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par Guy Henniart

Résumé. — Soit F un corps de nombres et soit E une extension cyclique de F , de
degré d. L’induction automorphe associe à une représentation automorphe cuspidale τ
de GLm(AE) une représentation automorphe π de GLmd(AF ), induite de cuspidale. La
représentation π est caractérisée par le fait qu’à presque toute place v de F , le facteur
L(πv , s) est le produit des facteurs L(τw, s), w parcourant les places de E au–dessus de
v. Par la correspondance conjecturale de Langlands, cette opération doit correspondre
à l’induction, de E à F , des représentations galoisiennes.

Nous prouvons l’existence de l’induite automorphe π de τ , et étudions les fibres et
l’image de ce processus d’induction. Pour cela nous utilisons et étendons les résultats
d’Arthur et Clozel sur le processus de changement de base, qui correspond à la restric-
tion de E à F des représentations galoisiennes, et nous précisons le lien entre ces deux
processus. De plus, nous prouvons que l’opération d’induction automorphe globale est
compatible aux places finies à l’opération locale construite par R. Herb et l’auteur.

Abstract (Global automorphic induction for number fields). — Let F be a number
field, E a finite cyclic extension of F , d its degree. Automorphic induction associates to
a cuspidal automorphic representation τ of GLm(AE) an automorphic representation
π of GLmd(AF ), induced from cuspidal, and characterized by the fact that at almost
all places v of F , the factor L(πv , s) is the product of the factors L(τw, s), where w runs
through the places of E above v. By the correspondence conjectured by Langlands,
that process should correspond to inducing Galois representations from E to F .

We prove here that the representation π automorphically induced from τ exists,
and we study the fibres and the image of automorphic induction. For that we use
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2 G. HENNIART

and extend the results of Arthur and Clozel on base change, which corresponds to
restricting Galois representations from F to E, and we clarify the relations between the
two processes. Moreover we prove that global automorphic induction is compatible, at
finite places, with the local automorphic induction defined by R. Herb and the author.

1. Introduction

1.1. — Soient F un corps de nombres, E une extension cyclique de F , d le
degré de E sur F . Arthur et Clozel [1] ont établi un processus de changement
de base, de F à E, qui à une représentation automorphe cuspidale unitaire π de
GLn(AF ) associe une représentation automorphe πE/F de GLn(AE), induite
de cuspidale unitaire, de sorte qu’en presque toute place w de E, le facteur L
de πE/F en w soit le produit des facteurs L(χπv, s), où v est la place de F
au–dessous de w et où χ parcourt les caractères de F×v triviaux sur les normes
de E×w .

Dans ([1], chap. III), Arthur et Clozel déterminent l’image et les fibres du
changement de base, au moins quand le degré d est un nombre premier.

Nous voulons étudier ici le processus en sens inverse, dit d’induction auto-
morphe, qui à une représentation automorphe cuspidale unitaire τ de GLm(AE)

associe une représentation automorphe π = τE/F de GLmd(AF ), induite de cus-
pidale unitaire, de sorte que pour presque toute place v de F le facteur L(πv, s)

soit le produit des facteurs L(τw, s), w parcourant les places de E au–dessus
de v.

1.2. — L’existence de ces deux processus se prévoit facilement par l’heuristique
de Langlands, dans laquelle les représentations automorphes de GLn(AF ) cor-
respondent à des représentations galoisiennes de dimension n. Pour être plus
précis, les représentations automorphes de GLn(AF ) qui sont algébriques aux
places infinies au sens de Clozel [2] doivent correspondre à des représentations
`–adiques de dimension n du groupe Gal(F/F ) – où F est une clôture algébrique
de F –, les représentations automorphes cuspidales correspondant à des repré-
sentations irréductibles de Gal(F/F ). Si E est une extension finie quelconque
de F dans F , et d son degré, alors Gal(F/E) est un sous–groupe ouvert d’indice
d de Gal(F/F ). La restriction à Gal(F/E) d’une représentation `–adique de
dimension n de Gal(F/F ) donne une représentation `–adique de dimension n
de Gal(F/E), tandis que l’induction à Gal(F/F ) d’une représentation `–adique
de dimension m de Gal(F/E) donne une représentation `–adique de dimension
md de Gal(F/F ).
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INDUCTION AUTOMORPHE GLOBALE POUR LES CORPS DE NOMBRES 3

Le processus de changement de base pour les représentations automorphes
de GLn(AF ) est le pendant du processus de restriction des représentations `–
adique de Gal(F/F ) : la condition sur les facteurs L reflète précisément le
comportement de la restriction aux places non ramifiées. De même le proces-
sus d’induction automorphe est le pendant du processus d’induction des re-
présentations galoisiennes, d’où son nom ; la condition sur les facteurs L reflète
également le comportement de l’induction galoisienne aux places non ramifiées.

1.3. — Il faut noter que le changement de base n’est pas établi pour toutes les
extensions finies E de F : le cas connu où E/F est cyclique permet de traiter
celui où E est une extension galoisienne de F à groupe de Galois résoluble ([1],
chap. III), mais le cas général est pour l’heure hors d’atteinte. De même, l’in-
duction automorphe ne peut être établie pour l’instant que dans des situations
d’inductions cycliques successives.

1.4. — Pour E/F cyclique le changement de base est obtenu par comparai-
son de deux formules des traces, l’une pour GLn(AF ), l’autre pour GLn(AE)

mais « tordue » par l’action d’un générateur σ de Gal(E/F ). L’induction auto-
morphe, toujours pour E/F cyclique, doit s’obtenir également par comparaison
de deux formules des traces, l’une pour GLm(AE), l’autre pour GLmd(A/F ),
mais « tordue » par l’action d’un caractère de A×F /F× qui définisse l’extension
E/F . C’est d’ailleurs par la comparaison de telles formules des traces que les
théories locales du changement de base ([1, chap. I]) et de l’induction auto-
morphe [5], ont été construites. Cependant les formules des traces de [5] sont
utilisées dans des cas particuliers où elles ont une écriture et une démonstra-
tion relativement simples. Ce n’est pas le cas des formules établies dans ([1],
chap. II) pour le changement de base. Nous avons reculé pour l’instant devant
la tâche d’utiliser les travaux ultérieurs d’Arthur : l’induction automorphe peut
s’interpréter en termes d’endoscopie.

1.5. — Plus simplement, nous déduisons ici la construction et les propriétés de
l’induction automorphe cyclique, de celles du changement de base. Du point de
vue de l’heuristique de Langlands, nous utilisons un procédé de « descente ga-
loisienne ». Plus précisément, si ρ est une représentation `–adique de dimension
m de Gal(F/E), son induite σ à Gal(F/F ), qui est de dimension md, est stable
par torsion par les caractères de Gal(E/F ), et la restriction de σ à Gal(F/E)

est la somme des conjugués de ρ par le groupe cyclique Gal(E/F ). De plus on
voit facilement que ces deux propriétés caractérisent σ.

Si τ est une représentation automorphe cuspidale (unitaire) de GLm(AE),
on va donc tenter de définir son induite automorphe π = τE/F comme la re-
présentation automorphe de GLmd(AF ), induite de cuspidale unitaire, qui est
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4 G. HENNIART

stable par torsion par les caractères de A×F /F× définissant E/F et dont le chan-
gement de base à GLmd(AE) est l’induite parabolique de ⊗gτg, g parcourant
Gal(E/F ).

1.6. — Pour démontrer l’existence et l’unicité de π = τE/F , et obtenir les pro-
priétés du processus ainsi obtenu, il nous faut connaître complètement les fibres
et l’image du changement de base. On sait que les résultats de ([1], chap. III)
dans le cas où d est premier ne permettent pas d’atteindre le cas général par
descentes galoisiennes successives de degré premier [10], du moins sans travail
supplémentaire. C’est pourquoi dans un premier temps, nous reprenons les ar-
guments de ([1], chap. III) pour les compléter en traitant le cas d’une extension
cyclique E/F de degré quelconque. Puis nous en déduisons le cas de l’induction
automorphe.

Nous énonçons maintenant nos résultats. On fixe une extension cyclique
E/F , de degré d, un générateur σ du groupe Γ = Gal(E/F ) et un générateur
κ du groupe X des caractères de A×F triviaux sur F×NE/F (A×E).

1.7. — Commençons par le changement de base. Si π est une représentation
automorphe de GLn(AF ), induite de cuspidale unitaire, on dit qu’une représen-
tation automorphe Π de GLn(AE), induite de cuspidale unitaire, est un chan-
gement de base de π (de F à E) si les conditions sur les facteurs L de (1.1) sont
vérifiées. Par le théorème de rigidité de Jacquet et Shalika ([7], Theorem 4.4),
Π est alors unique à isomorphisme près, et on parlera donc du changement de
base Π de π, qu’on pourra noter πE/F . Par les conditions de (1.1), on voit que
Π est stable par l’action de Γ.

On a la compatibilité évidente à l’induction parabolique. Si n1, . . . , nr sont
des entiers ≥ 1 de somme n, et que pour i = 1, . . . , r, πi est une représentation
automorphe de GLni(AF ), induite de cuspidale unitaire, on note π1 × · · · × πr
la représentation automorphe de GLn(AF ) obtenue par induction parabolique
de π1⊗· · ·⊗πr. Si pour i = 1, . . . , r, Πi est un changement de base de πi, alors
Π1 × · · ·Πr est un changement de base de π1 × · · · × πr.

1.8. — Si π est une représentation automorphe de GLn(AF ), induite de cuspi-
dale unitaire, on note X(π) son stabilisateur dans X, d(π) le cardinal de X(π).
Bien sûr d(π) divise d, mais en regardant les caractères centraux on voit que
d(π) divise aussi n.

Théorème 1. — Soit π une représentation automorphe cuspidale unitaire de
GLn(AF ), et posons δ = d(π), n = δr. Alors π possède un changement de base
Π, qui est de la forme Π1 × Πσ

1 × · · · × Πσδ−1

1 , où Π1 est une représentation
automorphe cuspidale unitaire de GLr(AE), dont le stabilisateur dans Γ est
engendré par σδ. Les représentations automorphes de GLn(AF ), induites de
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cuspidale unitaire, dont le changement de base est Π sont les tordues de π par
les caractères de X.

Ce théorème entraîne que toute représentation automorphe de GLn(AF ),
induite de cuspidale unitaire, a un changement de base. On décrit en 2.5 les
fibres du processus ainsi obtenu.

1.9. — Quant à l’image du processus de changement de base, elle est gouvernée
par le résultat suivant.

Théorème 2. — Soit Π une représentation automorphe de GLn(AE), de la
forme Π1 × · · · ×Πσδ−1

1 , pour un diviseur δ de d et n, où Π1 est une représen-
tation automorphe cuspidale unitaire de GLn/δ(AE), dont le stabilisateur dans
Γ est engendré par σδ. Alors Π est le changement de base d’une représentation
automorphe cuspidale unitaire de GLn(AF ).

On en tire en particulier que toute représentation automorphe de
GLn(AE), induite de cuspidale unitaire, qui est stable par σ, est un changement
de base (2.5).

1.10. — Les théorèmes 1 et 2 acquis, nous pouvons alors procéder par descente
galoisienne pour obtenir l’induction automorphe.

Si τ est une représentation automorphe de GLm(AE), induite de cuspidale
unitaire, on dit qu’une représentation automorphe π de GLmd(AF ), induite de
cuspidale unitaire, est induite automorphe de τ (dans l’extension E/F ) si les
conditions sur les facteurs L de (1.1) sont satisfaites. Par rigidité, π est alors
unique à isomorphisme près, et on peut parler de l’induite automorphe de τ ,
et la noter τE/F . Par les conditions de (1.1), π est stable par torsion par κ.

Théorème 3. — Soit τ une représentation automorphe de GLm(AE), induite
de cuspidale unitaire. Il existe une représentation automorphe π de GLmd(AF ),
induite de cuspidale unitaire, qui vérifie les conditions suivantes :

(i) le changement de base de π est τ × τσ × · · · × τσd−1

;
(ii) π est stable par torsion par κ.

La représentation π est unique à isomorphisme près, et est induite automorphe
de τ .

On décrira aussi les fibres et l’image du processus d’induction automorphe
ainsi obtenu (2.7).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



6 G. HENNIART

1.11. — Comme nous l’avons rappelé plus haut, une théorie locale du change-
ment de base cyclique est établie dans ([1], chap. I) pour les corps locaux de
caractéristique nulle ; cette version est étendue aux corps locaux de caractéris-
tique non nulle dans [6, chap. II].

Plus précisément, si L/K est une extension cyclique de corps locaux, la
théorie du changement de base, de L àK, associe à toute classe d’isomorphisme
π de représentations unitaires irréductibles génériques de GLn(K), une classe
d’isomorphisme πL/K de représentations unitaires irréductibles génériques de
GLn(L). Les représentations π et πL/K vérifient une identité de caractères,
l’identité de Shintani ([1], [chap. 1, def. 6.1), qui détermine πL/K à partir de π.
De plus l’on sait que par la correspondance de Langlands, ce processus traduit
la restriction au groupe de Weil–Deligne de L des représentations de dimension
n du groupe de Weil–Deligne de κ [3]. La théorie s’étend de façon simple aux
cas d’une algèbre cyclique L sur un corps local K (cf. [9], § 9, et [6, chap. II]).

1.12. — De façon analogue, une théorie de l’induction automorphe locale a été
établie pour les extensions cycliques de corps locaux non archimédiens, ou plus
généralement pour une algèbre cyclique L sur un corps local non archimédien
K ([5] et [6, chap. III et IV]). Plus précisément, cette théorie associe à toute
classe d’isomorphisme τ de représentations unitaires irréductibles génériques de
GLm(L) une classe d’isomorphisme τL/K de représentations unitaires irréduc-
tibles génériques de GLmd(K), où d est le degré de L surK. Les représentations
τ et τL/K sont reliées par une identité de caractères [5, § 4] qui détermine τL/K

à partir de τ . De plus, quand L est une extension cyclique de K, l’on sait que ce
processus correspond bien, par la correspondance de Langlands, à l’induction
de K à L des représentations de dimension m du groupe de Weil–Deligne de L
[3, 4].

1.13. — Il convient alors d’étudier les liens entre les processus locaux de chan-
gement de base et d’induction automorphe, ainsi que la compatibilité de ces
processus locaux aux processus globaux.

En ce qui concerne le changement de base, la compatibilité locale–globale
est connue si d est un nombre premier ([1], chap. I, p. 69 et chap. III § 5). Nous
étendons les arguments de loc. cit. pour obtenir le théorème suivant :

Théorème 4. — Soit π une représentation automorphe de GLn(AF ), induite
de cuspidale unitaire, et soit Π son changement de base de F à E. Soit v une
place de F , et voyons l’algèbre Ev = E ⊗F Fv comme une Fv–algèbre cyclique
de groupe Γ. Alors la représentation Πv de GLn(Ev) est le changement de base
de πv.
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Remarque. — La dernière assertion équivaut au fait que pour chaque place
w de E au–dessus de v, πw est le changement de base de πv, pour l’extension
cyclique Ew/Fv.

1.14. — Nous démontrons aussi l’analogue de ce résultat pour l’induction au-
tomorphe.

Théorème 5. — Soit τ une représentation automorphe de GLm(AE), induite
de cuspidale unitaire, et soit π = τE/F l’induite automorphe de τ . Soit v une
place finie de F . Alors πv est l’induite automorphe (locale) de la représentation
τv de GLm(Ev).

Remarque. — 1) Pour un corps global de caractéristique non nulle, les énon-
cés analogues aux théorèmes 4 et 5 sont établis dans [4].

2) La preuve du théorème 5 s’étend directement au cas d’une place infi-
nie de F , aussitôt la théorie de l’induction automorphe établie pour les corps
archimédiens [4].

1.15. — En fait, étant donnée la construction de l’induction automorphe glo-
bale, le théorème 5 découlera du théorème 4 et de la compatibilité des processus
locaux de changement de base et d’induction automorphe.

Théorème 6. — Soit v une place finie de F , et soit τ une représentation lisse
irréductible, générique et unitaire de GLm(Ev). Alors il existe une représenta-
tion lisse irréductible générique unitaire π de GLmd(Fv) qui vérifie les proprié-
tés suivantes :
(i) le changement de base de π (pour l’algèbre cyclique Ev/Fv) est τ × τσ ×
· · · τσd−1

.
(ii) π est stable par torsion par κv.

La représentation π est unique à isomorphisme près, et est induite automorphe
de τ .

1.16. — Grosso modo nous démontrons nos résultats dans l’ordre indiqué. Au
chapitre 2 nous généralisons les considérations de ([1], chap. III) au cas cyclique
de degré non nécessairement premier, pour obtenir les théorèmes 1 et 2 et la
description générale de l’image et des fibres du changement de base. Nous
en tirons aussi le théorème 3, et décrivons l’image et les fibres de l’induction
automorphe. Le chapitre 3 est consacré à la preuve des théorèmes 4 à 6.

Le lecteur aura remarqué, comme le rapporteur l’a noté, que nous n’avons
pas rappelé les identités de caractères précises qui déterminent les processus
locaux de changement de base ou d’induction automorphe. Le point est que ces
relations ne nous servent pas ici. Dans les arguments du chapitre 3, de nature
locale–globale, nous utilisons seulement que ces processus peuvent être définis
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8 G. HENNIART

de manière locale, et que dans certaines circonstances déjà établies ([1, chap. I],
[5]), ils sont compatibles aux processus globaux.

1.17. — Cet article est écrit lors d’un congé pour recherches accordé par l’Uni-
versité Paris–Sud. Je voudrais remercier I. Badulescu, L. Clozel, B. Lemaire et
F. Shahidi pour des discussions relatives à cet article. Je remercie également le
rapporteur pour ses remarques perspicaces.

1.18. — Dans la suite, on garde la situation précédente. Ainsi F est un corps
de nombres, E une extension cyclique de F , de degré d. On pose Γ = Gal(E/F )

et on fixe un générateur σ de Γ ; on note X le groupe des caractères de A×F
triviaux sur F×NE/F (A×E) et on en fixe un générateur κ. On note | |F la valeur
absolue adélique sur AF .

Si v est une place de F , on pose Ev = E⊗F Fv ; c’est le produit des complétés
Ew quand w parcourt les places de E au–dessus de w, et c’est une Fv–algèbre
cyclique de groupe Γ. On utilise les notations habituelles pour les corps locaux
non archimédiens.

Les entiers m et n, strictement positifs, sont généralement considérés comme
fixés. Les représentations automorphes que nous considérons sont en général
unitaires, mais nous précisons toujours ce point, pour la commodité du lecteur.

2. Changement de base et induction automorphe

2.1. — Dans ce chapitre, nous reprenons les arguments de ([1], chap. III) pour
prouver les théorèmes 1 et 2. Ces arguments comportent deux aspects : une
comparaison de formules des traces d’une part, et des considérations de pôles
de fonctions L de paires d’autre part. Alors que ces deux aspects sont entre-
lacés dans [loc. cit], nous nous efforçons ici de séparer leur rôle, ce qui, outre
l’avantage de la clarté, permet de généraliser les résultats de [loc. cit.] à tout
degré d.

Nous considérons principalement ici des représentations automorphes in-
duites de cuspidale unitaire au sens de [loc. cit., chap. II, def. 4.1]. Rappelons
qu’une représentation automorphe π de GLn(AF ) est dite induite de cuspi-
dale unitaire si elle est obtenue par induction parabolique d’une représentation
automorphe cuspidale unitaire τ d’un sous–groupe de Levi de GLn. Un tel
sous–groupe de Levi est isomorphe à GLn1 × · · · ×GLnr , où n1 + · · ·+ nr = n,
et τ est de la forme π1 ⊗ · · · ⊗ πr où pour i = 1, . . . , r, πi est une représenta-
tion automorphe cuspidale de GLni(AF ). On note en ce cas π = π1 × · · ·πr et
on dit que π1 ⊗ · · · ⊗ πr est le support cuspidal de π ; ce support cuspidal est
bien défini à isomorphisme et permutation des facteurs près [loc. cit., chap. III,
2.4]. Ce résultat d’unicité découle de considérations de fonctions L de paires,
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INDUCTION AUTOMORPHE GLOBALE POUR LES CORPS DE NOMBRES 9

et les mêmes raisonnements donnent aussi le phénomène de rigidité : si π′ est
une représentation automorphe de GLn(AF ), induite de cuspidale unitaire, et
telle que π′v soit isomorphe à πv pour presque toute place v de F , alors π′ est
isomorphe à π.

Remarque. — En une place v de F , le composant πv de π est générique et
unitaire. Ecrivant π = π1 × · · · × πr comme plus haut, πv est l’induite parabo-
lique π1,v × · · · × πr,v, dont on sait qu’elle est irréductible. Par [8], on voit que
pour que le phénomène de rigidité ci–dessus soit valide, il n’est pas nécessaire
que la représentation automorphe π′ soit induite de cuspidale unitaire.

Noter que pour les places finies, la classification des représentations lisses
irréductibles génériques est due à Zelevinsky [13, § 9], et celle des représenta-
tions lisses irréductibles unitaires à Tadić [12].

2.2. — Cependant, les représentations automorphes qui peuvent intervenir
dans la formule des traces – ou plutôt sa partie discrète, qui est la seule qui
joue un rôle dans ([1], chap. III) – ne sont pas toutes induites de cuspidale.

Nous dirons qu’une représentation automorphe π de GLn(AF ) est discrète
si elle intervient dans la partie discrète de L2(GLn(F )\GLn(AF ), ω) pour une
caractère unitaire ω de A×F trivial sur F×. Mœglin et Waldspurger [11] ont
classifié les représentations discrètes en termes de représentations automorphes
cuspidales unitaires. Plus précisément, si π est une représentation automorphe
discrète de GLn(AF ), il existe un diviseur r de n, n = rs, et une représentation
automorphe cuspidale unitaire σ de GLr(AF ), tels qu’à toute place v de F le
composant πv soit l’unique quotient irréductible de l’induite parabolique

ρv | |(s−1)/2
v × · · · × ρv | |(1−s)/2v .

En particulier, si v est finie et que ρv est non ramifiée, paramétrée par une
matrice diagonale Av de GLr(C), alors πv est paramétrée par la matrice de
GLn(C) diagonale par blocs Av q

(1−s)/2
v , . . . , Av q

(1−v)/2
v (ici | |v désigne la

norme de Fv, et qv le cardinal du corps résiduel de OFv ). Remarquons que
tous les composants locaux de ρ sont génériques et unitaires ce qui dans le cas
précédent implique que les valeurs propres α de Av vérifient q

−1/2
v < |α| < q

1/2
v :

on voit donc que l’entier r est déterminé par π. Mais des arguments de fonctions
L de paires prouvent que π détermine aussi ρ à isomorphisme près. Il s’ensuit
également que les représentations discrètes vérifient le phénomène de rigidité.

En fait les représentations automorphes qui interviennent dans la partie
discrète de la formule des traces de ([1], chap. II) sont induites de série discrète :
remplacer, dans la définition de 2.1, « cuspidale unitaire » par « discrète ». Les
induites de série discrète vérifent également le phénomène de rigidité.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



10 G. HENNIART

2.3. — Nous démontrons les théorèmes 1 et 2 par récurrence sur n, le cas n = 1

découlant de la théorie globale du corps de classes.
Tout d’abord, une représentation automorphe π de GLn(AF ) induite de

cuspidale unitaire possède un changement de base : pour π cuspidale, cas où
l’on se restreint aussitôt, cela est prouvé dans [loc. cit., chap. III, Thm. 4.2].
La démonstration pp. 203–204 (preuve du Thm. 4.2(a)) n’utilise pas que d
est premier : le point important est qu’à cause du phénomène de rigidité π
intervient dans la formule des traces pour GLn(AF ) avec un coefficient non
nul. (Bien sûr, on peut obtenir le résultat pour d quelconque à partir du cas
où d est premier, par extensions successives de degré premier ; mais cela ne
vaudrait pas pour le cas qui va suivre).

En sens inverse, soit Π une représentation automorphe de GLn(AE) de la
forme Π1 × Πσ

1 × · · · × Πσδ−1

1 où δ est un diviseur de d et n, Π1 étant une
représentation cuspidale automorphe unitaire de GLn/δ(AE), de stabilisateur
dans Γ engendré par σδ. Alors la preuve du Thm. 4.2(e) dans [loc. cit., pp. 207–
209] s’applique et donne que π est un changement de base : il suffit de prendre
δ à la place de l’entier ` de [loc. cit.].

Remarque. — Au début de leur preuve, Arthur et Clozel notent que Π1 ⊗
· · ·⊗Πσδ−1

1 donne une contribution non nulle à la formule des traces tordues. Il
convient de remarquer qu’à cause du phénomène de rigidité cette contribution
ne peut être annulée par aucune autre.

2.4. — Nous pouvons maintenant compléter la démonstration des théorèmes 1
et 2, en utilisant comme dans [loc. cit.] les fonctions L de paires. Rappelons
que X désigne le groupe des caractères de A×F triviaux sur F×NE/F (A×E).

Soit d’abord π une représentation automorphe cuspidale unitaire de
GLn(AF ) et soient δ = d(π), n = δr. Soit Π le changement de base de π et
Π1 ⊗ · · · ⊗Πt son support cuspidal ; comme Π est stable par σ, Πσ

1 ⊗ · · · ⊗Πσ
t

est isomorphe à Π1 ⊗ · · · ⊗ Πt, à l’ordre près des facteurs. Soit ε le diviseur
de d tel que le stabilisateur de Π1 dans Γ soit engendré par σε ; on peut alors
supposer Πi = Πσi−1

1 pour i = 1, . . . , ε. Il s’agit de prouver que ε = δ = t.
Supposons d’abord ε < t. Alors Π′ = Π1 × · · · × Πσε−1

1 est, par l’hypothèse de
récurrence, le changement de base d’une représentation automorphe cuspidale
unitaire π′ de GLn′(AF ) pour un entier n′ < n. Si S est un ensemble fini de
places de F , assez grand, on a l’égalité

LS(Π×Π′∨, s) =
∏
χ∈X

LS(χπ × π′∨, s) .

Mais le facteur de gauche a un pôle d’ordre au moins ε en s = 1, tandis que
celui de droite n’en a pas. Ainsi on a bien ε = t, et on considère alors l’égalité
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LS(Π×Π∨, s) =
∏
χ∈X

LS(χπ×π∨, s) : le membre de gauche a un pôle d’ordre

ε en s = 1 et celui de droite un pôle d’ordre δ, d’où ε = δ.
Soit π′ une représentation automorphe de GLn(AF ), induite de cuspidale

unitaire, et de même changement de base que π ; soit π′1 ⊗ · · · ⊗ π′t le support
cuspidal de π′. Alors Π est isomorphe à Π′1 × · · · × Π′t où pour i = 1, . . . , t Π′i
est le changement de base de π′i ; regardant l’action de Γ, cela implique déjà
t = 1 : ainsi π′ est cuspidale et l’égalité

LS(Π×Π∨, s) =
∏
χ∈X

LS(χπ × π′∨, s)

entraîne que π′ est de la forme χπ pour un χ ∈ X. Bien sûr chaque χπ a pour
changement de base Π. Cela prouve le théorème 1.

2.5. — Il nous reste à terminer la preuve du théorème 2. Avec ses notations,
nous avons déjà vu en 2.3 que Π est le changement de base d’une représentation
automorphe π de GLn(AF ) induite de cuspidale unitaire. Mais alors, vu ce qui
précède, le fait que le support cuspidal de Π forme une seule orbite sous Γ

implique que π est cuspidale. �
Les mêmes arguments permettent de décrire l’image et les fibres du change-

ment de base, pour les induites de cuspidales unitaires. Voici le résultat.

Proposition. — Une représentation automorphe Π de GLn(AE), induite de
cuspidale unitaire, est un changement de base si et seulement si son support
cuspidal est stable par Γ. Si π = π1×· · ·×πr, où les πi sont cuspidales unitaires,
a Π pour changement de base, alors les autres représentations automorphes de
GLn(AF ), induites de cuspidale unitaire, ayant Π pour changement de base,
sont les χ1π1 × · · · × χrπr, où les χi parcourent X.

2.6. — Nous sommes maintenant en mesure de prouver le théorème 3. Soit ainsi
τ une représentation automorphe de GLm(AE) induite de cuspidale unitaire,
et soit τ1⊗· · ·⊗τr son support cuspidal. Pour i = 1, . . . , r, soit δi le diviseur de
d tel que le stabilisateur de τi dans Γ soit engendré par σδi , et posons d = δi si.
Alors le support cuspidal de Π = τ × τσ × · · · × τσd−1

est formé des orbites des
τi dans Γ, chacune répétée si fois. Si πi est cette représentation automorphe
cuspidale unitaire dont le changement de base est τi × τσi × · · · × τσ

δi−1

i , les
représentations automorphes π de GLmd(AF ), induites de cuspidale unitaire,
dont le changement de base est Π sont celles qui ont un support cuspidal de la
forme

χ11 π1 ⊗ · · · ⊗ χ1s1 π1 ⊗ χ21 π2 ⊗ · · · ⊗ χ2s2 π2 ⊗ · · · ⊗ χr1 πr ⊗ · · · ⊗ χrsr πr
où les χij , 1 ≤ i ≤ r, 1 ≤ j ≤ si sont dans X. Imposer que π soit stable par X
revient à imposer que son support cuspidal le soit, autrement dit que chaque
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χπi pour χ ∈ X apparaisse autant de fois que πi. Comme le stabilisateur de πi
dans X a pour cardinal δi, c’est clairement possible, et détermine le support
cuspidal de π à l’ordre près.

Soit v une place finie de F telle que πv soit non ramifiée. Puisque le chan-
gement de base de π est τ × τσ × · · · × τσd−1

, on a∏
χ∈X

L(χvπv, s) =
∏
w|v

L(τw × τσw × · · · × τσ
d−1

w ) =
∏
w|v

L(τw, s)
d

et chacune des représentations τw est non ramifiée. Comme π est stable par
torsion par κ, on en déduit L(πv, s) =

∏
w|v

L(τw, s). Cela prouve bien que π est

induite automorphe de τ .

2.7. — Comme plus haut, on en tire maintenant l’image et les fibres du pro-
cessus de changement de base.

Proposition. — Une représentation automorphe π de GLmd(AF ), induite de
cuspidale unitaire, est une induite automorphe si et seulement si elle est stable
par X. C’est l’induite automorphe d’une représentation cuspidale unitaire de
GLm(AE) si et seulement si son support cuspidal forme une seule orbite sous
X. Si τ1, . . . , τr sont des représentations automorphes cuspidales unitaires telles
que π soit l’induite automorphe de τ1 × · · · × τr, alors les représentations au-
tomorphes de GLm(AE) dont l’induite automorphe est π sont celles dont le
support cuspidal a la forme τg11 × · · · × τgrr avec g1, . . . , gr dans Γ.

Démonstration. — La stabilité par X est certainement une condition néces-
saire. Pour prouver qu’elle est suffisante, il suffit de prouver la seconde asser-
tion. Soit donc π une représentation automorphe de GLmd(AF ), induite de
cuspidale unitaire, dont le support cuspidal forme une seule orbite sous X. Il
existe donc un diviseur si de d et une représentation automorphe cuspidale
unitaire πi de GLmd/si(AF ), dont le stabilisateur dans X est engendré par κsi ,
tels que π soit isomorphe à π1 × κπ1 × · · · × κsi−1π1.

Comme d(π1) = d/si = δi, le changement de base de π1 est de la forme
Π1× · · · ×Πσδi−1

1 où Π1 est une représentation automorphe cuspidale unitaire,
de stabilisateur dans Γ engendré par σδi . Le changement de base des κaπ1 étant
le même, celui de π est bien Π1 × · · · × Πσd−1

1 et π est l’induite automorphe
de Π1. Il reste à déduire les fibres de l’induction automorphe, i.e. la dernière
assertion de la proposition. Certainement, par construction, les représentations
de la forme τg11 × · · · × τgrr ont même induite automorphe que τ1 × · · · × τr.
Mais le support cuspidal du changement de base de π est

τ1 ⊗ τσ1 ⊗ · · · ⊗ τσ
d−1

1 ⊗ τ2 ⊗ · · · ⊗ τσ
d−1

2 ⊗ · · · ⊗ τr ⊗ · · · ⊗ τσ
d−1

r ,
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et si, avec des notations évidentes, π est aussi induite automorphe de τ ′1×· · ·×τ ′s
alors le support cuspidal du changement de base de π est aussi

τ ′1 ⊗ τ ′σ1 ⊗ · ⊗ τ ′σ
d−1

1 ⊗ τ ′2 ⊗ · · · ⊗ τ ′σ
d−1

2 ⊗ · · · ⊗ τ ′s ⊗ · · · ⊗ τ ′σ
d−1

s ;

il s’ensuit aisément que s = r et que, à permutation près τ ′1 ⊗ · · · ⊗ τ ′s est de la
forme τg11 ⊗ · · · ⊗ τgrr avec les gi dans Γ.

3. Compatibilités

3.1. — Ce dernier chapitre est consacré à la preuve des théorèmes 4 à 6. Le
théorème 4 est démontré dans ([1], chap. III, Thm. 5.1) dans le cas où d est
premier. Si d n’est pas premier, mais que π est une représentation automorphe
cuspidale unitaire de GLn(AF ) telle que d(π) = 1 – ce qui équivaut au fait
que le changement de base Π de π est encore cuspidal – alors la démonstration
de [loc. cit. p. 212] se transpose sans changement et donne le résultat. Nous
ramenons le cas général à ces cas déjà connus.

Pour cela, on remarque que par construction le changement de base global
est transitif : si F ′ est une extension intermédiaire entre E et F , on a πE/F '
(πF ′/F )E/F ′ pour toute représentation automorphe π de GLn(AF ), induite de
cuspidale unitaire. Il suffit de voir qu’il en est de même du changement de base
local, le cas général du théorème 4 découlant alors, par extensions cycliques
successives de degré premier, du cas où d est premier. (Bien entendu, une fois
établi le théorème 4 en général, la transitivité du changement de base local, au
moins pour les composants locaux de représentations automorphes induites de
cuspidale unitaire, en découle).

Malheureusement, la transitivité du changement de base local ne figure pas
explicitement dans ([1], chap. I). Il convient donc de l’établir ici. C’est par
ailleurs fort utile.

3.2.

Proposition. — Soit K un corps commutatif localement compact de caracté-
ristique nulle, et soit L une extension cyclique de K, de groupe ∆. Soit ∆′ un
sous–groupe de ∆, et K ′ le sous–corps de L fixé par ∆′. Soit ρ une représenta-
tion lisse irréductible générique et unitaire de GLn(K), ρ′ son changement de
base de K à K ′, ρ′′ le changement de base de ρ′ de K ′ à L. Alors ρ′′ est aussi
le changement de base de ρ de K à L.

Le cas archimédien est clair : on a alors |∆| ≤ 2. On suppose donc que K
est non archimédien.

La représentation ρ est de la forme ρ1 × · · · × ρr, où ρi est essentiellement
de carré intégrable, ρi = ρ◦i | |

si
K avec ρ◦i de carré intégrable et |si| < 1/2. Si,
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de K à K ′, ρ◦i a pour changement de base ρ′◦i (qui est tempéré), alors ρ a
pour changement de base ρ′ = ρ′◦i | |

s1
L × · · · × ρ′◦r | |

sr
L ([1], chap. 1, § 6.4) et on

a un résultat analogue pour ρ′′. On est donc réduit au cas où ρ est de carré
intégrable. On peut même supposer que ρ est cuspidale unitaire ([1], chap. I,
lemma 6.12).

On peut alors choisir une extension cyclique E/ F de corps de nombres,
de degré [L : K], avec une place finie v de F donnant un isomorphisme ι
de Ev/ F v avec L/K. On peut aussi choisir une représentation automorphe
cuspidale unitaire τ de GLn(A F ) dont le composant en v corresponde à ρ via ι.
On peut même supposer que le composant de τ en une place finie de F scindée
dans E/ F est cuspidal ; cela implique que le changement de base de τ à E, ou
à toute extension intermédiaire, est cuspidal. Notons τ ′ le changement de base
de τ à F ′, où F ′ est l’extension intermédiaire de E/ F fixée par ∆′ – noter que
E/ F est une extension cyclique de groupe ∆ –, et notons τ ′′ le changement de
base de τ ′ à E, qui est aussi le changement de base de τ à E. Par le cas déjà
connu du théorème 4, τ ′v est le changement de base de τv dans F ′v/ F v, τ ′′v celui
de τ ′v dans Ev/ F ′v, et également celui de τv dans Ev/ F v. Transportant via ι,
on obtient la proposition, ce qui termine aussi la preuve du théorème 4.

3.3. — Passons à la démonstration du théorème 6. Notons qu’il s’agit d’un
énoncé local : nous aurions pu remplacer Ev/Fv par une algèbre cyclique L/K
quelconque, de groupe Γ, sur un corps commutatif local non archimédien K

(de caractéristique nulle). Nous utilisons cette notation et posons η = κv.

L’algèbre cyclique L/K apparaît comme un produit de corps L′×σL′×· · ·×
σe−1L′, où e est un diviseur de d, d = ed′, et où L′ est une extension cyclique
de K, de groupe engendré par σ′ = σe. Le caractère η définit l’extension L′/K,
qui est de degré d′.

Soit τ une représentation lisse irréductible générique unitaire de GLm(L) ; il
existe des représentations lisses irréductibles génériques unitaires τ1, . . . , τe de
GLm(L′), telles que τ soit isomorphe à τ1⊗τ2 ◦σ−1⊗· · ·⊗τe ◦σ1−e. Dire que le
changement de base de π, pour l’algèbre cyclique L/K, est τ × τσ×· · ·× τσd−1

signifie que le changement de base de π, pour l’extension cyclique L′/K, est

(τ1×τσ
′

1 ×· · ·×τσ
′d′−1

1 )×(τ2×τσ
′

2 ×· · ·×τσ
′d′−1

2 )×· · ·×(τe×τσ
′

e ×· · ·×τσ
′d′′−1

e ) .

Pour prouver l’existence et l’unicité de π, on est donc ramené au cas où L est
une extension cyclique de K. D’autre part l’induite automorphe τL/K de τ
(pour l’algèbre cyclique L/K) n’est autre que τL

′/K
1 × τL

′/K
2 × · · · × τL

′/K
e , de

sorte que pour démontrer l’égalité π = τL/K on peut aussi supposer que L est
une extension cyclique de K.
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3.4. — On suppose donc que L/K est une extension cyclique. L’existence et
l’unicité de π découlent alors, comme dans la preuve de théorème 3, de la
connaissance de l’image et des fibres du changement de base local, pour les
représentations lisses irréductibles génériques unitaires de GLm(K). Le théo-
rème 6.2 et la proposition 6.7 de ([1], chap. I) ne traitant que le cas des repré-
sentations tempérées, il nous faut maintenant compléter les arguments.

Proposition. — On suppose que L/K est une extension cyclique de corps
locaux non archimédiens.

(a) Toute représentation lisse irréductible générique unitaire de GLn(L) qui
est σ–stable est le changement de base d’une représentation lisse irréduc-
tible générique unitaire de GLn(K).

(b) Soit ρ une représentation lisse irréductible générique unitaire de
GLn(K), de la forme ρ1 × · · · × ρr où les ρi sont essentiellement
de carré intégrable. Les représentations lisses irréductibles génériques
unitaires de GLn(K) ayant même changement de base que ρ sont les
représentations χ1ρ1 × · · · × χrρr, où les χi parcourent les puissances
de η.

3.5. — Prouvons cette proposition. Il est clair qu’un changement de base est
σ–stable. En sens inverse soit τ une représentation lisse irréductible générique
unitaire de GLn(L), que nous écrivons τ = τ1× · · ·× τr où les τi sont essentiel-
lement de carré intégrable. Si τ est σ–stable, on peut supposer que les premiers
τi, disons τ1, . . . , τk, forment l’orbite de τ1 sous l’action de σ ; si k < r, alors
τk+1 × · · · × τr est aussi σ–stable. Pour prouver que τ est un changement de
base, on peut donc supposer que les τi forment une seule orbite sous σ. Par tor-
sion par un caractère non ramifié, on se ramène alors au cas où τ est tempéré,
qui est donné par ([1], chap. I, Thm. 6.2). Cela donne (a). Prouvons mainte-
nant (b). Il est clair que les représentations susdites ont même changement de
base que ρ. Ecrivons ρi = ρ◦i | |

si
K avec ρ◦i de carré intégrable, et notons τ◦i le

changement de base de ρ◦i , qui est tempéré. Le changement de base de ρ est
alors τ◦1 | |

si
L × · · · × τ◦r | |

sr
L . Si une représentation lisse irréductible générique

et unitaire ρ′ de GLn(K) a même changement de base que ρ, on écrit ρ′ de la
même façon, de sorte qu’avec des notations évidentes on a

τ◦1 | |
s1
L × · · · × τ

◦
r | |

sr
L ' τ

′◦
1 | |

s′1
L × · · · × τ

′◦
r′ | |

s′
r′
L .

On sépare alors suivant les différentes valeurs des si et s′i pour se ramener au
cas où ρ est tempérée, qui est donné par [loc.cit. chap. I, propo. 6.7] �
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3.6. — Les mêmes arguments que pour le théorème 3 donnent donc l’existence
et l’unicité de π dans le théorème 6. Il reste à prouver que π est l’induite auto-
morphe de τ . Nous pouvons continuer à supposer que L/K est une extension
cyclique. On se ramène aussitôt au cas où τ est de carré intégrable.

On utilise alors que pour τ de carré intégrable, l’induite automorphe de τ
est construite dans [5] par un procédé global. On peut supposer que L/K est
l’extension cyclique Ev/Fv – on supposera, pour se conformer à [5], que E/F
est déployé aux places infinies – et que τ est le composant local en v d’une
représentation automorphe cuspidale unitaire T de GLm(AE) qui vérifie les
autres propriétés imposées par ([5], § 8). Alors τL/K est le composant en v de
la représentation automorphe Π de GLmd(AF ), induite de cuspidale unitaire,
qui est l’induite automorphe de T . Par le théorème 3, le changement de base
de F à E de Π est T × Tσ × · · · × Tσd−1

. Regardant à la place v, on constate
que le changement de base de τL/K , pour l’extension L/K, n’est autre que
τ × τσ × · · · × τσ

d−1

. Comme τL/K est stable par torsion par η on a bien
τL/K = π.

3.7. — Il ne nous reste qu’à prouver le théorème 5. Mais c’est une conséquence
immédiate de la construction de l’induction automorphe globale donnée par le
théorème 3, et du théorème 6.

Remarque. — Nous avons établi [4] l’induction automorphe locale dans le
cas archimédien, et prouvé l’équivalent du théorème 6. Le théorème 5 est donc
valable pour les places infinies.

BIBLIOGRAPHIE

[1] J. Arthur & L. Clozel – Simple algebras, base change, and the advanced
theory of the trace formula, Annals of Math. Studies, vol. 120, Princeton
Univ. Press, 1989.

[2] L. Clozel – « Motifs et formes automorphes : applications du principe de
fonctorialité », in Automorphic forms, Shimura varieties, and L-functions,
Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press,
1990, p. 77–159.

[3] G. Henniart – « Sur la conjecture de Langlands locale pour GLn », J.
Théor. Nombres Bordeaux 13 (2001), p. 167–187.

[4] , « Induction automorphe pour GL(n,C) », J. Funct. Anal. 258
(2010), p. 3082–3096.

[5] G. Henniart & R. Herb – « Automorphic induction for GL(n) (over
local non-Archimedean fields) », Duke Math. J. 78 (1995), p. 131–192.

tome 140 – 2012 – no 1

http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#1
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#2
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#3
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#4
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#5


INDUCTION AUTOMORPHE GLOBALE POUR LES CORPS DE NOMBRES 17

[6] G. Henniart & B. Lemaire – « Changement de base et induction auto-
matique pour GLn en caractéristique non nulle », Mémoires de la S.M.F.
124 (2011).

[7] H. Jacquet & J. A. Shalika – «On Euler products and the classification
of automorphic forms. II », Amer. J. Math. 103 (1981), p. 777–815.

[8] R. P. Langlands – « On the notion of an automorphic representation »,
Proceedings of Symposia in Pure Mathematics 33 (1979), p. 203–207.

[9] , Base change for GL(2), Annals of Math. Studies, vol. 96, Prince-
ton Univ. Press, 1980.

[10] E. Lapid & J. Rogawski – « On twists of cuspidal representations of
GL(2) », Forum Math. 10 (1998), p. 175–197.

[11] C. Mœglin & J.-L. Waldspurger – « Le spectre résiduel de GL(n) »,
Ann. Sci. École Norm. Sup. 22 (1989), p. 605–674.

[12] M. Tadić – « Classification of unitary representations in irreducible re-
presentations of general linear group (non-Archimedean case) », Ann. Sci.
École Norm. Sup. 19 (1986), p. 335–382.

[13] A. V. Zelevinsky – « Induced representations of reductive p-adic groups.
II. On irreducible representations of GL(n) », Ann. Sci. École Norm. Sup.
13 (1980), p. 165–210.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#6
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#7
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#8
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#9
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#10
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#11
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#12
http://smf.emath.fr/Publications/Bulletin/140/html/smf_bull_140_1-17.html#13



	1. Introduction
	2. Changement de base et induction automorphe
	3. Compatibilités
	Bibliographie

