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WANDERING FATOU COMPONENTS
AND ALGEBRAIC JULIA SETS

by Eugenio Trucco

Abstract. — We study the dynamics of polynomials with coefficients in a non-
Archimedean field K, where K is a field containing a dense subset of algebraic elements
over a discrete valued field k. We prove that every wandering Fatou component is
contained in the basin of a periodic orbit. We obtain a complete description of the new
Julia set points that appear when passing from K to the Berkovich affine line over K.
We give a dynamical characterization of polynomials having algebraic Julia sets. More
precisely, we establish that a polynomial with algebraic coefficients has algebraic Julia
set if every critical element is nonrecurrent.

Résumé (Composantes de Fatou errantes et ensembles de Julia algébriques)
Nous étudions la dynamique des polynômes à coefficients dans un corps K non-

archimédien, où K contient un sous-ensemble dense d’éléments algébriques sur un
corps k à valeurs discrètes. Nous montrons que toute composante de Fatou errante
est contenue dans le bassin d’une orbite périodique. Nous obtenons une description
complète des nouveaux points d’ensemble de Julia qui apparaissent quand on passe de
K à la ligne de Berkovich affine sur K. Nous donnons une caractérisation dynamique
des polynômes ayant des ensembles de Julia algébriques. Plus précisément, nous éta-
blissons qu’un polynôme à coefficients algébriques a un ensemble de Julia algébrique
si tout élément critique est non-recurrent.
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412 E. TRUCCO

1. Introduction

In this paper we study the dynamics of polynomials P : K → K where K is
an algebraically closed field of characteristic 0 which is complete with respect to
a non-Archimedean absolute value. Moreover, we will assume that there exists
a discrete valued field k ⊆ K such that

ka = {z ∈ K | [k(z) : k] < +∞}

form a dense subset of K. Examples of such fields are the field Cp of p-adic
numbers and the field, which we will denote by L, which is the completion of
an algebraic closure of the field of formal Laurent series with coefficients in C.
Dynamics over Cp naturally arises in number theory and dynamics over L nat-
urally appears in the study of parameter spaces of complex rational maps [17].

For complex rational maps acting on the Riemann sphere, Sullivan [25]
proved, with the aid of quasi-conformal techniques, that every connected com-
ponent of the Fatou set of a rational map R ∈ C(z) of degree ≥ 2 is eventually
periodic (Sullivan’s No Wandering Domains Theorem). This is no longer true
for general non-Archimedean fields. In fact, Benedetto [4] established the ex-
istence of p-adic polynomials having wandering (analytic) domains which are
not attracted to a periodic orbit. This result heavily relies on the fact that over
p-adic fields, whose residual characteristic is p > 0, there exists a phenomenon
called wild ramification.

The aim of this paper is to study the interplay between algebraic and dy-
namical properties of points in the Julia set of a polynomial. As a consequence,
we establish that for tame polynomials (see Definition 2.10), that is, for poly-
nomials such that wild ramification does not occur, the dynamics is free of
nontrivial wandering domains (see Corollary B below).

Recent developments on the theory of iteration of rational maps over non-
Archimedean fields put in evidence that the correct space to study the action
of rational maps is the Berkovich space (e.g., [1, 2, 10, 13, 19, 20, 21]). The
action of a polynomial P ∈ K[z] extends to the Berkovich affine line A1,an

K

associated to K. Moreover, the notions of Julia set (chaotic dynamics) and
Fatou set (regular dynamics) also extend to A1,an

K . Our first main result is a
complete description of the new Julia set points that appear when passing from
K to A1,an

K . We will denote by J P the Julia set of P . A polynomial is simple
if its Julia set is a singleton.

Theorem A. — Let P ∈ K[z] be a nonsimple and tame polynomial of degree
d ≥ 2. Then J P \K is empty or, there exist finitely many repelling periodic
orbits O1, . . . , Om ⊆ A1,an

K \K such that

J P \K = GO( O1) t · · · tGO( Om),

tome 142 – 2014 – no 3



WANDERING FATOU COMPONENTS AND ALGEBRAIC JULIA SETS 413

where GO( Oj) denotes the grand orbit of Oj and 1 ≤ m ≤ d− 2.

The previous theorem is first proven for polynomials in K[z] with algebraic
coefficients over the field k. Here, we rely on our study of the interplay between
the geometry of the Julia set and the underlying algebraic structure (Section 6).
For a general tame polynomial with coefficients in K, we use a perturbation
technique furnished by a key proposition (Proposition 7.1) inspired by complex
polynomial dynamics (e.g., [18]).

Standard techniques (see Proposition 2.16) allow us to deduce the above
mentioned nonwandering result from Theorem A. We say that x is in the basin
of the periodic orbit O if O is the set of limits points of {Pn(x) | n ∈ N}.

Corollary B. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2. Then,
every wandering Fatou component is in the basin of a periodic orbit.

Benedetto [3] proved a similar result to Corollary B for rational maps with
algebraic coefficients over the field of p-adic numbers Qp with some slightly
different hypothesis.

In terms of k,K and in our language, Theorem B in [5] says that every
wandering Fatou component of a rational map with algebraic coefficients over
k is in the basin of a periodic orbit. Benedetto asks (question (2) at the end of
the introduction of [5]) if this is true for rational maps with coefficients in K,
assuming that the characteristic of the residual field of K is zero. Corollary B
above gives an affirmative answer to the question posed by Benedetto in the
case of polynomials.

It is not known if for any polynomial P ∈ Qp[z] such that J P ∩ Qp 6= ∅,
there exists a classical repelling periodic point of P in J P ∩Qp. In the case of
tame polynomials we have the following result.

Corollary C. — Let P ∈ K[z] be a nonsimple and tame polynomial of degree
d ≥ 2. Then the classical Julia set of P contains a repelling periodic point.

In the case of p-adic polynomials, Bézivin [7, Proposition A] proved that if
there exists a repelling periodic point in J P ∩Qp and J P ∩Qp is a compact
set, then J P = J P ∩ Qp. The following corollary is an analog of that result,
nevertheless, we do not need to assume the existence of a repelling periodic
point.

Corollary D. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2. Then
the following statements are equivalent:

1. J P ∩K is a compact subset of A1,an
K .

2. There is no critical periodic element in J P .
3. J P = J P ∩K.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



414 E. TRUCCO

4. All the periodic points of P in K are repelling.

After extending the notion of algebraic degree of x ∈ K over k for arbitrary
points x ∈ A1,an

K (see Section 5) we obtain the algebraic counterpart of the
previous topological dynamics results. We relate the algebraic degree with the
recurrent critical elements (a point x is recurrent if it is a limit point for its
iterates)

Theorem E. — Let P (z) ∈ K[z] be a nonsimple and tame polynomial of de-
gree ≥ 2 and with algebraic coefficients over k. If the algebraic degree of every
element in J P is finite then the critical elements contained in J P are not re-
current. In that case the algebraic degrees of the elements of J P are uniformly
bounded.

Remark 1.1. — A posteriori, using Theorem A we can also obtain that J P ⊆
ka.

Remark 1.2. — Suppose that k is a field with the property that for any pos-
itive integer N there are only finitely many extensions of k of degree less than
N . For example, this is true if k is a finite extension of Qp or of the field C((τ))

of formal Laurent series. Then under the hypotheses of Theorem E, it follows
that there exists a finite extension k′/k such that J P is contained in k′.

In a special type of fields, which will denote by LF , we obtain the converse
of the previous theorem. Here F is an algebraically closed field of character-
istic 0 and LF is the completion of an algebraic closure of the field F ((τ)) of
formal Laurent series with coefficients in F with respect to an appropriate
non-Archimedean absolute value. See Subsection 6.6 for definitions.

Theorem F. — Let P (z) ∈ LF [z] be a nonsimple and tame polynomial of
degree ≥ 2 with algebraic coefficients over F ((τ)). Then the algebraic degree
of every element in J P is finite if and only if the critical elements contained
in J P are not recurrent. In that case, J P is contained in a finite extension
of F ((τ)).

1.1. Outline of the paper. — Section 2 consists of basic definitions and facts
about the Berkovich affine line and the action of polynomials on A1,an

K .
In Sections 3 and 4 we introduce the dynamical sequence and the geometric

sequence of a polynomial. We employ these objects throughout the paper since
they organize our topological and algebraic study of the convex hull of the Julia
set.

In Section 5 we extend the notion of algebraic degree to the Berkovich line
and explore its basic properties.
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In Section 6, for polynomials with algebraic coefficients, we describe the
behavior of the algebraic degree along geometric sequences. Then we prove
Corollary B, in the case of polynomials with algebraic coefficients. In Sub-
section 6.3 we will explore the relation between the algebraic degree and the
equilibrium measure (e.g., [2, 10, 13, 12]). We finish the section with the proofs
of Theorem E and of Theorem F.

In Section 7 we establish Proposition 7.1 which is the key to perturb poly-
nomials (with transcendental coefficients), preserving the dynamics along an
orbit. Then we prove Theorem A in full generality and, as a consequence, we
obtain Corollary B, Corollary C and Corollary D.

2. Background

In this section we first recall some basic facts about non-Archimedean fields.
Then we construct the Berkovich affine line and discuss the behavior of the
polynomial dynamics on it. See [9, 14, 26] in the case of non-Archimedean fields
and [1, 6, 12, 13, 19, 23] for the dynamics on the Berkovich affine line.

2.1. Non-Archimedean fields. — Let K be a field with characteristic zero en-
dowed with a non-Archimedean absolute value |·|. That is, an absolute value
satisfying the strong triangle inequality

|z1 + z2| ≤ max{|z1| , |z2|}

for all z1, z2 ∈ K. Examples of such fields are the field of p-adic numbers Qp
and the field LF of Puiseux series with coefficients in F that will discuss in
detail in Subsection 6.6. For more about non-Archimedean fields see [9, 14].

The set |K×| := {|z| | z ∈ K×} of nonzero values of |·| is a multiplicative
subgroup of the positive real numbers called the value group of K. We say that
the absolute value |·| is discrete if |K×| is discrete as a subset of R.

We denote by oK := {z ∈ K | |z| ≤ 1} the ring of integers of K and by mK
its unique maximal ideal, i.e., mK := {z ∈ K | |z| < 1}. The residual field
of K is the quotient field K̃ := oK/mK . As we will see later, there exists a
substantial difference according to whether the residue field has characteristic
0 or p > 0.

For z0 ∈ K and r > 0 we define the sets

B+
r (z0) := {z ∈ K | |z − z0| ≤ r} and Br(z0) := {z ∈ K | |z − z0| < r}.

If r belongs to the value group of K, then the sets defined above are different
and we say that B+

r (z0) (resp. Br(z0)) is a closed ball (resp. open ball). If r
is not in the value group of K, then the sets Br(z0) and B+

r (z0) coincide and
we say that Br(z0) = B+

r (z0) is an irrational ball. Despite these names, every
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416 E. TRUCCO

ball is open and closed in the metric topology induced in K by the absolute
value |·|.

2.2. Balls and polynomial. — Given a nonconstant polynomial P with coef-
ficients in K, define the local degree of P at z0 ∈ K as the largest integer
degz0(P ) ≥ 1 such that (z − z0)degz0 (P ) divides P (z) − P (z0) in the ring
K[z]. If degz0(P ) > 1 we say that z0 is a critical point of P with multiplic-
ity degz0(P )−1. We denote by CritI(P ) the subset of K formed by the critical
points of P .

The image of a ball B ⊆ K, under the action of P , is a ball, of the same
type as B, and there exists a positive integer, denoted by degB(P ), and called
degree of P at B, such that

degB(P ) =
∑

{z∈B|P (z)=z′}

degz(P )

for all z′ ∈ B (e.g., see Section 2 in [20]).
Moreover, the preimage of a ball B is a finite union of pairwise disjoint balls

B1, . . . , Bm of the same type as B and
m∑
j=1

degBj (P ) = deg(P ).

2.3. Berkovich affine line. — We will need only basic facts about the structure
of the Berkovich affine line and its topology. For more details see [11, 20, 21, 23],
for the original construction of V. G. Berkovich, see [6].

We identify the Berkovich line with an appropriate quotient of the set SK

of all the strictly decreasing sequences of closed balls of K. This construction
is a slight modification of the given one in [23].

On the set SK we define the equivalence relation ∼ given by: (Bj) ∼ (B′j)

if for all n ∈ N, the sequence (Bj) (resp. (B′j)) is eventually contained in B′n
(resp. Bn).

The Berkovich analytic space associated to the affine line over K (for short,
the Berkovich line) denoted by A1,an

K , is (as a set) the quotient SK/ ∼.
If the sequence (Bj) is equivalent to (B′j), then ∩Bj = ∩B′j . Note that the

field K is not spherically complete, that is, there exist decreasing sequences of
closed balls having empty intersection. However, consider (Bj) ∈ SK such that
B = ∩Bj is not empty. Then B is a closed ball, an irrational ball or a point
of K. Moreover, the intersection B determines completely the equivalence class
of (Bj). In this case, we denote the equivalence class of (Bj) by xB and we
will say that xB in A1,an

K , is the point associated to B and that B is the ball
associated to xB.
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WANDERING FATOU COMPONENTS AND ALGEBRAIC JULIA SETS 417

The elements of the Berkovich line A1,an
K are classified in the following four

types:
1. Type I or classical points, corresponding to the equivalence classes of

sequences whose intersection is a point in K. We identify K with these
elements of A1,an

K .
2. Type II or rational points, corresponding to elements xB where B is a

closed ball.
3. Type III or irrational points that is, the points of the form xB where B

an irrational ball of K.
4. Type IV or singular points, corresponding to the equivalence classes of

decreasing sequences of closed balls with empty intersection.
The inclusion between the balls of K induces a partial order, denoted by 4,

in A1,an
K . If x ∈ A1,an

K (resp x′ ∈ A1,an
K ) is the equivalence class of (Bj) (resp.

(B′j)) we say that x 4 x′ if, for each n ∈ N, the sequence (Bj) is eventually
contained in B′n. We say that x ≺ y if x 4 y and x 6= y. In the case that xB
and xB′ are nonsingular elements, we have that xB 4 xB′ if and only if B is
contained in B′.

For all x ∈ A1,an
K denote the set of elements larger than x by

[x,∞[:= {w ∈ A1,an
K | x 4 w}.

Observe that [x,∞[ is isomorphic, as an ordered set, to [0,+∞[⊆ R.
Given two points x, y in the Berkovich line A1,an

K we have that

[x,∞[∩ [y,∞[ = [x ∨ y,∞[

where x∨ y is the smallest element larger than x and y. If x is not related to y
then the element x ∨ y is a type II point.

Given two elements x, y ∈ A1,an
K let

[x, y] := {w ∈ A1,an
K | x 4 w 4 x ∨ y} ∪ {w ∈ A1,an

K | y 4 w 4 x ∨ y}.
The sets ]x, y], [x, y[ and ]x, y[ are defined in the obvious way.

For x in the Berkovich line, the diameter of x is

diam(x) := lim
j→∞

diam(Bj),

where (Bj) is a representative of x. For xB , a nonsingular element, the diameter
of xB coincides with the diameter (radius) of the ball B.

In order to endow the Berkovich affine line with a topology, we define an
open ball of A1,an

K and a closed ball of A1,an
K by

B(a, r) = {x ∈ A1,an
K | diam(a ∨ x) < r}

B
+

(a, r) = {x ∈ A1,an
K | diam(a ∨ x) ≤ r}

respectively, where a ∈ K and r > 0.
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418 E. TRUCCO

The weak topology on the Berkovich line is the smallest topology containing
all the open balls and the complements of closed balls of A1,an

K . Note that for
all a ∈ K and r > 0 the closed ball B

+
(a, r) is a compact set with respect to

the weak topology.
If B = B+

r (a) ⊆ K we have that the closure B of B in A1,an
K is B

+
(a, r).

The boundary of B
+

(a, r) is {xB}, although we will often abuse notation and
write simple ∂B

+
(a, r) = xB .

For all x ∈ A1,an
K there exists an order preserving bijection between [x,∞[

and an interval of R. Moreover, for all x 6= y ∈ A1,an
K there exists an isomorphism

between [x, x∨ y] and a closed interval of R. Hence, following Definition 3.5 in
[11] A1,an

K is an unrooted nonmetric tree.
Let B = B+

r (a) be a closed ball of K and consider xB ∈ A1,an
K the type II

point associated to B. We say that two elements x, y ≺ xB are in the same
direction at xB if x ∨ y ≺ xB . Given x ≺ xB , the set of elements in the same
direction as x at xB is the open ball B(z, r) of the Berkovich line, where z ∈ B
is such that z ≺ x.

The tangent space at xB, denoted by TxB , is the set of all the directions
at xB . Since we will work only with polynomials, our notion of tangent space
is really the affine tangent space at xB .

After an affine change of coordinates h, such that h(B+
1 (0)) = B we can

identify the directions in TxB with the directions at the point associated to the
ball B+

1 (0) and these directions can be naturally identified with the residue
field of K.

We say that a set X of A1,an
K is convex, if for all x, y ∈ X we have that [x, y]

is contained in X. For X a subset of A1,an
K we define the convex hull of X to

be the set
conv(X) =

⋃
x,y∈X

[x, y].

A convex subset of A1,an
K is always a connected set.

2.4. The action of a polynomial over the Berkovich line. — The action of a non-
constant polynomial P with coefficients inK has a unique continuous extension
to A1,an

K , which we also denote by P . More precisely, if x is the equivalence class
of (Bj), then P (x) is defined as the equivalence class of the sequence (P (Bj)).
If x = xB is a non singular element, we have that P (xB) = xP (B).

The map P : A1,an
K → A1,an

K is increasing, open and preserves the type of the
points. For all x ∈ A1,an

K the set of preimages of x under P is finite. The image
of a ball B of A1,an

K is a ball of the same type, and its preimage is a finite union
of pairwise disjoint balls of the same type as B.
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To extend the notion of local degree of P to A1,an
K let

degx(P ) := lim
j→∞

degBj (P ),

where (Bj) is a representative of the class x. We have that degxB (P ) =

degB(P ), for all non singular elements xB ∈ A1,an
K .

Remark 2.1. — The map x 7→ degx(P ) is a nondecreasing function with
respect to 4 and it is upper semi-continuous. See [1, Proposition 9.28] or [13,
Section 2]

Remark 2.2. — Given x ∈ A1,an
K with preimages x1, . . . , xm, we have that

m∑
j=1

degxj (P ) = deg(P ).

We say that x ∈ A1,an
K is a critical element of P if degx(P ) ≥ 2. The structure

of the critical set

Crit(P ) := {x ∈ A1,an
K | degx(P ) ≥ 2}

depends strongly on the characteristic of the residue field K̃, as we will see in
Subsection 2.6.

Let x ∈ A1,an
K be a type II point. Given a direction D in Tx, that is, an open

ball D of A1,an
K such that ∂D = x, we have that P ( D) is a direction in TP (x).

Hence, the action of P in the Berkovich line induces a map TxP : Tx → TP (x)

between the tangent spaces at x and P (x). After affine changes of coordinates
h1, h2 such that h2(P (B)) = o and h1(o) = B the map TxP coincides with the
reduction of P to the residue field K̃. Hence, TxP is a nonconstant polynomial
map in K̃[z] of degree lower than or equal to deg(P ).

For further reference we establish a relation between the local degree of P
at a type II point x ∈ A1,an

K and the degree of TxP .

Remark 2.3. — Let P ∈ K[z] be polynomial of degree ≥ 2 and let x ∈ A1,an
K

be a type II point. If ζ ′ ∈ K̃ then

degx(P ) = deg(TxP ) =
∑

{ζ∈K̃|TxP (ζ)=ζ′}

degζ(TxP ).
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420 E. TRUCCO

2.5. The Hyperbolic Space. — We denote by HK the hyperbolic space of K,
that is, the set of nonclassical elements in the Berkovich Line. This set has a
tree structure induced by the structure of A1,an

K .

Over HK we can define the hyperbolic distance,

dH(x, y) = 2 log diam(x ∨ y)− log diam(x)− log diam(y),

which is compatible with the tree structure of HK . More precisely, the set HK
with the hyperbolic distance is a R-tree. That is, for all x, y ∈ HK the length of
the segment [x, y], which is a geodesic segment, coincides with the hyperbolic
distance between x and y.

For further reference we state, without proof, the following straightforward
fact

Lemma 2.4. — Let w, y, x in A1,an
K . We have that dH(x, y) = dH(x,w) +

dH(w, y) if and only if w belongs to [x, y].

The hyperbolic distance behaves nicely under the action of a polynomial.
More precisely we have the following lemma which is a restatement of Corol-
lary 4.8 of [21].

Lemma 2.5. — Let P ∈ K[z] and consider x ≺ x′ ∈ A1,an
K . Suppose that

degy(P ) = λ for all y ∈ ]x, x′[. Then

dH(P (x), P (x′)) = λ · dH(x, x′).

The metric topology induced in HK by the hyperbolic distance is called the
strong topology. Every open set X ⊆ HK for the topology induced in HK by
the weak topology is an open set for the strong topology. Moreover, (HK , dH)

is a complete metric space.

Our default topology will always be the weak topology in A1,an
K and HK .

2.6. The Critical Set of P . — Let P ∈ K[z] be a polynomial of degree ≥ 2. The
structure of the critical set of P depends strongly on the characteristic of the
residual field of K, as we will see in the following propositions. We will first
assume that char(K̃) = 0.

Proposition 2.6. — Let P ∈ K[z] be a polynomial of degree ≥ 2 and let B ⊆
K be a ball. If the characteristic of K̃ is zero, then

degB(P ) = 1 + degB(P ′)
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Proof. — After an affine change of coordinates we can suppose that B and
P (B) contain 0. Since char(K̃) = 0 we have that |n| = 1 for all n ∈ N.
Therefore, the Newton polygon of P ′ is a translation of the Newton polygon
of P −P (0). Hence, the number of zeros of P ′ in B is the number of zeros of P
in B minus 1.

Remark 2.7. — Note that if char(K̃) = 0 and B ⊆ K is a ball, then the
following holds

degB(P )− 1 =
∑
z∈B

(
degz(P )− 1

)
=

∑
w∈B∩CritI(P )

(
degw(P )− 1

)
.

That is, the degree of P at the ball B is determined by the critical points of P
contained in B. We will refer to the identity above as the Riemann-Hurwitz
formula.

From above, we have that in the case of char(K̃) = 0, the set Crit(P )

coincides with the set ⋃
w∈CritI(P )

[w,∞).

Therefore Crit(P ) is a finite subtree of A1,an
K . That is, Crit(P ) has finitely many

vertices and finitely many edges. There is one distinguished edge of the form
[x,∞[. The other edges are closed segments. In particular, we have that the
local degree at a singular element is always 1.

The situation in the case of char(K̃) = p > 0 is, in general, completely
different.

Proposition 2.8. — Let P ∈ K[z] be a polynomial with degree ≥ 2 and
let B ⊆ K be a ball such that m = degB(P ). If the characteristic of K̃ is
p > 0 and (p,m) = 1 then

degB(P ) = 1 + degB(P ′)

Proof. — After an affine change of coordinates we can suppose that 0 belongs
to B and P (B). Since the local degree is m, we have that (m, log(|am|)) is a
vertex of the Newton polygon of P . Since (p,m) = 1 it follows that

(m− 1, log(|mam|)) = (m− 1, log(|am|))

is a vertex of the Newton polygon of P ′. Indeed, in the Newton polygon of P ′

the slope before m − 1 can only increase and the slope after m − 1 can only
decrease with respect to the slopes before and after m in the Newton polygon
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of P . Hence, the number of zeros of P ′ in B is the number of zeros of P in B
minus 1.

Proposition 2.9. — Let P ∈ K[z] be a polynomial with degree ≥ 2 and
let B ⊆ K be a closed or irrational ball such that m = degB(P ). If the charac-
teristic of K̃ is p > 0 and m = prn with (p, n) = 1 and r ≥ 1, then Crit(P )∩HK
has nonempty interior with respect to the strong topology. In particular, Crit(P )

is not a finite tree.

Proof. — Let xB the point associated to the ball B. Since degxB (P ) = prm

and the local degree is the limit of a nonincreasing sequence of positive inte-
gers, there exists a type II point xB ≺ x such that degx(P ) is also prn and
deg D(P ) = prn, where D is the direction at x that contains xB . If we consider
the action between Tx and TP (x), we have that prn = deg(TxP ) = deg D(TxP ).
After affine changes of coordinates we can suppose that x and P (x) are the
point associated to the ball B+

1 (0) and 0 ∈ D = P ( D). It follows that TxP ,
which is a polynomial of degree prn, has a fixed point with local degree prn.
Hence

TxP (ζ) = ζp
rn = (ζp)p

r−1n.

By Lemma 10.1 in [22] we have that P coincide with zp
rn in a strong neigh-

borhood U of x. Since x is a inseparable fixed point (Definition 5.4 in [22])
for zp

rn we can use Proposition 10.2 in [22] to obtain the existence of a strong
neighborhood V of x such that degy(zp

rn) ≥ p for all y ∈ V. Then

degy(P ) = degy(zp
rn) ≥ p

for all y ∈ U ∩ V. Therefore Crit(P ) has nonempty interior with respect to
the strong topology. In this case Crit(P ) is not a finite tree.

The following definition is motivated by the previous propositions

Definition 2.10. — We say that a polynomial P ∈ K[z] is tame if the critical
set of P is a finite tree.

For instance, if char(K̃) = 0 then any polynomial is tame. If the residual
characteristic of K is p > 0, then any polynomial with degree d < p is tame.

If the residual characteristic of K is p > 0 we have, by Proposition 2.9, that
P is a tame polynomial if and only if the set {degx(P ) | x ∈ A1,an

K } does not
contains multiples of p. Moreover, in this case, the Riemann-Hurwitz formula
(see Remark 2.7) is valid. Our main results will be on tame polynomials.

We finish this subsection with a proposition about the structure of Crit(P ).
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Proposition 2.11. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2. Then

Crit(P ) =
⋃

w∈CritI(P )

[w,∞[.

In particular degx(P ) = 1 for any x of type IV.

Proof. — Let C =
⋃

w∈CritI(P )

[w,∞[. It is clear that C is contained in Crit(P ).

Let x ∈ Crit(P ). If x is a nonsingular point then, following Remark 2.7,
we have that x is a classical critical point or x = xB and B ∩ CritI(P ) 6= ∅,
therefore x ∈ C .

If x is a type IV point, then there exists a decreasing sequence (xn) of
nonsingular critical elements such that lim

n→+∞
xn = x, see Subsection 2.4. Since

the points xn are nonsingular and the classical critical points are finitely many,
there exists w ∈ CritI(P ) such that xn belongs to [w,∞[ for all n ∈ N. Hence,

lim
n→+∞

xn = x belongs to [w,∞[, but this is impossible because x is a type IV

point. Therefore degx(P ) = 1 for any x of type IV and C = Crit(P ).

2.7. Julia and Fatou sets in the Berkovich line. — By analogy with complex
polynomial dynamics the filled Julia set of P is defined by

KP := {x ∈ A1,an
K | (Pn(x)) is precompact}.

The filled Julia set of P is always nonempty, since it contains the classical
periodic points of P .

We define the Julia set of P, denoted by J P , as the boundary of the filled
Julia set of P , that is, J P = ∂KP . An equivalent definition, which will be
useful, is the following: a point x ∈ A1,an

K belongs to J P if for every open
neighborhood V of x, we have that

A1,an
K \

⋃
n≥0

Pn(V ),

has at most one element.
The Julia set is a compact, totally invariant (i.e., P ( J P ) = J P =

P−1( J P )) and nonempty set. Moreover, for all n ∈ N we have J P = J Pn .
Furthermore, it can be characterized as the smallest compact set totally
invariant by the action of P and not containing any classical exceptional
points (a classical point is exceptional if its grand orbit is finite, the classical
exceptional set contains at most 2 elements, see [13]).

The Fatou set of P , denoted by F P , is defined as the complement of the
Julia set of P . This is a nonempty open set. We say that A1,an

K \ KP is the
basin of attraction of ∞. Note that the basin of attraction of ∞ is a convex
set, and therefore a connected set. Moreover, it is a Fatou component.
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The classical filled Julia set of P , denoted by K
I
P , is defined as KP ∩K.

We define the classical Julia set of P as J
I
P := J P ∩K. The classical Fatou

set F
I
P is the intersection of F P and K. These definitions, of classical Fatou

and Julia sets, agree with the ones given by Hsia [15, 16].

Consider x in A1,an
K a periodic element of period q. In the case that x belongs

to K, we say that x is attracting, neutral or repelling according |(P q)′(x)| < 1,
|(P q)′(x)| = 1 or |(P q)′(x)| > 1, respectively. If x belong to A1,an

K \K we say
that x is neutral or repelling if degx(P q) = 1 or degx(P q) ≥ 2.

A periodic point x ∈ A1,an
K of P belongs to the Julia set of P if and only if

it is a repelling periodic point, see [19, 24].

We will use the following proposition which is proved in Section 5 of [21].

Proposition 2.12. — Let P ∈ K[z] be a polynomial of degree ≥ 2 and let x
be in the Julia set of P . If x is a periodic critical element then x is a type II
point.

Definition 2.13. — We say that a polynomial P ∈ K[z] of degree ≥ 2 is
simple if there exists a fixed point x ∈ HK with degx(P ) = deg(P ).

The simplest Julia set consists of a unique type II point in HK which is fixed
under P . In fact, the polynomials with a unique type II point as Julia set are
precisely the simple polynomials. Moreover, a tame polynomial P is simple, if
and only if all the classical critical points of P belong to K

I
P (see Corollary 2.11

in [17], the proof of that corollary is valid for tame polynomials).

From Subsection 2.6 we have that the critical set of P always contains in-
finitely many elements. Nevertheless, if P is a tame polynomial, there are only
finitely many critical elements of P contained in its Julia set, that is one of the
important properties of tame polynomials.

Proposition 2.14. — Let P ∈ K[z] be a nonsimple and tame polynomial of
degree d ≥ 2. Then J P contains at most d− 2 critical elements of P , counted
with multiplicity, where the multiplicity of x is degx(P )− 1

In order to give the proof of the previous proposition we need the following
lemma.

Lemma 2.15. — Let P ∈ K[z] be a polynomial of degree ≥ 2 and consider
x ∈ J P . Then A(x) = {y ∈ A1,an

K | y ≺ x} ⊆ F P ∩ KP and ]x,∞[ is
contained in the basin of ∞.
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Proof. — If x is a classical or a singular point then ∅ = A(x) ⊆ F P . Suppose
that x = xB ∈ J P ∩HK is a nonsingular point and consider y ∈ A(x). Then,
for an open ball B such that y ∈ B ⊆ B and given D a ball of the Berkovich
line such that J P ⊆ D we have that

Pn( B) ⊆ Pn(B) ⊆ D

for all n ≥ 1. That is y belongs to F P ∩ KP . Therefore A(x) ⊆ F P .
If there exists y ∈ J P such that x ≺ y, then x ∈ A(y) ⊆ F P , which is

impossible. It follows that ]x,∞[⊆ F P .

Proof of Proposition 2.14. — Recall that the critical points of P belong to⋃
w∈CritI(P )

[w,∞[.

For each critical element c ∈ J P , we can choose wc ∈ CritI(P ) such that c
belongs to [wc,∞[. In view of Lemma 2.15 we have that [wc, c[ and ]c,∞[ are
contained in the Fatou set of P . Then, the map c 7→ wc is injective. It follows
that J P contains at most d − 1 critical elements, since CritI(P ) contains at
most d− 1 elements.

Seeking a contradiction suppose that J P ∩Crit(P ) contains d− 1 elements,
it follows that CritI(P ) is a subset of K

I
P . Following Corollary 2.11 in [17] we

have that P is a simple polynomial and the Proposition follows.

The following proposition shows that the existence of wandering Fatou com-
ponents is equivalent with the existence of nonpreperiodic points in J P ∩HK .

Proposition 2.16. — Let P ∈ K[z] be a nonsimple polynomial of degree ≥ 2.
There exists a wandering component of F P which is not in the basin of a
periodic orbit if and only if there exists a nonpreperiodic point of type II or III
in J P .

Proof. — First note that the Fatou components different from the basin of ∞
are open balls of the Berkovich affine line.

We proceed by contradiction. Let B be a wandering Fatou component which
is not in the basin of a periodic point and let x = ∂B. Since x belongs to J P ,
passing to an iterate if necessary, we can suppose that P (x) = x.

Let V be a neighborhood of x. By the description of the neighborhoods of x
we have that the set {D ∈ Tx | D 6⊆ V} contains finitely many elements. On
the other hand {n ∈ N | Pn( B) ∈ V} contains infinitely many elements, this
implies that B belongs to the basin of attraction of the orbit of x, which is a
contradiction.

Conversely, if x ∈ J P ∩HK is a nonsingular point which is nonpreperiodic,
we have that for each a ∈ K with a 4 x the open ball B(a,diam(x)) ⊆
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F P ∩ KP is a wandering Fatou component which is not in the basin of a
periodic orbit.

For more results about Julia and Fatou set for rational maps see [13, 21].

2.8. Measure on the Berkovich affine line. — Given a polynomial P ∈ K[z] of
degree ≥ 2, Favre and Rivera [13] construct an ergodic probability measure,
defined on the Borel sets of A1,an

K . See also [1, 2, 10, 12]. This measure is denoted
by ρP and called the equilibrium measure of P . The measure ρP is characterized
by the followings properties:

– ρP does not charge classical points.
– If B is a ball of A1,an

K then

ρP ( B) =
deg B(P )

deg(P )
ρP (P ( B)).

The equilibrium measure of P is supported on the Julia set of P and is an
atom free measure for all P which are not simple. Moreover, for any open set
V such that J P ∩ V 6= ∅ we have that ρP (V ) > 0.

3. Dynamical Points.

Consider a nonsimple polynomial P ∈ K[z] of degree ≥ 2. To establish
properties about J P we study the action of P in the convex hull of its Julia
set, that is

conv( J P ) =
⋃

x,y∈J P

[x, y].

For each x ∈ J P we will construct a decreasing sequence (Ln(x)) ⊆
conv( J P ) of type II points having x as its limit. This sequence is dynamically
defined, therefore every dynamical property of x can be obtained from the
properties of the sequence (Ln(x)). Compare with the lemniscates in [7] and
the dynamical ends in [17].

At the end of the section we will introduce the concept of good starting level,
which will be useful to compare the distances between the points in (Ln(x))

and (Ln(P (x))).

From Proposition 6.7 in [19] we know that

rP = max{|z0 − z1| | z0, z1 ∈ K
I
P }

belongs to the value group of K. Thus, the closed ball D0 = B+
rP (z) ⊆ K,

where z is any periodic point of P , is the smallest ball of K containing K
I
P ,

and therefore D0 is the smallest ball of A1,an
K containing KP . In particular we

have that the Julia set of P is contained in D0.
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Lemma 3.1. — Let P ∈ K[z] be a polynomial of degree ≥ 2. Then D0 is the
smallest ball of A1,an

K containing J P .

Proof. — We proceed by contradiction. Suppose that there exists a ball B

such that J P ⊆ B $ D0. From Lemma 2.15 we have that

KP =
⊔

x∈J P

{y ∈ A1,an
K | y 4 x}.

Hence, K
I
P = KP ∩ K ⊆ B ∩ K, which contradicts that diam( K

I
P ) =

diam(D0).

Definition 3.2. — The level 0 dynamical point of P , denoted by L0, is defined
as the point associated to the ball D0, that is, L0 := xD0

= ∂D0.

Definition 3.3. — For each n ∈ N the level n dynamical set of P is defined
as Ln := P−n(L0). We say that an element Ln of Ln is a level n dynamical
point of P .

From the definition we have that L0 is a type II point and that x 4 L0 for
all x ∈ J P . Moreover, L0 is the smallest element in A1,an

K with this property.

Proposition 3.4. — Let P ∈ K[z] be a nonsimple polynomial of degree d ≥ 2.
Then the following statements hold:

1. {L0} = P−1(P (L0))

2. L0 ≺ P (L0).
3. diam(Pn(L0)) −→ +∞ as n→ +∞.
4. P−1(L0) has at least two elements. Moreover, the elements of P−1(L0)

are pairwise incomparable with respect to 4.
5. P−1(L0) contains points in at least two directions in TL0

.

Proof. — To prove the first statement, note that, the Julia set of P is forward
invariant, therefore

J P = P ( J P ) ⊆ P (D0) = P (D0).

By definition of L0, we have L0 4 P (L0). Now seeking a contradiction, suppose
that there exists xB in P−1(P (L0)) different than L0. Since J P ⊆ P (D0) we
have that B ∩ J P 6= ∅. Hence, xB is comparable to L0. If xB ≺ L0 it follows
that

P (L0) = P (xB) ≺ P (L0),

which is impossible. Analogous assertions hold if we suppose that L0 ≺ xB .
Therefore xB = L0, which is a contradiction. Hence, we have proved that
{L0} = P−1(P (L0)).
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To prove (2) note that L0 4 P (L0) and {L0} = P−1(P (L0)). Using Re-
mark 2.2 we obtain that degL0

(P ) = d, because L0 is the unique preimage
of P (L0). Hence L0 ≺ P (L0), since P is not a simple polynomial.

To show (3), let 0 < a = dH(L0, P (L0)). We proved that degL0
(P ) = d,

therefore degPn(L0)(P ) = d for all n ∈ N. Following Lemma 2.5, we obtain that

dH(Pn−1(L0), Pn(L0)) = a · dn−1.

Hence, dH(L0, P
n(L0)) > a · dn−1, because all the iterates of L0 belong to the

segment [L0,∞[. Using the definition of the hyperbolic distance we obtain

diam(Pn(L0)) > diam(L0) exp(a · dn−1).

Then, diam(Pn(L0))→ +∞.
To prove the first statement in (4) we proceed by contradiction. Suppose

that P−1(L0) has exactly one element xB . It follows that the Julia set of P
is contained in B, since J P is totally invariant. By the definition of L0 we
have that L0 4 xB . By monotonicity of P , we obtain that P (L0) 4 P (xB) =

L0, which is a contradiction with (2). That is, P−1(L0) contains at least two
element.

Suppose now that there exist x1, x2 ∈ P−1(L2) with x1 ≺ x2. It follows that

L0 = P (x1) ≺ P (x2) = L0,

which is impossible. Therefore the elements in P−1(L0) are pairwise incompa-
rable.

To show (5) note that if P−1(L0) = {y1, . . . , ym} we have that x 4 y1∨· · ·∨
ym for all x ∈ J P , since,

J P =
⊔

1≤j≤m

{x ∈ J P | x 4 yj}.

In particular, if P−1(L0) is contained in a direction D ∈ TL0
we have that

y1 ∨ · · · ∨ ym ≺ L0,

which contradicts the definition of L0. Now (5) follows.

From (1), (2), (4) of Proposition 3.4 we have that each level n ≥ 1 dynamical
point is strictly smaller than exactly one level n− 1 dynamical point.

Definition 3.5. — A dynamical sequence is a decreasing sequence (Ln)n≥0

of dynamical points such that L0 is the level 0 point and Ln ∈ Ln for all n ≥ 1.

Proposition 3.6. — Let P ∈ K[z] be a polynomial of degree d ≥ 2. Then

J P = {limLn | (Ln) is a dynamical sequence of P}.

tome 142 – 2014 – no 3



WANDERING FATOU COMPONENTS AND ALGEBRAIC JULIA SETS 429

Proof. — If P is a simple polynomial then Ln = L0 for all n ∈ N and J P =

{L0}.
When P is not simple, let (Ln) be a dynamical sequence of P and x = limLn.

For all n ≥ 0 we have that x ≺ Ln, therefore Pn(x) ≺ L0. Hence x belongs
to KP . The dynamical points do not belong to KP (see Proposition 3.4 (3)),
hence x ∈ J P = ∂KP .

Let x be in the Julia set of P and let n ∈ N. From the definition of L0 and
Proposition 3.4 (2) we have that L0 belongs to ]Pn(x), Pn(L0)[. Hence, the
intersection [x, L0] ∩ Ln contains exactly one element, denoted by Ln(x).

Suppose that limLn(x) = y 6= x. It follows that x ≺ y, because x 4 Ln(x)

for all n ≥ 0. From the above we conclude that y is a Julia point. Following
Lemma 2.15 we have that x ∈ A(y) ⊆ F P , which is impossible. Hence we have
limLn(x) = x.

Definition 3.7. — We will refer to the sequence (Ln(x))n≥0 constructed in
the proof of Proposition 3.6 as the dynamical sequence of x.

The dynamical sequences of x and P (x) are related according the following
identity

Ln(P (x)) = P (Ln+1(x)),

for all n ≥ 1.

As an immediate consequence of Proposition 3.6 we have the following Corol-
lary.

Corollary 3.8. — Let P ∈ K[z] be a polynomial of degree ≥ 2. Denote
by D(P ) the set of dynamical sequences of P endowed with the topology in-
duced by the following distance

d((Ln), (L′n)) =
1

m

where m = min{j ≥ 0 | Lj 6= L′j} and d((Ln), (Ln)) = 0.
Let P̂ : D(P ) → D(P ) be the map defined by P̂ ((Ln)) = (P (Ln+1)). Then

P : J P → J P is topologically conjugate to P̂ : D(P )→ D(P ). The topological
conjugacy is given by σ : J P → D(P ) where σ(x) = (Ln(x)).

To distinguish whether a Julia point x is classical (i.e x ∈ K) or not (i.e
x ∈ HK) we consider the hyperbolic distance between the level 0 dynamical
point L0 and x. In view of Lemma 2.4 we have that

dH(Ln(x), L0) = log(diam(L0))− log(diam(Ln(x)))

=

n−1∑
j=0

dH(Lj(x), Lj+1(x)).
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Hence x is a classical point if and only if the sum of the right hand side of
the expression above is divergent. The convergence of the sum does not allow
us to decide whether the point x is of type II, III or IV. It only determines if
log(diam(x)) is a positive rational or irrational number.

The following corollaries are applications of Proposition 2.14 to dynamical
sequences.

Corollary 3.9. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2. Then
there exists M (P ) ∈ N, only depending on P , such that

1. if n ≥ M (P ) and Ln is a level n point which is critical, then Ln = Ln(c)

for some c ∈ Crit(P ) ∩ J P .
2. degLn(c)(P ) = degLM(P )(c)

(P ) for all n ≥ M (P ) and all c ∈ Crit(P ) ∩
J P .

Proof. — Note that w ∈ CritI(P ) belongs to KP if and only if [w,∞[∩ Ln 6= ∅
for all n ≥ 1. It follows that there exists a smallest integer M1 such that if
w ∈ CritI(P ) and [w,∞[∩ LM1

6= ∅, then w ∈ KP .

From the definition of the local degree, we have that for each c ∈ Crit(P ) ∩
J P there exist a smallest integer Mc such that degc(P ) = degLMc (c)(P ). Con-
sider M2 = max{Mc | c ∈ Crit(P )∩ J P }, we can consider max instead sup by
Proposition 2.14. Then M (P ) = max{M1,M2} only depends on P and is the
smallest integer satisfying (1) and (2).

To state and prove the following corollary we need two definitions.

Definition 3.10. — Let P ∈ K[z] be a polynomial of degree ≥ 2 and consider
x ∈ A1,an

K . The forward orbit of x is the set

O
+(x) := {P j(x) | j ∈ N}.

Definition 3.11. — Let P ∈ K[z] be a polynomial of degree ≥ 2 and consider
x ∈ A1,an

K . The ω-limit of x is the set

ω(x) :=
{
y ∈ A1,an

K | there exists (nj) ⊆ N, nj < nj+1 and lim
j→+∞

Pnj (x) = y
}

Corollary 3.12. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2 and
consider x in the Julia set of P . Then there exists an integer N ≥ M (P ),
depending on x, such that

1. degx(P ) = degLn(x)(P ) for all n ≥ N.
2. if n ≥ N, j ≥ 1 and Ln(P j(x)) is critical, then Ln(P j(x)) = Ln(c) for

some c ∈ O
+(x) ∩ Crit(P ).
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Proof. — From the definition of local degree, there exists N1 ≥ M (P ) such
that

degx(P ) = degLN1
(x)(P ).

A critical element c belongs to ω(x) \ O
+(x) if and only if there exists a

increasing sequence (nj) of integers such that the dynamical sequence of Pnj (x)

coincides with the dynamical sequence of c at least up to the level j. If c 6∈
ω(x) \ O

+(x) there exists an integer Nc such that LNc(P j(x)) 6= LNc(c) for all
j ≥ 1. By Proposition 2.14 we can consider

N2 = max{Nc | c ∈ (Crit(P ) ∩ J P ) \ ω(x)}.

It follows that every N ≥ max{N1, N2} satisfies (1) and (2).

Definition 3.13. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2 and
consider x ∈ J P . We define the good starting level of x, denoted by N (x), as
the smallest integer satisfying the two properties in Corollary 3.12.

In general, for x ∈ J P we want to estimate the distance dH(x, L0). But in
practice we estimate the distance dH(x, LN (x)), where N is the good starting
level of x, since it is easier to control.

Proposition 3.14. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2 and
consider x in the Julia set of P . If x belongs to HK , then the ω-limit of x
contains at least one critical point of P

Proof. — Consider x ∈ J P . Suppose that ω(x)∩Crit(P ) is empty, it is enough
to show that x ∈ K. Passing to an iterate if necessary we can suppose that x
is noncritical and has no critical iterates. Since ω(x) ∩ Crit(P ) = ∅ and x has
no critical iterates, we have that Ln(P j(x)) is noncritical for all n ≥ N and
all j ≥ 1, where N = N (x) is the good starting level of x. Equivalently,

Ln−j(P
j(x)) = P j(Ln(x))

is noncritical provided that n− j ≥ N (see Definition 3.13).
Since, the dynamical level sets Ln are finite, for all n ≥ 1, there exist finitely

many intervals of the form [LN+1(y), LN (y)] with y ∈ J P . Hence, there exist
a point y0 in J P and a strictly increasing sequence (nj) of dynamical levels
larger than N such that

Pnj−N ([Lnj+1(x), Lnj (x)]) = [LN+1(y0), LN (y0)].

We have that

degLnj (x)(P
nj−N ) =

nj−N−1∏
i=0

degLnj−i(P i(x))(P ),

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



432 E. TRUCCO

since the levels nj are larger than N , we obtain that degLnj−i(P i(x))(P ) = 1 for

all 0 ≤ i ≤ nj−N−1. Therefore degLnj (x)(P
nj−N ) = 1. Applying Lemma 2.5

it follows that

dH(x, LN (x)) = lim
m→+∞

m∑
j= N

dH(Lj+1(x), Lj(x))

≥ lim
m→+∞

m∑
j=0

dH(Lnj+1(x), Lnj (x))

= lim
m→+∞

m∑
j=0

dH(LN+1(y0), LN (y0))

= +∞.

Thus, x belongs to K.

4. The Geometric Sequence

Let P ∈ K[z] be a tame polynomial of degree d ≥ 2, consider x ∈ J P and
let Ln = Ln(x) for all n ≥ 1.

In order to compute the hyperbolic distance between x and L0, we want to
estimate the distance between two consecutive levels of the dynamical sequence
of x. However, Lemma 2.5 does not always applies to relate dH(Ln+1, Ln) to the
distance dH(P (Ln+1), P (Ln)) because the local degree of P is not necessarily
constant in the segment ]Ln+1, Ln[.

In view of this, to have a better control of the distance between consecutive
dynamical levels, we need a finer subdivision of the segment joining x to the
level 0 dynamical point. This subdivision, that will be the called the geometric
sequence of x, is motivated by the following propositions about branch points
of conv( J P ). First we need a formal definition.

Definition 4.1. — We say that a type II point x ∈ conv( J P ) is a branch
point of conv( J P ) if J P intersects at least two directions in Tx.

Proposition 4.2. — Let P ∈ K[z] be a nonsimple polynomial of degree ≥ 2.
Then L0 is a branch point of conv( J P ).

Proof. — From Proposition 3.4 (2) it follows that the elements of P−1(L0)

are strictly smaller than L0. Following Proposition 3.4 (5) there exist x1, x2 ∈
P−1(L0) such that x1, x2 belong to different directions in TL0

. Hence, L0 =

x1 ∨ x2 is a branch point of conv( J P ).
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Proposition 4.3. — Let P ∈ K[z] be a nonsimple and tame polynomial of
degree ≥ 2 and consider xB a branch point of conv( J P ). Then there exists a
direction D ∈ TxB and a critical point w of P not contained in K

I
P such that

D ∩ J P = ∅ and GO(w) ∩ D 6= ∅.

Proof. — In view of Proposition 3.6 there exits n such that Ln ≺ xB 4 Ln−1

for some dynamical points Ln and Ln−1, it follows that Pn(xB) belongs to the
segment ]L0, P (L0)].

Since the dynamical points of a given dynamical level are finitely many, we
have that there exist only finitely many directions in TxB having nonempty
intersection with J P . Let D1, . . . , Dm be such directions.

We have that Pn( Dj) = D0 for all 1 ≤ j ≤ m, where D0 is the direc-
tion at Pn(xB) containing L0. From the Riemann-Hurwitz formula (see Re-
mark 2.7), we obtain that

degxB (Pn) = 1 +
∑

z∈B∩CritI(Pn)

(degz(P
n)− 1)

= deg(TxBP
n)

= deg D1
(Pn) + · · ·+ deg Dm

(Pn)

= m+
∑

z∈( D1t···tDm)∩CritI(Pn)

(degz(P
n)− 1).

Since 2 ≤ m, it follows that∑
z∈( D1t···tDm)∩CritI(Pn)

(degz(P
n)− 1) <

∑
z∈B∩CritI(Pn)

(degz(P
n)− 1).

That is, there exists direction D ∈ TxB \ ( D1 t · · · t Dm) and critical point
u of Pn contained in D. Since D ∩ J P = ∅ and u ∈ GO(w) for some w ∈
CritI(P ) \ K

I
P , the proposition follows.

Remark 4.4. — Taking xB = L0, the previous proof shows that if P is tame
and nonsimple, then there exists w ∈ CritI(P ) \ K

I
P .

Let P ∈ K[z] be a tame polynomial. Let {w1, . . . , wq′} be the set of classical
critical points of P which are not contained in K

I
P . Note that 1 ≤ q′ ≤ d− 1.

For each 1 ≤ j ≤ q′, let xwj be defined by

(conv( J P ) ∪ [L0,∞[) ∩ [wj ,∞[ = [xwj ,∞[.

By Proposition 4.3 all the branch points of conv( J P ) are contained in the
grand orbit of the set {xw1

, . . . , xwq′}.
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Definition 4.5. — Let P ∈ K[z] be a nonsimple and tame polynomial of
degree d ≥ 2. The geometric sequence of x ∈ J P , denoted by (Gn(x))n≥0, is
the decreasing sequence enumerating the elements in

[x, L0] ∩GO({xw1 , . . . , xwq′}),
where GO denotes the grand orbit.

Note that (Gn) is a constant sequence when P is simple.

Remark 4.6. — Consider vq−1, . . . , v0 ∈]L0, P (L0)] satisfying

GO({xw1
, . . . , xwq′})∩ ]L0, P (L0)] = {vq−1, vq−2, . . . , v0},

and vq−1 ≺ vq−2 ≺ · · · ≺ v0 = P (L0). Note that 1 ≤ q ≤ d and that every
element of

GO({xw1
, . . . , xwq′}) ∩ conv( J P )

is eventually mapped to vj , for some j.
Consider n ≥ 0 and put n = q · bn/qc+ j for some 0 ≤ j ≤ q − 1, where b·c

denotes the floor function, that is b·c : R→ Z is defined by

bac := sup{n ∈ Z | n ≤ a}.

It follows that
P bn/qc+1(Gn(x)) = vj .

Moreover
P bn/qc+1([Gn+1(x), Gn(x)]) = Ij ,

where Ij = [vj+1, vj ] for 0 ≤ j ≤ q − 2 and Iq−1 = [L0, vq−1].

Definition 4.7. — We say that vq−1, . . . , v0 are the generators of the geomet-
ric sequences of P .

Remark 4.8. — If q is the number of generators of the geometric sequences
of P , and if q′ is the number of classical critical points of P that escape to
infinity, then q ≤ q′. Indeed, first note that for tame polynomials, we have
CritI(P ) ⊆ D0. So xwj ∈ D0. Also, the segment ]P i(L0), P i+1(L0)] maps
d-to-1 onto ]P i+1(L0), P i+2(L0)] for each i ≥ 0, which shows that for each
j = 1, . . . , q′, there is exactly one positive integer n such that Pn(xwj ) ∈
]L0, P (L0)]. Thus we have a well-defined surjection of sets {xw1 , . . . , xwq′} −→
{v0, . . . , vq−1}, and hence q ≤ q′.

The next lemma states the basic properties of the geometric sequence. The
proof is straightforward and we omit it.

Proposition 4.9. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2 with
q generators for its geometric sequences and consider x ∈ J P . Then, the fol-
lowing statements hold:
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1. Ln(x) = Gnq(x) for all n ≥ 0.

2. lim
n→+∞

Gn(x) = x.

3. The geometric sequences of x and P (x) are related by

P (Gn(x)) = Gn−q(P (x))

for all n ≥ q.

Note that

P (]Gn+1(x), Gn(x)[) =]Gn−q+1(P (x)), Gn−q(P (x))[

for all n ≥ q + 1. Moreover, for all n ≥ 0 it follows that

P−1(]Gn+1(x), Gn(x)[) =
⋃

y∈P−1(x)

]Gn+q+1(y), Gn+q(y)[

The main result in this section is the following proposition. It will allow us
to use Lemma 2.5 to relate dH(Gn+1, Gn) with dH(P (Gn+1), P (Gn)).

Proposition 4.10. — Let P ∈ K[z] be a nonsimple and tame polynomial of
degree ≥ 2 and consider x ∈ J P . Let (Gn) be the geometric sequence of x.
Then for all n ≥ 0 the local degree of P is constant in the segment [Gn+1, Gn[.
In fact

degy(P ) = degGn+1
(P )

for all y ∈ [Gn+1, Gn[.

Proof. — Let n ≥ 0 and define

I n =
{
y ∈ ]Gn+1, Gn] | degw(P ) = degGn+1

(P ) for all w ∈ [Gn+1, y[
}
.

To show that I n 6= ∅, consider a ∈ K and r > 0 such that B+
r (a) is the ball

associated to Gn+1. Consider

R = min{|a− w| | w ∈ CritI(P ) \B+
r (a)}.

In view of the Riemann-Hurwitz formula, see Remark 2.7, the local degree of P
at the point associated to the ball B+

r+ε(a) coincides with degGn+1
(P ) for all

0 ≤ ε < R. In particular, we obtain that I n 6= ∅. Moreover, the previous
argument shows that largest element contained in I n is a type II point.

Denote by yB = max I n. We will show that yB = Gn.

We proceed by contradiction. Suppose that yB ≺ Gn. It follows that the
degree of the map P in B is larger than the degree of P in the direction D

at yB that contains Gn+1. In particular, there exists a critical point w in B\D.
We have two cases:
If w 6∈ K

I
P , then yB belongs to {xw1

, . . . , xwq′} (see Definition 4.5). In
particular, Gn and Gn+1 are not consecutive elements of the sequence (Gn).
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If w ∈ K
I
P we have that yB is a branch point of J P , which is a contradiction

because ]Gn+1, Gn[ is branch point free, see Proposition 4.3.
It follows that max I n = Gn. Therefore degy(P ) = degGn+1

(P ) for all y
in [Gn+1, Gn[.

From Lemma 2.5 it follows that for each n ≥ 0 the lengths of the segments
[Gn+1, Gn] and P bn/qc+1([Gn+1, Gn]) = Ij (see Remark 4.6) are related accord-
ing the following identity

(1) dH(Gn+1, Gn) = [degGn+1
(P bn/qc+1)]−1 · |Ij | ,

where |Ij | denotes the length of the segment Ij for all 0 ≤ j ≤ q− 1. Therefore

(2)
+∞∑
n=0

dH(Gn+1, Gn) =

+∞∑
n=0

[degGn+1
(P bn/qc+1)]−1 · |Ijn | ,

where, 0 ≤ jn ≤ q − 1 is such that P bn/qc+1([Gn+1, Gn]) = Ijn .

In order to write the previous sum in a more convenient manner we need to
introduce the following notation.

Definition 4.11. — Consider x ∈ J P . For all n ≥ 0 we define, the dynamical
degree of level n around x as

dn(x) := degGn+1(x)(P
bn/qc+1).

Definition 4.12. — The range of dynamical degrees of x is defined by

D(x) := {dn(x) | n ≥ 0}.

The previous definitions are inspired in complex polynomials dynamics (see
[8])

Rephrasing equation (1) and the sum (2) in this notation gives the following
lemma.

Lemma 4.13. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2 with q

generators for its geometric sequences. Consider x ∈ J P and denote by (Gn)

the geometric sequence of x. Then

dH(Gn+1, L0) =

n∑
`=0

dH(G`+1, G`) =

q−1∑
j=0

(
|Ij |

∑
`≡j mod q

0≤`≤n

[d−1
` ]
)

for all n ≥ 0, where |Ij | is the length of the interval Ij , 0 ≤ j ≤ q − 1
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The above sum gives us a relation between the sum of the length of the
intervals defined by the generators of the geometric sequences of P and the
range of dynamical degrees around x.

Now we present two direct applications of the geometric sequence. Recall
that, for a ∈ N and X a subset of N, the set a ·X is defined by

a ·X := {ab | b ∈ X}.

Lemma 4.14. — Let P ∈ K[z] be a tame polynomial of degree d ≥ 2 and
let x ∈ J P . Then the following statements hold:

1. If ω(x) ∩ Crit(P ) = ∅, then D(x) is finite.
2. If ω(x) ∩ Crit(P ) 6= ∅, then the range of dynamical degrees D(x) is

contained in

{1, 2, . . . , dN(x)+2} ∪

(
degx(P ) ·

⋃
c∈ C(x)

D(c)

)
,

where C (x) = Crit(P ) ∩ O
+(x).

Proof. — Suppose that P has q generators for its geometric sequences and
let N = N (x) be the good starting level of x (see Definition 3.13).

Note that if 0 ≤ n ≤ qN , then

dn = degGn+1
(P bn/qc+1) ≤ degGn+1

(P bqN/qc+1) ≤ dN+1.

In order to prove the first statement observe that if ω(x)∩Crit(P ) = ∅ then
x has at most d − 2 critical images. Consider n > qN and let ` ≥ 1 be the
smallest integer such that (n+ 1)− `q ≤ qN . It follows that,

dn = degGn+1
(P bn/qc+1)

= degGn+1
(P `) · degP `(Gn+1)(P

bn/qc+1−`)

= degGn+1
(P `) · degGn−q`+1(P `(x))(P

bn/qc+1−`)

= degGn+1
(P `) · degGn−q`+1(P `(x))(P

b(n−q`)/qc+1)

≤ dd−1 · dN+1

≤ dd+ N .

Therefore, the range of dynamical degrees of x is contained in the finite set

{1, 2, . . . , dd+ N}.

To prove (2), consider n > qN . Then there exists a minimal 1 ≤ jn ≤
bn/qc+ 1 such that P jn(Gn+1) is critical element.

We have two cases:
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If n− qjn ≤ qN we have that

dn = degGn+1
(P bn/qc+1)

= degGn+1
(P jn) · degP jn (Gn+1)(P

bn/qc+1−jn)

= degx(P ) · degGn−qjn+1
(P b(n−qjn)/qc+1)

≤ degx(P ) · dN+1

≤ dN+2.

Therefore, dn belongs to {1, 2, . . . , dN+2}.
Suppose that n − qjn > qN . We have that P jn(Gn+1) = Gn−qjn+1(c) for

some critical element c ∈ Crit(P ) ∩ O
+(x) (see Corollary 3.12). It follows that

dn = degGn+1
(P bn/qc+1)

= degGn+1
(P jn) · degP jn (Gn+1)(P

bn/qc+1−jn)

= degx(P ) · degGn−qjn+1(c)(P
b(n−qjn)/qc+1)

= degx(P ) · dn−qjn(c),

that is, dn belongs to

degx(P ) · D(c) ⊆ degx(P ) ·
⋃

c∈ C(x)

D(c).

Now (2) follows.

Lemma 4.15. — Let P ∈ K[z] be a nonsimple and tame polynomial of degree
d ≥ 2 and x ∈ J P . The range of dynamical degrees D(x) is unbounded if and
only if there exists a recurrent critical element c contained in the ω-limit of x.

To prove the previous lemma we need the following definition.

Definition 4.16. — For x1, x2 ∈ J P the greatest common geometric level
between x1 and x2 is defined by

gcg(x1, x2) :=

{
max{j ≥ 0 | Gj(x1) = Gj(x2)} x1 6= x2

+∞ x1 = x2

.

Proof of Lemma 4.15. — Suppose that D(x) unbounded. By Lemma 4.14) it
follows that there exists a critical element c1 in O

+(P (x)) such that D(c1) is
also unbounded. Hence, we can find a critical element c2 ∈ O

+(P (c1)) with
D(c2) also unbounded. Recursively we obtain a sequence (cn) ⊆ O

+(P (x))

of critical elements with D(cn) unbounded and cn+1 ∈ O
+(P (cn)), that is

O
+(P (cn+1)) ⊆ O

+(P (cn)). By Proposition 2.14 there are at most d−2 critical
elements of P contained in J P . It follows that there exists N ∈ N such that
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O
+(P (cN )) coincides with O

+(P (cN+1)). That is, cN+1 ∈ O
+(P (cN+1)). This

means that cN+1 is a recurrent critical element in O
+(P (x)). Hence, cN+1

belongs to ω(x).

Conversely, suppose that there exists a recurrent critical element c in the
ω-limit of x. We split the proof in two parts. First we show that D(c) is
unbounded and then we prove that the range of dynamical degrees D(x) is
unbounded.

Suppose that P has q generators for its geometric sequences and denote
by (Gn) the geometric sequence of c and by dn the dynamical degree of level
n around c. The element c is recurrent, thus we can choose n1 such that the
greatest common geometric level between Pn1(c) and c is larger than 1, that
is, gcg(Pn1(c), c) > 1 (see Definition 4.16). Hence, we have

dqn1
= degG1+qn1

(P bqn1/qc+1)

= degG1+qn1
(P 1+n1)

= degG1+qn1
(Pn1) · degPn1 (G1+qn1

)(P )

= degG1+qn1
(Pn1) · degG1

(P )

≥ 22.

Now we can pick n2 > n1 such that gcg(Pn2(c), c) > 1 + qn1. Therefore

dqn1+qn2
= degG1+qn1+qn2

(P b(qn1+qn2)/qc+1)

= degG1+qn1+qn2
(Pn1+n2+1)

= degG1+qn1+qn2
(Pn2) · degG1+qn1

(P 1+n1)

≥ degG1+qn1+qn2
(Pn2) · 22

≥ 23.

Recursively, we can find a increasing sequence (nj) of natural numbers such
that, for σj = qn1 + · · ·+ qnj

dσj = degGσj+1
(P bσj/qc+1) ≥ 2j+1.

It follows that D(c) is an unbounded set.
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Since c belongs to ω(x), for each n ≥ 0 there exists at least one jn ∈ N such
that P jn(Gn+1+qjn(x)) = Gn+1. Then

dn+qjn(x) = degGn+qjn+1(x)(P
b(n+qjn)/qc+1)

= degGn+qjn+1(x)(P
bn/qc+jn+1)

= degGn+qjn+1(x)(P
jn) · degP jn (Gn+qjn+1(x))(P

bn/qc+jn+1−jn)

= degGn+qjn (x)(P
jn) · degGn+1

(P bn/qc+1)

≥ degx(P ) · degGn+1
(P bn/qc+1)

= degx(P ) · dn.

Hence, the range of dynamical degrees D(x) is unbounded.

5. Algebraic Degree on the Affine Line

From now, we consider that K is an algebraically closed field which is com-
plete with respect to a non-Archimedean absolute value. We will assume that
there exits a complete field k ⊆ K so that |·| restricted to k is a discrete ab-
solute value and such that the elements of K which are algebraic over k are
dense in K, that is

{z ∈ K | [k(z) : k] < +∞}
is a dense subset of K. Moreover, changing |·| for |·|λ for some λ > 1 we can
always suppose that

log(
∣∣k×∣∣) = Z and log(

∣∣K×∣∣) = Q.

Since K is algebraically closed and complete, it is not difficult to see that K
coincides with the completion of an algebraic closure of k.

The algebraic degree of an element z ∈ K over k is the number [k(z) : k],
that is, the degree of the smallest extension of k containing z. To extend this
notion to the Berkovich line, note that the ball associated to every nonsingular
element in HK contains points in ka, where ka is the algebraic closure of k
inside K. It follows that, if xB is a type II or III point in HK , then

{[k(a) : k] | a ∈ B ∩K},

contains its minimum.

Definition 5.1. — For z ∈ K we define δ(z) := [k(z) : k]. For xB ∈ A1,an
K

nonsingular, we define the algebraic degree of xB over k as

δ(xB) = min{[k(a) : k] | a ∈ B ∩ ka}.

If x ∈ A1,an
K singular, we define the algebraic degree of x as +∞.
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Definition 5.2. — We say that a nonempty subset X of A1,an
K is an algebraic

set over k if δ(x) < +∞ for all x ∈ X.

Note that for xB ∈ HK nonsingular and F a finite extension of k, we have
that xB belongs to conv(F ), see Subsection 2.3, if and only if B ∩ F 6= ∅. In
fact, if xB belongs to conv(F ), by definition there exist two points z0, z1 ∈ F
such that xB belongs to the segment ]z0, z1[. In particular, z0 ≺ xB or z1 ≺ xB ,
that is z0 ∈ B ∩ F or z1 ∈ B ∩ F . Conversely, if B = B+

r (z0) with z0 ∈ F then
z0 4 xB . It follows that xB belongs to conv(F ). Hence, we have proved

Lemma 5.3. — Let xB be a nonsingular element in A1,an
K . Then

δ(xB) = min{[F : k] | x ∈ conv(F ), F is a finite extension of k}.

The next lemma states the basic properties of the algebraic degree.

Lemma 5.4. — Let P be a polynomial with coefficients in k of degree ≥ 2.
Then the following statements hold:

1. δ(P (x)) ≤ δ(x) for all x ∈ A1,an
K .

2. If x 4 y, then δ(y) ≤ δ(x).
3. If x belongs to HK then δ(x) = lim

j→+∞
δ(xj) for each decreasing sequence

(xj) such that xj → x.

Proof. — 1 and 2 follow directly from the definition of the algebraic degree.
To prove 3 note that for any n ∈ N the diameters of the branch points

of Dn = conv
(⋃

[F :k]≤n F
)
form a discrete subset of the real interval [0,+∞[,

because |·| restricted to k is a discrete absolute value. Moreover, the algebraic
degree is constant between two consecutive branch points of Dn.

Let x ∈ HK and consider (xj) such that xj → x. We have two cases:
If x is nonsingular then there exists a smallest j such that x belongs to Dn,

in particular x belongs to a segment between two consecutive branch points
of Dn. Therefore δ(x) = lim

j→+∞
δ(xj).

If x is a type IV point then there exist a strictly increasing subsequence (mn)

of integers and a subsequence (xjn) of (xj) such that xjm ∈ Dmn and xjn 6∈ D`

for ` < mn. Hence δ(x) = lim
j→+∞

δ(xmj ) = lim
j→+∞

δ(xj).

In the case of the Julia set, the fact of being an algebraic set over k is a local
property:

Proposition 5.5. — Let P ∈ k[z] be a nonsimple polynomial of degree ≥ 2.
The Julia set of P is algebraic over k if and only there exists a point x ∈ J P

and a neighborhood V of x such that J P ∩ V is an algebraic set over k.
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Proof. — If J P is algebraic over k, then taking V as an open ball of the
Berkovich line which contains J P , we have that V is a neighborhood of all
x ∈ J P and J P = V ∩ J P is an algebraic set over k.

Conversely, if there exists a element x ∈ J P and a neighborhood V con-
taining x we have that

J P =
⋃
n≥0

Pn( J P ∩ V ) ⊆
⋃
n≥0

Pn(V ).

From Lemma 5.4 (1) it follows that δ(Pn+1(x)) ≤ δ(Pn(x)) for all x ∈ J P ∩V
and all n ≥ 0. That is, the Julia set of P is an algebraic set over k.

6. Polynomials with Algebraic Coefficients

In this section we will fix a polynomial P with algebraic coefficients over
k and we will study how the algebraic degree behaves along the geometric
sequence of x in J P . To do this, we need the following dynamical version of
the well known Krasner’s Lemma which is adapted for our applications. See
Corollary 3 in chapter seven of [9] for the standard version of the lemma.

Lemma 6.1 (Krasner’s Lemma). — Let k be a field of characteristic 0 and
complete with respect to a non-Archimedean absolute value. Let ka be an al-
gebraic closure of the field k. Consider P ∈ k[z] and let α ∈ ka such that
P (α) = 0. If B ⊆ ka is a ball containing α such that degB(P ) = 1, then
k(α) ⊆ k(β), for all β ∈ B.

6.1. Algebraic degree along a geometric sequence. — The first statement of
Lemma 5.4 shows that the algebraic degree behaves nicely under the action
of polynomials with algebraic coefficients.

Through this subsection, let P be a nonsimple and tame polynomial with
algebraic coefficients over k. Passing to a finite extension if necessary, we can
suppose that the coefficients and the critical points belong to k.

To state the proposition that allow us to estimate the algebraic degree along
a geometric sequence we need two definitions.

Definition 6.2. — Consider x in the Julia set of P , and let (Gn) be its ge-
ometric sequence. Let t−1 = −1 and for each n ≥ 0 the injectivity time of Gn
is the largest integer 0 ≤ tn such that degGn(P tn) = 1. The critical pullbacks
of P around Gn are the elements in Dn ∩ P−tn(CritI(P )), where xDn = Gn.
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Note that if P has q generators for its geometric sequences then the injectiv-
ity time tn is smaller or equal than bn/qc+ 1. In the case that Gn is a critical
element we have that tn = 0 and that the critical pullbacks around Gn are the
critical points of P contained in Dn.

If tn > 0 then the injectivity time of Gn is the smallest integer such that

P tn(Gn) ∈ Crit(P ) and P tn−1(Gn) 6∈ Crit(P ).

Definition 6.3. — Let P ∈ k[z] be a nonsimple and tame polynomial of
degree ≥ 2 and consider x ∈ J P . Let s−1 = 1. For each n ≥ 0 define sn(x) as
the index of |k×| in the group generated by |k×| and diam(Gn(x)), that is

sn(x) :=
[ ∣∣k×∣∣ (diam(Gn(x))) :

∣∣k×∣∣ ]
Note that sn(x) < +∞ since Gn(x) is a type II point and |K×| =

√
|k×|.

Proposition 6.4. — Let P ∈ k[z] be a nonsimple and tame polynomial of
degree ≥ 2. Consider x in the Julia set of P and denote by (Gn) the geometric
sequence of x. For each n ≥ −1 let sn = sn(x). Then

(3) max{sj | tj 6= tj+1,−1 ≤ j ≤ n} ≤ δ(Gn+1).

The reader may find the proof of this proposition is at the end of this sub-
section.

Lemma 6.5. — Let P ∈ k[z] be a nonsimple and tame polynomial of degree
≥ 2. Consider x ∈ J P and denote by (Gn) its geometric sequence. Consider
critical pullbacks un, un+1 around Gn and Gn+1 respectively. Then, for all n ≥ 0

the followings statements hold:
1. δ(Gn) = δ(un) = δ(u′n) for all critical pullbacks u′n around Gn.
2. k(un) is contained in k(un+1).
3. un 6∈ Dn and δ(Gn+1) = δ( Dn ∩K), where Dn is the direction at Gn

that contains Gn+1.

Proof. — Note that if Gn is a critical element we have that un is a critical point
of P . Therefore (1) and (2) follow directly in this case, since we are assuming
that CritI(P ) is contained in k.

If Gn is noncritical, then tn > 1 and

degDn
[
P tn(z)− P tn(un)

]
= 1.

By Krasner’s lemma (see Lemma 6.1), it follows that k(un) ⊆ k(v) for all v
in Dn ∩ ka.

Taking v ∈ Dn such that δ(v) = δ(Gn) we have that δ(v) ≤ δ(un) ≤
δ(v), that is δ(un) = δ(Gn). If u′n is another critical pullback around Gn then
interchanging un with u′n we obtain the second equality in (1).
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Taking v = un+1 we obtain (2).
In order to prove (3), recall that according to Proposition 4.10 we have that

degGn+1
(P j) = degy(P j)

for all y ∈ [Gn+1, Gn[ and all j ≥ 1. In particular tn+1 is the smallest integer
such that P tn+1( Dn) ∩ Crit(P ) 6= ∅ and P tn+1−1( Dn) ∩ Crit(P ) = ∅. Then,
as in the proof of the first part of the lemma, we have that

deg Dn∩K
[
P tn+1(z)− P tn+1(un+1)

]
= 1.

Therefore δ(Gn+1) = δ( Dn ∩K).

Corollary 6.6. — Let P ∈ k[z] be a nonsimple and tame polynomial of de-
gree ≥ 2. Let x be a noncritical Julia point and denote by (Gn) its geometric
sequence.

1. If tn = tn+1 then δ(Gn) = δ(Gn+1).
2. If δ(Gn) < δ(Gn+1) then tn < tn+1.

Now we can give the proof of Proposition 6.4. This proposition is a key
ingredient in order to prove our main results.

Proof of Proposition 6.4. — We proceed by induction in n. For n = −1 we
have that −1 = t−1 6= t0 = 0, since degL0

(P ) = deg(P ), therefore

max{sj | tj 6= tj+1,−1 ≤ j ≤ −1} = max{s−1} = 1 ≤ δ(G0) = 1.

That is, the first step of the induction is valid.
Suppose that (3) is valid for n− 1. If n is such that tn = tn+1 we have that,

{sj | tj 6= tj+1,−1 ≤ j ≤ n− 1} = {sj | tj 6= tj+1,−1 ≤ j ≤ n}. It follows that
max{sj | tj 6= tj+1,−1 ≤ j ≤ n} ≤ δ(Gn) ≤ δ(Gn+1).

Suppose that n is such that tn < tn+1. In this case, the corresponding critical
pullbacks un and un+1 are necessarily different. By Lemma 6.5 (2), we have
that k(un+1) is a finite extension of k(un), and therefore δ(un) divides δ(un+1).

Following Lemma 6.5 (3) we have that the distance between un and un+1

coincides with the diameter of Gn. Therefore

sn =
[ ∣∣k×∣∣ (diam(Gn)) :

∣∣k×∣∣ ]
=
[ ∣∣k×∣∣ (|un − un+1|) :

∣∣k×∣∣ ]
≤ [k(un − un+1) : k]

≤ max{δ(un), δ(un+1)}.

Hence, we obtain that

max{sn, δ(un)} ≤ δ(un+1).
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Applying the inductive hypothesis it follows that

δ(un+1) ≥ max{sn, δ(un)}
≥ max{sn,max{sj | tj 6= tj+1,−1 ≤ j ≤ n− 1}}
= max{sj | tj 6= tj+1,−1 ≤ j ≤ n}.

Thus, we have proven Proposition 6.4.

6.2. No wandering components for polynomials with algebraic coefficients. —
The following proposition is the key to prove Corollary B. In fact, combining
the proposition below with Proposition 2.16 we obtain Corollary B in the case
of polynomials with algebraic coefficients over k.

Proposition 6.7. — Let P ∈ k[z] be a nonsimple and tame polynomial of
degree ≥ 2. If x is a nonpreperiodic algebraic element in J P , then x ∈ K.

Proof. — Let x be a noncritical and nonpreperiodic algebraic element of the
Julia set of P . Since x ∈ J P if and only if P j(x) ∈ J P for all j ≥ 1 and
there are only finitely many critical elements in J P , we may assume that the
forward orbit of x is free of critical elements. Denote by (Gn) the geometric
sequence of x.

Since x is not the preimage of a critical element it follows that

{n ∈ N | tn 6= tn+1}

contains infinitely many elements. For each n ≥ 1 let mn be the n-th nonneg-
ative integer such that tmn 6= tmn+1.

In view of Proposition 6.4, the set {smj (x) | j ∈ N} is bounded by δ(x).
Hence, the denominators of log(diam(Gmn)) are bounded.

Let D ∈ N be the maximum among the denominators of log(diam(Gmn)),
n ∈ N, and log(diam(L0)). It follows that

dH(Gmj , Gmj−1) = log(diam(Gmj−1))− log(diam(Gmj )) ≥
1

D2

for all j ≥ 1. Hence

dH(Gmn , L0) = dH(Gm0 , L0) +

n∑
j=1

dH(Gmj , Gmj−1) ≥ dH(Gm0 , L0) +
n

D2
.
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Thus,

d(x, L0) = lim
n→+∞

dH(Gn, L0)

= lim
n→+∞

dH(Gmn , L0)

≥ lim
n→+∞

(
dH(Gm0

, L0) +
n

D2

)
= +∞.

Therefore, x belongs to J
I
P .

6.3. Equilibrium measure and algebraic degree. — Let P ∈ k[z] be a nonsimple
polynomial of degree ≥ 2. In this subsection, we will show that if there exists an
element y ∈ J P with δ(y) = +∞ then δ(x) = +∞ for ρP -almost all x ∈ J P .

First we need the following lemma, which is an stronger version of
Lemma 5.4 (3) in the case of Julia points.

Lemma 6.8. — Let P ∈ k[z] be a nonsimple and tame polynomial of degree
≥ 2. If x ∈ J P then δ(x) = lim

n→+∞
δ(xn), for each decreasing sequence (xn)

such that xn → x.

Proof. — By Lemma 5.4 (3) we only need to prove the lemma for the classical
points in J P . We prove the lemma for a classical point in x ∈ J P and for the
geometric sequence (Gn) of x. Applying Lemma 5.4 (2) we obtain the result
for any decreasing sequence (xn) satisfying the hypothesis.

We proceed by contradiction. Suppose that δ(x) 6= lim
n→+∞

δ(Gn), in view of

Lemma 5.4 (2) we have that δ(x) > lim
n→+∞

δ(Gn). Since δ(Gn) is a positive

integer and the sequence δ(Gn) is increasing and bounded, there exists N ∈ N
such that δ(Gn) = δ(GN ) for all n ≥ N . By Lemma 6.5 (2) it follows that
k(uN ) = k(un) for all n ≥ N , where un is a critical pullback around Gn for all
n ≥ N . Since (un)n≥N ⊆ k(uN ) is a sequence such that un → x and k(uN ) is
a finite extension of k we have that x belongs to k(uN ). Hence, δ(x) = [k(x) :

k] ≤ [k(uN ) : k], which is a contradiction.

To relate the algebraic degree with the equilibrium measure we need to note
that δ : A1,an

K → R is Borel measurable. In fact, conv(F ) is closed in the weak
topology for all F/k finite, then ⋃

[F :k]≤n

conv(F )

is a measurable set for all n ∈ N. Using Lemma 5.3 we have that

{x ∈ A1,an
K | δ(x) ≤ n}
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is measurable for all n ∈ N.

Lemma 6.9. — Let P ∈ k[z] be a polynomial of degree ≥ 2 with J P algebraic
over k. Let An = {x ∈ J P | δ(x) ≥ n}. If An 6= ∅ then ρP ( An) = 1 where
ρP is the equilibrium measure of P .

Proof. — If there exists x ∈ J P with δ(x) ≥ n then there exists mn ∈ N
such that δ(Lmn(x)) ≥ n, see Lemma 6.8. Let Bn be the closed ball associated
to Lmn . We have that ρP (Bn) > 0, since Bn contains an open set that contains
a Julia point. Now we will use the ergodicity of ρP (see [13]). Let

U = {x ∈ J P | P `(x) ∈ Bn for some ` ≥ 0}.

Then U is a backward invariant set, by the ergodicity ρP (U) = 0 or ρP (U) = 1.
But Bn ∩U is contained in U , then ρP (U) = 1. It follows that ρP -almost every
x ∈ A1,an

K have infinitely many iterates in Bn. From Lemma 5.4 (1) and (2) we
conclude that ρP ( An) = 1.

Proposition 6.10. — Let P ∈ k[z] be a polynomial of degree ≥ 2 with J P

algebraic over k. Then the set {δ(x) | x ∈ J P } is bounded. Moreover,

ρP (x ∈ J P | δ(x) = ∆) = 1

where ∆ = max{δ(x) | x ∈ J P } and ρP is the equilibrium measure of P .

Proof. — For each n ∈ N let An as in Lemma 6.9.
Suppose that {δ(x) | x ∈ J P } is an unbounded set. Then there exists a se-

quence (xn) of Julia points such that δ(xn) ≥ n and therefore, using Lemma 6.9,
it follows that ρP ( An) = 1 for all n ∈ N. Since An+1 ⊆ An and

ρP (∩An) = lim
n→+∞

ρP ( An) = 1,

we have that the intersection ∩An is nonempty. It follows that there exists
y ∈ J P with δ(y) = +∞, which contradicts our assumption that J P is an
algebraic set over k. Hence, the set {δ(x) | x ∈ J P } is bounded.

Consider ∆ = max{δ(x) | x ∈ J P }. By Lemma 6.9 we have that

{x ∈ J P | δ(x) = ∆} = A ∆ a. e.

Then ρP ({x ∈ J P | δ(x) = ∆}) = 1.

The following corollary will be useful in the proofs of Theorem E and of
Theorem F.

Corollary 6.11. — Let P ∈ k[z] be a tame polynomial of degree ≥ 2 and
denote by ρP the equilibrium measure of P . Then the following statements are
equivalent:

1. There exists y ∈ J P with δ(y) = +∞.
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2. For each n ≥ 1 there exists yn ∈ J P such that δ(yn) ≥ n.
3. ρP (x ∈ J P | δ(x) = +∞) = 1.

6.4. Algebraic Julia sets and recurrent critical elements. — Through this sub-
section let P ∈ k[z] be a nonsimple and tame polynomial of degree ≥ 2 with
q generators for its geometric sequences. Recall that we are assuming that k
contains the critical points of P .

Consider x ∈ J P and let Gn = Gn(x) for all n ≥ 1. From Proposition 6.4
it follows that there exists a relation between diam(Gn) and δ(Gn). Moreover,
note that we can obtain diam(Gn) from dH(Gn, L0).

6.5. Proof of Theorem E. — In order to prove Theorem E and Theorem F we
need to establish some relations between the range of dynamical degrees and
the existence of recurrent critical points.

First we need to recall some notation. Let P ∈ K[z] be a nonsimple and
tame polynomial, see Definition 2.10, and consider x in the Julia set of P . We
denote by ω(x) and O

+(x) the ω-limit and the forward orbit of x respectively.
We denote by Gn = Gn(x) the geometric sequence of x, see Definition 4.5. The
fundamental property of the geometric sequence is the fact that

degy(P ) = degGn(P )

for all y ∈ [Gn, Gn−1[.

Lemma 6.12. — Let P ∈ k[z] be a nonsimple and tame polynomial of degree
≥ 2. Suppose that there exists x ∈ J P such that {sn(x) | tn 6= tn+1} is
unbounded. Then the range of dynamical degrees around x is unbounded.

Proof. — If {sn(x) | tn 6= tn+1, n ∈ N} is unbounded we have that

log(diam(Gj)) = log(diam(L0))− dH(Gj , L0)

is at least
1

kj
for an unbounded sequence (kj), then, in view of Lemma 4.13,

lim inf
n→+∞

[dn(x)]−1 = 0.

Hence, the range of dynamical degrees D(x) is unbounded.

Lemma 6.13. — Let P ∈ k[z] be a nonsimple and tame polynomial of degree
≥ 2. Suppose that there exists a recurrent critical element c ∈ J P . Then, there
exists a sequence (yn) ⊆ J P such that lim

n→+∞
yn = c and lim

n→+∞
δ(yn) = +∞.
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To prove the previous lemma it is convenient to use p-adic absolute value
notation. Recall that we are supposing that

log(
∣∣k×∣∣) = Z and log(

∣∣K×∣∣) = Q.

Given a prime number p, the absolute value |·|p is defined as follows. For a ∈ Z
we put |a|p = p−n, where, a = pnm and p does not divides m. For a rational

number
a

b
we put

∣∣∣a
b

∣∣∣
p

=
|a|p
|b|p

. Recall that |·|p is a non-Archimedean absolute

value.
For convenience we record the following general fact about non-Archimedean

absolute values as a remark.

Remark 6.14. — Let r1, r2 ∈ Q such that |r1|p < |r2|p, then |r1 + r2|p =

|r2|p.

Proof of Lemma 6.13. — In view of Lemma 4.15 we have that the range of
dynamical degrees D(c) is an unbounded set. For each n ≥ 0 the dynamical
degree dn = dn(c) around c is a product of bn/qc + 1 numbers bounded by d.
Hence, there exists a prime number p ≤ d such that arbitrarily large powers of p
divide elements in the range of dynamical degrees around c, that is, (

∣∣d−1
n

∣∣
p
) is

an unbounded sequence.
If Ijn denotes the segment such that P bn/qc+1(]Gn, Gn−1[) = Ijn and

αn = d−1
n · |Ijn | ,

it follows that the sequence (|αn|p) is also unbounded.
Let m1 ≥ 1 be the smallest integer such that

max{1, |log(diam(L0))|p} < |αm1
|p .

Let 1 < e1 such that |αm1
|p = pe1 .

Recursively, we define mn as the smallest integer larger than mn−1 such that
pen−1 < |αmn |p. We define en as the integer satisfying |αmn |p = pen . Note that
both (mn) and (en) are increasing sequences of integers.

To construct the sequence (yn) we need to prove first that {smn(c) | n ∈ N}
is an unbounded set. We have that

− log(diam(Gmn)) = − log(diam(L0)) +

mn∑
`=1

d−1
` · |Ij` |

= − log(diam(L0)) +

mn∑
`=1

α`.
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Using Remark 6.14 and the choice of mn we have that

|log(diam(Gmn))|p =

∣∣∣∣∣− log(diam(L0)) +

mn∑
`=1

α`

∣∣∣∣∣
p

= |αmn |p = pen .

Hence, the largest power of p dividing the denominator, say bn, of
log(diam(Gmn)) is pen . Then

smn =
lcm(m, bn)

m
≥ lcm(m, pen)

m

by definition of sn (see Definition 6.3), where m is the least common multiple
of the denominators of log(|β|) for β running in the coefficients and the critical
points of P . In particular, lim smn = +∞, since (en) is an increasing sequence
of integers.

For all n ≥ qN (c) + q there exists a noncritical element yn ∈ J P such that
Gmn(yn) = Gmn and Gmn+1(yn) 6= Gmn+1, see Definition 3.13. Note that,
gcg(yn, c) = mn → +∞ as n → +∞. Then the sequence (yn) converges to c.
In view of this, we only need prove that lim δ(yn) = +∞

The injectivity time of Gmn+1(yn) is larger than the injectivity time
of Gmn(yn), since Gmn(yn) is a critical element and Gmn+1 is not. Hence,
applying Proposition 6.4 and using Lemma 5.4 (2) we obtain a bound, from
below, for the algebraic degree of yn. More precisely,

δ(yn) ≥ δ(Gmn+1(yn)) ≥ max{1, smn(c)} = smn .

That is, lim δ(yn) = +∞.

Now we can give the proof of Theorem E.

Proof of the Theorem E. — We prove that in the presence of a recurrent crit-
ical element, J P is not an algebraic set over k. Suppose that there exists a
recurrent critical element c contained in J P . Following Lemma 6.13, there ex-
ists a sequence (yn) ⊆ J P such that lim δ(yn) = +∞. Applying Corollary 6.11
we obtain x in the Julia set of P with δ(x) = +∞.

In particular, if J P is algebraic over k, then there are not critical periodic
elements in J P . Following Proposition 6.7 we obtain that J P is contained
in K. In Proposition 6.10 we showed the existence of (the smallest) ∆ ∈ N
with δ(x) ≤ ∆ for all x ∈ J P .
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6.6. The completion of the field of formal Puiseux series. — Let F be an alge-
braically closed field of characteristic 0. We denote by F ((τ)) the field of formal
Laurent series with coefficients in F . For a nonzero element

z =
∑
j≥j0

ajτ
j ∈ F ((τ))

we define ord(z) = min{j | aj 6= 0} and |z| = e− ord(z). Observe that |·|
is a non-Archimedean absolute value and that F ((τ)) is complete with re-
spect to |·| but not algebraically closed. An algebraic closure of F ((τ)) is the
field of formal Puiseux series F 〈〈τ〉〉 with coefficients in F (e.g., Chapter IV,
Theorem 3.1 in [26]). More precisely, F 〈〈τ〉〉 is the direct limit of the fields
F ((τ))(τ1/m) = F ((τ1/m)) for m ∈ N, with the obvious inclusions, that is,
F ((τ1/m1)) ⊆ F ((τ1/m2)) if and only if m1 divides to m2.

Therefore an element in F 〈〈τ〉〉 has the form

z =
∑
j≥j0

ajτ
j/m

for some m ∈ N. The unique extension of |·| to F 〈〈τ〉〉 (also denoted by |·|) is
completely determined by

∣∣τ1/m
∣∣ = e−1/m.

Note that the degree of the field F ((τ1/m)) over F ((τ)) is precisely m. More-
over, the field F ((τ1/m)) is the unique field extension of F ((τ)) of degree m.

We denote by LF the completion of F 〈〈τ〉〉 with respect to |·|. Every z ∈ LF
can be represented as ∑

j≥0

ajτ
λj ,

where (λj) is an increasing sequence of rational numbers tending to +∞. In
this case |z| = e− ord(z) where ord(z) = min{λj | aj 6= 0}. The field LF is
also algebraically closed since it is the completion of an algebraically closed
non-Archimedean field.

The following Proposition is a complement of Proposition 6.4. The result is
not true in general, it depends on the structure of the finite extensions of F ((τ)).

Proposition 6.15. — Let P ∈ F 〈〈τ〉〉[z] be a nonsimple and tame polynomial
of degree ≥ 2. Consider x in the Julia set of P and denote by (Gn) the geometric
sequence of x. For each n ≥ −1 let sn = sn(x). Then

(4) δ(Gn+1) ≤ lcm{sj | tj 6= tj+1,−1 ≤ j ≤ n},

where lcm denotes the least common multiple.
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Proof. — We proceed by induction. If n = −1 we have that

δ(G0) = 1 ≤ lcm{sj | tj 6= tj+1,−1 ≤ j ≤ −1}.

Suppose that (4) holds for n− 1. If tn = tn+1 then

{sj | tj 6= tj+1,−1 ≤ j ≤ n− 1} = {sj | tj 6= tj+1,−1 ≤ j ≤ n}.

By Corollary 6.6 we have that δ(Gn) = δ(Gn+1), therefore (4) holds for n.
Suppose that tn 6= tn+1 and let Dn be the direction in TGn containing

Gn+1. We have that, there exists 0 6= a ∈ F such that un + aτ bn/an belongs
to Dn ∩ LF where bn/an = |log diam(Gn)|R with (an, bn) = 1.

In view of the structure of the algebraic extensions of the field of formal
Laurent series we have that δ(un + aτ bn/an) ≤ lcm{δ(τ bn/an), δ(un)} and

δ(τ bn/an) = lcm{m, an} ·m−1 = sn,

where m = [k : F ((τ))].
It follows, by Lemma 6.5, that

δ(un+1) ≤ δ(un + aτ bn/an)

≤ lcm{δ(τ bn/an), δ(un)}
= lcm{δ(un), sn}.

Hence, we have that δ(Gn+1) ≤ lcm{sn, δ(Gn)}.
Applying the inductive hypothesis it follows that

δ(Gn+1) ≤ lcm{sn, δ(Gn)}
≤ lcm

{
sn, lcm{sj | tj 6= tj+1,−1 ≤ j ≤ n− 1}

}
≤ lcm{sj | tj 6= tj+1,−1 ≤ j ≤ n}.

This proves the proposition.

Proof of Theorem F. — Assume that the algebraic degree of every element
in J P is finite. From Theorem E we have that there is no recurrent criti-
cal element in J P and that there exists a smallest ∆ ∈ N such that δ(x) ≤ ∆

for all x ∈ J P . In particular, in view of the structure of the subfields of F 〈〈τ〉〉,
it follows that J P is contained in the unique extension of F ((τ)) with degree ∆.

Conversely, suppose that there exists x ∈ J P with δ(x) = +∞. By Propo-
sition 6.15 it follows that

{lcm{sn(x) | tn 6= tn+1, n ≤ m} | m ∈ N}

is an unbounded set, hence {sn(x) | tn 6= tn+1, n ∈ N} is also an unbounded
set and therefore the range of dynamical degrees D(x) is also unbounded (see
Lemma 6.12). By Lemma 4.15, there exists a critical element c ∈ J P with its
range of dynamical degrees D(c) unbounded.
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7. Polynomials with Coefficients in K

In the previous section we proved Corollary B for polynomials with algebraic
coefficients. To prove Theorem A for polynomials with coefficients in K we use
a perturbation argument.

The key to perturb the coefficients of P while preserving a suitable orbit is
the following proposition.

Proposition 7.1. — Let P ∈ K[z] be a nonsimple and tame polynomial of
degree d ≥ 2 and consider x ∈ J P . Then

dH(y, L0) ≤ dd−1 · dH(x, L0),

for all y in ω(x).

7.1. Key Lemma and Proof of Proposition 7.1. — To prove Proposition 7.1 we
need to compare the distance from dH(x, L0) with dH(y, L0). To do this, we need
to introduce the concepts of level and time sequences. Recall that gcg(x, y) de-
notes the greatest common geometric level between x and y, see Definition 4.16.

Let P ∈ K[z] be a nonsimple and tame polynomial of degree ≥ 2 with q

generators for its geometric sequences. Let x ∈ J P a nonpreperiodic point and
consider y in the ω-limit of x.

We define k0 = 0 and `0 = gcg(x, y). The point y belongs to ω(x), hence

lim sup
j→+∞

gcg(P j(x), y) = +∞.

Let
k1 = min{j ∈ N | gcg(P j(x), y) > `0}

and let `1 = gcg(P k1(x), y).
Recursively, we define kn = min{j ∈ N | gcg(P j(x), y) > `n−1} and

`n = gcg(P kn(x), y)

for all n ≥ 2.

Definition 7.2. — We say that (`n)n≥0 is the level sequence from x to y and
that (kn)n≥0 is the time sequence from x to y.

In Figure 1 we see a representation of the level and time sequences. In
this picture we see the segments [x, L0], [P kn−1(x), L0] and [P kn(x), L0]. The
serpentine line represent the intersection with the segment [y, L0]. The dashed
lines represent the action of an iterate of P .

Note that

P kn([G`n+qkn(x), G`n−1+qkn(x)]) = [G`n(y), G`n−1
(y)].
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`n−1 + qkn

`n + qkn

`0

`n−1

`n

x P kn−1(x) P kn(x)

L0 L0L0

`n−1

`n−1 + qkn−1

Figure 1. Level and time sequences

Remark 7.3. — Observe that kn is the smallest integer such that

P kn([x, L0]) ∩ [y,G`n−1(y)[ 6= ∅.

Lemma 7.4. — Let P ∈ K[z] be a nonsimple and tame polynomial of degree
d ≥ 2 with q generators for its geometric sequences. Let x ∈ J P and consider y
in the ω-limit of x, we denote by (`n) (resp. (kn)) the level (resp. time) sequence
from x to y. Then, for any n ≥ 1,

degGj(x)(P
kn) ≤ dd−1

for all the elements Gj(x) contained in the segment [x,G`n−1+qkn(x)[.

Proof. — Let n > 1 and let Gj(x) ∈ [x,G`n−1+qkn(x)[ be a geometric point.
Note that the elements in the set

On(Gj(x)) = {Gj(x), P (Gj(x)), . . . , P kn−1(Gj(x))}

are pairwise incomparable. In fact, if we suppose that there exist 0 ≤ i and
1 ≤ ` such that 1 ≤ i+ ` < kn and P i(Gj(x)) 4 P i+`(Gj(x)), it follows that

Gj−qi(P
i(x)) 4 Gj−qi−q`(P

i+`(x)).

Hence
Gj−qi−q`(P

i(x)) = Gj−qi−q`(P
i+`(x)).
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Then we have that

P kn−`(Gj−q`(x)) = P kn−i−`(P i(Gj−q`(x)))

= P kn−i−`(Gj−qi−q`(P
i(x))

= P kn−i−`(Gj−qi−q`(P
i+`(x))

= Gj−qi−q`−q(kn−i−`)(P
i+`+kn−i−`(x))

= Gj−qkn(P kn(x))

= P kn(Gj(x)).

Since P kn(Gj(x)) ∈ [y,G`n−1
(y)[, we have P kn−`([x, L0])∩[y,G`n−1

(y)[ 6= ∅,
which contradicts Remark 7.3.

Hence, we obtain that the set On(Gj(x)) contains at most d − 1 critical
elements. In consequence, the local degree of P kn at Gj(x) is bounded, from
above, by dd−1.

Proof of Proposition 7.1. — Let n ≥ 1 and suppose that P has q generators for
its geometric sequences. Let x be in the Julia set of P and consider y ∈ ω(x).
Denote by (`n) (resp. (kn)) the level (resp. time) sequence from x to y. From
the previous Lemma and Proposition 4.10, the local degree of P kn is constant
and smaller than dd−1 in each segment of the form ]Gj+1(x), Gj(x)[ contained
in [G`n+qkn(x), G`n−1+qkn(x)[. By Lemma 2.5 it follows that

dH(P kn(Gj+1(x)), P kn(Gj(x))) ≤ dd−1 · dH(Gj+1(x), Gj(x)).

Applying this to all the segments ]Gj+1(x), Gj(x)[ contained in

[G`n+qkn(x), G`n−1+qkn(x)[

we obtain that

dH(G`n(y), G`n−1(y)) ≤ dd−1 · dH(G`n+qkn(x), G`n−1+qkn(x)).

Therefore, if we put a = dH(G`0(x), L0) = dH(G`0(y), L0), we have

dH(y, L0) = a+

+∞∑
n=1

dH(G`n(y), G`n−1
(y))

≤ a+ dd−1 ·
+∞∑
n=1

dH(G`n+qkn(x), G`n−1+qkn(x))

< a+ dd−1 ·
+∞∑

n=`0+qk1

dH(Gn+1(x), Gn(x))

< a+ dH(G`0+qk1(x), G`0(x)) + dd−1 · dH(x,G`0+qk1(x))

≤ dd−1 · dH(x, L0).
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7.2. Recurrent Orbits in the Hyperbolic Space. — Let P ∈ K[z] be a tame
polynomial of degree ≥ 2 and consider x ∈ J P \K. From Proposition 3.14 we
know that ω(x) contains a critical element. Nevertheless, using Proposition 7.1
we can be more precise.

Corollary 7.5. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2 and
consider x ∈ J P \K. Then, ω(x) ∩HK contains a recurrent critical element.

Proof. — Let x ∈ J P ∩HK . From Proposition 3.14 there exists a critical point
c1 in ω(x). As J P is a closed set, c1 ∈ J P . By Proposition 7.1 it follows that

dH(c1, L0) ≤ dd−1 · dH(x, L0) < +∞.

Hence, c1 belongs toHK . Recursively, we can find a sequence of critical elements
(cn) ⊆ J P ∩ HK such that cn+1 ∈ ω(cn). By Proposition 2.14 there exists N
such that cN ∈ ω(cN ). That is, cN is a recurrent critical element in ω(x) ∩
HK .

By the corollary above, we need to study the recurrent critical elements
in J P ∩HK .

In the case that ω(x) contains a periodic critical orbit we will show, Propo-
sition 7.6, that x is a preperiodic point. In Proposition 7.7, we will prove that
the recurrent critical orbits in J P ∩HK are the periodic critical orbits.

Proposition 7.6. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2 and
consider x ∈ J P . If the ω-limit of x contains a periodic critical element, then
x is preperiodic or x is a classical point.

Proposition 7.7. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2. Then
the critical elements of P contained in J P ∩ HK are preperiodic critical ele-
ments of type II.

To show Proposition 7.7 we use a perturbation argument. To prove Propo-
sition 7.6 we need the following lemma about geometric sequences.

Lemma 7.8. — Let P ∈ K[z] be a tame polynomial of degree ≥ 2 with q gener-
ators for its geometric sequences. Consider c ∈ Crit(P )∩ J P a critical element
which is fixed by P . Let x be a Julia point such that Gn(x) = Gn(c) and Gn+1(x)

is noncritical for some n > q + qN (c) Then P (Gn+1(x)) is not critical.

Proof. — We first show that if P (Gn+1(x)) is critical it coincides with
Gn+1−q(c), then we will show that this is impossible.

By the properties of N (c) (see Proposition 3.12) we have that if a geomet-
ric point G` is critical and G` ≺ Gn−q(c) then G` = G`(c). We know that
P (Gn+1(x)) ≺ Gn−q(c). Then if we suppose that P (Gn+1(x)) is critical, it
follows that it coincides with Gn−q+1(c).
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Now suppose that P (Gn+1(x)) = Gn+1−q(c). Since Gn+1(x) is different than
Gn+1(c) it follows, using the Riemann-Hurwitz formula (see 2.7), that

degGn(c)(P ) ≥ 1 + degGn+1(c)(P ),

which contradicts the definition of N (c), since the local degrees of P at Gn(c)

and at Gn+1(c) coincide. Therefore P (Gn+1(x)) is not critical.

Proof of Proposition 7.6. — We assume that P is a tame polynomial with q

generators for its geometric sequences.
Suppose that there exists a nonpreperiodic element x ∈ J P such that the

ω-limit of x contains a periodic critical element c. Passing to an iterate we can
suppose that c is a fixed point.

Let (`n) be the level sequence from x to c and (kn) be the time sequence
from x to c.

Since 1 + `n + qkn > `n−1 + qkn we can use Lemma 7.4 to conclude that

(5) degG1+`n+qkn (x)(P
kn) ≤ dd−1

for all n ≥ 1.

Consider N = max{N (x), N (c)}. If `n > q + qN the points

G1+`n(P kn(x)) = P kn(G1+`n+qkn(x)) and G`n(P kn(x)) = P kn(G`n+qkn(x))

satisfy the hypothesis of Lemma 7.8, since G`n(P kn(x)) = G`n(c) and

G1+`n(P kn(x)) = P kn(G1+`n+qkn(x))

is not a critical element, by definition of (`n) and (kn) (see Definition 7.2).
Hence

P (G1+`n(P kn(x)))

is not a critical element, that is degG1+`n (Pkn (x))(P
2) = 1. If `n − q > q + qN

the points
G1+`n−q(P

kn+1(x)) = P (G1+`n(P kn(x)))

and

G`n−q(P
kn+1(x)) = P (G`n(P kn(x))) = P (G`n(c)) = G`n−q(c)

satisfy the hypothesis of Lemma 7.8 by the definition of the level and time
sequences. Hence

P (G1+`n−q(P
kn+1(x))) = P 2(G1+`n(P kn(x)))

is not a critical element, that is degG1+`(Pkn (x))(P
3) = 1. Applying Lemma 7.8

recursively we obtain that the elements in the set

{P (G1+`n(P kn(x))), P 2(G1+`n(P kn(x))), . . . , P en−1(G1+`n(P kn(x)))}
are not critical, where en is the smallest positive integer such that

`n − q(en − 2) ≤ q + qN .
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In particular, it follows that

(6) degG1+`(Pkn (x))(P
en) = degG1+`n+qkn (x)(P

kn+en) = 1.

If we have that `n − q(en − 2) ≤ q + qN it follows that

`n − qen ≤ −q + qN ≤ qN ,

since 1 ≤ q. Then

degG1+`n−qen
(P b`n/qc−en+1) = degG1+`n−qen

(P b(`n−qen)/qc+1)

≤ degG1+`n−qen
(P bqN/qc+1)

= degG1+`n−qen
(P N+1)

≤ dN+1

that is

(7) degG1+`n−qen
(P b`n+qen/qc+1) = degG`n−qen (P b`n/qc+en+1) ≤ dN+1

for any geometric point of level 1 + `n − qen.
If

∆n = degG1+`n+qkn (x)(P
b(`n+qkn)/qc+1)

we have that

∆n = degG1+`n+qkn (x)(P
b`n/qc+kn+1)

= degG1+`n+qkn (x)(P
kn) · degPkn (G1+`n+qkn (x))(P

en)

· degPkn+en (G1+`n+qkn (x))(P
b`n/qc+en+1)

= degG1+`n+qkn (x)(P
kn) · degG1+`n (Pkn (x))(P

en)

· degG1+`n−qen (Pkn+en (x))(P
b`n/qc+en+1)

by (5), (6) and (7) we conclude that

(8) degG1+`n+qkn (x)(P
b(1+`n+qkn)/qc+1) ≤ dd−1 · 1 · dN+1 = dd+ N

for all n ≥M where M ∈ N is such that `M > q + qN .
Following Proposition 4.10 and (8) above, we have that degy(P b(`n+qkn)/qc+1)

is constant and bounded by dd+ N for any point y in the segment

[G1+`n+qkn(x), G`n+qkn(x)[.

Since P b(`n+qkn)/qc+1([G1+`n+qkn(x), G`n+qkn(x)]) belong to {I0, I1, . . . , Iq−1}
(see discussion below Definition 4.5) there exists a segment I ∈ {I0, I1, . . . , Iq−1}
and an increasing sequence (nj) of integers larger that M such that

P b(`nj+qknj )/qc+1([G1+`nj+qknj
(x), G`nj+qknj

(x)]) = I,
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for all j ≥ 1.

Therefore, following Lemma 2.5 and using (8), we have that

dH(x, L0) ≥
+∞∑
j=1

dH(G1+`nj+qknj
(x), G`nj+qknj

(x))

≥
+∞∑
j=1

|I|
dd+ N

= +∞,

where |I| denotes the length of the segment I. It follows, x is a classical point.

Recall that we are assuming that k ⊆ K is a complete field such that the
restriction of |·| to k is a discrete absolute value and that

{z ∈ K | [k(z) : k] < +∞}

is a dense subset of K.

In order to prove Proposition 7.7 we need a proposition to relate the dy-
namics of a polynomial P ∈ K[z] with the dynamics of a small perturbation Q
of P , of degree d and with coefficients in a finite extension of k.

Proposition 7.9. — Let P ∈ K[z] be a tame polynomial of degree d ≥ 2 and
let 0 < ε < diam(L0). Then, there exists a tame polynomial Q ∈ ka[z] such
that P (x) = Q(x) and degx(P ) = degx(Q) for all x in D0 ∩ {diam(x) > ε}.

To prove this Proposition we need to establish some notation. Let

P (z) = adz
d + ad−1z

d−1 + · · ·+ a1z + a0 ∈ K[z]

be a tame polynomial of degree d ≥ 2. Since K is an algebraically closed field,
we can write P ′(z) = ad ·d · (z−w1)n1 · (z−w2)n2 · · · (z−w`)n` , where wi 6= wj
if i 6= j. For any 0 < δ < min

i 6=j
|wj − wi| we consider

Vδ =
⋃̀
j=1

B(wj , δ) and Wδ = P−1(P (Vδ)).

Note thatWδ is a finite union of open balls and that max{diam(x) | x ∈Wδ}
goes to zero when δ goes to zero.

For convenience, we establish the following straightforward facts about Vδ
and Wδ as a lemma.
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Lemma 7.10. — Let P ∈ K[z] be a tame polynomial with degree d > 2.
Let D = B

+
(0, R) be a closed ball of the Berkovich line containing D0 and the

roots of P . Let mδ = min{|P | (x) | x ∈ D \ Vδ} Then the following statements
hold:

1. For any a ∈ A1,an
K \Wδ the polynomial P (z) − P (a) is separable and its

roots belong to A1,an
K \ Vδ.

2. If α, β are distinct roots of P (z)− P (a) we have that

|α− β| ≥ |ad|−1 ·R2−d ·mδ.

3. Let rδ = |ad|−1 ·R2−d ·mδ. Denote by Uδ(a) the union of d open balls of
radius rδ centered in the roots of P (z)− P (a) it follows that

|P − P (a)| ≥ mδ · rδ
on A1,an

K \ Uδ(a)

To prove Proposition 7.9 we use the notation of the previous Lemma.
Recall that if P is polynomial in K[z] and xB ∈ A1,an

K is a type II point,
then |P | (xB) = sup

{
|P (z)| | z ∈ B

}
. Using continuity we extend definition

of |P | (x) to other types of points.

Proof of Proposition 7.9. — Let

P (z) = adz
d + ad−1z

d−1 + · · ·+ a1z + a0 ∈ K[z]

be a tame polynomial of degree d ≥ 2. Let D = B
+

(0, R) be a closed ball of
the Berkovich line containing D0 and the roots of P .

Since K is an algebraically closed field, we can write

P ′(z) = ad · d · (z − w1)n1 · (z − w2)n2 · · · (z − w`)n` ,

where wi 6= wj if i 6= j and nj is the multiplicity of wj .
Let b ∈ K such that 0 < |P ′(b)| ≤ 1 and consider

0 < δ < min
{

min
i 6=j
|wj − wi| ,min

j
|b− wj |

}
.

Note that by this choice on δ we have that mδ ≤ 1.
Let 0 < η < δ. Since ka is dense in K, we can pick w′1, . . . , w′` ∈ ka such that∣∣wj − w′j∣∣ < η, and |wj | =

∣∣w′j∣∣ for all 1 ≤ j ≤ `. Moreover, pick bd, b0 ∈ ka

such that |bj − aj | < η and |aj | = |bj | for j = 0, d. Let Q(z) ∈ ka[z] be the
formal primitive of

bd · d·(z − w′1)n1(z − w′2)n2 · · · (z − w′`)n`

such that Q(0) = b0. Note that by the choice of wj , bd and b0 we have that
P is a tame polynomial and degx(P ) = degx(Q) for all x ∈ A1,an

K such that
diam(x) ≥ η.
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The functions |P ′| and |Q′| coincide on A1,an
K \ Vδ. In particular, if W ′δ =

Q−1(Q(Vδ)) then Lemma 7.10 holds for Q and a ∈ A1,an
K \ W ′δ. We denote

by U ′δ(a) the union of d open balls of radios rδ centered in the roots of Q(z)−
Q(a)

If we choose η small enough, we can assume that |P −Q| < mδ · rδ on the
ball D. For any a ∈ D it follows that

|(P − P (a))− (Q−Q(a))| < mδ · rδ
on D.

Note that if a 6∈Wδ∪W ′δ then Uδ(a) = U ′δ(a). In fact, if α is a root of P (z)−
P (a), we have that |P (α)− P (a)| < mδ · rδ, that is, α belongs to U ′δ(a). By
symmetry we can conclude that Uδ(a) = U ′δ(a).

In particular if a 6∈Wδ ∪W ′δ, the functions |P − P (a)| and |Q−Q(a)| coin-
cide on the boundary of Uδ(a). Moreover, their also coincide on ∂D. It follows
from the maximum principle that |P − P (a)| = |Q−Q(a)| on D \ Uδ(a).

Let a 6∈ Wδ ∪W ′δ and consider rδ < r. Let x = xB , where B = B+
r (a). If

r̂ = |P − P (a)| (x) = |Q−Q(a)| (x), it follows that

P (B) = B+
r̂ (P (a)) and Q(B) = B+

r̂ (Q(a)),

as well as |P (a)−Q(a)| < mδ · rδ ≤ r̂, hence P (B) = B and there-
fore P (x) = Q(x).

Let δ′ = sup{diam(x) | x ∈ Wδ ∪ W ′δ}. Note that any type II point
x ∈ D with diameter r > max{δ, δ′} can be written x = xB , where B =

Br(a) with a 6∈ Wδ ∪ W ′δ, that is P coincides with Q on the type II points
in D ∩

{
diam(x) > max{δ, δ′}

}
. Using continuity we have that P = Q

on D∩ {diam(x) > max{δ, δ′}}. Since δ′ goes to 0 when δ goes to 0, it follows
that P (x) = Q(x) for all x in D0 ∩ {diam(y) > ε}

Lemma 7.11. — Let P ∈ K[z] be a tame of degree d ≥ 2. Suppose that there
exists a nonperiodic recurrent critical element c ∈ J P . Then c belongs to K.

Proof. — Seeking a contradiction, suppose that there exists a recurrent and
nonperiodic critical element c ∈ J P∩HK . In view of the recurrence of c we have
that Pn(c) belongs to the ω-limit of c for all n ∈ N. Following Proposition 7.1
we obtain that

dH(L0, P
n(c)) ≤ dd−1 · dH(L0, c),

for all n ∈ N. In particular, 0 < inf{diam(Pn(c)) | n ∈ N ∪ {0}}.
Let 0 < R < inf{diam(Pn(c)) | n ∈ N ∪ {0}}. By Proposition 7.9 we have

that there exists a tame polynomial Q ∈ ka[z] of degree d such that Q coincides
with P in

D0 ∩ {diam(y) > R} ∩ P−1({diam(y) > R}).
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In particular, the dynamical sequence (Ln(c)) of P is also a dynamical sequence
of Q, it follows that c belongs to the Julia set of Q. Then, c ∈ J Q \ K is a
nonperiodic and recurrent algebraic element (since it is critical). Moreover, c is
not strictly preperiodic, since it is recurrent. Which contradicts Proposition 6.7,
therefore c belongs to J

I
P .

Proof of Proposition 7.7. — We proceed by contradiction. Suppose that there
exists a critical element c ∈ J P ∩ HK that is not preperiodic. According to
Corollary 7.5 there exists a recurrent critical element c1 in ω(c) ∩ HK which,
by Proposition 7.6, is not a periodic point. Applying Lemma 7.11 we have that
c1 ∈ K, which is impossible.

Therefore c is a preperiodic critical element. The proposition follows since
periodic critical elements are of type II by Proposition 2.12.

7.3. Proof of Theorem A and Corollary B. — In this subsection we prove a
slightly different version of Theorem A and we obtain some corollaries.

Theorem 7.12. — Let P be a nonsimple and tame polynomial with coeffi-
cients in K of degree d ≥ 2. Then J P \K is empty or

J P \K = GO(x1) t · · · tGO(xm),

where 1 ≤ m ≤ d− 2 and x1, . . . , xm ∈ HK are periodic critical elements.

Proof. — Consider x ∈ J P ∩ HK . From Corollary 7.5 we have that ω(x)

contains a nonclassical recurrent critical element. Using Proposition 7.7 and
Proposition 7.6 we have that x is in the backward orbit of a periodic critical
element. Following Proposition 2.14 there exist, at most, d−2 critical elements
contained in the Julia set of P . Now the theorem follows.

Corollary B follows directly from Theorem 7.12 applying Proposition 2.16.

Remark 7.13. — If we consider a nonsimple and tame polynomial P ∈ K[z]

but we study its action in the spherical completion of K, we obtain again
Corollary B. This is not true for non-tame polynomials. The Example 6.3 in
[20] shows that for the non-tame polynomial

f(z) =
1

p

(
zp − zp

2)
∈ Cp[z],

we have that
Jf ⊆

{
x ∈ A1,an

Cp | diam(x) = p−
1
p−1
}
,

moreover, the type II points in Jf are preperiodic and the type IV points in Jf
are not preperiodic. Hence, if we consider the action of f on the affine line in
the sense of Berkovich associated with the spherical completion of Cp we have
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that there exist wandering domains which are not attracted to an attracting
cycle.

The following corollary is about the equilibrium measure of the classical
Julia set and the relation between the topological entropy (htop) and the metric
entropy (hρP ) of P , see [13] for the definitions of topological and metric entropy.
The first statement follows from the countability of J P ∩ HK . The second
statement is a direct consequence of Theorem D in [13].

Corollary 7.14. — Let P ∈ K[z] be a nonsimple and tame polynomial of
degree d ≥ 2. Then, the following statements hold:

1. The classical Julia set has full measure, that is, ρP ( J
I
P ) = 1.

2. The equilibrium measure ρP is a measure of maximal entropy and

hρP = htop = log(d).

Theorem 7.12 and Corollary 7.14 are not valid for rational maps, see exam-
ples in [13].

Proof of Corollary C. — By [1, Theorem 10.88] or [24] we know that J P is
the closure of the repelling periodic points. Following Theorem 7.12 there are
only finitely many such points in J P \K, while the Julia set is infinite.

Proof of Corollary D. — (1)⇒ (2) Since J
I
P is a compact and totally invari-

ant set, disjoint of the classical exceptional set of P , we have that J P = J
I
P ⊆

K. From Theorem 7.12, it follows that there are no critical periodic elements.

(2) ⇒ (3) There is no critical periodic elements in J P , then in view of
Theorem 7.12 we have that J P ⊆ K. Therefore J P = J

I
P .

(3) ⇒ (4) If J P = J P ∩K we have that J P = K
I
P . Since any classical

periodic point belongs to K
I
P , it follows that them are repelling.

(4)⇒ (1) We will show that J
I
P is a compact set showing that J

I
P = J P .

According Theorem 7.12 if J P 6= J
I
P then there exists a period n critical

element xB ∈ J P \ J
I
P . It follows that Pn(B) = B and degB(Pn) ≥ 2,

therefore following [17, Lemma 2.4], there exists a periodic point z0 of P in B.
Since the classical periodic points are repelling we have that z0 belongs to J P .
But z0 ≺ xB , which is a contradiction with Lemma 2.15.
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