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SUR CERTAINS COMPLETES UNITAIRES UNIVERSELS
EXPLICITES POUR GL,y(F)

PAR MARcO DE IESO

REsuME. — Dans cet article, nous donnons une description explicite du complété
unitaire universel de certaines représentations localement Qp-analytiques de GL2(F'),
ou F' est une extension finie de @, et généralisant ainsi des résultats de Berger-Breuil
pour F' = Qp. Pour cela, nous utilisons certains espaces de Banach de fonctions de
classe C" sur O, avec r dans R>.

ABSTRACT (On some explicit Universal Unitary Completion for GLo(F))

In this paper we give an explicit description of the universal unitary completion of
some locally Qp-analytic representations of GLo(F'), with F' a finite extension of Qp,
what generalizes a previous work of Berger-Breuil for F' = Qp. To this aim, we use
some Banach spaces of C” functions on O, with r € Rxq.

1. Introduction, notations et énoncé des résultats

1.1. Introduction. — Soit p un nombre premier. La derniére décennie a vu
I’émergence et la preuve d’une correspondance locale p-adique entre certaines
représentations continues de dimension 2 de Gal(@p /Qp) et certaines représen-
tations de GL2(Q,). Cette correspondance, qui a pris le nom de correspondance
de Langlands p-adique pour GL3(Q),), a été initiée par Breuil [5, 6], puis établie
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636 M. DE IESO

par Colmez [12] et Pagkunas [22] & la suite de travaux de Berger-Breuil [3] et
Colmez [11].

Si F' est une extension finie non triviale de Qp, la question d’associer des
représentations p-adiques de G « GL5(F) aux représentations p-adiques
de dimension 2 de Gal(@p /F) dans l’esprit d’une correspondance locale a la
Langlands est loin d’étre résolue et les résultats obtenus pour 'instant sont trés
partiels. En utilisant principalement les travaux de Frommer [17] et de Schraen
[27] sur la filtration de Jordan-Holder des induites paraboliques localement
Qp-analytiques, Breuil [8] définit cependant une représentation localement
Qp-analytique II(V) de G pour la plupart des représentations cristallines V'
de Gal(Q,/F) de dimension 2 et & poids de Hodge-Tate distincts. En général,
la représentation II(V') ne permet pas de reconstruire la représentation galoi-
sienne de départ, mais I'on s’attend toutefois & ce qu’elle intervienne comme
sous-objet de la bonne représentation, ce qui fait des complétés unitaires
universels de ses constituants fondamentaux des objets pertinents.

L’objet du présent article est de donner une description explicite du com-
plété unitaire universel de certaines induites paraboliques localement (Q,-ana-
lytiques, et notamment de celles qui interviennent dans la construction de la
représentation II(V)). L’espoir qu’une telle description est possible provient
de [3, Theoréme 4.3.1], ou les auteurs décrivent le complété unitaire universel
d’une induite parabolique localement algébrique de GL2(Q),) a l'aide de l’es-
pace des fonctions de classe C" sur Zj, o r est un nombre rationnel positif qui
dépend de 'induite considerée.

Pour cela, nous avons introduit et étudié dans [13] une nouvelle notion de
fonction de classe C” sur O, ou r désigne un nombre rationnel positif et O
I’anneau des entiers de F'. Cette notion s’appuie principalement sur des travaux
d’Amice, Amice-Velu, Colmez, Van der Put et Vishik [1, 2, 10, 23, 30| et repose
sur Iidée cruciale suivante : une fonction f: O — F est de classe C” si f(z+y)
a un développement limité a 1’ordre [r], ou [r] désigne la partie entiére de r, en
tout x et si le reste est o(|y|") uniformément en z.

Tester la non nullité des complétés unitaires universels que nous avons
construits est, en général, une question délicate qui n’est complétement résolue
que pour F' = Q, [3, Corollaire 5.3.1] via la théorie des (¢, I')-modules de Fon-
taine [16]. Mentionnons par ailleurs que [3, Theoréme 4.3.1] est un ingrédient
important dans la preuve de ce résultat. Toutefois, on démontre la non nullité
dans quelques cas & partir de résultats de Vignéras [29], qui furent redemontrés
par Kazhdan et de Shalit [18], et de [14].

Remerciements. — Je remercie vivement mon directeur de thése Christophe
Breuil. L’idée de pouvoir donner une description explicite de ces espaces lui est
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due. Je lui suis reconnaissant pour ses conseils, pour ses trés nombreuses re-
marques et pour avoir suivi attentivement 1’évolution de ce travail. Je remercie
Benjamin Schraen pour avoir répondu & mes questions et pour avoir lu avec
intérét une version préliminaire de ce travail. Ses remarques ont été pour moi
trés précieuses. Je remercie Arno Kret pour avoir écouté mes idées ainsi que
pour les suggestions qu’il a apportées.

1.2. Notations. — Soit p un nombre premier. On fixe une cloture algébrique @p
de @@, et une extension finie F' de Q, contenue dans @p. On désignera toujours
par I une extension finie de Q, qui vérifie :

S| = [F : Qy], ott S Y Hom,,(F, E).

Si L désigne 'un des corps F' ou E, on note f);, son anneau des entiers, on
en une uniformisante wy, et 'on note k;, = @ /(wy) son corps résiduel. On
pose f = [kp : Fp], ¢ = pf et Pon désigne par e l'indice de ramification de F'
sur Q, de sorte que [F': Q] =ef.

La valuation p-adique valp sur Q, est normalisée par valp(p) = [F : Q] et
l'on pose [z] = p~v2lr(®) 5i z € Q,,.

Sia € F etne€Z, onnote D(a,n) =a+ whkOr le disque de centre a et de

rayon q~ .

On désigne par G le groupe GLo(F'), par T le tore déployé des matrices dia-
gonales de GG et par P le sous-groupe de Borel formé des matrices triangulaires
supérieures de G.

Soit S’ un sous-ensemble de S. Si ng = (Ny)ocs’ €6 Mg = (Mo )oecs sont
des |S’|-uplets d’entiers positifs ou nuls, nous posons :

dét

(1) ng! = Iloes nols
(i) Ing| = pes nos
(i) ng — mg = (Mg — Mo)oes ;
(iv) ng, < mg si n, < m, pour tout o € 5’

(vi) pour tout z € O, 22s’ e H a(z)™.
oes’

Pour alléger I’écriture, nous notons n au lieu de ng un |S|-uplet d’entiers
positifs ou nuls.

Enfin, si V est un E-espace vectoriel topologique, on note V'V son dual
topologique muni de la topologie forte [24, §9].
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1.3. Enoncé des résultats. — L’énoncé du résultat principal nécessite l'in-
troduction d’un certain nombre de constructions. Soit J une partie de S et
soit dgy; un [S\J|-uplet d’entiers positifs ou nuls. Soient x1,x2 deux carac-
téres localement J-analytiques de F'* dans E*. Nous renvoyons le lecteur a la
définition 4.1 pour la notion de localement J-analytique.

Posons :
J = J][[{o € S\J.ds + 1> —valg, (x1(p))}-
Notons x1 ® x2 le caractére de T' défini par :

(@ x2)([§ ) = xa(a)x2(d),

ainsi que la représentation localement J-analytique de P qu’il définit par infla-
tion. Notons :

° (Indgxl ® Xg)J_an I'induite parabolique localement .J-analytique, définie
comme ’espace des fonctions localement J-analytiques f: G — E telles
que f(bg) = (x1 ® x2)(b)f(g) sur lequel G agit par translations & droite;

. (Symd°'E2)"7 pour 0 € S et d, € N, la représentation algébrique ir-
réductible de GLy ®f,, E dont le plus haut poids vis-a-vis de P est
Xo: diag(z1,22) — o (z2)%.

Considérons la représentation localement Q,-analytique suivante de G :

I(x, J,ds\ ) < ( X (Symd"EQ)J) ®F (Indgh ® Xz)
ceS\J

J-an

Remarquons tout d’abord que I(x, J,dg\ ;) définit un faisceau sur P!(F) dont
les sections globales sont les fonctions f: F' — E qui vérifient les deux condi-
tions suivantes :

(i) flp, définit un élément de 7 (Op, J,dg\ ;) ;
(ii) szfl(z)zds\Jf(l/z)|@F,{O} se prolonge sur @) en une fonction
de (O, J,dg\ ;)

Par ailleurs, des formules explicites munissent ce faisceau d’une action conti-
nue de G. D’aprés la preuve de [15, Proposition 1.21], le complété unitaire
universel de I(x, J, ds\ ;) est le complété par rapport au sous-@g[P]-réseau
engendré par les vecteurs

1o, (2)2"\ 2™, 1p_g, (2)x2xi  (2)2%8\ 7 72\ 270
pour tout 0 < ng\; < dg\; et tout m; € N”. Notons alors I(X,J,QS\J)A le
complété de I(x, J,dg\ ;) par rapport a ce réseau.

Avant de donner une description explicite de ’espace I(x, J, d S\ ;)"\, nous dé-
montrons d’abord deux résultats qui ajoutent des conditions supplémentaires
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aux données initiales et permettent d’éviter des cas pathologiques bien de sim-
plifier le probléme. Le premier ingrédient donne deux conditions nécessaires de
non nullité sur I(x, J,dg\ ;)"

PROPOSITION 1.1. — Les deux conditions suivantes sont nécessaires pour
que I(x, J,dg\ s)" soit non nul :

(i) le caractere central de I1(x,J,dg\ ;) est entier;
(i) on a linégalité valg, (x2(p)) + |ds\ 5| = 0.

C’est un résultat bien connu lorsque F = Q,, [15, Lemma 2.1] ainsi que dans
le cas localement algébrique, c’est-a-dire lorsque J = & [21, Lemme 7.9]. En
particulier, si les conditions de la proposition 1.1 sont satisfaites, alors on a

dét
r = —valg, (x1(p)) 2 0.

Notons x} = x1, X5 = X2 HUEJ,\J 0% et remarquons que I’on a une immer-

sion fermée G-équivariante :

(11) I(X, J7ds\J) HI(XIVJI’QS\J’)'

Un deuxiéme ingrédient important donné par la proposition suivante, essentiel-
lement démontrée par Breuil [8, Théoréme 7.1] en ayant recours aux techniques
dévéloppées par Amice-Vélu et Vishik, qui fournit des indications concernant
la structure de I(x, J, dg\ ;)"\, et plus précisement concernant ses vecteurs lo-
calement QQ,-analytiques.

PROPOSITION 1.2. — Supposons que les conditions de la proposition 1.1 soient
satisfaites. Alors les conditions suivantes sont équivalentes et vérifiées.

(i) Toute application continue, E-linéaire et G-équivariante I(x, J, QS\J) —
B, ot B est un G-Banach unitaire, s’étend de maniére unique en une
application continue, E-linéaire et G-équivariante I(x/, J’,QS\J,) — B.

(ii) L’application canonique I(x,J,dg\;) — I(x; J,dS\J)/\ s’étend de ma-
niére unique en une application continue, E-linéaire et G-équivariante
I(Xl7 J/’dS\J’) - I(Xa J, dS\J)A'

(iii) L’application (1.1) induit un isomorphisme de G-Banach unitaires :

I(x, Jydg\g)" == I(Xs ', dgy g)"

D’aprés la proposition 1.2 (iii), on est donc ramené a considérer I(x', J', dg\ )"
Par un calcul analogue & celui mené dans la preuve de [3, Théoréme 4.3.1], on
trouve qu’une boule ouverte (de centre 0) du Banach dual de I(x', J',dg\ ;)"
s’identifie aux distributions p dans le dual fort de I(x/,J’ ,cjs\ g+) telles que
pour tout n € Z, tout a € F, tout 0 < ng\ s < QS\J, et tout mj € N7 on ait
les deux inégalites suivantes :

(1.2) ’ / (2 — @)"s\7" (2 — @)™ p(2)| < Cpug" s 1=l )y
D(a,n)
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640 M. DE IESO

(1.3) ‘ / X2x1 Mz — a)(z — a)Es\7 TR\ (2 — )T py(z)
F\D(a,n+1)
S Cﬂqn(lﬂs\,ﬂ |+|m,]/ |_T);

avec C, € Rxo.

D’autre part, une étude fine du dual fort de ’espace de Banach des fonc-
tions de classe C" sur O, ou plus précisement de son sous-espace fermé
C"(OF,J',dg\ ;) (§3.1.2), fournit la condition nécessaire et suffisante suivante
pour qu’une forme linéaire sur & N(@F, J,dg\ ;) (voir §3.2 pour une définition de
cet espace) s’é¢tende en une distribution sur C" (0, J',dg\ ;) (Théoréme 3.8).

Notons que pour F' = Q, il s’agit d’un résultat bien connu et dd & Amice-Vélu
et Vishik [2, 30].

THEOREME 1.3. — (i) Soit p € C™(Op,J',dg\ ;1)". Il existe une constante
Cu € Ry telle que pour tout a € Or, tout n € N, tout 0 < ng\ g < dS\J’ et

tout m; € N7 on ait :
’ / (z — @)\ (z — @)™ u(2)| < C,, q”("'_lﬂS\J’I_‘ﬂJ’l)_
D(a,n)

(if) Soit N wun entier tel que N > [r] et pu une forme linéaire sur
9N(@F,J,QS\J). Supposons qu’il existe une constante C,, € Rxq telle que
pour tout a € O, tout n € N, tout 0 < ng\; < dg\; et tout m; € N7 tels
que [ng\ ;| +|m ;| < N, on ait :

‘ / (2 — a)\7 (2 — a)™r p(2)| < €, g IBsval=lms D),
D(a,n)

Alors p se prolonge de maniere unique en une distribution sur C" (O, J’,QS\J,).

On est ainsi amené & considérer lespace B(x',J’ ,ds\ ;) des fonctions
f+ F — E qui vérifient les deux conditions suivantes :

(i) flo, définit un élément de C"(Or, J',dg\ ;1) ;
(ii) Xéxi_l(z)zds\ﬂf(l/zﬂ@F_{O} se prolonge sur @)y en une fonction

de CT(@F, J/’dS\J')‘

C’est un espace de Banach p-adique naturellement muni d’une action
continue de G et une étude approfondie utilisant de maniére cruciale le théo-
réme 1.3 montre que les conditions (1.2) et (1.3) sélectionnent exactement les
formes linéaires de B(x/, J', ds\ ;)V qui annulent les fonctions d’un sous-espace
L(x',J',dg\s) de B(x',J',dg\ ;) que I'on définit dans la Section §4.3.

Le résultat principal de cet article, qui généralise [3, Théoréme 4.3.1] lorsque
F = Qp, est alors le suivant.

TOME 143 — 2015 — N° 4



SUR CERTAINS COMPLETES UNITAIRES UNIVERSELS EXPLICITES 641

THEOREME 1.4. — [l existe un isomorphisme G-équivariant d’espaces de Ba-
nach p-adiques :

I(X’ J, dS\J)/\ — B(le J/’dS\J’)/L(le ledS\J’)'
Signalons au passage une conséquence immédiate du théoréme 1.4.

COROLLAIRE 1.5. — L’espace B(X',J',dg\ ;/)/L(X', /', dg\ /) est un espace
de Banach muni d’une action continue unitaire de G. C’est le plus grand quo-
tient de B(x', J',dg\ ;1) ayant cette propriété.

1.4. Plan de I’article. — Dans la section 2, nous rappelons quelques généralités
d’analyse fonctionnelle p-adique ainsi que la notion de complété unitaire univer-
sel introduite dans [15]. La section 3 est constituée de rappels sur les espaces des
fonctions de classe C" et leurs duaux. Nous introduisons dans la section 4 les re-
présentations localement Q,-analytiques I(x, J, ds\ ;) qui font 'objet de notre
étude, puis nous construisons la représentation de Banach II(x, J, dg\ 7)- Dans
la section 5, nous donnons deux conditions nécessaires pour que le complété
unitaire universel de I(x, J,d S\ ) soit non nul et nous commencons I’étude des
espaces duaux (I(x, J, QS\J)A)V et II(x, J, dS\J)V. La section 6, qui est le coeur
de cet article, contient la demonstration du théoréme 1.4 ainsi qu’un exemple
de construction explicite.

2. Préliminaires

2.1. Rappels d’analyse fonctionnelle non archimédienne. — Ce paragraphe re-
groupe des notions d’analyse fonctionnelle non archimédienne dont on se servira
par la suite. Nous renvoyons a [24] pour plus de détails.

Un FE-espace vectoriel topologique V' est dit localement conveze si I'origine
posséde une base de voisinage constituée de sous-f)g-modules de V. Cela revient
4 demander que la topologie de V' puisse étre définie par une famille de semi-
normes non archimédiennes [24, Propositions 4.3 et 4.4].

Soit V un E-espace vectoriel localement convexe. Un réseau ¥ de V est un
sous-Og-module de V tel que pour tout v € V, il existe un élément non nul
a € E* tel que av € £. En particulier, on remarque que tout sous-fg-mo-
dule ouvert de V est un réseau de V. Deux réseaux £; et £o de V sont dits
commensurables 8'il existe a € EX tel que a7 C £2 C a~'¥,. La commen-
surabilité définit une relation d’équivalence sur I’ensemble ¥ (V') des réseaux
ouverts de V.

Un réseau £ de V' est dit séparé si [,y wE L = 0 ou, de maniére équiva-
lente, si # ne contient pas de E-droite.

Un sous-ensemble B C V est dit borné si, pour tout réseau ouvert ¥ C V,
il existe a € E tel que B C a?.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



642 M. DE IESO

On dit que V est tonnelé si tout réseau fermé de V est ouvert.

On dit que V est de Fréchet s’il est complet et métrisable ou, de maniére
équivalente, s’il est complet, séparé, et si sa topologie peut étre définie par une
famille dénombrable de semi-normes. Lorsque sa topologie peut étre définie par
une unique norme, on dit que V est un espace de Banach.

Si ¥ est un réseau ouvert, borné et séparé de V, on définit la jauge de ¥
par :

YoeV, |v|lg= inf |a|.
vea?

C’est une norme sur V et la topologie qu’elle définit sur V' coincide avec la
topologie initiale [24, Corollaire 4.12].

On dit que V est de type compact s’il existe un isomorphisme de E-espaces
vectoriels topologiques
V= 1imV,,
n
ot {V,}n>1 est un systéme inductif d’espaces de Banach sur E tel que les
morphismes de transition soient injectifs et compacts.

Soit W un E-espace vectoriel localement convexe. On note Homg(V, W)
I’espace des fonctions E-linéaires et continues sur V' & valeurs dans W. Si ’on
fixe un sous-ensemble borné B C V et que l'on se donne une semi-norme
continue p sur W, alors la formule :

pa(f) = sup p(f(v))
vEB

définit une semi-norme sur Hompg(V,W). Si B est maintenant une famille
de sous-ensembles bornés de V, la topologie localement convexe définie
sur Hompg(V,W) par la famille de semi-normes {pp; B € %B,p semi-norme
continue sur W} est appelée B-topologie. En particulier, si 3 est la famille de
tous les singletons, la $-topologie correspondante est aussi appelée topologie
faible. Si B est la famille de tous les sous-ensembles bornés de V, la, B-topologie
correspondante est appelée topologie forte.

2.2. Complétés unitaires universels. — Soit G le groupe des QQ,-points d’un
groupe algébrique linéaire réductif connexe défini sur Q,,. La notion de complété
unitaire universel d’un espace vectoriel localement convexe muni d’une action
continue de G a été formalisée par Emerton [15, §1], aprés que des exemples de
complétés unitaires universels aient été construits par Breuil [6, 7] et Berger-
Breuil [3]. Nous rappelons dans ce paragraphe le contexte dans lequel s’insére
cette notion, ainsi qu’une condition nécessaire et suffisante d’existence d’un
complété unitaire universel.
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DEFINITION 2.1 ([25, 7]). — Un G-Banach est un espace de Banach B sur E
muni d’une action & gauche de G telle que 'application G x B — B qui décrit
cette action soit continue. Un G-Banach B est dit unitaire si, pour un choix de

norme || - || définissant la topologie de B, on a ||gv|| = ||v|| pour tout g € G et
tout v € B.
REMARQUE 2.2. — Si le groupe G est compact, tout G-Banach est unitaire.

Ceci n’est pas vrai si G n’est pas supposé compact.

Soit V' un FE-espace vectoriel localement convexe muni d’une action continue
de G. Un complété unitaire universel de V' est un G-Banach unitaire qui satisfait
une certaine propriété universelle. Plus précisément, on a la définition suivante.

DEFINITION 2.3 ([15], définition 1.1). — Avec les notations précédentes, un
complété unitaire universel de V est la donnée d’un G-Banach unitaire B et
d’une application E-linéaire, continue et G-équivariante ¢: V' — B telle que
toute application FE-linéaire, continue et G-équivariante V. — W, ou W est
un G-Banach unitaire, se factorise de fagon unique & travers ¢.

REMARQUE 2.4. — Si V admet un complété unitaire universel (B, ¢), alors ce
complété est unique & isomorphisme prés. Comme 1’adhérence dans B de +(V)
vérifie la propriété universelle énoncée dans la définition 2.3, on en déduit que
Papplication ¢ est d’image dense.

Le lemme suivant fournit une condition nécessaire et suffisante pour que V'
admette un complété unitaire universel [15, Lemme 1.3].

LEMME 2.5. — La G-représentation V admet un complété unitaire universel
si et seulement si l’ensemble des classes de commensurabilité des réseaux ou-
verts G-stables de V', qui est partiellement ordonné pour l’inclusion, posséde un
élément minimal.

3. Rappels sur les fonctions de classe C” sur O

Soit r € Q>¢. Dans [13] nous avons introduit une nouvelle notion de fonc-
tion de classe C" sur O qui s’appuie principalement sur les travaux d’Amice,
Amice-Velu, Colmez, Van der Put et Vishik [1, 2, 10, 23, 30]. Cette section va
nous permettre de rappeler un certain nombre de constructions et de résultats
concernant Pespace des fonctions de classe C" sur @)p. Nous renvoyons a [13]
pour plus de détails et a [19, 20] pour d’autres définitions possibles.
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3.1. Définitions et compléments. — Soit € Q>¢. Notons [r] sa partie entiére.
SineNetsixe{<,<,> > =} on pose :

Iin det {Z’ENS, Zzg*n}

c€ES

DEFINITION 3.1. — On dit que f: Op — E est de classe C" sur O s’il existe
une famille de fonctions bornées {D;f: Or — E, i € I<[,}, telles que, si I'on
définit e,: O x O — E par :
yi
Vr,y € QFy Ef,[r](may):f($+y)_ Z sz(ll)ga

i€lgrn
et pour tout h € N

Cf,r(h) = sup |5f,[r] (z, y)| qrh )
z€0F,yewh Op

alors Cf ,(h) tend vers 0 quand h tend vers +oo.

Si f est une fonction de classe C” sur @p, il existe une unique famille de
fonctions
{Dif: Or — E, i€ Iy}
satisfaisant a la définition 3.1 [13, Lemme 2.4]. Notons C" (0, E) 'ensemble
des fonctions f: O — E de classe C" sur O et munissons-le de la norme
|| - ||c~ définie par :
Dif(z)

£l =sup ( sup sup | =2
i€l<) z€0F v

)

|€f,[r] (z, Z/)|)

w,yE@F |y|'r‘

C’est alors un espace de Banach sur E, et méme une E-algebre de Banach [13,
Lemme 2.9], c’est-a-dire une E-algébre normée dont ’espace vectoriel normé
sous-jacent est un espace de Banach.

On demontre maintenant le résultat suivant, dont on se servira par la suite.

LEMME 3.2. — Soitn € N. Soit f: O — E une fonction de classe C". Notons
g: O — E la fonction définie par :

z
Vze Op, g(z)= 1D(0,n)(z)f(w7%)'
Alors g € C"(OF, E) et ||gllcr < a" [ fllcr-
Démonstration. — Pour tout i € I<|,) et tout 2z € O'r posons :
1 \¢ z
(3.1) Dig(e) = () Lepor 10 ()
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On a alors :

Vfﬂyy € QF? Eg,[T](xvy)
r+y 1
= 1p(on)(z + y)f( o > — Z ElD(O,n)( z)D; f(

F i€lcpy “r

)(wy )i
B
Par suite, on voit immédiatement que ’on a :

Vh > n, sup |eg (2, y)| £ sup le g, (2, 91,
z€0p,y€wh OF z€Or,yewh " Or

ce qui implique que g est de classe C" sur @). Pour montrer I'inégalité sur la
norme on remarque que (3.1) assure que ’on a :

(3.2) |
<|(z5) e

Dig

25

vielyy sw | < fller < g™ e
On conclut alors en distinguant quatre cas :

e Siz,y € wkOp, alors on a :

g, (@Yl _ lerm (2> =3

< <"l
lyl” lyl”
e Sizecwhbpetyd¢ whOp, alors on a :
()L
gt (2, 9)l | Zier.,, Pig(@) | ‘ng(w)‘wg_,ﬂ
ly|” |yl Tieloy U
D;f(z L
< sup sup | 2T o iy -
i€l<ir) z€0F z
< |l

o Six ¢ wibp et v +y¢ wiOp, alors on a g, ) (z,y) = 0.
o Siz ¢ whbpetz+yc whbBp alors on a enfin :

leg, (2, 9)l ‘f(wp wz)‘
ly|” ly|”

<" fller O

3.1.1. Composition de fonctions. — Soit f: O — E une fonction de classe C”
sur O et soit h: O — BOF une fonction. Nous allons rappeler [13, §2.2.1] une
condition suffisante sur i pour que foh: O — E soit a son tour de classe C"
sur Op. Pour cela, nous avons besoin d’introduire la définition suivante.
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DEFINITION 3.3. — Soit 7 € Q>¢. On dit que h: O — F est de classe crid
sur Op sl existe une famille de fonctions bornées {h?: Op — F, 0 < i < [r]}
telle que, si I'on définit €5 [,1: O x Op — F par :
[r] ) yi
Vaz,ye @F7 5h,[r](xay) =f(as+y)—Zh(l)(:c)Z—',
i=0

et que 'on pose, pour tout k € N,

Ch,’” (k) = sup |6h,[7‘](x7 y)| qu ;

ze0p,yewh O

alors C}, (k) tend vers 0 quand k tend vers +oo.

Notons C™*¢ (0, F) I’ensemble des fonctions de O dans F qui sont de
classe C™ sur . On le munit de la norme || - ||or i« définie par :

A
Ihllgria = sup( sup sup ‘(x)
0<i<[rlze0r' ¥

)

|5h,[r] (SC, y)' )

z,y€Op |y|r

ce qui en fait un espace de Banach sur F'.

PROPOSITION 3.4 (|13], proposition 2.12). — Soit 7 € Qx>¢. Si h: Op — Op
est une fonction de classe C™*% sur O alors :

(1) V.f € CT(@F7E)7 th € CT(@FvE) ;
(ii) ’application de C"(Op,F) dans C"(Or, E) définie par f — foh est

continue.

3.1.2. Construction de sous-espaces fermés. — Soit r € Q>o, J C S et d, € N
pour o € S\J. Nous allons définir un sous-espace fermé de C" (0, E), dépen-
dant de J et de ds\ 7, qui va jouer un roéle important dans la suite.
Posons :
JEI][{o € S\J, do +1> 1}

et désignons par e, le vecteur de N ayant toutes ses composantes nulles sauf
celle d’indice o qui est égale & 1. Pour tout f € C"(Op,F), tout ¢ € S et
tout ¢ € {0, ..., [r]}, posons :

ai
—f =D f-
0zt / -f
DEFINITION 3.5. — On note C"(0F, J',dg\ ;) le sous-E-espace vectoriel des
fonctions f de classe C" sur OF telles que :
do+1
!

TOME 143 — 2015 — N° 4



SUR CERTAINS COMPLETES UNITAIRES UNIVERSELS EXPLICITES 647

D’aprés [13, Corollaire 2.8], I'opérateur D; est continu pour tout i € I<
ce qui implique que ’espace C" (D, J’ s dg\ ) est bien un sous-espace fermé
de C"(OF, E). On le munit de la topologie induite par celle de C"(Op, E), et
on en fait ainsi un espace de Banach sur FE.

3.2. Fonctions localement analytiques et fonctions de classe C". — Soit U une
partie ouverte de O, soit J C S et soit d, € N pour tout ¢ € S\J. Pour a € U
et n € N tels que D(a,n) C U, on note &(D(a,n), J, dS\J) le E-espace vectoriel
des fonctions f: D(a,n) — E de la forme

f(z) = > am(a)(z — a)™
m=(ma)qes€NS

mo<d, S1 c€S\J

avec ap(a) € E et |an(a)lg™™) — 0 quand |m| — 400. C’est un espace de
Banach sur E pour la topologie induite par la norme || - ||o,, définie par :

£ llan = sup (lam (@)]g 20 .
m

Comme U est ouvert et compact, il existe hg € N tel que :
VYa € U,Yh > hg, D(a,h) CU.

Pour tout h > hg, on note ¥, (U, J, ds\ ;) le E-espace vectoriel des fonctions
f: U — E telles que :

Va € Ua f|D(a,h) S Q(D(a7 h)v Jv dS\J)'
On munit cet espace de la norme || - |5, définie par :

(3-3) Ifll7,, = sup |flp@mllan,

a mod w}ﬂ,aEU

ce qui en fait un espace de Banach sur E. On voit immédiatement que cette
définition ne dépend pas du choix du systéme des représentants. De plus, on
sait par [24, p. 107] que les inclusions

Ir(U,J,ds\5) = Tn+1(U, J, dg\ 1)
sont continues et compactes.
DEFINITION 3.6. — On note & (U, J,dg ;) le E-espace vectoriel des fonctions
f: Or — E pour lesquelles il existe h > hg tel que f € Fy(U, J, ds\J).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



648 M. DE IESO

On munit cet espace de la topologie de la limite inductive, ce qui en fait un
espace de type compact. Posons, pour tout N € N :

TN(Or,8)E > I (0, 2,4d);
delsN
TV (O, J,ds\ ;) E TV (Or,S) N T(Op, J,dg\ ;) -
Les espaces gN(@F, S) et gN(@F, J, QS\J) sont des sous-E-espaces vectoriels
respectifs de (Op, S) et I (Or, J,dg\ ;). En outre, on dispose des deux faits
suivants :

e lespace 7 (Or, J,dg\ ;) s'injecte de fagon continue dans C"(Op, J', dg\ ;)
[13, Corollaire 3.4];

e pour tout entier N > [r], Pespace I (O, J, dg\ ;) est dense dans
C"(OF,J',dg\ ;) [13, Corollaire 3.16].

Notons que le deuxiéme point découle de I'existence d’une base de Banach
de C"(OF, J',dg\ ;) constituée de fonctions dans 9’[T](@F, J, dS\J).

3.3. Distributions d’ordre r. — Conservons les notations du §3.2 et, pour
tout N € N, notons F"(0p,J, dg\s)" lensemble des formes linéaires

sur gN(@F,J,dS\J). Si N est tel que N > [r], alors [13, Corollaire 3.16]
assure que l'inclusion
TV (Or, J,ds\;) € C"(Or, ', ds\ )
induit une injection
C™(OF, J,dg\ )V — TV (OF, J,ds\ ;)"

Dans cette section, nous allons rappeler une caractérisation possible des formes
linéaires p: & N(@F, Jydg\ ;) — E qui s’é¢tendent en des formes linéaires conti-
nues sur l’espace de Banach C" (0, J’,QS\J,). Elle généralise un résultat da a
Amice-Vélu et Vishik [2, 30].

DEFINITION 3.7. — On appelle distribution (J',dg\ ; )-tempérée d’ordre r
sur O toute forme linéaire continue sur I’espace de Banach C"(Op, J’,dS\Jl).

On note (C™(Op,J',ds\;)", |l - llo,,0,a,),) Vespace des distributions
(J’,QS\J,)—tempérées d’ordre 7 sur O muni de la topologie forte.

Soit N € N. Si p € gN(@F,J,dS\J)V et si f e STN(@F,J,QS\J) on note,
pour a € Op et n € N:

H(lD(a,n)f) :/D( f(2)p(z).

a,n)
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THEOREME 3.8 ([13], théoréme 4.2). — (i) Soit p € C"(Op,J',dg\ ;)" 1l
existe une constante C,, € Rxq telle que pour tout a € Op, tout n € N,
tout 0 < ng\ j < dgy\yr €t tout my, € N on ait :

60 | [ -apere-gmue)| < Cuges n,
D(a,n)

(ii) Soit N > [r] un entier et soit p € 9N(@F,J,QS\J)V. Supposons qu’il
existe une constante C,, € Rxg telle que pour tout a € O, tout n € N, tout 0 <
ng\y < dg\ g €t tout m; € N7 wvérifiant Ing\ |+ Im;| < N, on ait :

(3.5) ‘ / (z _ a)ﬂS\J(z _ a/)m]u(z) < CM qn(”‘_lﬂS\J‘_lm.Il).
D(a,n)

Alors p se prolonge de maniére unique en une distribution (J',QS\J,)—tempérée
d’ordre r sur Op.

REMARQUE 3.9. — La preuve du théoréme 3.8 utilise de maniére cruciale la
construction explicite d’une base de Banach de l'espace C"(Or, J',dg\ /), qui
dépend de r et est donnée pour une famille dénombrable de fonctions localement
polynomiales [13, Proposition 3.15]. Lorsque F' = Q,, cette base coincide avec
celle construite par Van der Put [23] pour I’espace des fonctions continues sur Z,
et généralisée par Colmez pour r quelconque [10, Théoréme 1.5.14]. Signalons
que pour l’espace des fonctions continues sur @, cette base avait déja été
construite par de Shalit [28, §2].

REMARQUE 3.10. — Une conséquence directe du théoréme 3.8 est la suivante
[13, Corollaire 4.3]. Si pour u € C™(OF, J', dg\ /)", on définit ||u|,,q,, , par la
formule

H'U‘”rvisu = sup sup (‘ / (z — )™\ (z — a)™ p(z) q—n(r—lﬁs\J|—|mJ|)> ,

a€Bp,neN mJENJ D(a,n)
Qgﬂs\‘jgés\‘]
alors || - [|rg,, , est une norme sur C™(Op,J',dg\ ;)" qui est équivalente a || -
2,0 (do) -
4. Représentations de GLo(F)

4.1. Généralités. — On fixe désormais une fois pour toutes une partie J de S.

Si G est un groupe de Lie localement F-analytique, on note Gy le groupe de
Lie localement Qy-analytique obtenu & partir de G par restriction des scalaires
de F a Qp [4, §5.14]. Si V est un E-espace vectoriel localement convexe sé-
paré, on peut définir, comme dans [26, §2] 'espace des fonctions localement
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Qp-analytiques de G dans V' : c’est simplement 1’espace des fonctions locale-
ment analytiques de Gy dans V. On note C%2%(G,V) cet espace, que ’on
munit de action & gauche usuelle de G.

Soit g l'algébre de Lie de G. On dispose d’une action Qp-linéaire de g
sur C% (G, V) définie par :

(£1)(9) = 5 (t = Flexp(~t2)g) )|

ol exp: g --» G désigne 'application exponentielle définie localement au voi-
sinage de 0 [26, §2]. Cette action se prolonge en une action de lalgébre de Lie
9®q, E. Puisque g est un F-espace vectoriel, g®q, E est une algébre de Lie sur
l’anneau F'®q, F, ce qui permet d’obtenir un isomorphisme d’espaces vectoriels
sur E :

t=0

(4.1) 980, E~Po®r. E.
o€esS
DEFINITION 4.1 ([27], définition 1.3.1). — Une fonction localement Q,-analy-

tique f: G — V est dite localement J-analytique si 'action de g ®q, F sur f
se factorise par P, ;9 ®r, E.

L’ensemble des fonctions localement J-analytiques est un sous-espace fermé
de C%2"(G,V) que 'on note C’-*"(G,V) et que 'on munit de la topologie
induite.

DEFINITION 4.2 ([27], définition 1.3.4). — Soit V' un espace vectoriel muni
d’une topologie séparée localement convexe tonnelée. On dit que V est une re-
présentation localement J-analytique de G lorsque les deux conditions suivantes
sont vérifiées :

(i) le groupe G agit sur V' par endomorphismes continus;
(ii) pour tout v € V, Papplication de G dans V' définie par ’action de G sur v
est localement J-analytique.

REMARQUE 4.3. — Dans la définition 4.2, supposer que V' est tonnelé assure,
grace au Théoréme de Banach-Steinhaus [24, Théoréme 6.15], que 'action de G
sur V est continue.

EXEMPLE 4.4. — L’espace localement convexe C/-*"(G, V) muni de l'action
a gauche usuelle de G est une représentation localement J-analytique.
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4.2. Rappels sur les induites localement analytiques de GLy(F'). — On pose G =
GLy(F). On note T le tore déployé constitué des matrices diagonales de G, P
le sous-groupe de Borel des matrices triangulaires supérieures de G, et N le
sous-groupe des matrices unipotentes supérieures de G.

Si (p,V) est une représentation localement J-analytique de P, on note
Indg(p)J‘an I’espace des fonctions f: G — V localement J-analytiques telles
que :

Vg€ G,Vpe P, f(pg)=pp)f(9)

On munit cet espace d’une action a gauche E-linéaire de G en posant (gf)(g’) =
f(g'g) : on obtient ainsi une représentation localement J-analytique de G.

Soit x un caractére localement Q,-analytique de T', que l'on peut voir
comme une représentation localement Q,-analytique de P par inflation. Nous
allons construire maintenant des sous-représentations localement Q,-analy-
tiques de Indg(x)s‘an. Ensuite, en utilisant I'espace des fonctions localement
analytiques sur @) construit dans la Section §3.2, nous en donnerons une nou-
velle description.

Pour t1,t5 € F* assez proches de 1, on a
x([5 o) =TI et o(ta)®,
ocesS

avec di 5,d2, € E. Notons alors J le sous-ensemble de S formé des éléments
o tels que

dao —d1,0 ¢ N.

Quitte a considérer la représentation Ind%(x)52" ® ((Ies\s o) o det)™!,
on peut supposer que l’on a, au voisinage de 1

X3 ) =xa(t)xalte) [ o(t2)®,

oceS\J
avec x1 et x2 deux caractéres localement J-analytiques de P et d, est un entier
positif ou nul. On pose u = [9§] et, pour tout o € S, on note u, I’élément

de gl (F)®q, E défini par u via I'isomorphisme (4.1) sur la composante associée
a0.Sio € S\J,on pose 3, = (uy)% ! et I'on définit €, par :

([ ]) = oltaty ™).

D’aprés [27, Proposition 1.3.11], ’élément 3, induit une application de Indg(x)s'an

do +1)S—an
[eg

dans Ind$ (e
isomorphe a

, encore notée 3., qui est surjective et dont le noyau est

(SymdaE2)a ®F IndIGJ(XJ)s\{U}_an )

On a ici utilisé les notations suivantes :
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e pour o € S et d, € N on note (Sym? E?)? la représentation algébrique
irréductible de GLy ®F,» E dont le plus haut poids vis-a-vis de P est
Xo: diag(z1,22) — o(z2)% ;

e On définit le caractére x? par :
X7 =x18 (X2 11 Td*)
T€S\(J1I{e})

On en déduit immédiatement, pour toute partie S’ de S\J, 'isomorphisme
suivant :

N kerse = (@ Sym® £)7) o5 (mdfxa ©x2 [[ o%)

ces’ oes’ (S\J)\ S’

S\S’-an

Posons m, = d, + 1. D’aprés la preuve de [27, Proposition 1.3.11], on dispose
du diagramme commutatif suivant :

Indg(x)s"‘m k. IndP(Xem")S an

_@Mo _ aMo
8207 ' 9z

(7(Or,8))? (7(Or,9))

ou
e J(0OF,S) désigne l'espace I (U, J,dg\ ;) pour U = Op et J = S (donc
S\J =9);
e la fleche verticale de gauche (resp. de droite) est un isomorphisme topo-
logique explicitement donné par :

el IR (TN ) NET (A )))
On en déduit donc ’existence d’un isomorphisme topologique :

(4.2)
S\S’-an

(Qsym™ B ) 0 (mdfaexa [[ ™) ~ (T(Op, S\S',dg))?

oS (S\J)\ S’
Posons alors :

1(x,5\8ds) = ( Q) (Sym™ E?)7) 9 (mafxa oy [[ o)
oes’ (S\I\S’

S\S’-an

et notons V' le E-espace vectoriel des fonctions f: F' — FE vérifiant les deux
conditions suivantes :

(i) flp, appartient & ¥ (O, S\S',dg);

TOME 143 — 2015 — N° 4



SUR CERTAINS COMPLETES UNITAIRES UNIVERSELS EXPLICITES 653

(ii) ngfl(z)zdswf(l/zﬂ@F_{O} se prolonge sur @ en une fonction

de g(@F,S\S/,dS/).
L’application
V— F(OpS\S, ds)® F(Or,S\S, dg)

fr (e F@r2), (2 o (212850 £1/2)))

est un isomorphisme de FE-espaces vectoriels qui permet de munir V de la
topologie localement convexe induite par cette application. Les isomorphismes

(4.2) et (4.3) et légalite
0 1
-1 dz—b

0 1f|ab| f‘éz_fr’z —c
“1z| |ed| 0 —cz+a Sota

assurent alors que l'action de G sur I(x, S\S’,dg ) se traduit sur V de la fagon
suivante : pour tout g = [24] € G, tout f € V, et tout z € F — {2}, on a

(4.4)
<[a b] f) (2) = x1(det(9))x2x1 ' (—cz + a)(—cz + a)®s\7 f <dz—b> .

cd —cz+a

(4.3)

Ils assurent en outre que si ¢ # 0, alors on peut prolonger gf par continuité

en z = % en une fonction appartenant a V.

4.3. Une GLo(F')-représentation de Banach. — Soit x1,x2: F'’* — E* deux
caracteéres localement J-analytiques et dg\ ; un |S\J|-uplet d’entiers positifs
ou nuls. Posons r = —valg, (x1(p)) et supposons r > 0. Posons :

J'=JH{U€S\J, de +1>71}, X1 =x1, et xo = X2 H o,
oeJ'\J

A Daide des espaces définis au §3.1.2, nous allons définir un nouveau G-Ba-
nach attaché au triplet (J', x}, x5)-

Notons B(x', J',dg\ ) le E-espace vectoriel des fonctions f: F' — E véri-
fiant les deux conditions suivantes :

(i) flp, appartient a C" (O, J',dg\ ;) ;
(ii) Xéxi_l(z)zds\ﬂf(l/zﬂ@F_{O} se prolonge sur Op en un élément
de CT(@F,J/,ds\J/).

L’application
B(X/, Jl,dS\J/) — CT(@F, Jl,ds\J/) D CT(@F, ledS\J’)

4. .
() fro (2 f@r2), (2 - X (@)% 1(1/2)))
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est un isomorphisme de E-espaces vectoriels. On munit alors B(x', J',dg\ ;)
de la topologie localement convexe déduite de cette application, ce qui en fait
un espace de Banach sur F pour la norme || - | g définie comme suit : si (f1, f2)
désigne I'élément de (C™(Or, J', dg\ ;))* correspondant & f € B(x',J',dg\ ;)
via l'isomorphisme (4.5), alors :

(4.6) I£5 = sup (I f1ller, I f2ller)-

Pour f € B(x',J',dg\ /) et g = [ ] € G, considérons la fonction définie par
_ dz—b
4 (@) ) = xaldetlohnint ™ (es+ a)(ces + o)t p (L0

pour tout z # ¢ (si ¢ # 0). Le prochain résultat montre que gf se prolonge
par continuité en z = ¢ en un élément de B(x’, J',dg\ ;) et que, pour 'action
de G définie par la formule (4.7), I'espace B(x', J', dg\ ;) est un G-Banach.

LEMME 4.5. — L’action a gauche de G sur l’espace B(X’,J’,QS\J,) donnée
par la formule (4.7) est bien définie et se fait par automorphismes continus.

Démonstration. — Soit f = (f1, f2) € B(x',J',dg\ ). En utilisant I'isomor-
phisme (4.5), on voit que l'on a d’autre part, pour tout g = [¢b] € G

d R
(95)1(2) = X (det(9))Xaxi " (—cwrz + a)(—cwpz + a)s\7 fy (%)

si % cwrpOF et
- —Cwrpz+a
(9)1(2) = X (det(g))xops " (dampz — b)(dewpz — by fy (L2 12)
dsz —-b
si % € F\wr®F; et d’autre part,
’ r o —1 doy _bw% + %
(9£)2(2) = X (det(9))xXixi " (—e + az)(—c + az)lo i (—=E—=r)
az —c¢
si % € wrpbr et
-1 , az —c
(9)2(=) = Xi (det(g)xsx; ™ (b= + d)(=bz + Yo (=5 )
si % S F\wF @F.
Il suffit maintenant de montrer que ’application
(4.8)
CT(@F, Jl,ds\J/) @ CT(@F7 Jl,ds\‘]/) e Cr(@F, Jl,ds\‘]/) @ CT(QF, Jl’dS\Jl)
(f1, f2) — ((9£)1,(9f)2)

est bien définie et continue. Par la décomposition de Bruhat G = PU PwN, il
nous suffit de montrer la stabilité et la continuité de ’application (4.8) pour les
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matrices g de la forme [ 9], [9%7], [§ 9] et [§ 1] avec A € F*, ce qui est une

conséquence des formules ci-dessus, de la proposition 3.4 et du fait que ’espace
C"(OF,J',dg\ ;) est une E-algébre de Banach [13, Lemme 2.9]. O

Le lemme 4.5 et le Théoréme de Banach-Steinhaus [24, Théoréme 6.15] im-
pliquent alors que ’espace B(x/, J’,dS\J,) est un G-Banach.

Soit k € Nsg. Fixons S C @; un systéme de représentants des classes
de (Op/whOr)*, et notons ! le plus petit entier positif tel que x|p(a; )
et X5|p(a;,) soient des fonctions J'-analytiques sur l'ouvert D(a;, ) pour
tout a; € Sj.

Supposons de plus que le caractére central de I(x, J,dg\ ;) est entier, ce qui
équivaut & demander que

(4.9) valg, (X1 (p)) + valg, (x5 (p)) + |dsy /| = 0.

LEMME 4.6. — Les fonctions de F' dans E définies par les formules suivantes
sont des éléments de B(x', J',dg\ ;1) :
2 TS\ I

XX (2 — a)(z — @)\ B (2 — a) " iz #
stz=a;

Z =

aveca € F, m; € N7 et 0 < ng\ o < dgy v tels que r — (Ing 5|+ |m ) > 0.

Démonstration. — Le méme raisonnement que celui permettant de prouver |3,
Lemme 4.2.2] s’applique : il suffit de montrer que la fonction f: O — FE définie
par
T @)t s g i 2 £ 0
1) = { 0 siz=0
appartient & C" (O, J',dg\ ;). Soit fo la fonction nulle sur O et, pour tout n €
Nsg, posons :

-1 d ’— 7= ’
fnl(2) = 1o\ Do) (2)XaxX1 (2)258\ 7 s\ 27

La fonction f, est bien dans C"(Op, J',QS\J,) puisqu’elle est en fait
dans 7 (Or,J', dg\ ;). Par [24, Lemme 9.9], il suffit de montrer que f,+1 — fn
tend vers 0 dans l’espace dual de l’espace de Banach des distributions
(J', dg\ ;v )-tempérées d’ordre r sur Op. Autrement dit, on veut montrer que

sup ‘ Jor (fn+1(z) - fn(z))ﬂ(z)‘

HECT (O, " g y1) lellrdg,

— 0 quand n — +o00.
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Remarquons que

-1 r—n A (17
fn+1(2) = fn(2) = 1p(0,n)\D(0,n+1) (2)X2X1 (2)2ds\0 ~Bs\s7 57y

ror—1 d —-n —m
E 1p(a,wpnt) (2)XoXT  (2)25S\/ TR\ 7
a; €S

(4.10)

Comme X et x5 sont des caractéres J'-analytiques sur D(a;,!) pour tout a; €
S, on sait que pour tout n > 0, on a :

—1
]-D(aiw?,n—i-l)(z)XIQX?L (Z)

V4 ;-1 z
i ()

1
=x5X1  (@g)1D(a, (w

n
F F
-1 z h
= X2X (wp)lD(al,Z)( ) > ba,,(ai) ( . a@)
hy 20 “r
) -1, n zZ—a;wp\ by
=x2X1 (@p) Z 1D(aiw;,n+l)(z)bﬁﬂ(ai)<7)
ﬁJ')Q F

Grace a la condition (4.9), on sait que }X’Qx’l_l(w%” = ¢ "2\ D Ajnsi,
en écrivant z 7 = (z — a;wh + a;wh) "™ et en développant, on obtient,
pour tout a; € S; :

—-mgy _ 1 —m ;s )\ 7tJ/ aﬂﬂ? Lty
1D a;wh n+l (Z)Z 7 — iD(a;jwlk,n+l ( ) a; wF t, @ n )
F F =J w
,J/>Q F

ol les \; , sont des éléments de ). De méme on obtient, pour tout a; € S; :
1 QS\J' g\ g/
D(a;wh,n+l) (Z)Z

= 1D(aiw},n+l) (2) Z Flegy ;i (aiw%)ks\ﬂ (z - aiw?)ds\ﬂ —ﬂs\J/—ES\J,,

Qgﬁs\ﬂ gds\‘]’ R\ g/

avec [y € Nso.

S\J!

Pour tout 0 < ag\ jv < dg\ v €t tout §, € NY", notons alors fag 8, Or\{0} - E,
la fonction définie par :

d
fQS\JMEJ/ (Z) =z

S\J' —QS\J'Z_EJI .
Par (4.10), on a :
-1
|1 (frs1(2) = fn(2))] = sup (XD (amp i) (2)XaXE T (2) fag, yrm i (2))] -
a; 1
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Si I'on note C1 = supg, e, Supy, , |ba,, (ai)], les égalités précédentes montrent
alors que pour tout a; € S;, on a :

-1 = 1o ’
‘#(1D(aiwg,n+l)(z)X/2X/1 (2)z4s\ Rs\5 7y ){

< Clq—”(zr_|ds\1/‘_|mﬂ|) sup q_n(IES\J"_lLﬂl)

L]/
ES\J'

: ’y’(lD(aiwg,n-i-l)(Z)fQS\JI-FES\J/ L (Z - alw?‘)) |)

ou [ ; varie dans N7 et ou 0 < ES\J, < dS\J,. D’aprés la remarque 3.10, on a
aussi :

| (LD(aswp ) (2) fagy itk oty (2 — @)

(D) (r+lkgy gr =1Ly 1= ldgy g [+ gy o)
S ||M||T’¢S\J sup ¢q S\J o S\J S\J ;

LJ/

kg\ s

d’ott 'on déduit que

‘ﬂ(fnJrl(z) - fn(z))|

—n(r=|m /l=Ing\ ;1) Ur+tlkgy o =1Ly 1=1dsy gr 1+ ]mgy\ 571)
S Cl”“”’r’,és\‘]q J’ S\J/ Sup q S\J/ J! S\J/ S\J/ ,

L]/

ES\J’

ce qui prouve le résultat car 7 > |[m /| + [ng\ - O

D’aprés le lemme 4.6, on sait que pour tout a € F, tout m; € NJ'
et tout 0 < mg\ ;v < dg\y tels que 7 — [ng p| — [m,; | > 0, les fonctions
[z > 225\ 2] et [z — xhx) 'z — a)(z — @)%\ TR\ (z — a) ™) sont
dans B(y/, J’,gls\J,). Notons L(x/, J’,QS\J,) Padhérence dans B(x/, J’,QS\J,)
du sous-FE-espace vectoriel engendré par ces fonctions. Un calcul direct laissé
au lecteur permet de vérifier ’énoncé suivant.

LEMME 4.7. — Le sous-espace L(X’,J’,QS\J,) est stable par G dans
B(XI7JI7QS\J’)'

Posons alors

déf
H(XlﬂJl’dS\J/) = B(leJI7dS\J’)/L(X/’J/>dS\J’)'

C’est un espace de Banach sur F qui est munit, d’aprés les lemmes 4.5 et 4.7,
d’une action de G par automorphismes continus.
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5. Réseaux

5.1. Deux conditions nécessaires de non nullité. — Soit x1, x2: F'* — E* deux
caractéres localement J-analytiques et dg\; un |S\J|-uplet d’entiers positifs
ou nuls. Posons r = —valg, (x1(p)) et considérons la représentation localement
Qp-analytique
J-an
I(x, J,ds\s) = ( ® (Symd"EQ)J) ®F (Indgxl ® Xz)
oceS\J

que nous avons construite dans la Section §4.2. Soit I(x, J, dg\ ;)(F) le sous-
espace fermé de I(x,J, dg\ y) formé des fonctions & support compact. Il est
stable sous 'action de P et il engendre I(x, J,d S\ 7) sous G. En outre, il contient
espace O)(0F, J,dg\ ;) et 'on vérifie immédiatement que

I(x,J,dg\ ;) = Z 90(OF, J dg\ ).
geG

D’aprés la preuve de [15, Proposition 1.21], le complété unitaire universel
de I(x, J,dg\ ;) est le complété de I(x, J,dg\ ;) par rapport au sous-f)p[G]-ré-
seau engendré par les vecteurs 1y, (z)2™s\7 2™ avec 0 < ng\y < dg\yet my €
NY. En utilisant la decomposition d’Iwasawa G = PK et la compacité de K, on
voit qu’il suffit de compléter par rapport au sous-@g[P]-réseau A engendré par
les vecteurs 1g, (2)z"5\7 27 et 1p_g, (2)x2XT L (2)2%s\7 725\ 2~ avec 0 <
ng\s < dg\; et m; € N’. Notons I(x, J,dg\ ;)" le complété de I(x,J,dg 5)
par rapport & A : c’est un G-Banach unitaire pour lequel on dispose des deux
conditions nécessaires de non nullité suivantes.

PROPOSITION 5.1. — Les deux conditions suivantes sont nécessaires pour
que I(x, J,dg\ ;)" soit non nul :

(i) le caractére central de I(x,J,dg\ ;) est a valeurs entiéres;
(ii) on a linégalité valg, (x2(p)) + |dg\ 5| = 0.

Démonstration. — Supposons que (I(x,J,dg\ )", | - [|) soit non nul. En par-
ticulier, Papplication canonique ¢: I(x, J, QS\J) — I(x,J, dS\J)/\ est non nulle.
Soit donc f € I(x,J,dg\ ;) tel que ¢(f) # 0. Comme ¢ est G-équivariante et
comme I(x, J,dg\ ;)" est un G-Banach unitaire, on a :

x1(p)xz @)%V ()1 = ()],
ce qui prouve (i).
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Montrons maintenant que si valg, (x2(p)) + |dg\ ;| < 0, alors I(x, J,dg\ ;)"
est nul. Ceci équivaut & prouver que pour tout 0 < ng ; < dg\ s et tout m; €
N7, on a :

(5‘1) VA e E,Vn >0, )\ID(Om)(Z)ZHS\szJ c A.

Nous allons raisonner par récurrence sur |ng, ;| + |m,|.
Supposons tout d’abord |ng\ ;| + [m ;| = 0. Soit A € E et n € N. Notons

md
m le plus petit entier positif tel que valp(x2 (@ )wF "V < valp(A) et fixons
R C Op un systéme de représentants des classes de O /@’ Op. Comme A est
stable sous l'action de P, la formule (4.4) assure que l'on a :

mdg, ;

Va; € R, [woF wpal]]-D(O n) — XQ(’WF)’(DF 1D(wFa“n+m) €A.

On en déduit que

> @B mr N ppamem = X2(@)@r N L € A,
a;€ER
ce qui assure que Alp(g ) € A.

Supposons maintenant que (5.1) soit vrai pour tout 0 < ng\y < dg\; et
tout m ; € N7 tels que |ng\ ;| + |m;| <1 ot I est un entier positif. Soit i € NS
tel que :

lil=1+1 et i, <d,, pourtoutoe S\J

Comme A est stable sous l’action de P, la formule (4.4) assure que l'on a :

mdg, ; <z —a;,wh\t

Ya; € R, [WO;? wglai ]ZilD(O,n) Xz(wF )w w}? ) 1D(w}ai,n+m) € A,

avec g, € Z. On en déduit, en développant (%) et en utilisant I"hypothése
F
de récurrence, que l'on a :

mdS\J( z

7
Va; € R, xo(wP)wy wm) 1p(wnaimim) € A.
F

Ceci assure en particulier que l'on a :

my,_Mds\s_—mi_; _ my s\ g
E , X2 (@ )WF Wg ZilD(wgai,n+m) = x2(wF )wF
a;€R

w;mlzilD((],n) € A,

ce qui implique que Az%1 D(o,n) € A, et permet de conclure. O

REMARQUE 5.2. — La condition (i) de la proposition 5.1 peut s’exprimer par
I’égalité suivante :
(5.2) valg, (x1(p)) + valg, (x2(p)) + Idg\ ;| = 0.
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On termine cette section par quelques remarques sur le cas localement al-
gébrique. Soient x1,x2: F* — E* deux caractéres localement constants et d
un |S|-uplet d’entiers positifs ou nuls. Posons :

10x.d) = (@ ym™ E?)) 95 (ndxs @ xal | 71),
o€S

ol Indg(xl ® x2| - |71) désigne l'induite lisse usuelle. D’aprés la proposi-
tion 5.1 et d’aprés [21, Lemme 7.9] on connait deux conditions nécessaires
pour que I(x,d)" soit non nul, & savoir :

(i) valg, (x1(p)) + valg, (x2(p)) + [F': Qp] + |d| = 0;

(i) valg, (x2(p)) + [F": Q] + |d| > 0 et valg, (x1(p)) + [F: Q] + |d| > 0.
On voit que (i) et (ii) sont équivalentes a

(') valg, (x1(p)) + valg, (x2(p)) + [F" : Qp] + |d| = 0;

(i) valg, (x2(p)) < 0 et valg, (x1(p)) < 0.

Rappelons la conjecture suivante qui est un cas particulier d’une conjecture
plus générale due a Breuil et Schneider [9].

CONJECTURE 5.3. — Awvec les notations précédentes, les conditions (i) et (i)
sont aussi des conditions suffisantes & la non nullité de I(x,d)".

REMARQUE 5.4. — La conjecture 5.3 est démontrée dans les cas suivants :

e lorsque F' = Q, 3, Corollaire 5.3.1] ;
e orsque ngl_l est un caractére modérément ramifié avec d = 0 [29, Pro-
position 0.10], ou [18, Théoréme 1.2] pour une preuve alternative;

e lorsque ngl_l est un caractére non ramifié avec certaines conditions sur d
[14].

5.2. Passage au dual. — On conserve les notations du §5.1. Supposons que les
conditions (i) et (ii) de la proposition 5.1 soient satisfaites, ce qui implique en
particulier que » > 0. Posons & nouveau :

J’:JH{UES\J, de +1>71}, X1=x1, Xo=X2 H ode.
oeJN\J
On sait que ’on dispose d’une immersion fermée G-équivariante :
(5'3) I(X? J7¢S\J) - I(X/N]IvdS\J')'
Le prochain résultat donne des informations sur les vecteurs localement (Q,-ana-

lytiques de I(x, J,dg\ ;)"

PROPOSITION 5.5. — Supposons que les conditions de la proposition 5.1 soient
satisfaites. Alors les conditions suivantes sont équivalentes et vérifiées :
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(i) Toute application continue, E-linéaire et G-équivariante I(x, J, dS\J) —
B, avec B un G-Banach unitaire, s’étend de maniére unique en une ap-
plication continue, E-linéaire et G-équivariante I(x', J',dg\ ;1) — B.

(ii) L’application canonique I1(x,J,dg\;) — I(x; J,dS\J)/\ s’étend de ma-
niére unique en une application continue, E-linéaire et G-équivariante
I(Xl7 Jl)dS\J’) - I(X, J7 dS\J)A'

(iii) L’application (5.3) induit un isomorphisme de G-Banach unitaires :

I(X7 J7dS\J)/\ — I(Xl7 Jl)dS\J’)A :

Démonstration. — L’équivalence des conditions (i), (ii) et (iii) est claire. Breuil
montre (i) en supposant de plus que l'application de I(y, J, dS\J) dans B est
injective [8, Théoréme 7.1]. Une preuve analogue, qui utilise de fagon cruciale
[8, Lemme 6.1], permet de démontrer le cas général. O

D’apres la proposition 5.5 (iii), donner une description explicite de I(x;, J, dg\ N
revient & donner une description explicite de I(x’, J’ ,ds\ 7). On peut ainsi
supposer que :

(5.4) VoeS\J, r>d,+1,

ou encore que J = J'.
Rappelons (§5.1) que le complété unitaire universel de I(x, J,dg\ ;) est le
complété par rapport au sous-@g[P]-réseau A engendré par les vecteurs :

(5.5) 1p, (2)225\7 2™ et 1p_p, (2)xaX] (2)2%s\ 7 Bs\s z 7m0y

pour tout 0 < ng\y < QS\J et tout m; € N7,

De plus, on note I(x, J, QS\J)V le dual continu de I'espace I(x, J,dg\ ;) muni
de la topologie forte. Si u € I(x,J,dg\ ;)" et f € I(x, J,dg\ ), on note, pour
tout ouvert U de F :

u(lUf)::/foznmz»

D’aprés la remarque 2.4, Papplication canonique I(, J, ds\J) — I(x, J, dS\J)A
est d’image dense. Par suite on a une injection continue

(5°6) (I(X7 J7dS\J)/\)V - I(X? J7dS\J)v'

Le résultat suivant donne une caractérisation utile de 'image de ’application
(5.6).

PROPOSITION 5.6. — Soit p € I(x,J,dg\ ;)" Alors p € (I(x, J,dgs\j)")" si et
seulement s’il existe une constante C,, € R>q telle que l'on ait, pour tout n € Z,
tout a € F', tout 0 < ng y QQS\J et tout m; eN’ :
61 | oo amiae)] < i,

D(a,n)
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68 [ e e e

S Cuq"(lﬁs\ﬂ""lmﬂ_r) .

Démonstration. — La distribution p s’étend en une forme linéaire continue
sur I(y, J, dS\J)/\ si et seulement s’il existe une constante C,, € Rx¢ telle que :
(5.9) vieh | [ reme|<c.

F

En utilisant (5.5) et 'identité
1281 (Lo, (2)2250520) = 1o, (2)xaxi ()sers 2oz,

on obtient immédiatement que (5.9) est équivalente aux deux conditions sui-
vantes :

(5.10) |1(b(1p, (2)2"5\ 2™0)) | < O
(5.11) (b9 §] (L, (2)2"s\7 2m))| < Cy;

pour tout b € {[WO? ‘11] in€Z,ac F},tothé@S\J S dg yettout m; € N7,
Or, en appliquant la formule (4.4) et d’aprés (5.2), on obtient que

([ 21 o, ()220 220) )|

nd Z—a\%s\Js/z —a\"y
- o= (50 ()"
[p(ton @@ (2 -

M(lD(a,n)(Z)(z —a)"s\(z - “)mJ) ‘

n(lﬂs\J H‘lﬂjl_T)

=4q

d’ou la condition (5.7).
Un calcul analogue montre que la condition (5.11) est équivalente a la condi-
tion (5.8). O

DEFINITION 5.7. — On appelle distribution (J, QS\J)—tempérée d’ordrer sur F
une forme linéaire continue sur I'espace de Banach B(x, J,dg\ ;)-

D’aprés ce que l'on a vu dans la Section §3.2, on sait que J (O, J, dS\J)
s’injecte de fagon continue dans C" (O, J, dS\J) et que son image y est dense.
En utilisant le fait que I(x,J,dg\ ;) (resp. B(x, J, QS\J)) s’identifie topologi-
quement & deux copies de 7 (Or, J,dg\ ;) (resp. C"(0OF, J,dg\ ;)), on en déduit
Pexistence d’une injection GLg(F)-équivariante continue

I(X’ J, dS\J) - B(X’ J, dS\J)v

dont l'image est dense dans B(x, J, dg\ 7), puis d’une injection continue

(5.12) B(x, Jsdg\y)" = I(x, Jydg\ )"
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Le résultat suivant donne une caractérisation utile de 'image de ’application
(5.12).

PROPOSITION 5.8. — Soit p € I(x,J,dg\ ;). Alors u est tempérée d’ordre r
sur F si et seulement s’il existe une constante C,, € R>q telle que l'on ait :

(5.13) ‘ / (z _ a)ﬂsu(z _ a)ﬂJM(Z)) < Cuq"(T*|ﬂs\J|*|mJ|)
D(a,n)
pour tout a € wrpOp, tout 0 < ng\ s < QS\J, tout m; € N7 et tout n >1;
(5.14) ‘ / X2X1_1(z)zdS\J_ﬂS\Jz_mJu(z)‘ < Cuqn(lﬂsu|+|m]\—r)
F\D(0,n+1)

pour tout 0 < ng\ ; < dg\y, tout m; € N7 et tout n <0;

_ 1 ns\g /1 m;
1 ' dS\J (7_ ) (7_ ) ‘
(5.15) )/ gt x2xi (#)z o ~—a) ul)

S C‘uq"(r_|ﬂs\ﬂ_|m,]|)

pour tout a € Op — {0}, tout 0 < ng\; < dg\;, tout m; € N’ et tout entier

valp(a)

n > 7

Démonstration. — L’application (4.2) (resp. (4.5)) induit un isomorphisme to-
pologique de I(x,J,dg\ ;)" dans (7(Or,J,dg\;)¥)? (vesp. de B(x,J,dg\ ;)"
dans (C"(OF, J,dg ;)")?). Silon note (p1, p2) I'élément de (7 (Or, J,dg\ 5)")?
qui correspond & p via cet isomorphisme, il est clair que p est tempérée d’ordre
r sur F' si et seulement si les distributions p; et po sont (J, dg\ 7)-tempérées
d’ordre r sur @p. D’aprés le théoréme 3.8, la distribution u; (resp. p2) est
(J,dg\ ;)-tempérée d’ordre r sur O si et seulement s'il existe une constante
C,, € Rxq (resp. C,,, € R>q) telle que pour tout a € fp, tout 0 < ng\y <
dg\ 5, tout m; € N7 et tout n > 0, on ait :

(5.16) ’lﬂ (1D(a,n)(z)(z —a)*s\I(z — a)mJ)‘ < Cﬂlqn(r_lﬂs\Jl_‘mJl) ;
(5.17) ‘/‘2 (]-D(a,n) (2)(z — a)s\7 (2 — a)mJ) ‘ < C#QQ'IL(T—lﬂS\Jl_‘mJl) )
La fonction f correspondant au couple

(fla f2) = (]-D(a,n)(z)(z - a)ﬂs\J (Z - a)mJ7O)

via (4.3) est la fonction 1D(wm7n+1)(z)(é - a)ﬂS\J(wLF —a)™. Ainsi, la
condition (5.16) se traduit par

< Cﬂlq(n+1)(r—|ﬂs\J|—lmJ\)

‘N(lD(wFa,n-&-l)(z)(z - wFa)ﬁS\J(Z - wFa')mJ>
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pour tout a € Op, tout 0 < ng ; < dg 5, tout m; € N7 et tout n > 0, d’ou
(5.13).

La fonction f correspondant au couple
(f1, f2) = (0, 1p(an) (2)(z — @)*5\7 (2 — a)™7)
via (4.3) est la fonction 1. |l_a|§|w%|}(z)XQXII(Z)zdS\J (1 —a)s\ (1 _a)mJ.
Nous devons ici distinguer deux cas.
e Sia€ D(0,n),ona{z: | —a| <|wh|} = F\D(0,—n+1); la condition
(5.17) se traduit alors par

(5.18) "u(]_F\D((L_n_i_l)(Z)XQXI—l(z)zds\J (% - a)ﬂsu (% — a>mJ) ‘

S Cuzqn(lﬂs\Jl""lﬂJ‘_T)

pour tout 0 < ng\y < QS\J, tout m; € N7 et tout » > 0. En développant

(% — a)ﬂs Vet (% — a)m’ , on voit directement 1’équivalence des conditions
(5.18) et (5.14).

o Sia€ Op\D(0,n), ona{z: |I —a| <|@p|} = D(2,n— 22 et la

condition (5.17) se traduit alors par la condition (5.15). O

COROLLAIRE 5.9. — Soit p € I(x,J,dg\ ;)" . Alors p € I(x, J,dg\ 5)" si et

seulement s’il existe une constante C, € Rxq vérifiant (5.13), (5.14), (5.15)
ainsi que les deux conditions supplémentaires suivantes :

(5.19) / 25\ 2y (2) = 05
F

620) [t ae - ot - o ) =0

pour tout a € F, tout 0 < ng\ ; < dg\ ; et tout m; € N7 tels que r — (|ng\ ;| +
Imyl) > 0.

Démonstration. — C’est une conséquence immédiate de la proposition 5.8 et
du lemme 4.6. O

6. Preuve du théoréme principal

Conservons les notations du §5.1 et supposons que les conditions (i) et (ii)
de la proposition 5.1 soient vérifiées. Rappelons que cela revient & dire que le
caractére central de I(x,J,dg\ ;) est entier et que l'inégalité valg, (x2(p)) +
|ds\J| > 0 est vérifiée. De plus, par la proposition 5.5 on sait que calculer
le complété unitaire universel de I(y,J, QS\ s) revient a calculer le complété
unitaire universel de I(x/, J',QS\J,). On peut donc supposer que J = J'.
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Nous nous proposons de montrer que les conditions (5.7) et (5.8) sélec-
tionnent exactement les distributions (J, dg, ;)-tempérées d’ordre r sur F' an-
nulant toutes les fonctions de la forme [z — 2%5\72™] et [z — x2x] (2 —
a)(z — a)4s\ s\ (z — a) "] avec a € F, m; € N7 et 0 < ng\y < dg\ s tels
que 7 — (|ng\s| + |m;|) > 0. Plus précisément nous allons prouver le résultat
suivant.

THEOREME 6.1. — Soit i € I(x, J,dg\ ;)" Les deur conditions suivantes sont
équivalentes.
(A) La distribution u vérifie les conditions (5.7) et (5.8);
(B) La distribution p vérifie les conditions (5.13), (5.14), (5.15), (5.19) et
(5.20).

6.1. Preuve de (A) = (B). — Supposons que p vérifie les conditions (5.7) et
(5.8). Alors p vérifie a fortiori (5.13) et (5.14). Pour montrer que (5.7) implique
(5.15), quitte & changer la constante C,,, on a besoin de I’équivalence suivante.

LEMME 6.2. — Quitte & modifier la constante C,,, la condition (5.15) est équi-
valente & la condition suivante :

(1) Il existe un entier ng > 0 tel que (5.15) est satisfaite pour tout a €
Or — {0}, tout 0 < ng\ ; < dg\,, tout my € N7 et tout n > ng + %@

Démonstration. — (5.15) = (i) est immédiat.
Montrons que (i) = (5.15). Soit a € O — {0} et %@ <n<mng+ %@L)

Si I'on pose n’ = n + ng, on peut écrire alors D(i,n — %F(a)) comme union
de disques de la forme D' = D(Z,n' — %F(a)) avec |a| = |d/| (et donc

la—a’| < ¢ ™). En écrivant (%—a)i = ((%—a')—l—(a’—a))iavecg'e {ng\ s, ms},
puis en développant, on obtient que
1 n 1 m
p(1o e @ (2= a) " (S -a) )
z z
< sup |0, — a’||ﬂs\1‘*|ﬁs\1|+|ﬂ1‘*|lj|
QSES\JgﬂS\J

le‘]gm]
1 d 1 NEsvr /1 AL
: ‘M(lD'(z)th (2)2%s\7 (; —a ) (; —a ) )‘}

n(=Ing\ sl +lkg\ s1=Im 1 +L;]) n (r—lkg\ s1=1L;1) :
sup q S\J S\J J J Cﬂq S\J J par (1)
ngs\Jgﬁs\J
o<l <m;

IN

— Cuq"(T_|ﬂs\J|_‘mJ|)q(n/_n)7'

/ _ _
S C#q"(r |ﬁs\J| ‘m,]l)’
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ou 'on a posé CL e Cq™°". Comme le dernier terme ne dépend pas du choix
de a on peut conclure. O

PROPOSITION 6.3. — Quitte & modifier la constante C,,, la condition (5.7)
implique la condition (5.15).

Démonstration. — Notons ng le plus petit entier positif tel que (xax7 ") |D(1,m0)
soit une fonction J-analytique. D’apreés le lemme 6.2 il suffit de montrer que la
condition (5.15) est satisfaite pour tout a € O — {0}, tout 0 < ng ; < dg\ s
tout m; € N’ et tout n > ng—i—%@. Posons D = D(%,n— %F(a)) D’aprés
Dégalité

1 n 1\n

1D(Z)(* - a) T = 1p(2)(~ 1)z B\ g\ (z — 7) o

z a
on obtient, en écrivant z%s\7"2s\s = (z — it %)QS\J_ES\J et en développant,
que

1 n
1p(2)2%0 (= —a)
z

1 )QS\J_ES\J

— —kg\ ;tn,
=1p(z) Y e e (o

’
ngs\‘] gds\,] —ng\g

€ N. De méme, en écrivant z2~™s = (z—1+1)7™ et en développant,

avec [ S+

on a :

S\J

1p(2)z ™ = 1p(z)a™ Z Ap a7 (z - l)g ,

a
Ty 20

avec A, € N on en déduit que

15(2) (% —a)™ = 1p(a)(-1ymremrams (s - 1)
=1p(z) Z Ap, a2 tes (z _ é)mﬁri‘z.

ry >0

Remarquons maintenant que, pour tout z € D, on a

az € D(l,n— %@) C D(1,n0),
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ce qui implique que

1p(2)x2x; ' (2) = szfl(a_l)lD(Z)mxfl(aZ)

= xaxi " (2) Zbl az — 1)t
1,20
Ly
—x @ () Y byal (= 1)
1,20

avec by, € E et [b,[¢"" — 0 quand |I;| — +oo. Notons alors C' = sup;_ |b,|.
Comme, d’aprés (5.2), on a |x2x; " (a™!)| = |a|!%s\71=2" "on déduit des égalités
précédentes que :
1 n 1 m
‘“(ln(z)mxfl(@zds\’ (G-9) (-9 )‘
z z
< C|a||15\1|_27' sup |a|2‘mJ|+|IJ‘+|LJ‘_|ES\J|+|ES\J|

Qgﬁs\J gds\‘]_ﬂs\‘]
LJ 20, ry >0

L o

Comme la condition (5.7) implique l'inégalité

1\4s\s—k 1\m +Ll,+r
(1o (e= 1) (= 1)

a a

}

)

% ‘|dS\J‘7|ES‘\J|+|MJ‘+|LJH'|£J|7T

on en déduit finalement que

‘u(lD(z)mxfl(z)zdsw (% )™ (1 _ a)mJ)’ < 00 s usl-lm)),

z
ce qui prouve le résultat annoncé. L]

D’aprés la proposition 6.3, on peut étendre p en une distribution

J,d -tempérée d’ordre r sur F'. Il reste & montrer que u, vu comme élément
S\J u

de B(x, J,QS\J)V, est nul sur l'espace L(x,J,dg\ ;). Or, d’aprés (5.7), on a,

pour tout 0 < ng\ ; < dg\ s et tout m; € N tels que r — ([ng, ;| + [m,[) > 0 :

’/ 25\ 2™ p(2)] - 0 quand n — —oco
D(0,n)

tandis que d’aprés (5.8), on a, pour tout a € F, tout 0 < ng\y < dg\y et
tout m; € N7 tels que r — (Ing\ sl + my]) >0

|/ Yo7z = 0)(z — @)\ 7290 (5 — a) 2 u(2)] — 0 quand n — +oo.
F\D(a,n+1)
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Ceci prouve la nullité recherchée et permet de terminer la preuve de 'implica-
tion (A) = (B).

6.2. Preuve de (B) = (A). — Montrer que les conditions (5.13), (5.14), (5.15),
(5.19) et (5.20) impliquent les conditions (5.7) et (5.8) requiert quelques pré-
liminaires. Commencons par donner une autre caractérisation des conditions

(5.7) et (5.8).

LEMME 6.4. — La condition (5.7) est satisfaite (quitte & changer C,) si et
seulement si les trois conditions suivantes sont vérifiées.

(i) (5.7) est vérifiée pour tout a € F et tout n € Z tels que D(a,n)NwrOp
&, tout 0 < ng\; < dg\ s et tout m; eN/;
(i) (5.7) est vérifice pour tout a € wpOr, tout n € Nso, tout 0 < ng ; <
dg\; et tout m; € N’ ;
(iil) (5.7) est vérifiée pour a = 0, pour tout entier n < 0, tout 0 < ng\ ; < dg\
et tout m; € N’ tels que r — (Ing\s| + Im ;1) > 0.

Démonstration. — Seule 'implication (i) + (i) + (iii) = (5.7) est & prouver.
Pour cela il suffit de vérifier la condition (5.7) pour a = 0, pour tout entier
n <0, tout 0 < ng ; < dgy ; et tout m; € N7 tels que r — (|ng ;| + |m;|) < 0.

Notons R C O un systéme de représentants des classes de Op/wrOp
contenant 0 et fixons m € N tel que n +m > 0. On a alors :

1p(o,n)(2)2™5\7 2™

m—1
n n
= Lp(onim) (2)2V 220 + 3 7 Y LD (aimptd m gy (2) 275V 22
j=0 a;€ R—{0}

En utilisant (ii) et l'inégalité r — (|ng\ ;| + |m [) < 0, on obtient que :
’u(lD(OMm)(Z)zQS\szJ)’ < CqmtmIrlngyl=lmy ) < o grr=lngyyl=lm, )

Il reste & minorer les termes de la somme. Soit a; € R— {0} et 0 < 5 <m —1.
En écrivant 2™s\7 = (z — aiwgﬂ + aiw;ﬂ)ﬂS\J (resp. 227 = (2 — aiw;ﬂ +
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a;w ) mr) et en développant, on obtient que
F ppant, q

. g m
‘“(1D<aiw2+],n+j+1)(2’)z 2 J)
) n+jy\l n+j\k
< sup {)M(ID(aiw;+],n+j+1)(z)(ain )5\ (i)™
les\Jgﬂs\J
ngngJ

(e~ et (2 — ity

)

< sup q_(n"l‘j)(lls\JI""lEJ|)CMq(n+j+1)(T_|ﬂs\J‘+|L5\J‘_|m1|+|EJ|) par (1)

les\‘] gﬂs\ J
0k ;<m;;

< Cuq?”q("'i‘j)(’f—|ﬂs\J|—|ﬂJD_

Comme r — (|ng\ ;| + |m;[) <0, on a:

q(n+j)(r_|ﬁs\J|_|mJD S qn("‘_‘ﬁs\Jl_lmJ‘),

d’ou le résultat. O

Rappelons que pour tout entier k£ > 1 on désigne par Sy C Q; un systéme de
représentants des classes de (Op/whOF)*, et que | désigne le plus petit entier
positif tel que X1|p(a;1) e X2|p(a,,1) soient des fonctions J-analytiques sur
Pouvert D(a;, 1) pour tout a; € S;. Notons D(a,n,n+1) = D(a,n)\D(a,n+1)
pour tout a € F et tout n € Z.

LEMME 6.5. — Supposons que la condition (5.7) soit satisfaite. Alors la condi-
tion (5.8) est satisfaite si et seulement si les deux conditions suivantes sont
vérifiées.
(i) (5.8) est vraie pour tout a € F, tout n > 0, tout 0 < ng\y < dS\J et
tout m; € N7 tels que r — (Ing\ gl + Imy1) > 0;
(i) (5.8) est vraie pour a = 0, pour tout n < 0, tout 0 < ng\; < dg\; €t
tout my € N7 tels que r — (Ing ;| + |m,;|) <0.

Démonstration. — (5.8) = (3), (#¢) est immeédiat.
Montrons (¢) + (4) = (5.8). Pour cela, il suffit de vérifier la condition (5.8)
dans les trois cas suivants :

e acF,tout n <0,0 < ng; <dg et m; €N tels que 7 — (|Ing, ;| +
Im,;[) > 0;

® a#0,n€Z 0<ng; <dg et m; € N tels que r — (|ng\ ;[ +|m,|) <
03

e a=0,n>0,0<ng; <dg et m; € N’ tels que r—(|ng\ s|+|m,[) <0.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



670 M. DE IESO

Remarquons d’abord que l’on a :
Va € Fin € Z, 1D(a,n,n+l) = Z 1D(a+aiw;,n+l) .
a; €Sy
Ainsi, un raisonnement analogue a celui prouvant le lemme 4.6 permet de mon-
trer, en utilisant (5.7), que pour tout a € F, tout n € Z, tout 0 < ng\ ; < dg\;
et tout m; € N/ on a, quitte & modifier Cu:

(6.1) ‘“(1D(a,n,n+1)(z)X2Xf1(z —a)(z — a)®s\ s\ (2 — “)_m1>

< Cuq"(|ﬂs\J|+|mJ|_7‘) .

On conclut alors comme suit.

Premier cas. — Soit n < 0 et fixons un entier m > 1 tel que que n +m > 0.
Puisque
m—1
Va € F, 1p\D(a,n) = LP\D(a,n4+m) — Z 1p(a,ntjntit1)s
j=0

on déduit le premier cas de (i) et de (6.1).

Deuziéme cas. — Soit a # 0 et n € Z. Choisissons m € Z tel que n —m < 0
et F\D(a,n —m) = F\D(0,n —m). En utilisant 1’égalité
m+1
]-F\D(a,n) = ]-F\D(a,n—m) + Z ]-D(a,n—m—j,n—m—j—l—l) )
§=0
on déduit le deuxiéme cas de (ii) et de (6.1).

Troisiéme cas. — Le méme raisonnement que celui mené dans le deuxiéme cas
s’applique. O

Remarquons que (5.13) est exactement (5.7) avec a € wpBp, tout n € Ny,
tout 0 < ng\; < dg\ s et tout m; € N7 et que (5.14) est exactement (5.8)
pour a = 0, pour tout n < 0, tout 0 < ng\ ; < dg\ s et tout m; € N’. D’aprés
les lemmes 6.4 et 6.5 il reste alors & montrer :
(i) (5.7) pour tout a € F et tout n € Z tels que D(a,n) N wpOp = O,
tout 0 < ng\y < dgy ;s et tout m; € N/ ;

(ii) (5.7) pour a = 0, pour tout entier n < 0, tout 0 < ngy; < dg\; et
tout m; € N7 tels que 7 — (Ing\ ;| + [m,[) > 0;

(iii) (5.8) pour tout a € F, tout n > 0, tout 0 < ng\ ; < dgy ; et tout m; € N/
tels que r — (|ng\ 7| + [m;]) > 0.

La proposition suivante montre que (5.15) implique (i).
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PROPOSITION 6.6. — La condition (5.15) implique la condition (5.7) pour tout
disque D(a,n) avec a € F et n € Z tels que D(a,n) NwpBr = &, tout 0 <
ng\ y < dg\ g €t tout my €N/,

Démonstration. — Un calcul analogue a celui de la proposition 6.3 montre que
la condition (5.15) est équivalente a

(6.2) ‘ 248\ (1 _ a)ﬁs\J <1 _ a)mJM(Z)‘
’ 1 2valp (a) z z
D(z,n— f )

2r—|dg\ ;| n(r—Ing\ ;1—Im;|)
< Cﬂ|a| S\J q S\J J

pour tout a € Op — {0}, tout 0 < ng ; < dg\ 4, tout m; € N7 et tout entier

valp (a) )

n > 7

Soit a € Op — {0} et n > %@ Posons D = D(i,n - %F(a)) Pour
tout 0 < ng\; < dg\; on a alors les identités suivantes :

1y» 1 n
1p(2) (Z - *) M 1p(2)(—1)2s\7 g~ Bs\v zs\s <, _ a) S\J
a z
Ao 1 —
= ]_D(z)(_l)ﬂswa*ﬂsw (l —a+ a)*S\J ﬂS\JZdS\J (1 B a)ﬂs\J
2 z
- ]_ dS\J_ES\J
— 1D(Z) E AES\JGES\J HS\JzéS\J (; _ a)

ngs\Jgds\J_ﬂS\J
avec Ag s\ € N. Un calcul analogue au précédent montre que :
1\ ™y 1 r;tm;
_ = _ —2m,;-r; (= _
1D(z)<z a) =1p(2) Z Pr @ (z a)
EJ}Q

avec i, € N. Ces deux égalités combinées a la condition (6.2) impliquent que :

(o)== )= 2)")

c[asnsamem,

_ 1 ds\s=Es\s /1 rytm;
sup aksviq EJ,u(ID(z)zéS\J (f - a) (7 - a) )‘
KJ)Q 4 z
ngs\‘lgds\‘]_ﬂs\‘]
SCMarlﬂs\JI*QImJ\
sup |a||Es\J|_|£J||a|2"‘_|is\J|q"("‘_lds\J‘+|ES\J|_|£J|_|mJD

ry >0
QQES\Jgds\J_ﬂs\J
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— Cu|a|2r_2‘ﬂs\J|_2‘ﬂJ|q”(7_‘ﬂs\J|_|mJ‘)

val a
:Cﬂqu%“))(rfmswlf\mﬂ).

Lorsque a € Op—{0} et n > %@, D(%, n— %F(a)) parcourt tous les disques

D(b,m) C F avec b € F et m € N dans F tels que D(b,m) NwrOr = &, ce
qui permet conclure. O

En utilisant les conditions (5.19) et (5.20) on voit que montrer (ii) et (iii)
revient & montrer (quitte & modifier la constante C,,) que, d’une part,

F\D(0,n)

pour tout entier n < 0, tout 0 < ng\; < dg\; et tout m; € N7 tels que r —
(Ing\s| + [ms]) > 0 et
(6.4)

[ it ma)e - @t e e — ) o) < Gyt o
a,n+1)

pour tout a € F, tout n > 0, tout 0 < ng\; < dg\; et tout m; € N7 tels
que 7 — (|ng\ ;| + [m,[) > 0.
Rappelons que I'on a posé, pour tout f € B(x,J,dg\ ),

(6.5) 115 = sup (I f1llcr, I f2ller)

ot (f1, f2) désigne I’élément de CT(@F, J, dS\J)z qui correspond & f via 'iso-
morphisme (4.5).

Les conditions (6.3) et (6.4) sont alors une conséquence immédiate du lemme
suivant.

LEMME 6.7. — e II existe une constante C € R telle que pour tout entier
n <0, tout 0 < ng\; < dg\ s et tout m; € N7 vérifiant r — (|ng\ ;| + [m,]) > 0
on a :

||1F\D(O,n+1)(z)ZﬂS\J my ”B < C’q"(T*|ES\J|*‘mJ|).

o I existe une constante C € Ry telle que pour tout a € F, tout entier
n > 1, tout 0 < ng\y < dg\y et tout m; € N7 vérifiant r — (Ing\ s +1myl) >0,
on a :

Loam (Dxaxi™ (2 = @)z = @)1 (2 — ) 2 g < O blens =0,

Démonstration. — Pour tout 0 < ng\ ; < dg\; €t tout m; € N7 tels que 7 —
n + |m;|) > 0, notons f,,_. . la fonction de O dans E définie par :
S\J J Ng\ g My

Vz € Op, fﬂs\J,mJ (z) = XQXI1(2)ZQS\J*HS\JZ—EJ .
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D’aprés le lemme 4.6 c’est une fonction de classe C". Posons :
(6.6)

C =sup {||f@s\J,mJ||CT 10 < ng\y <dg\ g my € N et 7 — (|Ing ;| + [m|) > 0}-
Par (6.5), on sait que

I1F\D(0,n+1)(2)2%V 2% || B = [ 1p(0,~n) (2) fng, , m, (2)l v

On peut réécrire ||1D(0,_n)(z)fﬂs\me (2)]|cr sous la forme :

— -n -n -n —n\y\—m z
‘XQXll(wF N@F )QS\J mV (wp") T ‘1D(07_n)(z)fﬂS\J’m-l(w_TL)‘
F

cr’
Comme (5.2) assure que ’on a :

”(2T_‘HS\J|_|MJ D
)

‘X2X1_1(WE")(WE”)QS\"_QS”(WE")_EJ =q

et comme le lemme 3.2 assure que

z
@t o, (20
F

o SCC,

on en déduit que
11\ D(0.n 1) ()25 20 || g < Ot I 1=l l),
On distingue maintenant deux cas.
(i) Supposons a € wrBp. Par (6.5), on a alors
11 Dam) (2)x2x7 (2 = @) (z — @)2s\7 725\ (2 — @) ™ |
= b n-1)(2) fag, ym, (@rz = a)llcr -

Comme la norme C" est invariante par translation, on en déduit I’égalité sui-
vante :

D n-1)(2) fug m, (@r2z = a)ller = [1p@©n-1)(2) fug, ,m, (@F2)lcr-

On peut réécrire ||1D(0,n,1)(z)fﬂs\‘],m] (wrz)||cr sous la forme :

— n n —-n n\—m z
‘X2X11(WF)(WF)@S\J 25\ () T ‘1D(07n—1)(z)fﬂswm,z(F)‘
F

or’
D’aprés (5.2), on a :

ot (@) () o) () o | = g2 s

tandis que le lemme 3.2 assure que l’on a :

z
HlD(o,n—l)(z)fns\J,mJ (wn—l ) ‘
F

< Cq("fl)T.
cr
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On en conclut que
11 pgam (2)x2X7 (2 = @) (z = s\ 72\ (2 — @) || < Cg TR D
(ii) Supposons que a ¢ wrOp. Par (6.5), on a :
I1D(am (2)x2X7 (2 = @) (z — a)ds\ 725\ (2 — a) ™ |

1
n m —
Hl 2va1}v<a>)(z)z S\ z JfﬂS\JamJ(z a)HCT'

En écrivant 2™\ = (z— 1 + L)sw omy = (- 14 1ym; hujs en développant

et en utilisant I'invariance par translation de la norme C", on obtient que

1,
w

1
H]_D(l e 2val;~(u))(Z)ZES\JZmeES\J7mJ (Z — g) HCT

@’

a
< sp ~las|- 184, !
0<a;<
0<BS\J\nS\J

1D(o,n_w)(z)f§w,g](z)) o

D’aprés le lemme 3.2, on a :
[0 zatpeo) @i 0, @],
wF w% ds\J‘ES\J w}? —Qy
< Cloxi*(55) (5F) ) 1%

Comme la borne supérieure du membre de droite de I'inégalité ci-dessus est
atteinte pour a; = m; et B, , = ng, s on déduit de (5.2) que

n

@r|™"

Za\g
11D am) (2)x2X7 ' (2 — @) (2 — )25\ 728\ (2 — ) s || g < g Imsvo |7l

ce qui prouve le résultat. O]

Le lemme 6.7 termine la preuve de 'implication (B) = (A), et donc
la preuve du théoréme 6.1. Ainsi, on a montré que ’espace de Banach dual
du complété cherché est isomorphe dans I(x,J, ds\ 7)V au sous-espace de
Banach de B(x, J, QS\J)V formé des p s’annulant sur L(x, J,dg\ ;), c’est-a-dire
a (x, J, QS\J)V. En particulier, II(y, J, dS\J)V est un G-Banach unitaire.

Rappelons que dans [25], Schneider et Teitelbaum introduisent la catégorie
Modfimp(@};) des @)p-modules sans torsion, linéairement topologiques, séparés
compacts, ou les morphismes sont les applications @)g-linéaires continues. Pour
tout objet M de Modcomp(@E) on définit le E-espace de Banach (M || - ||)
par :

a4t Hom$™* (M, E) muni de la norme ||l]| € sup |U(z)].
xeM
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Notons Modfémp(@E)Q la catégorie ayant les mémes objets que la catégorie

Mod{fémp(@};) mais dont morphismes sont définis par :
dét
HomModfémp(OE)Q (A,B) = HomMode,mp(OE) (A,B)® E.
Dans [25, Théoréme 1.2], il est montré que le foncteur M +— M¢ induit une anti-
équivalence de catégories entre Modfémp(QE)@ et la catégorie des E-espaces de
Banach.

COROLLAIRE 6.8. — Il existe un isomorphisme G-équivariant d’espaces de Ba-
nach p-adiques :
I(X7 J7 dS\J)A L) H(X7 ']7 dS\J)~

Démonstration. — L’argument est analogue & celui permettant de prouver [3,
Théoréme 4.3.1]. D’aprés [24, Lemme 9.9], on a une injection fermée G-équiva-
riante

\%
H(X7 J)dS\J) — (H(Xa JadS\J)V) )

ce qui assure notamment que II(x,J, ds\ j) est un G-Banach unitaire.
Par la propriété universelle du complété unitaire universel, ’application
I(x, J, QS\J) — I(x, J, QS\J) induit alors un morphisme G-équivariant continu
de I(x, J,QS\J)’\ vers II(x, J,QS\J), qui induit & son tour un morphisme
continu sur les duaux munis de leur topologie faible, qui sont des éléments
de Modfémp(QE)@. Or, d’aprés le théoréme 6.1, ce morphisme est bijectif et
continu. C’est donc, d’aprés [6, Lemme 4.2.2] un isomorphisme pour les topo-
logies faibles. Par dualité [25, Théoréme 1.2], on obtient alors ’isomorphisme
topologique GLy(F')-équivariant de 1’énoncé. O

REMARQUE 6.9. — Le corollaire 6.8 généralise [3, Théoréme 4.3.1] pour
F = Q,. Mentionnons que ce résultat joue un réle important dans la preuve
par Berger et Breuil de la non nullité de 1’espace I(x, J, ds\J)A.

6.3. Exemple. — Introduisons quelque notations supplémentaires et rappelons
la construction des représentations considérées dans [8]. Si A € E*, on désigne
par unrp(\): FX — E* le caractére non ramifié défini par z — A\V2lr(@),
Soient a,& € E* et k € Nil. Fixons Ji,Js deux sous-ensembles de S tels
que J; C Jy C S. Considérons les deux caractéres algébriques suivants :

x1 = unrp(a”?) H o* 7!, x2 =unrp(pa ) H ot H o2,

oceJ; oeJy oceJa\J1
et posons :
Ja-an
m(J1,J2) = ( ® (Symk”_QEQ)a) Qp (Iﬂdgh ® X2>
oceS\J2

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



676 M. DE IESO

D’aprés la proposition 5.1, on connait deux conditions nécessaires pour que le
complété unitaire universel de la représentation Q,-analytique 7 (Jy, J2) soit
non nul. Un calcul immédiat montre qu’elles sont équivalentes aux conditions
suivantes :

(6.7) —(valp(a) + valp(@)) + Y (ks — 1) = 0;
g€eS

(6.8) —valp(@)+ > (ks —1)>0.
oceS\J1

Supposons que (6.7) et (6.8) soient vérifiées. On a alors nn particulier 'inégalité
suivante :

—valp(a) + Z (ks — 1) <0.

oedy

Posons r = valp(a) — > (ke — 1) et

o€y
Js=Jo[[{o € S\J2, ko — 1 > 1}
D’aprés la proposition 5.5, on sait que I’application fermée et G-équivariante
w(J1, J2) — w(J1, J3)
(@ Gym*2E)7) oy (mafxi @xa ] a’““‘z)h_an
oceS\J3 o€Js\J2

induit un isomorphisme G-équivariant de w(J1, JJ2)" dans w(Jy,J3)". Posons
alors
X?[ = X1 XIZ = X2 H O-ka_Qa
U€J3\J2
et

B(X> J37 (ka - 2)U¢J3) = CT(@Fa J37 (ka - 2)U¢J3) 2] CT(@Fa J37 (ka - 2)0¢J3)'

C’est un espace de Banach sur F muni d’une action continue de G (voir la
preuve du lemme 4.5). D’aprés le lemme 4.6, la fonction h(ncr)ogJ37(ma)o'eJ3
définie par

-1 —2-n, —mg
Rns)og sy s(mo)oess () = Xox4 () [ o727 ] o(2)
o¢Js ocJs

se prolonge sur @ en une fonction de classe C". Si l'on désigne par
L(x,Js3, (ko — 2)5¢s,) le sous-espace de B(x,Js, (ks — 2)o¢s,) engendré
par les couples de fonctions

(z — H o(wpz)™e H o(wpz)™, 2 — h(no)a$J3a(mo)o'€Jg (z))

o Js o€Js
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(Z = h(na)o¢J37(ma)UEJ3 (WFZ - a)’

2 B gy (moresy (1= 02) T ()™ T o(2)™)

o Js oc€Js

aveca € F, (Mmy)oes, € N2 et (No)ogts < (ko —2)5g., tels que T—EU¢J3 Ng —
> J5 Mo > 0, le corollaire 6.8 assure alors que l'on a

[1]

2]

3]

4]

[5]
[6]
[7]

18]

9]
[10]

[11]

m(J1, J2)" == B(x, J3, kv g, — 2)/L(X, J3, kg gy — 2)-
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