RAIRO-Oper. Res. 56 (2022) 4317-4325 RAIRO Operations Research
https://doi.org/10.1051/ro/2022208 WWW.Trairo-ro.org

PATH-FACTOR CRITICAL COVERED GRAPHS AND PATH-FACTOR
UNIFORM GRAPHS

JIE WU*

Abstract. A path-factor in a graph G is a spanning subgraph F of G such that every component of
F is a path. Let d and n be two nonnegative integers with d > 2. A P>g4-factor of G is its spanning
subgraph each of whose components is a path with at least d vertices. A graph G is called a P>q4-factor
covered graph if for any e € F(G), G admits a P>4-factor containing e. A graph G is called a (P>q4,n)-
factor critical covered graph if for any N C V(G) with |[N| = n, the graph G — N is a P>g4-factor
covered graph. A graph G is called a P> g-factor uniform graph if for any e € E(G), the graph G —e is
a P> g-factor covered graph. In this paper, we verify the following two results: (i) An (n + 1)-connected

graph G of order at least n+3 is a (P>3, n)-factor critical covered graph if G satisfies §(G) > W?

(ii) Every regular graph G with degree r > 2 is a P>s-factor uniform graph.
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1. INTRODUCTION

In this work, the graphs considered are finite, undirected and simple graphs. Let G be a graph with vertex set
V(G) and edge set E(G). The order of G is the number |V (G)| of its vertices. The degree of z € V(G) is denoted
by dg(x). For X C V(G), we denote by G[X] the subgraph of G induced by X, and write G— X = G[V(G)\ X].
A set X C V(Q) is called an independent set of G if G[X] does not possess edges. Let a(G), §(G), w(G) and
i(G) the independence number, the minimum degree, the number of connected components and the number of
isolated vertices in G, respectively. The binding number of G, denoted by bind(G), is defined by

|Na (X))

bind(G) = min{ ———~
@ { x]

0 #£ X CV(G), No(X) £ V(G)}.

The isolated toughness of G, denoted by I(G), was defined by

I(G) = mm{i(G')f'X) X CV(G),i(G-X) > 2}
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if G is not a complete graph; otherwise, I(G) = +oco. The sun toughness of G is denoted by s(G) and defined
by
X
s(G) = min{sun(|G|X) : X CV(G), sun(G—-X) > 2}

if G is not a complete graph; and s(G) = 400 if G is a complete graph. The path and the complete graph of
order d are denoted by P; and K, respectively. Let G; and G5 be two graphs. We use G V G5 and G U G»
to denote the join and the union of G; and Gs, respectively.

A path-factor in a graph G is a spanning subgraph F of G such that every component of F' is a path. Let
d > 2 and n > 0 be two integers. A P>q4-factor of a graph G is its spanning subgraph each of whose components
is a path with at least d vertices. A graph G is called a P>g4-factor covered graph if for any e € E(G), G has
a Psg-factor covering e. A graph G is called a (P>gq,n)-factor critical covered graph if for any N C V(@) with
|N| = n, the graph G — N is a P>g4-factor covered graph. A graph G is called a P>g4-factor uniform graph if for
any e € E(G), the graph G — e is a P>4-factor covered graph.

We may simulate real-world networks by graphs. The vertices of the graph correspond to the nodes of the
network, and the edges of the graph represent the links between the nodes in the network. Henceforth, we replace
“network” by the term “graph”. Thus we may utilize some graphic parameters to characterize the vulnerability
and robustness of the network, for instance, independence number, toughness, binding number and minimum
degree, and so on. In data transmission networks, the data transmission between two sites of a network goes
through a path between two corresponding vertices of a corresponding graph. Hence, the availability of data
transmission in the network is equivalent to the existence of path-factor in the corresponding graph which is
generated by the network. When some nodes are damaged and a special channel is assigned, the possibility of
data transmission in a data transmission network is equal to the existence of path-factor critical covered graph.
When a special channel is damaged and another special channel is assigned, the possibility of data transmission
in a data transmission network is equivalent to the existence of a path-factor uniform graph. The study on
the existence of path-factors, path-factor critical covered graphs or path-factor uniform graphs under specific
network structures can help scientists to design and create networks with high data transmission rates. In this
work, we investigate the existence of path-factor critical covered graphs and path-factor uniform graphs which
play an important role in studying data transmissions of data transmission networks.

Asratian and Casselgren [1], Egawa et al. [4] investigated the existence of path-factors in graphs. Kelmans [8]
derived some results on path-factors in claw-free graphs. Matsubara et al. [11] presented degree sum conditions
for bipartite graphs to admit path-factors. Kano et al. [7] established a relationship between the number of
isolated vertices and Psg-factors in graphs. Wang [12] verified that a bipartite graph G contains a P>3-factor
if and only if (G — X — M) < 2|X| + |M| for every X C V(G) and independent M C E(G). Kano et al. [6]
claimed that every connected cubic bipartite graph of order at least 8 has a P>g-factor. Zhou et al. [27] obtained
some results on P>s-factors in graphs with given properties. Dai et al. [3] gave some sufficient conditions for
graphs to be P>o-factor and Pss-factor covered graphs. Zhou [21] established a relationship between Pss-factor
covered graphs and neighborhoods of independent sets. Kouider and Ouatiki [9], Bekkai [2], Zhou [22], Zhou
et al. [30], Yuan and Hao [16] posed some relationships between independence number and graph factors. Zhou
et al. [28], Zhou [18-20], Wang and Zhang [13,14], Zhou and Liu [24] established some relationships between
minimum degree (or degree) and graph factors.

A matching M in G is a subset of E(G) in which no two edges admit a vertex in common. A matching M
of G with V(M) = V(G) is called a perfect matching. A graph H is called a factor-critical graph if H — x
contains a perfect matching for any x € V(H). Let H be a factor-critical graph with V(H) = {z1, 22, -+ , 2, }.
To characterize those graphs with a P>s-factor, Kaneko [5] introduced the concept of a sun. A graph R is called
asun if R = K1, R = K5 or R is the corona of H with at least three vertices, that is, R is derived from H by
adding n new vertices y1, ya, - -+ , Yn together with n new edges z1y1, 2y2, - - , Znyn to H. Obviously, dr(y;) =1
for all i, 1 < i < n. A sun of order at least 6 is called a big sun. A sun component of G is a component isomorphic
to a sun in G. Let sun(G) denote the number of sun components in G.

Kaneko [5] provided a criterion for a graph with a P>s-factor, which is the following theorem.
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Theorem 1.1 ([5]). A graph G contains a P>s-factor if and only if
sun(G — X) < 2|X|
for all X CV(QG).

Later et al. [17] extend Theorem 1.1, and obtained a characterization for a P>g-factor covered graph which
is stated as follows.

Theorem 1.2 ([17]). A connected graph G is a P>3-factor covered graph if and only if
sun(G — X) < 2|X| —e(X)
for any X C V(G), where e(X) is defined by

2, if X is not an independent set;

if X is a nonempty independent set and G — X has
a non-sun component;

0, otherwise.

A graph G is called a (P>g4,n)-factor critical covered graph if for any N C V(G) with |N| = n, the graph
G — N is a Psg-factor covered graph. Zhou et al. [29] showed a sun toughness condition for a graph to be a
(Ps3,n)-factor critical covered graph. Zhou et al. [31] demonstrated two results on the existence of (P>s3,n)-
factor critical covered graphs depending on toughness and isolated toughness. Wang and Zhang [15] improved
the previous isolated toughness condition to guarantee the existence of (P>g,n)-factor critical covered graphs.
The following results on (P>g,n)-factor critical covered graphs are known.

Theorem 1.3 ([29]). An (n + r + 1)-connected graph G is a (Psg,n)-factor critical covered graph if its sun

toughness s(G) > "2";1'&1, where n > 0 and r > 1 are integers.

Theorem 1.4 ([15]). Let n and X\ be two nonnegative integers. Then an (n + A + 2)-connected graph G is a
(P>3,n)-factor-critical covered graph if its isolated toughness I(G) > %

A graph G is called a P>4-factor uniform graph if for any e € E(G), the graph G — e is a P>4-factor covered
graph. Zhou and Sun [25] showed binding number conditions for a graph to be P>o-factor and Ps3-factor uniform
graphs, respectively. Liu [10] obtained an improved binding number condition for a graph to be a Pss-factor
uniform graph. Zhou and Bian [23] derived two results on the existence of P>z-factor uniform graphs. Zhou
et al. [26] derived isolated toughness conditions for graphs to be P>o-factor and Psg-factor uniform graphs,

respectively. The following results on P>3-factor uniform graphs are known.
Theorem 1.5 ([10]). A 3-connected graph G is a Ps3-factor uniform graph if bind(G) > 12.

Theorem 1.6 ([26]). Let r be a nonnegative integer. An (r+3)-edge-connected graph G is a P>3-factor uniform

o 3r+6
graph if its isolated toughness I(G) > 55

It is natural and interesting to present some new graphic parameter conditions to guarantee that a graph
is a (Psg, n)-factor critical covered graph or a P>z-factor uniform graph. In this work, we continue to study
Ps3-factor uniform graphs and P>s-factor uniform graphs, and pose a new sufficient condition for the existence
of (P>3,n)-factor critical covered graphs and Psg-factor uniform graphs, respectively.

Theorem 1.7. Let n > 0 be an integer, and let G be an (n + 1)-connected graph of order at least n+ 3. If G
satisfies
5(G) > a(Q) —5—2211—1-37
then G is a (P>3,n)-factor critical covered graph.
Theorem 1.8. Ewvery reqular graph G with degree r > 2 is a P>3-factor uniform graph.

This work is organized as follows. In Section 2, we give the proof and sharpness of Theorem 1.7. In Section 2,
we give the proof of Theorem 1.8.
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2. THE PROOF OF THEOREM 1.7

Proof of Theorem 1.7. Let G’ = G — N for any N C V(G) with |[N| = n. To prove Theorem 1.7, we only need
to verify that G’ is a P>g-factor covered graph. Suppose, to the contrary, that G’ is not a P>3-factor covered
graph. Then it follows from Theorem 1.2 that

sun(G' — X) > 2|X| —e(X) +1 (2.1)
for some X C V(G').
Claim 1. |X| #0.

Proof. Assume that |X| = 0. Note that G is an (n + 1)-connected graph. Then G’ is a connected graph, and so
w(G") = 1. Using (2.1) and £(X) = 0, we deduce

1=w(G@) >sun(G) =sun(G — X) > 2|X| —e(X) +1=1,
which implies that G’ is a sun. Since |V (G)| > n + 3, we have |V (G’)| > 3. Combining these with the concept

of a big sun, we know that G’ is a big sun. Let H be the factor-critical graph of G’. Then V(G') \ V(H) is an
independent set of G’, and so

V(e

(@) = (@) 2 V(G)\V(H)| = — (2.2)
Note that dg/(x) =1 for any « € V(G') \ V(H). We select t € V(G') \ V(H). Then we have
§(G) <dg(t) <dg_n(t)+ |N|=dg(t) +n=n+1. (2.3)
By virtue of (2.2), (2.3) and §(G) > w, we derive
13 5G) > a(G)—i—22n+3 . 'Vﬁf');zm:a _ \V(G’)|Z—4n+6’
which implies that |V (G')| < 0, which contradicts that |V(G’)| > 3. Claim 1 is verified. O
According to (2.1), Claim 1 and ¢(X) < 2, we deduce
sun(G' — X) > 2|X| —e(X)+1>2|X|-1> 1. (2.4)

By virtue of (2.4) and the definition of sun component, there exists a vertex ¢ in G'— X such that dg—x (¢) < 1.
Thus, we infer

5(G) < da(t) < da-n (1) + IN| = de(t) +n < der_x (1) + |X| 41 < [X| +n+ 1. (2.5)

Set sun(G’ — X) =r. Let Ry, Ry, -+, R, be r sun components in G’ — X. Select t; € V(R;), 1 <i <r. Then
{t1,t2, - ,t.} is an independent set of G’ — X, and so a(G’ — X) > sun(G’' — X)) = r. Thus, we have

a(G@) > a(G) > a(G' - X) >sun(G' = X) =r. (2.6)
It follows from (2.4) and (2.6) that
a(G) > sun(G' — X) > 2|X| - 1. (2.7)
In terms of (2.7) and §(G) > w, we derive

a(G)+2n+3 _ 2|X|—1+2n+3
2 - 2
which contradicts (2.5). This completes the proof of Theorem 1.7. O

I(G) >

= [X|+n+1,
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Remark 2.1. Next, we show that the condition

5(G) > a(G)—i—22n+3

in Theorem 1.7 is sharp, namely, it cannot be replaced by
G)+2n+3
5(G) > a()%
Let n and r be two nonnegative integers with » > 1. In what follows, we construct a graph G = K, 4,11 V

((2r + 1)K3). It is clear that 6(G) =n+r+2, (G) =2r +1 and G is an (n + r + 1)-connected graph. Thus,

we easily infer
2
For any N C V(K 4ry1) with [N| =n, we write ' = G—N = K, 11 V((2r+1)K3). Weselect X = V(K,41) C
V(G’), and X is not an independent set of G’. Then we see | X| =r+ 1, sun(G' — X) =2r + 1 and ¢(X) = 2.
Thus, we deduce
sun(G' = X)=2r+1>2r=2(r+1)—2=2|X| —e(X).
Combining this with Theorem 1.2, G’ is not a P>3-factor covered graph, and so G is not a (P>3,n)-factor critical
covered graph.
Set n =0 in Theorem 1.7. Then we easily obtain the following corollary.
Corollary 2.2. Let G be a connected graph of order at least 3. If G satisfies
G)+3
5(G) > O‘(%’
then G is a P>3-factor covered graph.

3. THE PROOF OF THEOREM 1.8

Proof of Theorem 1.8. Without loss of generality, we may assume that G is a connected graph. Otherwise, we
consider every connected component of G.

Let G’ = G — e for any e = uv € E(G). To prove Theorem 1.8, we only need to verify that G’ is a P>3-factor
covered graph. Suppose, to the contrary, that G’ is not a P>s-factor covered graph. According to Theorem 1.2
there exists a vertex subset X of G’ such that

sun(G' — X)=a+b+c>2|X|—¢(X)+1, (3.1)

where a is the number of sun components R of G’ — X satisfying R = K1, b is the number of sun components
R of G’ — X satisfying R = K5 and c is the number of big sun components R of G’ — X.

For any = € V(aK3), the degree of z in aK; is 0. For any = € V(bK3), the degree of = in bK> is 1. For each
big sun component R, R admits at least three vertices of degree exactly one. Note that G is a regular graph
with degree r > 2 and G’ = G — e. We easily see that the following inequality holds:

ar 4+ 2b(r — 1) + 3c(r — 1) — 2 < r|X|. (3.2)

Case 1. |X|=0.
Obviously, e(X) = 0. Using (3.1), we deduce

sun(G’) > 1.
Note that G is connected. Hence, we have
sun(G') <w(@) <w(@)+1=2.

Thus, we derive 1 < sun(G’) < w(G’') < 2.
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Subcase 1.1. w(G’') = 1.
In this subcase, we have sun(G’) = 1, and so G’ is a sun. Note that r > 2. Hence, |V(G")| = |V(G)| > 3,
and G’ is a big sun. Thus, there exist at least three vertices in G’ with degree 1, and so G admits at least
one vertex with degree 1, which contradicts that G is a regular graph with degree r > 2.

Subcase 1.2. w(G') = 2.
In this subcase, G’ has a sun component R and another component Q. If R = K7, then G = K;UQU{e}.
Thus, we know 6(G) = 1. If R = K3, then G = Ko UQ U {e}. Hence, 6(G) = 1. If R is a big sun, then R
has at least three vertices with degree 1. Thus G = RUQ U {e} and §(G) = 1. In conclusion, we always
have §(G) = 1 in Subcase 1.2. Recall that G is a regular graph with degree » > 2. Then 1 = 6(G) > 2,
which is a contradiction.

Case 2. |X|=1.

Subcase 2.1. G’ — X does not admit a non-sun component.

Clearly, ¢(X) = 0. Then using (3.1) and | X| = 1, we infer

a+b+c>2X|—e(X)+1=3. (3.3)
It follows from (3.2), (3.3), |X| =1 and r > 2 that
0>ar+2b(r—1)+3c(r—1)—2—r/X|

=ar+2b(r—1)+3c(r—1)—2—r

=(a+2b+3c—1)r—2b—3c—2

>2(a+2b+3¢c—1)—2b—3c—2

=2a+2b+3c—4>2(a+b+c)—4>2,
which is a contradiction.

Subcase 2.2. G’ — X admits a non-sun component.
Obviously, e(X) = 1. In terms of (3.1) and | X| = 1, we get

a+b+c>2/X|—e(X)+1=2. (3.4)

Note that G is a regular graph with degree r > 2, G’ = G — e and G’ — X admits a non-sun component.
Thus, we deduce

ar +2b(r —1) +3c(r—1)+1 -2 <r|X]|. (3.5)
It follows from (3.4), (3.5), | X| =1 and r > 2 that

0>ar+2b(r—1)+3c(r—1)—1—-r/X|
=ar+2b(r—1)+3c(r—1)—1—r
=(a+2b+3c—1)r—2b—3c—1
>2(a+2b+3c—1)—2b—3c—1
=2a+204+3c—3>2(a+b+c)—32>1,

which is a contradiction.
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Case 3. |X|=2.
Subcase 3.1. X is an independent set of G’.
Obviously, e(X) < 1. By means of (3.1) and | X| = 2, we derive

a+b+e>2X|—e(X)+12>2|X|=4. (3.6)
By virtue of (3.2), (3.6), |X| =2 and r > 2 that

0>ar+2b(r—1)+3c(r—1)—2—r|X|
=ar+2b(r—1)+3c(r—1)—2-2r
=(a+2b4+3c—2)r—2b—3c—2
>2(a+2b+3c—2)—2b—3c—2
=2a+2b+3c—6
>2(a+b+c)—6,
which implies that a + b + ¢ < 3, which contradicts (3.6).

Subcase 3.2. X is not an independent set of G’.
In this subcase, €(X) = 2. In terms of (3.1) and |X| = 2, we have

a+b+c>2X[—e(X)+1=2[X|-1=3. (3.7)
For any = € X, dgixj(x) = 1. Note that G is a regular graph with degree r > 2. Thus, we admit the
following inequality:

ar +2b(r —1) +3c(r—1) —2 < (r — 1)| X|. (3.8)
According to (3.7), (3.8), | X| =2 and r > 2 that

0>ar+2b(r—1)+3c(r—1)—2—(r—1)|X|
=ar+2b(r—1)+3c(r—1)—2-2(r—1)
=(a+2b+3c—2)r—2b—3c
>2(a+2b+3c—2)—2b—3c
=2a+2b+3c—4
>2(a+b+c)—4,
which implies that a + b + ¢ < 2, which contradicts (3.7).
Case 4. |X| > 3.

From (3.1) and ¢(X) < 2, we infer
a+b+c>2|X|—e(X)+1>2|X|-1. (3.9)

It follows from (3.2), (3.9), » > 2 and |X| > 3 that

0>ar+2b(r—1)+3c(r—1)—2—r/X|
=(a+2b4+3c—|X|)r—2b—3c—2
>2(a+2b+3c—|X|)—2b—3c—2
=2a+2b+ 3c—2|X| -2
>2(a+b+c)—2|X|—-2
> 2(2|X| — 1) — 2|X| — 2
=2|X| -4,
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which implies that |X| < 2, which contradicts | X| > 3. This completes the proof of Theorem 1.8.

O
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