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SUN TOUGHNESS AND PATH-FACTOR UNIFORM GRAPHS

Honagx1ia Liu*

Abstract. A path-factor is a spanning subgraph F of G such that each component of F is a path of
order at least two. Let k be an integer with k > 2. A P>j-factor is a spanning subgraph of G whose
components are paths of order at least k. A graph G is called a P>-factor covered graph if for any edge
e of G, G admits a P>g-factor covering e. A graph G is called a P>p-factor uniform graph if for any
two distinct edges e1 and ez of G, G has a P>p-factor covering e; and excluding es. In this article, we
claim that (i) a 4-edge-connected graph G is a Psg-factor uniform graph if its sun toughness s(G) > 1;
(ii) a 4-connected graph G is a Pss-factor uniform graph if its sun toughness s(G) > 1.
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1. INTRODUCTION

All graphs discussed here are finite, undirected and loopless, and have no multiple edges. Let G be a graph.
We denote by V(G) and E(G) the vertex set and the edge set of G, respectively. An edge joining vertices u and
v is denoted by uv. For a vertex v of G, the degree of v in G is denoted by dg(v). For X C V(G) and E' C E(G),
we denote by G — X the subgraph derived from G by removing vertices in X together with the edges incident
to vertices in X, and by G — E’ the subgraph obtained from G by deleting all edges in E’. A set X C V(G)
is called an independent set of G if no two vertices in X are adjacent to each other. We use x(G), A\(G) and
w(G) to denote the vertex connectivity, the edge connectivity and the number of connected components of G,
respectively. We denote the path and the complete graph with n vertices by P, and K,,, respectively. Let G
and G2 be two graphs. Then the union of G; and Gs is denoted by G; U G3, and the join of G; and G; is
denoted by G1 V Gs.

We first introduce two parameters for a graph, namely, the binding number and the isolated toughness. The
binding number of G is defined by Woodall [9] as

[Ne (X))

bind(G) = min{ —————
(@ = min{ 5

0 # X CV(G), Na(X) # V(G)} .

The isolated toughness of G is defined by Yang et al. [10] as
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, X :
I(G) = mln{M X CV(G),i(G-X) > 2}
if G is not a complete graph; otherwise, I(G) = +oo.

The relationships between binding number, isolated toughness and graph factors can be found in
[2,6,17,24,25]. Many other results on graph factors can be discovered in [7,11,14-16,21].

A path-factor is a spanning subgraph F of G such that each component of F' is a path of order at least two.
Let k be an integer with k > 2. A P> -factor is a spanning subgraph of G whose components are paths of
order at least k. In order to characterize a graph possessing a P>s3-factor, Kaneko [3] introduced the concept of
a sun. A spanning subgraph F of G is called a 1-factor if dp(v) = 1 for all v € V(G). A graph H is called a
factor-critical graph if H — v admits a 1-factor for every v € V(H). Let H be a factor-critical graph with vertex
set V(H) = {v1,v2,- -+ ,v,}. By adding new vertices {uy,us, - ,up} together with new edges {v;u; : 1 <i < n}
to H, we acquire a new graph, which is called a sun. According to Kaneko, K; and K5 are also suns. Usually,
K, and K, are called small suns and the others are called big suns (with at least six vertices). The number of
sun components of G is denoted by sun(G).

Kano et al. [5] acquired a sufficient condition for the existence of a P>3-factor in a graph. Wang and Zhang [8]
gave a result on the existence of a P>3-factor in a graph. Zhou et al. [13,20] derived some results on Psg-factors
in graphs. Kaneko [3] provided a necessary and sufficient condition for a graph possessing a P>3-factor. Kano
et al. [4] posed its shorter proof.

Theorem 1. (/3,4]). A graph G possesses a P>s3-factor if and only if
sun(G — X) < 2|X|
for any vertex subset X of G.

A graph G is called a P>j-factor covered graph if for any edge e of G, G admits a P>-factor covering e,
which was first defined by Zhang and Zhou [12]. Furthermore, they [12] presented a characterization for a graph
to be a Ps3-factor covered graph, which is shown in the following.

Theorem 2. ([12]). A connected graph G is a P>3-factor covered graph if and only if
sun(G — X) < 2|X| —e(X)
for any vertex subset X of G, where e(X) is defined by

2,if X is not an independent set;

1,if X is a nonempty independent set and G — X has
a non — sun component;

0, otherwise.

e(X) =

A graph G is called a P> j-factor uniform graph if for any two distinct edges e; and ez of G, G has a P> -factor
covering e; and excluding ey, which was first defined by Zhou and Sun [18]. Furthermore, they [18] derived a
binding number condition for a graph to be a P>s-factor uniform graph. Gao and Wang [1] improved Zhou and
Sun’s result on P>3-factor uniform graphs. Zhou and Bian [19] showed two sufficient conditions for the existence
of a P>g-factor uniform graph. Zhou et al. [22] provided an isolated toughness condition for a graph to possess
a Psg-factor uniform graph. The sun toughness of a graph G is denoted by s(G) and defined by

$(G) = min {sun(C)ﬂ—X) : X CV(G), sun(G—X) > 2}

if G is not a complete graph; otherwise, s(G) = +o00. Zhou et al. [23] presented a sun toughness condition for a
graph to be a P>3-factor uniform graph, which is stated as follows.
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Theorem 3. (/23]). Let G be a 3-edge-connected graph. Then G is a Pss-factor uniform graph if its sun
toughness s(G) > 1.

The purpose of this paper is to weaken the sun toughness condition in Theorem 3 by assuming that G is
4-edge-connected or G is 4-connected.

Theorem 4. Let G be a 4-edge-connected graph. Then G is a P>3-factor uniform graph if its sun toughness
s(G) > 1.

Theorem 5. Let G be a 4-connected graph. Then G is a P>s-factor uniform graph if its sun toughness s(G) >

RIS

2. THE PROOFS OF MAIN THEOREMS

Proof of Theorem 4. If G is a complete graph, then G is obviously a P>3-factor uniform graph. Hence, we may
assume that G is not a complete graph. Since G is 4-edge-connected, we admit |[V(G)| > 5.

We proceed to verify Theorem 4 by contradiction. Suppose that there exists an edge e = wv in G such that
G’ = G — e is not a P>3-factor covered graph. Then by Theorem 2, we have

sun(G' — X) > 2|X| —e(X) +1 (1)
for some vertex subset X of G'.
Claim 1. |X]|=3.

Proof. If | X| = 0, then e(X) = 0. According to (1), we obtain sun(G’) > 1. On the other hand, since G’
is connected, we admit sun(G’') < w(G’) = 1. Hence, sun(G’') = w(G’) = 1, which implies that G’ is a sun.
Note that |V(G")| = |V(G)| > 5. Therefore, G’ is a big sun with at least six vertices. Clearly, G’ has at least
three vertices with degree 1, and so G admits at least one vertex with degree 1, which contradicts that G is
4-edge-connected.

If 1 < |X| < 2, then it follows from (1) and ¢(X) < |X]| that sun(G' — X) > 2|X|—e(X)+1>|X|+1> 2,
which implies that G’ — X has at least two sun components. If G’ — X admits a sun component K; = {w},
then dg/—x (w) = 0. Thus, dg(w) < dg(w) + 1 < dg'—x(w) + |X|+ 1 = |X|+ 1 = 2, which contradicts our
assumption that G is 4-edge-connected. If G’ — X does not admit a sun component Ki, then G’ — X has at
least four vertices with degree 1, and so G has at least two vertices with degree 1, which contradicts that G is
4-edge-connected.

If |X| > 4, then e(X) < 2. By (1), we admit sun(G' — X) > 2|X| —e(X)+1 > 2|X| -1 > 7, and so
sun(G — X) > sun(G' — X) — 2 > 2|X| — 3 > 5. Combining this with s(G) > 1, we obtain

| X | X| 1 3 1 3 4

1<s(G) < < -4+ 2 <42 _Z
=s@) s G S X =3 3TN =62 Ixi-6 5

which is a contradiction. This completes the proof of Claim 1. (]

Note that sun(G — X) > sun(G' — X) — 2. The following proof will be divided into two cases.
Case 1. sun(G — X) > sun(G' — X) — 1.
It follows from (1), e(X) < 2, s(G) > 1 and Claim 1 that
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1< 5(G) < X RY S (. { R S
- “sun(G—-X) " sun(G'—X)—1 " 2|X|—e(X) T 2|X|-2 2x3-2 4’

a contradiction.
Case 2. sun(G — X) = sun(G' — X) — 2.

In this case, we may let e = wv join two sun components H; and Hs of G’ — X, where v € V(H;) and
v € V(Hz). Note that sun(G — X) = sun(G’ — X) — 2. Hence, Hy # K; or Hy # K; (otherwise, sun(G — X) =
sun(G" — X) — 1). Without loss of generality, we may assume H; # K.
Subcase 2.1. H; = Ks.

Obviously, sun(G — X —u) = sun(G — X —u —e) = sun(G' — X — u) = sun(G’ — X). According to (1),
e(X) <2, s(G) > 1 and Claim 1, we have

| X U {u}] | X[ +1 | X[ +1 IX|+1 4

1< < = < = ~ 5
SO S CR@ X —w)  sun(@ - X) S 9] —e(X) 11 S 2X[ 1 5

a contradiction.
Subcase 2.2. H; is a big sun component.

We write Ry for the factor-critical graph of Hy, and 3w € V(Ry) with uw € E(H;). Then sun(G — X —u —
V(R1)\{w}) = sun(G' = X —u—V(Ry)\{w}) = sun(G' = X) — 1+ |V (Ry)|. In view of (1), e(X) <2, s(G) > 1
and Claim 1, we derive

X U{u} U (V(E:)\ {w})]

L<s(@) s sun(G—X —u—V(Ry) \ {w})
_XRV@®R) X[ VR
sun(G' — X) — 1+ |V(Ry)| ~ 2|X| —e(X) + |V(Ry)|
XL+ VR 3+ VR)
T2X[ =2+ V(R A+ [V(R)] 7
which is a contradiction. The proof of Theorem 4 is complete. (]

Proof of Theorem 5. If G is a complete graph, then G is clearly a P-3-factor uniform graph. Hence, we may
assume that G is not a complete graph. Since G is 4-connected, we admit |V (G)| > 6.

We proceed to demonstrate Theorem 5 by contradiction. Suppose that there exists an edge e = uv in G such
that G’ = G — e is not a P>g-factor covered graph. Then it follows from Theorem 2 that

sun(G' — X) > 2|X| —e(X) +1 (2)
for some vertex subset X of G.
Claim 2. |X]|=3.
Proof. The proof of Claim 2 is similar to that of Claim 1 in Theorem 4. (|

In view of (2), e(X) < 2 and Claim 2, we obtain
sun(G' — X) > 2|X| —e(X)+1>2|X|—-1=5. (3)
Note that sun(G — X) > sun(G’ — X) — 2. Combining this with (3), we admit
w(G—=X) > sun(G — X) > sun(G' — X) —2 > 3. (4)

On the other hand, since G is 4-connected, it follows from Claim 2 that w(G — X) = 1, which contradicts
(4). We completes the proof of Theorem 5. O
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3. REMARKS

Remark 1. Let Hy, Ho, Hs, Hy and H5 be five big suns. We write R; for the factor-critical graph of Hy, and
Ry, for the factor-critical graph of Hs. Let u € V(H1)\V(R1), w € V(Ry), v € V(H2)\V(R2) and vw € E(Hy).
We denote by H the graph with vertex set V(H) = V(H;) UV (Hz) and edge set E(H) = E(H;)UE(Hz)U{e},
where e = uw.

To show that the bound of s(G) in Theorem 4 is sharp, we construct a graph G = K3V (HU Hs U Hy U Hs).

Obviously, G is 4-edge-connected, and s(G) = Sunéﬁ%ﬁfgé%?ﬁ%g}zgj\}glﬂ}))) = Zﬂgggi;} — 1 ([V(Ry)] — o).

Let X =V (K3) and G’ = G — e. Then ¢(X) = 2 and

sun(G' — X) =5>4=2|X| —¢(X).

In view of Theorem 2, G’ is not a P>3-factor covered graph, and so G is not a P>3-factor uniform graph.

Remark 2. Now, we show that 4-edge-connected in Theorem 4 cannot be replaced by 3-edge-connected. We
construct a graph G = K V (H U P3), where P3 = vovive and H (# K;) is a sun. It is obvious that G is

3-edge-connected and s(G) = Sun(g/_(fﬁ()l%gbﬁl})) =3 =1Let G =G—eforec E(P) and X = V(Ky).
Then £(X) = 2, and so

sun(G' — X) =3 >2=2|X|—¢(X).

In terms of Theorem 2, G’ is not a P>3-factor covered graph, and so G is not a P>g-factor uniform graph.

Remark 3. In what follows, we show that s(G) > 2 and 4-connected in Theorem 5 cannot be replaced by
5(G) > £ and 3-connected. We construct a graph G = K3 V (3K U Py), where Py = vouivs. We easily see that

G is 3-connected and s(G) = sun(g/£$3§i§b}{‘ul})) = 2. Let G' = G —e for e € E(P3) and X = V(K3). Then
e(X) =2, and so

o

sun(G' — X) =5>4=2|X| - ¢(X).

According to Theorem 2, G’ is not a P>3-factor covered graph, and so G is not a P>s-factor uniform graph.
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