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UN GROUPOIDE SIMPLICIAL COMME MODÈLE

DE L'ESPACE DES CHEMINS

PAR

CLEMENS BERGER (*)

RÉSUMÉ. — Pour tout ensemble simplicial nous définissons un groupoïde sim-
plicial qui sert de modèle de l'espace des chemins au sens de Quillen. Le fibre en
lacets associé fournit une interprétation géométrique du fibre universel de Kan et de
la construction cobar cubique de Baues. Nous obtenons en particulier une descrip-
tion algébrique des groupes d'homotopie d'un ensemble simplicial pointé qui étend
la présentabilité du groupe de Poincaré aux groupes d'homotopie supérieurs. Les
représentants des classes d'homotopie peuvent être donnés sous forme algébrique ou
simpliciale.

ABSTRACT. — For each simplicial set we define a simplicial groupoid which
serves as path-object in Quillen's sensé. Thé associated loop bundie gives a géométrie
interprétation of Kan's universal bundie and of Baues' cubical cobar construction. In
particular we obtain an algebraic description of thé homotopy groups of a pointed
simplicial set which extends thé presentability of thé Poincaré group to thé higher
dimensional homotopy groups. Thé représentatives of thé homotopy classes may be
given in algebraic or simplicial terms.

Introduction
Selon Quillen [Q], un modèle simplicial de l'espace des chemins est

essentiellement la donnée d'un graphe simplicial e x ^ s x '' I X =4 X tel
que la projection sur les extrémités ( e x ^ s x ) '' I X —>• X x X soit une
fibration. Si l'ensemble simplicial X vérifie la condition d'extension de
Kan, l'objet fonctionnel X^^ a les propriétés requises, ce qui règle la
question d'existence, au moins du point de vue de Vhomotopie.

Pour faire valoir l'aspect combinatoire du concept de chemin, nous
présentons ici un fondeur 1 qui sert de modèle de l'espace des chemins
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2 C.BERGER

pour la catégorie entière des ensembles simpliciaux. Le foncteur associe
à l'ensemble simplicial X un groupoïde simplicial I X libre en toute
dimension et contenant X comme ensemble d'unités. L'axiome de Quillen
découle aisément de cette structure algébrique. La construction reste
pourtant compatible avec la réalisation géométrique en ce sens qu'il existe
une application de graphes topologiques \IX\ —^ \X\^^ (à valeurs dans
l'espace des chemins de \X\) qui préserve à homotopie près la structure
groupoïdale.

Comme tout modèle de l'espace des chemins, le groupoïde simplicial I X
induit à la fois une relation d'homotopie (appelée prismatique) et un
modèle combinatoire du fibre en lacets (défini pour tout ensemble sim-
plicial pointé et connexe X).

L'homotopie prismatique est eo ipso une relation d'équivalence, vague-
ment comparable à la clôture transitive de l'homotopie cylindrique. Elle
offre avant tout un formalisme commode pour exprimer des homotopies
«à longue distance combinatoire».

L'application principale de la construction I X concerne cependant les
isomorphismes de connexion du fibre en lacets, noté QX ̂  PX —^ X. La
double nature algébrico-prismatique de la fibre ^IX permet en effet non
seulement de définir les groupes d'homotopie de ̂ ÎX de manière quasiment
algébrique, mais encore d'associer à tout représentant algébrique d'une
classe d'homotopie [uj\ G 7r^(f2X), un représentant simplicial canonique

c^ph^+^-^X

de la classe d'homotopie adjointe [ |û^sph| ] ê 7Tn+i(|X|)- Cette forme expli-
cite de l'isomorphisme de connexion

^+i(X):7r,+i(|X|)-^^(^X)

redonne pour n = 0 la présentation du groupe de Poincaré de X par
générateurs et relations. En dimension supérieure, elle semble nouvelle.

L'idée d'une définition algébrique des groupes d'homotopie (supérieurs)
remonte à KAN [Kl] qui utilisait à cet effet les isomorphismes de connexion
du fibre universel GX ̂  EX -^ X. Grâce à une inclusion naturelle
de groupes simpliciaux GX ^-> ^IX, la construction du représentant
simplicial adjoint s'applique également aux représentants algébriques de
Kan. Il est remarquable dans ce contexte que l'espace total du fibre
universel de Kan admette une contraction prismatique.

L'autre modèle de l'espace de lacets que nous avons trouvé dans la
littérature est le modèle cubique ^IpX de Baues, directement calqué sur
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UN GROUPOÏDE SIMPLICIAL 3

la construction cobar d'Adams [Bau]. Ce modèle ^pX, subdivisé sim-
plicialement, est également plongeable dans ^ÏX. Le plongement revient
à rendre « prismatique )) l'approximation par un n-cube de l'espace des
chemins reliant deux sommets (fixes) du {n + l)-simplexe affine.

L'exposé sera subdivisé en trois parties (comparer avec [Be]) :
• la première introduit le groupoïde simplicial et étudie ses propriétés

locales ;
• la seconde partie traite le fibre en lacets ;
• la troisième partie établit les liens avec le fibre universel de Kan et

la construction cobar d'Adams-Baues.

Je voudrais remercier F. SERGERAERT pour les encouragements répétés
qui ont accompagné la rédaction de ce texte. Sa vision « effective » de la
structure simpliciale fut le support indispensable des idées développées ici.

1. Le groupoïde simplicial des prismes
En ce qui concerne la catégorie des ensembles simpliciaux, nous suivons

de près les notations et terminologie habituelles (cf. [Cu], [G-Z]). Compte
tenu de l'application spécifique que nous ferons des graphes nous avons
préféré modifier légèrement la terminologie «standard)) , comme c'est
indiqué ci-dessous.

1.1. Le groupoïde librement engendré par un graphe.

1.1. a. — Un graphe F sera présenté sous forme d'un quadruple!
(X, 2, e, 5), où X désigne l'ensemble des sommets, 5 l'ensemble des arêtes
et (e, s) : 5 —>• X x X la fonction entrée-sortie. Pour deux sommets
x,y e X , on notera Fx,y l'ensemble des arêtes d'entrée x et de sortie y .

Un T-trajet d'entrée x et de sortie y est un mot formel 7 = ̂ 1^2 • • • ̂
de l'alphabet 2^ vérifiant x = e(<^1), sÇ^) = e(^1), 1 ^ k < £,
s(^) = y , où par convention

(^V^fM(0 l̂'

"^IM^) Si£=- l .

Si l'entrée et la sortie coïncident, on admet en plus un T-trajet trimai,
noté 1^, avec x e X.

l.l.b. —Un r-trajet est réduit s'il ne contient pas daller retour ^^-£.
Il existe une opération de réduction de T-trajets associant à tout r-trajet
7 l'unique T-trajet réduit 7red q111 sunj 7 en «évitant)) les aller retour.
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4 C.BERGER

1.1. c. — Le graphe F = (X,2,e,s) est plongé dans un graphe FF =
(X,FE,e,s) dont l'ensemble d'arêtes F5 est l'ensemble des F-trajets
réduits. La composition

(Fr)^x(rr)^ -^ (rr)^
(7l572) l——> (7l72)red

munit FF d'une structure de groupoïde.
Le groupoïde FF est en fait librement engendré par F, puisqu'il est

caractérisé par la propriété universelle que tout morphisme de graphes
^ : r -^ G à valeurs dans un groupoïde G s'étend de manière unique en
un morphisme de groupoïdes ^ : FF -^ G.

Pour plus de détails, nous renvoyons à [D].

1.2. DÉFINITIONS. — Soit X un ensemble simplicial.
Un n-prisme élémentaire de X est un couple [^ i] composé d'un (n+1)-

simplexe <^ e X^+i et d'un indice directionnel i, avec 0 < i < n,
tels que <^ n'appartienne pas à l'image de l'opérateur de dégénérescence
si '• Xn —> X^-^-l.

L'ensemble En des n-prismes élémentaires de X forme l'ensemble des
arêtes du graphe Fn(X) = (Xn,En,e,s), où les fonctions entrée et sortie
sont définies par

(e, S) : En ——> Xn X Xn

M — ?+1^0.
Un n-prisme de X est alors un r^(X)-trajet réduit.
Le groupoïde libre des n-prismes de X sera noté (IX)n. Le groupoïde

simplicial des prismes de X est la réunion disjointe I X des (IX)n, n > 0,
qu'on munit d'une structure simpliciale qui prolonge celle de l'ensemble
d'unités {1^ x e X}.

Les opérateurs de face 9j : (IX)n -^ (^)n-i (resp. de dégénérescence
sj '• (^On -^ (^^)n+i) sont en fait définis par extension canonique des
opérateurs graphiques suivants ([$,?] G S^) :

/ [ô^,z-l] s i j < z ,

f^-K^'] = { lQi9i+^ s i ^ = z ,
[^•+1^^ s i j > î ;

(1.2.a)
[^•^ î + 1] si j < î,

^ [^z] = ^ [^^ ^ + 1] [^+1^ ^] si j = i,
[ k7+i^] s i j > z.

TOME 123 — 1995 — ?1



UN GROUPOÏDE SIMPLICIAL 5

Si QjS, = Si-^x (resp. (9j+i$ = Six), on identifie [9j^i - 1] (resp.
[c^+i^î]) au prisme trivial 1^.

Les morphismes structurels du groupoïde simplicial I X seront notés

{ex, sx) • ' I X —> X x X :p\—> (ex{p),sx(p)),

ix : X —> I X : x —> L,.

Deux morphismes f ^ g : Y —^ X sont prismatiquement homotopes
(relativement au sous-ensemble simplicial Z de Y) s'il existe un morphisme
H : Y -^ I X te\q\ieexH = / et sxH =9 (et ix°f\z = H\z = ̂ x ° g \ z ) '
On notera également H : f ̂  g (rel. Z).

1.2.b. — II est souvent utile de réaliser le groupoïde simplicial I X
comme quotient de l'ensemble simplicial IX. A^cet effet, nous plongeons
le graphe F^(X) dans le graphe Fn(X) = (X^S^e.s), où

En = ̂ n U {[5^,Z] ; X ç Xn, 0 ^ Ï <: n}.

On définit alors la catégorie involutive libre (IX)n des r^(X)-trajets
(y compris les non réduits). Les formules 1.2. a appliquées sans aucune
identification définissent des opérateurs de face 9j : (IX)n -^ (IX)n-i
et de dégénérescence Sj : (IX)n -^ (IX)n^i qui vérifient les identités
simpliciales habituelles. Le groupoïde simplicial I X s'obtient alors à partir
de I X par un passage au quotient

q : ÎX —^ IX : p i—> pred,

où la réduction se fait en deux étapes :
• le r^(X)-trajet p G (IX)n est d'abord transformé en r^(X)-trajet

en supprimant toutes les composantes appartenant à (5^ \ 5^)^ ;
• le r^(X)-trajet résultant est ensuite transformé en n-prisme pred

appartenant à (IX)n selon le procédé de réduction habituel 1.1.b.

Tout n-prisme p e (IX)n est en particulier un r^(X)-trajet, ce qui
permet de récupérer les opérateurs simpliciaux de I X par les formules

9jP = (9jp)red et Sjp = {Sjp\ed = SjP, 0 ^ J <: n.

Enfin, les constructions J et J s'étendent en fondeurs : pour tout mor-
phisme / : X —> Y on définit le morphisme I f : I X —^ IY par

Ki^iF [6, ̂ p • • • [̂  ̂  ̂  [f^ziY1 [f^^2}£2 • ' • [f^ i^.
Le morphisme I f en est déduit par passage au quotient.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



6 C.BERGER

1.3. PROPOSITION.

(a) Pour tout ensemble simplicial X, le morphisme entrée-sortie
(ejc, Sx) •' IX —^ X x X est une fibration de Kan.

(b) La relation d'homotopie prismatique est une relation d'équivalence.
(c) Soient /, g : Y —> X deux morphismes prismatiquement homotopes

rel. Z. Les réalisations géométriques \f\ et \g\ sont alors homotopes rel.\Z\.

Preuve.
(a) II faut montrer que pour tout couple de simplexes ( x , y ) dans

Xn xXn, n ̂  0, la fibre (IX)x,y = (ex 5 ̂ ^((rc), (y)) vérifie la condition
d'extension de Kan. Grâce à la structure de groupoïde de IX, l'ensemble
simplicial (IX)x,y ^t muni d'une opération de Mal'cev partielle

M : (iX)^y X (iX)^y X (iX)^y ————— (iX)^y

(p.ç.r) i—> pq-^-r.

Les identités de MaPcev M(p,p, r) = r et M(p, r, r) = p impliquent alors
que tout problème d'extension de Kan admet une solution dans ( I X ) x , y .
Nous renvoyons pour cela à la démonstration bien connue du fait qu'un
groupe simplicial vérifie la condition de Kan, car celle-ci n'utilise que la
structure de Mal'cev du groupe (cf. [Cu, 3.1]).

(b) Réflexivité, symétrie et transitivité de Phomotopie prismatique
sont les conséquences de l'existence d'unités, d'inverses et du composé
de deux prismes adjacents.

(c) L'énoncé constitue la jonction entre la combinatoire des prismes
et la topologie des chemins. Sa preuve demande un effort technique
considérable et sera faite au § 1.8. La difficulté principale provient des
identifications introduites par le passage au quotient I X —» IX. Nous
signalons dans ce contexte que la construction I X vérifie bien 1.3.b, mais
en général pas l'axiome de Quillen 1.3.a. []

1.4. REMARQUE. — Si l'ensemble simplicial X vérifie la condition de
Kan, alors une homotopie prismatique p : x ~ y (rel. le bord) entre sim-
plexes de X peut toujours être réalisé par une homotopie élémentaire
[^i] : x ~ y (rel. le bord), le choix de l'indice directionnel i étant libre.
Pour i = dima;, on retrouve ainsi la relation d'homotopie initialement pro-
posée par KAN [Kl]. C'est cette propriété «localisante» de la condition de
Kan qui permet de travailler avec l'homotopie cylindrique Y x A[l] —)• X
dès que X vérifie la condition de Kan. L'homotopie prismatique Y -^ I X
fournit par contre une relation d'homotopie qui reflète dans une large
mesure la situation topologique, même si X n'est pas de Kan. Q

TOME 123 — 1995 — N° 1



UN GROUPOÏDE SIMPLICIAL 7

Les §§1.5-1.6 préparent à la PROPOSITION 1.7. Il s'agit de «para-
métrer» tout n-prisme par une (n-\-l)-boule simplicialement subdivisée de
sorte que les opérateurs de face formels soient induits par des opérateurs
de bord géométriques. Les technicités qui suivent sont malheureusement
incontournables étant donnée l'importance de la PROPOSITION 1.7 pour
l'étude du fibre en lacets.

1.5. TV-éléments et TV-sphères.
On dira que l'ensemble simplicial Y\ est une CW-subdivision de

l'ensemble, simplicial Y^ si le CW-complexe [Vil est une subdivision
cellulaire du CW-complexe \Y^\, i.e. s'il existe un homéomorphisme
|YI —^ |y2| tel que l'image de toute cellule de |yi| soit incluse dans
une cellule de \Y^\. La relation d'équivalence engendrée par la relation
de CW-subdivision sera appelée CW-équivalence. Une CW-équivalence
|Yi| —^ \Y^\ est donc le composé d'un nombre fini d'homéomorphismes
qui sont soit des CW-subdivisions soit des inverses de CW-subdivisions.

Un n- élément simplicial En est un ensemble simplicial CW-équivalent
au n-élément standard A[n]. Le réalisé \En hérite en particulier d'une
structure canonique de n-variété linéaire par morceaux. Le bord bEn de En

est défini comme l'unique sous-ensemble simplicial de E71 dont le réalisé
s'identifie au bord topologique de \En .

Une n-sphère simpliciale S71 est un ensemble simplicial C W- équivalent
à la 77-sphère standard Sn=A[n}/b^[n}. Nous signalons qu'une CW-
équivalence \^n\ —^ \Sn est forcément une CW-subdivision ; S71 est
donc munie d'un point base canonique correspondant à l'unique 0-cellule
de \Sn\.

Le théorème de Newman (cf. [R-S, 3.1]) reste valable dans le contexte
semi-simplicial : pour tout n-élément simplicial En inclus dans une n-
sphère simpliciale ̂ n, l'adhérence du complémentaire (S72 \En) UbE1^ est
également un n-élément simplicial.

1.6. Domaine et domaine ô-réduit d'un prisme.
Soit X un ensemble simplicial. Un r^(X)-trajet de longueur un,

[^i]6 G (IX)n, définit le diagramme

e(^) ,
A[n] ———\ A[n + 1] -^ X,

s{i,e)

dans lequel les morphismes ç, ^ o e(z, e) et ^ o s(i, e) sont les représentants
canoniques des simplexes ç e Xn-^-i et exd^i}6), sx^^i}8) ^ Xn.

ei ^
Deux diagrammes A[n] ——> Y —^ X, pour i = 1,2, tels que

Si

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



8 C.BERGER

5i (A [n]) = e-2 (A [n]) sont amalgamés dans le diagramme

A[n]==tyiDy2 ^^x,
52

dans lequel l'ensemble simplicial yi D Va est défini par

Y,nY^={Y,ÙY^/(s^[n])^e^[n})).

1.6.a. —Un r^(X)-trajet ^ = [^i, Zi]^ • • • [^, z^ G (JX)^ définit donc
par amalgamation itérée le diagramme

ei(z^i) _ n ̂
A[n] i D A[n + l]-^^x,

s^(^,£-g) î=l

dont le morphisme droit sera désigné parpsimp : Dom(p) -> X. L'ensemble
simplicial source Dom(p) sera appelé le domaine du Tn(X) -trajet p. Il est
muni d'un n-prisme fondamental a = [ai, Zi]^1 • • • [a^ i^}^ e (JDom(p))^
tel que (ipsimp)(û) = p, en particulier psimp(c^) = ̂  pour 1 ̂  k < £.

Le domaine d'un f\,(X)-trajet non trivial p <E (ÏX)n est un (n + 1)-
élément simplicial dont le bord est composé d'une réunion cosimpliciale
de faces latérales (correspondant aux faces du r^(X)-trajet) et de deux
faces extrémales (correspondant à l'entrée et la sortie du trajet).

Plus précisément, il existe pour toute suite 0 < ^ j l < j ' 2 < ' ' • < j r < ^ r ^
d'indices, une inclusion canonique

^r ° • • ' ° ̂ -2 ° ̂ -i : Dom(ô^ . • • 9^p) ^—> Dom(p)

telle qu'on ait

Psimp 0 ?^ 0 ... 0 ̂  = (Qj, • • • ̂ p)simp,

les inclusions ̂  étant définies en recollant comme ci-dessus des inclusions
élémentaires Dom^^z^) ̂  Dom([^^) déduites de 1.2.a.

1.6.b. — La construction du domaine d'un I\(X)-trajet s'applique en
particulier aux n-prismes, mais pour un n-prisme, le domaine naturel n'est
pas l'objet géométrique adéquat, les opérateurs 9j étant différents des
opérateurs 9j. Pour en tenir compte, nous allons définir des relations sur
l'ensemble simplicial Dom(p) qui reflètent géométriquement la réduction
du r^(JC)-trajet p au n-prisme associé pred (cf. 1.2.b). Soit

P-^ziY1-"^^ e(îx)^

TOME 123 — 1995 — ?1



UN GROUPOÏDE SIMPLICIAL 9

Correspondant à la première étape de réduction, on définit l'ensemble
de relations

^1) = {(^ - s^ak) ; ^ = s^Q^ 1 < k < ê}.
Correspondant à la deuxième étape de réduction, on définit l'ensemble

de relations

^2) = {(^1 - a^) ; fcl^lP1^^2 ^ A^Pred}.

où Ap-^p^ est l'ensemble des aller retour supprimés lors d'une réduction
effective de p vers pred' L'ensemble Ap-^p^ peut différer selon le schéma
de réduction choisi : le mot aa~lb~'lba se réduit par exemple soit par
{aa~l)(b~lb)a soit par a(a~l(b~lb)a). Cela étant, il existe des stratégies
de réduction qui la rendent unique. Nous supposons en avoir choisi une.

l.ô.c. — Le domaine Q-réduit d'un n-prisme non trivial p G {IX)n est
défini comme l'ensemble simplicial quotient

Dorn(p) = Dom(p)/(41; U R^)

où les ensembles de relations de bord R^ et R^ sont donnés par

4Ï= U U ^°--.( ;̂...aJ'
l<^r<n 0<ji<---<jr^n

n(2) | | - /o(2) \
^p = U ^^p)'

0<j<^n

II résulte des définitions que le morphisme psimp se factorise par le domaine
(9-réduit :

Dom(p) ̂ ^ X

// Psimp

Dom(p)

1.7. PROPOSITION. — Soit un n-prisme non trimai p e {IX)n- Le
domaine 9-réduit Dom(p) est alors un (n + 1) -élément simplicial muni
des faces latérales ej : Dom(9jp) -^ Dom(p), 0 < j < n, et des faces
extrémales e, s : A[n] ̂  Dom(p) telles que :

(Ximp ° e^ = (^P)simp, 0 < J < n,
(a) < _ _

[Psimp o e = e x { P ) , Psimp ° s = •̂  [P) ;

(b) bDomÇp) = e(A[n]) U U ^(Dom(^-p)) U 5(A[n]).
0<j'^n

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



10 C.BERGER

Preuve. — II faut d'abord montrer que le passage au quotient
Dom(p) —^ Dom(p) n'affecte pas le «type combinatoire )) du (n + 1)-
élément simplicial Dom(p). Pour cela, les relations de bord Rg U RQ^
seront introduites une par une selon le schéma suivant : on commence
par les «compressions» (a ~ 5^(7 ) € R ^ qu'on traite par ordre de
dimension décroissante (en évitant les répétitions). Le simplexe a est
alors «standard» au moment de la compression, i.e. il engendre une copie
de A [m], où m = dimcr < n.

Or, d'après un lemme de Barrait [F-P, 3.1.1], on sait que pour tout
m-simplexe du bord de A[n + 1] et pour tout indice i tel que 0 < i <^ m,
11 existe un homéomorphisme

|A[n+l] | -^ |A[n+l]/(a-^a)

qui est une CW-subdivision. Par ailleurs, on sait construire pour tout
couple ( E ^ O E ) constitué d'un (n + l)-élément E et d'un m-simplexe
standard (JE du bord de E, une CW-équivalence

|^|^|A[n+l]|

qui identifie [(cr^)! à |(<T)| (ceci à l'aide de n + 1 — m extensions coniques
dont l'existence est un corollaire du théorème de Newman, § 1.5). Une
application itérée du lemme de Barratt montre donc que le domaine
«comprimé» Dom(j9)/(7î' )) est un (n + l)-élément simplicial.

Le domaine 9-réduit Dom(p) s'obtient à partir du domaine com-
primé en identifiant successivement certains des n-simplexes du bord. Ces
n-simplexes peuvent être supposés adjacents au moment de l'identification
à condition d'introduire les relations (o-i ~ 02) G R^ selon le schéma de
réduction sous-jacent à AQ .^(Q .p\ . Les simplexes cri, (73 sont éventuel-
lement modifiés sur leur bord par des compressions et/ou identifications
introduites précédemment ; un argument de récurrence montre cependant
qu'ils engendrent des n-éléments simpliciaux qui s'intersectent selon un
(n — l)-élément. Or, le quotient E / E\ ~ E^ d'un (n + 1)-élément par
l'identification de deux n-éléments E\^E^ C bE s'intersectant selon un
(n — 1)-élément forme encore un (n + 1)- élément, (cf. [R-S, 3.6]). Cela
montre par récurrence que le domaine 9-réduit est un (n + l)-élément
simplicial.

Le morphisme £j : Dom(Qjp) —> Dom(j?) est déduit du morphisme
composé

DomÇQjp) c——^ Dom(p) —^ Dom(p)
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/ <-)\
par restriction convenable. Les relations R~ créent en fait les adjacences

°3P

nécessaires à la définition de £j. Les simplexes identifiés en un ne font
plus partie du bord, puisque désormais face d'exactement deux (n + 1)-
simplexes. Cela montre que les faces latérales £j(Dom(9jp)) jointes aux
faces extrémales e(A[n]), s(A[n}) recouvrent le bord entier du domaine
<9-réduit. Q

1.8. I/homotopie prismatique est ((topologique)).
Désignons par |X|^0 '^ l'espace des chemins du réalisé \X\ : c'est à

homotopie près, un groupoïde pour les fonctions structurelles :

e\x\^\x\ : l^0511 —— \X\: 7 ̂  7(0),7(1) ;

i^:\X\-^\X\^:x^^(u)=x).

Nous allons préciser 1.3.c en montrant l'existence d'une application de
graphes topologiques ^p : \IX\ -^ \X\^^ qui préserve à homotopie près la
structure groupoïdale de \IX\, ce qui implique en particulier :

ex =e\x\°^, sx ==5|jc|0^ i \ x \=^ ° \ i x

On procède en deux étapes : on définira d'abord un plongement de
graphes naturel (compatible avec les structures multiplicatives)

(?: \ÎX\ -—^ \X\[0-1}.

Ensuite, il sera possible de montrer l'existence d'un couple (<Ï>^ ^) tel que
^t s01^ une déformation graphique de (p vers ^ o \q\ :

1.8.b. Le plongement graphique (p.
Rappelons que l'espace IX^0 '^ des chemins de Moore de \X\ est le

sous-espace de \X\R x M'^ formé par les couples (700, r) tels que le chemin

7oo :R + —— \X \ :u^^ (u )
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soit stationnaire pour u > r. Pour alléger la notation, on remplacera
(7oo,r) par le couple (7,?-) tel que 7 = 7oo |[o,rj . L'inverse formel d'un
chemin de Moore est défini par (7,r)-1 = (7- l,r); la composition
(associative!) de chemins de Moore est définie par concaténation

(7l, n)(72, r^) • ' • (7^, n) = (71 • . . 7^, n + • • • + r^).

A tout r\(X)-trajet p = [^,i^1 .. • [^, ̂  ç (îx)n est alors associé
un n-simplexe singulier p^ng : A^ -> |X[^ à valeurs dans l'espace des
chemins de Moore de \X\. On pose en effet

Psing:A,———— \X\^

(to ...tn) ——— [ l̂]:ing(^0 . . .^) • • • [^^ds'mg^O . . .̂

où les chemins de Moore élémentaires sont définis par

Msing(^0...^):M — — — | X |

u}—^ l^l^o .. .^-i,^ -n,^+i...^).

L'intervalle de définition du chemin de Moore composé psing(^o • • -tn)
est en particulier égal à [0,^;^^,J. L'associativité de la composition
de chemins de Moore implique que la structure simpliciale du simplexe
singulier psing est compatible avec la structure simpliciale du Tn{X)-
trajet p. De manière précise, on aura pour tout j tel que 0 ^ j < n,

(9jP)sïng = (9jPsing, (^)sing = ̂ Psing.

Il suffit en effet d'établir ces formules de commutation pour les trajets
élémentaires. A titre d'exemple nous montrons «la moins évidente» :

(^MLng^O-^n+l)^)

= ([5^, i + l][5,+i^ Z])^o . . . tn^)(u

°{
S^Ç\(to • • .^-i,^,^+i — U,U,ti^ . . .^n+i)

^+1^1(^0 . . . tz-^ti - (U - ̂ +1), u -^+1,^+1 . . . tn^)

— 1^1(^0 • • -ti-l,ti +^+i - U,U,ti^ ' ' •tn-^-l)

=^([^î]sing)(^0...^+l)(^).

Il s'ensuit qu'il existe une et une seule application continue

$M : \ÎX\ —— \X\^
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telle que (pM ° \P\ = Psmg pour tout p ç IX, (cf. [Cu, 1.30]). Par
construction même, (pu est injective et compatible avec les structures
de graphes et les structures multiplicatives.

Le plongement graphique (p '. \IX\ ^ \X\^°^ est enfin le composé
de (pM avec la normalisation IX^0 '"^ —^ \X\^^ :

(7,r)^||(7,r)|| : [0,1] - X\
u ̂  7(r'u).

1.8.C. La déformation graphique ̂ f
L'existence de <Ï>i est liée au fait que les fibres ponctuelles de \q\ :

\IX\ —^ \IX\ se contractent dans |X|^°'1^ mais nous n'avons pas trouvé
d'arguments généraux qui permettent de conclure. Aussi allons-nous
donner une construction récursive de ^ en grimpant sur le squelette
du CW-complexe \IX\.

Remarquons d'abord que ̂  s'écrit localement sous forme d'applications

< : A n X [ 0 , l ] — — . | X | l ° ' 1 '

ou encore par adjonction sous forme d'applications

^A^xtO,!]2-^!,

p 6 (IX)n^ n ;> 0. Pour définir une déformation graphique ^>i de ^o = (p
vers ^>i = (p o |ç|, il faut et il suffit que les déformations locales ^ ^
satisfassent aux conditions suivantes :

(Ll)^ ̂  : A, x [0,1] ̂  \X\ est l'adjoint de ||psing|| : A, —— \X\^ ;

(L2)^ Si pred = P^ alors ̂  = ̂ L ;

(L3) ^o e^ ̂ i son^ constantes en t ;

(L4)^ ̂  = 9,^ et ̂  = s,^, 0 < j < dimp.
Nous ajoutons une condition supplémentaire qui exprime plus précisé-

ment de quelle façon les déformations locales seront faites :

(L5) La déformation ^^ se factorise par le domaine arborescent
Dom(p) :

A.x^l]2-^^!.

1J)P y^

t'u[ /^ Ipsimp]

Dom(p)
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14 C. BERGER

Le domaine arborescent du r^(X)-trajet non trivial p G {IX)n ^t
défini (en reprenant les notations de 1.6.b) comme le quotient

Dom(p)=Dom(p)/(^l)u^2)),

—^ / r\\

où l'ensemble de relations Rp ' contient une relation a^ ^ 0^2 pour tout
aller retour [^i^fcj^1 [û^^]^2 te! (lue ^e trajet entouré

[^+l,^+lPl+l>••[^-l.^-l]£fc2-l

se réduise au trajet trivial. Il y a en général une inclusion stricte
Rp ^ Rp , mais 7?p a l'avantage d'être indépendant du schéma de
réduction.

Le point-clé de la construction récursive de <î>i est l'observation suivante
(comparer avec [M, 3.6]) :

1.8.d. LEMME. — Le domaine arborescent d^un Tri{X)~trajetp G {IX)n
se rétracte par déformation topologique sur le domaine du n-prisme
associé?^ G (IX)n de sorte ^epsimp|Dom(p,ed) == (Pred)simp. Le domaine
arborescent est en particulier contractile pour tout trajet p G I X . \]

A titre d'exemple, soit p un ro(X)-trajet. Supposons en plus que le
ro(X)-trajet comprimé s'écrive formellement

a^-lœ--lcde-le//-ld-y

Le domaine arborescent de p et le domaine du n-prisme associé pred se
présentent alors comme suit :

Dom(p) Dom(pred)

bb~

cc~lc dd-i

II n'est pas difficile de montrer qu'en toute généralité, le domaine arbores-
cent d'un ro(^0-trajet est un arbre contenant le domaine du 0-prisme
associé comme tronc (i.e. sous-arbre linéaire), d'où la déformation de
rétraction cherchée. Au tronc s'attachent en particulier des branches qui
sont structurées selon la configuration des aller retour.
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Le cas d'un r^(X)-trajet p est traité de façon analogue, les arêtes
étant remplacées par des (n+ l)-simplexes munis d'un indice directionnel.
L'écriture formelle du trajet p permet en effet de construire comme
ci-dessus un arbre Ap. La déformation de rétraction de Ap sur Ap^
induit une déformation de rétraction de |Dom(p)| sur | Dom(pred)h la P^6

(|Dom(p)|, | Dom(j?red)[) étant paramétrée par la paire

(An x Ap.An x Ap,^)

à l'aide du diagramme commutatif suivant (dans lequel a désigne le n-
prisme fondamental de Dom(p)) :

A^ x [0,1] ^ )) Dom(p)|

A n x A p —————^ |Dom(p)[

La paramétrisation An x Ap —^ |Dom(p)| n'est en général bijective
(et ouverte) qu'en restriction à l'intérieur du n-simplexe affine An, mais
cela suffit.

Revenons à la condition locale (L5) ^ il nous faudra de plus^une
condition de cohérence des factorisations <Ï>^ : An x [0, l]2 -^ Dom(p)
par rapport aux opérateurs de face telle que la condition (L4) en soit
une conséquence. La définition de l'ensemble de relations R^ implique
que pour tout indice j, tel que 0 < j < dimp, l'image du morphisme
composé

Dom(Qjp) ^—> Dom(p) —^ Dom(p),

notée 9jDom(p), se projette canoniquement sur le domaine arborescent
Dom(Ojp), projection qu'on notera qj. La condition de cohérence est alors
la suivante :

(L6)p les restrictions 9^^ sont à valeurs dans |^Dom(p)| et on a

\^\OW^n)=^3^ 0<j<dimp.

La donnée d'un système de factorisations <i>f^ vérifiant (L6)o pour
0 < j ^ dimp, induit une factorisation

Ï^ :&AnX[0, l ]2——Doïn(p);

autrement dit, les conditions de cohérence (L6) permettent de «recoller».
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La construction récursive de ^ procède alors comme suit. On sup-
pose ^t définie sur le (n — l)-squelette de \IX\ de sorte que les condi-
tions locales (L1)-(L6) soient vérifiées, et on Retend au n-squelette par
la construction suivante (l'argument vaudra pour n = 0) : pour tout
r^(X)-trajet (non dégénéré) réduit.pred^ les conditions (Ll), (L3), (L4)
déterminent et définissent ̂ ^ sur le sous-espace

Un = bAn x [0,1]2 U An x {(t,u) ; t = 0 ou u = 0 ou u = 1}

de A^ x [0,1]2. Les conditions (L5)o et (L6)^ jointes à l'isomor-
phisme Dom(pred) ^ Dom(pred) permettent de factoriser cette application
par le domaine arborescent. La factorisation s'étend à A^ x [0, l]2 selon
une déformation qui rétracte A^ x [0, l]2 sur Un (c'est le principe de
V extension homotopique).

Ensuite, pour un r^(X)-trajet (non dégénéré) non réduit p, les condi-
tions (Ll) -(L4) déterminent et définissent la déformation locale ̂  u sur

le bord entier

b{/\n x [0, l]2) = b^n x [0, l]2 U A, x 6[0, l]2

de A^ x [0,1]2. Les conditions (L5)^ et (L6)^ jointes au LEMME 1.8.d
permettent de factoriser cette application par le domaine arborescent.
Puisque celui-ci est contractile, la factorisation s'étend à A^ x [0, l]2.
L'extension satisfait en particulier à (L6) . Cela termine la construc-
tion récursive de ^ et en même temps la démonstration de la PROPO-
SITION 1.3.C. \}

2. Le fibre en lacets

2.1. —Le groupoïde simplicial I X contient pour tout ensemble simpli-
cial pointé et connexe (X, *) un modèle du fibre en lacets qu'on définit par
^X=(ex^sx)~1^^), PX=(ex,Sx)~l(X^) et q=ex\px •• PX -^ X.
La projection q est a priori une ^ÎX-fibration principale (i.e. ÇlX opère
sans isotropie sur PX de sorte que les orbites de l'action s'identifient aux
fibres de ç), mais la théorie générale des fibrations simpliciales montre
que toute fibration principale est localement triviale (cf. 3.1), ce qui jus-
tifie notre terminologie. Pour tout n > 0, le groupe (^X)n est libre en
tant que groupe d ' automorphismes du point base *^ e Xn à l'intérieur du
groupoïde libre ( I X ) n ' Nous expliciterons au §3.2, dans le cas d'un en-
semble simplicial réduit X, des bases canoniques pour les groupes (^X)n
ainsi qu'une structure canonique de f^X-fibré principal sur PX.
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2.2. — L'objectif de cette partie est d'étudier les isomorphismes de
connexion

^+i(X):^+i(|X|) __7r,(|^X|)

de la suite exacte longue d'homotopie du fibre en lacets. Comme notre
intérêt est de nature combinatoire, il convient de définir les groupes
d'homotopie en question en passant par la réalisation géométrique et non
pas par plongement dans une enveloppe de Kan (cf. [G-Z], [Kl]).

Les groupes d'homotopie du groupe simplicial f2X a^lmettejit toutefois
une définition directe à l'aide du complexe de Moore ((QX)^, Q^) -^ ; nos
conventions sont les suivantes :

(Ïïx)n = (^X)n H ker QQ H ker (9i H • • • H ker Qn-i,

Qn = Qn\{TtX}r. '

TT^X) = kerôn/imôn+i.

Par la théorie de Moore-Kan [Kl], on sait en effet que la réalisation
géométrique induit des isomorphismes TT^(^X) ^ 7r^(|nX|) pour n >, 0,
associant aux n-cycles uj G ker 9^ du complexe de Moore les représentants
simpliciaux \^ : \Sn —> |^X[, où

ù; = uj/b^[n\ : A[n]/&A[n] —> ÇlX.

Or, l'existence d'une contraction prismatique de l'espace total du fibre
en lacets nous permettra (§§ 2.5-2.6) d'associer à tout n-cycle uj du
complexe de Moore de f2X un représentant simplicial canonique de la
classe d^homotopie adjointe

^(xr^n^iDe^+laxi).
Le représentant adjoint, noté cjsph '• S7^1^) -^ X, se déduit directe-
ment de la structure prismatique du n-cycle uj. Pour motiver la définition
de ù;sph, nous introduisons le concept de «piste» (track) d'un prisme,
concept que nous avons emprunté à BARRATT [Ba].

2.3. DÉFINITION. — La piste [p] d'un prisme p e I X est sa classe
d'homotopie fibre rel. le bord par rapport à la fibration {ex.sx) '' I X —^
X x X.

Comme les fibres (IX)^,y vérifient la condition de Kan, deux n-prismes
Pi^ P2 ê (IX)x,y appartiennent à la même piste si et seulement s'il existe
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un (n + l)-prisme R ç (IX)^^y tel que [R, n] : pi
élémentaire rel. le bord (remarque 1.4).

^ p2 soit une homotopie

Nous noterons Tr^,y(X) l'ensemble des pistes d'entrée x et de sortie y .
La composition de prismes induit une structure de groupe sur Tr^^(X).
On notera Tr^(X) le sous-groupe de Tr^(X) formé par les pistes-lacets
qui sont triviales sur leur bord. Il résulte alors des définitions qu'on a pour
le point base * de X des isomorphismes canoniques

Tr^(X) ^TT^X), n>0.

Les représentants sont en effet les mêmes et la différence de deux n-cycles
Cc^i, cj2 ê (^X)n est un bord du complexe de Moore si et seulement si les
deux cycles appartiennent à la même piste.

2.4. Le représentant simplicial adjoint.
Rappelons qu'en topologie le groupe des pistes-lacets au-dessus de

l'application constante \Sn —^ \X\ sert de description commune aux
groupes 7r^+i(|X|) et 7Tn(^\X\) réalisant ainsi l'adjonction entre les fonc-
teurs «suspension» et «espace de lacets» [Ba].

Par analogie, nous définissons le diagramme commutatif suivant :

Compte tenu de la construction topologique, il est naturel de définir le
représentant simplicial adjoint ù;sph '' ^n^l(^) -^ X en quotientant «par
le bord » le morphisme cJsimp : Dom(cc;) -^ X associé au n-cycle uj (§ 1.6) :

Dom(ù;) X

^sph

E^1^) = Dom(cj)/&Dom(^)

En effet, le bord du (n + l)-élément simplicial Dom(û;) est réunion du
bord latéral et du bord extrémal (§ 1.7.b). Comme les faces du n-cycle uj
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sont triviales, le bord latéral est vide (§ 1.7.a) ; comme uj est un «lacet »,
le bord extrémal est appliqué sur le point base de X, ce qui montre que la
définition de cjgph est consistante. La structure simpliciale de la (n + 1)-
sphère E72'^1^) dépend uniquement de la structure formelle du n-cycle ù;
et des schémas de réductions ^Q.^-^(Q.^\ de ses faces.

Il reste à montrer que la classe d'homotopie [ [cc^sphi ] ^ 7Tn+i(|X|) vérifie
effectivement que <9^+i(X)([ |ù;sph| ]) = [ M ] - Nous proposons à cet effet
une démonstration entièrement combinatoire qui utilise la contractibilité
prismatique de Pespace total du fibre en lacets.

2.5. LEMME.—Le groupoïde simplicial IX est muni d'une déformation
prismatique px '• IX —> IÇIX) : idix ~ ix ° Sx Qui rétracte IX sur X en
fixant X. La déformation vérifie en outre

lex ° Px = idjx et Isx o p x = ï x ° s x -

En particulier, pour un ensemble simplicial pointé et connexe (X,*),
l7 espace total du fibre en lacets admet la contraction prismatique px\px '•
PX -^ P{PX}.

Preuve. — Le morphisme px est défini par récurrence sur la longueur
des prismes en posant pour tout simplexe x G X, px(^-x} = ̂ {ix}i e^ P0^
tout prisme composé [^i}6 - p C IX,

Px([^zV '?) = [^[^iY 'Sip.iY • px(p),

où _ r [s^i^i] si e = 1,
W 5 J l[^+l]-1 s i .=-L

Plusieurs vérifications sont à faire : on observe d'abord que le prisme /4<^ ̂
forme la composante droite du prisme dégénéré s^^i}6; en particulier
sxÇ^,^) = ex{sip). On vérifie ensuite la formule

(ejx^x)([/4^W) = (M^l.x(M-)).

d'où les identités

eix ° Px = idjx et six o px = ix ° sx = I s x ° P x -

Par récurrence sur la longueur des prismes, il s'ensuit d'une part que

SIX^^^Y ' S i p , i Y ) =eix(px(p)),

i.e. la définition de px est consistante, et d'autre part que Iex°px = idjjc-
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Enfin, pour montrer que px commute avec les opérateurs simpliciaux,
il suffit — par un argument de récurrence — de vérifier les formules
suivantes :

n/^.^.z-l^ s i j <z ,

Qj^^iY^Y = ̂  1^([^].) s i j = i ,

[W^i}^^ s i j > z ;

{ [/^•M^z+1]6 s i j <i,
Sj^^iY.iY = pxÇs^^iY) s i j = i ,

[/^•M^]5 s ï j > i . D

2.6. PROPOSITION. — Soit (X,*) un ensemble simplicial pointé et
connexe. Tout n-cycle uj du complexe de Moore de f2X s'inscrit alors
dans le diagramme commutatif suivant :

Sn <—1—^ ^n+l(cJ) ———^ S^1^)

"1 1 r^
^X -————. PX ———q-———^ X,

dans lequel E'77^1^) désigne un (n + l)-élément simplicial tel que

îS'^^bE^1^) et S^1^) =En^l(uJ)/bEn+l^).

La longueur de la chaîne qui constitue le cycle fondamental de la (n+ 1)-
sphère S7^1^) est en particulier égale à la longueur du n-cycle u j .

Preuve. — II suffit d'expliciter jE^1^) et de compléter le diagramme.
Le n-cycle uj e (^lX)n C {PX)n se contracte dans PX selon le n-prisme
f2 = px(^) ^ (P(PX))^ qui est d'entrée uj, de sortie 1̂  et de bord
trivial. Le morphisme associé ^simp : Dom(^) —> PX se factorise donc
par la face-sortie, définissant ainsi le morphisme vertical médian ci-dessus
(.Ë^1^) =Dom(^)/5(A[n])) :

^simp/5(A[n]) : £;n+l(^) —— PX.

En effet, par application itérée du lemme de Barrait (cf. 1.7), £m+l(cc;)
est un (n + l)-élément simplicial de bord e(A[n])/e(&A[n]) . L'inclusion
canonique i : S71 ^ ^.ÉT^1^) ^ E^1^) rend commutatif le carré
gauche ci-dessus. Le quotient E^'^^/bE^1^) s'identifie à Sn+l(a;)
(§ 2.4) en vertu de l'isomorphisme canonique Dom(^) ^ Dom(^) qui
résulte de l'identité Pq o ( p x \ p x ) = ̂ PX (§ 2.5).
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Par construction même de la (n + l)-sphère simpliciale S724"1^), les
(n + l)-simplexes qui constituent son cycle fondamental sont en bijection
avec les composantes élémentaires du n-cycle uj. []

2.7. REMARQUE.
(a) Le théorème d''approximation s emi-simpliciale [F-P, 4.6.25] four-

nit l'existence d'une CW-subdivision finie E"^1^) de ^"^ et d'un
morphisme ù;gph : S7^1^) —> X réalisant simplicialement la classe
d'homotopie adjointe de [ù;] ç TTn^X) ^ 7Tn(|QX|) ^ 7Tn(^\X\). Par
ailleurs, nous verrons au § 3.3 que la construction ^IX n'est d'im point de
vue algébrique guère plus qu'une extension un peu mystérieuse du groupe
de lacets GX de Kan.

La nouveauté ici est le lien explicite qui s'est établi entre :
• la représentation «simpliciale» cjgph : ̂ n+l(^) -^ X et
• la représentation «algébrique» LJ : S71 -^ ÇlX.
On pourra étudier à ce sujet l'exemple donné au § 3.4.
(b) Nous terminons cette partie en montrant que le groupoïde des

composantes connexes de I X par rapport à l'homotopie fibre 2.3 s'identifie
canoniquement au groupoïde fondamental TIX tel qu'il a été défini par
GABRIEL-ZISMAN [G-Z, 11.7.1]. Notre définition ressemble cependant plus à
la définition topologique [Br]. On déduit en particulier l'équivalence entre
la définition «standard» du groupe de Poincaré d'un ensemble simplicial
pointé (X, *) et la nôtre (via TYQ^X)). La PROPOSITION 2.6 est élémentaire
dans cette dimension.

Le groupoïde fondamental IÏX est défini dans [G-Z] comme le quotient
du groupoïde libre (IX)o par l'ensemble générateur des relations

R^ : [9ix,0}red - ([^Opo^O])^, x G X2.

Il s'agit de montrer que :
(i) pour tout x 6 X^, les 0-prismes [9i.r,0]red ^ ([Q^x^ 0][(9o.r,0])red

appartiennent à la même piste ;
(ii) deux 0-prismes quelconques pi,j?2 appartenant à la même piste

sont reliés par une suite de relations du type Ip^R^lp^^ avec x G X^ et
pi,2 e (^)o, ^ = ±1-

Ad(z') : pour R = [s^Q^x^ l][rr, l][.si(9i;r, 0] on vérifie que [R^O] est
l'homotopie élémentaire cherchée (comparer avec 3.5d).

Ad(n) : si R = [Çi^i]^ • • • [̂  i^ G (JX)i est tel que [R, 0] : pi - p^
alors l'homotopie élémentaire [R^ 0] est réalisable par une suite de relations
1 kR^l / c , 1 <, k < ^ pour des 0-prismes p\^ convenablement choisis. []
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3. Le fibre universel de Kan et la
construction cobar cPAdams-Baues

3.1. Le fibre universel de Kan.
La théorie des fonctions de torsion (twisting functions) offre un for-

malisme commode pour traiter les fibres simpliciaux. En effet, la donnée
conjointe d'une G-fibration principale

G ̂  E^X

(cf. 2.1) et d'une pseudosection

j : X -^ E : x ̂  j^

(i.e. q o j = idx, Si3x = J s . x , 0 ^ i < dimx, Qij^ = jg^, 0 < i < dimx,
mais en général 9njx 7^ Jôrzx, n = dim.r) définit une et une seule fonction
de torsion (de degré — l ) t : X — ^ G vérifiant 9njx = O'ôn.r)^^ x e Xn,
n > 0. L'intérêt de cette fonction de torsion provient du G-isomorphisme

^ : X X t G — — E : ( x ^ g ) — — ( j x ) 9

qui munit E d'une structure de produit cartésien tordu (twisted cartesian
product). Or, un produit cartésien tordu est localement trivial, i.e. E est
un G-fibré principal (cf. [Cu, 6.8]).

Si l'ensemble simplicial X est réduit (i.e. XQ = {*o})? il admet une
fonction de torsion universelle

t° : X —>GX

de sorte que pour toute fonction de torsion t : X —> G, il existe un et
un seul homomorphisme de groupes simpliciaux (^ : GX —^ G tel que
y ° t° = t. La construction d'une fonction de torsion universelle est due
à KAN [Kl]. Celui-ci montre en particulier que le produit cartésien tordu
EX = X x^c GX est topologiquement contractile, ce qui lui fournit une
définition algébrique des groupes d'homotopie de \X\ basée sur la famille
des isomorphismes de connexion 71-^+1 (|X|) —^ TTn(GX) pour n > 0.

Nous précisons le résultat de Kan du côté géométrique en montrant
que le fibre universel de Kan est — en vertu de sa propriété universelle —
plongé dans le fibre en lacets ^ÎX ̂  PX —» X de manière invariante
par rapport à la contraction prismatique du dernier. Le plongement
dépend d'une structure de produit cartésien tordu sur PX resp. d'une
pseudosection de la projection q : PX —^ X que nous explicitons ci-
dessous.
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3.2. Un arbre maximal du graphe I\i(X).
Soit (X, *) un ensemble simplicial réduit Pour tout n > 0, on définit

un arbre maximal du graphe Tn(X) = (X^,S^,e,5) (§ 1.2) en posant :

Tn = {[£,, i] € 2^ ; i ̂  n, ^ dégénéré dans les directions 2+1, î + 2 , . . . , n}.

On montre en effet que tout n-simplexe x € Xn est joint au point base
*n ê X^ selon un unique (Xn.Tn, e, 5)-trajet réduit qu'on notera j^. Le
trajet est explicitement donné par la formule

Jx = ([SnX,n-l}[SnSn-l9n-lX,n-2} • • • [SnSn-1 • • ' S^ • • • On-lX, 0])^.

L'unicité d'un (Xn^Tn, e, s) -trajet réduit d'entrée x et de sortie *n se
démontre par récurrence sur la « distance » du n-simplexe x au point
base *^, formellement définie comme le plus petit entier i tel que x s'écrive
sous la forme x = Sn-i • • • s^siy avec y G Xi. Nous laissons les détails au
lecteur. La description explicite de l'arbre maximal (Xn,Tn,e,s) permet
de définir une base Bn du groupe libre (^ÏX)n (cf. 2.1). Il résulte en effet
des définitions que l'ensemble

Bn = {(x^r'Mxç ; M ̂  (Sn \r,)}
forme une base de (^X)n'

3.3. PROPOSITION. — Soit (X, *) un ensemble simplicial réduit.
(a) La fonction j : X —> PX : x i-̂  j x est une pseudosection de

q : PX —^ X . La fonction de torsion associée s'écrit

t^ : x,+i -^ (^x)n : ̂  ̂  (^^)-1KA^.

(b) Le groupe de lacets universel GX est isomorphe au sous-groupe
simplicial de f2X engendré par l'image de la fonction de torsion. Le
groupe (GX)n s'identifie en particulier au sous-groupe de (^X)n librement
engendré par les n-prismes ^ = ̂ +1^, où ^ ç (X^+i \ SnXn).

(c) La contraction prismatique px\px '• P-^ —^ P(PX) induit par
restriction une contraction prismatique PX\EX '• EX —^ P(EX). En
particulier, comme les groupes simpliciaux GX et ^ÏX sont libres (au sens
de Kan), ils ont même type d'homotopie multiplicative.

Preuve.
(a) On vérifie aisément que les contractions prismatiques

J x : X ~ Sn-l • • • SQÔQ • ' ' 9n-lX
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commutent avec les opérateurs simpliciaux exceptés 9n, avec n = dimx.
D'après 3.1, on a :

^+1^ = O^+i^'^ân+l^) = O^+iç)"1^]^.

(b) II existe un unique homomorphisme de groupes simpliciaux

(^ : GX —> ÇIX

tel que ̂ ) = t^^) (cf. 3.1). Les n-prismes ^"(O, $ e (X^+i \ 5^X^)
font partie de la base Bn de (^X)n ce qui prouve Pinjectivité de (p.

(c) L'inclusion (/? : GX c-^ QX induit une inclusion des fibres princi-
paux associés EX <-^ PX, les n-simplexes du fibre universel s'identifiant
aux n-prismes p e (PX)n dont les composantes élémentaires [^i]8

vérifient soit i = n soit [ç, Ï\ ç Tn. L'opérateur ^ du § 2.5 préserve cette
condition ce qui implique que la contraction prismatique de PX se res-
treint à EX.

En vertu du lemme des cinq, l'inclusion (p est alors une équivalence
d'homotopie faible. Or d'après un théorème de Kan [K2], une équi-
valence d'homotopie faible entre groupes simpliciaux libres est une équiva-
lence d'homotopie multiplicative (rappelons qu'un groupe simplicial G
est libre, si pour tout n ^ 0, le groupe Gn est librement engendré par un
ensemble Bn en sorte que la réunion des Bn soit stable par opérateurs de
dégénérescence). Dans notre cas, la réunion des bases Bn de (^lX)n n'est
stable par opérateurs de dégénérescence qu'en restriction au sous-groupe
simplicial GX. Pour appliquer le théorème de Kan, nous allons modifier
les bases Bn par des transformations de Tietze itérées en sorte que les
nouvelles bases B^ soient stables et qu'en plus B^ H GX = Bn H GX.

Pour cela, nous associons à tout (n + l)-simplexe ^ ç ^n+i et tout
indice z, 0 < i ^ n, un entier positif ou nul def^, maximal pour la
propriété que $ soit dégénéré dans les directions î + l , z + 2 , . . . , z + def^ ^.
On pose :

. . ^ f JOi+id^z]^ si def, ç = 0,

\Si+r-l•••Si^Si{jQl^[r],ï\jQ^} si def,ç=r > 0;

$ = Si^r • • 'Si^Si^TJ.

Les ensembles

^-{I^I; Me(s,\r,)}, n > o ,
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vérifient alors

(i) B^ est une base de (^lX)n,
(ii) 5^ C B^ pour 0 < i < n,

(iii) B^ H GX = Bn n GX.

L'assertion (i) résulte d'une récurrence sur les entiers def^ ^. On pose
en effet

^^{I^I; M^în, def^<r}
u {^e^fe 5 M ̂  T^ def^ > r} 5

en particulier
B^=Bn et Bi71-1)^'n —n'

/ \
Par hypothèse de récurrence on peut alors supposer que Bn est une base
de (^lX)rr Pour tout n-prisme élémentaire [^, z] ^ T^ tel que def^ ^ = r+1
et $ = s^+y+i • • • Si^Si^r], on obtient :

l^^=s^r•••Si{jQl^[rî,^}jQ^) = n (j^i^K^A']^^),
î+r+l^fc^î

OU
si k = z,<-{'l5fe5fc_i • • • Si9i^ - - • QkS, s i z + r + l ^ Â - > î .

Comme def/c ̂  < r pour z + r + l > Â : > z , l e n-prisme [^, z| s'écrit

I€, i] =(?^1)^^'^

avec def^; ̂  < r. On peut donc effectuer la modification B^ i—^ B^
par des transformations de Tietze qui substituent les éléments 1 ,̂ z] e
(B^^ \ ̂ r)) aux éléments ̂ ^ç[^z]x^

Les assertions (ii) et (iii) sont immédiates si l'on écrit les bases B^ sous
la forme équivalente

B^={s^r-r" Si[r],q; def^ = 0, [^z] e (5^_^ \ r^_^)}. D

3.4. Exemple : un représentant simplicial fini de la fibration
de Hopf|53! -> \S2 .

La fibration de Hopf de la 3-sphère sur la 2-sphère est à homotopie
et orientation près caractérisée par la propriété d'être un «générateur»

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



26 C.BERGER

du groupe n^S2}). Selon 2.5 et 3.3.C, on a un triangle commutatif
d'isomorphismes :

^(1^1)

^(GS2)———^———7T2(^2).

KAN [Kl] a explicité un représentant de la classe génératrice de ^(GS2),
à savoir le commutateur simple

uj = SQO • 5ia • soa~1 ' sia"1 e (GS2)^,

où a désigne le simplexe fondamental de S'2. L'écriture prismatique
3.3.a-3.3.b de ce commutateur est :

uj= [soa^^s^a^^a.l^soa^}-1^,!]-1^^]-1 e (^S2)^.

Selon 2.6, on obtient donc un représentant simplicial d;sph '• S3^) -^ S2

de la fibration de Hopf tel que le cycle fondamental de la 3-sphère soit
constitué de six 3-simplexes.

En reprenant les notations de 1.6, la 3-sphère s'écrit comme quotient

S3^) =Dom(cj)/bDom^),
où

Dom(^) = Dom^)/^ U R^).

Si l'on note

[ai^]^^]^,!]^^]-1^,!]-1^^]-1

le 2-prisme fondamental de Dom(o;), alors l'ensemble de relations R^ U
(2}RQ^ s'écrit en codimension 1 :

{(<9o02 ~ 5i<9i<9oa2), (ôoas ~ s^Q^a^), (Qoa^ ~ so^o^o^s),

(Qoaç ~ ^lôiôo^e), (<9oai ~ ôo^)}
U {(ôiai ~ 9i ae), (ôi^ ~ 9i 04)}

U {(0303 ~ Ôs^ô)}

(correspondant aux réductions des faces QJUJ, j = 0,1,2). Le passage au
quotient Dom(o;) -^ S3^) se réalise par les relations osai ~ *2 ~ Q^OQ.
Le représentant c^sph est enfin défini par 01,04 ^ soa, 02,06 ^ s^a,
û^o^ 1-̂  52(7. D

TOME 123 — 1995 — N° 1



UN GROUPOÏDE SIMPLICIAL 27

3.5. La construction cobar cTAdams-Baues.
ADAMS définit dans [A] la construction cobar ÇlC d'une coalgèbre

différentielle C. Il démontre que pour la coalgèbre différentielle C^(|X|)
des chaînes d'un CW-complexe 1-réduit \X\, les complexes de chaînes
^IC^(\X\) et C^(^|X|) ont même type d'homotopie. Sa démonstration
repose sur l'approximation par un n-cube de l'espace des chemins reliant
premier et dernier sommet du (n+l)-simplexe affine. Ces «approximations
d'Adams » ont été formalisées par BAUES [Bau] qui définit en particulier
pour tout ensemble simplicial 1-réduit X un CW-complexe «cubique»
[[^B^ll dont le complexe de chaînes C^(||^X||) est isomorphe à la
construction cobar d'Adams f2C^(|X[). Nous allons plonger le modèle
cubique de Baues, subdivisé simplicialement, dans le monoïde simplicial
^X des lacets prismatiques positifs. Le plongement revient à rendre
«prismatiques» les approximations d'Adams.

Rappelons tout d'abord la définition de ^2^X sous une forme qui nous
sera commode (cf. [Bau, 1.2.7-13]).

3.5.a. — BAUES introduit la catégorie ^A : les objets de f^A sont les
cordes (simpliciales)

Cd^...^ = A[zi + 1] D A[z2 + 1] D • • . D A[z^ + 1]

définies par amalgamation itérée (cf. 1.6) des diagrammes

A[0]=^A[z,+l] , , Kk<^
Sk

ek (resp. Sk) désignant le sommet d'indice 0 (resp. ik + 1). Un nœud est
un sommet de la corde égal à un des CÂ;(A[O]) ou 5/;;(A[0]), 1 < k < £.
Tout sommet qui n'est pas un nœud est appelé interne. Les morphismes de
f^A sont les morphismes simpliciaux qui préservent nœuds initial et final.

Le modèle cubique f^X, subdivisé simplicialement, est alors défini
(X étant 1-réduit) comme le produit tensoriel f^jc ^ L du fondeur
contravariant ^A

f2jc '• ^A —> Ens (la catégorie des ensembles)
Cd,,...^ i—>MoTEsïmp(Cd^...i^X)

(^l——^MorEsimp(^^)

et du foncteur covariant

L : f2A —> Esimp (la catégorie des ensembles simpliciaux)
Cd,,..,,——Atl]^"^

ip i—> Ly.
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La définition de L(p découle de l'interprétation suivante du (zi + • • • + in-
cube simplicial AIl]^--^, (cf. [Bau, III.3]) :

• L'ensemble ^mt..^ des sommets internes de la corde Cd^...^ est de
cardinalité i\ + • • • + i^.

• L'ensemble P^1^..^) des parties de S^..^ est un ensemble partiel-
lement ordonné dont le nerf APÇS^..^) s'identifie au (zi + • • • +^)-cube
simplicial AIl]^--^ ; en fait P^.J ^ [l]^+-+^ et le nerf A com-
mute avec le produit cartésien.

• Pour tout morphisme de cordes (p : Cd^...^ —^ Cd^...^, on note
N^...i^ l'ensemble des nœuds de Cd^...^, et on définit

W : P(S^) -. P(S^.,J : r ̂  ^(r) U ̂ (M,..J) H S^

et L(^=AP((^).

Il est intéressant d'observer que le foncteur L (essentiellement les appro-
ximations d'Adams) intervient également dans la théorie des (co)limites
homotopiques de R.M. VOGT. Le lecteur pourra consulter l'article [Co]
de CORDIER, où ce lien est rendu explicite. A cet effet, il est utile
de remarquer que la sous-catégorie de f2A formée par les morphismes de
cordes élémentaires Cdn -^ Cdm est isomorphe à la catégorie simpliciale
opposée A°P (voir [Co, 1.2]). La restriction de L à cette sous-catégorie
définit en particulier un fondeur contravariant A -^ Esimp : [n] ̂  Ail]72,
noté P dans [Co].

3.5.b. L'inclusion f^JC ̂  f^+X. — Pour tout ensemble simplicial X,
J^ désigne le sous-ensemble simplicial de I X formé par les prismes dont
toutes les composantes sont d'exposant positif. Il existe alors pour toute
corde Cd^...^ une inclusion (cf. 3.5.c)

A;,,.,, : A[lp+-+^ ̂  (^Cd,,.,,)^

induisant une transformation naturelle k : L -^ 1^ de foncteurs ^A -^
Esimp. La naturalité de k implique que

ÎB : ̂ x ^ L —> ̂ X
^A

^ir-n^) '—^ (^i-^)^!-^^))

est bien défini.

L'injectivité de ÎB est une conséquence de l'injectivité de k^...^ et des
deux faits suivants :
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(i) chaque classe (a^...^,7) e ^x ^fîA L admet un représentant
unique (a^...^,7) e ïï^ xL tel que a^...^ soit un -^-uplet de simplexes non
dégénérés de X et tel que 7 soit un simplexe intérieur du cube simplicial
A[lpi+-+^ (cf. [Bau, 11.1.5-8] et [F-P, 4.2.7]).

(ii) un simplexe intérieur de Al:!]11^"^ est transformé par Â-^...^
en un prisme qui «passe)) exactement une fois par chaque élément de la
corde Cd^...^ en suivant l'ordre.

3.5.C. Une version prismatique des approximations d^Adams. — Nous
appelons régulier tout n-prisme positif p e (I^X)n dont les compo-
santes [<^, ï\ vérifient soit i = n, soit [$, z] e Tn (i.e. le (n + l)-simplexe ç
est dégénéré dans les directions i + 1, z + 2 , . . . , n ; comparer avec 3.2-3.3).
Le sous-ensemble simplicial de I ^ X formé par les prismes réguliers sera
noté I^gX. Comme il y a une inclusion naturelle (4tg)e,s ^-^ ( I ^ ^ e ^ s ,
nous aurons terminé en montrant qu'il existe un isomorphisme naturel de
fondeurs monoïdaux £ : (I^)e,s ^ L : f2A —> Esimp. A cet effet, il suffit
d'expliciter la famille des isomorphismes £n '• (^rtg^t77' + l])e,s ^ ^[l]^
pour n ^ 0; les composantes ^...^ s'en déduisent par amalgamation,
puisque les fondeurs (I^g)e,s et L sont monoïdaux.

Pour ce faire, remarquons d'abord que la fonction entrée-sortie (m ^ 0)
(eA[n+l]^A[n+l]) '• ^m ——> A[n + 1]^ X A[n + l]̂ ,

est injective d'image l'ensemble des «sauts)) de l'ordre partiel
A[n4-l]m =MorA([m] , [n+l ] ) ,

où nous entendons par saut tout couple de m-simplexes
0-0,01 : [m] -^ [n-{-1]

tels que OQ ^ (TI (i.e. ^(^ ^ ^1(^)5 0 ^ î < m), mais <7o(î) 7^ <7i(z) pour
exactement un indice z. L'indice «directionnel)) du saut correspond en fait
à l'indice directionnel de l'unique m-prisme élémentaire [$,z] d'entrée (TO
et de sortie o-i. Nous dirons que le saut (o-o, ai) est régulier si le m-prisme
élémentaire associé l'est, ce qui veut simplement dire qu'on a

^i(î) = (7i{i + 1) = • • • = o-i (m).
Un m-prisme régulier p e (J^gA[n + 1])^ est donc formellement

équivalent à une suite ((Tk)o<k<e de m-simplexes o-k e A[n + 1]̂  telle
que les couples ( o ' k - i ^ o ' k ) â.e simplexes consécutifs soient des sauts
réguliers. Les faces 9jp (resp. les dégénérescences sjp} correspondent aux
suites (9j<7k)o<k<£ (resp. (sj(7k)o<k<£) étant entendu que les éventuelles
répétitions dans la suite {9jO'k)Q<k^t sont éliminées (resp. que les éventuels
«doubles sauts)) dans la suite (sj(7k)o<k<£ sont subdivisés en deux
«simples sauts))).
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L'isomorphisme cherché admet alors la forme suivante (cf. 3.5. a) :

£n : (J^A[n + 1]),,, -^ Ail]- = AP(S^)

P = (cTk)o^k<e 1——^ (7-0 Ç TI Ç • • • Ç Tdimp),

où l'ensemble de sommets rj ç 7^(5^), 0 < j < dimp, est défini par la
formule ^=(U ^œ) \{o ,n+i} .

0^k<£

La régularité de p implique que la définition est consistante. L'appli-
cation £n commute avec les opérateurs simpliciaux. La fonctorialité de £
par rapport aux morphismes de cordes élémentaires Cdn -^ Cdm est
immédiate. La fonctorialité par rapport aux « subdivisions de cordes ))
Cd^...^ c—> Cdn résulte de la définition de L et du fait que l'intersection

n T.
O^j^dimp

s'identifie à l'ensemble des sommets (7^ 0, n+1) de la suite p = ((Tk)o<k<£-
Puisque les morphismes élémentaires et les subdivisions de cordes en-
gendrent par composition et amalgamation tous les morphismes de f2A,
la fonctorialité de £ est ainsi établie.

Pour montrer que l'application £n est bijective nous explicitons V appli-
cation inverse kn : soit (ïo Ç • • • Ç r^) ç (AP^^)) ; le m-prisme
régulier

kn ((TO C • • • Ç T^)) ç (J^gA[n + l])m

est alors défini par l'unique suite de m-simplexes ((Tk)o<k^£ qui vérifie

(i) o-o=0, a^ = n+ 1, et

(ii) le couple {o-k-i, cr/c), pour 1 < k < £, forme le saut régulier d'indice
directionnel minimal i tel qu'on ait l'inclusion

{(Tk-i(i),ak{z)} Ç n U { 0 , n + 1}.

3.5.d. Illustration (cf. [Bau, p. 102]). —Les simplexes a : [m] -^ [n+ 1]
sont désignés par la suite de leurs valeurs.
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A

{3

71= 1 .

e
(00,01,02,22)=

(0C{1}) ^ ^ [001,1] [012,1] [022,0]

[1]" c (^gA[n+
^n

1} .

' u / \

\ O n ]

l])e.

2

1

n= 2

(0C{1,2})

( 0 C { 1 } C { 1 , 2 } )

( 0 C { 2 } C { 1 , 2 } )

(00,01,02,03,33) =
[001,1] [012,1] [023,1] [033,0]

(000,001,011,012,013,033,333) =
[0001, 2] [0011,1] [0112, 2] [0123, 2] [0133,1] [0333,0]

(000,001,002,022,023,033,333) =
[0001,2] [0012,2] [0022,1] [0223,2] [0233,1] [0333,0]
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