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WANDERING FATOU COMPONENTS
AND ALGEBRAIC JULIA SETS

BY EUGENIO TRUCCO

ABsTrACT. — We study the dynamics of polynomials with coefficients in a non-
Archimedean field K, where K is a field containing a dense subset of algebraic elements
over a discrete valued field k. We prove that every wandering Fatou component is
contained in the basin of a periodic orbit. We obtain a complete description of the new
Julia set points that appear when passing from K to the Berkovich affine line over K.
We give a dynamical characterization of polynomials having algebraic Julia sets. More
precisely, we establish that a polynomial with algebraic coefficients has algebraic Julia
set if every critical element is nonrecurrent.

REsuME (Composantes de Fatou errantes et ensembles de Julia algébriques)

Nous étudions la dynamique des polynémes a coefficients dans un corps K non-
archimédien, ot K contient un sous-ensemble dense d’éléments algébriques sur un
corps k & valeurs discrétes. Nous montrons que toute composante de Fatou errante
est contenue dans le bassin d’une orbite périodique. Nous obtenons une description
compléte des nouveaux points d’ensemble de Julia qui apparaissent quand on passe de
K a la ligne de Berkovich affine sur K. Nous donnons une caractérisation dynamique
des polynomes ayant des ensembles de Julia algébriques. Plus précisément, nous éta-
blissons qu’un polynéme a coefficients algébriques a un ensemble de Julia algébrique
si tout élément critique est non-recurrent.
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412 E. TRUCCO

1. Introduction

In this paper we study the dynamics of polynomials P: K — K where K is
an algebraically closed field of characteristic 0 which is complete with respect to
a non-Archimedean absolute value. Moreover, we will assume that there exists
a discrete valued field £ C K such that

kE*={z¢e K| [k(z): k] < +oo}

form a dense subset of K. Examples of such fields are the field C, of p-adic
numbers and the field, which we will denote by L, which is the completion of
an algebraic closure of the field of formal Laurent series with coefficients in C.
Dynamics over C, naturally arises in number theory and dynamics over L nat-
urally appears in the study of parameter spaces of complex rational maps [17].

For complex rational maps acting on the Riemann sphere, Sullivan [25]
proved, with the aid of quasi-conformal techniques, that every connected com-
ponent of the Fatou set of a rational map R € C(z) of degree > 2 is eventually
periodic (Sullivan’s No Wandering Domains Theorem). This is no longer true
for general non-Archimedean fields. In fact, Benedetto [4] established the ex-
istence of p-adic polynomials having wandering (analytic) domains which are
not attracted to a periodic orbit. This result heavily relies on the fact that over
p-adic fields, whose residual characteristic is p > 0, there exists a phenomenon
called wild ramification.

The aim of this paper is to study the interplay between algebraic and dy-
namical properties of points in the Julia set of a polynomial. As a consequence,
we establish that for tame polynomials (see Definition 2.10), that is, for poly-
nomials such that wild ramification does not occur, the dynamics is free of
nontrivial wandering domains (see Corollary B below).

Recent developments on the theory of iteration of rational maps over non-
Archimedean fields put in evidence that the correct space to study the action
of rational maps is the Berkovich space (e.g., [1, 2, 10, 13, 19, 20, 21]). The
action of a polynomial P € K|[z] extends to the Berkovich affine line A}fm
associated to K. Moreover, the notions of Julia set (chaotic dynamics) and
Fatou set (regular dynamics) also extend to A}f“. Our first main result is a
complete description of the new Julia set points that appear when passing from
K to A}{m. We will denote by &/p the Julia set of P. A polynomial is simple
if its Julia set is a singleton.

THEOREM A. — Let P € K|z] be a nonsimple and tame polynomial of degree
d > 2. Then &/p \ K is empty or, there exist finitely many repelling periodic
orbits Oy,..., Op C Ak,a“ \ K such that

Tp\K =GO(C) U LUGO(Cry),

TOME 142 — 2014 — N° 3



WANDERING FATOU COMPONENTS AND ALGEBRAIC JULIA SETS 413

where GO(0;) denotes the grand orbit of 0; and 1 <m < d — 2.

The previous theorem is first proven for polynomials in K[z] with algebraic
coefficients over the field k. Here, we rely on our study of the interplay between
the geometry of the Julia set and the underlying algebraic structure (Section 6).
For a general tame polynomial with coefficients in K, we use a perturbation
technique furnished by a key proposition (Proposition 7.1) inspired by complex
polynomial dynamics (e.g., [18]).

Standard techniques (see Proposition 2.16) allow us to deduce the above
mentioned nonwandering result from Theorem A. We say that x is in the basin
of the periodic orbit 0 if O is the set of limits points of {P"(z) | n € N}.

COROLLARY B. — Let P € K|z] be a tame polynomial of degree > 2. Then,
every wandering Fatou component is in the basin of a periodic orbit.

Benedetto [3] proved a similar result to Corollary B for rational maps with
algebraic coefficients over the field of p-adic numbers @, with some slightly
different hypothesis.

In terms of k, K and in our language, Theorem B in [5] says that every
wandering Fatou component of a rational map with algebraic coefficients over
k is in the basin of a periodic orbit. Benedetto asks (question (2) at the end of
the introduction of [5]) if this is true for rational maps with coeflicients in K,
assuming that the characteristic of the residual field of K is zero. Corollary B
above gives an affirmative answer to the question posed by Benedetto in the
case of polynomials.

It is not known if for any polynomial P € Q,[z] such that ¢/p N Q, # &,
there exists a classical repelling periodic point of P in ¢/p NQ,. In the case of
tame polynomials we have the following result.

COROLLARY C. — Let P € K|z] be a nonsimple and tame polynomial of degree
d > 2. Then the classical Julia set of P contains a repelling periodic point.

In the case of p-adic polynomials, Bézivin [7, Proposition A| proved that if
there exists a repelling periodic point in ¢/p N Q, and ¢/p N Q, is a compact
set, then ¢/p = &/p N Qp. The following corollary is an analog of that result,
nevertheless, we do not need to assume the existence of a repelling periodic
point.

COROLLARY D. — Let P € K|z] be a tame polynomial of degree > 2. Then
the following statements are equivalent:

1. JpNK is a compact subset of AR,
2. There is no critical periodic element in &/ p.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



414 E. TRUCCO

4. All the periodic points of P in K are repelling.

After extending the notion of algebraic degree of x € K over k for arbitrary
points © € AR (see Section 5) we obtain the algebraic counterpart of the
previous topological dynamics results. We relate the algebraic degree with the
recurrent critical elements (a point z is recurrent if it is a limit point for its
iterates)

THEOREM E. — Let P(z) € K|z] be a nonsimple and tame polynomial of de-
gree > 2 and with algebraic coefficients over k. If the algebraic degree of every
element in &/ p is finite then the critical elements contained in &/ p are not re-
current. In that case the algebraic degrees of the elements of &/ p are uniformly
bounded.

REMARK 1.1. — A posteriori, using Theorem A we can also obtain that ¢/p C
k2.

REMARK 1.2. — Suppose that k is a field with the property that for any pos-
itive integer N there are only finitely many extensions of k of degree less than
N. For example, this is true if k is a finite extension of Q, or of the field C((7))
of formal Laurent series. Then under the hypotheses of Theorem E, it follows
that there exists a finite extension k'/k such that &/p is contained in k'

In a special type of fields, which will denote by Lz, we obtain the converse
of the previous theorem. Here F' is an algebraically closed field of character-
istic 0 and Ly is the completion of an algebraic closure of the field F((7)) of
formal Laurent series with coefficients in F' with respect to an appropriate
non-Archimedean absolute value. See Subsection 6.6 for definitions.

THEOREM F. — Let P(z) € Lp[z] be a nonsimple and tame polynomial of
degree > 2 with algebraic coefficients over F((1)). Then the algebraic degree
of every element in &/ p is finite if and only if the critical elements contained
in ¢/p are not recurrent. In that case, &/ p is contained in a finite extension

of F((r).

1.1. Outline of the paper. — Section 2 consists of basic definitions and facts
about the Berkovich affine line and the action of polynomials on A}*".

In Sections 3 and 4 we introduce the dynamical sequence and the geometric
sequence of a polynomial. We employ these objects throughout the paper since
they organize our topological and algebraic study of the convex hull of the Julia
set.

In Section 5 we extend the notion of algebraic degree to the Berkovich line
and explore its basic properties.
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In Section 6, for polynomials with algebraic coefficients, we describe the
behavior of the algebraic degree along geometric sequences. Then we prove
Corollary B, in the case of polynomials with algebraic coefficients. In Sub-
section 6.3 we will explore the relation between the algebraic degree and the
equilibrium measure (e.g., [2, 10, 13, 12]). We finish the section with the proofs
of Theorem E and of Theorem F.

In Section 7 we establish Proposition 7.1 which is the key to perturb poly-
nomials (with transcendental coefficients), preserving the dynamics along an
orbit. Then we prove Theorem A in full generality and, as a consequence, we
obtain Corollary B, Corollary C and Corollary D.

2. Background

In this section we first recall some basic facts about non-Archimedean fields.
Then we construct the Berkovich affine line and discuss the behavior of the
polynomial dynamics on it. See [9, 14, 26] in the case of non-Archimedean fields
and [1, 6, 12, 13, 19, 23] for the dynamics on the Berkovich affine line.

2.1. Non-Archimedean fields. — Let K be a field with characteristic zero en-
dowed with a non-Archimedean absolute value |-|. That is, an absolute value
satisfying the strong triangle inequality

|21 + 22| < max{|z1], 22}

for all 21,22 € K. Examples of such fields are the field of p-adic numbers Q,
and the field Ly of Puiseux series with coefficients in F' that will discuss in
detail in Subsection 6.6. For more about non-Archimedean fields see [9, 14].

The set |[K*| := {|z| | 2 € K*} of nonzero values of |-| is a multiplicative
subgroup of the positive real numbers called the value group of K. We say that
the absolute value || is discrete if |K*| is discrete as a subset of R.

We denote by ox := {z € K | |z] < 1} the ring of integers of K and by mg
its unique maximal ideal, i.e., mg := {z € K | |2| < 1}. The residual field
of K is the quotient field K = ox/mg. As we will see later, there exists a
substantial difference according to whether the residue field has characteristic
Oorp>0.

For 25 € K and r > 0 we define the sets

Bf(20):={2€ K ||z—2]|<r} and B,(z):={2€K||z—2|<r}

If r belongs to the value group of K, then the sets defined above are different
and we say that B (z) (resp. B.(z0)) is a closed ball (resp. open ball). If r
is not in the value group of K, then the sets B,.(z) and B;(29) coincide and
we say that B,.(29) = B (29) is an irrational ball. Despite these names, every

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



416 E. TRUCCO

ball is open and closed in the metric topology induced in K by the absolute
value ||.

2.2. Balls and polynomial. — Given a nonconstant polynomial P with coef-
ficients in K, define the local degree of P at zy € K as the largest integer
deg, (P) > 1 such that (z — 20)48=0 (") divides P(z) — P(z) in the ring
K[z]. If deg, (P) > 1 we say that z, is a critical point of P with multiplic-
ity deg, (P)— 1. We denote by Crit!(P) the subset of K formed by the critical
points of P.

The image of a ball B C K, under the action of P, is a ball, of the same
type as B, and there exists a positive integer, denoted by degg(P), and called
degree of P at B, such that

degg(P)= ),  deg.(P)
{2€B|P(z)=2'}
for all 2’ € B (e.g., see Section 2 in [20]).
Moreover, the preimage of a ball B is a finite union of pairwise disjoint balls
By, ..., By, of the same type as B and

D degp, (P) = deg(P).

2.3. Berkovich affine line. — We will need only basic facts about the structure
of the Berkovich affine line and its topology. For more details see [11, 20, 21, 23],
for the original construction of V. G. Berkovich, see [6].

We identify the Berkovich line with an appropriate quotient of the set &
of all the strictly decreasing sequences of closed balls of K. This construction
is a slight modification of the given one in [23].

On the set &'x we define the equivalence relation ~ given by: (B;) ~ (Bj)
if for all n € N, the sequence (B;) (resp. (Bj)) is eventually contained in By,
(resp. By).

The Berkovich analytic space associated to the affine line over K (for short,
the Berkovich line) denoted by AR™, is (as a set) the quotient '/ ~.

If the sequence (B;) is equivalent to (B), then NB; = NB’. Note that the
field K is not spherically complete, that is, there exist decreasing sequences of
closed balls having empty intersection. However, consider (B;) € &k such that
B = NB; is not empty. Then B is a closed ball, an irrational ball or a point
of K. Moreover, the intersection B determines completely the equivalence class
of (B;). In this case, we denote the equivalence class of (B;) by zp and we
will say that zp in A}f“, is the point associated to B and that B is the ball
associated to xp.

TOME 142 — 2014 — N° 3
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The elements of the Berkovich line Ay are classified in the following four
types:

1. Type I or classical points, corresponding to the equivalence classes of
sequences whose intersection is a point in K. We identify K with these
elements of AR*".

2. Type II or rational points, corresponding to elements xp where B is a
closed ball.

3. Type III or irrational points that is, the points of the form xp where B
an irrational ball of K.

4. Type IV or singular points, corresponding to the equivalence classes of
decreasing sequences of closed balls with empty intersection.

The inclusion between the balls of K induces a partial order, denoted by <,
in AR If £ € A (resp o' € AR™) is the equivalence class of (B;) (resp.
(Bj)) we say that x < o' if, for each n € N, the sequence (B;) is eventually
contained in BJ,. We say that < y if z < y and z # y. In the case that zp
and zp: are nonsingular elements, we have that zp < xp if and only if B is
contained in B’.

For all € AR™ denote the set of elements larger than z by

[z, 00[:= {w € AR™ | z < w}.

Observe that [z, co[ is isomorphic, as an ordered set, to [0, +oo[C R.

Given two points z,y in the Berkovich line AR™ we have that

[z,00[N [y, 00[= [z V y,00[

where z V y is the smallest element larger than = and y. If = is not related to y
then the element = V y is a type II point.
Given two elements z,y € A™" let

[z,9] ={we AR [z sw=<saVylU{we AP |[ysw=<zVy)

The sets |z, y], [z, y[ and |z, y[ are defined in the obvious way.
For z in the Berkovich line, the diameter of x is

diam(z) := lim diam(B;),
j—o0
where (By) is a representative of z. For g, a nonsingular element, the diameter
of zp coincides with the diameter (radius) of the ball B.

In order to endow the Berkovich affine line with a topology, we define an
open ball of A}fn and a closed ball of A}(’an by

Bla,r) = {z € AP™ | diam(a V z) < r}
BF(a,r) = {z € AP | diam(a V z) < r}
respectively, where a € K and r > 0.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



418 E. TRUCCO

The weak topology on the Berkovich line is the smallest topology containing
all the open balls and the complements of closed balls of A}f“. Note that for
all a € K and r > 0 the closed ball $+ (a,r) is a compact set with respect to
the weak topology.

If B = B;}(a) C K we have that the closure B of B in AR™ is B (a,r).
The boundary of B (a,r) is {z5}, although we will often abuse notation and
write simple 8 B (a,r) = = 5.

For all z € AR™ there exists an order preserving bijection between [z, co]
and an interval of R. Moreover, for all # # y € AR*” there exists an isomorphism
between [z, 2 V y] and a closed interval of R. Hence, following Definition 3.5 in
[11] A}(’an is an unrooted nonmetric tree.

Let B = B;"(a) be a closed ball of K and consider x5 € AR™ the type II
point associated to B. We say that two elements z,y < zp are in the same
direction at xp if £ Vy < zp. Given x < x g, the set of elements in the same
direction as x at g is the open ball .B(z,r) of the Berkovich line, where 2 € B
is such that z < z.

The tangent space at xp, denoted by T, is the set of all the directions
at xp. Since we will work only with polynomials, our notion of tangent space
is really the affine tangent space at zg.

After an affine change of coordinates h, such that h(Bj (0)) = B we can
identify the directions in T, with the directions at the point associated to the
ball Bi"(0) and these directions can be naturally identified with the residue
field of K.

We say that a set X of A}{’an is conver, if for all z,y € X we have that [z, y]
is contained in X. For X a subset of Aka“ we define the convex hull of X to
be the set

conv(X) = U [z, y].

z,y€X

1 .
A convex subset of AR™ is always a connected set.

2.4. The action of a polynomial over the Berkovich line. — The action of a non-
constant polynomial P with coefficients in K has a unique continuous extension
to Ai(’an, which we also denote by P. More precisely, if = is the equivalence class
of (Bj), then P(z) is defined as the equivalence class of the sequence (P(B;)).
If 2 = zp is a non singular element, we have that P(zp) = zp(p).

The map P: A}gan — A}fm is increasing, open and preserves the type of the
points. For all x € A}{’an the set of preimages of  under P is finite. The image

of a ball B of A}éan is a ball of the same type, and its preimage is a finite union
of pairwise disjoint balls of the same type as 5.
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To extend the notion of local degree of P to AR™ let

degw(P) = Jli{l;o degBj (P)u

where (B;) is a representative of the class x. We have that deg, (P) =
deg(P), for all non singular elements x5 € AR™".

REMARK 2.1. — The map z +— deg,(P) is a nondecreasing function with
respect to < and it is upper semi-continuous. See [1, Proposition 9.28] or [13,
Section 2]

REMARK 2.2. — Given z € Ak’an with preimages z1,...,Z,,, we have that

> des,, (P) = deg(P).

We say that x € A}éan is a critical element of P if deg, (P) > 2. The structure
of the critical set

Crit(P) := {z € AR™ | deg,(P) > 2}

depends strongly on the characteristic of the residue field K , as we will see in
Subsection 2.6.

Let 2 € AR™ be a type II point. Given a direction &) in T, that is, an open
ball &) of A}(’an such that § ) = x, we have that P( ) is a direction in Tp(,).
Hence, the action of P in the Berkovich line induces a map T, P: T, — Tp(y)
between the tangent spaces at  and P(xz). After affine changes of coordinates
hi, he such that ho(P(B)) = 0 and hi(0) = B the map T, P coincides with the
reduction of P to the residue field K. Hence, T, P is a nonconstant polynomial
map in K[z] of degree lower than or equal to deg(P).

For further reference we establish a relation between the local degree of P
at a type II point = € A}fm and the degree of T, P.

REMARK 2.3. — Let P € K|[z] be polynomial of degree > 2 and let = € AR
be a type II point. If ¢’ € K then

deg, (P) = deg(T,.P) = > deg((T.P).
{CeR|T, P(¢)=¢"}
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2.5. The Hyperbolic Space. — We denote by Hg the hyperbolic space of K,
that is, the set of nonclassical elements in the Berkovich Line. This set has a
tree structure induced by the structure of AR*".

Over Hg we can define the hyperbolic distance,
dy(z,y) = 2logdiam(z V y) — log diam(x) — log diam(y),

which is compatible with the tree structure of Hg. More precisely, the set Hg
with the hyperbolic distance is a R-tree. That is, for all x,y € Hg the length of
the segment [z,y], which is a geodesic segment, coincides with the hyperbolic
distance between x and y.

For further reference we state, without proof, the following straightforward
fact

LEMMA 2.4. — Let w,y,z in AR*™. We have that dy(z,y) = du(z,w) +
du(w,y) if and only if w belongs to [z,y].

The hyperbolic distance behaves nicely under the action of a polynomial.
More precisely we have the following lemma which is a restatement of Corol-
lary 4.8 of [21].

LEMMA 2.5. — Let P € Kl[z2] and consider = < z' € AR™. Suppose that
deg,(P) = X for all y €]z,z'[. Then

dy(P(z), P(x')) = X\ - dy(z, ).

The metric topology induced in Hg by the hyperbolic distance is called the
strong topology. Every open set X C Hg for the topology induced in Hg by
the weak topology is an open set for the strong topology. Moreover, (Hy, dg)
is a complete metric space.

Our default topology will always be the weak topology in A}K’an and Hg.

2.6. The Critical Set of P. — Let P € K|z] be a polynomial of degree > 2. The
structure of the critical set of P depends strongly on the characteristic of the
residual field of K, as we will see in the following propositions. We will first
assume that char(K) = 0.

PROPOSITION 2.6. — Let P € K|[z] be a polynomial of degree > 2 and let B C
K be a ball. If the characteristic of K is zero, then
degp(P) =1+ degp(P')

TOME 142 — 2014 — N° 3
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Proof. — After an affine change of coordinates we can suppose that B and
P(B) contain 0. Since char(K) = 0 we have that |n| = 1 for all n € N.
Therefore, the Newton polygon of P’ is a translation of the Newton polygon
of P — P(0). Hence, the number of zeros of P’ in B is the number of zeros of P

in B minus 1. O

REMARK 2.7. — Note that if char(K) = 0 and B C K is a ball, then the
following holds

degp(P) — 1= (deg.(P) 1)
z€B
Z (degw(P) - 1).

weBNCrit! (P)

That is, the degree of P at the ball B is determined by the critical points of P
contained in B. We will refer to the identity above as the Riemann-Hurwitz
formula.

From above, we have that in the case of char(Iz') = 0, the set Crit(P)
coincides with the set
U [w, 00).

weCrit! (P)

Therefore Crit(P) is a finite subtree of A*". That is, Crit(P) has finitely many
vertices and finitely many edges. There is one distinguished edge of the form
[z,00[. The other edges are closed segments. In particular, we have that the
local degree at a singular element is always 1.

The situation in the case of char(K) = p > 0 is, in general, completely
different.

PROPOSITION 2.8. — Let P € K|[z] be a polynomial with degree > 2 and
let B C K be a ball such that m = degg(P). If the characteristic of K is
p >0 and (p,m) =1 then

degp(P) =1+ degp(P")
Proof. — After an affine change of coordinates we can suppose that 0 belongs

to B and P(B). Since the local degree is m, we have that (m,log(|a|)) is a
vertex of the Newton polygon of P. Since (p,m) = 1 it follows that

(m —1,log(jmam|)) = (m — 1,1log(|am|))

is a vertex of the Newton polygon of P’. Indeed, in the Newton polygon of P’
the slope before m — 1 can only increase and the slope after m — 1 can only
decrease with respect to the slopes before and after m in the Newton polygon
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of P. Hence, the number of zeros of P’ in B is the number of zeros of P in B
minus 1. O

PROPOSITION 2.9. — Let P € K|[z]| be a polynomial with degree > 2 and
let B C K be a closed or irrational ball such that m = degg(P). If the charac-
teristic of K isp > 0 andm = p™n with (p,n) = 1 and r > 1, then Crit(P)NHg
has nonempty interior with respect to the strong topology. In particular, Crit(P)
is not a finite tree.

Proof. — Let xp the point associated to the ball B. Since deg, (P) = p"m
and the local degree is the limit of a nonincreasing sequence of positive inte-
gers, there exists a type II point zp < z such that deg,(P) is also p"n and
deg (P) = p"n, where ) is the direction at  that contains z . If we consider
the action between T, and Tp(,), we have that p"n = deg(T, P) = deg (T, P).
After affine changes of coordinates we can suppose that z and P(x) are the
point associated to the ball B (0) and 0 € &) = P(). It follows that T, P,
which is a polynomial of degree p"n, has a fixed point with local degree p"n.
Hence

n rfln

T,P(()=¢" "= (") ™
By Lemma 10.1 in [22] we have that P coincide with z?" ™ in a strong neigh-
borhood %/ of z. Since z is a inseparable fixed point (Definition 5.4 in [22])

for zP"™ we can use Proposition 10.2 in [22] to obtain the existence of a strong
neighborhood % of x such that deg, (zP"™) > p for all y € V. Then

deg, (P) = deg, (2" ") > p

for all y € U N . Therefore Crit(P) has nonempty interior with respect to
the strong topology. In this case Crit(P) is not a finite tree. O

The following definition is motivated by the previous propositions

DEFINITION 2.10. — We say that a polynomial P € K|z] is tame if the critical
set of P is a finite tree.

For instance, if char(K) = 0 then any polynomial is tame. If the residual
characteristic of K is p > 0, then any polynomial with degree d < p is tame.

If the residual characteristic of K is p > 0 we have, by Proposition 2.9, that
P is a tame polynomial if and only if the set {deg,(P) | z € A}fm} does not
contains multiples of p. Moreover, in this case, the Riemann-Hurwitz formula
(see Remark 2.7) is valid. Our main results will be on tame polynomials.

We finish this subsection with a proposition about the structure of Crit(P).
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PROPOSITION 2.11. — Let P € K|z] be a tame polynomial of degree > 2. Then
Crit(P) = U [w, 0ol.
weCrit! (P)

In particular deg,,(P) = 1 for any x of type IV.

Proof. — Let € = U [w, 0o[. It is clear that € is contained in Crit(P).
weCrit! (P)

Let z € Crit(P). If z is a nonsingular point then, following Remark 2.7,
we have that x is a classical critical point or z = zp and B N Crit!(P) # &,
therefore = € €.

If z is a type IV point, then there exists a decreasing sequence (z,) of

nonsingular critical elements such that liIE x, = x, see Subsection 2.4. Since
n—-+oo

the points x,, are nonsingular and the classical critical points are finitely many,
there exists w € Crit!(P) such that x,, belongs to [w, oo[ for all n € N. Hence,

lirJIrl Z, = x belongs to [w, o[, but this is impossible because z is a type IV
n—-+1+:0oo

point. Therefore deg,(P) =1 for any z of type IV and ¢ = Crit(P). O

2.7. Julia and Fatou sets in the Berkovich line. — By analogy with complex
polynomial dynamics the filled Julia set of P is defined by

Fp = {z € AP | (P"(z)) is precompact}.

The filled Julia set of P is always nonempty, since it contains the classical
periodic points of P.

We define the Julia set of P, denoted by ¢/ p, as the boundary of the filled
Julia set of P, that is, /p = 0 Fp. An equivalent definition, which will be
useful, is the following: a point = € A}fm belongs to &/p if for every open
neighborhood V of z, we have that

A\ | Pr(v),
n>0
has at most one element.

The Julia set is a compact, totally invariant (i.e., P(¢/p) = &/p =
P~(§p)) and nonempty set. Moreover, for all n € N we have §/p = &/ pn.
Furthermore, it can be characterized as the smallest compact set totally
invariant by the action of P and not containing any classical exceptional
points (a classical point is exceptional if its grand orbit is finite, the classical
exceptional set contains at most 2 elements, see [13]).

The Fatou set of P, denoted by of p, is defined as the complement of the
Julia set of P. This is a nonempty open set. We say that Akan \ Fp is the
basin of attraction of co. Note that the basin of attraction of oo is a convex
set, and therefore a connected set. Moreover, it is a Fatou component.
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The classical filled Julia set of P, denoted by &V;, is defined as Fp N K.
We define the classical Julia set of P as 57; := ¢/p N K. The classical Fatou
set of i; is the intersection of ¢f p and K. These definitions, of classical Fatou
and Julia sets, agree with the ones given by Hsia [15, 16].

Consider z in A}fm a periodic element of period g. In the case that x belongs

to K, we say that z is attracting, neutral or repelling according |(P?)'(z)| < 1,
|(P9)(z)| =1 or |(P?)(x)| > 1, respectively. If z belong to A}éa“ \ K we say
that x is neutral or repelling if deg,(P?) =1 or deg,(P?) > 2.

A periodic point z € AY*™ of P belongs to the Julia set of P if and only if
it is a repelling periodic point, see [19, 24].

We will use the following proposition which is proved in Section 5 of [21].

PROPOSITION 2.12. — Let P € K|z] be a polynomial of degree > 2 and let x
be in the Julia set of P. If x is a periodic critical element then x is a type IT
point.

DEFINITION 2.13. — We say that a polynomial P € K|[z] of degree > 2 is
simple if there exists a fixed point z € Hg with deg, (P) = deg(P).

The simplest Julia set consists of a unique type II point in Hy which is fixed
under P. In fact, the polynomials with a unique type II point as Julia set are
precisely the simple polynomials. Moreover, a tame polynomial P is simple, if
and only if all the classical critical points of P belong to J@; (see Corollary 2.11
in [17], the proof of that corollary is valid for tame polynomials).

From Subsection 2.6 we have that the critical set of P always contains in-
finitely many elements. Nevertheless, if P is a tame polynomial, there are only
finitely many critical elements of P contained in its Julia set, that is one of the
important properties of tame polynomials.

PROPOSITION 2.14. — Let P € K|z] be a nonsimple and tame polynomial of
degree d > 2. Then &/ p contains at most d — 2 critical elements of P, counted
with multiplicity, where the multiplicity of © is deg,(P) — 1

In order to give the proof of the previous proposition we need the following
lemma.

LEMMA 2.15. — Let P € K|z] be a polynomial of degree > 2 and consider
t € Jp. Then A(z) = {y € AP™ |y < 2} C FpN Fp and |z,00[ is
contained in the basin of co.
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Proof. — If z is a classical or a singular point then & = A(z) C &/ p. Suppose
that x = g € ¢/p NHg is a nonsingular point and consider y € A(x). Then,
for an open ball .3 such that y € 3 C B and given ) a ball of the Berkovich
line such that &/p C &) we have that

P"(B) € P"(B) C )
for all n > 1. That is y belongs to ¢ p N &p. Therefore A(z) C F p.

If there exists y € &/ p such that z < y, then z € A(y) C &F p, which is
impossible. It follows that |z,00[C f p. O

Proof of Proposition 2.14. — Recall that the critical points of P belong to

U [w, ool.

weCrit! (P)

For each critical element ¢ € §/p, we can choose w, € Crit!(P) such that ¢
belongs to [we, oo[. In view of Lemma 2.15 we have that [w,, ¢[ and |¢, oo[ are
contained in the Fatou set of P. Then, the map ¢ — w, is injective. It follows
that ¢/p contains at most d — 1 critical elements, since Crit!(P) contains at
most d — 1 elements.

Seeking a contradiction suppose that ¢/ p N Crit(P) contains d — 1 elements,
it follows that Crit!(P) is a subset of Jd}. Following Corollary 2.11 in [17] we
have that P is a simple polynomial and the Proposition follows. O

The following proposition shows that the existence of wandering Fatou com-
ponents is equivalent with the existence of nonpreperiodic points in ¢/ p N H.

PROPOSITION 2.16. — Let P € K|z] be a nonsimple polynomial of degree > 2.
There exists a wandering component of of p which is not in the basin of a
periodic orbit if and only if there exists a nonpreperiodic point of type II or IT1

Proof. — First note that the Fatou components different from the basin of oo
are open balls of the Berkovich affine line.

We proceed by contradiction. Let 3 be a wandering Fatou component which
is not in the basin of a periodic point and let x = 8 3. Since x belongs to &/ p,
passing to an iterate if necessary, we can suppose that P(z) = x.

Let % be a neighborhood of z. By the description of the neighborhoods of x
we have that the set { ) € T, | &) € U} contains finitely many elements. On
the other hand {n € N | P"(B) € 9} contains infinitely many elements, this
implies that .3 belongs to the basin of attraction of the orbit of =, which is a
contradiction.

Conversely, if ¢ € &/ p NH is a nonsingular point which is nonpreperiodic,
we have that for each a € K with a < z the open ball J3(a,diam(z)) C
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o pN Fp is a wandering Fatou component which is not in the basin of a
periodic orbit. O

For more results about Julia and Fatou set for rational maps see [13, 21].

2.8. Measure on the Berkovich affine line. — Given a polynomial P € K|[z] of
degree > 2, Favre and Rivera [13] construct an ergodic probability measure,
defined on the Borel sets of A}éa“. See also [1, 2, 10, 12]. This measure is denoted
by pp and called the equilibrium measure of P. The measure pp is characterized
by the followings properties:

— pp does not charge classical points.
- If B is a ball of AR™ then
deg o (P
el B) = 2 oo (P 3)
The equilibrium measure of P is supported on the Julia set of P and is an
atom free measure for all P which are not simple. Moreover, for any open set
V such that &/p NV # & we have that pp(V) > 0.

3. Dynamical Points.

Consider a nonsimple polynomial P € K|z] of degree > 2. To establish
properties about &/p we study the action of P in the convex hull of its Julia
set, that is

conv(Tp)= |J [z.9]
z,y€/p

For each z € ¢/p we will construct a decreasing sequence (L,(z)) C
conv( ¢/ p) of type II points having z as its limit. This sequence is dynamically
defined, therefore every dynamical property of x can be obtained from the
properties of the sequence (L,(z)). Compare with the lemniscates in [7] and
the dynamical ends in [17].

At the end of the section we will introduce the concept of good starting level,
which will be useful to compare the distances between the points in (L, (z))
and (L, (P(x))).

From Proposition 6.7 in [19] we know that

rp = max{|zo — 21| | 20,21 € c%;}
belongs to the value group of K. Thus, the closed ball Dy = B} (2) C K,

where z is any periodic point of P, is the smallest ball of K containing JH;,
and therefore Dy is the smallest ball of A}ga“ containing & p. In particular we
have that the Julia set of P is contained in Dj.
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LEMMA 3.1. — Let P € K[2] be a polynomial of degree > 2. Then Dy is the
smallest ball of AY™ containing & p.

Proof. — We proceed by contradiction. Suppose that there exists a ball 3
such that /p C B g Dy. From Lemma 2.15 we have that

Fp= || lve A" ly=<a}.
z€/p

Hence, p%; = FpNK C BN K, which contradicts that diam(&(‘{;) =
diam(Dy). O

DEFINITION 3.2. — The level 0 dynamical point of P, denoted by Ly, is defined
as the point associated to the ball Dy, that is, Ly := xp, = 0Dj.

DEFINITION 3.3. — For each n € N the level n dynamical set of P is defined
as Ly, := P~™(Lg). We say that an element L, of Z, is a level n dynamical
point of P.

From the definition we have that Lg is a type II point and that x < L¢ for
all z € §/p. Moreover, L is the smallest element in A}g‘m with this property.

PROPOSITION 3.4. — Let P € K|z] be a nonsimple polynomial of degree d > 2.
Then the following statements hold:

{Lo} = P~ (P(Lo))

Lo < P(Lo)

diam(P"(Lg)) — +00 as n — +oo.

P~1(Ly) has at least two elements. Moreover, the elements of P~!(Lg)
are pairwise incomparable with respect to <.

5. P71(Ly) contains points in at least two directions in 77, .

= W=

Proof. — To prove the first statement, note that, the Julia set of P is forward
invariant, therefore

& p=P(Ip) € P(Do) = P(Dy).
By definition of Ly, we have Ly < P(Lg). Now seeking a contradiction, suppose
that there exists zg in P~1(P(Ly)) different than Ly. Since &/p C P(Dy) we
have that BN &/ p # &. Hence, xp is comparable to Lg. If zg < L it follows
that
P(Lo) = P(xp) < P(Lo),
which is impossible. Analogous assertions hold if we suppose that Ly < zp.

Therefore xg = Lg, which is a contradiction. Hence, we have proved that
{Lo} = P7*(P(Lo)).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



428 E. TRUCCO

To prove (2) note that Ly < P(Lg) and {Lo} = P~!(P(Ly)). Using Re-
mark 2.2 we obtain that deg; (P) = d, because Lo is the unique preimage
of P(Lg). Hence Ly < P(Ly), since P is not a simple polynomial.

To show (3), let 0 < a = du(Lo, P(Lo)). We proved that deg; (P) = d,
therefore degpn (1) () = d for all n € N. Following Lemma 2.5, we obtain that
dy(P"'(Lo), P"(Lo)) = a-d" "

Hence, dy(Lo, P"(Lo)) > a-d""1, because all the iterates of Ly belong to the
segment [Lg, 0o[. Using the definition of the hyperbolic distance we obtain

diam(P™(Lg)) > diam(Lg) exp(a - d"1).

Then, diam(P™(Lg)) — +oo.

To prove the first statement in (4) we proceed by contradiction. Suppose
that P~1(Lg) has exactly one element zp. It follows that the Julia set of P
is contained in B, since §/p is totally invariant. By the definition of Ly we
have that Ly < 5. By monotonicity of P, we obtain that P(Lg) < P(zp) =
Lo, which is a contradiction with (2). That is, P~1(L¢) contains at least two
element.

Suppose now that there exist x1, 2o € P~1(Ly) with 77 < z5. It follows that
Ly = P(ZL'1) < P(IL‘Q) = Ly,

which is impossible. Therefore the elements in P~!(Lg) are pairwise incompa-
rable.

To show (5) note that if P~(Lo) = {y1,...,Ym} we have that z < y; V---V
Ym for all x € ¢/ p, since,

Ir= || eeTrlz<u)

1<j<m

In particular, if P_l(LO) is contained in a direction ) € Ty, we have that
Y1V Vym < Lo,

which contradicts the definition of Ly. Now (5) follows. O

From (1), (2), (4) of Proposition 3.4 we have that each level n > 1 dynamical
point is strictly smaller than exactly one level n — 1 dynamical point.

DEFINITION 3.5. — A dynamical sequence is a decreasing sequence (Ly,)n>0
of dynamical points such that Lg is the level 0 point and L,, € Z,, for all n > 1.

PROPOSITION 3.6. — Let P € K|[z] be a polynomial of degree d > 2. Then
¢/p={limL, | (L,) is a dynamical sequence of P}.
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Proof. — If P is a simple polynomial then L, = Lo for alln € N and &/p =
{Lo}-

When P is not simple, let (L, ) be a dynamical sequence of P and z = lim L,,.
For all n > 0 we have that < L,, therefore P*(z) < Lo. Hence z belongs
to &p. The dynamical points do not belong to &p (see Proposition 3.4 (3)),
hence z € §/p = 0 Fp.

Let x be in the Julia set of P and let n € N. From the definition of Ly and
Proposition 3.4 (2) we have that Ly belongs to |P"(x), P"(Lo)[. Hence, the
intersection [z, Lo] N Z,, contains exactly one element, denoted by L, ().

Suppose that lim L, (z) = y # . It follows that = < y, because z < L, (z)
for all n > 0. From the above we conclude that y is a Julia point. Following
Lemma 2.15 we have that € A(y) C & p, which is impossible. Hence we have
lim L, (z) = . O

DEFINITION 3.7. — We will refer to the sequence (L, (z)),>0 constructed in
the proof of Proposition 3.6 as the dynamical sequence of x.

The dynamical sequences of z and P(z) are related according the following
identity
Ln(P(z)) = P(Lni1()),
for all n > 1.
As an immediate consequence of Proposition 3.6 we have the following Corol-
lary.

COROLLARY 3.8. — Let P € K]|z] be a polynomial of degree > 2. Denote
by 2(P) the set of dynamical sequences of P endowed with the topology in-
duced by the following distance

(L), () =
where m = min{j > 0| L; # L’} and d((L»), (L.)) =
Let P: P(P) — 2(P) be the map defined by }3(

(L
P: ¢/p — &/ p is topologically conjugate to p: 2(P) —
conjugacy is given by o: &/ p — P (P) where o(z) = (L

)) = (P(Lnt1))- Then
PD(P). The topological
n(2))-

To distinguish whether a Julia point z is classical (i.e € K) or not (i.e
x € Hg) we consider the hyperbolic distance between the level 0 dynamical
point Ly and z. In view of Lemma 2.4 we have that

du(Ly(z), Lo) = log(diam(Lg)) —log(diam (L, (x)))

—Z@r JLjsa(2)).
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Hence x is a classical point if and only if the sum of the right hand side of
the expression above is divergent. The convergence of the sum does not allow
us to decide whether the point z is of type II, IIT or IV. It only determines if
log(diam(x)) is a positive rational or irrational number.

The following corollaries are applications of Proposition 2.14 to dynamical
sequences.

COROLLARY 3.9. — Let P € K|[z] be a tame polynomial of degree > 2. Then
there exists M(P) € N, only depending on P, such that
1. ifn > oM(P) and L, is a level n point which is critical, then L, = L,(c)
for some ¢ € Crit(P)N ¢/ p.
2. (i;gL"(c)(P) =degy , . (o)(P) for all n > M(P) and all ¢ € Crit(P) N
Po

Proof. — Note that w € Crit!(P) belongs to & p if and only if [w, c0[NZ,, # @
for all n > 1. It follows that there exists a smallest integer M; such that if
w € Crit!(P) and [w,c0[NZar, # @, then w € Fp.

From the definition of the local degree, we have that for each ¢ € Crit(P) N
¢/ p there exist a smallest integer M. such that deg (P) = degy,, ()(P). Con-
sider My = max{M, | ¢ € Crit(P)N &/ p}, we can consider max instead sup by
Proposition 2.14. Then ¢M(P) = max{M;j, M>} only depends on P and is the
smallest integer satisfying (1) and (2). O

To state and prove the following corollary we need two definitions.

DEFINITION 3.10. — Let P € K|[z] be a polynomial of degree > 2 and consider
T € A}f“. The forward orbit of x is the set

0" () = {P(2) | j € N}.

DEFINITION 3.11. — Let P € K|[z] be a polynomial of degree > 2 and consider
x € A}éa“. The w-limit of z is the set

w(z) == {y € AR | there exists (n;) C N,nj < nj;; and lim P™(z) = y}
j

——+00

COROLLARY 3.12. — Let P € K|z] be a tame polynomial of degree > 2 and
consider = in the Julia set of P. Then there exists an integer N > M(P),
depending on x, such that
1. deg,(P) = degy, (,)(P) for alln > N.
2. ifn > N,j > 1 and L,(P’(x)) is critical, then L, (P’(x)) = Ly,(c) for
some ¢ € O (z) N Crit(P).
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Proof. — From the definition of local degree, there exists N7 > oM(P) such
that

deg,(P) = degLN1 (2) (P).

A critical element ¢ belongs to w(z) \ O (z) if and only if there exists a
increasing sequence (n;) of integers such that the dynamical sequence of P™i ()
coincides with the dynamical sequence of ¢ at least up to the level j. If ¢ ¢
w(x)\ OF (z) there exists an integer N, such that Ly, (P?(x)) # Ly, (c) for all
j > 1. By Proposition 2.14 we can consider

Ny = max{N, | c € (Crit(P)N ¢/ p) \w(z)}.
It follows that every N > max{Ny, Ny} satisfies (1) and (2). O

DEFINITION 3.13. — Let P € K|[z] be a tame polynomial of degree > 2 and
consider z € ¢/p. We define the good starting level of z, denoted by N (z), as
the smallest integer satisfying the two properties in Corollary 3.12.

In general, for x € &/p we want to estimate the distance dy(z, Lg). But in
practice we estimate the distance du(z, L y(z)), where o/ is the good starting
level of x, since it is easier to control.

PROPOSITION 3.14. — Let P € K[z] be a tame polynomial of degree > 2 and
consider = in the Julia set of P. If x belongs to Hg, then the w-limit of x
contains at least one critical point of P

Proof. — Consider z € ¢/ p. Suppose that w(z)NCrit(P) is empty, it is enough
to show that = € K. Passing to an iterate if necessary we can suppose that x
is noncritical and has no critical iterates. Since w(z) N Crit(P) = & and z has
no critical iterates, we have that L, (P’(x)) is noncritical for all n > ¢/ and
all j > 1, where oV = oN(z) is the good starting level of z. Equivalently,

Ln—j(P’(2)) = P?(Ln(x))
is noncritical provided that n — j > o/ (see Definition 3.13).
Since, the dynamical level sets Z,, are finite, for all » > 1, there exist finitely
many intervals of the form [L jy.1(y), L y(y)] with y € &/ p. Hence, there exist

a point yo in ¢/p and a strictly increasing sequence (n;) of dynamical levels
larger than ¢/ such that

P~ (L, 11(x), Ly (2)]) = [L o1 (90), Loy (v0)]-
We have that
n;—oV—1
degy, (x)(PnrJv) = H degLnj_i(Pi(m))(P)v

=0
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since the levels n; are larger than ¢/, we obtain that deg;, (pi(,))(P) =1 for
all 0 < ¢ < n;— ¥ —1. Therefore degLn_(m)(P"J"CjV) = 1. Applying Lemma 2.5
it follows that

du(z, Ly(x)) = lim Y du(Ljzi(@),L;(x))

m——+oo

j=V

lim > du(Ln,+1(z), Ln, (7))
7=0

Y

m——+00 £

m——+o0 -

= lim Z du(L gyv41(v0)s Loy (yo))

= +o00.

Thus, = belongs to K. O

4. The Geometric Sequence

Let P € K|z] be a tame polynomial of degree d > 2, consider z € ¢/p and
let L, = L,(z) for all n > 1.

In order to compute the hyperbolic distance between x and Ly, we want to
estimate the distance between two consecutive levels of the dynamical sequence
of z. However, Lemma 2.5 does not always applies to relate dy(L;,,+1, Ly,) to the
distance dy(P(Lpn+1), P(Ly)) because the local degree of P is not necessarily
constant in the segment | L1, L,][.

In view of this, to have a better control of the distance between consecutive
dynamical levels, we need a finer subdivision of the segment joining x to the
level 0 dynamical point. This subdivision, that will be the called the geometric
sequence of x, is motivated by the following propositions about branch points
of conv(¢/p). First we need a formal definition.

DEFINITION 4.1. — We say that a type II point € conv(¢/p) is a branch
point of conv( &/ p) if &/ p intersects at least two directions in 7.

PROPOSITION 4.2. — Let P € K|[z] be a nonsimple polynomial of degree > 2.
Then Lg is a branch point of conv(¢&/p).

Proof. — From Proposition 3.4 (2) it follows that the elements of P~!(Ly)
are strictly smaller than L. Following Proposition 3.4 (5) there exist z1,22 €
P_l(LO) such that z1,xs belong to different directions in 77,. Hence, Ly =
x1 V x2 is a branch point of conv(/p). O
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PROPOSITION 4.3. — Let P € K|[z] be a nonsimple and tame polynomial of
degree > 2 and consider xp a branch point of conv(s/p). Then there exists a

direction ) € Ty, and a critical point w of P not contained in JH; such that
DN Ip = and GO(w)N ) # 2.

Proof. — In view of Proposition 3.6 there exits n such that L, < x5 < L,,_1
for some dynamical points L,, and L,,_1, it follows that P™(zg) belongs to the
segment | Lo, P(Lg)].

Since the dynamical points of a given dynamical level are finitely many, we
have that there exist only finitely many directions in T, having nonempty
intersection with &/ p. Let 21, ..., &, be such directions.

We have that P"();) = o for all 1 < j < m, where ), is the direc-
tion at P"(zp) containing L. From the Riemann-Hurwitz formula (see Re-
mark 2.7), we obtain that

deg,,(P") =1+ > (deg,(P")—1)

z€BNCrit! (P™)

= deg(T5, P")

= deg g, (P")+---+ deg g (P™)

=m+ > (deg,(P™) —1).
z€(D1U--U Dy, )NCrit (P™)

Since 2 < m, it follows that
> (deg.(P")=1)< > (deg,(P")—1).
2€(D1U--U Dy, )NCrit! (P™) z€ BNCrit! (P7)

That is, there exists direction ) € Ty, \ (D1 U -+ U D) and critical point
u of P™ contained in ). Since )N &p = & and u € GO(w) for some w €
Crit!(P) \ (56}, the proposition follows. O

REMARK 4.4. — Taking xg = Lg, the previous proof shows that if P is tame
and nonsimple, then there exists w € Crit!(P) \ C%}.

Let P € K|[z] be a tame polynomial. Let {w1, ..., wy } be the set of classical

critical points of P which are not contained in @GJV; Note that 1 < ¢ <d—1.
For each 1 < j < ¢/, let zy,, be defined by

(conv(¢/p) U [Lo, 00[) N [wy, 00[ = [Ty, 00].

By Proposition 4.3 all the branch points of conv(¢é/p) are contained in the
grand orbit of the set {Zy,,. .. ,qu/}.
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DEFINITION 4.5. — Let P € KJz] be a nonsimple and tame polynomial of
degree d > 2. The geometric sequence of x € &/ p, denoted by (G (x))n>0, is
the decreasing sequence enumerating the elements in
[z, Lo] N GO({Zwy s - - s T, 1),

where GO denotes the grand orbit.

Note that (G,,) is a constant sequence when P is simple.
REMARK 4.6. — Consider vy_1,...,vo €|Lg, P(Lo)] satisfying

GO({ZL‘wl, e ,.Cl?wq,}) ﬂ]LO, P(Lo)] = {'Uq—la Uq_z, ey 'U()},
and vg_1 < vg_2 < -+ < vg = P(Lg). Note that 1 < ¢ < d and that every
element of
GO({xw1a ceer La, }) N CODV((?P)

is eventually mapped to v;, for some j.

Consider n > 0 and put n =g¢q - [n/q| + j for some 0 < j < g — 1, where |- ]
denotes the floor function, that is |-| : R — Z is defined by

la| :=sup{n € Z | n < a}.
It follows that
PMATY(@G, (z)) = v;.
Moreover
PUAFY([Gpa(2), Gu(@)]) = I,

where I; = [vj11,v;] for 0 < j < ¢g—2and I,_1 = [Lo, vg—1].

DEFINITION 4.7. — We say that v,_1,..., v are the generators of the geomet-
ric sequences of P.

REMARK 4.8. — If ¢ is the number of generators of the geometric sequences
of P, and if ¢’ is the number of classical critical points of P that escape to
infinity, then ¢ < ¢’. Indeed, first note that for tame polynomials, we have
Crit'(P) C Dy. So z,, € Dy. Also, the segment |P*(Lg), P“*!(Lg)] maps
d-to-1 onto |P**1(Lg), P**2(Ly)] for each i > 0, which shows that for each

Jj = 1,...,q, there is exactly one positive integer n such that P"(z,;) €
]Lo, P(Lo)]. Thus we have a well-defined surjection of sets {zu,,...,Zw,,} —
{vo,...,vq-1}, and hence ¢ < ¢'.

The next lemma states the basic properties of the geometric sequence. The
proof is straightforward and we omit it.

PROPOSITION 4.9. — Let P € K|[z]| be a tame polynomial of degree > 2 with
q generators for its geometric sequences and consider x € ¢/ p. Then, the fol-
lowing statements hold:
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1. Ly(z) = Gpqe(z) for alln > 0.
2. liIJIrl Gn(z) ==.
3. The geometric sequences of © and P(z) are related by

P(Gn(z)) = Gn—q(P(z))
for alln > q.
Note that

P(1Gr11(2), Gn(@)]) =1Gn—g11(P(@)), Guey(P(a))]
for all n > g + 1. Moreover, for all n > 0 it follows that

P_l(]Gn-i-l(x)aGn(:E)D = U 1Gn+q+1(¥), Grrqg(y)]

yeP~(x)

The main result in this section is the following proposition. It will allow us
to use Lemma 2.5 to relate dy(Gn11,Gr) with dg(P(Gpn+1), P(Gr)).

PROPOSITION 4.10. — Let P € K[z| be a nonsimple and tame polynomial of
degree > 2 and consider x € &/p. Let (G,) be the geometric sequence of x.
Then for all n > 0 the local degree of P is constant in the segment [Gp11, Gyl
In fact

deg,(P) = degg, ., (P)
for ally € [Gpt1, Gnl.

Proof. — Let n > 0 and define

In = {y €1Gn+1, Gr] | deg,, (P) = deanH(P) for all w € [Gn+1,y[}.

To show that J, # @, consider a € K and r > 0 such that B, (a) is the ball
associated to G,,1. Consider

R = min{|a — w| | w € Crit'(P) \ B/ (a)}.
In view of the Riemann-Hurwitz formula, see Remark 2.7, the local degree of P
at the point associated to the ball B;f, (a) coincides with degg, ., (P) for all
0 < € < R. In particular, we obtain that .J, # &. Moreover, the previous
argument shows that largest element contained in J,, is a type II point.

Denote by yp = max 7/,. We will show that yg = G,,.

We proceed by contradiction. Suppose that yg < G,. It follows that the
degree of the map P in B is larger than the degree of P in the direction &)
at yp that contains G,,; 1. In particular, there exists a critical point w in B\ ).

We have two cases:

If w¢ Jéfp, then yp belongs to {zy,,... ,qu,} (see Definition 4.5). In
particular, G,, and G, 11 are not consecutive elements of the sequence (G,).
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Ifwe &V; we have that yp is a branch point of ¢/ p, which is a contradiction
because |Gpt1, Gy is branch point free, see Proposition 4.3.

It follows that max J,, = Gp. Therefore deg,(P) = degg, ,(P) for all y
in [Gn+1, Gn[ O

From Lemma 2.5 it follows that for each n > 0 the lengths of the segments
[Gni1,Gr] and P4+ ([G, 11, Gp)) = I; (see Remark 4.6) are related accord-
ing the following identity

(1) dig(Gri1,Gp) = [degg,,, (PU/IH)]7L

where |I;| denotes the length of the segment I; for all 0 < j < g — 1. Therefore
+o0 “+o0

(2) > du(Grt1,Gr) = Y ldegg, ., (PO |L, |
n=0 n=0

where, 0 < j, < g — 1 is such that PI"/U+Y([G,11,G,)) = I,

In order to write the previous sum in a more convenient manner we need to
introduce the following notation.

DEFINITION 4.11. — Consider z € &/ p. For all n > 0 we define, the dynamical
degree of level n around x as

dn(x) = degG,H_l(z)(Pl—n/qJ—'—l)'

DEFINITION 4.12. — The range of dynamical degrees of x is defined by

D(@) == {du(@) | n > 0}.

The previous definitions are inspired in complex polynomials dynamics (see
[8])

Rephrasing equation (1) and the sum (2) in this notation gives the following
lemma.

LEMMA 4.13. — Let P € K|[z] be a tame polynomial of degree > 2 with q
generators for its geometric sequences. Consider x € &/ p and denote by (Gy)
the geometric sequence of x. Then

=

q—

(G, L) = 3 dn(Gern, G = - (1] Y 147))
= i

for all n > 0, where |I;| is the length of the interval I;, 0 < j < gq—1
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The above sum gives us a relation between the sum of the length of the
intervals defined by the generators of the geometric sequences of P and the
range of dynamical degrees around z.

Now we present two direct applications of the geometric sequence. Recall
that, for a € N and X a subset of N, the set a - X is defined by

a-X :={ab|be X}.
LEMMA 4.14. — Let P € K|z] be a tame polynomial of degree d > 2 and
let x € &/ p. Then the following statements hold:

1. If w(z) N Crit(P) = @, then (x) is finite.
2. If w(x) N Crit(P) # @, then the range of dynamical degrees )(z) is
contained in

{1,2,..-,de”<x)+2}u(degm- U @<c>),
ceC(x)

where ((z) = Crit(P) N O (z).

Proof. — Suppose that P has g generators for its geometric sequences and
let o/ = N(z) be the good starting level of x (see Definition 3.13).
Note that if 0 < n < g/, then

d, = deanH(an/qu) < deanH(quoﬂ/qJH) < doV+1

In order to prove the first statement observe that if w(z) N Crit(P) = & then
z has at most d — 2 critical images. Consider n > gc// and let £ > 1 be the
smallest integer such that (n + 1) — ¢g < gc/V. It follows that,

dy, = dean+1(PL"/qJ+1)
= deggnﬂ(pé) . degpe(cn+1)(PLn/qJ+1—€)
=degg,,, (P")- dean_qu(PE(w))(PLn/qJ-'rl—E)
=degg, ., (pe) . deaniqZJrl(Pz(I))(PI_(n—qE)/qJ+1)
< g1 g+t
< ditd

Therefore, the range of dynamical degrees of x is contained in the finite set
{1,2,...,d¢T9}.

To prove (2), consider n > ge/V. Then there exists a minimal 1 < j, <
|n/q] + 1 such that P»(G,,1) is critical element.
We have two cases:
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If n — qj, < gV we have that
d, = deanH(PL"/qu)
= deanH (Pjn) : degpjn(Gn+1)(PL”/QJ+1—jn)
= deg,(P) - dean,mﬂ(Pt(n_‘””)/”“)
< degm(P) ' deH_l
< d07‘/+2.

Therefore, d,, belongs to {1,2,...,d?*2}.
Suppose that n — gj, > qc/V. We have that P/ (G,41) = Grn—gj,+1(c) for

some critical element ¢ € Crit(P) N 0" (z) (see Corollary 3.12). It follows that
d, = dean+l (PL"/qJ+1)
= dean+1 (P]n) . dengn (Gn+1) (Pl_n/qJ“’l*]n)
= degm (P) . deanianJrl(c) (PL(”_an)/QJ+1)
= deg, (P) - dn—gj, (¢),
that is, d, belongs to
deg, (P) - D(c) C deg,(P)- |J (o).
ceC(x)
Now (2) follows. O

LEMMA 4.15. — Let P € K|z] be a nonsimple and tame polynomial of degree
d>2 and z € {p. The range of dynamical degrees J)(z) is unbounded if and
only if there exists a recurrent critical element ¢ contained in the w-limit of x.

To prove the previous lemma we need the following definition.

DEFINITION 4.16. — For z1,z5 € &/p the greatest common geometric level
between x1, and x5 is defined by
max{j > 0| G;(z1) = Gj(z2)} =1 # a2

“+00 r1 = T2

geg(xy,x2) == {

Proof of Lemma 4.15. — Suppose that Z)(z) unbounded. By Lemma 4.14) it
follows that there exists a critical element ¢; in 07 (P(z)) such that &)(c1) is
also unbounded. Hence, we can find a critical element ¢, € OV (P(c1)) with
Dl(cy) also unbounded. Recursively we obtain a sequence (c,) € OV (P(z))
of critical elements with (c,) unbounded and c,11 € O (P(c,)), that is

Ot (P(cny1)) € O (P(cy)). By Proposition 2.14 there are at most d — 2 critical
elements of P contained in ¢/p. It follows that there exists N € N such that
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0" (P(cy)) coincides with 07 (P(cy41)). That is, exy1 € O (P(en1)). This
means that ¢y, is a recurrent critical element in 07 (P(z)). Hence, ¢y
belongs to w(zx).

Conversely, suppose that there exists a recurrent critical element ¢ in the
w-limit of z. We split the proof in two parts. First we show that )(c) is
unbounded and then we prove that the range of dynamical degrees )(z) is
unbounded.

Suppose that P has g generators for its geometric sequences and denote
by (G,) the geometric sequence of ¢ and by d,, the dynamical degree of level
n around c. The element c is recurrent, thus we can choose n; such that the
greatest common geometric level between P™ (c) and c is larger than 1, that
is, geg(P"(c),c) > 1 (see Definition 4.16). Hence, we have

dgn, = degGan1 plani/al+1y
P1+’I’L1)

P") - degpn, (Grtany) (P)

(
(
(
(P") - degg, (P)

Now we can pick ng > n; such that geg(P™2(c),c) > 1+ gny. Therefore

dqn1+qn2 = degG1+qn1+qn2 Pl(qn1+qn2)/qJ+1)

_ n1+nz+1
- degG1+qn1+qn P )

Pnz) degGlJﬂm1 (P1+n1)

n
> degG1+qn1+qn2 P"2).2

> 23

= degG1+qn1 +agng

(
N
(
(

Recursively, we can find a increasing sequence (n;) of natural numbers such
that, for o; = qni + -+ + gn;

dy, = degGU__*_1 (PLG'j/‘IJ+1) > i+l

It follows that )(c) is an unbounded set.
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Since ¢ belongs to w(zx), for each n > 0 there exists at least one j, € N such
that PI"(Gypi1444, (%)) = Gng1. Then

dnts, (%) = degg, (o (PHOTH/0HY)
= degG1L+an+1(z)(PL"/‘”””H)
= de8a,,, oy, 11(e) (P7") - AC8 pon (G gy ) (P T HE)

= degg, ,,, ((P™")-degg, , (P4
> deg,(P) 'deanH(PLn/qJJrl)

Hence, the range of dynamical degrees )(z) is unbounded. O

5. Algebraic Degree on the Affine Line

From now, we consider that K is an algebraically closed field which is com-
plete with respect to a non-Archimedean absolute value. We will assume that
there exits a complete field k¥ C K so that |-| restricted to k is a discrete ab-
solute value and such that the elements of K which are algebraic over k are
dense in K, that is

{z € K | [k(z) : k] < 400}
is a dense subset of K. Moreover, changing |-| for |-|* for some A > 1 we can
always suppose that

log(|k*|) =Z and log(|K*|) =Q.

Since K is algebraically closed and complete, it is not difficult to see that K
coincides with the completion of an algebraic closure of k.

The algebraic degree of an element z € K over k is the number [k(z) : k],
that is, the degree of the smallest extension of k containing z. To extend this
notion to the Berkovich line, note that the ball associated to every nonsingular
element in Hy contains points in k*, where k* is the algebraic closure of k
inside K. It follows that, if zp is a type II or III point in Hg, then

{[k(a): k] |a € BN KY,

contains its minimum.

DEFINITION 5.1. — For z € K we define 6(z) := [k(2) : k]. For zp € A}fm
nonsingular, we define the algebraic degree of g over k as

0(zp) = min{[k(a) : k] | a € BNk}.
Ifzxe A}fm singular, we define the algebraic degree of x as +oo.
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DEFINITION 5.2. — We say that a nonempty subset X of A*" is an algebraic
set over k if 0(z) < +oo for all z € X.

Note that for xp € Hg nonsingular and F' a finite extension of k, we have
that zp belongs to conv(F'), see Subsection 2.3, if and only if BN F # &. In
fact, if zp belongs to conv(F’), by definition there exist two points zg, 21 € F
such that zp belongs to the segment ]z, z1[. In particular, zg < zp or 21 < zp,
that is 29 € BN F or 21 € BN F. Conversely, if B = B, () with zy € F then
20 < zp. It follows that 2 belongs to conv(F'). Hence, we have proved

LEMMA 5.3. — Let xp be a nonsingular element in A}(’an. Then

d(xp) = min{[F : k] | z € conv(F), F is a finite extension of k}.
The next lemma states the basic properties of the algebraic degree.

LEMMA 5.4. — Let P be a polynomial with coefficients in k of degree > 2.
Then the following statements hold:
1. §(P(z)) < 8(z) for all x € AR™.
2. If x Xy, then 6(y) < d(x).
3. If © belongs to Hy then §(z) = ‘hgl §(z;) for each decreasing sequence
j—+oo

(xj) such that x; — x.

Proof. — 1 and 2 follow directly from the definition of the algebraic degree.

To prove 3 note that for any n € N the diameters of the branch points
of 9, = conv (U[F:k]gn F) form a discrete subset of the real interval [0, 400,
because |-| restricted to k is a discrete absolute value. Moreover, the algebraic
degree is constant between two consecutive branch points of Z,,.

Let € Hg and consider (z;) such that z; — . We have two cases:

If x is nonsingular then there exists a smallest j such that x belongs to Z,,

in particular x belongs to a segment between two consecutive branch points
of 2, Therefore 6(z) = lim d(x;).
j—+oo

If z is a type IV point then there exist a strictly increasing subsequence (m,,)

of integers and a subsequence (z;,) of (z;) such that z;,, € Zp,,, and z;, &€ P

for £ < m,. Hence §(z) = lim 6(z,,) = lm &(z;). O
Jj—+o0 J—+oo

In the case of the Julia set, the fact of being an algebraic set over k is a local
property:

PROPOSITION 5.5. — Let P € k[z] be a nonsimple polynomial of degree > 2.
The Julia set of P is algebraic over k if and only there exists a point © € &/ p
and a neighborhood V' of x such that ¢/p NV is an algebraic set over k.
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Proof. — If &/p is algebraic over k, then taking V as an open ball of the
Berkovich line which contains ¢/ p, we have that V is a neighborhood of all
x € &pand ¢/p =V N §p is an algebraic set over k.

Conversely, if there exists a element x € ¢/p and a neighborhood V con-
taining x we have that

Ip=J P (IpnV)C |JP"(WV).

n>0 n>0
From Lemma 5.4 (1) it follows that §(P"*1(z)) < §(P"(z)) forallz € {/pNV
and all n > 0. That is, the Julia set of P is an algebraic set over k. O

6. Polynomials with Algebraic Coefficients

In this section we will fix a polynomial P with algebraic coefficients over
k and we will study how the algebraic degree behaves along the geometric
sequence of x in ¢/p. To do this, we need the following dynamical version of
the well known Krasner’s Lemma which is adapted for our applications. See
Corollary 3 in chapter seven of [9] for the standard version of the lemma.

LEMMA 6.1 (Krasner’s Lemma). — Let k be a field of characteristic 0 and
complete with respect to a non-Archimedean absolute value. Let k* be an al-
gebraic closure of the field k. Consider P € k[z] and let « € k* such that
P(a) = 0. If B C k* is a ball containing o such that degg(P) = 1, then
k(o) C k(B), for all B € B.

6.1. Algebraic degree along a geometric sequence. — The first statement of
Lemma 5.4 shows that the algebraic degree behaves nicely under the action
of polynomials with algebraic coefficients.

Through this subsection, let P be a nonsimple and tame polynomial with
algebraic coefficients over k. Passing to a finite extension if necessary, we can
suppose that the coefficients and the critical points belong to k.

To state the proposition that allow us to estimate the algebraic degree along
a geometric sequence we need two definitions.

DEFINITION 6.2. — Consider z in the Julia set of P, and let (G,,) be its ge-
ometric sequence. Let t_; = —1 and for each n > 0 the injectivity time of G,
is the largest integer 0 < ¢, such that degg (P'~) = 1. The critical pullbacks
of P around G,, are the elements in D,, N P~ (Crit!(P)), where zp, = G,,.
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Note that if P has ¢ generators for its geometric sequences then the injectiv-
ity time ¢, is smaller or equal than [n/q| + 1. In the case that G,, is a critical
element we have that t,, = 0 and that the critical pullbacks around G,, are the
critical points of P contained in D,,.

If t,, > 0 then the injectivity time of G, is the smallest integer such that

P (G,) € Crit(P) and P (G,) ¢ Crit(P).

DEFINITION 6.3. — Let P € k[z] be a nonsimple and tame polynomial of
degree > 2 and counsider z € ¢/ p. Let s_; = 1. For each n > 0 define s, (z) as
the index of |k*| in the group generated by |k*| and diam (G, (z)), that is

s () 1= [ym (diam(G, (z))) : |m]
Note that s, (z) < 400 since G, () is a type II point and |K*| = /|k%|.

PROPOSITION 6.4. — Let P € k[z] be a nonsimple and tame polynomial of
degree > 2. Consider x in the Julia set of P and denote by (G,,) the geometric
sequence of x. For each n > —1 let s, = s, (x). Then

3) max{s; | t; # tj+1,—1 < j < n} < 6(Gnt).

The reader may find the proof of this proposition is at the end of this sub-
section.

LEMMA 6.5. — Let P € k[z] be a nonsimple and tame polynomial of degree
> 2. Consider x € &/ p and denote by (G,,) its geometric sequence. Consider
critical pullbacks Uy, Upy1 around G, and G,,41 respectively. Then, for alln > 0
the followings statements hold:

1. 6(Gn) = d(up) = 6(ul,) for all critical pullbacks u), around G,,.

2. k(up) is contained in k(upy1).

3. up € Dy and §(Gni1) = 6(Dn N K), where D, is the direction at Gy,

that contains G-

Proof. — Note that if G, is a critical element we have that u,, is a critical point
of P. Therefore (1) and (2) follow directly in this case, since we are assuming
that Crit!(P) is contained in k.

If G,, is noncritical, then ¢, > 1 and

degp, [P'(2) — P (u,)] = 1.

By Krasner’s lemma (see Lemma 6.1), it follows that k(u,) C k(v) for all v
in D,, N k*.

Taking v € D, such that §(v) = 6(G,) we have that §(v) < d(u,) <
§(v), that is 6(uy,) = 6(Gy). If u), is another critical pullback around G,, then
interchanging w,, with u!, we obtain the second equality in (1).
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Taking v = wu,4+1 we obtain (2).
In order to prove (3), recall that according to Proposition 4.10 we have that

degg, ., (P?) = deg, (P7)

for all y € [Gp41,Gr[ and all j > 1. In particular ¢, is the smallest integer
such that Pi»+1(),) N Crit(P) # @ and P»+171(2),,) N Crit(P) = &. Then,
as in the proof of the first part of the lemma, we have that

deg 9 i [P1(2) = P+ (unya)] = 1.
Therefore 6(Gp11) = 6( D, N K). O

COROLLARY 6.6. — Let P € k[z] be a nonsimple and tame polynomial of de-
gree > 2. Let x be a noncritical Julia point and denote by (G,,) its geometric
sequence.

1. If tn = tn+]_ then 5(Gn) = (5(Gn+1)
2. If 5(Gn) < 5(Gn+1) then t, < tn+1-

Now we can give the proof of Proposition 6.4. This proposition is a key
ingredient in order to prove our main results.

Proof of Proposition 6.4. — We proceed by induction in n. For n = —1 we
have that —1 =t_; # to = 0, since deg;, (P) = deg(P), therefore

max{sj | tj 7é tj+17 -1 S ] S —1} = max{s,l} =1 S (S(Go) =1.
That is, the first step of the induction is valid.

Suppose that (3) is valid for n — 1. If n is such that ¢,, = ¢,+1 we have that,
{sjltj#tj+1,—-1<j<n—1}={s; | t; # tjy1,—1 < j < n}. It follows that
max{s; | t; # tj+1,—1 < j < n} < 6(Gn) < 0(Gry1).

Suppose that n is such that ¢,, < ¢,,+1. In this case, the corresponding critical
pullbacks u, and u,y; are necessarily different. By Lemma 6.5 (2), we have
that k(u,+1) is a finite extension of k(u, ), and therefore (u,) divides d(unq1)-

Following Lemma 6.5 (3) we have that the distance between u,, and w41
coincides with the diameter of G,,. Therefore

Sm = [}m (diam(G,)) : \kﬂ
= “kx| (Jtn, — Uns1]) ¢ [K] }
< [k(un — Unt1) : K]
< max{d(un),(tnt1)}-
Hence, we obtain that

max{sp,0(un)} < 0(unt1).
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Applying the inductive hypothesis it follows that

0(tnt1) = max{s,,d(un,)}
> max{s,, max{s; | t; #¢tj11,-1 <j<n—1}}
= ma,x{sj | tj 7é tj+1,—1 S ] S 'I’L}

Thus, we have proven Proposition 6.4. [

6.2. No wandering components for polynomials with algebraic coefficients. —
The following proposition is the key to prove Corollary B. In fact, combining
the proposition below with Proposition 2.16 we obtain Corollary B in the case
of polynomials with algebraic coefficients over k.

PROPOSITION 6.7. — Let P € k[z] be a nonsimple and tame polynomial of
degree > 2. If x is a nonpreperiodic algebraic element in &/ p, then ¢ € K.

Proof. — Let x be a noncritical and nonpreperiodic algebraic element of the
Julia set of P. Since x € §/p if and only if P/(z) € §/p for all j > 1 and
there are only finitely many critical elements in ¢/ p, we may assume that the
forward orbit of z is free of critical elements. Denote by (G,,) the geometric
sequence of x.

Since z is not the preimage of a critical element it follows that

{neN |ty #tni1}

contains infinitely many elements. For each n > 1 let m,, be the n-th nonneg-
ative integer such that t,, #tn, +1.

In view of Proposition 6.4, the set {s;, () | j € N} is bounded by d(z).
Hence, the denominators of log(diam(G,,, )) are bounded.

Let D € N be the maximum among the denominators of log(diam(G,,,,)),
n € N, and log(diam(Ly)). It follows that

. . 1
du(Gm;, Gm,_,) = log(diam(G,,,_,)) — log(diam(G,,,)) > D2
for all j > 1. Hence
S n
dsz(Gom,.» Lo) = di(Gmo, Lo) + Y dsa(Gim,, G,y ) 2 dit( G Lo) + -

=1
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Thus,
d(.’E,Lo): lim dH(G",LO)
n—-+400
= lim dH(GmnaLO)

n—-+o0o

n
> i —
>t (ds(Gmos Lo) + 75)

= +4-00.

Therefore, z belongs to &p. O

6.3. Equilibrium measure and algebraic degree. — Let P € k[z] be a nonsimple
polynomial of degree > 2. In this subsection, we will show that if there exists an
element y € &/p with 6(y) = +o0 then §(z) = +oo for pp-almost all x € &/ p.

First we need the following lemma, which is an stronger version of
Lemma 5.4 (3) in the case of Julia points.

LEMMA 6.8. — Let P € k[z] be a nonsimple and tame polynomial of degree
> 2. If x € ¢/p then §(x) = lir_~r_1 0(zy,), for each decreasing sequence (zy,)
n—-1+0oo

such that x,, — x.

Proof. — By Lemma 5.4 (3) we only need to prove the lemma for the classical
points in ¢/ p. We prove the lemma for a classical point in € ¢/p and for the
geometric sequence (G,) of z. Applying Lemma 5.4 (2) we obtain the result
for any decreasing sequence (x,,) satisfying the hypothesis.

We proceed by contradiction. Suppose that §(x) # nEIEoo 0(Gy), in view of
Lemma 5.4 (2) we have that §(z) > HEI_EOO 0(Gy). Since 6(G,,) is a positive
integer and the sequence §(G,,) is increasing and bounded, there exists N € N
such that 6(G,) = 6(Gy) for all n > N. By Lemma 6.5 (2) it follows that
k(un) = k(u,) for all n > N, where u,, is a critical pullback around G,, for all
n > N. Since (un)n>n C k(un) is a sequence such that u, — x and k(un) is
a finite extension of k we have that = belongs to k(uy). Hence, §(z) = [k(z) :
k] < [k(un) : k], which is a contradiction. O

To relate the algebraic degree with the equilibrium measure we need to note
that 4 A}%an — R is Borel measurable. In fact, conv(F) is closed in the weak
topology for all F'/k finite, then

U conv(F)
[F:k]<n
is a measurable set for all n € N. Using Lemma 5.3 we have that

{z € AL | 5(x) <}
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is measurable for all n € N.

LEMMA 6.9. — Let P € k[z] be a polynomial of degree > 2 with ¢/ p algebraic
over k. Let oA, ={x € &/p | 6(x) >n}. If A, # S then pp(c#,) = 1 where

pp is the equilibrium measure of P.

Proof. — If there exists x € ¢/p with §(z) > n then there exists m, € N
such that §(Ly,, (z)) > n, see Lemma 6.8. Let B,, be the closed ball associated
to Lyy,, . We have that pp (B,,) > 0, since B,, contains an open set that contains
a Julia point. Now we will use the ergodicity of pp (see [13]). Let

U={zec Jp|Pzx) € B, for some £ > 0}.

Then U is a backward invariant set, by the ergodicity pp(U) = 0 or pp(U) = 1.
But B,,NU is contained in U, then pp(U) = 1. It follows that pp-almost every
x € A}gan have infinitely many iterates in B,,. From Lemma 5.4 (1) and (2) we
conclude that pp(c#,) = 1. O

PROPOSITION 6.10. — Let P € k[z] be a polynomial of degree > 2 with &/p
algebraic over k. Then the set {6(z) |z € &/ p} is bounded. Moreover,
pr(z € Jpl|é(z)=A)=1
where A = max{d(z) |z € ¢/p} and pp is the equilibrium measure of P.
Proof. — For each n € N let ¢#,, as in Lemma 6.9.
Suppose that {§(x) | x € ¢/ p} is an unbounded set. Then there exists a se-

quence (z,,) of Julia points such that d(x,,) > n and therefore, using Lemma 6.9,
it follows that pp(c#,) =1 for all n € N. Since ¢#,,,1 C ¢#, and

we have that the intersection N¢#,, is nonempty. It follows that there exists
y € ¢/p with d(y) = 400, which contradicts our assumption that &/p is an
algebraic set over k. Hence, the set {§(z) | € &/ p} is bounded.

Consider A = max{d(z) | x € &/ p}. By Lemma 6.9 we have that

{ze dpl|é(@)=A= s a-e
Then pp({z € Ip | d(z) =A}) =1 O

The following corollary will be useful in the proofs of Theorem E and of
Theorem F.

COROLLARY 6.11. — Let P € k[z] be a tame polynomial of degree > 2 and
denote by pp the equilibrium measure of P. Then the following statements are
equivalent:

1. There exists y € &/ p with §(y) = +o0.
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2. For each n > 1 there exists y, € &/ p such that 6(y,) > n.
3. pp(z € Jp|d(z) =+oc0) = 1.

6.4. Algebraic Julia sets and recurrent critical elements. — Through this sub-
section let P € k[z] be a nonsimple and tame polynomial of degree > 2 with
q generators for its geometric sequences. Recall that we are assuming that k
contains the critical points of P.

Consider z € ¢/p and let G,, = G, (x) for all n > 1. From Proposition 6.4
it follows that there exists a relation between diam(G,,) and 6(G,,). Moreover,
note that we can obtain diam(G,,) from dg(G,, Lo).

6.5. Proof of Theorem E. — In order to prove Theorem E and Theorem F we
need to establish some relations between the range of dynamical degrees and
the existence of recurrent critical points.

First we need to recall some notation. Let P € K|z] be a nonsimple and
tame polynomial, see Definition 2.10, and consider x in the Julia set of P. We
denote by w(z) and 0" (z) the w-limit and the forward orbit of z respectively.
We denote by G,, = G,,(z) the geometric sequence of z, see Definition 4.5. The
fundamental property of the geometric sequence is the fact that

deg, (P) = degg, (P)
for all y € [G,,, Gp—1].
LEMMA 6.12. — Let P € k[z] be a nonsimple and tame polynomial of degree
> 2. Suppose that there exists x € ¢/p such that {sp(z) | tn # tnt1} s
unbounded. Then the range of dynamical degrees around x is unbounded.
Proof. — If {s,(z) | tn, # tnt1,n € N} is unbounded we have that
log(diam(G;)) = log(diam(Lo)) — du(G;, Lo)

1
is at least T for an unbounded sequence (k;), then, in view of Lemma 4.13,
J

lim inf[d,, (x)] "' = 0.

n—-+oo
Hence, the range of dynamical degrees )(z) is unbounded. O
LEMMA 6.13. — Let P € k[z] be a nonsimple and tame polynomial of degree

> 2. Suppose that there exists a recurrent critical element ¢ € &/ p. Then, there
exists a sequence (yn) C &/ p such that lim y, =c and lim 6&(y,) = +oo.
n—-+00 n—-+o00
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To prove the previous lemma it is convenient to use p-adic absolute value
notation. Recall that we are supposing that

log(|k*|) =Z and log(|K*|) =Q.

Given a prime number p, the absolute value || p 18 defined as follows. For a € 7Z

™ where, a = p"m and p does not divides m. For a rational

a a a

number 3 e put ‘Z‘ = ||b||p' Recall that |~|p is a non-Archimedean absolute
P P

we put |a|, = p~

value.

For convenience we record the following general fact about non-Archimedean
absolute values as a remark.

REMARK 6.14. — Let 71,72 € Q such that [ry|, < |r2[,, then [r1 + 72|, =

|T2|p.

Proof of Lemma 6.18. — In view of Lemma 4.15 we have that the range of
dynamical degrees )(c) is an unbounded set. For each n > 0 the dynamical
degree d,, = d,,(c) around c is a product of |[n/q| + 1 numbers bounded by d.
Hence, there exists a prime number p < d such that arbitrarily large powers of p
divide elements in the range of dynamical degrees around c, that is, (}d; ! |p) is
an unbounded sequence.

If I;, denotes the segment such that Pl/a+Y(1G,,, Goy]) = I;, and
Qn = d’r_Ll ' |I]n| ’

it follows that the sequence (|a,|,) is also unbounded.

Let m; > 1 be the smallest integer such that
max{1, [log(diam(Lo))|,} < |om, |, -

Let 1 < e; such that |ay, |, = p*.

Recursively, we define m,, as the smallest integer larger than m,,_; such that
p"~t < |am,|,. We define e, as the integer satisfying |a, |, = p°". Note that
both (m,) and (e,) are increasing sequences of integers.

To construct the sequence (y,,) we need to prove first that {s,,, (c) | n € N}
is an unbounded set. We have that
—log(diam(G,,, )) = —log(diam(Ly)) + Z dyt I,
=1

e

—log(diam(Lg)) + Z oy.
=1
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Using Remark 6.14 and the choice of m,, we have that

llog(diam (G, )|, = |~ log(diam(Lo)) + Y _ cx
=1 P

= |amn|p = pen

Hence, the largest power of p dividing the denominator, say b,, of
log(diam(G,y,,,)) is p*~. Then

_lem(m, by,) S lem(m, p*)

m -
" m m

by definition of s, (see Definition 6.3), where m is the least common multiple
of the denominators of log(|3|) for 8 running in the coefficients and the critical
points of P. In particular, lim s,,,, = 400, since (e,) is an increasing sequence
of integers.

For all n > qco/N(c) + ¢ there exists a noncritical element y,, € &/ p such that
G, (Yn) = G, and Gp,,+1(Yn) # Gm, +1, see Definition 3.13. Note that,
gcg(Yn,c) = my, — +00 as n — +oo. Then the sequence (y,) converges to c.
In view of this, we only need prove that lim §(y,) = +oo

The injectivity time of G, +1(y,) is larger than the injectivity time
of G, (yn), since Gp,, (yn) is a critical element and G,,,+1 is not. Hence,
applying Proposition 6.4 and using Lemma 5.4 (2) we obtain a bound, from
below, for the algebraic degree of y,,. More precisely,

5(yn) = 8(Comyt1 (9)) > max{L, s, ()} = s,

That is, lim §(y,) = +oo. O

Now we can give the proof of Theorem E.

Proof of the Theorem E. — We prove that in the presence of a recurrent crit-
ical element, &/p is not an algebraic set over k. Suppose that there exists a
recurrent critical element ¢ contained in &/ p. Following Lemma 6.13, there ex-
ists a sequence (y,) C &/ p such that lim 6(y,,) = +o0o. Applying Corollary 6.11
we obtain z in the Julia set of P with §(z) = +o0.

In particular, if ¢/p is algebraic over k, then there are not critical periodic
elements in ¢/p. Following Proposition 6.7 we obtain that ¢/p is contained
in K. In Proposition 6.10 we showed the existence of (the smallest) A € N
with 6(z) < Afor all z € &/p. O
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6.6. The completion of the field of formal Puiseux series. — Let F' be an alge-
braically closed field of characteristic 0. We denote by F((7)) the field of formal
Laurent series with coefficients in F'. For a nonzero element

z= Z a;m7 € F((1)
Jj=Jdo
we define ord(z) = min{j | a; # 0} and |2| = e~ °"4*). Observe that ||
is a non-Archimedean absolute value and that F((7)) is complete with re-
spect to || but not algebraically closed. An algebraic closure of F'((7)) is the
field of formal Puiseuz series F{(T)) with coeflicients in F' (e.g., Chapter IV,
Theorem 3.1 in [26]). More precisely, F'{(7)) is the direct limit of the fields
F(r)(rY/™) = F(r*/™)) for m € N, with the obvious inclusions, that is,
F((rY/m)) € F((r'/™2)) if and only if m; divides to ma.

Therefore an element in F{(7)) has the form
z= Z ajTj /m
Jj=jo
for some m € N. The unique extension of |-| to F{7)) (also denoted by ||) is
completely determined by |7'1/m| = e 1/m,

Note that the degree of the field F((7!/™)) over F(()) is precisely m. More-
over, the field F((7'/™)) is the unique field extension of F((7)) of degree m.

We denote by Lr the completion of F((r)) with respect to |-|. Every z € Lp
can be represented as
>,

320
where (A;) is an increasing sequence of rational numbers tending to +oo. In
this case |z| = e~ °"9(%) where ord(z) = min{)\; | a; # 0}. The field Lr is
also algebraically closed since it is the completion of an algebraically closed
non-Archimedean field.

The following Proposition is a complement of Proposition 6.4. The result is
not true in general, it depends on the structure of the finite extensions of F'((1)).

PROPOSITION 6.15. — Let P € F(1))[z] be a nonsimple and tame polynomial
of degree > 2. Consider x in the Julia set of P and denote by (G,,) the geometric
sequence of x. For each n > —1 let s, = s,(x). Then

(4) 6(Gny1) <lem{s; | t; #tj41, -1 < j <n},
where lem denotes the least common multiple.
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Proof. — We proceed by induction. If n = —1 we have that
5(G0) =1 S lcm{sj | tj 7é tj+1,—1 S] § —1}
Suppose that (4) holds for n — 1. If ¢,, = t,,41 then
{sjltj #tjs1,—1<j<n—1}={s; [t; #tj41,-1<j<n}.

By Corollary 6.6 we have that 6(Gy,) = 6(Gry1), therefore (4) holds for n.

Suppose that ¢, # t,4+1 and let &), be the direction in Tg, containing
Gri1. We have that, there exists 0 # a € F such that u, + ar’*/% belongs
to &, NLp where b,/a, = [logdiam(G,,)|p with (an,b,) = 1.

In view of the structure of the algebraic extensions of the field of formal
Laurent series we have that 6(u, + ar®*/%") <lem{§(r®/*), §(u,)} and

5(Tb"/a") =lem{m,a,} -m~! = s,,

where m = [k : F((1))].

It follows, by Lemma 6.5, that

8(uny1) < 8(uy + arbn/an)
< lom{8(r /%), 5(un)}
= lem{é(un), Sn}-

Hence, we have that §(Gp41) < lem{s,,d(Gn)}.

Applying the inductive hypothesis it follows that

0(Gny1) < lem{s,, 6(Gr)}
<lem {s,,lem{s; | t; # tj11,—-1 < j <n—1}}
S ICIII{Sj | tj 7é tj+1,—1 Sj S ’I’L}

This proves the proposition. O
Proof of Theorem F. — Assume that the algebraic degree of every element
in ¢/p is finite. From Theorem E we have that there is no recurrent criti-
cal element in ¢/p and that there exists a smallest A € N such that §(z) < A
for all z € &/ p. In particular, in view of the structure of the subfields of F{(7)),
it follows that &/ p is contained in the unique extension of F((7)) with degree A.

Conversely, suppose that there exists € ¢/p with d(z) = +o00. By Propo-
sition 6.15 it follows that

{lem{s,(x) | tn # tns1,n < m} | m € N}

is an unbounded set, hence {s,(x) | t, # tnt1,n € N} is also an unbounded
set and therefore the range of dynamical degrees )(z) is also unbounded (see
Lemma 6.12). By Lemma 4.15, there exists a critical element ¢ € ¢/p with its
range of dynamical degrees Z)(c) unbounded. O
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7. Polynomials with Coefficients in K

In the previous section we proved Corollary B for polynomials with algebraic
coefficients. To prove Theorem A for polynomials with coefficients in K we use
a perturbation argument.

The key to perturb the coefficients of P while preserving a suitable orbit is
the following proposition.

PROPOSITION 7.1. — Let P € K|z] be a nonsimple and tame polynomial of
degree d > 2 and consider © € &/p. Then

dH(y?LO) < dd71 : dH(CEa LO)a
for all y in w(zx).

7.1. Key Lemma and Proof of Proposition 7.1. — To prove Proposition 7.1 we
need to compare the distance from dy(z, Lo) with dg(y, Lo). To do this, we need
to introduce the concepts of level and time sequences. Recall that geg(z,y) de-
notes the greatest common geometric level between x and y, see Definition 4.16.

Let P € K|z] be a nonsimple and tame polynomial of degree > 2 with ¢
generators for its geometric sequences. Let z € ¢/ p a nonpreperiodic point and
consider y in the w-limit of x.

We define kg = 0 and ¢y = geg(x,y). The point y belongs to w(z), hence
lim sup geg(P? (z),y) = +oo.

j—to0
Let
ki1 = min{j € N | geg(P’(z),y) > Lo}
and let £ = geg(P* (x),y).
Recursively, we define k,, = min{j € N | gcg(P?(z),y) > £,—_1} and

en = gcg(Pkn (:L“),y)
for all n > 2.

DEFINITION 7.2. — We say that (£,,),>0 is the level sequence from x to y and
that (k,)n>0 is the time sequence from x to y.

In Figure 1 we see a representation of the level and time sequences. In
this picture we see the segments [z, Lo|, [P¥"~1(x), Lo] and [P*"(zx), Ly]. The
serpentine line represent the intersection with the segment [y, Lo]. The dashed
lines represent the action of an iterate of P.

Note that
P* (1Ge,tqh, (%), Gr, gk, () =[G, (1), Go,_, (1))
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Lo Lo Lo
Lo
- - én—l B --= én—l
gn—l'i_qkn—l - _",_—*"_”__‘
gnfl"i_qkn --oT T
_—”__—' en
Ly + qkn e
2 P () PH(z)

FIGURE 1. Level and time sequences

REMARK 7.3. — Observe that k,, is the smallest integer such that

Pkn([x7L0]) n [y7Gen71(y)[$£ a.

LEMMA 7.4. — Let P € K|[z] be a nonsimple and tame polynomial of degree
d > 2 with q generators for its geometric sequences. Let x € &/ p and consider y
in the w-limit of x, we denote by (£,) (resp. (ky)) the level (resp. time) sequence
from x toy. Then, for anyn > 1,

degg, (o) (P™) < d**

for all the elements G;(x) contained in the segment [z, Gr, | +qk, (@)

Proof. — Let n > 1 and let G;(x) € [z, Ge, _,+qk, (z)[ be a geometric point.
Note that the elements in the set
04(Gj(2)) = {Gj (), P(Gj(2)),..., P**71(G;(x))}

are pairwise incomparable. In fact, if we suppose that there exist 0 < ¢ and
1 < ¢ such that 1 <i+£ < k, and P(G;(z)) < P*¥(G,(x)), it follows that

Gj—qi(P'(z)) < Gj_giqe(P™ ().

Hence
Gj—gi—qe(P'(z)) = Gj—qi—qé(Pz+Z($))~
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Then we have that
P HGqu(x)) = P4 (PYG—qe(w)))
= P57 G gim e (P (2))
= Pb =i 4(Gy—gim e (P ()
= Gj_gi—qt—q(hn—i—0) (P74 2))
= Gjqr, (P*(2))
= P*(Gj()).

455

Since P*(G;(z)) € [y, Gy, _, (y)[, we have P*~Y([z, Lo))N[y, Gy, _, (y)[# 2,

which contradicts Remark 7.3.

Hence, we obtain that the set O,(G,(x)) contains at most d — 1 critical
elements. In consequence, the local degree of P*~ at G;(x) is bounded, from

above, by d?1.

O

Proof of Proposition 7.1. — Let n > 1 and suppose that P has g generators for
its geometric sequences. Let = be in the Julia set of P and consider y € w(zx).
Denote by (¢,) (resp. (k,)) the level (resp. time) sequence from z to y. From
the previous Lemma and Proposition 4.10, the local degree of P*» is constant
and smaller than d?~! in each segment of the form |G, 1(z), G;(z)[ contained

in [Ge, +qk, (®), Ge, 1 +qk, (). By Lemma 2.5 it follows that
dyg(P*"(Gj41(2)), P*(G;(2))) < d*" - du(Gj1a(x), Gj(@)).
Applying this to all the segments |G;41(x), Gj(z)[ contained in

(Ge,takn (2); Gr,_y gk, (2)[

we obtain that

(G, (), G-, () < AP - du(Ge, 4k, (2), Ge, i qr, (2))-
Therefore, if we put a = dg(Gy,(z), Lo) = du(Ge, (y), Lo), we have

+oo
da(y, Lo) = a+ ) du(Ge,(y), G, , (1))

n=1
+oo
<a+d"' Y du(Gr,tara (), Gr,yigr, ()

n=1

+oo
< a+dd_1 . Z dH(Gn—i-l(x)vG’n(m))

n=~Lo+qk1

<a+ dH(Géo-ﬁ-qkl (1‘), Gfo (1’)) + dd_1 : dH(x7 G€0+qk1 (m))

< d* ' dg(z, Lo).
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7.2. Recurrent Orbits in the Hyperbolic Space. — Let P € KJz] be a tame
polynomial of degree > 2 and counsider z € ¢/p \ K. From Proposition 3.14 we
know that w(z) contains a critical element. Nevertheless, using Proposition 7.1
we can be more precise.

COROLLARY 7.5. — Let P € K|[z] be a tame polynomial of degree > 2 and
consider © € ¢/p \ K. Then, w(x) NHg contains a recurrent critical element.

Proof. — Let x € ¢/ pNH. From Proposition 3.14 there exists a critical point
c1 in w(z). As &/ p is a closed set, ¢; € ¢/ p. By Proposition 7.1 it follows that

dH(Cl,LQ) < dd_1 . dH(ZL‘,Lo) < +00.

Hence, c; belongs to H . Recursively, we can find a sequence of critical elements
(cn) € ¢/p NHE such that ¢,41 € w(c,). By Proposition 2.14 there exists N
such that ¢y € w(cy). That is, ¢y is a recurrent critical element in w(z) N
Hp. O

By the corollary above, we need to study the recurrent critical elements
in @°7P N HK

In the case that w(x) contains a periodic critical orbit we will show, Propo-
sition 7.6, that z is a preperiodic point. In Proposition 7.7, we will prove that
the recurrent critical orbits in ¢/p N Hy are the periodic critical orbits.

PROPOSITION 7.6. — Let P € K|z] be a tame polynomial of degree > 2 and
consider € ¢/ p. If the w-limit of x contains a periodic critical element, then
x is preperiodic or x is a classical point.

PROPOSITION 7.7. — Let P € K|[z] be a tame polynomial of degree > 2. Then
the critical elements of P contained in ¢/p NHg are preperiodic critical ele-
ments of type II.

To show Proposition 7.7 we use a perturbation argument. To prove Propo-
sition 7.6 we need the following lemma about geometric sequences.

LEMMA 7.8. — Let P € K|[z] be a tame polynomial of degree > 2 with q gener-
ators for its geometric sequences. Consider ¢ € Crit(P)N &/ p a critical element
which is fized by P. Let x be a Julia point such that G, (z) = Gn(c) and G4+1(x)
is noncritical for some n > q+ qeN(c) Then P(Gpii(x)) is not critical.

Proof. — We first show that if P(G,4+1(z)) is critical it coincides with
Grit1-4(c), then we will show that this is impossible.

By the properties of ¢//(c) (see Proposition 3.12) we have that if a geomet-
ric point Gy is critical and Gy < Gp_4(c) then Gy = Gy(c). We know that
P(Gp+1(z)) < Gp—_g(c). Then if we suppose that P(Gp41(z)) is critical, it
follows that it coincides with G,,_4+1(c).
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Now suppose that P(Gp41(x)) = Gry1—4(c). Since Gp41(x) is different than
Gr+1(c) it follows, using the Riemann-Hurwitz formula (see 2.7), that
degg, (o) (P) =2 1+ degg, (o) (P),
which contradicts the definition of ¢//(c), since the local degrees of P at G (c)
and at G,41(c) coincide. Therefore P(G,,+1(x)) is not critical. O

Proof of Proposition 7.6. — We assume that P is a tame polynomial with ¢
generators for its geometric sequences.

Suppose that there exists a nonpreperiodic element x € ¢/p such that the
w-limit of x contains a periodic critical element c. Passing to an iterate we can
suppose that c is a fixed point.

Let (¢,) be the level sequence from z to ¢ and (k,) be the time sequence
from z to c.

Since 1+ ¢,, + gk, > £,,_1 + qk,, we can use Lemma 7.4 to conclude that

(5) dega, . 4o () (PF) <A1
for all n > 1.
Consider o/ = max{cN(z), N(c)}. If £, > g + g/ the points
Grie, (P (2)) = PP (Gt sqb, (2)) and Go, (P (2)) = P**(Gr, 45, (2)
satisfy the hypothesis of Lemma 7.8, since Gy, (P*"(x)) = Gy, (c) and

Gi+e, (PP (2)) = PP (G140, 44k, (2))

is not a critical element, by definition of (¢,) and (k,) (see Definition 7.2).
Hence

P(G1ye, (P (2)))
is not a critical element, that is degG1+£n(Pkn(m))(P2) =116, —g>q+qeV
the points

Gitt,—g(P"TH(2)) = P(Grte, (P (2)))
and
Ge,—q(P" 1 (x)) = P(Ge, (P (2))) = P(Gy,(c) = Ge,—q(c)
satisfy the hypothesis of Lemma 7.8 by the definition of the level and time
sequences. Hence

P(Grte,-q(P***(2))) = P*(G1se, (P (2)))

is not a critical element, that is degG1+((Pkn(x))(P3) = 1. Applying Lemma 7.8
recursively we obtain that the elements in the set

{P(G1se, (P*(2))), P2(Grse, (P*(2))), ..., P (Grie, (P (2)))}

are not critical, where e,, is the smallest positive integer such that
by —qlen —2) < q+qol.
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In particular, it follows that

(6) dege, . ,(Prn () (P") = dega,y o0 (@ (PFrem) = 1.
If we have that £,, — g(e, — 2) < g+ gV it follows that
by —gen < —q+qcl < qo,
since 1 < ¢q. Then
degalﬂrqen (pLZn/QJ—enH) — degGHenfqen (pL(En—qen)/qu)

< degg,,, _,., (PL/dT)
= degGl+En—qen (PQ/VJ’_I)
< dej\/-H

that is
(1) dega,,, _,,, (PHF0/1H) = degg, _, (PH/2Fetl) <@t

for any geometric point of level 1 + ¢,, — ge,,.

If

A, = degGHlann (m)(pl(fnJqun)/lIJJrl)

we have that

Ap, = degG1+en+qkn () (P ]kt )

= degGHenJqun (w)(Pkn) - degprn (Giten+qkn (x))(Pen)

' degpk"“"(Gwem—qkn (m))(PLG/qJ+en+1)

= degGlJrenJqun (2) (Pk") . degG1+ln (P¥n (z)) (Pen)

108G,y (Proben (o) (P AT )

by (5), (6) and (7) we conclude that

(8) degG1+z +qk (z)(PL(1+Zn+qkn)/qJ+l) < dd_l -1 dJV-H = dd+dv

for all n > M where M € N is such that £); > q + qc/V.
Following Proposition 4.10 and (8) above, we have that degy(PL(e"J“qk")/qu)
is constant and bounded by d?t¢" for any point y in the segment

(G140, 4qkn (%), o, gk, ()]

Since PLUntakn)/al+l (G, | 1 (2), Gy, 1 qr, (z)]) belong to {Io,I1,..., I, 1}
(see discussion below Definition 4.5) there exists a segment I € {Iy, I, ..., I;—1}
and an increasing sequence (n;) of integers larger that M such that

PLE )1 (Gy Ly, ak, (2), Gy b, (@) = 1,
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for all j > 1.
Therefore, following Lemma 2.5 and using (8), we have that

+o0
dig(z, Lo) > Y di(Grie,, gk, (%), Ge, tqhn, (%))

j=1
+o0
1]
= Z dd+oV
j=1

= +OO,

where |I| denotes the length of the segment I. It follows, z is a classical point.
O

Recall that we are assuming that £ C K is a complete field such that the
restriction of |-| to k is a discrete absolute value and that

{z € K| [k(2) : k] < 400}
is a dense subset of K.

In order to prove Proposition 7.7 we need a proposition to relate the dy-
namics of a polynomial P € K[z] with the dynamics of a small perturbation @
of P, of degree d and with coefficients in a finite extension of k.

PROPOSITION 7.9. — Let P € K|[z] be a tame polynomial of degree d > 2 and
let 0 < e < diam(Lg). Then, there exists a tame polynomial Q € k*[2] such
that P(z) = Q(x) and deg,(P) = deg,(Q) for all z in Dy N {diam(z) > €}.

To prove this Proposition we need to establish some notation. Let
P(z) = a2+ ag_12+ -+ arz4ao € K|z]

be a tame polynomial of degree d > 2. Since K is an algebraically closed field,
we can write P'(2) = aq-d-(z—w1)™ - (z —w2)"? - - - (2 —wy)™, where w; # w;
ifi# 7. Forany 0 < § < II;éll’l |lw; — w;| we consider

i#j

0
Vs=J Bw;,6) and Ws; =P (P(Vs)).

j=1

Note that W is a finite union of open balls and that max{diam(z) | z € Wy}
goes to zero when § goes to zero.

For convenience, we establish the following straightforward facts about Vj
and W5 as a lemma.
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LEMMA 7.10. — Let P € KJz] be a tame polynomial with degree d > 2.
Let @) = $+ (0, R) be a closed ball of the Berkovich line containing Dy and the
roots of P. Let ms = min{|P|(z) | x € )\ Vs} Then the following statements
hold:

1. For any a € A}K’an \ Ws the polynomial P(z) — P(a) is separable and its

1,an

roots belong to AR™ \ V;.
2. If a, 8 are distinct roots of P(z) — P(a) we have that

la — 8] > |ag| ™" - R*4 - ms.
3. Let rs = |ag|™" - R¥% - ms. Denote by Us(a) the union of d open balls of
radius rs centered in the roots of P(z) — P(a) it follows that
|P— P(a)| > mgs 15
on AR\ Us(a)

To prove Proposition 7.9 we use the notation of the previous Lemma.

Recall that if P is polynomial in K[z] and 25 € AR™ is a type II point,
then |P|(zp) = sup { |P(z)| | z € B}. Using continuity we extend definition
of |P| (x) to other types of points.

Proof of Proposition 7.9. — Let
P(2) = agz% 4+ ag_12" P+ -+ a1z +ag € K[z7]
be a tame polynomial of degree d > 2. Let &) = BT (0, R) be a closed ball of

the Berkovich line containing Dy and the roots of P.
Since K is an algebraically closed field, we can write

P(z)=aq-d-(z —w)™ - (2 —w2)™ -+ (2 — wp)™,
where w; # w; if i # j and n; is the multiplicity of w;.
Let b € K such that 0 < |P/(b)| <1 and consider

0 < 6 < min { min |w; — w;|, min b — w;| }.
i#] J

Note that by this choice on § we have that ms < 1.

Let 0 < n < 4. Since k* is dense in K, we can pick wi,...,w, € k* such that
w; —w}’ <, and |w;| = |w§| for all 1 < j < £. Moreover, pick bg,by € k*
such that |b; —a;| < n and |a;| = |b;| for j = 0,d. Let Q(z) € k*[z] be the
formal primitive of

ba - d-(z —wy)™ (2 — wh)"™ -+~ (2 — wp)™

such that Q(0) = by. Note that by the choice of wj,bs and by we have that
P is a tame polynomial and deg, (P) = deg,(Q) for all z € A}™ such that
diam(z) > n.
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The functions |P’| and |Q'| coincide on AR*™ \ V;. In particular, if W} =
Q '(Q(V5)) then Lemma 7.10 holds for @ and a € AR™ \ W}. We denote
by Uj(a) the union of d open balls of radios rs centered in the roots of Q(z) —
Qo)

If we choose 1 small enough, we can assume that |P — Q| < mg - 75 on the
ball &). For any a € &) it follows that

|(P = P(a)) — (Q — Q)| <ms - 75
on ).

Note that if a ¢ WsUWj then Us(a) = Ug(a). In fact, if « is a root of P(z) —
P(a), we have that |P(a) — P(a)| < ms - rs, that is, a belongs to Uj(a). By
symmetry we can conclude that Us(a) = Ug(a).

In particular if a ¢ W5 U Wy, the functions |P — P(a)| and |Q — Q(a)| coin-
cide on the boundary of Us(a). Moreover, their also coincide on 9 0. It follows
from the maximum principle that |P — P(a)| = |Q — Q(a)| on &)\ Us(a).

Let a ¢ W5 U Wy and consider r5 < r. Let = zp, where B = B, (a). If
7= |P — P(a)| (z) = |Q — Q(a)| (z), it follows that

P(B)=Bf(P(a)) and  Q(B)= B} (Q(a)),

as well as |P(a) — Q(a)] < ms - rs < #, hence P(B) = B and there-
fore P(z) = Q(x).

Let ¢/ = sup{diam(z) | = € Ws; U W{}. Note that any type II point
z € &) with diameter r > max{4,d'} can be written * = xp, where B =
B, (a) with @ &€ W5 U W{, that is P coincides with @ on the type II points
in & N {diam(z) > max{4,6'}}. Using continuity we have that P = Q
on ) N{diam(z) > max{d,d’}}. Since &’ goes to 0 when § goes to 0, it follows
that P(z) = Q(z) for all z in Dy N {diam(y) > €} O

LEMMA 7.11. — Let P € K[z] be a tame of degree d > 2. Suppose that there
ezists a nonperiodic recurrent critical element c € &/ p. Then c belongs to K.

Proof. — Seeking a contradiction, suppose that there exists a recurrent and
nonperiodic critical element ¢ € ¢/ pNHg . In view of the recurrence of ¢ we have
that P™(c) belongs to the w-limit of ¢ for all n € N. Following Proposition 7.1
we obtain that

di(Lo, P™(c)) < d%' - du(Lo,c),
for all n € N. In particular, 0 < inf{diam(P"(c)) | n € NU{0}}.

Let 0 < R < inf{diam(P"(c)) | n € NU {0}}. By Proposition 7.9 we have
that there exists a tame polynomial @ € k?[z] of degree d such that @ coincides
with P in

Do N {diam(y) > R} N P~ ({diam(y) > R}).
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In particular, the dynamical sequence (L, (c)) of P is also a dynamical sequence
of @, it follows that ¢ belongs to the Julia set of Q. Then, c € ¢/o \ K is a
nonperiodic and recurrent algebraic element (since it is critical). Moreover, c is
not strictly preperiodic, since it is recurrent. Which contradicts Proposition 6.7,
therefore ¢ belongs to &/ 53. O

Proof of Proposition 7.7. — We proceed by contradiction. Suppose that there
exists a critical element ¢ € &/p N Hy that is not preperiodic. According to
Corollary 7.5 there exists a recurrent critical element ¢; in w(c) N Hy which,
by Proposition 7.6, is not a periodic point. Applying Lemma 7.11 we have that
¢ € K, which is impossible.

Therefore c is a preperiodic critical element. The proposition follows since
periodic critical elements are of type II by Proposition 2.12. O

7.3. Proof of Theorem A and Corollary B. — In this subsection we prove a
slightly different version of Theorem A and we obtain some corollaries.

THEOREM 7.12. — Let P be a nonsimple and tame polynomial with coeffi-
cients in K of degree d > 2. Then ¢/p \ K is empty or

Ip\ K =GO(z1) U+ LU GO(zm),

where 1 <m < d—2 and x1,...,x,, € Hg are periodic critical elements.

Proof. — Consider x € ¢/ p N Hg. From Corollary 7.5 we have that w(z)
contains a nonclassical recurrent critical element. Using Proposition 7.7 and
Proposition 7.6 we have that x is in the backward orbit of a periodic critical
element. Following Proposition 2.14 there exist, at most, d — 2 critical elements
contained in the Julia set of P. Now the theorem follows. O

Corollary B follows directly from Theorem 7.12 applying Proposition 2.16.

REMARK 7.13. — If we consider a nonsimple and tame polynomial P € K|z]
but we study its action in the spherical completion of K, we obtain again
Corollary B. This is not true for non-tame polynomials. The Example 6.3 in
[20] shows that for the non-tame polynomial

1 2
f(z) = :;(zp —2") € Gyl2],
we have that
1
JrC{ze Aé’:n | diam(z) = p~ 71},
moreover, the type II points in Jy are preperiodic and the type IV points in Jy

are not preperiodic. Hence, if we consider the action of f on the affine line in
the sense of Berkovich associated with the spherical completion of C, we have
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that there exist wandering domains which are not attracted to an attracting
cycle.

The following corollary is about the equilibrium measure of the classical
Julia set and the relation between the topological entropy (hiop) and the metric
entropy (h,,) of P, see [13] for the definitions of topological and metric entropy.
The first statement follows from the countability of ¢/p N Hg. The second
statement is a direct consequence of Theorem D in [13].

COROLLARY 7.14. — Let P € K|z] be a nonsimple and tame polynomial of
degree d > 2. Then, the following statements hold:

1. The classical Julia set has full measure, that is, pp(§s) = 1.
2. The equilibrium measure pp is a measure of mazimal entropy and

hpp = hiop = log(d).

Theorem 7.12 and Corollary 7.14 are not valid for rational maps, see exam-
ples in [13].

Proof of Corollary C. — By [1, Theorem 10.88] or [24] we know that &/p is
the closure of the repelling periodic points. Following Theorem 7.12 there are
only finitely many such points in ¢/p \ K, while the Julia set is infinite. O

Proof of Corollary D. — (1) = (2) Since ¢/ is a compact and totally invari-
ant set, disjoint of the classical exceptional set of P, we have that ¢/p = ¢/ } -
K. From Theorem 7.12, it follows that there are no critical periodic elements.

(2) = (3) There is no critical periodic elements in &/p, then in view of
Theorem 7.12 we have that ¢/p C K. Therefore &/p = 0753.

(3) = 4) If &p = ¢&/pN K we have that ¢/p = (55; Since any classical
periodic point belongs to 075;, it follows that them are repelling.

(4) = (1) We will show that & is a compact set showing that Jp = & p.
According Theorem 7.12 if &/p # (?753 then there exists a period n critical
clement 25 € Jp \ Ip. It follows that P"(B) = B and degg(P") > 2,
therefore following [17, Lemma 2.4], there exists a periodic point zg of P in B.
Since the classical periodic points are repelling we have that zg belongs to ¢/ p.
But 2y < xp, which is a contradiction with Lemma 2.15. O
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