F )13

= ω12 · F 12 · F 13 + ω13 · F 12 · F 13,

= idΩ•(V )⊗̂∆(ω) · (F 12 · F 13),

car [Ω0(V ),Ω•(V )] = 0 et ω ∈ Ω•(V ) ⊗ P(A). Ces calculs montrent que
(idΩ•(V )⊗̂∆)](F ) et F 12 · F 13 vérifient une même équation différentielle. Or,
on suppose que la condition initiale de l’équation (d⊗̂idA)F = Ω ∧ F est de
type groupe. Donc, (idΩ•(V )⊗̂∆)(F ) et F 12 ·F 13 coïncident au point où on fixe
la condition initiale. Le théorème 1.5 nous dit que (idΩ•(V )⊗̂∆)(F ) = F 12 ·F 13.
Donc, la solution F est à valeurs dans G(A) (F est aussi inversible). �

Ainsi, si A est une algèbre de Hopf complète et ω est plate et à valeurs dans
P(A), alors la représentation de monodromie associée est à valeurs dans G(A).

1.4. Connexion sur l’espace de configuration CfG(n, P1
∗). — On a une ac-

tion de G sur P1. En considérant cette action on définit l’espace de confi-
guration CfG(n,P1

∗) = {(p1, · · · , pn) ∈ (P1
∗)n|pi 6= gpj ; i 6= j, g ∈ G}. On va

construire une connexion formelle sur l’espace CfG(n,P1
∗), à valeurs dans l’al-

gèbre Ûpn(G)(C).

Définition-Proposition 1.8. — Il existe une unique 1-forme holomorphe
sur CfG(n,P1

∗) à valeurs dans Ûpn(G)(C), qu’on notera ω, dont la restriction

tome 147 – 2019 – no 1



ESPACES DE CONFIGURATION TORDUS EN GENRE 0 131

à U := (P1 \ {∞})n ∩ CfG(n,P1
∗) est donnée par :

(8)
ω|U =

∑
i∈[1,n]

∑
p∈P1\P1

∗

d log(zi−p)⊗̂Xi(p)+
∑

i 6=j∈[1,n]

∑
g∈G

dzi log(zi−g ·zj)⊗̂Xij(g),

où l’on pose d log(z −∞) = 0.

Démonstration. — Pour n ≥ 2, on fixe σ une permutation sans aucun point
fixe de Sn. En utilisant la relation (2) de la définition 1.2, on vérifie que :

ω|U =
∑
i∈[1,n]

∑
p∈P1\P1

∗

d log
(

zi − p
zi − zσ(i)

)
⊗̂Xi(p)

+
∑

i6=j∈[1,n]

∑
g∈G

dzi log
(
zi − g · zj
zi − zσ(i)

)
⊗̂Xij(g).

Or, toutes les 1-formes apparaissant dans cette écriture sont holomorphes sur
CfG(n,P1

∗). Ce qui montre que ω|U est holomorphe pour n ≥ 2. Supposons
que n = 1. Si G = {1}, la forme ω|U est triviale et donc holomorphe. Sinon le
cardinal de P1 \ (P1

∗∪{∞}) est supérieur ou égale à deux (voir proposition 1.1)
et pour q ∈ P1 \ (P1

∗ ∪ {∞}) :

ω|U =
∑
i∈[1,n]

∑
p∈P1\(P1

∗∪{q})

d log
(
z1 − p
z1 − q

)
⊗̂X1(p),

avec la convention d log( z1−∞
z1−q ) = −d log(z1− q) (on utilise la relation (2) de la

définition 1.2). Les formes log( z1−p
z1−q ) étant holomorphes sur P1

∗, la 1-forme ω|U
est holomorphe sur CfG(n,P1

∗) = P1
∗. Ce qui montre la proposition. �

Notons que ω est à valeurs dans l’ensemble des primitifs de Ûpn(G)(C).
Enfin, le triplet (CfG(n,P1

∗), Ûpn(G)(C), ω) est une connexion formelle, au
sens de la sous-section 1.3.

1.5. Platitude de la connexion. — Dans cette sous-section on montre que la
connexion ω de la définition 1.8 est plate.

Lemme 1.9. — 1. Soit h un élément de G, on a l’égalité suivante entre
formes méromorphes sur C3 :

dx ∧ dy
(x− z)(y − h · x) = dx ∧ dy

(x− z)(y − hz) −
dx ∧ dy

(x− h−1 · y)(y − h · z)

+ dx

x− h−1 · y
∧ ωh(y),

où ωh(y) =
{
dy log(y − h · ∞) si h · ∞ 6=∞
0 sinon

.
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2. Soit p ∈ P1 et supposons que h ∈ stab(p) \ {1}. On a l’égalité suivante
entre formes méromorphes sur C :

dz

z − h · z
+ dz

z − h−1 · z
= dz

z − p
+ dz

z − at(p) ,

où at est l’involution de la proposition 1.1 et l’on pose 1
z−∞ = 0.

Démonstration. — Notons d’abord que si S =
(
a b
c d

)
∈ GL2(C), alors :

S · α− S · β = (α− β)det(S)
PS(α)PS(β) , (AS)

où S · z = az+b
cz+d et PS(z) = cz + d.

Montrons la première égalité. Pour y et z génériques, la fraction

F (x) = 1
(x− z)(y − h · x)

admet exactement deux pôles simples (selon x) : x = z et x = h−1 · y. Par
conséquent :

F (x) = A

(x− z) + B

(x− h−1 · y) , avec

A = lim
x→z

(x− z)F (x) et B = lim
x→h−1·y

(x− h−1 · y)F (x).

On vérifie que :

A = 1
(z − h−1 · y) et B = − (h−1)′(y)

h−1 · y − z
,

où (h−1)′ est la dérivée de h−1. Ce qui donne l’égalité :
dx ∧ dy

(x− z)(y − h · x) = dx ∧ dy
(x− z)(y − h · z) −

dx ∧ d(h−1 · y)
(x− h−1 · y)(h−1 · y − z) . (E1)

D’autre part, en utilisant (AS) pour S = h−1, α = y, β = h · z, on obtient :

h−1 · y − z = (y − h · z)det(h−1)
Ph−1(y)Ph−1(h · z) ,

puis en appliquant dy log aux deux membres de l’égalité, on trouve :

dy log
(
h−1 · y − z

)
= dy log(y − h · z)− dy log(Ph−1(y)). (E2)

Comme
d
(
h−1 · y

)
h−1 · y − z

= dy log(h−1 · y − z) et dy log (Ph−1(y))

n’est autre que la forme ωh(y) de l’énoncé, les équations (E1) et (E2)
montrent (1).
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Montrons (2). On a vu (proposition 1.1) que |Fix(h)| = 2. Posons h(z) =
az+b
cz+d et Fix(h) = {p, at(p)}. On distinguera deux cas :

Si ∞ /∈ Fix(h), on a c 6= 0 et p, at(p) sont deux solutions distinctes de
cz2 + (d− a)z− b = 0. On en déduit que p+ at(p) = a−d

c et que p · at(p) = −b
c .

Par conséquent, on a :
1

z − p
+ 1
z − at(p) = 2z − (p+ at(p))

(z − p)(z − at(p)) = 2cz + d− a
cz2 + (d− a)z − b .

En développant 1
z−h·z + 1

z−h−1·z avec h(z) = az+b
cz+d , on trouve (2) pour ∞ /∈

Fix(h).
Si ∞ ∈ Fix(h), h est de la forme h(z) = ez + f avec e 6= 1. Un calcul

immédiat donne l’égalité souhaité. Ce qui montre le lemme. �

Montrons la platitude de la connexion :

Proposition 1.10. — La connexion formelle (CfG(n,P1
∗), ω) est une connexion

plate. La 1-forme ω vérifie : (d⊗̂idÛpn
)ω = ω ∧ ω = 0.

Démonstration. — Il suffit de montrer ces égalités sur U = (P1 \ {∞})n ∩
CfG(n,P1

∗). Les calculs seront effectués dans M(U)⊗̂Ûpn(G)(C), où M(U)
est l’algèbre des formes méromorphes sur U . On note Xw l’élément w⊗̂X ∈
M(U)⊗̂Ûpn(G)(C). Pour simplifier la preuve, on utilisera la convention

1
z−∞ = 0.

La relation (1) de la définition 1.2 donne :

ω =
∑
i∈[1,n]

∑
p∈P1\P1

∗

Xi(p)dzi
zi − p

+
∑
i<j

∑
g∈G

Xij(g)
[
dzi log(zi − g · zj) + dzj log(zj − g−1 · zi)

]
.

En posant g(z) = agz+bg
cgz+dg et en simplifiant l’expression ci-dessus, on trouve :

ω =
∑
i∈[1,n]

∑
p∈P1\P1

∗

Xi(p)dzi
zi − p

+
∑
i<j

∑
g∈G

Xij(g)d log(f ijg ),

où f ijg = zi(cgzj +dg)− (agzj + bg). Comme d ◦d = 0 on en déduit que dω = 0.
Passons à l’étude du terme ω∧ω. On note ωl la partie du membre de droite

de (8) contenant dzl. Alors ω est donnée par :

(9) ω =
n∑
l=1

ωl.

En utilisant les relations [Xij(g), Xkl(h)] = [Xi(q), Xkl(h)] = 0, Xij(g) =
Xji(g−1) et [xi(q), xk(p)] = 0 avec q /∈ O(p) (voir définition 1.2), on trouve
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pour i 6= k :
(10)

ωi ∧ ωk + ωk ∧ ωi =

A+B + C +D +
∑

j|j /∈{i,k}

(
E1
j + E2

j + E3
j

) dzi ∧ dzk,

où

A =
∑

p∈P1\P1
∗

∑
q∈O(p)

[Xi(p), Xk(q)]
(zi − p)(zk − q)

, B =
∑

p∈P1\P1
∗,g∈G

[Xi(p), Xki(g)]
(zi − p)(zk − g · zi)

C =
∑

p∈P1\P1
∗,g∈G

[Xik(g), Xk(p)]
(zi − g · zk)(zk − p)

, D =
∑
gh6=1

[Xik(g), Xki(h)]
(zi − g · zk)(zk − h · zi)

E1
j =

∑
g,h∈G

[Xik(g), Xkj(h)]
(zi − g · zk)(zk − h · zj)

, E2
j =

∑
g,h∈G

[Xij(g), Xki(h)]
(zi − g · zj)(zk − h · zi)

,

E3
j =

∑
g,h∈G

[Xij(g), Xkj(h)]
(zi − g · zj)(zk − h · zj)

.

On va décomposer le termes B,D et E2
j . En appliquant (1) du lemme 1.9,

on peut décomposer E2
j :

E2
j =

∑
g,h

[Xij(g), Xki(h)]
(zi − g · zj)(zk − hg · zj)

+ − [Xij(g), Xki(h)]
(zi − h−1 · zk)(zk − hg · zj)

+ [Xij(g), Xki(h)]
(zi − h−1 · zk)(zk − h · ∞) .

On note, dans l’ordre d’apparition, E21
j , E

22
j , E

23
j les termes de cette décompo-

sition. En réindexant les termes de E3
j , on trouve :

E3
j + E21

j =
∑
g,h∈G

[Xij(g), Xki(h) +Xkj(hg)]
(zi − g · zj)(zk − hg · zj)

.

De même, en réindexant les termes de E22
j et en utilisant la relation (1) de la

définition 1.2, on trouve :

E22
j + E1

j =
∑
g,h∈G

[
Xik(g), Xjk(h−1) +Xji(h−1g−1)

]
(zi − g · zk)(zk − h · zj)

.

Les relations (4) dans pn(G)(C) impliquent que E3
j + E21

j = E22
j + E1

j = 0.
Ainsi, on peut réduire l’équation (10) à :
(11)

ωi ∧ ωk + ωk ∧ ωi =

A+B + C +D +
∑

j|j /∈{i,k}

E23
j

 dzi ∧ dzk, pour i 6= k.
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Décomposons B. En appliquant (1) du lemme 1.9 à B, pour z = zi, y = zk et
z = p, on obtient :

B =
∑
p,g

[Xi(p), Xki(g)]
(zi − p)(zk − g · p)

+
∑
p,g

− [Xi(p), Xki(g)]
(zi − g−1 · zk)(zk − g · p)

+
∑
p,h

[Xi(p), Xki(g)]
(zi − g−1zk)(zk − g · ∞) .

On note comme avant B1, B2, B3 les termes de cette décomposition. Pour
chaque q ∈ O(p), on choisi un gq ∈ G tel que gq ·p = q et on note Gp l’ensemble
des gq. Ainsi, on peut écrire :

A+B1 =
∑
p

∑
g∈Gp

∑
h∈stab(p)

[Xi(p), Xk(g · p) +Xki(gh)]
(zi − p)(zk − g · p)

.

Ce terme est nul à cause de la relation (7) de la définition 1.2. Ce qui réduit
(11) à :
(12)

ωi ∧ ωk + ωk ∧ ωi =

B2 +B3 + C +D +
∑

j|j /∈{i,k}

E23
j

 dzi ∧ dzk, pour i 6= k.

Il nous reste à faire la décomposition de D. Le lemme 1.9 donne :

D =
∑
gh6=1

(w1(g, h)− w2(g, h)) +
∑
h,g

[Xik(g), Xki(h)]
(zi − h−1 · zk)(zk − h · ∞) ,

où

w1(g, h) = [Xik(g), Xki(h)]
(zi − g · zk)(zk − hg · zk)

et

w2(g, h) = [Xik(g), Xki(h)]
(zi − h−1 · zk)(zk − hg · zk) .

On pose
D1 =

∑
gh 6=1

(w1(g, h)− w2(g, h)) et D2 = D −D1.

Remarquons que la relation en degré un dans pn(G) implique que la somme

B3 +D2 +
∑

j|j /∈{i,k}

E23
j

est nulle. Donc :

(13) ωi ∧ ωk + ωk ∧ ωi = (B2 + C +D1)dzi ∧ dzk, pour i 6= k.
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On va montrer que B2 +C+D1 est nulle. On peut transformer D1, puis utiliser
la relation (1) dans pn(G) pour trouver :

D1 =
∑
g

∑
h 6=1

(
w1
(
g, (gh)−1)− w2

(
gh, g−1))

=
∑
g

1
zi − g · zk

∑
h 6=1

[Xik(g), Xik(gh)]
(

1
zk − h · zk

+ 1
zk − h−1 · zk

)
.

De plus, en utilisant la proposition 1.1 et (2) du lemme 1.9, D1 se simplifie :

D1 =
∑
g

1
zi − g · zk

∑
q∈Z

∑
h∈stab(q)\{1}

[Xik(g), Xik(gh)]

·
(

1
zk − h · zk

+ 1
zk − h−1 · zk

)
=
∑
g

1
zi − g · zk

∑
q∈Z

(
1

zk − q
+ 1
zk − at(q)

) ∑
h∈stab(q)\{1}

[Xik(g), Xik(gh)]

=
∑
g,p

∑
h∈stab(p)\{1}

[Xik(g), Xik(gh)]
(zi − g · zk)(zk − p)

.

Par une réindexation de B2 et l’utilisation de la relation (1) dans pn(G), on
trouve :

B2 + C +D1 =
∑
g,p

∑
h∈stab(p)

[Xik(g), Xk(p) +Xi(g · p) +Xik(gh)]
(zi − g · zk)(zk − p)

.

Le numérateur de la fraction est nul en vertu de la relation (6) dans pn(G). Ce
qui montre que B2 +C+D1 = 0. En injectant cette égalité dans (13), on trouve
que pour tout i 6= k, ωi ∧ωk +ωk ∧ωi = 0. Les éléments ωi ∧ωi étant nuls par
définition de ∧ et compte tenu de l’équation (9), on obtient que ω ∧ ω = 0, ce
qui termine la démonstration de la proposition. �

1.6. Représentation de monodromie. — On fixe q = (q1, · · · , qn) un n-uplet
appartenant à CfG(n,P1

∗). On a vu que la connexion (CfG(n,P1
∗), Ûpn(G)(C),

ω) est plate. De plus, ω est à valeurs dans les primitifs de Ûpn(G)(C). Donc
une représentation de monodromie associée à cette connexion est à valeurs dans
G(Ûpn(G)(C)), où G désigne le groupe des éléments diagonaux.

Soit r : C̃ −→ CfG(n,P1
∗) le revêtement universel de CfG(n,P1

∗), q̃ un point
de la fibre au-dessus de q. On notera ρq̃ : π1(CfG(n,P1

∗), q) −→ G(Ûpn(G)(C))
la représentation de monodromie obtenue associée à q̃.

Pour i 6= j ∈ [1, n] et g ∈ G et p ∈ P1 \ P1
∗, on définit γgij (resp. γpi )

comme un lacet dans P1, basé en qi et qui sépare la sphère en deux disques
ouverts, le premier contenant le point g · qj et le deuxième contenant les points
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différents de qi et g · qj (resp. différents de qi et p) appartenant à l’ensemble
( ∪
l∈[1,n]

G · ql) ∪ (P1 \ P1
∗). On oriente ces lacets comme en figure 10. On définit

alors le lacet xgij (resp. x
p
i ) de CfG(n,P1

∗) basé en q comme étant l’image de γgij
(resp. γpi ) sous l’application :

P1
∗ \ ∪

k|k 6=i
G · qk −→CfG(n,P1

∗)

x −→(q1, · · · , qi−1, x, qi+1, · · · , qn).

On va étudier l’image des classes des xgij et x
p
i par cette représentation.

•
qi

•

Figure 1 : Le lacet γgij (ou γ
p
i ), dans S2 (vue d’extérieur) ;

le point non indexé est g.qj (ou p)

Proposition 1.11. — Pour 1 ≤ i < j ≤ n, g ∈ G, k ∈ [1, n] et p ∈ P1 \ P1
∗,

on a les égalités suivantes :

ρq̃
(
xgij
)

= 1− 2iπXij(g) +Rij(g), ρq̃ (xpk) = 1− 2iπXk(p) +Rk(p),

où Rij(g) et Rk(p) ne comportent que des termes de degré supérieur où égale
à deux.

Démonstration. — On ne montrera l’égalité que pour xgij , l’autre cas étant
similaire. Pour calculer la monodromie, il faut s’intéresser à la solution F de
l’équation dF = r∗(ω) ∧ F , avec F (q̃) = 1 (cf. section 1.3). Soit x̃gij le chemin
de C̃ relevant le lacet xgij de point de départ q̃. Son point d’arrivée est xgij · q̃.

On a ρq̃(xgij) = F (xgij · q̃). Soit F = F0 +F1 + [deg ≥ 2] le développement de
F en composantes homogènes. On sait que F0 = 1 et on a dF1 = r∗(ω). On en

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



138 M. MAASSARANI

déduit :
ρq̃(xgij) = 1 + F1(xgij · q̃)− F1(q̃) + [deg ≥ 2]

= 1 +
∫
x̃g
ij

r∗(ω) + [deg ≥ 2]

= 1 +
∫
xg
ij

ω + [deg ≥ 2]

Pour finir, montrons que
∫
xg
ij
ω = −2iπXij(g). Soit

fi : P1
∗ \ ∪

k|k 6=i
G · qk −→ CfG(n,P1

∗)

l’application du paragraphe précédent la proposition. Comme xgij = fi(γgij), on
a : ∫

xg
ij

ω =
∫
γg
ij

f∗i (ω),

De plus,

f∗i (ω) =
∑

p∈P1\P1
∗

dz

z − p
⊗̂Xi(p) +

∑
j∈([1,n]\{i})

∑
g∈G

dz

z − g · qj
⊗̂Xij(g).

On obtient donc en appliquant le théorème des résidus que :∫
γg
ij

f∗i (ω) = −2iπXij(g).

Ce qui achève la preuve. �

2. Rappels de topologie différentielle

Cette partie est consacrée à des rappels de topologie différentielle. La notion
de méridien est introduite d’une manière adaptée dans 2.1. On termine 2.1 par
une propriété de conjugaison entre méridiens. Enfin, la dernière sous-section 2.2
de cette partie rappelle des propriétés sur les stabilisateurs de certaines actions
de groupes finis sur les surfaces.

Dans cette section les variétés sont sans bord sauf mention du contraire.

2.1. Groupes fondamentaux et méridiens. — Dans cette section, on définit (mo-
tivé par [11, 17]) une classe de lacets appelés méridiens et on compare les classes
d’homotopie de deux méridiens.

SoitM une variété différentielle connexe orientée et N une sous-variété deM
connexe orientée de codimension 2. On considère un disque D ⊂M transverse
à N tel que D ∩ N est réduit à un point p. Soit (v3, · · · , vdimM ) une base du
plan TpN tangent à N en p compatible avec l’orientation de N . On oriente D

tome 147 – 2019 – no 1



ESPACES DE CONFIGURATION TORDUS EN GENRE 0 139

grâce à une base (v1, v2) de TpD choisie de manière que (v1, · · · , vdimM ) soit
une base de TpM compatible avec l’orientation de M .

Définition 2.1. — Soit D comme dans le paragraphe précédent muni de
l’orientation ci-dessus. Un méridien m est un lacet m : [0, 1] −→ M qui est
une paramétrisation du bord de D respectant l’orientation. On dira que m est
un méridien au-dessus de p.

Proposition 2.2. — Soit m1 et m2 deux méridiens. Il existe un chemin β de
M \N tel que m1 est homotope (à extrémités fixées) à βm2β

−1 dans M \N .
En particulier, si m1 et m2 ont le même point de base ∗ ∈M \N , alors m1 et
m2 sont conjugués dans π1(M \N, ∗).

Démonstration. — D’abord, on vérifie que le lemme est vrai pourM = Rn×D
et N = Rn×{0} avec D un disque centré en zéro : il suffit de montrer que tout
méridien est conjugué par un chemin à un méridien à valeurs dans {0} × D.
Soit m un méridien paramétrant le bord de D1 comme dans la définition 2.1.
On note q l’unique point d’intersection (transverse) de D1 avec N . Notons π(2)

la projection naturelle de Rn × D sur {0} × D. L’intersection de D1 avec N
étant transverse, on sait qu’il existe un voisinage Vq de q dans D1 tel que π(2)

|Vq
est injective. En utilisant une isotopie I : D1 × [0, 1] → D1 qui fixe q et qui
envoie D1 dans Vq, puis l’isotopie :

(1− t)x+ tπ(2)(x), pour x ∈ Vq et t ∈ [0, 1] ,

on trouve que m est conjugué par un chemin à un méridien dans {0}×D. Ceci
montre le lemme dans le cas M = Rn ×D et N = Rn × {0}.

Passons au cas général. Soit π : V −→ N un fibré en disques qui est un
voisinage de N dans M et p un point de N . On peut trouver un voisinage Up
de p dans N , difféomorphe à RdimN et au-dessus duquel V est trivial. On a
π−1(Up) ' RdimN ×D et Up s’identifie à RdimN × {0}.

Tout méridien m au-dessus d’un point de Up est conjugué par un chemin
dans M \ N à un méridien de π−1(Up). En effet, il suffit de rétrécir le disque
contenantm par une isotopie. Par conséquent, compte tenu du casM = Rn×D
et N = Rn×{0}, tous les méridiens au-dessus des points de Up sont conjugués
les uns aux autres par des chemins dans M \N .

On a donc une relation d’équivalence R sur N donnée par :

xRy ⇐⇒ les méridiens au-dessus de x sont conjugués à ceux au-dessus de y,

dont les classes d’équivalence sont ouvertes. Comme N est connexe, on n’a
qu’une seule classe. Ceci montre la proposition. �

Corollaire 2.3. — Si γ est un chemin du point de base ∗1 de m1 vers celui
de m2 alors m1 et γm2γ

−1 sont conjugués dans π1(M \N, ∗1).
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2.2. Groupe fini agissant sur une surface. — Soit S une surface orientée, com-
pacte, sans bord, munie d’une action fidèle par difféomorphismes (conservant
l’orientation) d’un groupe fini H. On note S∗ l’ensemble des points de S à
stabilisateur trivial pour l’action de H sur S. Comme H est fini et préserve
l’ensemble S \ S∗ est fini (voir le dernier paragraphe de cette sous-section).

Proposition 2.4. — Soit p un point de S. Le stabilisateur stab(p) de p est
un sous-groupe cyclique de H. De plus, il existe un disque Dp autour de p tel
que :

1. Le groupe stab(p) agit sur Dp, cette action est équivalente à l’action par
multiplication de µN sur C, où N = |stab(p)|.

2. Dp ∩ (H · q) = stab(p) · q, pour q ∈ Dp,

Démonstration. — Soit m une métrique riemannienne H-invariante sur S (on
peut en obtenir en faisant la moyenne d’une métrique quelconque). Le groupe
stab(p) agit naturellement par isométries sur TpS ; on a donc un morphisme
Tp : stab(p) −→ O(TpS), injectif d’après la proposition 3.11 de [14]. Plus
précisément, stab(p) est inclus dans SO(TpS) ' S1 carH préserve l’orientation.
Ainsi, stab(p) est isomorphe à µN avec N = |stab(p)|. De plus, pour tout
disque Dr ⊂ TpS centré en zéro de rayon r inférieur au rayon d’injectivité
de l’application exponentielle Expp : TpS −→ S, l’exponentielle établit un
difféomorphisme entre Dr et Dp(r) = Expp(Dr). De plus, Expp vérifie :

∀h ∈ stab(p), Expp ◦ Tp(h) = h ◦ Expp.

En effet, si γ est la géodésique d’origine p et de vecteur v ∈ TpS, alors h ◦ γ
est la géodésique de vecteur Tp(h)(v) d’origine h(p) = p. On voit donc que
stab(p) agit sur Dp(r) et que cette action est équivalente à celle de µN par
multiplication sur Dr. Ce qui montre (1).

Montrons que certains des disques Dp(r) satisfont également l’assertion (2).
Si le contraire était vrai, on aurait pour tout k ≥ 1, existence de qk ∈ Dp( 1

k ) et
gk ∈ H \ stab(p) tels que gk(qk) ∈ Dp( 1

k ). Comme H est fini, on peut extraire
une suite (qki)i≥0 de (qk)k≥0 telle que (gki)i≥0 est constante égale à un certain
g ∈ H \ stab(p). Comme (qki)i≥0 tend vers p, en passant à la limite, on trouve
la contradiction p = g(p). �

En particulier, pour p un point à stabilisateur trivial, Dp ne contient pas
deux éléments d’une même orbite.

Remarquons que la première assertion de la proposition prouve que les points
fixés par un élément non trivial de H sont isolés. De plus, l’ensemble des points
fixes d’un élément de H est fermé. Comme H est fini et S est compact, l’en-
semble S \ S∗ est fini.
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3. Étude de groupes fondamentaux

La présente section a pour but de donner des générateurs de π1(CfH(n, S∗))
et des relations entres ces générateurs, pour S et H comme dans la section 2.
Pour ce faire, on définit dans la sous-section 3.1 des lacets qui engendrent
π1(CfH(n, S∗)). Une identification de ces générateurs à des méridiens (sous-
section 3.2), nous permet de décrire l’action deHn sur les classes de conjugaison
de π1(CfH(n, S∗)) (sous-section 3.3). Enfin, dans la sous-section 3.4, on établit
des relations quadratiques dans π1(CfH(n, S∗)).

3.1. Générateurs de π1(CfH(n, S∗), q). — Dans cette partie, on construit
une famille de générateurs de π1(CfH(n, S∗)). En particulier, on trouve une
famille génératrice de l’espace de configuration d’orbites CfG(n,P1

∗) introduit
dans la section 1.

Fixons un point q = (q1, · · · , qn) ∈ CfH(n, S∗). Pour définir des lacets, on
voit S comme une surface dans R3 de la manière usuelle. On oriente S en
prenant la normale vers l’extérieur.

Choisissons i ∈ [1, n] et posons Ei = (S \S∗)∪ (∪j 6=iH · qj). Pour p ∈ Ei, on
considère un disque fermé D̄ contenant qi dans son bord et p dans son intérieur
tel que D̄ ∩ Ei = {qi, p}. On note γi(p) le lacet basé en qi paramétrant le
bord de D̄ dans le sens inverse à celui induit par la normale. Si S est de genre
g(S) > 0, on considère les lacets γ1

i · · · γ
2g(S)
i , générateurs usuels de π1(S, qi)

évitant les points de Ei. On suppose que les lacets γi(p) (pour p ∈ Ei) et
γli (pour l ∈ [1, 2g(S)]) sont choisis de façon à ce qu’ils engendrent le groupe
fondamental de S∗ \ (∪j|j 6=iH · qj).

Définition 3.1. — Pour i ∈ [1, n], j ∈ [i + 1, n], m ∈ [1, 2g(S)], h ∈ H et
q ∈ S \ S∗, les lacets xij(h), xi(q) et xmi de CfH(n, S∗) sont définis par :
• xij(h)(t) = (qn−k+1, · · · , qi−1, γi(h · qj)(t), qi+1, · · · , qn), pour tout t ∈

[0, 1] ;
• xi(q)(t) = (qn−k+1, · · · , qi−1, γi(q)(t), qi+1, · · · , qn), pour tout t ∈ [0, 1] ;
• xmi (t) = (qn−k+1, · · · , qi−1, γ

m
i (t), qi+1, · · · , qn), pour tout t ∈ [0, 1] ;

où les γi(p) et les γmi ont été définis dans le paragraphe précédent.

Remarquons que ceci définit des lacets à conjugaison près dans
π1(CfH(n, S∗)). On fixe un choix de tels lacets pour la suite. Pour montrer
que les classes des lacets ainsi définis engendrent π1(CfH(n, S∗)), on va utiliser
le résultat suivant :

Théorème 3.2 ([5]). — Si M est une variété sans bord munie d’une action
libre d’un groupe fini H, alors, pour n ≥ 2, la projection pn : CfH(n,M) −→
CfH(n−1,M) sur les n−1 dernières composantes est une fibration localement
triviale.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



142 M. MAASSARANI

On peut trouver une preuve de ce théorème dans [4] (Théorème 2.1.2). Vu
les hypothèses imposées sur les couples (S,H), ce théorème s’applique aux
CfH(n, S∗).

Proposition 3.3. — Le groupe π1(CfH(n, S∗)) est engendré par les classes
des xij(h) (1 ≤ i < j ≤ n et h ∈ H), des xi(q) (i ∈ [1, n] et q ∈ S \ S∗) et des
xmi (i ∈ [1, n] et m ∈ [1, 2g(S)]).

Démonstration. — On va montrer la proposition par récurrence. La proposi-
tion est vraie pour n = 1. Supposons qu’elle soit vraie au rang n−1. Considérons
la fibration :

(Fibn, qn) −→ (CfH(n, S∗), qn) pn−→ (CfH(n− 1, S∗), qn−1),

où q
n

= (q1, · · · , qn), q
n−1 = (q2, · · · , qn) et Fibn est la fibre au-dessus de

q
n−1 . Observons la suite exacte de cette fibration :

· · · −→ π1(Fibn, qn) −→ π1(CfH(n, S∗), qn)
−→ π1(CfH(n− 1, S∗), qn−1) −→ 1 −→ · · · .

Soit xij(h), xi(q) et xmi les lacets de CfH(n, S∗) définis plus haut. Les images
de ces lacets par pn sont des lacets analogues de CfH(n−1, S), dont on sait par
hypothèse de récurrence qu’ils engendrent le groupe. Il s’ensuit que les classes
des :

pn(xij(h)), pn(xi(q)) et celles des pn(xmi ),
pour i ∈ [2, n], j ∈ [i+ 1, n], h ∈ H, q ∈ S \ S∗ et m ∈ [1, 2g(S)], engendrent le
groupe π1(CfH(n− 1, S∗), qn−1).

Enfin, on sait que les x1,j(h), x1(q) et les xm1 , pour j ∈ [2, n], h ∈ H, q ∈ S\S∗
et m ∈ [1, 2g(S)], engendrent le groupe fondamental de Fibn ' {p ∈ S∗|p /∈
H · qj , j = 2, · · · , n}. La proposition est alors une conséquence du résultat
suivant : Si K −→ G −→ H −→ 1 est une suite exacte de groupes, FK est une
famille génératrice deK et FG est une famille deG telle que Im(FG ⊂ G −→ H)
est génératrice de H, alors F ′K ∪ FG (F ′K est l’image de FK dans G) est une
famille génératrice de G. �

Pour S = P1 et H = G, on obtient :

Proposition 3.4. — Le groupe π1(CfG(n,P1
∗)) est engendré par les classes

des xij(g) (1 ≤ i < j ≤ n et g ∈ G) et des xi(q) (i ∈ [1, n] et q ∈ P1 \ P1
∗).

Remarque 3.5. — Si le point q utilisé ici est le même que celui de la sous-
section 1.6, alors les lacets xij(g) et xi(q) sont respectivement conjugués dans
π1(CfG(n,P1

∗)) à xgij et xqi de 1.6.
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3.2. Les tresses xij(g) en tant que méridiens. — Dans ce paragraphe, on iden-
tifie les lacets introduits dans la sous-section 3.1 à des méridiens pour des
variétés liées à CfH(n, S∗).

Pour h ∈ H, k ∈ [1, n], i, j ∈ [1, n] avec i < j, et q ∈ S \ S∗, on pose
D(i, j, h) := {(y1, · · · , yn) ∈ Sn|yi = hyj} et D(k, q) := {(y1, · · · , yn) ∈
Sn|yk = q}. Pour α ∈ E := {(i, j, h)|1 ≤ i < j ≤ n, h ∈ H} ∪ ([1, n]× (S \S∗)),
on définit les deux sous-variétés de Sn :

M(α) = Sn \
(

∪
β∈E\{α}

D(β)
)

et N(α) = D(α) ∩M(α).

N(α) est une sous-variété de codimension réelle deux dans M(α) et
CfH(n, S∗) est le complémentaire de N(α) dans M(α). De plus, M(α) et N(α)
sont connexes.

Remarquons que xij(h) est le bord d’un disque deM(i, j, h) coupantN(i, j, h)
en un unique point q′ :

q′ = (q1, · · · , qi−1, h · qj , qi+1, · · · , qn).

Cette intersection est transverse. On oriente M(i, j, h) et N(i, j, h) d’une ma-
nière que xij(h) devient un méridien au sens de la définition 2.1. On fait la
même chose pour que xk(q) soit un méridien au sens de 2.1 (pourM = M(k, q)
et N = N(k, q)).

Définition 3.6. — Soit α comme ci-dessus. Un lacet m de CfH(n, S∗) est dit
méridien pour α si m satisfait la définition 2.1, pour M = M(α) et N = N(α)
munies de l’orientation ci-dessus.

Proposition 3.7. — Tout méridien pour (i, j, h) est conjugué par un chemin
au lacet xij(h) et tout méridien pour (k, q) est conjugué par un chemin à xk(q).

Démonstration. — Cette proposition est une conséquence de la proposi-
tion 2.2. �

3.3. Action deHn sur les classes de conjugaison de π1(CfH(n, S∗)). — Dans
cette sous-section, on décrit l’action de Hn sur les classes de conjugaison des
xij(h) et des xk(q) de π1(CfH(n, S∗)) donnés dans la proposition 3.4.

On a vu que Hn agit naturellement sur CfH(n, S∗) et on avait choisi un
point de base q de CfH(n, S∗). On considère l’ensemble des couples (h,C) où
h ∈ Hn et C est une classe d’homotopie d’un chemin dans CfH(n, S∗) de
point de départ q et de point d’arrivée h · q. On munit cet ensemble de la
multiplication : (h,C) · (h′, C ′) = (hh′, C(h ◦ C ′)), où C(h ◦ C ′) est le résultat
de la concaténation des lacets C et (h ◦ C ′) (h ◦ C ′ désignant la composée du
lacet C ′ à valeurs dans CfH(n, S∗) avec le difféomorphisme de CfH(n, S∗) induit
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par h). On obtient ainsi le groupe πorb
1 (CfH(n, S∗)/Hn, q̄) (qui est exactement

le groupe fondamental de CfH(n, S∗)/Hn) qui s’insère dans la suite exacte :

(14) 1 −→ π1(CfH(n, S∗), q)
ϕ−→ πorb

1 (CfH(n, S∗)/Hn, q̄) θ−→ Hn −→ 1.

où ϕ(γ) = (1, γ) et θ(h,C) = h. Toute section ensembliste σ de cette suite
donne une application ensembliste :

(15) fσ : Hn−→Aut
(
π1
(
CfH(n, S∗), q

))
,

qui à h associe la conjugaison par σ(h).
Pour i ∈ [1, n], hi désignera l’image de h ∈ H par l’inclusion canonique de

H dans Hn qui envoie H en i-ème position. La relation de conjugaison dans
π1(CfH(n, S∗), q) sera notée ∼.

Proposition 3.8. — On a :

fσ(hr)(xij(g)) ∼

 xij(hg) si r = i
xij(gh−1) si r = j
xij(g) sinon

, fσ(hr)(xk(q)) ∼
{
xk(h · q) si r = k
xk(q) sinon

(16)

pour 1 ≤ i < j ≤ n, k, r ∈ [1, n], g, h ∈ H et q ∈ S \ S∗.

Démonstration. — Soit σ, r, i, j, g, h comme dans l’énoncé. On sait que σ(hr) =
(hr, Cr) avec Cr une classe d’un chemin reliant q à hr · q. Par définition, on a :

(17) fσ(hr)(xij(g)) = σ(hr)(1, xij(g))σ(hr)−1 =
(
1, Cr(hr ◦ xij(g))C−1

r

)
.

Le membre de droite s’identifie à Cr(hr ◦ xij(g))C−1
r dans π1(CfH(n, S∗), q).

Posons h′(r) = hg si r = i, h′(r) = gh−1 si r = j et h′(r) = g sinon.
Comme H est un difféomorphisme de S conservant l’orientation et comme

hr(N(i, j, g) = N(i, j, h′(r)), on trouve que hr ◦ xij(g) est un méridien pour
(i, j, h′(r)). Donc, d’après le corollaire 2.3 fσ(hr)(xij(g)) est un conjugué de
xij(h′(r)). Ce qui montre l’égalité de gauche. De façon similaire, on démontre
l’égalité de droite. �

Enfin, l’application fσ induit une action de Hn sur l’ensemble des classes de
conjugaison de π1(CfH(n, S∗), q), autrement dit :

(18) fσ(h)(a) ∼ fσ(h)(a′), si a ∼ a′.

Cette action est indépendante de σ.

3.4. Relations dans π1(CfH(n, S∗), q). — Dans cette partie on donne des
relations entre les xij(g), xk(q) : une première famille générale, et une deuxième
famille valable dans le cas où S = S2.

Considérons l’espace CfµN (2,C×) où le groupe µN est le groupe des racines
N -ème de l’unité agissant par multiplication sur C :
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Lemme 3.9. — Pour k ∈ [1, N − 1] et j ∈ [1, 2], il existe un x′12(k) conjugué à

x12(e 2ikπ
N ) et x′j(0) conjugué à xj(0) dans π1(CfµN (2,C×), (2, 1)) tel que :

1. les deux lacets β := x′12(1)x′12(2) · · ·x′12(N−1)x′1(0) et x′2(0) commutent

à homotopie près.

2. les deux lacets α := x′2(0)x′12(1)x′12(2) · · ·x′12(N−1)x′1(0) et x′12(1) com-

mutent à homotopie près.

Démonstration. — On choisit des x′12(k) et les x′i(0) tels que β soit égale à
(γ1, 1) et x′2(0) soit égale à (2, γ2), où γ1, γ2 sont représentés dans la figure 3 :

>

>

•0 •1 •2

Figure 2 : Les lacets γ1 et γ2

Les lacets β et x′2(0) ainsi choisis commutent dans π1(CfµN (2,C×), (2, 1)). En
effet, il sont à image dans Im(γ1)× Im(γ2) ⊂ CfµN (2,C×). Ce qui montre (1).
Montrons (2). Soit H0 : [0, 1] × [0, 2] −→ CfµN (2,C×) une homotopie entre
x12(1)∗ et ∗x12(1), où ∗ est le lacet constant (voir figure 2).

•2•1

• •

•
1

•
2

•
1

•
2

•

•1 •2

•

t = 0

t = 2

t = 1

Figure 3 : Graphes en fonction du temps de H0(0, ·) (gauche)
et de H0(1, ·) (droite)

L’homotopie tordue H : [0, 1]× [0, 2] −→ CfµN (2,C×) définie par :

H(s, t) = e−2iπ(s+t)I[1,2](s+t)H0(s, t),

où I[1,2] est l’indicatrice de l’intervalle [1, 2], est une homotopie entre H(0, ·) =
x12(1)α′ et H(1, ·) = α′x12(1), où α′ est défini par α′(t) = (2e−2iπt, e−2iπt)
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pour t ∈ [0, 1]. Or, α′ est homotope à un lacet du même type que α. Ce qui
montre (2). �

Remarque 3.10. — Les relations du lemme 3.9 ressemblent aux relations :

(X02x12(0) · · ·x12(N−1)X01, x12(0)) = (X02x12(0) · · ·x12(N−1)X01, X02) = 1

de la proposition 1.1 de [7]. Ce type de relations peut aussi apparaître en genre
supérieur dans beaucoup de cas où l’on a une courbe simple stable de S pour
l’action de H. Par exemple, quand on fait agir le groupe µN sur le tore S1 ×
S1, on retrouve les relations (23) et (24) dans lesquelles xi(g · q) et xj(p)
sont remplacés par des lacets (des xmi et xmj bien choisis) représentés par des
courbes simples stables.

On emploie dans la proposition qui suit l’expression ”(a1| · · · |ar , b1| · · · |bs)∼
= 1” pour dire que pour ai, bj ∈ π1(CfH(n, S∗), q) (i ∈ [1, r], j ∈ [1, s]), ils
existent a′i ∼ ai, b′j ∼ bj (i, j dans le même ensemble) tels que :

(a′1 · · · a′r, b′1 · · · b′s) = 1,

où (a, b) = aba−1b−1.

Proposition 3.11. — On a les relations suivantes dans le groupe
π1(CfH(n, S∗), q) :

(19) (xij(g), xkl(h))∼ = (xil(g), xjk(h))∼ = (xik(g), xjl(h))∼ = 1,

pour 1 ≤ i < j < k < l ≤ n et g, h ∈ H,

(xij(g), xik(gh)|xjk(h))∼ = (xjk(h), xij(g)|xik(gh))∼

= (xik(gh), xjk(h)|xij(g))∼ = 1,(20)

(xi(p), xjk(g))∼ = (xj(p), xik(g))∼ = (xk(p), xij(g))∼ = 1,(21)

pour 1 ≤ i < j < k ≤ n, g, h ∈ H et p ∈ S \ S∗,

(22) (xi(p), xk(q))∼ = 1,

pour 1 ≤ i < k ≤ n, p et q dans S \ S∗ avec q /∈ O(p).
(23)(

xj(p)|xij
(
gh0) |xij (gh1) | · · · |xij (gh|stab(p)|−1

)
|xi (g · p) , xij(g)

)∼
= 1,

(24)
(
xij
(
gh0) ∣∣xij (gh1)∣∣ · · · ∣∣∣xij (gh|stab(p)|−1

)∣∣∣xi(g · p), xj(p))∼ = 1,

pour 1 ≤ i < j ≤ n, g ∈ H, p ∈ S \ S∗ et h un générateur de stab(p),

(25) (Xui1
· · ·Xuir

) = 1,
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pour tout i ∈ [1, n], S = S2, ui1, · · · , uir est une énumération des éléments de
{(k, l, g) ∈ [1, n]2 × G|k < l, i ∈ {k, l}} ∪ (P1 \ P1

∗), Xuiα
est un conjugué de

xkl(g) si uiα = (k, l, g) ou un conjugué de xi(q) si uiα = q ∈ (P1 \ P1
∗).

Démonstration. — On a vu que les xij(g) et les xi(q) sont des méridiens
pour certaines variétés. Donc, pour montrer la proposition, il suffit de montrer
chacune des relations pour un q arbitraire (voir corollaire 2.3).

Supposons que les composantes de q sont concentrées dans un disque ne
contenant pas deux éléments d’une même orbite pour l’action de H. Vu l’hypo-
thèse imposée à q, les xij(1) vérifient à conjugaison près les relations de tresses
pures (voir [1] pour la définition des relations de tresses pures), c’est à dire :

(xij(1), xkl(1))∼ = (xil(1), xjk(1))∼ = (xik(1), xjl(1))∼ = 1,

(xij(1), xik(1)|xjk(1))∼ = (xjk(1), xij(1)|xik(1))∼

= (xik(1), xjk(1)|xij(1))∼ = 1,

dans π1(CfH(n, S∗), q). Pour montrer (19) et (20), il suffit de calculer à l’aide
de la proposition 3.8 l’image du premier commutateur par fσ(gihk), l’image du
deuxième et du troisième par fσ(gihj) et celle des trois derniers par fσ(gih−1

k ).
On va montrer la relation (xi(p), xjk(g))∼ = 1 de (21), les deux autres

relations de la même équation étant similaires. On commence par prendre un
petit disque D autour de p, puis on choisit q tel que qi soit dans D et les qr
soient à l’extérieur de H · D (r 6= i). Ensuite, on choisit un x′jk(g) (conjugué
de xjk(g)) dont les r-ième composantes (r 6= i) ne coupent pas H ·D, puis un
conjugué x′i(p) de xi(p) dont la i-ème composante est à image dans D \ {p}.
Les lacets x′i(p) et x′jk(g) ainsi obtenus commutent.

Soit p et q dans S \ S∗ avec q /∈ O(p). Compte tenu de l’hypothèse sur p
et q, on peut trouver deux disques Dp et Dq centrés respectivement en p et q
tels que Dp ∩ (H ·Dq) = ∅. Choisissons q de façon à ce que qi soit dans Dp, qk
soit dans Dq et les autres composantes soient à l’exterieur de H · (Dp ∪ Dq).
Enfin, prenons des γi(p), γk(q) (les lacets qui permettent de définir xi(p) et
xk(q)), tels que Im(γi(p)) ⊂ Dp et Im(γk(q)) ⊂ Dq. Les lacets xi(p) et xk(q)
ainsi choisis commutent. Ce qui prouve (22).

Démontrons (23) et (24). Soit Dp un disque autour de p comme dans la
proposition 2.4. Notons w : C '−→ Dp et w′ : µN

'−→ stab(p) les identifications
qui établissent l’équivalence entre l’action de µN sur C et celle de stab(p) sur
Dp. Choisissons un q tel que qi = w(2), qj = w(1) et qr /∈ ∪

h∈H
h · Dp, pour

r 6= i, j. En utilisant (2) de la proposition 2.4, on voit qu’on a une inclusion :

wij : CfµN (2,C)→ CfH(n, S∗)
(x, y) 7→ (q1, · · · , qi−1, w(x), qi+1, · · · , qj−1, w(y), qj+1, · · · , qn).
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Remarquons que wij ◦ x12(ζ), pour ζ ∈ µN est un méridien pour (i, j, w′(ζ)).
Donc, (1) et (2) du lemme 3.9 donnent après application de wij :(
xj(p)

∣∣∣xij(1)
∣∣∣xij (w′ (e 2iπ

N

))∣∣∣ · · · ∣∣∣xij (w′ (e 2iπ(N−1)
N

))∣∣∣xi(p), xij(1)
)∼

= 1,(
xij(1)

∣∣∣xij (w′ (e 2iπ
N

))∣∣∣ · · · ∣∣∣xij (w′ (e 2iπ(N−1)
N

))∣∣∣xi(p), xj(p))∼ = 1.

Ce qui montre (23) et (24) pour g = 1. Pour obtenir (23) et (24) pour g
quelconque, il suffit de calculer l’image par fσ(gi) des deux dernières relations
obtenues.

Pour montrer la dernière relation, observons l’ensemble :

Fib(i) = CfH(n, S2
∗) ∩

(
{q1} × · · · × {qi−1} × S2 × {qi+1} × · · · × {qn}

)
.

C’est S2
∗ privée de l’union Ei := ∪k 6=i(H · qk). Donc, un lacet contractile de

Fib(i) s’écrit comme un produit des lacets αi(p), pour p parcourant Ei et S2\S2
∗ ,

αi(p) est basé en qi et fait un tour autour de p en évitant les autres points de
Ei. Soit p de la forme p = h · qj pour un certain h ∈ H et un j ∈ [1, n] \ {i}.
Si j > i, le lacet αi(p) n’est qu’un conjugué de xij(h). Sinon, αi(p) est un
méridien pour (j, i, h−1) et donc il est conjugué à xji(h−1). Ce qui montre la
dernière relation. �

4. Rappels sur l’algèbre de Lie de Malcev d’un groupe

On rappelle des notions reliées à l’algèbre de Lie de Malcev d’un groupe. Ce
matériel provient de [16] et [15].

Soit k un corps de caractéristique nulle et A une algèbre de Hopf com-
plète sur k. Par définition, A est munie d’une filtration décroissante {FkA}k≥0
multiplicative de sous-espaces vectoriels, telle que F0A = A, F1A est l’idéal
d’augmentation et la diagonale ∆ : A → A⊗̂A est un morphisme d’algèbres
filtrés. Cette filtration induit sur l’ensemble des éléments primitifs de A une
filtration d’algèbre de Lie :

(26) FkP(A) = P(A) ∩ FkA, pour k ≥ 1,

c’est-à-dire [FmP(A), FlP(A)] ⊂ Fm+lP(A), pour m, l ≥ 1. En particulier,
le k-ième terme de la filtration centrale descendante de P(A) est inclus dans
FkP(A).

De plus, on a les bijections inverses G(A)
log
�
exp
P(A), où log et exp sont les

séries usuelles. La multiplication sur G(A) est donnée par :

exp(x) exp(y) = exp(h(x, y)), pour x, y ∈ P(A)

où h(x, y) = x+ y + 1
2 [x, y] + h≥3(x, y) avec h≥3(x, y) ∈ F3P(A) est la série de

Baker-Campbell-Hausdorff.
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On considérera les complétions de deux types d’algèbres de Hopf relative-
ment aux puissances de leur idéal d’augmentation : l’algèbre k[Γ] d’un groupe
Γ ou l’algèbre enveloppante U(g) d’une l’algèbre de Lie g. On notera k[Γ]̂ et
Û(g) ces complétés.

La k-algèbre de Lie de Malcev du groupe Γ est l’algèbre de Lie Lie(Γ(k))
formée des primitifs de k[Γ]̂ , munie de la filtration {FkLie(Γ(k))}k≥1 comme
dans (26). C’est une algèbre de Lie complète :

Lie(Γ(k)) = lim
←−

Lie(Γ(k))/FkLie(Γ(k)).

On note grLie(Γ(k)) le gradué associé de Lie(Γ(k)) pour la filtration
{FkLie(Γ(k))}k≥1. L’algèbre de Lie :

(27) grLie(Γ(k)) =
⊕

k>0
grkLie(Γ(k))

est engendrée par sa composante de degré un gr1Lie(Γ(k)). Soit I l’idéal d’aug-
mentation de k[Γ]. On a la suite d’isomorphismes :

(28) gr1Lie(Γ(k)) ∼−→ I/I2 ∼−→ Γab ⊗Z k

qui pour x ∈ Γ, identifient la classe de log(x) dans gr1Lie(Γ(k)) à [x]⊗ 1 dans
Γab ⊗Z k où [x] est la classe de x dans l’abélianisé Γab de Γ.

5. L’isomorphisme entre Lie(Γn(C)), ĝrLie(Γn(C)) et p̂n(G)(C)

Dans cette section on établit l’isomorphisme entre les trois algèbres de Lie
Lie(Γn(C)), ĝrLie(Γn(C)) et p̂n(G)(C). En s’appuyant sur les relations dans
Γn := π1(CfG(n,P1

∗)) obtenues dans la section 3, on construit (sous-section 5.1)
un morphisme surjectif φk de p̂n(G)(k) dans ĝrLie(Γn(k)), pour k un corps de
caractéristique nulle (ces objets sont définis dans la sous-section 1.2 et la sec-
tion 4). Dans la sous-section 5.2, on utilise la représentation de monodromie de
la section 1 pour obtenir un morphisme de Lie surjectif L2iπ,ρ : Lie(Γn(C))→
p̂n(G)(C). Enfin, dans la sous-section 5.3, on utilise ces deux morphismes pour
montrer l’isomorphisme annoncé.

Pour alléger les notations, on utilisera parfois (dans les démonstrations) pn
pour désigner pn(G)(k) et on omettra k dans Lie(Γn(k)). La classe de x ∈
FkLie(Γn(k)) dans grLie(Γn(k)) sera notée [x]k. On notera y l’image de y ∈ Γ
dans k[Γ]̂ .

5.1. Construction d’un morphisme p̂n(G)(k) → ĝrLie(Γn(k)). — Dans
cette sous-section on construit le morphisme annoncé, pour k un corps de ca-
ractéristique nulle. On commence par démontrer que pn(G) admet une variante
de la présentation de la définition 1.2 :
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Lemme 5.1. — L’algèbre de Lie tn(G) engendrée par les Xij(g) et Xk(q), pour
1 ≤ i < j ≤ n, g ∈ G, k ∈ [1, n] et q ∈ P1 \ P1

∗, soumis aux relations :

(29)
∑

q∈P1\P1
∗

Xi(q) +
∑
g∈G

∑
j|j>i

Xij(g) +
∑
j|j<i

Xji(g)

 = 0,

pour i ∈ [1, n],

(30)
[
Xij(g), Xkl(h)

]
=
[
Xil(g), Xjk(h)

]
=
[
Xik(g), Xjl(h)

]
= 0,

pour 1 ≤ i < j < k < l ≤ n et g, h ∈ G,[
Xij(g), Xik(gh) +Xjk(h)

]
=
[
Xjk(h), Xij(g) +Xik(gh)

]
=
[
Xik(gh), Xjk(h) +Xij(g)

]
= 0,[

Xi(p), Xjk(g)
]

=
[
Xj(p), Xik(g)

]
=
[
Xk(p), Xij(g)

]
= 0,(31)

pour 1 ≤ i < j < k ≤ n et g, h ∈ G,

(32)
[
Xi(p), Xj(q)

]
= 0,

(33)

Xij(g), Xj(p) +Xi(g · p) +
∑

h∈stab(p)

Xij(gh)

 = 0,

(34)

Xj(p), Xi(g · p) +
∑

h∈stab(p)

Xij(gh)

 = 0,

pour i, j ∈ [1, n] avec i < j, g ∈ G, p ∈ P1 \ P1
∗ et q ∈ (P1 \ P1

∗) \ O(p),
est isomorphe à pn(G). L’isomorphisme est donné par Xij(g) 7→ Xij(g) (pour
i < j et g ∈ G) et Xk(q) 7→ Xk(q) (pour k ∈ [1, n] et q ∈ P1 \ P1

∗).

Démonstration. — On adjoint à tn(G) les élémentsXji(g) pour 1 ≤ i < j ≤ n
et g ∈ G et on impose la relation :

(35) Xij(g) = Xji(g−1).

Cela ne change pas tn(G). En utilisant la nouvelle relation Xij(g) = Xji(g−1),
on vérifie qu’on peut transformer les relations (29) jusqu’à (33) de ce lemme
en les relations (2) jusqu’à (6) de la définition 1.2 via l’identification Xab(g) 7→
Xab(g), Xc(q) 7→ Xc(q) (pour a, b, c ∈ [1, n], avec a 6= b).

On s’intéresse à la relation (34) (satisfaite pour i < j) qui est similaire à (7)
(satisfaite pour i 6= j). L’antisymétrie du crochet donne :[

Xj(p), X
]

+
[
Xi(g · p), X

]
+

∑
h′∈stab(p)

[
Xij(gh′), X

]
= 0,
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pour
X = Xj(p) +Xi(g · p) +

∑
h∈stab(p)

Xij(gh).

Or, le crochet
[
Xj(p), X

]
est nul d’après (34) et

[
Xij(gh′), X

]
est nul d’après

(33). D’où :Xi(g · p), Xj(p) +Xi(g · p) +
∑

h∈stab(p)

Xij(gh)

 = 0.

En appliquant Xij(g) = Xji(g−1) et en réindexant, on trouve :Xi(q), Xj(g−1 · q) +
∑

h∈stab(q)

Xji(g−1h′)

 = 0

où q = g · p. Donc la relation (7) est aussi satisfaite dans tn(G) (via l’identifi-
cation précédente). Ce qui montre le lemme. �

Proposition 5.2. — On a un morphisme d’algèbres de Lie filtrées :

φk : p̂n(G)(k) −→ ĝrLie(Γn(k)),

donné par

φ(Xij(g)) = [log(xij(g))]1 et φ(Xk(p)) = [log(xk(p))]1,

pour 1 ≤ i < j ≤ n, k ∈ [1, n], g ∈ G et p ∈ P1 \ P1
∗, où les complétions et les

filtrations sont induites par le degré.

Démonstration. — Posons Xij(g) = [log(xij(g))]1 et Xi(p) = [log(xi(p))]1.
La formule de Campbell-Baker-Hausdorff montre que pour x, y ∈ G(k[Γn ]̂ ) et
x′, y′ des conjugués respectifs de x et y dans G(k[Γn ]̂ ), on a :

(36) [[log(x)]1 , [log(y)]1] ∈ [log (x′, y′)]2 + F3Lie(Γn(k)).

En effet, FiLie(Γn(k)) contient le i-ème terme de la suite centrale descen-
dante de Lie(Γn(k)). En appliquant cette égalité aux relations de la proposi-
tion 3.11, on trouve que les Xij(g) et Xk(q) ainsi définit satisfont les relations
du lemme 5.1 (dans gr2Lie(Γn)). Ce qui donne le morphisme de la proposi-
tion. �

5.2. Un morphisme de Lie(Γn(C)) dans p̂n(G)(C). — On va construire un
morphisme surjectif d’algèbres de Lie filtrées Lie(Γn(C)) −→ p̂n(G)(C).

Lemme 5.3. — On a un isomorphisme entre P(Û(pn(G)(k))) et p̂n(G)(k) qui
fait correspondre la filtration (26) de P(Û(pn(G)(k))) à la filtration induite par
le degré de p̂n(G)(k).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



152 M. MAASSARANI

Proposition 5.4. — On a un morphisme surjectif d’algèbres de Lie filtrées
L2iπ,ρ : Lie(Γn(C)) → p̂n(C) , vérifiant pour i < j et g ∈ G, k ∈ [1, n] et
q ∈ P1 \ P1

∗ :

L2iπ,ρ(log(xij(g))) = Xij(g))+Rij(g), L2iπ,ρ(log(xk(g))) = Xk(q)+Rk(q),

où Rij(g) et Rk(q) appartiennent à F2Lie(Γn(C)).

Démonstration. — Dans la section 1.6 on a construit un anti-morphisme ρq̃ :
Γn −→ G(Ûpn). On définit le morphisme ρ̃ opposé de ρq̃, par ρ̃(x) = ρq̃(x)−1.
Le morphisme ainsi obtenu s’étend en un morphisme compatible avec les struc-
tures de Hopf f : C[Γn] −→ Ûpn. En considérant la complétion de C[Γn], on
obtient un morphisme f̂ : C[Γn ]̂ −→ Ûpn d’algèbres de Hopf complètes. En
restreignant f̂ aux primitifs, on trouve le morphisme d’algèbres de Lie filtrées
Lie(ρ̃) : Lie(Γn(C))→ P(Ûpn), satisfaisant :

log(x) 7→ log(ρ̃(x)),

pour x ∈ Γn. Comme les lacets xij(g) et xk(q) sont similaires aux xgij et aux
xqi de la sous-section 1.6, on obtient en utilisant la proposition 1.11 :

Lie(ρ̃)(log(xij(g))) = 2iπXij(g) + [deg ≥ 2],
Lie(ρ̃)(log(xk(q))) = 2iπXk(q) + [deg ≥ 2].

Enfin, on a un isomorphisme canonique d’algèbres de Lie filtrées entre P(Ûpn)
et p̂n(C) ; le morphisme L2iπ,ρ annoncé est obtenu en composant Lie(ρ̃) par
l’automorphisme de p̂n(C) donné par 2iπXij(g) 7→ Xij(g), 2iπXk(q) 7→ Xk(q).

Montrons la surjectivité de L2iπ,ρ. L’espace vectoriel gr1p̂n = p1
n est engendré

par les Xij(g) (i < j) et les Xk(p), qui appartiennent à l’image de grL2iπ,ρ.
En effet, grL2iπ,ρ([log(xij(g))]1) = Xij(g) et grL2iπ,ρ([log(xk(p))]1) = Xk(p).
Ainsi, grL2iπ,ρ est surjectif car pn est engendrée en degré un. Par conséquent,
L2iπ,ρ est surjectif. �

5.3. L’isomorphisme sur C. —

Lemme 5.5. — L’espace gr1Lie(Γn(k)) est engendré par les classes des
log(xij(g)) (pour 1 ≤ i < j ≤ n et g ∈ G) et celles des log(xk(q)) pour
k ∈ [1, n] et q ∈ P1 \ P1

∗.

Démonstration. — Il suffit d’appliquer (28) à Γn en tenant compte de la pro-
position 3.4. �

Proposition 5.6. — Les morphismes φk : p̂n(G)(k)→ ĝrLie(Γn(k)) et L2iπ,ρ :
Lie(Γn(C)) → p̂n(G)(C) sont des isomorphismes d’algèbres de Lie filtrées (où
k est un corps de caractéristique nulle).
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Démonstration. — Posons θ = φC ◦ L2iπ,ρ. On a les égalités :

grθ([log(xij(g)]1) = [log(xij(g))]1 et grθ([log(xi(q)]1) = [log(xi(q))]1 .

Donc, grθ est l’identité d’après le lemme 5.5. On en déduit que grL2iπ,ρ est
un isomorphisme (on a vu que grL2iπ,ρ est surjectif) et donc grφC est aussi un
isomorphisme. Compte tenu de la construction de φC, on en déduit que l’appli-
cation grφQ est un isomorphisme ce qui implique que grφk est un isomorphisme
pour tout k de caractéristique nulle. Ce qui prouve que les isomorphismes de
la proposition sont des isomorphismes d’algèbres de Lie filtrées. �

6. L’isomorphisme entre Lie(Γn(Q)), ĝrLie(Γn(Q)) et p̂n(G)(Q)

Dans cette section, on montre que les algèbres de Lie Lie(Γn(Q)),
ĝrLie(Γn(Q)) et p̂n(G)(Q) sont isomorphes. Pour cela, on construit un schéma
Iso1(g, h) et un schéma en groupes Aut1(g) (sous-section 6.1) associés à des
algèbres de Lie g et h, et on montre que Iso1(g, h) est un torseur sous Aut1(g)
(sous-section 6.2). On montre que l’isomorphisme construit en proposition 5.6
est un point complexe de Iso1(g, h). On rappelle un résultat permettant d’éta-
blir l’existence de points rationnels dans certains torseurs (sous-section 6.2).
On en déduit l’existence de l’isomorphisme annoncé (sous-section 6.3) .

6.1. Les schémas Iso1(g, h) et Aut1(g). — Dans cette sous-section, on cons-
truit des schémas conduisant à la définition d’un système projectif de torseurs.
On considère deux Q-algèbres de Lie g et h filtrées complètes de filtrations
respectives {Fig}i≥1 et {Fih}i≥1. On suppose que gr g et gr h sont engendrées
par leurs composantes de degré un, que ces composantes sont de dimension finie
et qu’on a un isomorphisme fixé ψ : g/F2g −→ h/F2h entre ces composantes de
degré un. On pose gi = g/Fig et hi = h/Fih. Ainsi, on a : g = lim

←−
gi et h =

lim
←−

hi. Pour K une algèbre de Lie et k ≥ 1, on note CkK le k-ième terme de la
suite centrale descendante : C1K = K et Ck+1K = [CkK,K].

Enfin, un Q-schéma affine est vu comme un foncteur représentable des Q-
anneaux dans les ensembles et on définit un Q-schéma en groupes pro-unipotent
comme la limite inverse d’un système projectif de Q-schémas en groupes al-
gébriques unipotents. On utilisera parfois Q-groupe au lieu de Q-schéma en
groupes.
6.1.1. Le schéma Iso1(g, h). — On va définir un système projectif de Q-sché-
mas affines ; on définira Iso1(g, h) comme la limite inverse de ce système pro-
jectif.

Lemme 6.1. — L’image de Frg dans gi est Crgi, le r-ième terme de la suite
centrale descendante de gi.
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Démonstration. — Notons Frgi l’image de Frg dans gi et montrons que Crg =
Frgi. Comme la filtration Frg est décroissante et que Cig ⊂ Fig , il suit de la
définition de gi que Crgi = Frgi = 0, pour r ≥ i. Ce qui montre la proposition
pour r ≥ i. Le fait que gr g soit engendrée en degré un est équivalent à dire
que Crg + Fr+1g = Frg pour r ≥ 1. Donc, par projection on a Crgi + Fr+1gi =
Frgi. Cette dernière égalité pour r = i − 1 donne Ci−1gi = Ci−1gi + Cigi =
Fi−1gi car Figi = Cigi. Enfin, une récurrence descendante sur r ≤ i montre la
proposition. �

Soit Iso1(gi, hi) le Q-schéma algébrique qui à un Q-anneau R associe l’en-
semble Iso1(gi, hi)(R) des isomorphismes de gi⊗R dans hi⊗R dont l’abélianisé
s’identifie à ψ⊗idR : g2⊗R→ h2⊗R via les identifications canoniques gabi ' g2
et habi ' h2 (voir lemme 6.1).

Proposition 6.2. — Les schémas Iso1(gi, hi) forment naturellement un sys-
tème projectif :

· · · −→ Iso1(g2, h2) −→ Iso1(g1, h1);
on notera Iso1(g, h) la limite de ce système. Pour R un Q-anneau, Iso1(g, h)(R)
est l’ensemble des isomorphismes d’algèbres de Lie filtrées g⊗̂R −→ h⊗̂R qui
induisent l’isomorphisme ψ ⊗ idR.

Démonstration. — L’image des idéaux Fkg ⊂ g (respectivement Fkh ⊂ h)
dans gi (respectivement hi) étant les idéaux caractéristiques Ckgi (lemme 6.1),
les Iso1(gi, hi) forment un système projectif comme annoncé.

Enfin, un isomorphisme filtré f de g⊗̂R dans h⊗̂R est entièrement déterminé
par la donnée d’isomorphismes fj faisant commuter le diagramme :

· · · gi ⊗Roo

fi

��

gi+1 ⊗Roo

fi+1

��

gi+2 ⊗R

fi+2

��

oo · · ·oo

· · · hi ⊗Roo hi+1 ⊗Roo hi+2 ⊗Roo · · ·oo

où les flèches horizontales sont les projections canoniques. La condition ”f
induit ψ⊗ idR : g2⊗R −→ h2⊗R” correspond à ”fi induit ψ⊗ idR : g2⊗R −→
h2 ⊗R via les identifications canoniques gabi ' g2 et habi ' h2”. Ce qui montre
la dernière assertion de la proposition et achève la démonstration. �

6.1.2. Le schéma Aut1(g). — On va construire le Q-schéma en groupes
Aut1(g).

Soit Aut(gi) le foncteur qui associe à un Q-anneau R le groupe des au-
tomorphismes d’algèbre de Lie de gi ⊗ R. C’est un Q-groupe algébrique. En
effet, Aut(gi) est un sous-foncteur en groupes de GL(gi), représentable par
un quotient de O(GL(gi)), l’anneau de coordonnées de GL(gi). On définit le
Q-groupe algébrique Aut1(gi) comme étant le noyau du morphisme naturel
Aut(gi)→ GL(gabi ).
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Proposition 6.3. — Les Aut1(gi) sont des Q-groupes algébriques unipotents,
ils forment naturellement un système projectif :

· · · −→ Aut1(g2) −→ Aut1(g1),

de limite Aut1(g) pro-unipotente. Pour un anneau Q-anneau R, Aut1(g)(R)
est l’ensemble des automorphismes d’algèbre de Lie filtrée de g⊗̂R induisant
l’identité sur g/F2g.

Démonstration. — Le monomorphisme naturel Aut1(gi) → GL(gi) fournit
une représentation linéaire fidèle de dimension finie de Aut1(gi), lequel est
algébrique. Le drapeau Cnigi ⊂ Cni−1gi ⊂ · · · ⊂ C0gi = gi (ni est la classe
de nilpotence de gi) est stable par Aut(gi). Comme Aut1(gi) est le noyau de
Aut(gi) −→ GL(gabi ), il agit trivialement sur Ckgi/Ck+1gi pour 1 ≤ k < ni. Ce
qui montre que Aut1(gi) est unipotent.

Enfin, remarquons que Aut1(g) n’est autre que Iso1(g, h) pour h = g et ψ =
idg2 . Donc, le reste de la proposition est une conséquence de la proposition 6.2
et de la définition d’un groupe pro-unipotent. �

6.2. Torseurs et algèbres de Lie. — Dans cette partie on rappelle la notion de
torseur, on montre que Iso1(g, h) est un torseur sous Aut1(g) et on montre
qu’un tel torseur a des points rationnels dans certaines conditions.

Définition 6.4. — Un Q-torseur est un Q-schéma X, muni d’une action à
gauche d’un Q-schéma en groupes H telle que l’action de H(k) sur X(k) est
libre et transitive quand X(k) est non-vide. On dit que X est un torseur sous H.

Soit · · · −→ X2 −→ X1 un système projectif de Q-schémas, X = lim
←−

Xi sa
limite projective et H = lim

←−
Hi un Q-schéma en groupes pro-unipotent.

Proposition 6.5 ([8]). — Supposons que les Xi forment un système de tor-
seurs compatible sous les Hi et que X(C) est non vide, alors X(Q) est non
vide.

Proposition 6.6. — Chaque Iso1(gi, hi) est un torseur sous l’action de
Aut1(gi) ; leur limite inverse est Iso1(g, h) qui est un torseur sous l’action de
Aut1(g)

Démonstration. — Immédiat. �

En combinant les propositions 6.5 et 6.6, on obtient :

Corollaire 6.7. — Si Iso1(g, h)(C) 6= ∅ alors g et h sont isomorphes en tant
qu’algèbres de Lie filtrées.
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6.3. Preuve. — On va montrer :

Théorème 6.8. — Les algèbres de Lie Lie(Γn(Q)), ĝrLie(Γn(Q)) et p̂n(G)(Q)
sont isomorphes en tant qu’algèbres de Lie filtrées.

Démonstration. — Le quotient Lie(Γn(Q))/F2Lie(Γn(Q)) s’identifie canoni-
quement à l’espace gr1Lie(Γn(Q)) = ĝrLie(Γn(Q))/F2 ĝrLie(Γn(Q)). Notons
ψn cette identification. Considérons le Q-schéma

XΓn = Iso1(Lie(Γn(Q)), ĝrLie(Γn(Q)))

comme dans la section précédente pour ψ = ψn. L’isomorphisme θ = φC◦L2iπ,ρ
(de la proposition 5.6 et sa preuve) est un élément de XΓn(C). En effet, on a

Lie(Γn(C)) = Lie(Γn(Q))⊗̂C, ĝrLie(Γn(C)) = grLie(Γn(Q))⊗̂C

et on a vu que grθ est l’identité et donc il induit ψn. Par conséquent, Lie(Γn(Q))
et ĝrLie(Γn(Q)) sont isomorphes en tant qu’algèbres de Lie filtrées d’après le
corollaire 6.7. Le fait que φQ : p̂n(G)(Q)→ ĝrLie(Γn(Q)) est un isomorphisme
provient de la proposition 5.6. �
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