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SUR CERTAINS COMPLÉTÉS UNITAIRES UNIVERSELS
EXPLICITES POUR GL2(F )

par Marco De Ieso

Résumé. — Dans cet article, nous donnons une description explicite du complété
unitaire universel de certaines représentations localement Qp-analytiques de GL2(F ),
où F est une extension finie de Qp et généralisant ainsi des résultats de Berger-Breuil
pour F = Qp. Pour cela, nous utilisons certains espaces de Banach de fonctions de
classe Cr sur OF , avec r dans R≥0.

Abstract (On some explicit Universal Unitary Completion for GL2(F ))
In this paper we give an explicit description of the universal unitary completion of

some locally Qp-analytic representations of GL2(F ), with F a finite extension of Qp,
what generalizes a previous work of Berger-Breuil for F = Qp. To this aim, we use
some Banach spaces of Cr functions on OF , with r ∈ R≥0.

1. Introduction, notations et énoncé des résultats

1.1. Introduction. — Soit p un nombre premier. La dernière décennie a vu
l’émergence et la preuve d’une correspondance locale p-adique entre certaines
représentations continues de dimension 2 de Gal(Qp/Qp) et certaines représen-
tations de GL2(Qp). Cette correspondance, qui a pris le nom de correspondance
de Langlands p-adique pour GL2(Qp), a été initiée par Breuil [5, 6], puis établie

Texte reçu le 30 février 2012, révisé et accepté le 18 février 2013.
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636 M. DE IESO

par Colmez [12] et Paškūnas [22] à la suite de travaux de Berger-Breuil [3] et
Colmez [11].

Si F est une extension finie non triviale de Qp, la question d’associer des
représentations p-adiques de G

déf
= GL2(F ) aux représentations p-adiques

de dimension 2 de Gal(Qp/F ) dans l’esprit d’une correspondance locale à la
Langlands est loin d’être résolue et les résultats obtenus pour l’instant sont très
partiels. En utilisant principalement les travaux de Frommer [17] et de Schraen
[27] sur la filtration de Jordan-Hölder des induites paraboliques localement
Qp-analytiques, Breuil [8] définit cependant une représentation localement
Qp-analytique Π(V ) de G pour la plupart des représentations cristallines V
de Gal(Qp/F ) de dimension 2 et à poids de Hodge-Tate distincts. En général,
la représentation Π(V ) ne permet pas de reconstruire la représentation galoi-
sienne de départ, mais l’on s’attend toutefois à ce qu’elle intervienne comme
sous-objet de la bonne représentation, ce qui fait des complétés unitaires
universels de ses constituants fondamentaux des objets pertinents.

L’objet du présent article est de donner une description explicite du com-
plété unitaire universel de certaines induites paraboliques localement Qp-ana-
lytiques, et notamment de celles qui interviennent dans la construction de la
représentation Π(V )). L’espoir qu’une telle description est possible provient
de [3, Theorème 4.3.1], où les auteurs décrivent le complété unitaire universel
d’une induite parabolique localement algébrique de GL2(Qp) à l’aide de l’es-
pace des fonctions de classe Cr sur Zp, où r est un nombre rationnel positif qui
dépend de l’induite considerée.

Pour cela, nous avons introduit et étudié dans [13] une nouvelle notion de
fonction de classe Cr sur OF , où r désigne un nombre rationnel positif et OF
l’anneau des entiers de F . Cette notion s’appuie principalement sur des travaux
d’Amice, Amice-Velù, Colmez, Van der Put et Vishik [1, 2, 10, 23, 30] et repose
sur l’idée cruciale suivante : une fonction f : OF → E est de classe Cr si f(x+y)

a un développement limité à l’ordre [r], où [r] désigne la partie entière de r, en
tout x et si le reste est o(|y|r) uniformément en x.

Tester la non nullité des complétés unitaires universels que nous avons
construits est, en général, une question délicate qui n’est complétement résolue
que pour F = Qp [3, Corollaire 5.3.1] via la théorie des (ϕ,Γ)-modules de Fon-
taine [16]. Mentionnons par ailleurs que [3, Theorème 4.3.1] est un ingrédient
important dans la preuve de ce résultat. Toutefois, on démontre la non nullité
dans quelques cas à partir de résultats de Vignéras [29], qui furent redemontrés
par Kazhdan et de Shalit [18], et de [14].

Remerciements. — Je remercie vivement mon directeur de thèse Christophe
Breuil. L’idée de pouvoir donner une description explicite de ces espaces lui est
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due. Je lui suis reconnaissant pour ses conseils, pour ses très nombreuses re-
marques et pour avoir suivi attentivement l’évolution de ce travail. Je remercie
Benjamin Schraen pour avoir répondu à mes questions et pour avoir lu avec
intérêt une version préliminaire de ce travail. Ses remarques ont été pour moi
très précieuses. Je remercie Arno Kret pour avoir écouté mes idées ainsi que
pour les suggestions qu’il a apportées.

1.2. Notations. — Soit p un nombre premier. On fixe une clôture algébrique Qp
de Qp et une extension finie F de Qp contenue dans Qp. On désignera toujours
par E une extension finie de Qp qui vérifie :

|S| = [F : Qp], où S
déf
= Homalg(F,E).

Si L désigne l’un des corps F ou E, on note OL son anneau des entiers, on
en une uniformisante $L et l’on note kL = OL/($L) son corps résiduel. On
pose f = [kF : Fp], q = pf et l’on désigne par e l’indice de ramification de F
sur Qp, de sorte que [F : Qp] = ef .

La valuation p-adique valF sur Qp est normalisée par valF (p) = [F : Qp] et
l’on pose |x| = p−valF (x) si x ∈ Qp.

Si a ∈ F et n ∈ Z, on note D(a, n) = a+$n
F OF le disque de centre a et de

rayon q−n.

On désigne par G le groupe GL2(F ), par T le tore déployé des matrices dia-
gonales de G et par P le sous-groupe de Borel formé des matrices triangulaires
supérieures de G.

Soit S′ un sous-ensemble de S. Si nS′ = (nσ)σ∈S′ et mS′ = (mσ)σ∈S′ sont
des |S′|-uplets d’entiers positifs ou nuls, nous posons :

(i) nS′ !
déf
=
∏
σ∈S′ nσ! ;

(ii) |nS′ |
déf
=
∑
σ∈S′ nσ ;

(iii) nS′ −mS′
déf
= (nσ −mσ)σ∈S′ ;

(iv) nS′ 6 mS′ si nσ ≤ mσ pour tout σ ∈ S′ ;
(v)

(
nS′
mS′

) déf
=

nS′ !
mS′ !(nS′−mS′ )!

;

(vi) pour tout z ∈ OF , znS′
déf
=
∏
σ∈S′

σ(z)nσ .

Pour alléger l’écriture, nous notons n au lieu de nS un |S|-uplet d’entiers
positifs ou nuls.

Enfin, si V est un E-espace vectoriel topologique, on note V ∨ son dual
topologique muni de la topologie forte [24, §9].
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1.3. Énoncé des résultats. — L’énoncé du résultat principal nécessite l’in-
troduction d’un certain nombre de constructions. Soit J une partie de S et
soit dS\J un |S\J |-uplet d’entiers positifs ou nuls. Soient χ1, χ2 deux carac-
tères localement J-analytiques de F× dans E×. Nous renvoyons le lecteur à la
définition 4.1 pour la notion de localement J-analytique.

Posons :
J ′ = J

∐
{σ ∈ S\J, dσ + 1 > −valQp(χ1(p))}.

Notons χ1 ⊗ χ2 le caractère de T défini par :

(χ1 ⊗ χ2)([ a 0
0 d ]) = χ1(a)χ2(d),

ainsi que la représentation localement J-analytique de P qu’il définit par infla-
tion. Notons :

•
(
IndGPχ1 ⊗ χ2

)J-an l’induite parabolique localement J-analytique, définie
comme l’espace des fonctions localement J-analytiques f : G → E telles
que f(bg) = (χ1 ⊗ χ2)(b)f(g) sur lequel G agit par translations à droite ;
• (SymdσE2)σ, pour σ ∈ S et dσ ∈ N, la représentation algébrique ir-

réductible de GL2 ⊗F,σ E dont le plus haut poids vis-à-vis de P est
χσ : diag(x1, x2) 7→ σ(x2)dσ .

Considérons la représentation localement Qp-analytique suivante de G :

I(χ, J, dS\J)
déf
=
( ⊗
σ∈S\J

(SymdσE2)σ
)
⊗E

(
IndGPχ1 ⊗ χ2

)J-an

.

Remarquons tout d’abord que I(χ, J, dS\J) définit un faisceau sur P1(F ) dont
les sections globales sont les fonctions f : F → E qui vérifient les deux condi-
tions suivantes :

(i) f | OF définit un élément de F ( OF , J, dS\J) ;
(ii) χ2χ

−1
1 (z)zdS\J f(1/z)| OF−{0} se prolonge sur OF en une fonction

de F ( OF , J, dS\J).

Par ailleurs, des formules explicites munissent ce faisceau d’une action conti-
nue de G. D’après la preuve de [15, Proposition 1.21], le complété unitaire
universel de I(χ, J, dS\J) est le complété par rapport au sous- OE [P ]-réseau
engendré par les vecteurs

1 OF (z)znS\J zmJ , 1F− OF (z)χ2χ
−1
1 (z)zdS\J−nS\J z−mJ

pour tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ . Notons alors I(χ, J, dS\J)∧ le
complété de I(χ, J, dS\J) par rapport à ce réseau.

Avant de donner une description explicite de l’espace I(χ, J, dS\J)∧, nous dé-
montrons d’abord deux résultats qui ajoutent des conditions supplémentaires
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aux données initiales et permettent d’éviter des cas pathologiques bien de sim-
plifier le problème. Le premier ingrédient donne deux conditions nécessaires de
non nullité sur I(χ, J, dS\J)∧.

Proposition 1.1. — Les deux conditions suivantes sont nécessaires pour
que I(χ, J, dS\J)∧ soit non nul :
(i) le caractère central de I(χ, J, dS\J) est entier ;
(ii) on a l’inégalité valQp(χ2(p)) + |dS\J | ≥ 0.

C’est un résultat bien connu lorsque F = Qp [15, Lemma 2.1] ainsi que dans
le cas localement algébrique, c’est-à-dire lorsque J = ∅ [21, Lemme 7.9]. En
particulier, si les conditions de la proposition 1.1 sont satisfaites, alors on a
r

déf
= −valQp(χ1(p)) ≥ 0.
Notons χ′1 = χ1, χ′2 = χ2

∏
σ∈J′\J σ

dσ et remarquons que l’on a une immer-
sion fermée G-équivariante :

I(χ, J, dS\J) ↪→ I(χ′, J ′, dS\J′).(1.1)

Un deuxième ingrédient important donné par la proposition suivante, essentiel-
lement démontrée par Breuil [8, Théorème 7.1] en ayant recours aux techniques
dévéloppées par Amice-Vélu et Vishik, qui fournit des indications concernant
la structure de I(χ, J, dS\J)∧, et plus précisement concernant ses vecteurs lo-
calement Qp-analytiques.

Proposition 1.2. — Supposons que les conditions de la proposition 1.1 soient
satisfaites. Alors les conditions suivantes sont équivalentes et vérifiées.
(i) Toute application continue, E-linéaire et G-équivariante I(χ, J, dS\J) →

B, où B est un G-Banach unitaire, s’étend de manière unique en une
application continue, E-linéaire et G-équivariante I(χ′, J ′, dS\J′)→ B.

(ii) L’application canonique I(χ, J, dS\J) → I(χ, J, dS\J)∧ s’étend de ma-
nière unique en une application continue, E-linéaire et G-équivariante
I(χ′, J ′, dS\J′)→ I(χ, J, dS\J)∧.

(iii) L’application (1.1) induit un isomorphisme de G-Banach unitaires :

I(χ, J, dS\J)∧
∼−→ I(χ′, J ′, dS\J′)

∧

D’après la proposition 1.2 (iii), on est donc ramené à considérer I(χ′, J ′, dS\J′)
∧.

Par un calcul analogue à celui mené dans la preuve de [3, Théorème 4.3.1], on
trouve qu’une boule ouverte (de centre 0) du Banach dual de I(χ′, J ′, dS\J′)

∧

s’identifie aux distributions µ dans le dual fort de I(χ′, J ′, dS\J′) telles que
pour tout n ∈ Z, tout a ∈ F , tout 0 6 nS\J′ 6 dS\J′ et tout mJ′ ∈ NJ on ait
les deux inégalites suivantes :

(1.2)
∣∣∣ ∫
D(a,n)

(z − a)nS\J′ (z − a)mJ′µ(z)
∣∣∣ ≤ Cµqn(r−|nS\J′ |−|mJ′ |);
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(1.3)
∣∣∣ ∫
F\D(a,n+1)

χ2χ
−1
1 (z − a)(z − a)dS\J′−nS\J′ (z − a)−mJ′µ(z)

∣∣∣
≤ Cµqn(|nS\J′ |+|mJ′ |−r);

avec Cµ ∈ R≥0.
D’autre part, une étude fine du dual fort de l’espace de Banach des fonc-

tions de classe Cr sur OF , ou plus précisement de son sous-espace fermé
Cr( OF , J ′, dS\J′) (§3.1.2), fournit la condition nécessaire et suffisante suivante
pour qu’une forme linéaire sur F N ( OF , J, dS\J) (voir §3.2 pour une définition de
cet espace) s’étende en une distribution sur Cr( OF , J ′, dS\J′) (Théorème 3.8).
Notons que pour F = Qp il s’agit d’un résultat bien connu et dû à Amice-Vélu
et Vishik [2, 30].

Théorème 1.3. — (i) Soit µ ∈ Cr( OF , J ′, dS\J′)∨. Il existe une constante
Cµ ∈ R≥0 telle que pour tout a ∈ OF , tout n ∈ N, tout 0 6 nS\J′ 6 dS\J′ et
tout mJ′ ∈ NJ′ on ait :∣∣∣ ∫

D(a,n)

(z − a)nS\J′ (z − a)mJ′µ(z)
∣∣∣ ≤ Cµ qn(r−|nS\J′ |−|mJ′ |).

(ii) Soit N un entier tel que N ≥ [r] et µ une forme linéaire sur
F N ( OF , J, dS\J). Supposons qu’il existe une constante Cµ ∈ R≥0 telle que
pour tout a ∈ OF , tout n ∈ N, tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ tels
que |nS\J |+ |mJ | ≤ N , on ait :∣∣∣ ∫

D(a,n)

(z − a)nS\J (z − a)mJµ(z)
∣∣∣ ≤ Cµ qn(r−|nS\J |−|mJ |).

Alors µ se prolonge de manière unique en une distribution sur Cr( OF , J ′, dS\J′).

On est ainsi amené à considérer l’espace B(χ′, J ′, dS\J′) des fonctions
f : F → E qui vérifient les deux conditions suivantes :

(i) f | OF définit un élément de Cr( OF , J ′, dS\J′) ;
(ii) χ′2χ′1

−1
(z)zdS\J′ f(1/z)| OF−{0} se prolonge sur OF en une fonction

de Cr( OF , J ′, dS\J′).

C’est un espace de Banach p-adique naturellement muni d’une action
continue de G et une étude approfondie utilisant de manière cruciale le théo-
rème 1.3 montre que les conditions (1.2) et (1.3) sélectionnent exactement les
formes linéaires de B(χ′, J ′, dS\J′)

∨ qui annulent les fonctions d’un sous-espace
L(χ′, J ′, dS\J′) de B(χ′, J ′, dS\J′) que l’on définit dans la Section §4.3.

Le résultat principal de cet article, qui généralise [3, Théorème 4.3.1] lorsque
F = Qp, est alors le suivant.
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Théorème 1.4. — Il existe un isomorphisme G-équivariant d’espaces de Ba-
nach p-adiques :

I(χ, J, dS\J)∧
∼−→ B(χ′, J ′, dS\J′)/L(χ′, J ′, dS\J′).

Signalons au passage une conséquence immédiate du théorème 1.4.

Corollaire 1.5. — L’espace B(χ′, J ′, dS\J′)/L(χ′, J ′, dS\J′) est un espace
de Banach muni d’une action continue unitaire de G. C’est le plus grand quo-
tient de B(χ′, J ′, dS\J′) ayant cette propriété.

1.4. Plan de l’article. — Dans la section 2, nous rappelons quelques généralités
d’analyse fonctionnelle p-adique ainsi que la notion de complété unitaire univer-
sel introduite dans [15]. La section 3 est constituée de rappels sur les espaces des
fonctions de classe Cr et leurs duaux. Nous introduisons dans la section 4 les re-
présentations localement Qp-analytiques I(χ, J, dS\J) qui font l’objet de notre
étude, puis nous construisons la représentation de Banach Π(χ, J, dS\J). Dans
la section 5, nous donnons deux conditions nécessaires pour que le complété
unitaire universel de I(χ, J, dS\J) soit non nul et nous commençons l’étude des
espaces duaux (I(χ, J, dS\J)∧)∨ et Π(χ, J, dS\J)∨. La section 6, qui est le cœur
de cet article, contient la demonstration du théorème 1.4 ainsi qu’un exemple
de construction explicite.

2. Préliminaires

2.1. Rappels d’analyse fonctionnelle non archimédienne. — Ce paragraphe re-
groupe des notions d’analyse fonctionnelle non archimédienne dont on se servira
par la suite. Nous renvoyons à [24] pour plus de détails.

Un E-espace vectoriel topologique V est dit localement convexe si l’origine
possède une base de voisinage constituée de sous- OE-modules de V . Cela revient
à demander que la topologie de V puisse être définie par une famille de semi-
normes non archimédiennes [24, Propositions 4.3 et 4.4].

Soit V un E-espace vectoriel localement convexe. Un réseau L de V est un
sous- OE-module de V tel que pour tout v ∈ V , il existe un élément non nul
a ∈ E× tel que av ∈ L. En particulier, on remarque que tout sous- OE-mo-
dule ouvert de V est un réseau de V . Deux réseaux L1 et L2 de V sont dits
commensurables s’il existe a ∈ E× tel que a L1 ⊆ L2 ⊆ a−1 L2. La commen-
surabilité définit une relation d’équivalence sur l’ensemble L(V ) des réseaux
ouverts de V .

Un réseau L de V est dit séparé si
⋂
n∈N$

n
E L = 0 ou, de manière équiva-

lente, si L ne contient pas de E-droite.
Un sous-ensemble B ⊆ V est dit borné si, pour tout réseau ouvert L ⊆ V ,

il existe a ∈ E tel que B ⊆ a L.
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On dit que V est tonnelé si tout réseau fermé de V est ouvert.

On dit que V est de Fréchet s’il est complet et métrisable ou, de manière
équivalente, s’il est complet, séparé, et si sa topologie peut être définie par une
famille dénombrable de semi-normes. Lorsque sa topologie peut être définie par
une unique norme, on dit que V est un espace de Banach.

Si L est un réseau ouvert, borné et séparé de V , on définit la jauge de L
par :

∀v ∈ V, ‖v‖ L = inf
v∈a L

|a|.

C’est une norme sur V et la topologie qu’elle définit sur V coïncide avec la
topologie initiale [24, Corollaire 4.12].

On dit que V est de type compact s’il existe un isomorphisme de E-espaces
vectoriels topologiques

V
∼−→ lim−→

n

Vn ,

où {Vn}n≥1 est un système inductif d’espaces de Banach sur E tel que les
morphismes de transition soient injectifs et compacts.

Soit W un E-espace vectoriel localement convexe. On note HomE(V,W )

l’espace des fonctions E-linéaires et continues sur V à valeurs dans W . Si l’on
fixe un sous-ensemble borné B ⊆ V et que l’on se donne une semi-norme
continue p sur W , alors la formule :

pB(f) = sup
v∈B

p(f(v))

définit une semi-norme sur HomE(V,W ). Si B est maintenant une famille
de sous-ensembles bornés de V , la topologie localement convexe définie
sur HomE(V,W ) par la famille de semi-normes {pB ;B ∈ B, p semi-norme
continue sur W} est appelée B-topologie. En particulier, si B est la famille de
tous les singletons, la B-topologie correspondante est aussi appelée topologie
faible. Si B est la famille de tous les sous-ensembles bornés de V , la B-topologie
correspondante est appelée topologie forte.

2.2. Complétés unitaires universels. — Soit G le groupe des Qp-points d’un
groupe algébrique linéaire réductif connexe défini sur Qp. La notion de complété
unitaire universel d’un espace vectoriel localement convexe muni d’une action
continue de G a été formalisée par Emerton [15, §1], après que des exemples de
complétés unitaires universels aient été construits par Breuil [6, 7] et Berger-
Breuil [3]. Nous rappelons dans ce paragraphe le contexte dans lequel s’insère
cette notion, ainsi qu’une condition nécessaire et suffisante d’existence d’un
complété unitaire universel.
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Définition 2.1 ([25, 7]). — Un G-Banach est un espace de Banach B sur E
muni d’une action à gauche de G telle que l’application G×B → B qui décrit
cette action soit continue. Un G-Banach B est dit unitaire si, pour un choix de
norme ‖ · ‖ définissant la topologie de B, on a ‖gv‖ = ‖v‖ pour tout g ∈ G et
tout v ∈ B.

Remarque 2.2. — Si le groupe G est compact, tout G-Banach est unitaire.
Ceci n’est pas vrai si G n’est pas supposé compact.

Soit V un E-espace vectoriel localement convexe muni d’une action continue
deG. Un complété unitaire universel de V est unG-Banach unitaire qui satisfait
une certaine propriété universelle. Plus précisément, on a la définition suivante.

Définition 2.3 ([15], définition 1.1). — Avec les notations précédentes, un
complété unitaire universel de V est la donnée d’un G-Banach unitaire B et
d’une application E-linéaire, continue et G-équivariante ι : V → B telle que
toute application E-linéaire, continue et G-équivariante V → W , où W est
un G-Banach unitaire, se factorise de façon unique à travers ι.

Remarque 2.4. — Si V admet un complété unitaire universel (B, ι), alors ce
complété est unique à isomorphisme près. Comme l’adhérence dans B de ι(V )

vérifie la propriété universelle énoncée dans la définition 2.3, on en déduit que
l’application ι est d’image dense.

Le lemme suivant fournit une condition nécessaire et suffisante pour que V
admette un complété unitaire universel [15, Lemme 1.3].

Lemme 2.5. — La G-représentation V admet un complété unitaire universel
si et seulement si l’ensemble des classes de commensurabilité des réseaux ou-
verts G-stables de V , qui est partiellement ordonné pour l’inclusion, possède un
élément minimal.

3. Rappels sur les fonctions de classe Cr sur OF

Soit r ∈ Q≥0. Dans [13] nous avons introduit une nouvelle notion de fonc-
tion de classe Cr sur OF qui s’appuie principalement sur les travaux d’Amice,
Amice-Velù, Colmez, Van der Put et Vishik [1, 2, 10, 23, 30]. Cette section va
nous permettre de rappeler un certain nombre de constructions et de résultats
concernant l’espace des fonctions de classe Cr sur OF . Nous renvoyons à [13]
pour plus de détails et à [19, 20] pour d’autres définitions possibles.
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3.1. Définitions et compléments. — Soit r ∈ Q≥0. Notons [r] sa partie entière.
Si n ∈ N et si ∗ ∈ {<,≤, >,≥,=}, on pose :

I∗n
déf
=
{
i ∈ NS ,

∑
σ∈S

iσ ∗ n
}
.

Définition 3.1. — On dit que f : OF → E est de classe Cr sur OF s’il existe
une famille de fonctions bornées {Dif : OF → E, i ∈ I≤[r]}, telles que, si l’on
définit εf,[r] : OF × OF → E par :

∀x, y ∈ OF , εf,[r](x, y) = f(x+ y)−
∑

i∈I≤[r]

Dif(x)
yi

i!
,

et pour tout h ∈ N

Cf,r(h) = sup
x∈ OF ,y∈$hF OF

|εf,[r](x, y)| qrh ,

alors Cf,r(h) tend vers 0 quand h tend vers +∞.

Si f est une fonction de classe Cr sur OF , il existe une unique famille de
fonctions {

Dif : OF → E, i ∈ I≤[r]

}
satisfaisant à la définition 3.1 [13, Lemme 2.4]. Notons Cr( OF , E) l’ensemble
des fonctions f : OF → E de classe Cr sur OF et munissons-le de la norme
‖ · ‖Cr définie par :

‖f‖Cr = sup
(

sup
i∈I≤[r]

sup
x∈ OF

∣∣∣Dif(x)

i!

∣∣∣, sup
x,y∈ OF

|εf,[r](x, y)|
|y|r

)
.

C’est alors un espace de Banach sur E, et même une E-algèbre de Banach [13,
Lemme 2.9], c’est-à-dire une E-algèbre normée dont l’espace vectoriel normé
sous-jacent est un espace de Banach.

On demontre maintenant le résultat suivant, dont on se servira par la suite.

Lemme 3.2. — Soit n ∈ N. Soit f : OF → E une fonction de classe Cr. Notons
g : OF → E la fonction définie par :

∀z ∈ OF , g(z) = 1D(0,n)(z)f
( z

$n
F

)
.

Alors g ∈ Cr( OF , E) et ‖g‖Cr ≤ qnr‖f‖Cr .

Démonstration. — Pour tout i ∈ I≤[r] et tout z ∈ OF posons :

Dig(z) =
( 1

$n
F

)i
1$nF OF (z)Dif

( z

$n
F

)
.(3.1)
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On a alors :

∀x, y ∈ OF , εg,[r](x, y)

= 1D(0,n)(x+ y)f
(x+ y

$n
F

)
−
∑

i∈I≤[r]

1

i!
1D(0,n)(x)Dif

( x

$n
F

)( y

$n
F

)i
.

Par suite, on voit immédiatement que l’on a :

∀h ≥ n, sup
x∈ OF ,y∈$hF OF

|εg,[r](x, y)| ≤ sup
x∈ OF ,y∈$h−nF OF

|εf,[r](x, y)| ,

ce qui implique que g est de classe Cr sur OF . Pour montrer l’inégalité sur la
norme on remarque que (3.1) assure que l’on a :

∀i ∈ I≤[r], sup
z∈ OF

∣∣∣Dig(z)

i!

∣∣∣ ≤ ∣∣∣( 1

$n
F

)i∣∣∣ sup
z∈ OF

∣∣∣Dif(z)

i!

∣∣∣ ≤ qn|i|‖f‖Cr ≤ qnr‖f‖Cr .
(3.2)

On conclut alors en distinguant quatre cas :

• Si x, y ∈ $n
F OF , alors on a :

|εg,[r](x, y)|
|y|r

≤
|εf,[r]( x

$nF
, y
$nF

)|
|y|r

≤ qnr‖f‖Cr .

• Si x ∈ $n
F OF et y /∈ $n

F OF , alors on a :

|εg,[r](x, y)|
|y|r

=

∣∣∑
i∈I≤[r]

Dig(x)y
i

i!

∣∣
|y|r

≤ sup
i∈I≤[r]

∣∣∣Dig(x)

i!

∣∣∣|y||i|−r
≤ sup
i∈I≤[r]

sup
x∈ OF

∣∣∣Dif(x)

i!

∣∣∣|$n
F |−|i||y||i|−r

≤ qnr‖f‖Cr .

• Si x /∈ $n
F OF et x+ y /∈ $n

F OF , alors on a εg,[r](x, y) = 0.
• Si x /∈ $n

F OF et x+ y ∈ $n
F OF alors on a enfin :

|εg,[r](x, y)|
|y|r

=

∣∣∣f( x
$nF

+ y
$nF

)∣∣∣
|y|r

≤ qnr‖f‖Cr .

3.1.1. Composition de fonctions. — Soit f : OF → E une fonction de classe Cr

sur OF et soit h : OF → OF une fonction. Nous allons rappeler [13, §2.2.1] une
condition suffisante sur h pour que f ◦ h : OF → E soit à son tour de classe Cr

sur OF . Pour cela, nous avons besoin d’introduire la définition suivante.
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Définition 3.3. — Soit r ∈ Q≥0. On dit que h : OF → F est de classe Cr,id

sur OF s’il existe une famille de fonctions bornées {h(i) : OF → F, 0 ≤ i ≤ [r]}
telle que, si l’on définit εh,[r] : OF × OF → F par :

∀x, y ∈ OF , εh,[r](x, y) = f(x+ y)−
[r]∑
i=0

h(i)(x)
yi

i!
,

et que l’on pose, pour tout k ∈ N,

Ch,r(k) = sup
x∈ OF ,y∈$kF OF

|εh,[r](x, y)| qrk ,

alors Ch,r(k) tend vers 0 quand k tend vers +∞.

Notons Cr,id( OF , F ) l’ensemble des fonctions de OF dans F qui sont de
classe Cr,id sur OF . On le munit de la norme ‖ · ‖Cr,id définie par :

‖h‖Cr,id = sup
(

sup
0≤i≤[r]

sup
x∈ OF

∣∣∣h(i)(x)

i!

∣∣∣, sup
x,y∈ OF

|εh,[r](x, y)|
|y|r

)
,

ce qui en fait un espace de Banach sur F .

Proposition 3.4 ([13], proposition 2.12). — Soit r ∈ Q≥0. Si h : OF → OF
est une fonction de classe Cr,id sur OF alors :

(i) ∀f ∈ Cr( OF , E), f ◦ h ∈ Cr( OF , E) ;
(ii) l’application de Cr( OF , E) dans Cr( OF , E) définie par f 7→ f ◦ h est

continue.

3.1.2. Construction de sous-espaces fermés. — Soit r ∈ Q≥0, J ⊆ S et dσ ∈ N
pour σ ∈ S\J . Nous allons définir un sous-espace fermé de Cr( OF , E), dépen-
dant de J et de dS\J , qui va jouer un rôle important dans la suite.

Posons :
J ′

déf
= J

∐
{σ ∈ S\J, dσ + 1 > r}

et désignons par eσ le vecteur de NS ayant toutes ses composantes nulles sauf
celle d’indice σ qui est égale à 1. Pour tout f ∈ Cr( OF , E), tout σ ∈ S et
tout i ∈ {0, . . . , [r]}, posons :

∂i

∂ziσ
f = Dieσf.

Définition 3.5. — On note Cr( OF , J ′, dS\J′) le sous-E-espace vectoriel des
fonctions f de classe Cr sur OF telles que :

∀σ ∈ S\J ′, ∂dσ+1

∂zdσ+1
σ

f = 0.
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D’après [13, Corollaire 2.8], l’opérateur Di est continu pour tout i ∈ I≤[r]

ce qui implique que l’espace Cr( OF , J ′, dS\J′) est bien un sous-espace fermé
de Cr( OF , E). On le munit de la topologie induite par celle de Cr( OF , E), et
on en fait ainsi un espace de Banach sur E.

3.2. Fonctions localement analytiques et fonctions de classe Cr. — Soit U une
partie ouverte de OF , soit J ⊆ S et soit dσ ∈ N pour tout σ ∈ S\J . Pour a ∈ U
et n ∈ N tels que D(a, n) ⊆ U , on note O(D(a, n), J, dS\J) le E-espace vectoriel
des fonctions f : D(a, n)→ E de la forme

f(z) =
∑

m=(mσ)σ∈S∈NS

mσ≤dσ si σ∈S\J

am(a)(z − a)m

avec am(a) ∈ E et |am(a)|q−n(|m|) → 0 quand |m| → +∞. C’est un espace de
Banach sur E pour la topologie induite par la norme ‖ · ‖a,n définie par :

‖f‖a,n = sup
m

(
|am(a)|q−n(|m|)

)
.

Comme U est ouvert et compact, il existe h0 ∈ N tel que :

∀a ∈ U,∀h ≥ h0, D(a, h) ⊆ U.

Pour tout h ≥ h0, on note F h(U, J, dS\J) le E-espace vectoriel des fonctions
f : U → E telles que :

∀a ∈ U, f |D(a,h) ∈ O(D(a, h), J, dS\J).

On munit cet espace de la norme ‖ · ‖ F h définie par :

‖f‖ F h = sup
amod$hF ,a∈U

‖f |D(a,h)‖a,h ,(3.3)

ce qui en fait un espace de Banach sur E. On voit immédiatement que cette
définition ne dépend pas du choix du système des représentants. De plus, on
sait par [24, p. 107] que les inclusions

F h(U, J, dS\J) ↪→ F h+1(U, J, dS\J)

sont continues et compactes.

Définition 3.6. — On note F (U, J, dS\J) le E-espace vectoriel des fonctions
f : OF → E pour lesquelles il existe h ≥ h0 tel que f ∈ F h(U, J, dS\J).
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On munit cet espace de la topologie de la limite inductive, ce qui en fait un
espace de type compact. Posons, pour tout N ∈ N :

F N ( OF , S)
déf
=

∑
d∈I≤N

F ( OF ,∅, d) ;

F N ( OF , J, dS\J)
déf
= F N ( OF , S) ∩ F ( OF , J, dS\J) .

Les espaces F N ( OF , S) et F N ( OF , J, dS\J) sont des sous-E-espaces vectoriels
respectifs de F ( OF , S) et F ( OF , J, dS\J). En outre, on dispose des deux faits
suivants :

• l’espace F ( OF , J, dS\J) s’injecte de façon continue dans Cr( OF , J ′, dS\J′)
[13, Corollaire 3.4] ;
• pour tout entier N ≥ [r], l’espace F N ( OF , J, dS\J) est dense dans
Cr( OF , J ′, dS\J′) [13, Corollaire 3.16].

Notons que le deuxième point découle de l’existence d’une base de Banach
de Cr( OF , J ′, dS\J′) constituée de fonctions dans F [r]( OF , J, dS\J).

3.3. Distributions d’ordre r. — Conservons les notations du §3.2 et, pour
tout N ∈ N, notons F N ( OF , J, dS\J)∨ l’ensemble des formes linéaires
sur F N ( OF , J, dS\J). Si N est tel que N ≥ [r], alors [13, Corollaire 3.16]
assure que l’inclusion

F N ( OF , J, dS\J) ⊆ Cr( OF , J ′, dS\J′)

induit une injection

Cr( OF , J, dS\J)∨ ↪→ F N ( OF , J, dS\J)∨.

Dans cette section, nous allons rappeler une caractérisation possible des formes
linéaires µ : F N ( OF , J, dS\J)→ E qui s’étendent en des formes linéaires conti-
nues sur l’espace de Banach Cr( OF , J ′, dS\J′). Elle généralise un résultat dû à
Amice-Vélu et Vishik [2, 30].

Définition 3.7. — On appelle distribution (J ′, dS\J′)-tempérée d’ordre r

sur OF toute forme linéaire continue sur l’espace de Banach Cr( OF , J ′, dS\J′).

On note
(
Cr( OF , J ′, dS\J′)∨, ‖ · ‖ Dr,J′,(dσ)σ

)
l’espace des distributions

(J ′, dS\J′)-tempérées d’ordre r sur OF muni de la topologie forte.

Soit N ∈ N. Si µ ∈ F N ( OF , J, dS\J)∨ et si f ∈ F N ( OF , J, dS\J) on note,
pour a ∈ OF et n ∈ N :

µ
(
1D(a,n)f

)
=

∫
D(a,n)

f(z)µ(z) .
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Théorème 3.8 ([13], théorème 4.2). — (i) Soit µ ∈ Cr( OF , J ′, dS\J′)∨. Il
existe une constante Cµ ∈ R≥0 telle que pour tout a ∈ OF , tout n ∈ N,
tout 0 6 nS\J′ 6 dS\J′ et tout mJ′ ∈ NJ′ , on ait :∣∣∣ ∫

D(a,n)

(z − a)nS\J′ (z − a)mJ′µ(z)
∣∣∣ ≤ Cµ qn(r−|nS\J′ |−|mJ′ |).(3.4)

(ii) Soit N ≥ [r] un entier et soit µ ∈ F N ( OF , J, dS\J)∨. Supposons qu’il
existe une constante Cµ ∈ R≥0 telle que pour tout a ∈ OF , tout n ∈ N, tout 0 6
nS\J 6 dS\J et tout mJ ∈ NJ vérifiant |nS\J |+ |mJ | ≤ N , on ait :∣∣∣ ∫

D(a,n)

(z − a)nS\J (z − a)mJµ(z)
∣∣∣ ≤ Cµ qn(r−|nS\J |−|mJ |).(3.5)

Alors µ se prolonge de manière unique en une distribution (J ′, dS\J′)-tempérée
d’ordre r sur OF .

Remarque 3.9. — La preuve du théorème 3.8 utilise de manière cruciale la
construction explicite d’une base de Banach de l’espace Cr( OF , J ′, dS\J′), qui
dépend de r et est donnée pour une famille dénombrable de fonctions localement
polynômiales [13, Proposition 3.15]. Lorsque F = Qp, cette base coïncide avec
celle construite par Van der Put [23] pour l’espace des fonctions continues sur Zp
et généralisée par Colmez pour r quelconque [10, Théorème I.5.14]. Signalons
que pour l’espace des fonctions continues sur OF , cette base avait déjà été
construite par de Shalit [28, §2].

Remarque 3.10. — Une conséquence directe du théorème 3.8 est la suivante
[13, Corollaire 4.3]. Si pour µ ∈ Cr( OF , J ′, dS\J′)∨, on définit ‖µ‖r,dS\J par la
formule

‖µ‖r,dS\J = sup
a∈ OF ,n∈N

sup
mJ∈N

J

06nS\J6dS\J

(∣∣∣ ∫
D(a,n)

(z − a)nS\J (z − a)mJµ(z)
∣∣∣q−n(r−|nS\J |−|mJ |)

)
,

alors ‖ · ‖r,dS\J est une norme sur Cr( OF , J ′, dS\J)∨ qui est équivalente à ‖ ·
‖ Dr,J′,(dσ)σ .

4. Représentations de GL2(F )

4.1. Généralités. — On fixe désormais une fois pour toutes une partie J de S.
Si G est un groupe de Lie localement F -analytique, on note G0 le groupe de
Lie localement Qp-analytique obtenu à partir de G par restriction des scalaires
de F à Qp [4, §5.14]. Si V est un E-espace vectoriel localement convexe sé-
paré, on peut définir, comme dans [26, §2] l’espace des fonctions localement
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Qp-analytiques de G dans V : c’est simplement l’espace des fonctions locale-
ment analytiques de G0 dans V . On note CQp-an(G,V ) cet espace, que l’on
munit de l’action à gauche usuelle de G.

Soit g l’algèbre de Lie de G. On dispose d’une action Qp-linéaire de g
sur CQp-an(G,V ) définie par :

(xf)(g) =
d

dt

(
t 7→ f(exp(−tx)g)

)∣∣∣
t=0

où exp: g 99K G désigne l’application exponentielle définie localement au voi-
sinage de 0 [26, §2]. Cette action se prolonge en une action de l’algèbre de Lie
g⊗QpE. Puisque g est un F -espace vectoriel, g⊗QpE est une algèbre de Lie sur
l’anneau F⊗QpE, ce qui permet d’obtenir un isomorphisme d’espaces vectoriels
sur E :

g⊗Qp E '
⊕
σ∈S
g⊗F,σ E.(4.1)

Définition 4.1 ([27], définition 1.3.1). — Une fonction localement Qp-analy-
tique f : G → V est dite localement J-analytique si l’action de g ⊗Qp E sur f
se factorise par

⊕
σ∈J g⊗F,σ E.

L’ensemble des fonctions localement J-analytiques est un sous-espace fermé
de CQp-an(G,V ) que l’on note CJ-an(G,V ) et que l’on munit de la topologie
induite.

Définition 4.2 ([27], définition 1.3.4). — Soit V un espace vectoriel muni
d’une topologie séparée localement convexe tonnelée. On dit que V est une re-
présentation localement J-analytique de G lorsque les deux conditions suivantes
sont vérifiées :

(i) le groupe G agit sur V par endomorphismes continus ;
(ii) pour tout v ∈ V , l’application de G dans V définie par l’action de G sur v

est localement J-analytique.

Remarque 4.3. — Dans la définition 4.2, supposer que V est tonnelé assure,
grâce au Théorème de Banach-Steinhaus [24, Théorème 6.15], que l’action de G
sur V est continue.

Exemple 4.4. — L’espace localement convexe CJ-an(G,V ) muni de l’action
à gauche usuelle de G est une représentation localement J-analytique.
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4.2. Rappels sur les induites localement analytiques de GL2(F ). — On poseG =

GL2(F ). On note T le tore déployé constitué des matrices diagonales de G, P
le sous-groupe de Borel des matrices triangulaires supérieures de G, et N le
sous-groupe des matrices unipotentes supérieures de G.

Si (ρ, V ) est une représentation localement J-analytique de P , on note
IndGP (ρ)J-an l’espace des fonctions f : G → V localement J-analytiques telles
que :

∀g ∈ G,∀p ∈ P, f(pg) = ρ(p)f(g).

On munit cet espace d’une action à gauche E-linéaire de G en posant (gf)(g′) =

f(g′g) : on obtient ainsi une représentation localement J-analytique de G.
Soit χ un caractère localement Qp-analytique de T , que l’on peut voir

comme une représentation localement Qp-analytique de P par inflation. Nous
allons construire maintenant des sous-représentations localement Qp-analy-
tiques de IndGP (χ)S-an. Ensuite, en utilisant l’espace des fonctions localement
analytiques sur OF construit dans la Section §3.2, nous en donnerons une nou-
velle description.

Pour t1, t2 ∈ F× assez proches de 1, on a

χ([ t1 0
0 t2

]) =
∏
σ∈S

σ(t1)d1,σσ(t2)d2,σ ,

avec d1,σ, d2,σ ∈ E. Notons alors J le sous-ensemble de S formé des éléments
σ tels que

d2,σ − d1,σ /∈ N.

Quitte à considérer la représentation IndGP (χ)S-an ⊗ ((
∏
σ∈S\J σ

d1,σ ) ◦ det)−1,
on peut supposer que l’on a, au voisinage de 1

χ([ t1 0
0 t2

]) = χ1(t1)χ2(t2)
∏

σ∈S\J

σ(t2)dσ ,

avec χ1 et χ2 deux caractères localement J-analytiques de P et dσ est un entier
positif ou nul. On pose u = [ 0 0

1 0 ] et, pour tout σ ∈ S, on note uσ l’élément
de gl2(F )⊗QpE défini par u via l’isomorphisme (4.1) sur la composante associée
à σ. Si σ ∈ S\J , on pose zσ = (uσ)dσ+1 et l’on définit εσ par :

εσ([ t1 0
0 t2

]) = σ(t1t
−1
2 ).

D’après [27, Proposition 1.3.11], l’élément zσ induit une application de IndGP (χ)S-an

dans IndGP (χεdσ+1
σ )S-an, encore notée zσ, qui est surjective et dont le noyau est

isomorphe à
(SymdσE2)σ ⊗E IndGP (χσ)S\{σ}-an .

On a ici utilisé les notations suivantes :
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• pour σ ∈ S et dσ ∈ N on note (SymdσE2)σ la représentation algébrique
irréductible de GL2 ⊗F,σ E dont le plus haut poids vis-à-vis de P est
χσ : diag(x1, x2) 7→ σ(x2)dσ ;
• On définit le caractère χσ par :

χσ = χ1 ⊗
(
χ2

∏
τ∈S\(J

∐
{σ})

τdτ
)
.

On en déduit immédiatement, pour toute partie S′ de S\J , l’isomorphisme
suivant :⋂
σ∈S′

ker zσ
∼−→
( ⊗
σ∈S′

(SymdσE2)σ
)
⊗E

(
IndGPχ1 ⊗ χ2

∏
(S\J)\S′

σdσ
)S\S′-an

.

Posons mσ = dσ + 1. D’après la preuve de [27, Proposition 1.3.11], on dispose
du diagramme commutatif suivant :

IndGP (χ)S-an zσ //

��

IndGP (χεmσσ )S-an

��
( F ( OF , S))2

(
− ∂mσ

∂z
mσ
σ

,− ∂mσ

∂z
mσ
σ

)
// ( F ( OF , S))2

où

• F ( OF , S) désigne l’espace F (U, J, dS\J) pour U = OF et J = S (donc
S\J = ∅) ;
• la flèche verticale de gauche (resp. de droite) est un isomorphisme topo-

logique explicitement donné par :

f 7−→
(

(z 7→ f([ 0 1
−1 $F z ])), (z 7→ f([ 1 0

z −1 ]))
)
.

On en déduit donc l’existence d’un isomorphisme topologique :

( ⊗
σ∈S′

(SymdσE2)σ
)
⊗E

(
IndGPχ1 ⊗ χ2

∏
(S\J)\S′

σdσ
)S\S′-an

' ( F ( OF , S\S′, dS′))2 .

(4.2)

Posons alors :

I(χ, S\S′, dS′) =
( ⊗
σ∈S′

(SymdσE2)σ
)
⊗E

(
IndGPχ1 ⊗ χ2

∏
(S\J)\S′

σdσ
)S\S′-an

et notons V le E-espace vectoriel des fonctions f : F → E vérifiant les deux
conditions suivantes :

(i) f | OF appartient à F ( OF , S\S′, dS′) ;
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(ii) χ2χ
−1
1 (z)zdS\J f(1/z)| OF−{0} se prolonge sur OF en une fonction

de F ( OF , S\S′, dS′).
L’application

(4.3)
V −→ F ( OF , S\S′, dS′)⊕ F ( OF , S\S′, dS′)

f 7−→
((
z 7→ f($F z)

)
,
(
z 7→ χ2χ

−1
1 (z)zdS\J f(1/z)

))
est un isomorphisme de E-espaces vectoriels qui permet de munir V de la
topologie localement convexe induite par cette application. Les isomorphismes
(4.2) et (4.3) et l’égalité[

0 1

−1 z

][
a b

c d

]
=

[
ad−bc
−cz+a −c

0 −cz + a

][
0 1

−1 dz−b
−cz+a

]
assurent alors que l’action de G sur I(χ, S\S′, dS′) se traduit sur V de la façon
suivante : pour tout g = [ a bc d ] ∈ G, tout f ∈ V , et tout z ∈ F − {ac }, on a

([
a b

c d

]
f

)
(z) = χ1(det(g))χ2χ

−1
1 (−cz + a)(−cz + a)dS\J f

(
dz − b
−cz + a

)
.

(4.4)

Ils assurent en outre que si c 6= 0, alors on peut prolonger gf par continuité
en z = a

c en une fonction appartenant à V .

4.3. Une GL2(F )-représentation de Banach. — Soit χ1, χ2 : F× → E× deux
caractères localement J-analytiques et dS\J un |S\J |-uplet d’entiers positifs
ou nuls. Posons r = −valQp(χ1(p)) et supposons r ≥ 0. Posons :

J ′ = J
∐
{σ ∈ S\J, dσ + 1 > r}, χ′1 = χ1, et χ′2 = χ2

∏
σ∈J′\J

σdσ .

À l’aide des espaces définis au §3.1.2, nous allons définir un nouveau G-Ba-
nach attaché au triplet (J ′, χ′1, χ

′
2).

Notons B(χ′, J ′, dS\J′) le E-espace vectoriel des fonctions f : F → E véri-
fiant les deux conditions suivantes :

(i) f | OF appartient à Cr( OF , J ′, dS\J′) ;
(ii) χ′2χ′1

−1
(z)zdS\J′ f(1/z)| OF−{0} se prolonge sur OF en un élément

de Cr( OF , J ′, dS\J′).

L’application

(4.5)
B(χ′, J ′, dS\J′) −→ Cr( OF , J ′, dS\J′)⊕ Cr( OF , J ′, dS\J′)

f 7−→
((
z 7→ f($F z)

)
,
(
z 7→ χ′2χ

′
1
−1

(z)zdS\J′ f(1/z)
))
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est un isomorphisme de E-espaces vectoriels. On munit alors B(χ′, J ′, dS\J′)

de la topologie localement convexe déduite de cette application, ce qui en fait
un espace de Banach sur E pour la norme ‖ · ‖B définie comme suit : si (f1, f2)

désigne l’élément de (Cr( OF , J ′, dS\J′))2 correspondant à f ∈ B(χ′, J ′, dS\J′)

via l’isomorphisme (4.5), alors :

‖f‖B = sup
(
‖f1‖Cr , ‖f2‖Cr

)
.(4.6)

Pour f ∈ B(χ′, J ′, dS\J′) et g = [ a bc d ] ∈ G, considérons la fonction définie par

(gf) (z) = χ1(det(g))χ′2χ
′
1
−1

(−cz + a)(−cz + a)dS\J′ f

(
dz − b
−cz + a

)
(4.7)

pour tout z 6= a
c (si c 6= 0). Le prochain résultat montre que gf se prolonge

par continuité en z = a
c en un élément de B(χ′, J ′, dS\J′) et que, pour l’action

de G définie par la formule (4.7), l’espace B(χ′, J ′, dS\J′) est un G-Banach.

Lemme 4.5. — L’action à gauche de G sur l’espace B(χ′, J ′, dS\J′) donnée
par la formule (4.7) est bien définie et se fait par automorphismes continus.

Démonstration. — Soit f = (f1, f2) ∈ B(χ′, J ′, dS\J′). En utilisant l’isomor-
phisme (4.5), on voit que l’on a d’autre part, pour tout g = [ a bc d ] ∈ G

(gf)1(z) = χ′1(det(g))χ′2χ
′
1
−1

(−c$F z + a)(−c$F z + a)dS\J′ f1

( dz − b
$F

−c$F z + a

)
si d$F z−b
−c$F z+a ∈ $F OF et

(gf)1(z) = χ′1(det(g))χ′2χ
′
1
−1

(d$F z − b)(d$F z − b)dS\J′ f2

(−c$F z + a

d$F z − b

)
si d$F z−b
−c$F z+a ∈ F\$F OF ; et d’autre part,

(gf)2(z) = χ′1(det(g))χ′2χ
′
1
−1

(−c+ az)(−c+ az)dS\J′ f1

(−b z
$F

+ d
$F

az − c

)
si −bz+daz−c ∈ $F OF et

(gf)2(z) = χ′1(det(g))χ′2χ
′
1
−1

(−bz + d)(−bz + d)dS\J′ f2

( az − c
−bz + d

)
si −bz+daz−c ∈ F\$F OF .

Il suffit maintenant de montrer que l’application
(4.8)
Cr( OF , J ′, dS\J′)⊕ Cr( OF , J ′, dS\J′) −→ Cr( OF , J ′, dS\J′)⊕ Cr( OF , J ′, dS\J′)

(f1, f2) 7−→ ((gf)1, (gf)2)

est bien définie et continue. Par la décomposition de Bruhat G = P ∪ PwN , il
nous suffit de montrer la stabilité et la continuité de l’application (4.8) pour les
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matrices g de la forme [ λ 0
0 λ ], [ 0 $F

1 0 ], [ 1 0
0 λ ] et [ 1 λ

0 1 ] avec λ ∈ F×, ce qui est une
conséquence des formules ci-dessus, de la proposition 3.4 et du fait que l’espace
Cr( OF , J ′, dS\J′) est une E-algèbre de Banach [13, Lemme 2.9].

Le lemme 4.5 et le Théorème de Banach-Steinhaus [24, Théorème 6.15] im-
pliquent alors que l’espace B(χ′, J ′, dS\J′) est un G-Banach.

Soit k ∈ N>0. Fixons Sk ⊂ O×F un système de représentants des classes
de ( OF /$k

F OF )×, et notons l le plus petit entier positif tel que χ′1|D(ai,l)

et χ′2|D(ai,l) soient des fonctions J ′-analytiques sur l’ouvert D(ai, l) pour
tout ai ∈ Sl.

Supposons de plus que le caractère central de I(χ, J, dS\J) est entier, ce qui
équivaut à demander que

valQp(χ′1(p)) + valQp(χ′2(p)) + |dS\J′ | = 0.(4.9)

Lemme 4.6. — Les fonctions de F dans E définies par les formules suivantes
sont des éléments de B(χ′, J ′, dS\J′) :

z 7→ znS\J′ zmJ′ ,

z 7→

{
χ′2χ

′
1
−1

(z − a)(z − a)dS\J′−nS\J′ (z − a)−mJ′ si z 6= a

0 si z = a ;

avec a ∈ F , mJ′ ∈ NJ′ et 0 6 nS\J′ 6 dS\J′ tels que r−
(
|nS\J′ |+ |mJ′ |

)
> 0.

Démonstration. — Le même raisonnement que celui permettant de prouver [3,
Lemme 4.2.2] s’applique : il suffit de montrer que la fonction f : OF → E définie
par

f(z) =

{
χ′2χ

′
1
−1

(z)zdS\J′−nS\J′ z−mJ′ si z 6= 0

0 si z = 0

appartient à Cr( OF , J ′, dS\J′). Soit f0 la fonction nulle sur OF et, pour tout n ∈
N>0, posons :

fn(z) = 1 OF \D(0,n)(z)χ
′
2χ
′
1
−1

(z)zdS\J′−nS\J′ z−mJ′ .

La fonction fn est bien dans Cr( OF , J ′, dS\J′) puisqu’elle est en fait
dans F ( OF , J ′, dS\J′). Par [24, Lemme 9.9], il suffit de montrer que fn+1 − fn
tend vers 0 dans l’espace dual de l’espace de Banach des distributions
(J ′, dS\J′)-tempérées d’ordre r sur OF . Autrement dit, on veut montrer que

sup
µ∈Cr( OF ,J′,dS\J′ )∨

∣∣∣ ∫ OF

(
fn+1(z)− fn(z)

)
µ(z)

∣∣∣
‖µ‖r,dS\J

→ 0 quand n→ +∞ .
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Remarquons que

(4.10)
fn+1(z)− fn(z) = 1D(0,n)\D(0,n+1)(z)χ

′
2χ
′
1
−1

(z)zdS\J′−nS\J′ z−mJ′

=
∑
ai∈Sl

1D(ai$nF ,n+l)(z)χ
′
2χ
′
1
−1

(z)zdS\J′−nS\J′ z−mJ′ .

Comme χ′1 et χ′2 sont des caractères J ′-analytiques sur D(ai, l) pour tout ai ∈
Sl, on sait que pour tout n ≥ 0, on a :

1D(ai$nF ,n+l)(z)χ
′
2χ
′
1
−1

(z)

= χ′2χ
′
1
−1

($n
F )1D(ai,l)

( z

$n
F

)
χ′2χ

′
1
−1
( z

$n
F

)
= χ′2χ

′
1
−1

($n
F )1D(ai,l)

( z

$n
F

) ∑
hJ′>0

bhJ′ (ai)
( z

$n
F

− ai
)hJ′

= χ′2χ
′
1
−1

($n
F )

∑
hJ′>0

1D(ai$nF ,n+l)(z)bhJ′ (ai)
(z − ai$n

F

$n
F

)hJ′
.

Grâce à la condition (4.9), on sait que
∣∣χ′2χ′1−1

($n
F )
∣∣ = q−n(2r−|dS\J′ |). Ainsi,

en écrivant z−mJ′ = (z − ai$n
F + ai$

n
F )−mJ′ et en développant, on obtient,

pour tout ai ∈ Sl :

1D(ai$nF ,n+l)(z)z
−mJ′ = 1D(ai$nF ,n+l)(z)(ai$

n
F )−mJ′

∑
tJ′>0

λtJ′a
−tJ′
i

(z − ai$n
F

$n
F

)tJ′
,

où les λtJ′ sont des éléments de OE . De même on obtient, pour tout ai ∈ Sl :

1D(ai$nF ,n+l)(z)z
dS\J′−nS\J′

= 1D(ai$nF ,n+l)(z)
∑

06kS\J′6dS\J′−nS\J′

µkS\J′ (ai$
n
F )kS\J′ (z − ai$n

F )dS\J′−nS\J′−kS\J′ ,

avec µkS\J′ ∈ N>0.

Pour tout 0 6 αS\J′ 6 dS\J′ et tout βJ′ ∈ NJ′ , notons alors fαS\J′ ,βJ′ : OF \{0} → E,
la fonction définie par :

fαS\J′ ,βJ′
(z) = zdS\J′−αS\J′ z−βJ′ .

Par (4.10), on a :∣∣µ(fn+1(z)− fn(z)
)∣∣ = sup

ai∈Sl

∣∣µ(1D(ai$nF ,n+l)(z)χ
′
2χ
′
1
−1

(z)fnS\J′ ,mJ′ (z))
∣∣ .
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Si l’on note C1 = supai∈Sl suphJ′ |bhJ′ (ai)|, les égalités précédentes montrent
alors que pour tout ai ∈ Sl, on a :∣∣µ(1D(ai$nF ,n+l)(z)χ

′
2χ
′
1
−1

(z)zdS\J′−nS\J′ z−mJ′ )
∣∣

≤ C1q
−n(2r−|dS\J′ |−|mJ′ |) sup

lJ′
kS\J′

q−n(|kS\J′ |−|lJ′ |)

·
∣∣µ(1D(ai$nF ,n+l)(z)fnS\J′+kS\J′ ,lJ′ (z − ai$

n
F )
)∣∣,

où lJ′ varie dans NJ′ et où 0 6 kS\J′ 6 dS\J′ . D’après la remarque 3.10, on a
aussi :∣∣µ(1D(ai$nF ,n+l)(z)fnS\J′+kS\J′ ,lJ′ (z − ai$

n
F )
)∣∣

≤ ‖µ‖r,dS\J sup
lJ′
kS\J′

q(n+l)(r+|kS\J′ |−|lJ′ |−|dS\J′ |+|nS\J′ |),

d’où l’on déduit que∣∣µ(fn+1(z)− fn(z)
)∣∣

≤ C1‖µ‖r,dS\J q
−n(r−|mJ′ |−|nS\J′ |) sup

lJ′
kS\J′

ql(r+|kS\J′ |−|lJ′ |−|dS\J′ |+|nS\J′ |) ,

ce qui prouve le résultat car r > |mJ′ |+ |nS\J′ |.

D’après le lemme 4.6, on sait que pour tout a ∈ F , tout mJ′ ∈ NJ′

et tout 0 6 nS\J′ 6 dS\J′ tels que r − |nS\J′ | − |mJ′ | > 0, les fonctions
[z 7→ znS\J′ zmJ′ ] et [z 7→ χ′2χ

′
1
−1

(z − a)(z − a)dS\J′−nS\J′ (z − a)−mJ′ ] sont
dans B(χ′, J ′, dS\J′). Notons L(χ′, J ′, dS\J′) l’adhérence dans B(χ′, J ′, dS\J′)

du sous-E-espace vectoriel engendré par ces fonctions. Un calcul direct laissé
au lecteur permet de vérifier l’énoncé suivant.

Lemme 4.7. — Le sous-espace L(χ′, J ′, dS\J′) est stable par G dans
B(χ′, J ′, dS\J′).

Posons alors

Π(χ′, J ′, dS\J′)
déf
= B(χ′, J ′, dS\J′)/L(χ′, J ′, dS\J′).

C’est un espace de Banach sur E qui est munit, d’après les lemmes 4.5 et 4.7,
d’une action de G par automorphismes continus.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



658 M. DE IESO

5. Réseaux

5.1. Deux conditions nécessaires de non nullité. — Soit χ1, χ2 : F× → E× deux
caractères localement J-analytiques et dS\J un |S\J |-uplet d’entiers positifs
ou nuls. Posons r = −valQp(χ1(p)) et considérons la représentation localement
Qp-analytique

I(χ, J, dS\J) =
( ⊗
σ∈S\J

(SymdσE2)σ
)
⊗E

(
IndGPχ1 ⊗ χ2

)J-an

que nous avons construite dans la Section §4.2. Soit I(χ, J, dS\J)(F ) le sous-
espace fermé de I(χ, J, dS\J) formé des fonctions à support compact. Il est
stable sous l’action de P et il engendre I(χ, J, dS\J) sous G. En outre, il contient
l’espace O( OF , J, dS\J) et l’on vérifie immédiatement que

I(χ, J, dS\J) =
∑
g∈G

g O( OF , J, dS\J).

D’après la preuve de [15, Proposition 1.21], le complété unitaire universel
de I(χ, J, dS\J) est le complété de I(χ, J, dS\J) par rapport au sous- OE [G]-ré-
seau engendré par les vecteurs 1 OF (z)znS\J zmJ avec 0 6 nS\J 6 dS\J et mJ ∈
NJ . En utilisant la decomposition d’Iwasawa G = PK et la compacité de K, on
voit qu’il suffit de compléter par rapport au sous- OE [P ]-réseau Λ engendré par
les vecteurs 1 OF (z)znS\J zmJ et 1F− OF (z)χ2χ

−1
1 (z)zdS\J−nS\J z−mJ avec 0 6

nS\J 6 dS\J et mJ ∈ NJ . Notons I(χ, J, dS\J)∧ le complété de I(χ, J, dS\J)

par rapport à Λ : c’est un G-Banach unitaire pour lequel on dispose des deux
conditions nécessaires de non nullité suivantes.

Proposition 5.1. — Les deux conditions suivantes sont nécessaires pour
que I(χ, J, dS\J)∧ soit non nul :

(i) le caractère central de I(χ, J, dS\J) est à valeurs entières ;
(ii) on a l’inégalité valQp(χ2(p)) + |dS\J | ≥ 0.

Démonstration. — Supposons que (I(χ, J, dS\J)∧, ‖ · ‖) soit non nul. En par-
ticulier, l’application canonique ι : I(χ, J, dS\J)→ I(χ, J, dS\J)∧ est non nulle.
Soit donc f ∈ I(χ, J, dS\J) tel que ι(f) 6= 0. Comme ι est G-équivariante et
comme I(χ, J, dS\J)∧ est un G-Banach unitaire, on a :∣∣∣χ1(p)χ2(p)p|dS\J |

∣∣∣‖ι(f)‖ = ‖ι(f)‖,

ce qui prouve (i).
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Montrons maintenant que si valQp(χ2(p)) + |dS\J | < 0, alors I(χ, J, dS\J)∧

est nul. Ceci équivaut à prouver que pour tout 0 6 nS\J 6 dS\J et tout mJ ∈
NJ , on a :

∀λ ∈ E, ∀n ≥ 0, λ1D(0,n)(z)z
nS\J zmJ ∈ Λ.(5.1)

Nous allons raisonner par récurrence sur |nS\J |+ |mJ |.
Supposons tout d’abord |nS\J | + |mJ | = 0. Soit λ ∈ E et n ∈ N. Notons

m le plus petit entier positif tel que valF (χ2($m
F )$

mdS\J
F ) < valF (λ) et fixons

R ⊂ OF un système de représentants des classes de OF /$m
F OF . Comme Λ est

stable sous l’action de P , la formule (4.4) assure que l’on a :

∀ai ∈ R, [$
m
F $nF ai
0 1

]1D(0,n) = χ2($m
F )$

mdS\J
F 1D($nF ai,n+m) ∈ Λ.

On en déduit que∑
ai∈R

χ2($m
F )$

mdS\J
F 1D($nF ai,n+m) = χ2($m

F )$
mdS\J
F 1D(0,n) ∈ Λ,

ce qui assure que λ1D(0,n) ∈ Λ.
Supposons maintenant que (5.1) soit vrai pour tout 0 6 nS\J 6 dS\J et

tout mJ ∈ NJ tels que |nS\J |+ |mJ | ≤ l où l est un entier positif. Soit i ∈ NS
tel que :

|i| = l + 1 et iσ ≤ dσ, pour tout σ ∈ S\J.
Comme Λ est stable sous l’action de P , la formule (4.4) assure que l’on a :

∀ai ∈ R, [$
m
F $nF ai
0 1

]zi1D(0,n) = χ2($m
F )$

mdS\J
F

(z − ai$n
F

$m
F

)i
1D($nF ai,n+m) ∈ Λ,

avec µk ∈ Z. On en déduit, en développant
( z−ai$nF

$mF

)i et en utilisant l’hypothèse
de récurrence, que l’on a :

∀ai ∈ R, χ2($m
F )$

mdS\J
F

( z

$m
F

)i
1D($nF ai,n+m) ∈ Λ.

Ceci assure en particulier que l’on a :∑
ai∈R

χ2($m
F )$

mdS\J
F $

−mi
F zi1D($nF ai,n+m) = χ2($m

F )$
mdS\J
F $

−mi
F zi1D(0,n) ∈ Λ,

ce qui implique que λzi1D(0,n) ∈ Λ, et permet de conclure.

Remarque 5.2. — La condition (i) de la proposition 5.1 peut s’exprimer par
l’égalité suivante :

valQp(χ1(p)) + valQp(χ2(p)) + |dS\J | = 0.(5.2)
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On termine cette section par quelques remarques sur le cas localement al-
gébrique. Soient χ1, χ2 : F× → E× deux caractères localement constants et d
un |S|-uplet d’entiers positifs ou nuls. Posons :

I(χ, d) =
(⊗
σ∈S

(SymdσE2)σ
)
⊗E

(
IndGPχ1 ⊗ χ2| · |−1

)
,

où IndGP (χ1 ⊗ χ2| · |−1) désigne l’induite lisse usuelle. D’après la proposi-
tion 5.1 et d’après [21, Lemme 7.9] on connait deux conditions nécessaires
pour que I(χ, d)∧ soit non nul, à savoir :

(i) valQp(χ1(p)) + valQp(χ2(p)) + [F : Qp] + |d| = 0 ;
(ii) valQp(χ2(p)) + [F : Qp] + |d| ≥ 0 et valQp(χ1(p)) + [F : Qp] + |d| ≥ 0.
On voit que (i) et (ii) sont équivalentes à

(i′) valQp(χ1(p)) + valQp(χ2(p)) + [F : Qp] + |d| = 0 ;
(ii′) valQp(χ2(p)) ≤ 0 et valQp(χ1(p)) ≤ 0.
Rappelons la conjecture suivante qui est un cas particulier d’une conjecture

plus générale due à Breuil et Schneider [9].

Conjecture 5.3. — Avec les notations précédentes, les conditions (i′) et (ii′)
sont aussi des conditions suffisantes à la non nullité de I(χ, d)∧.

Remarque 5.4. — La conjecture 5.3 est démontrée dans les cas suivants :

• lorsque F = Qp [3, Corollaire 5.3.1] ;
• orsque χ2χ

−1
1 est un caractère modérément ramifié avec d = 0 [29, Pro-

position 0.10], ou [18, Théorème 1.2] pour une preuve alternative ;
• lorsque χ2χ

−1
1 est un caractère non ramifié avec certaines conditions sur d

[14].

5.2. Passage au dual. — On conserve les notations du §5.1. Supposons que les
conditions (i) et (ii) de la proposition 5.1 soient satisfaites, ce qui implique en
particulier que r ≥ 0. Posons à nouveau :

J ′ = J
∐
{σ ∈ S\J, dσ + 1 > r}, χ′1 = χ1, χ′2 = χ2

∏
σ∈J′\J

σdσ .

On sait que l’on dispose d’une immersion fermée G-équivariante :

I(χ, J, dS\J) ↪→ I(χ′, J ′, dS\J′).(5.3)

Le prochain résultat donne des informations sur les vecteurs localementQp-ana-
lytiques de I(χ, J, dS\J)∧.

Proposition 5.5. — Supposons que les conditions de la proposition 5.1 soient
satisfaites. Alors les conditions suivantes sont équivalentes et vérifiées :
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(i) Toute application continue, E-linéaire et G-équivariante I(χ, J, dS\J) →
B, avec B un G-Banach unitaire, s’étend de manière unique en une ap-
plication continue, E-linéaire et G-équivariante I(χ′, J ′, dS\J′)→ B.

(ii) L’application canonique I(χ, J, dS\J) → I(χ, J, dS\J)∧ s’étend de ma-
nière unique en une application continue, E-linéaire et G-équivariante
I(χ′, J ′, dS\J′)→ I(χ, J, dS\J)∧.

(iii) L’application (5.3) induit un isomorphisme de G-Banach unitaires :

I(χ, J, dS\J)∧
∼−→ I(χ′, J ′, dS\J′)

∧ .

Démonstration. — L’équivalence des conditions (i), (ii) et (iii) est claire. Breuil
montre (i) en supposant de plus que l’application de I(χ, J, dS\J) dans B est
injective [8, Théorème 7.1]. Une preuve analogue, qui utilise de façon cruciale
[8, Lemme 6.1], permet de démontrer le cas général.

D’après la proposition 5.5 (iii), donner une description explicite de I(χ, J, dS\J)∧

revient à donner une description explicite de I(χ′, J ′, dS\J′)
∧. On peut ainsi

supposer que :

∀σ ∈ S\J, r ≥ dσ + 1 ,(5.4)

ou encore que J = J ′.
Rappelons (§5.1) que le complété unitaire universel de I(χ, J, dS\J) est le

complété par rapport au sous- OE [P ]-réseau Λ engendré par les vecteurs :

1 OF (z)znS\J zmJ et 1F− OF (z)χ2χ
−1
1 (z)zdS\J−nS\J z−mJ(5.5)

pour tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ .
De plus, on note I(χ, J, dS\J)∨ le dual continu de l’espace I(χ, J, dS\J) muni

de la topologie forte. Si µ ∈ I(χ, J, dS\J)∨ et f ∈ I(χ, J, dS\J), on note, pour
tout ouvert U de F :

µ
(
1Uf

)
=

∫
U

f(z)µ(z) .

D’après la remarque 2.4, l’application canonique I(χ, J, dS\J)→ I(χ, J, dS\J)∧

est d’image dense. Par suite on a une injection continue

(I(χ, J, dS\J)∧)∨ ↪→ I(χ, J, dS\J)∨.(5.6)

Le résultat suivant donne une caractérisation utile de l’image de l’application
(5.6).

Proposition 5.6. — Soit µ ∈ I(χ, J, dS\J)∨. Alors µ ∈ (I(χ, J, dS\J)∧)∨ si et
seulement s’il existe une constante Cµ ∈ R≥0 telle que l’on ait, pour tout n ∈ Z,
tout a ∈ F , tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ :

(5.7)
∣∣∣ ∫
D(a,n)

(z − a)nS\J (z − a)mJµ(z)
∣∣∣ ≤ Cµqn(r−|nS\J |−|mJ |) ;
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(5.8)
∣∣∣ ∫
F\D(a,n+1)

χ2χ
−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJµ(z)

∣∣∣
≤ Cµqn(|nS\J |+|mJ |−r) .

Démonstration. — La distribution µ s’étend en une forme linéaire continue
sur I(χ, J, dS\J)∧ si et seulement s’il existe une constante Cµ ∈ R≥0 telle que :

∀f ∈ Λ,
∣∣∣ ∫
F

f(z)µ(z)
∣∣∣ ≤ Cµ.(5.9)

En utilisant (5.5) et l’identité

[ 0 1
1 0 ] (1 OF (z)znS\J zmJ ) = 1F− OF (z)χ2χ

−1
1 (z)zdS\J−nS\J z−mJ ,

on obtient immédiatement que (5.9) est équivalente aux deux conditions sui-
vantes : ∣∣µ(b(1 OF (z)znS\J zmJ )

)∣∣ ≤ Cµ ;(5.10) ∣∣µ(b [ 0 1
1 0 ] (1 OF (z)znS\J zmJ )

)∣∣ ≤ Cµ ;(5.11)

pour tout b ∈
{[

$nF a
0 1

]
; n ∈ Z, a ∈ F

}
, tout 0 6 nS\J 6 dS\J et toutmJ ∈ NJ .

Or, en appliquant la formule (4.4) et d’après (5.2), on obtient que∣∣∣µ( [$nF a
0 1

]
(1 OF (z)znS\J zmJ )

)∣∣∣
=
∣∣∣µ(1D(a,n)(z)χ2($n

F )$
ndS\J
F

(z − a
$n
F

)nS\J(z − a
$n
F

)mJ)∣∣∣
= qn(|nS\J |+|mJ |−r)

∣∣∣µ(1D(a,n)(z)(z − a)nS\J (z − a)mJ
)∣∣∣

d’où la condition (5.7).
Un calcul analogue montre que la condition (5.11) est équivalente à la condi-

tion (5.8).

Définition 5.7. — On appelle distribution (J, dS\J)-tempérée d’ordre r sur F
une forme linéaire continue sur l’espace de Banach B(χ, J, dS\J).

D’après ce que l’on a vu dans la Section §3.2, on sait que F ( OF , J, dS\J)

s’injecte de façon continue dans Cr( OF , J, dS\J) et que son image y est dense.
En utilisant le fait que I(χ, J, dS\J) (resp. B(χ, J, dS\J)) s’identifie topologi-
quement à deux copies de F ( OF , J, dS\J) (resp. Cr( OF , J, dS\J)), on en déduit
l’existence d’une injection GL2(F )-équivariante continue

I(χ, J, dS\J) ↪→ B(χ, J, dS\J),

dont l’image est dense dans B(χ, J, dS\J), puis d’une injection continue

B(χ, J, dS\J)∨ ↪→ I(χ, J, dS\J)∨.(5.12)
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Le résultat suivant donne une caractérisation utile de l’image de l’application
(5.12).

Proposition 5.8. — Soit µ ∈ I(χ, J, dS\J)∨. Alors µ est tempérée d’ordre r
sur F si et seulement s’il existe une constante Cµ ∈ R≥0 telle que l’on ait :∣∣∣ ∫

D(a,n)

(z − a)nS\J (z − a)mJµ(z)
∣∣∣ ≤ Cµqn(r−|nS\J |−|mJ |)(5.13)

pour tout a ∈ $F OF , tout 0 6 nS\J 6 dS\J , tout mJ ∈ NJ et tout n ≥ 1 ;∣∣∣ ∫
F\D(0,n+1)

χ2χ
−1
1 (z)zdS\J−nS\J z−mJµ(z)

∣∣∣ ≤ Cµqn(|nS\J |+|mJ |−r)(5.14)

pour tout 0 6 nS\J 6 dS\J , tout mJ ∈ NJ et tout n ≤ 0 ;

(5.15)
∣∣∣ ∫
D( 1

a ,n−
2valF (a)

f )

χ2χ
−1
1 (z)zdS\J

(1

z
− a
)nS\J(1

z
− a
)mJ

µ(z)
∣∣∣

≤ Cµqn(r−|nS\J |−|mJ |)

pour tout a ∈ OF − {0}, tout 0 6 nS\J 6 dS\J , tout mJ ∈ NJ et tout entier
n > valF (a)

f .

Démonstration. — L’application (4.2) (resp. (4.5)) induit un isomorphisme to-
pologique de I(χ, J, dS\J)∨ dans ( F ( OF , J, dS\J)∨)2 (resp. de B(χ, J, dS\J)∨

dans (Cr( OF , J, dS\J)∨)2). Si l’on note (µ1, µ2) l’élément de ( F ( OF , J, dS\J)∨)2

qui correspond à µ via cet isomorphisme, il est clair que µ est tempérée d’ordre
r sur F si et seulement si les distributions µ1 et µ2 sont (J, dS\J)-tempérées
d’ordre r sur OF . D’après le théorème 3.8, la distribution µ1 (resp. µ2) est
(J, dS\J)-tempérée d’ordre r sur OF si et seulement s’il existe une constante
Cµ1

∈ R≥0 (resp. Cµ2
∈ R≥0) telle que pour tout a ∈ OF , tout 0 6 nS\J 6

dS\J , tout mJ ∈ NJ et tout n ≥ 0, on ait :∣∣∣µ1

(
1D(a,n)(z)(z − a)nS\J (z − a)mJ

)∣∣∣ ≤ Cµ1
qn(r−|nS\J |−|mJ |) ;(5.16) ∣∣∣µ2

(
1D(a,n)(z)(z − a)nS\J (z − a)mJ

)∣∣∣ ≤ Cµ2q
n(r−|nS\J |−|mJ |) .(5.17)

La fonction f correspondant au couple

(f1, f2) = (1D(a,n)(z)(z − a)nS\J (z − a)mJ , 0)

via (4.3) est la fonction 1D($F a,n+1)(z)
(
z
$F
− a

)nS\J ( z
$F
− a

)mJ . Ainsi, la
condition (5.16) se traduit par∣∣∣µ(1D($F a,n+1)(z)(z −$Fa)nS\J (z −$Fa)mJ

)∣∣∣ ≤ Cµ1q
(n+1)(r−|nS\J |−|mJ |)
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pour tout a ∈ OF , tout 0 6 nS\J 6 dS\J , tout mJ ∈ NJ et tout n ≥ 0, d’où
(5.13).

La fonction f correspondant au couple

(f1, f2) = (0,1D(a,n)(z)(z − a)nS\J (z − a)mJ )

via (4.3) est la fonction 1{z: | 1z−a|≤|$nF |}(z)χ2χ
−1
1 (z)zdS\J

(
1
z−a

)nS\J ( 1
z−a

)mJ .
Nous devons ici distinguer deux cas.
• Si a ∈ D(0, n), on a {z : | 1z −a| ≤ |$

n
F |} = F\D(0,−n+ 1) ; la condition

(5.17) se traduit alors par

(5.18)
∣∣∣µ(1F\D(0,−n+1)(z)χ2χ

−1
1 (z)zdS\J

(1

z
− a
)nS\J(1

z
− a
)mJ)∣∣∣

≤ Cµ2
qn(|nS\J |+|mJ |−r)

pour tout 0 6 nS\J 6 dS\J , tout mJ ∈ NJ et tout n ≥ 0. En développant(
1
z −a

)nS\J et
(

1
z −a

)mJ , on voit directement l’équivalence des conditions
(5.18) et (5.14).
• Si a ∈ OF \D(0, n), on a {z : | 1z − a| ≤ |$

n
F |} = D( 1

a , n−
2valF (a)

f ), et la
condition (5.17) se traduit alors par la condition (5.15).

Corollaire 5.9. — Soit µ ∈ I(χ, J, dS\J)∨ . Alors µ ∈ Π(χ, J, dS\J)∨ si et
seulement s’il existe une constante Cµ ∈ R≥0 vérifiant (5.13), (5.14), (5.15)
ainsi que les deux conditions supplémentaires suivantes :∫

F

znS\J zmJµ(z) = 0;(5.19) ∫
F

χ2χ
−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJµ(z) = 0(5.20)

pour tout a ∈ F , tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ tels que r − (|nS\J |+
|mJ |) > 0.

Démonstration. — C’est une conséquence immédiate de la proposition 5.8 et
du lemme 4.6.

6. Preuve du théorème principal

Conservons les notations du §5.1 et supposons que les conditions (i) et (ii)
de la proposition 5.1 soient vérifiées. Rappelons que cela revient à dire que le
caractère central de I(χ, J, dS\J) est entier et que l’inégalité valQp(χ2(p)) +

|dS\J | ≥ 0 est vérifiée. De plus, par la proposition 5.5 on sait que calculer
le complété unitaire universel de I(χ, J, dS\J) revient à calculer le complété
unitaire universel de I(χ′, J ′, dS\J′). On peut donc supposer que J = J ′.
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Nous nous proposons de montrer que les conditions (5.7) et (5.8) sélec-
tionnent exactement les distributions (J, dS\J)-tempérées d’ordre r sur F an-
nulant toutes les fonctions de la forme [z 7→ znS\J zmJ ] et [z 7→ χ2χ

−1
1 (z −

a)(z − a)dS\J−nS\J (z − a)−mJ ] avec a ∈ F , mJ ∈ NJ et 0 6 nS\J 6 dS\J tels
que r − (|nS\J | + |mJ |) > 0. Plus précisément nous allons prouver le résultat
suivant.

Théorème 6.1. — Soit µ ∈ I(χ, J, dS\J)∨. Les deux conditions suivantes sont
équivalentes.
(A) La distribution µ vérifie les conditions (5.7) et (5.8) ;
(B) La distribution µ vérifie les conditions (5.13), (5.14), (5.15), (5.19) et

(5.20).

6.1. Preuve de (A) =⇒ (B). — Supposons que µ vérifie les conditions (5.7) et
(5.8). Alors µ vérifie a fortiori (5.13) et (5.14). Pour montrer que (5.7) implique
(5.15), quitte à changer la constante Cµ, on a besoin de l’équivalence suivante.

Lemme 6.2. — Quitte à modifier la constante Cµ, la condition (5.15) est équi-
valente à la condition suivante :
(i) Il existe un entier n0 > 0 tel que (5.15) est satisfaite pour tout a ∈

OF − {0}, tout 0 6 nS\J 6 dS\J , tout mJ ∈ NJ et tout n > n0 + valF (a)
f .

Démonstration. — (5.15)⇒ (i) est immédiat.
Montrons que (i)⇒ (5.15). Soit a ∈ OF −{0} et valF (a)

f < n ≤ n0 + valF (a)
f .

Si l’on pose n′ = n+ n0, on peut écrire alors D
(

1
a , n−

2valF (a)
f

)
comme union

de disques de la forme D′ = D
(

1
a′ , n

′ − 2valF (a)
f

)
avec |a| = |a′| (et donc

|a−a′| ≤ q−n). En écrivant
(

1
z−a

)i
=
((

1
z−a

′)+(a′−a))i avec i ∈ {nS\J ,mJ},
puis en développant, on obtient que∣∣∣µ(1D′(z)χ2χ

−1
1 (z)zdS\J

(1

z
− a
)nS\J(1

z
− a
)mJ)∣∣∣

≤ sup
06kS\J6nS\J

06lJ6mJ

{
|a− a′||nS\J |−|kS\J |+|mJ |−|lJ |

·
∣∣∣µ(1D′(z)χ2χ

−1
1 (z)zdS\J

(1

z
− a′

)kS\J(1

z
− a′

)lJ)∣∣∣}
≤ sup

06kS\J6nS\J
06lJ6mJ

qn(−|nS\J |+|kS\J |−|mJ |+|lJ |)Cµq
n′(r−|kS\J |−|lJ |) par (i)

= Cµq
n(r−|nS\J |−|mJ |)q(n′−n)r

≤ C ′µq
n(r−|nS\J |−|mJ |) ,
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où l’on a posé C ′µ
déf
= Cµq

n0r. Comme le dernier terme ne dépend pas du choix
de a on peut conclure.

Proposition 6.3. — Quitte à modifier la constante Cµ, la condition (5.7)
implique la condition (5.15).

Démonstration. — Notons n0 le plus petit entier positif tel que (χ2χ
−1
1 )|D(1,n0)

soit une fonction J-analytique. D’après le lemme 6.2 il suffit de montrer que la
condition (5.15) est satisfaite pour tout a ∈ OF − {0}, tout 0 6 nS\J 6 dS\J ,
tout mJ ∈ NJ et tout n > n0 + valF (a)

f . Posons D = D
(

1
a , n−

2valF (a)
f

)
. D’après

l’égalité

1D(z)
(1

z
− a
)nS\J

= 1D(z)(−1)nS\J z−nS\JanS\J
(
z − 1

a

)nS\J
,

on obtient, en écrivant zdS\J−nS\J = (z − 1
a + 1

a )dS\J−nS\J et en développant,
que

1D(z)zdS\J
(1

z
− a
)nS\J

= 1D(z)
∑

06kS\J6dS\J−nS\J

µkS\Ja
−kS\J+nS\J

(
z − 1

a

)dS\J−kS\J
,

avec µkS\J ∈ N. De même, en écrivant z−mJ = (z− 1
a+ 1

a )−mJ et en développant,
on a :

1D(z)z−mJ = 1D(z)amJ
∑
rJ>0

λrJa
rJ

(
z − 1

a

)rJ
,

avec λrJ ∈ N on en déduit que

1D(z)
(1

z
− a
)mJ

= 1D(z)(−1)mJ z−mJamJ
(
z − 1

a

)mJ
= 1D(z)

∑
rJ>0

λrJa
2mJ+rJ

(
z − 1

a

)mJ+rJ
.

Remarquons maintenant que, pour tout z ∈ D, on a

az ∈ D
(

1, n− valF (a)

f

)
⊆ D(1, n0) ,
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ce qui implique que

1D(z)χ2χ
−1
1 (z) = χ2χ

−1
1 (a−1)1D(z)χ2χ

−1
1 (az)

= χ2χ
−1
1 (a−1)1D(z)

∑
lJ>0

blJ (az − 1)lJ

= χ2χ
−1
1 (a−1)1D(z)

∑
lJ>0

blJa
lJ

(
z − 1

a

)lJ
,

avec blJ ∈ E et |blJ |q
−n0 → 0 quand |lJ | → +∞. Notons alors C = suplJ |blJ |.

Comme, d’après (5.2), on a |χ2χ
−1
1 (a−1)| = |a||dS\J |−2r, on déduit des égalités

précédentes que :∣∣∣µ(1D(z)χ2χ
−1
1 (z)zdS\J

(1

z
− a
)nS\J(1

z
− a
)mJ)∣∣∣

≤ C|a||dS\J |−2r sup
06kS\J6dS\J−nS\J

lJ>0, rJ>0

{
|a|2|mJ |+|rJ |+|lJ |−|kS\J |+|nS\J |

·
∣∣∣µ(1D(z)

(
z − 1

a

)dS\J−kS\J(
z − 1

a

)mJ+lJ+rJ
)∣∣∣} .

Comme la condition (5.7) implique l’inégalité∣∣∣µ(1D(z)
(
z − 1

a

)dS\J−kS\J(
z − 1

a

)mJ+lJ+rJ
)∣∣∣

≤ Cµ
∣∣∣$n

F

a2

∣∣∣|dS\J |−|kS\J |+|mJ |+|lJ |+|rJ |−r ,
on en déduit finalement que∣∣∣µ(1D(z)χ2χ

−1
1 (z)zdS\J

(1

z
− a
)nS\J(1

z
− a
)mJ)∣∣∣ ≤ CCµqn(r−|nS\J |−|mJ |),

ce qui prouve le résultat annoncé.

D’après la proposition 6.3, on peut étendre µ en une distribution
(J, dS\J)-tempérée d’ordre r sur F . Il reste à montrer que µ, vu comme élément
de B(χ, J, dS\J)∨, est nul sur l’espace L(χ, J, dS\J). Or, d’après (5.7), on a,
pour tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ tels que r − (|nS\J |+ |mJ |) > 0 :∣∣∣ ∫

D(0,n)

znS\J zmJµ(z)
∣∣∣→ 0 quand n→ −∞

tandis que d’après (5.8), on a, pour tout a ∈ F , tout 0 6 nS\J 6 dS\J et
tout mJ ∈ NJ tels que r − (|nS\J |+ |mJ |) > 0 :∣∣∣ ∫
F\D(a,n+1)

χ2χ
−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJµ(z)

∣∣∣→ 0 quand n→ +∞ .
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Ceci prouve la nullité recherchée et permet de terminer la preuve de l’implica-
tion (A) =⇒ (B).

6.2. Preuve de (B) =⇒ (A). — Montrer que les conditions (5.13), (5.14), (5.15),
(5.19) et (5.20) impliquent les conditions (5.7) et (5.8) requiert quelques pré-
liminaires. Commençons par donner une autre caractérisation des conditions
(5.7) et (5.8).

Lemme 6.4. — La condition (5.7) est satisfaite (quitte à changer Cµ) si et
seulement si les trois conditions suivantes sont vérifiées.

(i) (5.7) est vérifiée pour tout a ∈ F et tout n ∈ Z tels que D(a, n)∩$F OF =

∅, tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ ;
(ii) (5.7) est vérifiée pour tout a ∈ $F OF , tout n ∈ N>0, tout 0 6 nS\J 6

dS\J et tout mJ ∈ NJ ;
(iii) (5.7) est vérifiée pour a = 0, pour tout entier n ≤ 0, tout 0 6 nS\J 6 dS\J

et tout mJ ∈ NJ tels que r − (|nS\J |+ |mJ |) > 0.

Démonstration. — Seule l’implication (i) + (ii) + (iii) ⇒ (5.7) est à prouver.
Pour cela il suffit de vérifier la condition (5.7) pour a = 0, pour tout entier
n ≤ 0, tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ tels que r− (|nS\J |+ |mJ |) ≤ 0.

Notons R ⊂ OF un système de représentants des classes de OF /$F OF
contenant 0 et fixons m ∈ N>0 tel que n+m > 0. On a alors :

1D(0,n)(z)z
nS\J zmJ

= 1D(0,n+m)(z)z
nS\J zmJ +

m−1∑
j=0

∑
ai∈R−{0}

1D(ai$
n+j
F ,n+j+1)(z)z

nS\J zmJ .

En utilisant (ii) et l’inégalité r − (|nS\J |+ |mJ |) ≤ 0, on obtient que :∣∣∣µ(1D(0,n+m)(z)z
nS\J zmJ

)∣∣∣ ≤ Cµq(n+m)(r−|nS\J |−|mJ |) ≤ Cµqn(r−|nS\J |−|mJ |).

Il reste à minorer les termes de la somme. Soit ai ∈ R− {0} et 0 ≤ j ≤ m− 1.
En écrivant znS\J = (z − ai$n+j

F + ai$
n+j
F )nS\J (resp. zmJ = (z − ai$n+j

F +
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ai$
n+j
F )mJ ) et en développant, on obtient que∣∣∣µ(1D(ai$

n+j
F ,n+j+1)(z)z

nS\J zmJ
)∣∣∣

≤ sup
06lS\J6nS\J

06kJ6mJ

{∣∣∣µ(1D(ai$
n+j
F ,n+j+1)(z)(ai$

n+j
F )lS\J (ai$

n+j
F )kJ

· (z − ai$n+j
F )nS\J−lS\J (z − ai$n+j

F )mJ−kJ
)∣∣∣}

≤ sup
06lS\J6nS\J

06kJ6mJ

q−(n+j)(|lS\J |+|kJ |)Cµq
(n+j+1)(r−|nS\J |+|lS\J |−|mJ |+|kJ |) par (i)

≤ Cµq
rq(n+j)(r−|nS\J |−|mJ |).

Comme r − (|nS\J |+ |mJ |) ≤ 0, on a :

q(n+j)(r−|nS\J |−|mJ |) ≤ qn(r−|nS\J |−|mJ |),

d’où le résultat.

Rappelons que pour tout entier k ≥ 1 on désigne par Sk ⊂ O×F un système de
représentants des classes de ( OF /$k

F OF )×, et que l désigne le plus petit entier
positif tel que χ1|D(ai,l) et χ2|D(ai,l) soient des fonctions J-analytiques sur
l’ouvert D(ai, l) pour tout ai ∈ Sl. Notons D(a, n, n+1) = D(a, n)\D(a, n+1)

pour tout a ∈ F et tout n ∈ Z.

Lemme 6.5. — Supposons que la condition (5.7) soit satisfaite. Alors la condi-
tion (5.8) est satisfaite si et seulement si les deux conditions suivantes sont
vérifiées.

(i) (5.8) est vraie pour tout a ∈ F , tout n ≥ 0, tout 0 6 nS\J 6 dS\J et
tout mJ ∈ NJ tels que r − (|nS\J |+ |mJ |) > 0 ;

(ii) (5.8) est vraie pour a = 0, pour tout n ≤ 0, tout 0 6 nS\J 6 dS\J et
tout mJ ∈ NJ tels que r − (|nS\J |+ |mJ |) ≤ 0.

Démonstration. — (5.8)⇒ (i), (ii) est immédiat.
Montrons (i) + (ii)⇒ (5.8). Pour cela, il suffit de vérifier la condition (5.8)

dans les trois cas suivants :

• a ∈ F , tout n < 0, 0 6 nS\J 6 dS\J et mJ ∈ NJ tels que r − (|nS\J | +
|mJ |) > 0 ;
• a 6= 0, n ∈ Z, 0 6 nS\J 6 dS\J et mJ ∈ NJ tels que r− (|nS\J |+ |mJ |) ≤

0 ;
• a = 0, n > 0, 0 6 nS\J 6 dS\J etmJ ∈ NJ tels que r−(|nS\J |+|mJ |) ≤ 0.
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Remarquons d’abord que l’on a :

∀a ∈ F, n ∈ Z, 1D(a,n,n+1) =
∑
ai∈Sl

1D(a+ai$nF ,n+l) .

Ainsi, un raisonnement analogue à celui prouvant le lemme 4.6 permet de mon-
trer, en utilisant (5.7), que pour tout a ∈ F , tout n ∈ Z, tout 0 6 nS\J 6 dS\J
et tout mJ ∈ NJ on a, quitte à modifier Cµ :

(6.1)
∣∣∣µ(1D(a,n,n+1)(z)χ2χ

−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJ

)∣∣∣
≤ Cµqn(|nS\J |+|mJ |−r) .

On conclut alors comme suit.

Premier cas. — Soit n < 0 et fixons un entier m ≥ 1 tel que que n + m > 0.
Puisque

∀a ∈ F, 1F\D(a,n) = 1F\D(a,n+m) −
m−1∑
j=0

1D(a,n+j,n+j+1) ,

on déduit le premier cas de (i) et de (6.1).

Deuxième cas. — Soit a 6= 0 et n ∈ Z. Choisissons m ∈ Z tel que n −m < 0

et F\D(a, n−m) = F\D(0, n−m). En utilisant l’égalité

1F\D(a,n) = 1F\D(a,n−m) +

m+1∑
j=0

1D(a,n−m−j,n−m−j+1) ,

on déduit le deuxième cas de (ii) et de (6.1).

Troisième cas. — Le même raisonnement que celui mené dans le deuxième cas
s’applique.

Remarquons que (5.13) est exactement (5.7) avec a ∈ $F OF , tout n ∈ N>0,
tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ et que (5.14) est exactement (5.8)
pour a = 0, pour tout n ≤ 0, tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ . D’après
les lemmes 6.4 et 6.5 il reste alors à montrer :

(i) (5.7) pour tout a ∈ F et tout n ∈ Z tels que D(a, n) ∩ $F OF = ∅,
tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ ;

(ii) (5.7) pour a = 0, pour tout entier n ≤ 0, tout 0 6 nS\J 6 dS\J et
tout mJ ∈ NJ tels que r − (|nS\J |+ |mJ |) > 0 ;

(iii) (5.8) pour tout a ∈ F , tout n ≥ 0, tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ
tels que r − (|nS\J |+ |mJ |) > 0.

La proposition suivante montre que (5.15) implique (i).
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Proposition 6.6. — La condition (5.15) implique la condition (5.7) pour tout
disque D(a, n) avec a ∈ F et n ∈ Z tels que D(a, n) ∩ $F OF = ∅, tout 0 6
nS\J 6 dS\J et tout mJ ∈ NJ .

Démonstration. — Un calcul analogue à celui de la proposition 6.3 montre que
la condition (5.15) est équivalente à

(6.2)
∣∣∣ ∫
D( 1

a ,n−
2valF (a)

f )

zdS\J
(1

z
− a
)nS\J(1

z
− a
)mJ

µ(z)
∣∣∣

≤ Cµ|a|2r−|dS\J |qn(r−|nS\J |−|mJ |)

pour tout a ∈ OF − {0}, tout 0 6 nS\J 6 dS\J , tout mJ ∈ NJ et tout entier
n > valF (a)

f .

Soit a ∈ OF − {0} et n > valF (a)
f . Posons D = D

(
1
a , n −

2valF (a)
f

)
. Pour

tout 0 6 nS\J 6 dS\J on a alors les identités suivantes :

1D(z)
(
z − 1

a

)nS\J
= 1D(z)(−1)nS\Ja−nS\J znS\J

(1

z
− a
)nS\J

= 1D(z)(−1)nS\Ja−nS\J
(1

z
− a+ a

)dS\J−nS\J
zdS\J

(1

z
− a
)nS\J

= 1D(z)
∑

06kS\J6dS\J−nS\J

λkS\Ja
kS\J−nS\J zdS\J

(1

z
− a
)dS\J−kS\J

avec λkS\J ∈ N. Un calcul analogue au précédent montre que :

1D(z)
(
z − 1

a

)mJ
= 1D(z)

∑
rJ>0

µrJa
−2mJ−rJ

(1

z
− a
)rJ+mJ

avec µrJ ∈ N. Ces deux égalités combinées à la condition (6.2) impliquent que :∣∣∣µ(1D(z)
(
z − 1

a

)nS\J
(z − 1

a

)mJ)∣∣∣
≤
∣∣∣a−nS\Ja−2mJ

· sup
rJ>0

06kS\J6dS\J−nS\J

akS\Ja−rJµ
(
1D(z)zdS\J

(1

z
− a
)dS\J−kS\J(1

z
− a
)rJ+mJ

)∣∣∣
≤Cµ|a|−|nS\J |−2|mJ |

· sup
rJ>0

06kS\J6dS\J−nS\J

|a||kS\J |−|rJ ||a|2r−|dS\J |qn(r−|dS\J |+|kS\J |−|rJ |−|mJ |)
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=Cµ|a|2r−2|nS\J |−2|mJ |qn(r−|nS\J |−|mJ |)

=Cµq
(n− 2valF (a)

f )(r−|nS\J |−|mJ |).

Lorsque a ∈ OF−{0} et n > valF (a)
f ,D

(
1
a , n−

2valF (a)
f

)
parcourt tous les disques

D(b,m) ⊂ F avec b ∈ F et m ∈ N dans F tels que D(b,m) ∩$F OF = ∅, ce
qui permet conclure.

En utilisant les conditions (5.19) et (5.20) on voit que montrer (ii) et (iii)
revient à montrer (quitte à modifier la constante Cµ) que, d’une part,∣∣∣ ∫

F\D(0,n)

znS\J zmJµ(z)
∣∣∣ ≤ Cµqn(r−|nS\J |−|mJ |)(6.3)

pour tout entier n ≤ 0, tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ tels que r −
(|nS\J |+ |mJ |) > 0 et
(6.4)∣∣∣ ∫
D(a,n+1)

χ2χ
−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJµ(z)

∣∣∣ ≤ Cµqn(|nS\J |+|mJ |−r)

pour tout a ∈ F , tout n ≥ 0, tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ tels
que r − (|nS\J |+ |mJ |) > 0.

Rappelons que l’on a posé, pour tout f ∈ B(χ, J, dS\J),

‖f‖B = sup
(
‖f1‖Cr , ‖f2‖Cr

)
,(6.5)

où (f1, f2) désigne l’élément de Cr
(
OF , J, dS\J

)2 qui correspond à f via l’iso-
morphisme (4.5).

Les conditions (6.3) et (6.4) sont alors une conséquence immédiate du lemme
suivant.

Lemme 6.7. — • Il existe une constante C ∈ R≥0 telle que pour tout entier
n ≤ 0, tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ vérifiant r− (|nS\J |+ |mJ |) > 0

on a :

‖1F\D(0,n+1)(z)z
nS\J zmJ‖B ≤ Cqn(r−|nS\J |−|mJ |).

• Il existe une constante C ∈ R≥0 telle que pour tout a ∈ F , tout entier
n ≥ 1, tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ vérifiant r− (|nS\J |+ |mJ |) > 0,
on a :

‖1D(a,n)(z)χ2χ
−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJ‖B ≤ Cqn(|nS\J |+|mJ |−r).

Démonstration. — Pour tout 0 6 nS\J 6 dS\J et tout mJ ∈ NJ tels que r −
(|nS\J |+ |mJ |) > 0, notons fnS\J ,mJ la fonction de OF dans E définie par :

∀z ∈ OF , fnS\J ,mJ (z) = χ2χ
−1
1 (z)zdS\J−nS\J z−mJ .
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D’après le lemme 4.6 c’est une fonction de classe Cr. Posons :
(6.6)
C = sup

{
‖fnS\J ,mJ‖Cr : 0 6 nS\J 6 dS\J , mJ ∈ NJ et r − (|nS\J |+ |mJ |) > 0

}
.

Par (6.5), on sait que

‖1F\D(0,n+1)(z)z
nS\J zmJ‖B = ‖1D(0,−n)(z)fnS\J ,mJ (z)‖Cr .

On peut réécrire ‖1D(0,−n)(z)fnS\J ,mJ (z)‖Cr sous la forme :∣∣∣χ2χ
−1
1 ($−nF )($−nF )dS\J−nS\J ($−nF )−mJ

∣∣∣∥∥∥1D(0,−n)(z)fnS\J ,mJ

( z

$−nF

)∥∥∥
Cr
.

Comme (5.2) assure que l’on a :∣∣∣χ2χ
−1
1 ($−nF )($−nF )dS\J−nS\J ($−nF )−mJ

∣∣∣ = qn(2r−|nS\J |−|mJ |) ,

et comme le lemme 3.2 assure que∥∥∥1D(0,−n)(z)fnS\J ,mJ

( z

$−nF

)∥∥∥
Cr
≤ Cq−nr,

on en déduit que

‖1F\D(0,n+1)(z)z
nS\J zmJ‖B ≤ Cqn(r−|nS\J |−|mJ |) .

On distingue maintenant deux cas.
(i) Supposons a ∈ $F OF . Par (6.5), on a alors

‖1D(a,n)(z)χ2χ
−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJ‖B

= ‖1D( a
$F

,n−1)(z)fnS\J ,mJ ($F z − a)‖Cr .

Comme la norme Cr est invariante par translation, on en déduit l’égalité sui-
vante :

‖1D( a
$F

,n−1)(z)fnS\J ,mJ ($F z − a)‖Cr = ‖1D(0,n−1)(z)fnS\J ,mJ ($F z)‖Cr .

On peut réécrire ‖1D(0,n−1)(z)fnS\J ,mJ ($F z)‖Cr sous la forme :∣∣∣χ2χ
−1
1 ($n

F )($n
F )(dS\J−nS\J )($n

F )−mJ
∣∣∣∥∥∥1D(0,n−1)(z)fnS\J ,mJ

( z

$n−1
F

)∥∥∥
Cr
.

D’après (5.2), on a :∣∣∣χ2χ
−1
1 ($n

F )($n
F )(dS\J−nS\J )($n

F )−mJ
∣∣∣ = qn(−2r+|nS\J |+|mJ |)

tandis que le lemme 3.2 assure que l’on a :∥∥∥1D(0,n−1)(z)fnS\J ,mJ

( z

$n−1
F

)∥∥∥
Cr
≤ Cq(n−1)r .
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On en conclut que

‖1D(a,n)(z)χ2χ
−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJ‖B ≤ Cq−rqn(−r+|nS\J |+|mJ |) .

(ii) Supposons que a /∈ $F OF . Par (6.5), on a :

‖1D(a,n)(z)χ2χ
−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJ‖B

=
∣∣∣χ2χ

−1
1 (a)adS\J−nS\Ja−mJ

∣∣∣
·
∥∥∥1

D
(

1
a ,n−

2valF (a)

f

)(z)znS\J zmJ fnS\J ,mJ(z − 1

a

)∥∥∥
Cr
.

En écrivant znS\J = (z− 1
a + 1

a )nS\J , zmJ = (z− 1
a + 1

a )mJ , puis en développant
et en utilisant l’invariance par translation de la norme Cr, on obtient que∥∥∥1

D
(

1
a ,n−

2valF (a)

f

)(z)znS\J zmJ fnS\J ,mJ(z − 1

a

)∥∥∥
Cr

≤ sup
06αJ6mJ

06β
S\J

6nS\J

|a|−|αJ |−|βS\J |
∥∥∥1

D
(

0,n− 2valF (a)

f

)(z)fβ
S\J

,αJ
(z)
∥∥∥
Cr
.

D’après le lemme 3.2, on a :∥∥∥1
D
(

0,n− 2valF (a)

f

)(z)fβ
S\J

,αJ
(z)
∥∥∥
Cr

≤ C
∣∣∣χ2χ

−1
1

($n
F

a2

)($n
F

a2

)dS\J−βS\J($n
F

a2

)−αJ ∣∣∣∣∣∣$n
F

a2

∣∣∣−r .
Comme la borne supérieure du membre de droite de l’inégalité ci-dessus est
atteinte pour αJ = mJ et β

S\J = nS\J on déduit de (5.2) que

‖1D(a,n)(z)χ2χ
−1
1 (z − a)(z − a)dS\J−nS\J (z − a)−mJ‖B ≤ Cqr−|nS\J |−|mJ |,

ce qui prouve le résultat.

Le lemme 6.7 termine la preuve de l’implication (B) =⇒ (A), et donc
la preuve du théorème 6.1. Ainsi, on a montré que l’espace de Banach dual
du complété cherché est isomorphe dans I(χ, J, dS\J)∨ au sous-espace de
Banach de B(χ, J, dS\J)∨ formé des µ s’annulant sur L(χ, J, dS\J), c’est-à-dire
à Π(χ, J, dS\J)∨. En particulier, Π(χ, J, dS\J)∨ est un G-Banach unitaire.

Rappelons que dans [25], Schneider et Teitelbaum introduisent la catégorie
Modflcomp( OE) des OE-modules sans torsion, linéairement topologiques, séparés
compacts, où les morphismes sont les applications OE-linéaires continues. Pour
tout objet M de Modflcomp( OE) on définit le E-espace de Banach (Md, ‖ · ‖)
par :

Md déf
= Homcont

OE (M,E) muni de la norme ‖l‖ déf
= sup

x∈M
|l(x)|.
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Notons Modflcomp( OE)Q la catégorie ayant les mêmes objets que la catégorie
Modflcomp( OE) mais dont morphismes sont définis par :

HomModflcomp( OE)Q
(A,B)

déf
= HomModflcomp( OE)(A,B)⊗ E.

Dans [25, Théorème 1.2], il est montré que le foncteurM 7→Md induit une anti-
équivalence de catégories entre Modflcomp( OE)Q et la catégorie des E-espaces de
Banach.

Corollaire 6.8. — Il existe un isomorphisme G-équivariant d’espaces de Ba-
nach p-adiques :

I(χ, J, dS\J)∧
∼−→ Π(χ, J, dS\J).

Démonstration. — L’argument est analogue à celui permettant de prouver [3,
Théorème 4.3.1]. D’après [24, Lemme 9.9], on a une injection fermée G-équiva-
riante

Π(χ, J, dS\J) ↪→
(

Π(χ, J, dS\J)∨
)∨

,

ce qui assure notamment que Π(χ, J, dS\J) est un G-Banach unitaire.
Par la propriété universelle du complété unitaire universel, l’application
I(χ, J, dS\J)→ Π(χ, J, dS\J) induit alors un morphisme G-équivariant continu
de I(χ, J, dS\J)∧ vers Π(χ, J, dS\J), qui induit à son tour un morphisme
continu sur les duaux munis de leur topologie faible, qui sont des éléments
de Modflcomp( OE)Q. Or, d’après le théorème 6.1, ce morphisme est bijectif et
continu. C’est donc, d’après [6, Lemme 4.2.2] un isomorphisme pour les topo-
logies faibles. Par dualité [25, Théorème 1.2], on obtient alors l’isomorphisme
topologique GL2(F )-équivariant de l’énoncé.

Remarque 6.9. — Le corollaire 6.8 généralise [3, Théorème 4.3.1] pour
F = Qp. Mentionnons que ce résultat joue un rôle important dans la preuve
par Berger et Breuil de la non nullité de l’espace I(χ, J, dS\J)∧.

6.3. Exemple. — Introduisons quelque notations supplémentaires et rappelons
la construction des représentations considérées dans [8]. Si λ ∈ E×, on désigne
par unrF (λ) : F× → E× le caractère non ramifié défini par x 7→ λvalF (x).
Soient α, α̃ ∈ E× et k ∈ NS>1. Fixons J1, J2 deux sous-ensembles de S tels
que J1 ⊆ J2 ⊆ S. Considérons les deux caractères algébriques suivants :

χ1 = unrF (α−1)
∏
σ∈J1

σkσ−1, χ2 = unrF (pα̃−1)
∏
σ∈J1

σ−1
∏

σ∈J2\J1

σkσ−2 ,

et posons :

π(J1, J2) =
( ⊗
σ∈S\J2

(Symkσ−2E2)σ
)
⊗E

(
IndGPχ1 ⊗ χ2

)J2-an

.
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D’après la proposition 5.1, on connaît deux conditions nécessaires pour que le
complété unitaire universel de la représentation Qp-analytique π(J1, J2) soit
non nul. Un calcul immédiat montre qu’elles sont équivalentes aux conditions
suivantes :

−(valF (α) + valF (α̃)) +
∑
σ∈S

(kσ − 1) = 0 ;(6.7)

−valF (α̃) +
∑

σ∈S\J1

(kσ − 1) ≥ 0.(6.8)

Supposons que (6.7) et (6.8) soient vérifiées. On a alors nn particulier l’inégalité
suivante :

−valF (α) +
∑
σ∈J1

(kσ − 1) ≤ 0.

Posons r = valF (α)−
∑
σ∈J1

(kσ − 1) et

J3 = J2

∐
{σ ∈ S\J2, kσ − 1 > r}.

D’après la proposition 5.5, on sait que l’application fermée et G-équivariante

π(J1, J2) ↪→ π(J1, J3)

déf
=
( ⊗
σ∈S\J3

(Symkσ−2E2)σ
)
⊗E

(
IndGPχ1 ⊗ χ2

∏
σ∈J3\J2

σkσ−2
)J3-an

induit un isomorphisme G-équivariant de π(J1, J2)∧ dans π(J1, J3)∧. Posons
alors

χ′1 = χ1, χ′2 = χ2

∏
σ∈J3\J2

σkσ−2 ,

et

B(χ, J3, (kσ − 2)σ/∈J3
) = Cr( OF , J3, (kσ − 2)σ/∈J3

)⊕ Cr( OF , J3, (kσ − 2)σ/∈J3
).

C’est un espace de Banach sur E muni d’une action continue de G (voir la
preuve du lemme 4.5). D’après le lemme 4.6, la fonction h(nσ)σ/∈J3 ,(mσ)σ∈J3
définie par

h(nσ)σ/∈J3 ,(mσ)σ∈J3
(z) = χ′2χ

′
1
−1

(z)
∏
σ/∈J3

σ(z)kσ−2−nσ
∏
σ∈J3

σ(z)−mσ

se prolonge sur OF en une fonction de classe Cr. Si l’on désigne par
L(χ, J3, (kσ − 2)σ/∈J3

) le sous-espace de B(χ, J3, (kσ − 2)σ/∈J3
) engendré

par les couples de fonctions(
z 7→

∏
σ/∈J3

σ($F z)
nσ
∏
σ∈J3

σ($F z)
mσ , z 7→ h(nσ)σ/∈J3 ,(mσ)σ∈J3

(z)
)
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et(
z 7→ h(nσ)σ/∈J3 ,(mσ)σ∈J3

($F z − a),

z 7→ h(nσ)σ/∈J3 ,(mσ)σ∈J3
(1− az)

∏
σ/∈J3

σ(z)nσ
∏
σ∈J3

σ(z)mσ
)

avec a ∈ F , (mσ)σ∈J3
∈ NJ3 et (nσ)σ/∈J3

≤ (kσ−2)σ/∈J3
tels que r−

∑
σ/∈J3

nσ−∑
J3
mσ > 0, le corollaire 6.8 assure alors que l’on a

π(J1, J2)∧
∼−→ B(χ, J3, kS\J3

− 2)/L(χ, J3, kS\J3
− 2).
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