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UN GROUPOIDE SIMPLICIAL COMME MODELE
DE I’ESPACE DES CHEMINS
PAR

CLEMENs BERGER (¥)

RESUME. — Pour tout ensemble simplicial nous définissons un groupoide sim-
plicial qui sert de modele de ’espace des chemins au sens de Quillen. Le fibré en
lacets associé fournit une interprétation géométrique du fibré universel de Kan et de
la construction cobar cubique de Baues. Nous obtenons en particulier une descrip-
tion algébrique des groupes d’homotopie d’un ensemble simplicial pointé qui étend
la présentabilité du groupe de Poincaré aux groupes d’homotopie supéricurs. Les
représentants des classes d’homotopie peuvent étre donnés sous forme algébrique ou
simpliciale.

ABSTRACT. — For each simplicial set we define a simplicial groupoid which
serves as path-object in Quillen’s sense. The associated loop bundle gives a geometric
interpretation of Kan’s universal bundle and of Baues’ cubical cobar construction. In
particular we obtain an algebraic description of the homotopy groups of a pointed
simplicial set which extends the presentability of the Poincaré group to the higher
dimensional homotopy groups. The representatives of the homotopy classes may be
given in algebraic or simplicial terms.

Introduction

Selon Quillen [Q], un modéle simplicial de 'espace des chemins est
essentiellement la donnée d’un graphe simplicial ex,sx : IX =3 X tel
que la projection sur les extrémités (ex,sx) : IX — X x X soit une
fibration. Si I'ensemble simplicial X vérifie la condition d’extension de
Kan, 'objet fonctionnel X2[ a les propriétés requises, ce qui régle la
question d’existence, au moins du point de vue de I’homotopie.

Pour faire valoir ’aspect combinatoire du concept de chemin, nous
présentons ici un foncteur I qui sert de modele de ’espace des chemins
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2 C. BERGER

pour la catégorie entiére des ensembles simpliciaux. Le foncteur associe
a l'ensemble simplicial X un groupoide simplicial IX libre en toute
dimension et contenant X comme ensemble d’unités. L’axiome de Quillen
découle aisément de cette structure algébrique. La construction reste
pourtant compatible avec la réalisation géométrique en ce sens qu’il existe
une application de graphes topologiques |IX| — |X |11 (& valeurs dans
l’espace des chemins de | X|) qui préserve & homotopie pres la structure
groupoidale.

Comme tout modele de I’espace des chemins, le groupoide simplicial 7.X
induit & la fois une relation d’homotopie (appelée prismatique) et un
modele combinatoire du fibré en lacets (défini pour tout ensemble sim-
plicial pointé et connexe X).

L’homotopie prismatique est eo ipso une relation d’équivalence, vague-
ment comparable a la cloture transitive de ’homotopie cylindrique. Elle
offre avant tout un formalisme commode pour exprimer des homotopies
«a longue distance combinatoire ».

L’application principale de la construction I X concerne cependant les
isomorphismes de connexion du fibré en lacets, noté QX — PX — X. La
double nature algébrico-prismatique de la fibre QX permet en effet non
seulement de définir les groupes d’homotopie de 22X de maniere quasiment
algébrique, mais encore d’associer a tout représentant algébrique d’une
classe d’homotopie [w] € 7,(2X), un représentant simplicial canonique

weph : 2" Hw) — X

de la classe d’homotopie adjointe [|wspn|] € Tp41(]X|). Cette forme expli-
cite de 'isomorphisme de connexion

On+1(X) : mop1 (IX]) — 7 (2X)

redonne pour n = 0 la présentation du groupe de Poincaré de X par
générateurs et relations. En dimension supérieure, elle semble nouvelle.

L’idée d’une définition algébrique des groupes d’homotopie (supérieurs)
remonte & KAN [K1] qui utilisait & cet effet les isomorphismes de connexion
du fibré universel GX — EX — X. Gréace & une inclusion naturelle
de groupes simpliciaux GX — QX, la construction du représentant
simplicial adjoint s’applique également aux représentants algébriques de
Kan. Il est remarquable dans ce contexte que l’espace total du fibré
universel de Kan admette une contraction prismatique.

L’autre modele de l’espace de lacets que nous avons trouvé dans la
littérature est le modéle cubique QX de Baues, directement calqué sur
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UN GROUPOIDE SIMPLICIAL 3

la construction cobar d’Adams [Bau]. Ce modele QpX, subdivisé sim-
plicialement, est également plongeable dans 2X. Le plongement revient
a rendre «prismatiquey l'approximation par un n-cube de l'espace des
chemins reliant deux sommets (fixes) du (n + 1)-simplexe affine.

L’exposé sera subdivisé en trois parties (comparer avec [Be]) :

o la premiére introduit le groupoide simplicial et étudie ses propriétés
locales;

¢ la seconde partie traite le fibré en lacets;

o la troisieme partie établit les liens avec le fibré universel de Kan et
la construction cobar d’Adams-Baues.

Je voudrais remercier F. SERGERAERT pour les encouragements répétés
qui ont accompagné la rédaction de ce texte. Sa vision «effectivey de la
structure simpliciale fut le support indispensable des idées développées ici.

1. Le groupoide simplicial des prismes
En ce qui concerne la catégorie des ensembles simpliciauz, nous suivons
de pres les notations et terminologie habituelles (cf. [Cu], [G-Z]). Compte
tenu de l'application spécifique que nous ferons des graphes nous avons
préféré modifier légerement la terminologie «standardy , comme c’est
indiqué ci-dessous.

1.1. Le groupoide librement engendré par un graphe.

1.1.a. — Un graphe T' sera présenté sous forme d’un quadruplet
(X,E,e,s), ou X désigne I’ensemble des sommets, = 'ensemble des arétes
et (e,s) : 2 — X x X la fonction entrée-sortie. Pour deux sommets
z,y € X, on notera I'y , '’ensemble des arétes d’entrée x et de sortie y.

Un I'-trajet d’entrée x et de sortie y est un mot formel y = £7*£52 - - - &;*
de l'alphabet Z*! vérifiant z = e(£7'), s(*) = e(§5), 1 < k < ¢,
s(€;*) =y, ou par convention

(e,8)(§) sie=1,
(.5 = { |
(s,e)(&) sie=-—1.

Si lentrée et la sortie coincident, on admet en plus un I'-trajet trivial,
noté 1,, avec ¢ € X.

1.1.b. — Un T'-trajet est réduit s’il ne contient pas d’aller retour £5£7¢.
11 existe une opération de réduction de I'-trajets associant a tout I'-trajet
~ 'unique I'-trajet réduit vreq qui suit v en «évitant » les aller retour.
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4 C. BERGER

1.1.c. — Le graphe I' = (X, Z, ¢, s) est plongé dans un graphe FT' =
(X,FZ,e,s) dont 'ensemble d’arétes F'= est I’ensemble des I'-trajets
réduits. La composition

(FT)g,y X (FT)y., — (FD) .

(’71772) — (71’72)red

munit FT' d’une structure de groupoide.

Le groupoide FT est en fait librement engendré par T', puisqu’il est
caractérisé par la propriété universelle que tout morphisme de graphes
¢ : I' = G a valeurs dans un groupoide G s’étend de maniére unique en
un morphisme de groupoides ® : FT' — G.

Pour plus de détails, nous renvoyons & [D].

1.2. DEFINITIONS. — Soit X un ensemble simplicial.

Un n-prisme élémentaire de X est un couple [£, ] composé d’un (n+1)-
simplexe £ € X,4+1 et d’'un indice directionnel ¢, avec 0 < i < n,
tels que £ n’appartienne pas & 'image de 'opérateur de dégénérescence
8; 0 Xn — Xng1.

L’ensemble =,, des n-prismes élémentaires de X forme I’ensemble des
arétes du graphe I'),(X) = (X,,Zn, €, $), ol les fonctions entrée et sortie
sont définies par

(e,8): E, — X,xX,
[5,2] — (ai-l-lgaaif)‘

Un n-prisme de X est alors un Iy, (X)-trajet réduit.

Le groupoide libre des n-prismes de X sera noté (IX),. Le groupoide
simplicial des prismes de X est la réunion disjointe IX des (IX),, n > 0,
qu’on munit d’une structure simpliciale qui prolonge celle de I’ensemble
d’unités {1;]|z € X}.

Les opérateurs de face 0; : (IX), — (IX)n—1 (resp. de dégénérescence
sjt (IX)n — (IX)n4+1) sont en fait définis par extension canonique des
opérateurs graphiques suivants ([€,i] € E,) :

[0;€,i — 1] si j <,

95l&,1] = Lo,0, 116 sij =1,

[0j+1€,1] sij>i;

2 [sj€,1+1] sij<i
7% 9

si[€,1) = { [s:€,i+ 1[si41€,4) sij =1,

[sj+1&, 1] sij>i.
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UN GROUPOIDE SIMPLICIAL 5

0;€ = si—1x (resp. 0;11€ = s;z), on identifie [9;€,i — 1] (resp.
[0;41€,14]) au prisme trivial 1,.
Les morphismes structurels du groupoide simplicial IX seront notés

(ex,sx): IX — X x X : pr— (ex(p), sx(p)),

ix : X —IX:z—1,.

Deux morphismes f,g : Y — X sont prismatiquement homotopes
(relativement au sous-ensemble simplicial Z de Y') s’il existe un morphisme
H:Y - IXtelqueexH = fetsxH =g (etixof|z=H|z=1ix09|z).
On notera également H : f ~ g (rel. Z).

1.2.b. — 11 est souvent utile de réaliser le groupoide simplicial X

comme quotient de I'ensemble simplicial IX. A cet effet, nous plongeons
le graphe ', (X) dans le graphe r w(X) = (Xn,un,e s), ol

§n=EnU{[six,z’]; re X, 0<i<n}.

On définit alors la catégorie involutive libre (IAX ) des fn(X )-trajets
(y compris les non réduits). Les formules 1.2.a appliquées sans aucune
identification définissent des opérateurs de face 9 : (Ix o — (IX)n—1
et de dégénérescence 3; : (fX Y — (f X)n+1 qui vérifient les identités
simpliciales habituelles. Le groupoide simplicial /X s’obtient alors & partir
de I X par un passage au quotient

q:IX —» IX : pr— Prea,

ou la réduction se fait en deux étapes :
e le I'y(X)-trajet p € (IX),, est d’abord transformé en T, (X)-trajet
en supprimant toutes les composantes appartenant & (=, \ Z,)*!;

e le ') (X)-trajet résultant est ensuite transformé en n-prisme preq
appartenant & (IX), selon le procédé de réduction habituel 1.1.b.

Tout n-prisme p € (IX), est en particulier un fn(X)—trajet, ce qui
permet de récupérer les opérateurs simpliciaux de I X par les formules

Ojp= (3jp)red et 8;p=(8P)rea =8jp, 0<j<n

Enfin, les constructions T et I s'étendent en foncteurs : pour tout mor-
phisme f: X — Y on définit le morphisme I f IX -1y par

(1,815 [§2,02]%2 - - - [€o, 10]™ V> [f&1, 1)1 [f&2,82]%2 - - - [f&r, 10)".

Le morphisme I f en est déduit par passage au quotient.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 C. BERGER

1.3. PROPOSITION.

(a) Pour tout ensemble simplicial X, le morphisme entrée-sortie
(ex,sx): IX — X x X est une fibration de Kan.

(b) La relation d’homotopie prismatique est une relation d’équivalence.

(c) Soient f,g:Y — X deux morphismes prismatiquement homotopes
rel. Z. Les réalisations géométriques |f| et |g| sont alors homotopes rel.|Z|.

Preuve.

(a) Tl faut montrer que pour tout couple de simplexes (z,y) dans
Xn X Xp,n > 0,lafibre (IX),, = (ex,sx) *((z), (y)) vérifie la condition
d’extension de Kan. Gréce a la structure de groupoide de I.X, I’ensemble
simplicial (IX)z,, est muni d’une opération de Mal’cev partielle

M: (IX)zy X (IX)zy X ([X)zy — ([X)zy

(p,q,7) —  pgir

Les identités de Mal’cev M (p,p,r) = r et M(p,r,r) = p impliquent alors
que tout probleme d’extension de Kan admet une solution dans (/.X)g .
Nous renvoyons pour cela a la démonstration bien connue du fait qu'un
groupe simplicial vérifie la condition de Kan, car celle-ci n’utilise que la
structure de Mal’cev du groupe (cf. [Cu, 3.1]).

(b) Réflexivité, symétrie et transitivité de I’homotopie prismatique
sont les conséquences de l’existence d’unités, d’inverses et du composé
de deux prismes adjacents.

(c¢) L’énoncé constitue la jonction entre la combinatoire des prismes
et la topologie des chemins. Sa preuve demande un effort technique
considérable et sera faite au §1.8. La difficulté principale provient des
identifications introduites par le passage au quotient IX —» I.X. Nous
signalons dans ce contexte que la construction I X vérifie bien 1.3.b, mais
en général pas I'axiome de Quillen 1.3.a. []

1.4. REMARQUE. — Si ’ensemble simplicial X vérifie la condition de
Kan, alors une homotopie prismatique p : x ~ y (rel. le bord) entre sim-
plexes de X peut toujours étre réalisé par une homotopie élémentaire
[€,i] :  ~ y (rel. le bord), le choix de l'indice directionnel i étant libre.
Pour i = dim z, on retrouve ainsi la relation d’homotopie initialement pro-
posée par Kan [K1]. C’est cette propriété «localisante » de la condition de
Kan qui permet de travailler avec ’homotopie cylindrique Y x A[1] — X
dés que X vérifie la condition de Kan. L’homotopie prismatique Y — IX
fournit par contre une relation d’homotopie qui reflete dans une large
mesure la situation topologique, méme si X n’est pas de Kan. []

ToME 123 — 1995 — ~° 1



UN GROUPOIDE SIMPLICIAL 7

Les §§1.5-1.6 préparent a la ProposiTioN 1.7. Il s’agit de «para-
métrer » tout n-prisme par une (n+1)-boule simplicialement subdivisée de
sorte que les opérateurs de face formels soient induits par des opérateurs
de bord géométriques. Les technicités qui suivent sont malheureusement
incontournables étant donnée l'importance de la ProposITiON 1.7 pour
I’étude du fibré en lacets.

1.5. N-éléments et N-sphéres.

On dira que ensemble simplicial Y; est une CW-subdivision de
l’ensemble. simplicial Yy si le CW-complexe |Y3| est une subdivision
cellulaire du CW-complexe |Y3|, i.e. §'il existe un homéomorphisme
|Y1| = |Y2| tel que l'image de toute cellule de |Yi| soit incluse dans
une cellule de |Y3|. La relation d’équivalence engendrée par la relation
de CW-subdivision sera appelée CW-équivalence. Une C'W-équivalence
|Y1| = |Ys| est donc le composé d’un nombre fini d’homéomorphismes
qui sont soit des CW-subdivisions soit des inverses de CW-subdivisions.

Un n-élément simplicial E™ est un ensemble simplicial CW-équivalent
au n-élément standard Aln]. Le réalisé |E™| hérite en particulier d’une
structure canonique de n-variété linéaire par morceaux. Le bord bE™ de E™
est défini comme 'unique sous-ensemble simplicial de E™ dont le réalisé
s’identifie au bord topologique de |E™|.

Une n-sphére simpliciale X" est un ensemble simplicial CW-équivalent
a la m-sphere standard S"=A[n]/bA[n]. Nous signalons qu'une CW-
équivalence |L"| — |S"| est forcément une CW-subdivision; £" est
donc munie d’un point base canonique correspondant a 'unique 0O-cellule
de |S™|.

Le théoréme de Newman (cf. [R-S, 3.1]) reste valable dans le contexte
semi-simplicial : pour tout n-élément simplicial E™ inclus dans une n-
sphére simpliciale ¥™, l’adhérence du complémentaire (X" \ E™) UbE™ est
également un n-élément simplicial.

1.6. Domaine et domaine 8-réduit d’un prisme.

Soit X un ensemble simplicial. Un fn(X )-trajet de longueur un,
[€,i]° € (I X)n, définit le diagramme

e(i.e)
Aln] == Afn+1] - X,

s(i,e)

dans lequel les morphismes &, £ce(i,€) et £ 0 s(i, €) sont les représentants
canoniques des simplexes £ € Xn+1 et ex([€,1]¢), sx([£,1]°) € Xn.
&i

Deux diagrammes Aln] = Y —% X, pour i = 1,2, tels que
8q

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



8 C. BERGER

s1(A[n]) = ea(Aln]) sont amalgamés dans le diagramme
Aln] :li vioy, 228, x,

dans lequel I’ensemble simplicial Y7 OY; est défini par

Y1 DYQ = (Yl UYQ)/(Sl(A[’rL]) ~ eQ(A[n]))

1.6.0.—Un T (X)-trajet p = [€1,i1]% - - - [€4, i¢)* € (IX),, définit donc
par amalgamation itérée le diagramme

O~

4 B &k
DA[n +1]——X,

se(ig,ee) =1

e1(i1,61)
—_

Aln]

dont le morphisme droit sera désigné par pgimp : Dom(p) — X. L’ensemble
simplicial source Dom(p) sera appelé le domaine du fn(X )-trajet p. Il est
muni d'un n-prisme fondamental o = [cv1,11]* + - - [, 1] € (fDom(p))n
tel que (fpsimp)(a) = p, en particulier pgimp (o) = & pour 1 < k < 4.

Le domaine d'un fn(X)—trajet non trivial p € (fX)n est un (n + 1)-
élément simplicial dont le bord est composé d’une réunion cosimpliciale
de faces latérales (correspondant aux faces du I'),(X)-trajet) et de deux
faces extrémales (correspondant & l’entrée et la sortie du trajet).

Plus précisément, il existe pour toute suite 0 < j; < jo < -+ < j. <n
d’indices, une inclusion canonique

~

gj, 0= 08j, 08, : Dom(d;, ---d;.p) — Dom(p)
telle qu’on ait
Psimp © é\jr ©--+0 gjl = (éjl T éjrp)simpv

les inclusions &; étant définies en recollant comme ci-dessus des inclusions

élémentaires Dom(9; €, i]*) — Dom([¢,]*) déduites de 1.2.a.

1.6.b. — La construction du domaine d’un fn(X)—trajet s’applique en
particulier aux n-prismes, mais pour un n-prisme, le domaine naturel n’est
pas l'objet géométrique adéquat, les opérateurs J; étant différents des
opérateurs éj. Pour en tenir compte, nous allons définir des relations sur
I’ensemble simplicial Dom(p) qui refletent géométriquement la réduction
du T',, (X )-trajet p au n-prisme associé pyeq (cf. 1.2.b). Soit

p =6, 0] € il € (TX)n.

ToME 123 — 1995 — ~° 1



UN GROUPOIDE SIMPLICIAL 9

Correspondant & la premiére étape de réduction, on définit I’ensemble
de relations

R,(gl) = {(ok ~ 83,05, 0k) 5 €k = 54, 05,6k, 1 < k < L}

Correspondant & la deuxieme étape de réduction, on définit I’ensemble
de relations

R = {(ar, ~ 0ry) 5 [Chys | [Ekar ko)™ € Apmpra

ol Ap_p,., est I'ensemble des aller retour supprimés lors d’une réduction
effective de p vers preq. L’ensemble A,_,,, ., peut différer selon le schéma
de réduction choisi : le mot aa~'b~'ba se réduit par exemple soit par
(aa=1)(b~'b)a soit par a(a~(b~!b)a). Cela étant, il existe des stratégies
de réduction qui la rendent unique. Nous supposons en avoir choisi une.

1.6.c. — Le domaine 9-réduit d’un n-prisme non trivial p € (IX),, est
défini comme ’ensemble simplicial quotient

Dom(p) = Dom(p)/(R) URS))

1
d

ou les ensembles de relations de bord R p €t Rgp) sont donnés par

R(By = U U gjro"‘ogjl(Rgi“.gjrp)a

1<r<n 0<51<-<jr<n

(2) _ = (p2)
Rap — U 5]’ (Réjp) .
0<j<n
Il résulte des définitions que le morphisme pgimp, se factorise par le domaine
O-réduit :

Dsimp

Dom(p) —— X

Pz

Dom(p)

1.7. PROPOSITION. — Soit un n-prisme non trivial p € (IX),. Le
domaine O-réduit Dom(p) est alors un (n + 1)-élément simplicial muni
des faces latérales £; : Dom(0;p) — Dom(p), 0 < j < n, et des faces
extrémales e, s : A[n] — Dom(p) telles que :

psimp C&; = (6jp>simp7 0< ] <n,
(a)

ﬁsimp ce=¢éex (p)7 ﬁsimp os=sx(p);

(b) bDom(p) = e(A[n]) U 0<U< £j(Dom(8;p)) U s(A[n]).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



10 C. BERGER

Preuve. — 11 faut d’abord montrer que le passage au quotient
Dom(p) — Dom(p) n’affecte pas le «type combinatoire» du (n + 1)-
élément simplicial Dom(p). Pour cela, les relations de bord Ré? U R(%)
seront introduites une par une selon le schéma suivant : on commence
par les «compressionsy (o ~ s;0;0) € R((;) qu’on traite par ordre de
dimension décroissante (en évitant les répétitions). Le simplexe o est
alors «standard » au moment de la compression, i.e. il engendre une copie
de A[m], ou m =dimo < n.

Or, d’apres un lemme de Barratt [F-P, 3.1.1], on sait que pour tout
m-simplexe du bord de A[n + 1] et pour tout indice i tel que 0 < i < m,
il existe un homéomorphisme

|An+ 1) = |Aln+1]/ (0 ~ s;0;0)|

qui est une CW-subdivision. Par ailleurs, on sait construire pour tout
couple (E,op) constitué d'un (n + 1)-élément E et d’'un m-simplexe
standard og du bord de F, une CW-équivalence

|E| = |An+1]|

qui identifie |(cg)| & |(o)] (ceci a 'aide de n + 1 — m extensions coniques
dont l’existence est un corollaire du théoréme de Newman, §1.5). Une
application itérée du lemme de Barratt montre donc que le domaine
«comprimé » Dom(p)/ (RS;) est un (n + 1)-élément simplicial.

Le domaine O-réduit Dom(p) s'obtient & partir du domaine com-
primé en identifiant successivement certains des n-simplexes du bord. Ces
n-simplexes peuvent étre supposés adjacents au moment de I'identification
a condition d’introduire les relations (o1 ~ 03) € R((c,z; selon le schéma de
réduction sous-jacent a Aéj p—(;D)rea” Les simplexes 01, 02 sont éventuel-
lement modifiés sur leur bord par des compressions et/ou identifications
introduites précédemment ; un argument de récurrence montre cependant
qu'’ils engendrent des m-éléments simpliciaux qui s’intersectent selon un
(n — 1)-élément. Or, le quotient E/E, ~ E3 d’un (n + 1)-élément par
l’identification de deux n-éléments FEy1, Eo C bE s’intersectant selon un
(n — 1)-élément forme encore un (n + 1)-élément, (cf. [R-S, 3.6]). Cela
montre par récurrence que le domaine 0-réduit est un (n + 1)-élément
simplicial.

Le morphisme ¢; : Dom(8;p) — Dom(p) est déduit du morphisme
composé

~

Dom(d;p) —— Dom(p) —» Dom (p)
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par restriction convenable. Les relations RE;L créent en fait les adjacences
J

nécessaires & la définition de €;. Les simplexes identifiés en un ne font

plus partie du bord, puisque désormais face d’exactement deux (n + 1)-

simplexes. Cela montre que les faces latérales ¢;( Dom(d;p)) jointes aux

faces extrémales e(A[n]), s(A[n]) recouvrent le bord entier du domaine
O-réduit. []

1.8. L’homotopie prismatique est ((topologique).
Désignons par |X|O1 l’espace des chemins du réalisé |X]| : clest &
homotopie pres, un groupoide pour les fonctions structurelles :

eixp sx) 1 X0 — Xy = 4(0),7(1) 5
ix) X — X[ 2o (y(w) = ).
Nous allons préciser 1.3.c en montrant I’existence d’une application de

graphes topologiques o : |IX| — | X|(®1 qui préserve & homotopie pres la
structure groupoidale de |/ X], ce qui implique en particulier :

lex| =eixjop, lsxl=sxjop, ix)=volixl

On procede en deux étapes : on définira d’abord un plongement de
graphes naturel (compatible avec les structures multiplicatives)

G ITx| — |x]01,

Ensuite, il sera possible de montrer l’existence d’un couple (@4, ¢) tel que
®, soit une déformation graphique de @ vers po|q| :

|jX| <__$_> |X|[0’1]
(1.8.a) lq] l ﬂ‘l’t
X

1.8.b. Le plongement graphique .
Rappelons que l'espace |X|[0~] des chemins de Moore de |X| est le
sous-espace de | X [®" x R* formé par les couples (Yoo, 7) tels que le chemin

Yoo : RT — | X | u = Yoo (u)
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12 C. BERGER

soit stationnaire pour u > r. Pour alléger la notation, on remplacera
(Yoo, ) par le couple (7,7) tel que v = Yoo [0, L'inverse formel d'un
chemin de Moore est défini par (y,7)~! = (y71,7); la composition
(associative!) de chemins de Moore est définie par concaténation

(vi,r1)(v2,m2) - (Vesre) = (V1 Ves T+ ).

A tout Ty (X)-trajet p = [€1,i1]%" - - [€0, )¢ € (IX), est alors associé
un n-simpleze singulier psing : A — | X [[0’_] a valeurs dans l'espace des
chemins de Moore de | X|. On pose en effet

psing : An — IXl[Oy_]

(to - tn) — [51, il]:ilng(to [fe, Zl]smg tn),
ou les chemins de Moore élémentaires sont définis par

[f,i]sing(to N tn) : [0 t'] — |X'
ur— |€|(to .. ti—1,ti — u Uty .. tp).
L’intervalle de définition du chemin de Moore composé psing(to...tn)
est en particulier égal & |0, S, ti,]. L'associativité de la composition
de chemins de Moore implique que la structure simpliciale du simplexe
singulier psing est compatible avec la structure simpliciale du I',(X)-
trajet p. De maniére précise, on aura pour tout j tel que 0 < j < n,

(ajp)sing = 8jpsing, (gjp)sing = S4Dsing-

Il suffit en effet d’établir ces formules de commutation pour les trajets
élémentaires. A titre d’exemple nous montrons «la moins évidente» :

(8il¢, 1 ])Smg( o tny1)(u)
= ([s:€,i + 1][3i+1§7i])sing(t0 o tngn) ()
{ |sz§|( z latzatz-H U,U,ti+2...tn+1)
|Sl+1£|(t0 N .ti_l,t‘ — (u - ti+1) u —t¢+1,ti+1 ce tn+1)
[€l(to - tic1,ts +tigr — U, Uy tiga . tpy)

= Si([sv Z]sing) (tO cee n—i—l)(u)-

Il s’ensuit qu’il existe une et une seule application continue

v [ TX) — | x|
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telle que Prr o [p| = psing pour tout p € IX, (cf. [Cu, 1.30]). Par
construction méme, @y, est injective et compatible avec les structures
de graphes et les structures multiplicatives.

Le plongement graphique @ : |[IX| — |X|® est enfin le composé
de @y avec la normalisation | X |01 — | X011

() — v )l = 0,1] — [X]
u— y(ru).

1.8.c. La déformation graphique ®;.

L’existence de ®; est liée au fait que les fibres ponctuelles de |g| :
|f X| —» |IX] se contractent dans |X|[®!, mais nous n’avons pas trouvé
d’arguments généraux qui permettent de conclure. Aussi allons-nous
donner une construction récursive de ®,; en grimpant sur le squelette
du CW-complexe |1X]|.

Remarquons d’abord que @, s’écrit localement sous forme d’applications

A, x [0,1] — | X|10H
ou encore par adjonction sous forme d’applications

oY, Ay x [0, 1> — | X]|,

pE (f X)n, n > 0. Pour définir une déformation graphique ®; de &g = @
vers &1 = @ o |q|, il faut et il suffit que les déformations locales @f,u
satisfassent aux conditions suivantes :

(Ll)p (I)g,u 1Ay x [0,1] — [X] est I'adjoint de ||psing|| : An — IX‘[OJ];

’
P
lu>

(L2), 8l Pred = Preq, alors @, = @
(L3), ©7, et @7, sont constantes en ¢;

(L4), VP = 9,00 et By = 5,07

t,u’

0 <j <dimp.
Nous ajoutons une condition supplémentaire qui exprime plus précisé-
ment de quelle fagon les déformations locales seront faites :

(L5), La déformation @7, se factorise par le domaine arborescent
Df(\)r/n(p) :
p

P
A, X [0,1]2 =, |X|

7 l
‘ﬁsimp]

Dom(p)
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14 C. BERGER

Le domaine arborescent du fn(X )-trajet non trivial p € (TX )n est
défini (en reprenant les notations de 1.6.b) comme le quotient

Dom(p) = Dom(p) / (R{" UR),

ol 'ensemble de relations E;Q) contient une relation ag, ~ ay, pour tout
aller retour [€k,, ik, |5%1 [Eky, ik, |F2 tel que le trajet entouré

€k1+1 .. €kg—1

[§k1+17ik1+1] . [é'kz—laikg——l]

se réduise au trajet trivial. Il y a en général une inclusion stricte
R;,Q) G R,(,Q), mais R;E,Q) a l'avantage d’étre indépendant du schéma de
réduction.

Le point-clé de la construction récursive de ®; est I'observation suivante
(comparer avec [M, 3.6]) :

1.8.d. LemME. — Le domaine arborescent d’un Ty (X)-trajet p € (IX),
se rétracte par déformation topologique sur le domaine du m-prisme
a880CI€ Proq € (IX)y de sorte que Psimp| Dom(preq) = (Pred)simp- Le domaine

arborescent est en particulier contractile pour tout trajet p € IX. []

A titre d’exemple, soit p un fo(X)-trajet. Supposons en plus que le
Io(X)-trajet comprimé s’écrive formellement

abb~leclede teffd 1.

Le domaine arborescent de p et le domaine du n-prisme associé preq se
présentent alors comme suit :

Dom(p) Dom(prea)
a bb—l I [0
cc”le | gamt Sele l ¢
9 fr l g

Il n’est pas difficile de montrer qu’en toute généralité, le domaine arbores-
cent d’'un I'g(X)-trajet est un arbre contenant le domaine du 0O-prisme
associé comme tronc (i.e. sous-arbre linéaire), d’olt la déformation de
rétraction cherchée. Au tronc s’attachent en particulier des branches qui
sont structurées selon la configuration des aller retour.
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Le cas d’un T',(X)-trajet p est traité de fagon analogue, les arétes
étant remplacées par des (n+ 1)-simplexes munis d’un indice directionnel.
L’écriture formelle du trajet p permet en effet de construire comme
ci-dessus un arbre A,. La déformation de rétraction de A, sur A, ,

induit une déformation de rétraction de |Dom(p)| sur | Dom(pyeq)|, la paire
(|Dom(p)|, | Dom(pred)|) étant paramétrée par la paire

(An X Ap’ A" X Apred)

a laide du diagramme commutatif suivant (dans lequel « désigne le n-
prisme fondamental de Dom(p)) :

Anx[0,1] —2% . |Dom(p)|
An x Ap |Dom(p)|

La paramétrisation A, x A4, —» |]5€)?n(p)| n'est en général bijective
(et ouverte) qu’en restriction & l'intérieur du n-simplexe affine A,,, mais
cela suffit.

Revenons & la condition locale (L5), : il nous faudra de plus une
condition de cohérence des factorlsatlons <I> : A, x [0,1]2 — Dom(p)
par rapport aux opérateurs de face telle que la condition (L4) en soit
une conséquence. La définition de ’ensemble de relations R( ) urnphque
que pour tout indice j, tel que 0 < j < dimp, 'image du morphisme
composé

~

Dom(éjp) SR Dom(p) —» ]55—1’11(1)),

notée Bjﬁrl(p), se projette canoniquement sur le domaine arborescent

Dom(éjp), projection qu’on notera g;. La condition de cohérence est alors
la suivante :

(L6),, les restrictions ijif,u sont & valeurs dans lﬁjﬁa;n(p)l et on a
= =9, . .
lg;| o (lei?u) = <I>tfup, 0<j<dimp.

La donnée d’un systeme de factorisations Cf?f vérifiant (L6) pour
0 < j < dimp, induit une factorisation

&)2’; (bA, x [0,1]2 — ﬁn(p) ;

autrement dit, les conditions de cohérence (L6) permettent de «recoller ».
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La construction récursive de ®; procede alors comme suit. On sup-
pose ®; définie sur le (n — 1)-squelette de |[IX| de sorte que les condi-
tions locales (L1)—(L6) soient vérifiées, et on 'étend au n-squelette par
la construction suivante (l’argument vaudra pour » = 0) : pour tout
fn(X )-trajet (non dégénéré) réduit pred, les conditions (L1), (L3), (L4)
déterminent et définissent ®}"s* sur le sous-espace

Up =bA, x [0,17UA, x {(t,u); t=00uu=0ouu=1}

de A, x [0,1]%. Les conditions (L5),,

phisme Dom(pyeq) = Dfa?n(pred) permettent de factoriser cette application
par le domaine arborescent. La factorisation s’étend & A,, x [0,1]? selon
une déformation qui rétracte A, x [0,1] sur U, (c’est le principe de
I’extension homotopique).

Ensuite, pour un I n(X)-trajet (non dégénéré) non réduit p, les condi-
tions (L1),—~(L4),, déterminent et définissent la déformation locale P}, sur
le bord entier

et (L6)g, . jointes a I'isomor-

b(A, x [0,1]?) = bA, x [0,1]* UA, x b[0,1]?

de A, x [0,1)2. Les conditions (L5)g, et (L6),, jointes au LEmMmE 1.8.d
permettent de factoriser cette application par le domaine arborescent.
Puisque celui-ci est contractile, la factorisation s'étend a A, x [0,1]%.
L’extension satisfait en particulier & (L6),. Cela termine la construc-
tion récursive de ®; et en méme temps la démonstration de la Propo-
sitioN 1.3.c. (]

2. Le fibré en lacets

2.1.— Le groupoide simplicial I X contient pour tout ensemble simpli-
cial pointé et connexe (X, *) un modele du fibré en lacets qu’on définit par
QX =(ex,sx) (x %), PX=(ex,sx) HX,*) et g=ex|px : PX — X.
La projection g est a priori une QX-fibration principale (i.e. QX opere
sans isotropie sur PX de sorte que les orbites de ’action s’identifient aux
fibres de ¢), mais la théorie générale des fibrations simpliciales montre
que toute fibration principale est localement triviale (cf. 3.1), ce qui jus-
tifie notre terminologie. Pour tout n > 0, le groupe (2X),, est libre en
tant que groupe d’automorphismes du point base %, € X, a l'intérieur du
groupoide libre (IX),. Nous expliciterons au § 3.2, dans le cas d’un en-
semble simplicial réduit X, des bases canoniques pour les groupes (2X),
ainsi qu’une structure canonique de QX-fibré principal sur PX.
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2.2. — L’objectif de cette partie est d’étudier les isomorphismes de
connezion
On+1(X) : mpp1 (1X]) — 7rn(|QX|)

de la suite exacte longue d’homotopie du fibré en lacets. Comme notre
intérét est de nature combinatoire, il convient de définir les groupes
d’homotopie en question en passant par la réalisation géométrique et non
pas par plongement dans une enveloppe de Kan (cf. [G-Z], [K1]).

Les groupes d’homotopie du groupe simplicial X admettent toutefois
une définition directe & 'aide du compleze de Moore ((2X)n,9,) 3 108
conventions sont les suivantes : B

((/Z\)Z')n = (QX),Nkerdy Nkerd; N---Nkerdp_1,

an = n|(6§)n )

T (QX) = kergn/im 5n+1.

Par la théorie de Moore-Kan [K1], on sait en effet que la réalisation
géométrique induit des isomorphismes 7,(QX) & m,(|2X]) pour n > 0,
associant aux n-cycles w € ker 5n du complexe de Moore les représentants
simpliciauz |w| : |S™| — |QX], ou

w = w/bA[n] : A[n]/bA[n] — QX.

Or, 'existence d’une contraction prismatique de ’espace total du fibré
en lacets nous permettra (§§2.5-2.6) d’associer & tout n-cycle w du
complexe de Moore de 2X un représentant simplicial canonique de la
classe d’homotopie adjointe

On41(X) "M ([ wl]) € maa (IX]).

Le représentant adjoint, noté wspn : L" 1 (w) — X, se déduit directe-
ment de la structure prismatique du n-cycle w. Pour motiver la définition
de wsph, nous introduisons le concept de «piste» (track) d’un prisme,
concept que nous avons emprunté & BARRATT [Bal.

2.3. DEFINITION. — La piste [p] d’un prisme p € IX est sa classe
d’homotopie fibre rel. le bord par rapport & la fibration (ex,sx): IX —
X x X.

Comme les fibres (1.X),,, vérifient la condition de Kan, deux n-prismes
p1, P2 € (IX),,, appartiennent & la méme piste si et seulement s’il existe
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un (n+ 1)-prisme R € (IX),, tel que [R,n| : p1 ~ po soit une homotopie
élémentaire rel. le bord (remarque 1.4).

Nous noterons Tr, ,(X) I'ensemble des pistes d’entrée x et de sortie y.
La composition de prismes induit une structure de groupe sur Tr, ,(X).
On notera Tr,(X) le sous-groupe de Tr, ,(X) formé par les pistes-lacets
qui sont triviales sur leur bord. Il résulte alors des définitions qu’on a pour
le point base * de X des isomorphismes canoniques

Tr,, (X) 2 1,(QX), n>0.

Les représentants sont en effet les mémes et la différence de deux n-cycles
w1, wa € (2X), est un bord du complexe de Moore si et seulement si les
deux cycles appartiennent & la méme piste.

2.4. Le représentant simplicial adjoint.

Rappelons qu’en topologie le groupe des pistes-lacets au-dessus de
I’application constante |S"| - |X| sert de description commune aux
groupes m,+1(|X|) et 7, (2] X) réalisant ainsi I’adjonction entre les fonc-
teurs «suspension et «espace de lacetsy [Bal.

Par analogie, nous définissons le diagramme commutatif suivant :

g Onp1(X)
[lwspnl] € T41(|X]) ———— ma(IQX]) > [lwl]

Compte tenu de la construction topologique, il est naturel de définir le

représentant simplicial adjoint wspy : Y"1 (w) — X en quotientant «par
le bord » le morphisme Wgjmp : Dom(w) — X associé au n-cycle w (§1.6) :

Dom(w) —=, X
Wsph

Y"1 (w) = Dom(w)/bDom(w)

En effet, le bord du (n + 1)-élément simplicial Dom(w) est réunion du
bord latéral et du bord extrémal (§ 1.7.b). Comme les faces du n-cycle w
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sont triviales, le bord latéral est vide (§1.7.a); comme w est un «lacet »,
le bord extrémal est appliqué sur le point base de X, ce qui montre que la
définition de wsph est consistante. La structure simpliciale de la (n + 1)-
sphere £+ (w) dépend uniquement de la structure formelle du n-cycle w
et des schémas de réductions Aé,-w—»( 8;)rea de ses faces.

Il reste & montrer que la classe d’homotopie [ |wspn|] € Tp41(|X|) vérifie
effectivement que 9p41(X)([|wspn|]) = [|w|]. Nous proposons & cet effet
une démonstration entiérement combinatoire qui utilise la contractibilité
prismatique de ’espace total du fibré en lacets.

2.5. LEMME. — Le groupoide simplicial IX est muni d’une déformation
prismatique px : IX — I(IX) :idyx ~ix osx qui rétracte IX sur X en
fizant X. La déformation vérifie en outre

IeX OpXZid[X et ISXOsziXoSX.

En particulier, pour un ensemble simplicial pointé et conneze (X, *),
lespace total du fibré en lacets admet la contraction prismatique px|px :
PX — P(PX).

Preuve. — Le morphisme px est défini par récurrence sur la longueur
des prismes en posant pour tout simplexe z € X, px(1;) = 1(1,), et pour
tout prisme composé [£,i]¢ - p € IX,

px (€47 - p) = [ul&, ) - sip,i]" - px (),

[si+1€,1) sie =1,
[s:€,i+1]71 sie= -1

ou

plg,i° = {
Plusieurs vérifications sont & faire : on observe d’abord que le prisme p[€, 7]

forme la composante droite du prisme dégénéré s;[£,%]°; en particulier
sx (pl€, 1)) = ex(s;p). On vérifie ensuite la formule

(erx, s1x) (1€, 1%, 4)°) = ([6,)°, Loxqiene))
d’ou les identités
erxopx =idrxy et srx °px = ixosx =Isxopx.
Par récurrence sur la longueur des prismes, il s’ensuit d’une part que
six ([pl€,4)° - sip,i]7) = erx(px (p)),
i.e. la définition de px est consistante, et d’autre part que Iexopx = idrx.
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Enfin, pour montrer que px commute avec les opérateurs simpliciaux,
il suffit — par un argument de récurrence — de vérifier les formules
suivantes :

[/’Laj[gvi]'s»i - 1]8 si .7 <t,

9 [nl6,117,1]" = { Laxee) sij =1,
[1d;[€, 1), 4]° sij> i
[us;[€, 45,0+ 1)° sij <,
silule i1 = px(sileil)  sii=i,
[us; €, 417, 4]° sij>i [
2.6. PropPOSITION. — Soit (X,*) un ensemble simplicial pointé et

connexe. Tout n-cycle w du complere de Moore de QX s’inscrit alors
dans le diagramme commutatif suivant :

gn ot EMl(w) —— Entl(y)

i | Jow

QX — PX —% X,

dans lequel E"T1(w) désigne un (n + 1)-élément simplicial tel que
iS™ = bE" (W) et LT (w) = E"TH(w)/bE™ T (w).

La longueur de la chaine qui constitue le cycle fondamental de la (n+ 1)-
sphére X" (W) est en particulier égale a la longueur du n-cycle w.

Preuve. — 11 suffit d’expliciter E"*1(w) et de compléter le diagramme.
Le n-cycle w € (QX), C (PX), se contracte dans PX selon le n-prisme
Q = px(w) € (P(PX)), qui est d’entrée w, de sortie 1,, et de bord
trivial. Le morphisme associé Qimp : Dom(Q2) — PX se factorise donc

par la face-sortie, définissant ainsi le morphisme vertical médian ci-dessus
(E"t!(w) = Dom(Q2)/s(A[n])) :

Qsimp/s(A[n]) : B (w) — PX.

En effet, par application itérée du lemme de Barratt (cf. 1.7), E"t1(w)
est un (n + 1)-élément simplicial de bord e(A[n])/e(bA[n]) . L’inclusion
canonique i : S" & bE"t(w) — E"!(w) rend commutatif le carré
gauche ci-dessus. Le quotient E™**(w)/bE™!(w) s’identifie & X"+ (w)
(§2.4) en vertu de l'isomorphisme canonique Dom(Q2) & Dom(w) qui
résulte de l'identité Pgo (px|px) =idpx (§2.5).
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Par construction méme de la (n + 1)-sphere simpliciale X" (w), les
(n 4+ 1)-simplexes qui constituent son cycle fondamental sont en bijection
avec les composantes élémentaires du n-cycle w. []

2.7. REMARQUE.

(a) Le théoreme d’approzimation semi-simpliciale [F-P, 4.6.25] four-
nit D'existence d’une CW-subdivision finie £"+!(w) de S™*! et d’'un
morphisme Wepn : ¥"+l(w) — X réalisant simplicialement la classe
d’homotopie adjointe de [w] € 7, (QX) = 7,(|QX]) =¥ 7,(QX]). Par
ailleurs, nous verrons au § 3.3 que la construction 2X n’est d’un point de
vue algébrique guere plus qu'une extension un peu mystérieuse du groupe
de lacets GX de Kan.

La nouveauté ici est le lien explicite qui s’est établi entre :
« la représentation «simpliciale » wsph : Z"H(w) — X et

o la représentation «algébriquey» w: S™ — QX.

On pourra étudier a ce sujet ’exemple donné au § 3.4.

(b) Nous terminons cette partie en montrant que le groupoide des
composantes connexes de I.X par rapport a I’homotopie fibre 2.3 s’identifie
canoniquement au groupoide fondamental 11X tel qu’il a été défini par
GABRIEL-ZISMAN [G-Z, I1.7.1]. Notre définition ressemble cependant plus &
la définition topologique [Br]. On déduit en particulier I’équivalence entre
la définition «standard» du groupe de Poincaré d’un ensemble simplicial
pointé (X, *) et la notre (via mo(2X)). La PROPOSITION 2.6 est élémentaire
dans cette dimension.

Le groupoide fondamental I1X est défini dans [G-Z] comme le quotient
du groupoide libre (I.X), par 'ensemble générateur des relations

R, : [Blzv,()]red ~ ([821‘,0][801‘,0]) r € Xo.

red’

Il s’agit de montrer que :

(i) pour tout z € Xa, les O-prismes [01z, 0]req et ([02z,0][0p, 0])red
appartiennent & la méme piste;

(ii) deux O-prismes quelconques pj,pe appartenant a la méme piste
sont reliés par une suite de relations du type 1, R;1,,, avec x € Xy et
p12 € (IX)o, e = £1.

Ad(i) : pour R = [soOex,1][x,1][s1012,0] on vérifie que [R,0] est
I’homotopie élémentaire cherchée (comparer avec 3.5d).

Ad(it) : si R = [£1,91]7" -+~ [€es 1]t € (IX); est tel que [R,0] : p1 ~ pa,
alors 'homotopie élémentaire [R, 0] est réalisable par une suite de relations
1 ok RE: 1 ok 1 < k <4, pour des 0-prismes p’ny convenablement choisis. ||
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3. Le fibré universel de Kan et la
construction cobar d’Adams-Baues

3.1. Le fibré universel de Kan.

La théorie des fonctions de torsion (twisting functions) offre un for-
malisme commode pour traiter les fibrés simpliciaux. En effet, la donnée
conjointe d’une G-fibration principale

G— E-1»X
(cf. 2.1) et d’une pseudosection
j: X—=FE:x— j,

(i.e. goj =1dx, Sije = Js;z, 0 < i < dimz, 0;J = jo,;z, 0 < i@ < dimz,
mais en général d,j, # js,x, n = dimz) définit une et une seule fonction
de torsion (de degré —1) t : X — G vérifiant 9,j, = (Jo, )%, z € Xp,
n > 0. L’intérét de cette fonction de torsion provient du G-isomorphisme

©: X x;G— E:(x,9) — (ja)?

qui munit £ d’une structure de produit cartésien tordu (twisted cartesian
product). Or, un produit cartésien tordu est localement trivial, i.e. E est
un G-fibré principal (cf. [Cu, 6.8]).

Si l'ensemble simplicial X est réduit (i.e. Xg = {xo}), il admet une
fonction de torsion universelle

t¢: X — GX

de sorte que pour toute fonction de torsion ¢t : X — G, il existe un et
un seul homomorphisme de groupes simpliciaux ¢ : GX — G tel que
@ ot% = t. La construction d’une fonction de torsion universelle est due
a Kan [K1]. Celui-ci montre en particulier que le produit cartésien tordu
EX = X x;¢ GX est topologiquement contractile, ce qui lui fournit une
définition algébrique des groupes d’homotopie de |X| basée sur la famille
des isomorphismes de connexion 7,+1(|X|) — 7,(GX) pour n > 0.

Nous précisons le résultat de Kan du c6té géométrique en montrant
que le fibré universel de Kan est — en vertu de sa propriété universelle —
plongé dans le fibré en lacets X — PX — X de maniére invariante
par rapport a la contraction prismatique du dernier. Le plongement
dépend d’une structure de produit cartésien tordu sur PX resp. d'une
pseudosection de la projection ¢ : PX — X que nous explicitons ci-
dessous.
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3.2. Un arbre maximal du graphe I',,(X).

Soit (X, *) un ensemble simplicial réduit. Pour tout » > 0, on définit
un arbre mazimal du graphe T',,(X) = (X,,,ZEn, €, 5) (§1.2) en posant :

T, = {[¢,i] € En; i # n, £ dégénéré dans les directions i+1,i+2,...,n}.

On montre en effet que tout n-simplexe z € X,, est joint au point base
*, € X, selon un unique (X,,T,,e, s)-trajet réduit qu’'on notera j,. Le
trajet est explicitement donné par la formule

o = ([sn@,n—1[$p8n—10p_12,n — 2] - - [SpSp_1 -+ 8101 -+ - Op_12,0]) .

L’unicité d'un (X,,T,,e, s)-trajet réduit d’entrée x et de sortie %, se
démontre par récurrence sur la «distance» du n-simplexe z au point
base *,,, formellement définie comme le plus petit entier i tel que x s’écrive
sous la forme ¢ = s,,_1 -+ - 83415y avec y € X;. Nous laissons les détails au
lecteur. La description explicite de I’arbre maximal (X, Ty, e, s) permet
de définir une base B, du groupe libre (QX), (cf. 2.1). Il résulte en effet
des définitions que I’ensemble

B, = {(j8i+1§)_1[£’i]j8i§; [6,2] € (En\Tn)}
forme une base de (QX),.

3.3. PropPoSITION. — Soit (X, *) un ensemble simplicial réduit.

(a) La fonction j : X — PX : x — j, est une pseudosection de
q: PX — X. La fonction de torsion associée s’écrit

t2+1 $ Xnp1 — (X)) — (j8n+1£)—1[§7n]j3n€-

(b) Le groupe de lacets universel GX est isomorphe au sous-groupe
simplicial de QX engendré par l’image de la fonction de torsion. Le
groupe (GX),, s’identifie en particulier au sous-groupe de (QX),, librement
engendré par les n-prismes € = tffﬂf, 00 € € (Xn+1 \ $nXn).

(c) La contraction prismatique px|px : PX — P(PX) induit par
restriction une contraction prismatique px|gx : EX — P(EX). En
particulier, comme les groupes simpliciaur GX et QX sont libres (au sens
de Kan), ils ont méme type d’homotopie multiplicative.

Preuve.
(a) On vérifie aisément que les contractions prismatiques

Jo 1T~ Sp_1++-8000 " Op1T
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commutent avec les opérateurs simpliciaux exceptés 9, avec n = dim z.
D’apreés 3.1, on a :

ti1€6 = (Jons6) " (Onrrde) = (Jon.16) ™ €, nldo,e-
(b) Il existe un unique homomorphisme de groupes simpliciaux
p:GX — QX

tel que p(€) = t2(€) (cf. 3.1). Les n-prismes t(€), € € (Xni1 \ 80 Xn)
font partie de la base B,, de (2X),, ce qui prouve 'injectivité de (.

(¢) L'inclusion ¢ : GX — QX induit une inclusion des fibrés princi-
paux associés EX — PX, les n-simplexes du fibré universel s’identifiant
aux n-prismes p € (PX), dont les composantes ¢lémentaires [¢,i]°
vérifient soit ¢ = n soit [£,4] € T,. L’opérateur p du § 2.5 préserve cette
condition ce qui implique que la contraction prismatique de PX se res-
treint a EX.

En vertu du lemme des cing, l'inclusion ¢ est alors une équivalence
d’homotopie faible. Or d’aprés un théoréeme de Kan [K2|, une équi-
valence d’homotopie faible entre groupes simpliciaux libres est une équiva-
lence d’homotopie multiplicative (rappelons qu’un groupe simplicial G
est libre, si pour tout n > 0, le groupe G, est librement engendré par un
ensemble B, en sorte que la réunion des B,, soit stable par opérateurs de
dégénérescence). Dans notre cas, la réunion des bases B,, de (2X),, n’est
stable par opérateurs de dégénérescence qu’en restriction au sous-groupe
simplicial GX. Pour appliquer le théoréeme de Kan, nous allons modifier
les bases B, par des transformations de Tietze itérées en sorte que les
nouvelles bases B/, soient stables et qu'en plus B, NGX = B, N GX.

Pour cela, nous associons & tout (n + 1)-simplexe £ € X,,+1 et tout
indice 7, 0 < ¢ < n, un entier positif ou nul def; , maximal pour la
propriété que & soit dégénéré dans les directions ¢+ 1, ¢+ 2,...,7+def; &.
On pose :

[[€ ]] j8i+1§[§7 2].731.5 si defi§ = 07
i = . - .
Sidr—1"""Si+18; (]aiim[n,z]jam) sidef;E =7 >0;

§ = Sigr 8it28i417.

Les ensembles

B:L:{Hg?i]]; [ng]E(En\Tn>}a n >0,
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vérifient alors :
(i) Bj, est une base de (2X),,
(i) s;B}, C B4y pour 0 <i <,
(iii) B,NGX = B,NGX.

L’assertion (i) résulte d’une récurrence sur les entiers def; £. On pose
en effet

B = {[¢,i]; [€,4] & T, defi€ <7}
U {da elé o €1 ¢ Ty defi€ > 7}
en particulier :
B® =B, e B»Y=RB.
Par hypothese de récurrence on peut alors supposer que B,(f) est une base
de (9X),. Pour tout n-prisme élémentaire [£, (] ¢ T, tel que def; € =r+1
et &€ = S;q1r41 - Sit2Si+17, on obtient :

Ilga Z]] = Si4r " S (.]511177[77’ i]jain) = H (ja—kl_'_lgk [ﬁka k]jakﬁk)v
it 1> k>
ou
¢ I3 sik =1,
R Sk_l"-si8i+1'-‘ak§ sii+r+1>k>i.

Comme defy & <7 pour i +r+ 1>k > i, le n-prisme [€,1] s’écrit
[6,1 = (TT06:#1) 5. elé love

avec defy Ek < r. On peut donc effectuer la modification B,(f) — B,(LTH)
par des transformations de Tietze qui substituent les éléments [£,7] €

1 4 . q
(Bﬁf+ ) \Bﬁf)) aux éléments jo [, 1)ja;e-
Les assertions (ii) et (iii) sont immédiates si l'on écrit les bases B!, sous
la forme équivalente

B, = {sitr—1---si[n,i]; def;n =0, [n,i] € (En—r \ Tn-r)}. [

3.4. Exemple : un représentant simplicial fini de la fibration
de Hopf |S3| — |S?|.

La fibration de Hopf de la 3-sphére sur la 2-sphére est & homotopie
et orientation pres caractérisée par la propriété d’étre un «générateur
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du groupe 73(|S?|). Selon 2.5 et 3.3.c, on a un triangle commutatif

d’isomorphismes :
m3(15%))

T(GS?) —=— 1,(025?).

Kan [K1] a explicité un représentant de la classe génératrice de m2(GS?),
a savoir le commutateur simple

W=2507 810500 -85 " € (GS?)a,

ol o désigne le simplexe fondamental de S2%. L’écriture prismatique
3.3.a-3.3.b de ce commutateur est :

w = [s00, 2][s10, 2][s20, 1][s00, 2] "}[s20,1] }[s10,2] 7! € (25?)s.

Selon 2.6, on obtient donc un représentant simplicial wspp @ 13 (w) — S2
de la fibration de Hopf tel que le cycle fondamental de la 3-sphére soit
constitué de six 3-simplexes.

En reprenant les notations de 1.6, la 3-sphere s’écrit comme quotient
¥3(w) = Dom(w)/bDom(w),
ol
Dom(w) = Dom(w)/(RS) U RY).
Si I’on note
[al’ 2] [a2’ 2][&3, 1][04, 2]_1[a5? 1]_1[a67 2]_1
le 2-prisme fondamental de Dom(w), alors I’ensemble de relations Rglg u
jo s’écrit en codimension 1 :
{(Boaz ~ 51010002), (Boerz ~ $0000px3), (Bocus ~ $000Dpars),
(Boas ~ 5101800), (oo ~ Doaus) }
U {(61(11 ~ 810(6), (alag ~ 61a4)}
U {(8sai3 ~ O50a5) }
(correspondant aux réductions des faces @w, j =0,1,2). Le passage au
quotient Dom(w) —» ¥3(w) se réalise par les relations dza; ~ %3 ~ dz05.

Le représentant wspn est enfin défini par aj,04 — so0, a2, a6 — s10,
Q3,05 — S20.
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3.5. La construction cobar d’Adams-Baues.

Apams définit dans [A] la construction cobar QC d’une coalgébre
différentielle C. Il démontre que pour la coalgebre différentielle C, (] X])
des chaines d’'un CW-complexe 1-réduit |X|, les complexes de chaines
QC.(|X]) et Ci(Q]X]|) ont méme type d’homotopie. Sa démonstration
repose sur approximation par un n-cube de ’espace des chemins reliant
premier et dernier sommet du (n+1)-simplexe affine. Ces « approximations
d’Adams» ont été formalisées par BAUES [Bau] qui définit en particulier
pour tout ensemble simplicial 1-réduit X un CW-complexe «cubique
I9pX] dont le complexe de chaines C.(||25X]|) est isomorphe & la
construction cobar d’Adams QC,(|X]). Nous allons plonger le modele
cubique de Baues, subdivisé simplicialement, dans le monoide simplicial
QT X des lacets prismatiques positifs. Le plongement revient & rendre
«prismatiques » les approximations d’Adams.

Rappelons tout d’abord la définition de 25X sous une forme qui nous
sera commode (cf. [Bau, 1.2.7-13]).

8.5.a. — BAUEs introduit la catégorie QA : les objets de QA sont les
cordes (simpliciales)
Cdiyigei, = A[’Ll + 1] DA[ZQ + 1] a--. DA[Z@ + 1]

définies par amalgamation itérée (cf. 1.6) des diagrammes
e
A[O]——)A[ik+1],, 1<k<Y,
Sk

e (resp. si) désignant le sommet d’indice 0 (resp. i + 1). Un neud est
un sommet de la corde égal & un des ex(A[0]) ou sx(A[0]), 1 < k < 2.
Tout sommet qui n’est pas un noeud est appelé interne. Les morphismes de
QA sont les morphismes simpliciaux qui préservent noeuds initial et final.

Le modele cubique 25X, subdivisé simplicialement, est alors défini
(X étant 1-réduit) comme le produit tensoriel Qx ® L du foncteur
contravariant Qa

Qx : QA — Ens (la catégorie des ensembles)
Cdil‘..“ — MorEsimp(Cdilnig y X)
¢ > Morgsimp (10, X)
et du foncteur covariant

L : QA — Esimp (la catégorie des ensembles simpliciaux)
Cdi1‘~~i[ — A[l]il+'“+ie
o — L.
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La définition de Ly découle de l'interprétation suivante du (iy + - - - + i)-
cube simplicial A[1]1+ "+ (cf. [Bau, 11L3]) :

« L’ensemble ngﬁ,i . des sommets internes de la corde Cd;,...;
cardinalité i; + - - - + iy.

¢ L’ensemble P(S;fﬁ,i ,) des parties de S%i‘,‘i,i , est un ensemble partiel-
lement ordonné dont le nerf AP(S™ ;) s’identifie au (i, 4 - - - +ig)-cube
simplicial A[1]1 % en fait P(S{™ ;) = [1]* T et le nerf A com-
mute avec le produit cartésien.

est de

€

e Pour tout morphisme de cordes ¢ : Cd;,..;, — Cd;,...;,,, on note
N;,...i, Vensemble des nceuds de Cd;,...;,, et on définit

P(e) : P(Sii,) = P(Si5,) i 7 (9(7) U p(Niyoi)) NS5,

et Lo=AP(p).

Il est intéressant d’observer que le foncteur L (essentiellement les appro-
ximations d’Adams) intervient également dans la théorie des (co)limites
homotopiques de R.M. VoGT. Le lecteur pourra consulter l'article [Co]
de CoORDIER, ol ce lien est rendu explicite. A cet effet, il est utile
de remarquer que la sous-catégorie de QA formée par les morphismes de
cordes élémentaires Cd,, — Cd,, est isomorphe & la catégorie simpliciale
opposée A°P (voir [Co, 1.2]). La restriction de L & cette sous-catégorie
définit en particulier un foncteur contravariant A — Esimp : [n] — A[1]",
noté P dans [Co].

3.5.b. L’inclusion QX — QF X. — Pour tout ensemble simplicial X,
I X désigne le sous-ensemble simplicial de I X formé par les prismes dont
toutes les composantes sont d’ezposant positif. 11 existe alors pour toute
corde Cdj,...;, une inclusion (cf. 3.5.c)

kilmiz :A[l]i1+...+ie — (I+ Cdir“ie)el,sz

induisant une transformation naturelle k : L — I}, de foncteurs QA —
Esimp. La naturalité de k implique que

ig:Ox ® L —QtX
QA
(ail"‘if”y) — (Igi1"'iz)(kil'“ie (7))

est bien défini.

L’injectivité de ¢p est une conséquence de l'injectivité de k;,
deux faits suivants :

..i, €t des
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(i) chaque classe (0iy...i,,7) € Qx ®aa L admet un représentant
unique (0;,...5,,7) € Qx x L tel que 0y, ...;, soit un ¢-uplet de simplexes non
dégénérés de X et tel que v soit un simplexe intérieur du cube simplicial
A1+t (cf. [Bau, 11.1.5-8] et [F-P, 4.2.7)).

(ii) un simplexe intérieur de A[1]2FFi est transformé par k;,...,
en un prisme qui «passe) exactement une fois par chaque élément de la
corde Cd,,...;, en suivant l'ordre.

3.5.c. Une version prismatique des approzimations d’Adams. — Nous
appelons régulier tout m-prisme positif p € (ITX), dont les compo-
santes [€, 1] vérifient soit i = n, soit [,i] € T}, (i.e. le (n + 1)-simplexe &
est dégénéré dans les directions i+ 1,i+2,...,n; comparer avec 3.2-3.3).
Le sous-ensemble simplicial de It X formé par les prismes réguliers sera
noté It X. Comme il y a une inclusion naturelle (I5,)es <= (I)ecs,
nous aurons terminé en montrant qu’il existe un isomorphisme naturel de
foncteurs monoidauz £ : (Ir"gg)eys >~ [ : QA — Esimp. A cet effet, il suffit
d’expliciter la famille des isomorphismes £, : (IL,Aln + 1]). o = A[1]",
pour n > 0; les composantes ¢;,...;, s’en déduisent par amalgamation,
puisque les foncteurs (If,)e s et L sont monoidaux.

Pour ce faire, remarquons d’abord que la fonction entrée-sortie (m > 0)

(eA[n+1]75A[n+1]) B — A[n + 1]m PN A[n + 1]m
est injective d’image ’ensemble des «sautsy de ’ordre partiel

Aln + 1] = Mora ([m], [n +1]),
ol nous entendons par saut tout couple de m-simplexes
00,01 : [m] = [n+1]

tels que o9 < o1 (l.e. 00(i) < 01(3), 0 < i < m), mais o¢(i) # o1(¢) pour
eractement un indice ¢. L’indice «directionnel » du saut correspond en fait
a l'indice directionnel de 'unique m-prisme élémentaire [€,i] d’entrée oy
et de sortie 1. Nous dirons que le saut (o, 07) est régulier si le m-prisme
élémentaire associé 'est, ce qui veut simplement dire qu’on a

Ul(i) = Ul(i + 1) == al(m).
Un m-prisme régulier p € ([, A[n + 1)), est donc formellement

équivalent & une suite (ox)o<i<¢ de m-simplexes o, € Aln + 1], telle
que les couples (ox_1,0%) de simplexes consécutifs soient des sauts
réguliers. Les faces 0;p (resp. les dégénérescences s;p) correspondent aux
suites (0;0k)o<k<e (resp. (S;0%)o<k<e) étant entendu que les éventuelles
répétitions dans la suite (9;0% )o<k<¢ sont éliminées (resp. que les éventuels
«doubles sauts» dans la suite (s;jor)o<k<e sont subdivisés en deux
«simples sauts ).
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L’isomorphisme cherché admet alors la forme suivante (cf. 3.5.a) :

gn : (I;ZgA[TL + 1])675 L) A[l]n — A,P(S;lnt)
p = (ok)o<k<e — (70 €71 € -+ C Tdimp),

ot 'ensemble de sommets 7; € P(Si*), 0 < j < dimp, est défini par la

formule
5= U o)\ {on+1}

0<k<t

La régularité de p implique que la définition est consistante. L’appli-
cation £, commute avec les opérateurs simpliciaux. La fonctorialité de ¢
par rapport aux morphismes de cordes élémentaires Cd, — Cd,, est
immédiate. La fonctorialité par rapport aux «subdivisions de cordes»
Cd,,...;, = Cd,, résulte de la définition de L et du fait que I'intersection

A

0<j<dimp

£

s’identifie & 'ensemble des sommets (# 0,n+1) de la suite p = (0% )o<k<s-
Puisque les morphismes élémentaires et les subdivisions de cordes en-
gendrent par composition et amalgamation tous les morphismes de QA,
la fonctorialité de ¢ est ainsi établie.

Pour montrer que l'application 4, est bijective nous explicitons |’ appli-
cation inverse ky : soit (ro € -+ C 7,,) € (AP(S™)), ; le m-prisme
régulier

kn((70 €+ C 7)) € (Ir':gA[n-l— 1)m

est alors défini par 1'unique suite de m-simplexes (ox)o<k<¢ qui vérifie
(i) 00=0, cy=n+1, et

(ii) le couple (ox—1,0%), pour 1 < k < £, forme le saut régulier d’indice
directionnel minimal i tel qu’on ait I'inclusion

{ak_l(i),ak(i)} cnu {O,Tl+ 1}.

3.5.d. Tllustration (cf. [Bau, p. 102]). — Les simplexes o : [m] — [n+1]
sont désignés par la suite de leurs valeurs.
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App? (LregAln +1]),
.. ,
{1} 2
n=1 m
0 0 u 1

(00,01,02,22) =
O = 1001, 1012, 17022, 0]

{2} {1,2}

0 {1} 0 u 1
(00,01,02,03,33) =
(0c{1,2) 001, 1][012, 1][023, 1][033, 0]

(000, 001,011,012, 013,033, 333) =

0} c{L2) —— (001, 210011, 10112, 2][0123, 2][0133, 1][0333, 0]

02 c (000,001, 002, 022,023, 033, 333) =
—
’ (0001, 2][0012, 2][0022, 1][0223, 2][0233, 1][0333, 0]
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