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CONTINUOUS MAPPINGS BETWEEN SPACES OF ARCS

BY GOULWEN FIicHOU & MASAHIRO SHIOTA

ABSTRACT. — A blow-analytic homeomorphism is an arc-analytic subanalytic home-
omorphism, and therefore it induces a bijective mapping between spaces of analytic
arcs. We tackle the question of the continuity of this induced mapping between the
spaces of arcs, giving a positive and a negative answer depending of the topology in-
volved. We generalise the result to spaces of definable arcs in the context of o-minimal
structures, obtaining notably a uniform continuity property.

REsSUME (Applications continues entre espaces d’arcs). — Un homéomorphisme ana-
lytique aprés éclatements est en particulier analytique par arcs et sous-analytique, il
induit donc une application bijective entre les espaces d’arcs analytiques associés. On
étudie la continuité de cette application induite, en fonction de la topologie considé-
rée. On considére également la généralisation au cadre o-minimal, obtenant ainsi une
propriété de continuité uniforme.
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316 G. FICHOU & M. SHIOTA

Introduction

The blow-analytic equivalence between real analytic function germs [12] is
an interesting counterpart in the real setting to the topological equivalence
between complex analytic function germs. For f,g : (R",0) — (R,0) analytic
function germs, we say that f and g are blow-analytically equivalent if there
exists a blow-analytic homeomorphism germ ¢ : (R™,0) — (R™,0) such that
f =go¢. A homeomorphism ¢ : U — V between open subsets U and V of R"
is called a blow-analytic homeomorphism if there exist two finite sequences of
blowings-up along smooth analytic centres 7 : M — U and o : N — V and an
analytic diffeomorphism ® : M — N such that gom =0 0 .

If the definition of blow-analytic equivalence via sequences of blowings-up
makes it difficult to study, it has also very nice properties (cf. [9] for a sur-
vey). In particular a blow-analytic homeomorphism ¢ : U — V is arc-analytic
[13], namely if v € R{t}" is a n-uplet of convergent power series on a neigh-
bourhood of 0 € R with v(0) € U, then ¢ o v is analytic. In particular a
blow-analytic homeomorphism ¢ induces a bijective mapping ¢. between the
spaces of analytic arcs at the origin of R™. The nice behaviour of the blow-
analytic equivalence with respect to arcs and more generally spaces of arcs
have already produced very interesting invariants (such as the Fukui invariants
[6], zeta functions [10, 5]), a complete classification in dimension two [11], or
explained some relations with respect to bi-Lipschitz property [8].

The first question we address in this paper is very natural in this context:
given a blow-analytic homeomorphism ¢, is the induced mapping ¢, between
the spaces of analytic arcs continuous? It is natural to hope that such homeo-
morphism induces an homeomorphism between arcs, even if the definition of a
blow-analytic homeomorphism via sequences of blowings-up makes it difficult
to handle directly. We offer in this paper two answers to this question.

A first answer is that the induced mapping is not continuous, even at the
level of truncated arcs, when we considered R{¢}" endowed with the product
topology. We show the existence of a counter-example in dimension two in
Section 1.3, where the sequence of blowings-up consists simply of the blowing-
up 7 : M — R? at the origin of R2.

A second answer is that the induced mapping is continuous... if R{¢}" is
endowed with the ¢-adic topology (cf. Theorem 1.3)! The result is actually a
simple consequence of the Hoélder property of subanalytic maps. However this
question has a natural generalisation in the context of o-minimal structures
over a real closed field where such a Holder property is no longer available.
Nevertheless, the tameness of an o-minimal structure should guaranty that
the continuity of a mapping over a real closed field continues to hold when
we naturally extend the field to another real closed field, and the mapping
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CONTINUOUS MAPPINGS BETWEEN SPACES OF ARCS 317

to a mapping over the extended field. And actually, if the Holder property
suffices to obtain the continuity in the case of subanalytic mappings over real
numbers, a generalisation of YL.ojasiewicz Inequality to locally closed definable
sets (Proposition 3.5) enable to control the behaviour of arcs in the o-minimal
setting in order to keep the continuity at the level of spaces of definable arcs.

We propose moreover another approach, more natural in the non necessary
locally closed case (e.g., a bijection coming from a resolution of the singular-
ities as in Example 3.13), and following a geometric approach parallel to the
model-theoretic point of view developed in [3]. In particular, we study more in
details in Section 3.3 the transport of properties between the initial o-minimal
structure other a given real closed field and the new o-minimal structure on the
real closed field of germs of definable arcs at the origin. We obtain moreover in
a very simple way a uniform continuity property in Proposition 3.17.

Acknowledgements. — The first author wish to thank K. Kurdyka, O. Le Gal,
M. Raibaut and S. Randriambololona for valuable remarks.

1. Blow-analytic homeomorphisms and continuity

If a blow-analytic homeomorphism induces a continuous mapping at the
level of spaces of arcs considered with the ¢t-adic topology (cf. Theorem 1.3), we
prove the existence of a blow-analytic homeomorphism which does not induce
a continuous mapping at the level of spaces of arcs when we considered it with
the product topology. The counter-example is produced in Section 1.3.

1.1. Blow-analytic homeomorphisms

DEFINITION 1.1. — Let U and V be open subsets of R™. A homeomorphism
¢ : U — V is called a blow-analytic homeomorphism if there exist two finite
sequences of blowings-up along smooth analytic centres 7 : M — U and o :
N — V and an analytic diffeomorphism ® : M — N such that ¢om =0 0 ®.

Denote by R{¢} the one-variable convergent power series ring and m its max-
imal ideal. We consider in this section R{t} equipped either with the t-adic
topology or with the product topology. We regard R{¢}" as the family of ana-
lytic curve germs c : [0; €) — R™, with e > 0 € R, at 0 and let &y(R™) denote
those curve germs ¢ with ¢(0) = 0. Set

Gu(R™) ={ceR{t}":¢c(0) e U}
for an open subset U of R™. We identify @y (R™) with U x @(R™) by the
correspondence

Gy (R™) 3 ¢ — (c(0),c—¢(0)) € U x Go(R™).
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318 G. FICHOU & M. SHIOTA

1.2. t-adic topology. — Let h : (R™,0) — (R™,0) be an arc-analytic mapping
germ [13], namely any analytic arc v : (—e¢; €) — R™, where € > 0, with v(0) =0
is sent by h into an analytic arc ho~y : (—€¢/;¢’) — R™ for some ¢ > 0. Then
h defines a mapping from &y(R™) to &y(R™), denoted by h, in the sequel. We
considered @o(R™) with its t-adic topology.

REMARK 1.2. — A blow-analytic homeomorphism is arc-analytic since any
analytic arc ¢ : [0; €) — U may be lifted via a sequence of blowings-up along
smooth analytic centres m : M — U to an analytic arc d : [0; ¢) — M such
that ¢ = mod (cf. [9] Section 5 for example). In particular a blow-analytic
homeomorphism ¢ : U — V induces a mapping

¢s: Gu(R") > c— poce Gy(R")
Note that this mapping is moreover bijective.

THEOREM 1.3. — Let h: (R",0) — (R™,0) be a subanalytic homeomorphism.
Assume h and h~! are arc analytic. The induced mapping h. : @Go(R") —
Go(R™) is a uniformly continuous homeomorphism with respect to the t-adic
topology.

Proof. — As a consequence of Lojasiewicz inequality ([1], Theorem 6.4), a
subanalytic homeomorphism h is Holder, and so there exist o € Q, with a €
10,1], such that

|h(z) — h(y)| < clz —y[*
for z,y close to 0, where ¢ > 0. In particular, if 7,6 : [0,¢) — (R",0) are
analytic arcs, then

ord(ho~(t) — hod(t)) > aord(y(t) — 4(t)),
and this gives the continuity with respect to the t-adic topology. O

Theorem 1.3 extends to a global version on compact analytic manifolds.
Let M C R™ be a compact analytic manifold, and denote by (M) those arcs
in R{t}"™ with origin in M. We consider @%(M) endowed with the topology
induced by that of R{t}".

THEOREM 1.4. — Let M C R™ and N C R" be compact analytic manifolds
and h : M — N be a subanalytic homeomorphism. Assume that h and h~!
are arc analytic. The induced mapping h, : G(M) — G(N) is a uniformly
continuous homeomorphism.

If the ambient spaces are no longer compact, we keep the continuity of the
induced mapping between analytic arcs since continuity is a local property:

THEOREM 1.5. — Let h : R™ — R"™ be a subanalytic homeomorphism. Assume
h and h=1 are arc analytic. Then h, : R{t}" — R{t}" is a homeomorphism.
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FIGURE 1. Blowing-up and curves.
1.3. Product topology. — For a blow-analytic homeomorphism ¢ as in Re-

mark 1.2, it is natural to hope that the induced mapping ¢, is a homeomor-
phism when we considered the product topology. However, it is not difficult to
find a counter-example!

In the sequel, we focus therefore on some particular blow-analytic homeo-
morphisms, namely those blow-analytic homeomorphisms which induce a blow-
analytic equivalence between some analytic functions (we refer to [9] for similar
distinctions between different kind of blow-analytic homeomorphisms).

DEFINITION 1.6. — Let f,g : (R™",0) — (R,0) be analytic function germs.
We call f and g blow-analytically equivalent if there exist open subsets U and
V of R" containing 0 and a blow-analytic homeomorphism ¢ : U — V such
that ¢(0) = 0 and f = g o ¢g, where ¢ denotes the germ of ¢ at 0. We call
¢o : (R™,0) — (R™,0) a blow-analytic homeomorphism germ.

The problem we address is then as follows.

QUESTION 1.7. — Let ¢ be a blow-analytic homeomorphism germ which re-
alises the blow-analytic equivalence of two non-zero analytic function germs.
Is the induced mapping ¢, : @o(R™) 3 ¢ — ¢ oc € Gy(R™) continuous in the
product topology?

In the following we give a negative answer to Question 1.7. We prove the
existence of a counter-example by an explicit construction. For the counter-
example, we fix n = 2 and define f, g : (R?,0) — (R,0) by f(z,y) = g(z,vy) = v.
We define a family of curves ¢, € %y(R?) by

ce(t) = (et,t?)

for € € R. Then c, converges to cy in @y(R?) for the product topology as € goes
to 0.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



320 G. FICHOU & M. SHIOTA

Let 7 : M — R? denote the blowing-up of R? along center {0}. We will
prove the existence of an analytic diffeomorphism ® of M such that:

(i) ® induces a blow-analytic homeomorphism ¢ of R? with ¢(0) = 0,
(i) fop = f and
(iii) (¢0)«(ce) 7> (d0)«(co) as € — 0.
Let M; = 7 1(0) denote the exceptional divisor of m and M, denote the
closure of 77}(R x {0} — {0}) in M.

LEMMA 1.8. — Let ® be an analytic diffeomorphism of M such that (i) and
(’LZ) hOld Then (I)(Ml) = M1 and (I)(Mg) = Mg.

Proof. — Condition (i) is equivalent to the condition ®(M7) = M; while con-
dition (ii) is equivalent to the condition

(i”) fomod®d=form
Then(fom)~1(0) = M;UMj; and hence condition (ii’) implies ®(Mz) = M,. [

Assume that there exists an analytic diffeomorphism ® with the conditions
(i), (ii) and (iii) satisfied. We describe when (iii) holds by a coordinate system.
Denote by p the intersection point M; N My = {p} and consider = around
p. Choose a chart U in M such that in the chart (M, M;, Ms,p) is equal
to (R2,{0} x R,R x {0},(0,0)) and the restriction of 7 to U coincides with
the mapping

R? 3 (u,v) — (u,uwv) = (z,y) € R?
that we still denote by 7. Note that in this chart U, the set Im ¢, for € # 0, is
included in Im 7 whereas Im ¢y is not.

The restriction of ® to U is of the form (u®;(u,v),vPa(u,v)) for some ana-
lytic functions ®; and ®, on R? which vanish nowhere by Lemma 1.8.

LEMMA 1.9. — The image by ¢ of the family of curves c, for e > 0, is given
by
t
B.(c(0) = (et®a(et, 2), )

Proof. — In the chart U considered, we obtain for € > 0:

7 (c)(t) = (et, z), B (c)(t) = (et (et, é), zcbg(et, t

€

)

Bu(c)(6) = mor (c)(0) = ety (et, ), £ (et, 2)D(et, 1)),
fom(u,v) = uv.
The last equality together with condition (ii’) implies
wv®q (u, v)Po(u,v) = fomo ®(u,v) = fow(u,v) =uv
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hence ®;®; = 1. In particular ¢, (c)(t) = (et®(et, ), ?). O

The image ¢.(co) of ¢y belongs to m because ¢.(co)(0) = ¢(0) = 0. As a
consequence, to obtain a negative answer to Question 1.7, it suffices to find
a global analytic diffeomorphism ® such that et® (et, f) does not converge to
any element of m as € — 0 in R.

REMARK 1.10. — 1. Note that ¢,(co) does exist, even if we do not know
how to describe it.
2. Note that the non-convergence of 7*(c.) does not imply necessarily the
non-convergence of ¢,(cc) whereas the non-convergence of et®;(et, %)
does.

Describe ®; around 0 as a convergent power series Zm’neN Ay nu™ V™ With
@m,n € R. Then the first component of ¢, (c.)(t) for € > 0 is given by

t _
et (et, g) = Z am’ntm+n+1€m ntl
m,n€EN

LEMMA 1.11. — If there exist m and n in N such thatn > m+1 and ap,n # 0,
then et® (et, é) does not converge to any element of m as € — 0.

Proof. — Assume that there exist such pairs (m,n) with n > m+1 and a, » #
0. Let L denote the family of all such pairs. Denote by L; the subfamily of L
consisting of (m,n) such that the sum m + n is the smallest possible in L and
by Lo the subfamily of Ly of (m,n) such that n — m is the largest possible
in Li. Then L; is non-empty and finite, and L is non-empty and consists of a
unique element, say (mg,no). Then et® (et, L) satisfies

t _
et@l(et, g) _ Z ammtm—&-n—&-lem n+1

n<m+1
o0
= amo,notm0+"0+1(em0_n0+l +6m0+n0+1(€)) + Z 5k(€)tk
k=mo+no+2

where the functions J; are functions in the variable €, and d,,,+n,+1 satisfies

|5m0+n0+1(6)| < C|6||em0_"0+1|

for some ¢ > 0 € R and € # 0 near 0. Therefore the coefficient of t™0+m0+1 does
not converge as € — 0, so that et®(et, E) does not converge to any element
of m as e — 0. O
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322 G. FICHOU & M. SHIOTA

For simplicity, we strengthen the condition
Gm,n #0 for some n>m+1

to the condition
aon 70 for some n >1

In particular in that case

®,(0,v) = agp,0 + ao,1v + Z ag,nv".
neN
To finish the proof of the negative answer to Question 1.7, we are going to give
an explicit example with ®; satisfying ag , # 0 for some n > 1. Let ¢ : R? -
R? be defined by
$(z,y) = («P(z,y)"*,y)
if (z,y) # (0,0) and ¢(0,0) = (0,0), where

yQ

P =1 .
(l',y) +m2+y2

Remark that ¢ is continuous on R? since 0 < P < 2, and analytic in restriction
to R*\{(0,0)}. Note moreover that ¢ fix the z-axis together with the y-axis.
Let us prove first that ¢ is a homeomorphism. It suffices to prove that
for y # 0, the one variable function h(z) = zP(z,y)'/* is strictly increasing.
Its derivative is given by
2

W (z) = P(z,y)"/*(1 - 2(22 + y;)v(;cQ + 2y2))
and
22 (z/y)?

<
2(x? +y?) (2 +2¢%) — 2((z/y)* + 1) ((z/y)? + 2)
so that A’ > 0.

We are going to prove that ¢ lift to an analytic diffeomorphism ® : M — M.
Recall that U denotes the chart on M such that )y is given by mjy(u,v) =
(u,uv) and denote by V' the chart such that my (u,v) = (uv,v). Then ¢ lifts
to a map ® : M — M such that ®(U) C U and (V) C V, and more precisely
the restriction ®y : U — U of ® to U is given by

@y (u,v) = (uP(1,0)"/* vP(1,0)71/*)
whereas @y : V — V is equal to
By (u,v) = (uP(u,1)4 v).
In particular @ is analytic. Moreover @), is a bijection onto M; since in the
chart U for example, where M is defined by v = 0, we have

By (0,v) = (0,0P(1,v) 4.
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Finally the inverse of ® is also analytic by the Jacobian criterion.

As a consequence ¢ is a blow-analytic homeomorphism of R? (cf. [7] for close
examples), the map ® is an analytic diffeomorphism of M satisfying conditions
(1) and (i%), and moreover

(131(0,7)) = P(].,’U)l/4

is of the required form so that (i) is also satisfied.

2. Set of germs of definable functions

In order to deal with a generalisation of Theorem 1.3 in the context of o-
minimal structures in Section 3, we introduce the real closed field of definable
germs of arcs over a given real closed field in Section 2.3. We begin with some
basic facts about real closed fields and recall the unique Euclidean topology on
a real closed field, following [2].

2.1. Real closed fields. — An ordered field is a field F' equipped with an order-
ing, namely there exists a total order relation < on F satisfying z + z < y + 2
if z <y and the product of positive elements is positive. Fields such as Q and
R are ordered fields.

EXAMPLE 2.1. — There exist several orderings on the field R(¢) of real rational
fractions. For example, we may choose that a,,t" + an+1t”+1 4+ 4 apy,t™, with
an # 0 is positive if and only if a,, > 0. In particular ¢ is positive and smaller
than any positive real number. The situation is similar with the field of formal
power series R((?)).

A real field is a field that can be ordered. A real closed field is a real field

that does not admit any non trivial real extension. Equivalently, a real field R
B
R is characterised by the fact that R admits a unique ordering such that the
positive elements coincide with the squares and every polynomial in R[X] of
odd degree has a root in R. Every ordered field admits a real closure, unique
up to a unique isomorphism. Of course R is real closed. The real closure of Q

consists of the field of real algebraic numbers Rg;g.

is real closed if and only if is algebraically closed. A real closed field

EXAMPLE 2.2. — The field of (formal) real Puiseux series R((t!/))
Ugen~R((t'/9)), namely the set of formal expressions

+oo
Zaptp/q with n € Z, ¢ € N*, a, € R,

p=n
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324 G. FICHOU & M. SHIOTA

is real closed. A positive Puiseux series is a series of the form Z;:jl aptp/ 9 with
a, > 0.

The real closure of the field of rational functions R(t) is the field of algebraic
Puiseux series R((tl/oo))alg, i.e., Puiseux series algebraic over R(¢). The field

of convergent Puiseux series R{t'/>} is also a real closed field. The following
inclusions hold:

Ratg C R C R((£"/)),,, € R{t/>} C R((£"/*))

2.2. Topology. — A real closed field R induces an Euclidean topology on R"
as follows: for z € R", defined |z| = y/z% + --- + z2. Then the open balls

B(z,r)={yeR":|ly—z| <r}

for z € R" and r € R with r > 0, form a basis of open subsets. The Euclidean
topology is the unique topology compatible with the real structure, in the sense
that a real closed field admits a unique ordering. It is called the Euclidean
topology of the real closed field.

EXAMPLE 2.3. — 1. The subset of R((t/>)),,, defined by

{Zaktk/p : ap €R, peN*}
keN

is open. Actually it is an infinite union of open intervals:

Uae(0i400)nr(—@; @).

2. As areal closed field, R((tY/*)) , , inherits to an Euclidean topology. An
element v in ]R((tl/oo))alg of the form v(¢) = >_ -, apt?/1, with a, € R,
q € N*, and a,, # 0 is small in this topology if and only if m is large.

Note that the Euclidean topology of a real closed field may behave very
differently from that of real numbers: a real closed field is not necessarily con-
nected, and [0, 1] is not compact in Ry, nor in R((t1/°)).

REMARK 2.4. — On the field of (convergent) power series R{¢} one can con-
sider several topologies such as the product topology or t-adic topology studied
in Section 1. Note that the t-adic topology on R{t} coincides with the restric-
tion to R{t} of the Euclidean topology of the field of convergent Puiseux series

R{t/>}.
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2.3. o-minimal structures expanding R. — We introduce an o-minimal struc-
ture expanding a real closed field following [3].

Let R be a real closed field. An o-minimal structure expanding R is a col-
lection J = (J")nen, where each J” is a set of subsets of the affine space R",
satisfying the following axioms:

All algebraic subsets of R" are in ".

For every n, J" is a Boolean subalgebra of subsets of R".

If Ac J™ and B € ", then A x B € "™,

If p: R"™ — R" is the projection on the first n coordinates and A €
S then p(A) € J".

5. An element of ' is a finite union of points and open intervals (a;b) =
{r e R:a <z < b}, with a,b € RU{£o0}.

Ll

A set belonging to the collection ( is called a definable set.

EXAMPLE 2.5. — 1. Let R be a real closed field. The most simplest o-
minimal structure expanding R is the structure whose definable sets are
the semialgebraic sets.

2. A globally subanalytic subset A of R™ is a subanalytic subset A of R™
which is subanalytic at infinity. Namely, if we embed R™ in §" (via some
rational regular embedding) and consider S in R™*! then we ask that
A C R™ ¢ S® ¢ R**! is a subanalytic subset of R"*1. The collection of
globally subanalytic sets forms an o-minimal structure expanding R.

A definable function is a function defined on a definable set whose graph is
definable. Note that the usual operations in R become definable fonctions. We
will use several times the curve selection lemma in o-minimal structures (cf.
[4]) in the sequel.

THEOREM 2.6 (Curve selection lemma). — Let R be a real closed field and let
be given an o-minimal structure expanding R. Let A be a definable subset of R"™

and © € A. There exists a continuous definable mapping v from [0;1) C R
to R"™ such that v(0) = z and v((0;1)) C A.

We will also need to reparametrize definable arcs ([4], Exercise (1.9) p 49).

LEMMA 2.7. — Let v : (0;¢) — R be a non-constant continuous definable
function. There exist numbers €1 and €3 in R with ¢, < €3 and a continuous
definable bijection 6 : (e1;€2) — (0;€3), with 0 < €3 < € such that yod(t) =¢
for any t € (e1;€2).
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2.4. Germs of definable functions. — Given a real closed field and an o-minimal
structure expanding it, we introduce its field of germs of continuous definable
curves at the origin in Section 2.4. We derive an o-minimal structure expanding
it and study in Section 3.3 the transport of some properties from the initial
o-minimal structure to the new one.

Let R be a real closed field. We fix an o-minimal structure over R expanding
R. Let R be the set of germs at 0 € R of continuous definable functions from
(0;00) to R.

LEMMA 2.8. — The set R is a real closed field.

Proof. — The set R is a field. Actually a non zero definable function on a
neighbourhood of 0 in (0;00) nowhere vanishes on a sufficiently small neigh-
bourhood of 0, so its inverse is well defined and definable.

To prove that R is a real closed field, it is sufficient to prove that R[z] =
(}I}z[ +]1) is an algebraically closed field. First we prove that the ring (Yz[ﬂ) is
a field. For that it suffices to show that (Y2 + 1) is a prime ideal. Otherwise,
Y2 + 1 is the product of two polynomial functions because R[Y] is a unique
factorization ring and hence Y2 + 1 is of the form (Y — f;) x (Y — f2) and

— f% for some f; and f» in R, which is impossible. For P(t, X) € RJ[i][X],
write

P(t,X) = ng

with f; € f{[z] Choose € > 0 such that every f;, for j = 0,...,d, is defined
n (0;¢). For t € (0;¢) fixed, the polynomial P(t, X) € R[i][X] admits roots
in R[] and the map

{(t,z1,...,2q) € (0;€) x R[i]®: P(t,x) = 0} — (0;¢)

is finite-to-one. By the o-minimal Hardt triviality Theorem (which is proved in
the same way as the semialgebraic case, cf. [2], Theorem 9.3.2), this mapping
admits a definable continuous section on a neighbourhood of 0 in (0;€). It
furnishes a root of P in RJi]. O

REMARK 2.9. — 1. Note that R is even a field extension of R by assigning
to a number z € R the constant function z with image x.
2. A positive element in Risa square; in particular a definable continuous
function germ « : (0;00) — R at 0 is positive in R if and only if there
exists € > 0 in R such that v(t) > 0 for ¢ € (0;¢).
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EXAMPLE 2.10. — 1. Note that the field of germs of continuous semialge-

braic functions defined on intervals of the form (0;¢) C R is isomorphic

(cf. [2]) to the field of algebraic Puiseux series R((tl/oo))alg. The subring

of algebraic formal power series R][t]]q4i4 corresponds to the germs at the
origin of analytic semialgebraic functions defined on intervals [0; ).

In particular, if R = R and the o-minimal structure is defined by

the semialgebraic sets, then R is the field of algebraic Puiseux series
R((£'%°)) 0

alg*
Note that the same holds true for any real closed field R in place of R.
2. If R = R and the o-minimal structure is given by the globally subanalytic

sets, then R is the field of convergent Puiseux series R{t!/>°}.

For a definable set X C R", for n € N, denote by X the set of germs
at 0 € R of continuous definable functions from (0;00) to X. For z € X, we
denote again = € X the germ of the constant function equal to x.

LEMMA 2.11. — Let f : R — R be definable. Let f: R — R be defined
by f(7(t)) = f o~(t) for v € R. Then

graphf = graphf.

~ 2 2
Proof. — Tt suffices to remark that R~ = R? since
g?:;;)ff ={v:(0;¢) — R? : 4 continuous definable, Im~ C graphf} C R?
~ ~2 ~2
graphf = {(71,72) ER 12 =fom}CR . O

In [3], M. Coste proved as Theorem 5.8 that the collection  of subsets of R"
given by X , for X € R" definable and n € N, together with the fibres of defin-
able families (cf [3] Definition 5.7), defines an o-minimal structure expanding
R. These fibres enable typically to add the singleton {t} as a definable subset
of R; the definable sets obtained without using fibres are the so-called 0-defin-
able sets. We give below a geometric proof of a particular case of interest for us,
namely that the collection of subsets of R~ given by X , for X € R" definable
and n € N, are stable under the usual operation in o-minimal structures.

PROPOSITION 2.12. — The collection of subsets ofﬁ;‘ given by )N(, for X C
R" definable and n € N, defines the 0-definable sets of the o-minimal struc-
ture (.

Proof. — Let A and B are definable sets in R". What we need to prove is the
following:

—_~— ~

() AUB=AUB, ANB=ANB, A\B=A\B, AxB=Ax B,
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(ii) if p denotes the projection p : R"*' — R™ onto the first n coordinates,
and C C R"*! is definable, then p(C) = p(C),
(i)
= ~3
{(z,y,2) eR*: 2 =yz} = {(a, f,7) €R” s = B},
(iv)

{(,9,2) ER* 1w =y + 2} = {(a,8,7) €R :a = B+1},

(v) if I C R is an interval, then I C R is an interval,
(vi) if S C R is a singleton, then S C R is a singleton.

Proof of (i). The inclusion AU B C AUB is obvious. Conversely, take

v E AU B with 7 defined and continuous on (0; ¢). Assume v ¢ A. Then v~ 1(A)
is a finite union of points and intervals, therefore there exists 0 < e; < € such
that v((0;€1)) N A = @. Then v((0;¢1)) C B and vy € B.

The equality fTr\W/B = AN B is obvious.

The inclusion m - Z\E is obvious. Take vy € Z\E , and assume 7y defined
and continuous on (0;€). Then v~(B) C (0;¢) is a finite union of points and
intervals, that does not contain any interval of the form (0;s) since v ¢ B.

Therefore v((0;s)) C A\ Band y€ A\ B.

The equality A/;/B = A x B is obvious.

Proof of (ii). Take ¥ € C and assume that v is defined and continuous
on (0;¢€), with v((0;€)) C C. Then po~ : (0;€) — p(C) is a definable continu-
ous function so that p(v) € p(C). Therefore 5(C) C p(C).

Conversely, take v € p(C), and choose € > 0 so that v is a definable continu-
ous function on (0;€) with value in p(C). Note that we can assume that C is
bounded, embedding if necessary R"*! in S"*1 ¢ R""2. Then

D ={(t,c) € (0;€) x C: p(c) =~(t)}

is a definable set which boundary has a non-empty intersection with {0} x C
since C is bounded. By the curve selection lemma, there exists § = (d1,02) € 5,
i.e., there exists 0 < €; < € such that p(d2(t)) = v(61(¢)) for t € (0;¢1). By
Lemma 2.7 there exists o € R defined on (0;€2), with 0 < €2 < €71, such that
8y 0 a(t) =t for t € (0;€;). As a consequence 8, o o € C satisfies p(d 0 a) = v,
therefore vy € p(C).

The proofs of (iii) and (iv) are very similar, so let us prove (iii). Take

v = (11,72,73) € {(z,y,2) € R® 1 z = yz}.
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There exists € > 0 such that v is defined on (0;€) and for ¢ € (0; €) the equality
71 (t) = v2(t)v3(t) holds. Therefore v; = 273 and

—_~—

~3
{(z,y,2) eR* 1z =yz} C {(a,B,7) ER :a =B}
If conversely «, 8,7 € R satisfies a = By, then

—_—~—

(o, B,7) € {(z,y,2) € R® : z = yz}.

Proof of (v). Assume I = (a;b) with a < b € R. Then I = (a;b) where
'd,g € R denotes the constant germs equal to a and b. Indeed, if v € T, there
exists € > 0 such that v is defined on (0;¢) and v(¢) € (a;b) for t € (0;¢€). In
particular a(t) = a < y(t) < b = b(t) for t € (0;€) so v € (@;b). The proof of
the converse inclusion is similar.

Proof of (vi). An element of S is a germ of continuous definable curve with
image in S = {s}, so is equal to the function germ § constant equal to s. [

REMARK 2.13. — The convex set given in Example 2.3 is not a definable sub-
set of R = R((t'/>°)) since it can not be described by a finite union of intervals.

3. Continuity

We prove in this section that a continuous definable map between defin-
able sets induces a continuous map between the spaces of definable arcs. Using
Y.ojasiewicz inequality, we give a proof of this fact generalising the Holder argu-
ment of Theorem 1.3. We propose another approach, studying more in details
the transport of properties between the initial o-minimal structure and the new
one constructed in Section 2.4. These results are a geometric interpretation of
the model-theoretical aspects developed in [3], Chapter 5.

3.1. Lojasiewicz inequality in the closed and bounded case. — We recall L.o-
jasiewicz inequality in the context of o-minimal structures, not necessarily
polynomially bounded. We refer to [14] for the real case, and note that the
real closed field case follows similarly.

Let R be a real closed field and fix an o-minimal structure expanding it.

THEOREM 3.1. — Let X C R" be a definable set, closed and bounded.
Let ¢1,02 : X — R be non negative continuous definable functions satisfy-
ing ¢5(0) C ¢7'(0). There exists a strictly increasing continuous definable
function p : [0,+00) — [0, 4+00) such that

Ve € X, ¢a(z) = podi().

REMARK 3.2. — In the polynomially bounded case, we may choose p of the
form p(s) = ¢|s|", with ¢,r > 0.
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A definable mapping f : X — Y between definable sets X,Y is said con-
tinuous if it is continuous for the Euclidean topology inherited to the real
closed field. We apply f.ojasiewicz inequality to prove the continuity between
the spaces of arcs in the closed and bounded case.

PROPOSITION 3.3. — Let X and Y be definable sets, with X closed and
bounded. Let f : X — Y be a continuous definable map. Then f : X — Y is
continuous.

REMARK 3.4. — In the polynomially bounded case, the map f is Holder by
Lojasiewicz inequality. In particular, in the case of the field of Puiseux series
equipped with the t-adic topology, this result becomes clear.

Proof of Proposition 8.3. — For v € )Z, there exists € such that v admits a
representative v : [0,¢) — X. Let B C X be a closed neighbourhood of +(0)
in X. Define two functions ¢1, ¢2 on B x B by

b1(z1,2) = | f(21) — f(22)]
and
d2(x1,2) = |21 — 22|

Then ¢; and ¢, are continuous definable, ¢;*(0) C ¢ '(0) and therefore by
Y.ojasiewicz inequality there exists a strictly increasing continuous definable
function p : [0, +00) — [0,400) such that

V(z1,22) € B X B, ¢a(x1,22) > po ¢1(x1,z2),
which means
V(z1,22) € Bx B, |x1— @2 2 p(|f(21) — f(22)]).
As a consequence,

V(z1,22) € Bx B, |f(z1) — f(z2)| < p~ " (|71 — z2]),

and p~! is a definable continuous function with p=!(0) = 0. In particular, for

any arc 0 closed to v, there exists a representative ¢ : [0,€) — X of § with value
in B and therefore

vt e [0,€), |foy(t) = fod(t) < p™ (In(t) - 8(1)),
which proves the continuity of f O
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3.2. A generalised Lojasiewicz inequality. — We slightly generalise Theorem 3.1
in order to get rid of the boundedness assumption of X is Proposition 3.3.

PROPOSITION 3.5. — Let X C R" be a locally closed definable set. Let ¢1, ¢s :
X — R be non negative continuous definable functions satisfying qb;l(O) C
(Z)fl(()). There exist a strictly increasing continuous definable function
p:[0,4+00) — [0,+00) and a positive continuous definable function c: X — R
such that Clos1(0) = 1 and

Ve € X, ¢a(z) 2 c(z)po ¢i(z).

Proof. — As X is locally closed, we can find a definable homeomorphism map-
ping X onto a closed definable set (cf. Proposition 2.2.9 in [2]| in the semi-
algebraic case for example), therefore we can assume X is closed. Let U denote
a definable neighbourhood of ¢7'(0) in X such that ¢|y is bounded and
¢1|U_¢;1(0) :U—¢71(0) — ¢1(U —¢7*(0)) is proper. Such a neighbourhood U
always exists; for example, let ¢3 denote the function on X measuring the dis-
tance from a fixed point of ¢ !(0). Then the set U = {x € X : ¢, (x)p3(z) < 1}
is convenient.

Let Y denote the image of U under the map (¢, ¢2) : X — R?. Then Y
is a closed definable subset of a sufficiently small closed neighbourhood of the
origin in R? by the properness condition. Moreover Y N (R x{0}) = {(0,0)}
and therefore there exists a continuous definable function 7 on Im ¢y such
that 771(0) = {0} and x5 > 7(z1) for (z1,72) € Y, so that ¢o > 70 ¢
on U. One can construct a strictly increasing continuous definable function
p : [0,+00) — [0,+00) such that p < 7 on ¢1|y(U). Therefore ¢s > p o ¢y
on U.

To conclude, it suffices to choose a positive continuous definable function ¢
80 that ¢/y-1) =1 and ¢ < ¢2 onX\{qb2 (0)}. O

Let M be a definable set in some o-minimal structure. We define M by
M={yeM: lim ~(t) € M}.
t—
If h: M — N is a continuous definable - map b between definable sets | M and N,

define h : M — N as the restriction of h to M. Note that neither M nor h are
definable.

COROLLARY 3.6. — Let X and Y be definable sets, with X C R" locally
closed. Let f : X — Y be a continuous definable map. Then f X > Y is
continuous.
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Proof. — Using Proposition 3.5 and proceeding similarly to the proof of Propo-
sition 3.3, we obtain that for v, € X, there exist € > 0 such that

Vte[0e), [for(t)— fod(t) < W).

Let U be defined by
1
U={(z1,22) € X?: c(x1,22) > 5}

Fixing v, there exists [ € N such that if |y(t) — §(¢)| < t* for t € [0,¢), then
(7(t),8(t)) € U for t € [0,€). Therefore for § € B(v,t') we obtain

vt e [0,€), Ifory(t) = fod(t)l < p~(2ly(t) - 6(t)])
which proves the continuity of f . O

3.3. Transport of properties. — We develop now the other approach based on
the extension of fields from a real closed field R to its field of germs of definable
arcs R. First, we note that the closedness and boundedness of a definable set
are preserved under the extension.

LEMMA 3.7. — Let A be a definable subset of a definable set B. Then A is
closed in B if and only zfA is closed in B.

Proof. — Tt is equivalent to prove that A is open in B if and only if Ais open
in B.

Assume A is open in B. Take v € A. There exists € > 0 such that v is well
defined on (0;¢) and v((0;¢)) C A. The openness of A enables to construct a
strictly positive definable function germ by

r(t) =sup{s € (0;1] : |z —~(t)| <s=xz € A}

for t € (0;¢). Reducing e if necessary, we can suppose 7 continuous. Then the
open ball B(vy,r) is included in A and therefore A is open.

Conversely, to prove that A is open in B if Ais open in é, let us assume
that A is not open at a € A. Then a belongs to the closure of B\ A, therefore
by the curve selection lemma there exists v : [0;€) — B continuous definable
with v((0;¢)) € B\ A and v(0) = a. If A is open, let B(@;r) = {§ € B :
|0 —a| <r}C A be an open neighbourhood of the constant germ @ equal to a,
with 7 : (0;¢;) — R a strictly positive definable germ, and 0 < €; < e. We get
a contradiction if v € B(a;r). Otherwise, we reparametrize v as follows. Define
a:(0;e1) — R by

a(t) =sup{s € (0;t) : |y(s) —a| < —=
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Then « is definable and strictly positive since v(0) = a and ~ is continuous.
We can moreover assume that « is continuous, decreasing €; if necessary. Then
voa((0;¢1)) C B\ A and yoa € B(a;r). O

LEMMA 3.8. — Let A be a definable set in R"™. Then A is bounded if and only
if A is bounded in R .

Proof. — Assume A is bounded in R". Then there exist c¢1,c2 € R such that
A C [e1;¢5)™. For vy € A, there exists € such that v(t) € [c1; ¢o]™ for t € (0;¢).
In particular € [¢;; )" and A is bounded.

Assume that A is not bounded whereas A is bounded, namely there exists
b € R such that |v] < b for any v € A. Since A is not bounded, there exists by
Theorem 2.6 a curve 7y : (0,€) — A which is not bounded. By reparametrisation
via Lemma 2.7, we may assume that |y(t)| = 1/t. As a consequence 3 = yo 7 is
defined on (0, €') for some 0 < € < ¢, satisfies 8 € A and |3| = |b| and therefore
[ contradicts our assumptions. O

The injectivity and surjectivity of a definable map are also preserved under
the extension of fields.

LEMMA 3.9. — Let f:X =Y be a definable map. Then f is injective if and
only if f is injective. Similarly, f is surjective if and only if f is surjective.

Proof. — Assume f is injective. Let y1,72 € X satisfies f(71) = f(v2). There
exists € > 0 such that v; and 7, are defined on (0;¢) and then for ¢ € (0;¢) we
have f(v1(t)) = f(72(t)). Therefore v1(t) = 72(¢) for t € (0;¢€) by injectivity
of f and fis injective.

Assume f~ injective. Let x1,z2 € X satisfy f(z1) = f(z2). If Z; denotes
the constant curve equal to z;, for i € {1,2}, then f(#1) = f(#1). Therefore
ZT1 = Zo and thus z; = 25 and f is injective.

Assume now that f is surjective. Let v € Y and take ¢ > 0 such that v is
defined and continuous on (0;¢). Consider the set

A= {(z,t) € 71 (7((05€))) x (05€) : f(z) = (1)}

Then A is a definable set, and we may assume A is bounded (embedding the
ambient space R" of X in S if necessary), so that (A\ 4) N (R" x{0}) is not
empty. By the curve selection lemma, there exists § = (61,d2) € A, defined
on (0;€') where € < ¢, such that §((0;¢')) C A and § admits a limit at 0,
denoted by 6(0), and §(0) € (A\ A) N (R™ x{0}). Then f o 6;(t) = v(d2(t)) by
definition of A. Denote by «a € R a continuous definable function germ such
that 0y o a(t) = ¢, obtained by Lemma 2.7. Then §; o o € X is an inverse of v
by fand fis surjective.
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Assume finally that fis surjective. Take y € Y. Then the constant curve y
equal to y has a pre-image «y by f. There exists € > 0 such that  is well defined
n (0;¢€), v((0;€)) € X and f(y(¢)) = y. Therefore f is surjective. O

3.4. Continuity. — Let R be a real closed field and consider an o-minimal
structure expanding R.

PrOPOSITION 3.10. — Let f : X — Y be definable and Y be bounded. Then f
is continuous if and only if graphf is closed in X X Y.

Proof. — Assume f is continuous. Let (a,b) be in the closure of the graph
of fin X x Y. By the curve selection lemma there exists a continuous curve
v = (71,72) : [0;1] = X x Y with v(0) = (a,b) and v((0;1]) C graphf. Then
for t € (0;1] we have f o~ (t) = y2(t). By continuity we obtain, passing to the
limit as t goes to zero, that f(a) = b. In particular the graph of f is closed
in X xY.

Conversely, assume f is not continuous at a € X. For € > 0, define J. to be
the supremum on = € X with |z —a| < e of |f(z) — f(a)|. Then the pair (0,a)
is in the closure of the definable set

Uesole) x o€ Xt |o—al < c and [£(a) — f(a)] > %}

By the o-minimal curve selection lemma, there exists a continuous definable
curve v : [0;1] — X such that v(0) = a and f o~y is not continuous at 0.

Denote by I' the image v((0;1]) of v and by A the set
{(z,f(z)):x eT}C X xY.

Then A\ A is not empty because Y is bounded. It is then equal to a point of the
form (a,b) with b # f(a), therefore the graph of f is not closed in X x Y. [

COROLLARY 3.11. — Let f : X — Y be a continuous definable map. Then
f: X — Y is continuous.

Proof. — Without loss of generality we can assume that Y is bounded (as
Y cR" C8§" C R"™!). Now the set Y is bounded | by Lemma 3.8, and

moreover ¥ = Y Finally the graph of f is closed in X x Y by Lemma 3.7 since
the graph of f is closed in X x Y by Proposition 3.10. O

REMARK 3.12. — In a model-theoretic approach we can deduce the continu-
ity of f using the fact that the extension R is an elementary extension of R
(cf. 3], p58).
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EXAMPLE 3.13. — As a illustrative example, consider the Whitney umbrella
W in R? defined by x2z = y2. Its two-dimensional part is the image of R? by the
map h : (u,v) — (u,uv,v?), giving a resolution of the singularities of W. Any
positive element of the z-axis has two pre-images by h, and so h defines a semi-
algebraic bijection between the semi-algebraic sets (R?\ {u = 0})U{(0,0)} and
(W\{z =y =0})U{(0,0,0)}, which are not even locally closed. Corollary 3.11
enables to assert than nevertheless, A induces a homeomorphism between the
associated spaces of arcs.

We recover the results in Section 1.2 as a consequence of Corollary 3.11 by
considering the field of real numbers with the o-minimal structure given by
globally subanalytic sets. For instance for Theorem 1.5:

COROLLARY 3.14. — Leth : R® — R"™ be a subanalytic homeomorphism. Then
the map h : R{tY/>}" — R{t}/°°}" is a homeomorphism with respect to the
t-adic topology. If moreover we assume that h and h™' are arc-analytic, then
hy 1 Go(R™) — Go(R™) is a homeomorphism.

Proof. — The continuity of h follows from Corollary 3.11. Moreover h, is well-
defined by arc-analyticity of A and h~!, and so h, is continuous by restriction.
O

PROPOSITION 3.15. — Let X and Y be bounded and closed definable sets and
f: X =Y be a continuous definable function. Then f is uniformly continuous.

Proof. — Let ¢ € R such that ¢ > 0. As f is continuous, we may define
for x € X a definable function g on X by

g(z) =sup{s € (0;1] :a € X, |z —a|] < s=|f(z) — f(a)| < €}.

We want to prove that there exists r > 0 such that g > r. Assume it is not
true. Then
A={(t,z) € (0;1] x X : g(z) < t}

is a non empty definable subset of [0; 1] x X, with a non empty boundary. There-
fore there exists a continuous definable function germ § = (d1,d2) : [0;€) —
[0;1] x X with §((0;€)) C A and §,(0) = 0 by the curve selection lemma. Note
that d2(t) admits a limit ¢ as ¢ goes to zero since X is bounded, and zy belongs
to X since X is closed.

For z € X such that |z—xzo| < g(z0)/2 and y € X such that |y—z| < g(z0)/2,
we have |y—zo| < g(zo) so that | f(y)— f(zo)| < €. In particular g(z) > g(zo)/2.
For ¢ small enough we have |92(t) — zo| < g(x0)/2 since d; goes to xg, so that

9(20)/2 < g o d2(t) < 61(t)
for ¢ small enough, in contradiction with the fact that d;(0) = 0. O
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We recover by this way Theorem 1.4.

COROLLARY 3.16. — Let M C R™ and N C R" be compact analytic manifolds
and h : M — N be a subanalytic homeomorphism. Then h:M — Nisa
uniformly continuous homeomorphism. If moreover h and h™' are arc-analytic,
then h, : G(M) — G(N) is a uniformly continuous homeomorphism.

Proof. — The uniform continuity of 1 follows from Corollary 3.11 and Propo-
sition 3.15. Then h, is well-defined by arc-analyticity of h and h~!, and finally
h is uniformly continuous by restriction. O

Actually, we can even drop the compactness condition in Corollary 3.16 as
follows.

PrROPOSITION 3.17. — Let M C R™ and N C R™ be globally subanalytic
manifolds and h : M — N be a globally subanalytic homeomorphism. Then
h:M—Nisa uniformly continuous homeomorphism. If moreover h and h™1
are arc-analytic, then h, : G(M) — G(N) is a uniformly continuous homeo-
morphism.

The proof is a direct consequence of the following lemma.

LEMMA 3.18. — Let f: X — Y be a continuous definable map between closed
definable subsets of R"™. Then [ : X — 'Y is uniformly continuous.

Proof. — Let a € R be an element larger than any element of R. since Xn
[—a,a]™ is closed and bounded, the result follows from Proposition 3.15. [
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