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Z-TRAPEZOIDAL RISK ASSESSMENT FOR MULTI-OBJECTIVE HAZMAT
ROUTING MODEL WITH TIME WINDOWS

Fatemeh Zandieh* and Seyed Farid Ghannadpour

Abstract. Hazardous material (Hazmat) transportation is an inseparable section of the industry, de-
spite its major financial and health risks. In order to optimize Hazmat transportation, a multi-objective
Hazmat routing model with time windows is employed where the risk and distance are minimized. Due
to the uncertainty of Hazmat transportation risk, a Z-number fuzzy approach is used to estimate
the risk, in which the probability of occurrence and the severity is considered in the context of Z-
information. The severity of the event includes the affected population and depends on the amount of
transported Hazmat and the number of individuals affected by the explosion. To tackle the proposed
model, the present paper utilizes a multi-objective hybrid genetic algorithm, the validity of which is
tested by Solomon’s problems. Furthermore, the optimization of a case study concerning the Hazmat
distribution in Iran is analyzed using the suggested approach to assess the efficiency of the proposed
fuzzy problem in real-world applications.

Mathematics Subject Classification. 90B06, 90B50, 90C05, 90C29, 90C70, 68T20.

Received October 16, 2021. Accepted November 4, 2022.

1. Introduction

Hazmat mainly includes toxic gases, explosive materials, flammable liquids, and radioactive and corrosive
substances. Because of the nature of these materials, their production, storage, and transportation activities
may be accompanied by significant threats to society and the environment. Moreover, because Hazmat is
commonly not consumed on the production site, but is used in factories and universities, the demand for this
material is met by long-distance transportation. One of the most notable issues concerning Hazmat transport
is the explosion event caused by a vehicle accident. Although, the probability of a vehicle accident is very low,
the consequences can be very destructive [9]. If an accident occurs while transporting Hazmat, it may cause
hazardous material leakage, explosion, poisoning, and some other events that probably will result in loss of life
and property, environmental degradation, traffic disruption, etc. According to events and statistics reported
in the oil and gas industry in 2004, there is an average of 1.09 lost time injuries (LTI) per million hours of
work in Asia, Africa, and Europe. Statistics also highlights the fact that accident damage costs approximately
$70 billion annually [32]. Thus, regarding the industrialized countries’ demand for Hazmat transportation and
taking into account the statistics of accidents and injuries resulting from it, more research works are required
to be conducted on this type of transportation, hoping to enhance safety and reduce its environmental impact.
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The nature of decisions related to Hazmat is multi-objective because each stakeholder (including transporters,
managers, customers, and residents) has different and conflicting objectives that should be taken into account
during the planning. The shortest path problem (SPP) of the vehicle routing problem (VRP) is often used
to optimize Hazmat transportation [10]. The vehicle routing problem with time windows (VRPTW) optimizes
the collection and distribution of goods from one depot to several customers using several vehicles with a
specified time window [30]. Referring to the proportionality of the VRPTW problem to Hazmat transportation,
utilizing the VRPTW with an additional objective function for the risk parameter can be useful in improving
the transportation planning of this material.

As mentioned earlier, the nature of Hazmat transportation has the risk of accidents and explosions. In the real
world, determining the risk parameters deterministically is not a simple task. As a result, the uncertain VRP
can be employed, the majority of studies of which consists of the stochastic vehicle routing problem (SVRP)
and the fuzzy vehicle routing problem (FVRP). The SVRP is used when parameters are random and the FVRP
is utilized in when parameters are vague and unknown. Scholars have made great attempts so far to reach
a desirable model to describe information uncertainty more rationally, a model that can accurately simulate
human cognitive processes and decisions. Nonetheless, information related to the real-life is characterized not
only by fuzzy constraints on the variable values but also by partial reliability. Hence, fuzzy assessments or other
uncertainty modeling approaches cannot fully capture real-life problems. So, reliability should be considered
in the risk assessment method [27]. The concept of Z-number was developed by Zadeh [54], which expresses
both the limitations and the reliability of an assessment and is proposed as a more appropriate way to describe
real-life information. Therefore, this paper presents a bi-objective Hazmat routing problem with time windows,
the risk of which is estimated by a new Z-number formulation, and finally, the proposed problem is optimized
using a multi-objective hybrid genetic algorithm.

The paper is organized as follows. Section 2 addresses the literature review on the research works in this realm
to identify key problems and research gaps. Section 3 describes the mathematical model of the bi-objective
Hazmat routing problem. In Section 4, Z-number risk calculations are provided and a genetic algorithm is
designed. Section 5 analyzes and validates the results obtained by the algorithm. Section 6 examines a case
study of a Hazmat distribution and, in the end, Section 7 provides a summary of the findings of the current
research.

2. Literature review

The literature review of the paper addresses two subjects. The first is a review of the Hazmat routing problem
and the second is a review of the fuzzy vehicles routing problem.

2.1. Hazmat routing problem

This section deals with the literature on the Hazmat routing problem. One of the first studies concerning
Hazmat routing belongs to Tarantilis and Kiranoudis [48]. The authors attempt to select routes for Hazmat
transportation in areas far from residential centers so that the number of people at risk is reduced in the event of
an accident. Androutsopoulos and Zografos [2] presented a bi-objective time-dependent Hazmat routing problem
with time windows. The risk in this study depends on the probability of the accident and the population around
the event. Pradhananga et al. [39] also proposed a multi-objective vehicle routing problem with a time window for
Hazmat transportation. Objective functions include minimizing the risk of accident and explosion of the vehicle
and the total travel time. The authors optimized their proposed model using the multi-objective ant colony
system (MOACS). Hamdi-Dhaoui et al. [25] presented a Hazmat routing problem considering two-dimensional
loading. The proposed problem has two objectives: minimizing travel cost and load balancing between different
routes. The authors solved their problem by a non-dominated sorting genetic algorithm II (NSGA-II). Kheirkhah
et al. [28] proposed a bi-level vehicle routing problem for the hazardous materials transportation. The authors
solved the bi-level optimization model by two metaheuristic algorithms.
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Bula et al. [10] presented a heterogeneous vehicle routing problem for Hazmat transportation. The problem
aimed to minimize the risk of routes. The risk considered in this paper depends on the accident rate, the
probability of release of Hazmat, the vehicle load, the length of the link, the event-prone population, and the
type of Hazmat. Finally, they solved the suggested model using the variable neighborhood search (VNS). In
another study, Bula et al. [11] proposed a bi-objective heterogeneous vehicles routing problem for Hazmat
transportation. Objectives of the problem include minimizing the risk and cost of transportation routes. The
authors used a neighborhood search algorithm (NSA) to solve the model. Du et al. [16] described a multi-depot
routing problem of Hazmat transportation. The authors first developed a fuzzy bi-level programming model to
minimize the total transportation risk and optimized it using a metaheuristic algorithm.

Man et al. [33] presented a vehicle routing problem with limited capacity for Hazmat transportation. The
objective function of the problem is to minimize the risk that depends on the accident rate, the probability of
release of the Hazmat, the length of the link, and the population around the event. Additionally, the population
density around the event is considered as a two-stage fuzzy parameter. Moghaddam and Azadian [34] dealt with
a stochastic multi-objective vehicle routing problem to increase safety and speed of distribution of Hazmat.
The authors also solved the model for a case study of the distribution of Hazmat in the U.S. In another
study, Ouertani et al. [38] described a multi-objective dynamic vehicle routing problem with a time window for
Hazmat distribution. The authors solved the given model using a GA combined with VNS. Ghannadpour et al.
[21] presented a hazardous medical waste collection routing problem with sustainable development objectives,
where the sustainable objective functions of the study consist of minimizing cost, fuel consumption, and risk.

Mohri et al. [35] presented a review paper for hazardous materials routing problems. They examined assump-
tions, constraints, objective functions, variables and parameters, solution approaches and case studies of haz-
ardous material routing problems from 1980 to 2020. Rahbari et al. [42] proposed a location-inventory-routing
problem for hazardous materials and waste management at two levels of the supply chain with considering a
heterogeneous vehicle feet. The authors considered three objective functions for their problem, which include
cost minimization, risk minimization, and greenhouse gas emission minimization. Zandieh and Ghannadpour
[56] presented a time-dependent routing problem for Hazmat transportation. The authors determined the risk
of Hazmat transportation by interval type-2 fuzzy logic controller. Then they designed a multi objective evolu-
tionary algorithm based on decomposition to optimize the proposed problem. Table 1 provides a summary of
the objective functions and risk characteristics of the problem along with the solution algorithm.

2.2. Fuzzy vehicles routing problem

Fuzzy vehicle routing problem includes one or more fuzzy variables or parameters. This section addresses some
of these studies and the various types of fuzzy parameters considered in this problem. Brito et al. [8] proposed
a close–open vehicle routing problems with time windows (COVRPTW), in which capacity and time window
constraints are taken into account. The proposed problem is solved using a combination of three metaheuristic
algorithms, namely, ant colony optimization (ACO), greedy randomized adaptive search procedure (GRASP),
and VNS. Shi et al. [43] proposed a home treatment services routing problem with a time window in which
customer demand was considered as a fuzzy parameter. As the demand is considered fuzzy in this study, the
remaining capacity of the vehicle may be less than the customers’ demand and a shortage may be encountered.
To compensate for this shortage, the vehicle should return to the depot.

Ghannadpour and Zarrabi [18] presented a multi-objective model of heterogeneous vehicle routing with a
time window that has three objective functions including minimizing fuel consumption, maximizing customer
satisfaction, and minimizing the number of fleets. The fuzzy parameter of this paper is the customers’ time
window. To maximize customer satisfaction, customer service is provided as much as possible at a time with a
maximum degree of membership. Zheng et al. [58] proposed a fuzzy electric vehicle routing problem with a time
window that takes into account travel time, battery power consumption, and customer service time as fuzzy
parameters. To optimize this problem, the adaptive large neighborhood search (ALNS) algorithm combined
with fuzzy simulation was employed. Chen et al. [13] described a vehicle routing problem considering the type
of transport between milk-run and cross-dock, in which the travel time was considered as a fuzzy number.
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Table 1. A review of the literature focusing on the Hazmat routing problem.

Reference Objective(s) Risk estimation
parameters

Fuzzy risk Solution algorithm

Single Multi Items

Androutsopoulos
and Zografos
[2]

X TT, TR pa, pop heuristic algorithm

Pradhananga
et al. [39]

X TT,TR pa, pr, pi, pc, pdc,
pop

multi-objective ant
colony optimization

Bula et al. [10] X TR pa, pr, type, vl,
length, ci

variable
neighborhood search

Du et al. [16] X TR pa, area, ps heuristic algorithm
Bula et al. [11] X TC, TR pa, pr, type, vl,

length, ci
neighborhood search
algorithms

Men at al. [33] X TR pa, pr, length, area,
ps

X simulated annealing
algorithm

Moghaddam
and Azadian
[34]

X TD, TR pu, pi hybrid game theory
based compromise
programming

Ouertani et al.
[38]

X TC, TR pi, length, pop bi-population GA
and the VNS

Ghannadpour
et al. [21]

X TC, TR, TFC at, wv, type multi-objective self-
adaptive genetic
algorithm

Rahbari et al.
[42]

X TC, TR, TGE – NSGA II, MOSA,
and MOBWO

This study X TC, TR pa, pop (area, ps), lo X genetic algorithm

Notes. TT: Travel Time, TR: Travel Risk, TC: Total Cost, TD: Total Distance, TFC: Total Fuel Consumption, TGE:
Total greenhouse Gas Emission, MOSA: multi-objective simulated annealing algorithm, MOBWO: multi-objective black
widow optimization.
pa: probability (rate) of accident, pop: expected population exposure, pr: (conditional) probability of release, pi: con-
ditional probability of incident, pc: conditional probability of consequence, pdc: conditional probability of death conse-
quence, type: type of Hazmat, vl: vehicle load, length: length of link, ci: consequences of incident, area: affected area of
accident, ps: population density, pu: probability of using a link, at: arrival time, wv: waste volume, lr: load occupancy.

Zheng [59] suggested a VRPMTW (vehicle routing problem with multiple time windows) with respect to the
time variation of traffic flow. The objective functions of the proposed problem include maximizing customer
satisfaction and minimizing costs.

Figueroa–Garćıa et al. [17] presented an fuzzy capacitated VRP in which the travel cost and customer demand
were formulated in the form of fuzzy numbers. The authors considered the membership function of the fuzzy
parameters as a mix of triangular and Gaussian. Nozari et al. [36] proposed a multi-depot VRP for distribution
of medical equipment in the COVID-19 pandemic. A robust fuzzy method controlled uncertain parameters,
such as demand, transmission, and distribution costs. Raeisi and Jafarzadeh Ghoushchi [41] presented a multi-
objective location-routing problem for hazardous wastes. The amount of generated waste and transportation
costs were formulated as uncertain data in the form of trapezoidal fuzzy numbers. Singh et al. [45] presented
a fuzzy stochastic capacitated vehicle routing problem. The authors assumed the demands as a stochastic
parameter. Yang et al. [51] proposed a VRP with fuzzy demand and fuzzy time windows. This paper uses a
fuzzy chance-constrained programming model based on credibility theory, minimizing the total logistics cost.
Simultaneously, a random simulation algorithm is used to calculate the penalty cost of delivery failures caused
by the demand that cannot be satisfied. Other studies of the vehicle routing problem in which at least one
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parameter is considered fuzzy can be mentioned [41, 53]. In some VRP studies, a fuzzy solution approach has
been utilized (e.g. in [5, 40,49,57]).

Concerning the studies carried out so far, most of them consider fuzzy parameters in the vehicle routing,
problem. Yet, fuzzy risk has rarely been considered in the conducted studies. Therefore, in this paper, a Hazmat
routing problem is established by presenting a new formula for risk based on Z-number to provide appropriate
risk analysis for the problem.

3. Fuzzy Hazmat routing problem

The vehicle routing problem with a time window includes 𝑁 customers. If the depot is assumed the 0-th
customer, the set of customers of this problem is considered as 𝐶 = {0, 1, 2, . . . , 𝑁}. The maximum number of
vehicles is represented by 𝐾. Link 𝑖𝑗 connects two customers 𝑖 and 𝑗 and has a distance of 𝑑𝑖𝑗and the risk of 𝑟𝑖𝑗 .
Each customer has a time window in the form of [𝑒𝑖, 𝑙𝑖] , where 𝑒𝑖 and 𝑙𝑖are the earliest and latest service time
to customer 𝑖, respectively. Customers’ time window is hard, meaning that if the arrival time of a vehicle to the
customer is less than 𝑒𝑖, the vehicle must wait for the start of the customer’s time window, and if the time of
arrival of the vehicle to the customer is greater than 𝑙𝑖, the goods will not be delivered. Customer 𝑖‘s demand
is 𝑚𝑖 and the capacity of the 𝑘-th vehicle is shown by 𝑄𝑘. A route consists of a loop of several customers and
the depot, in which the vehicle starts traveling from the depot and returns to the depot after providing service
to all the customers on the route. The total demand of customers for a route should not exceed the capacity
of the vehicle (𝑄𝑘). Moreover, the total travel time on a route should not violate the maximum service time of
the vehicle (𝑟𝑘). The decision variables of the proposed model are 𝑥𝑖𝑗𝑘, 𝑢𝑖, 𝑤𝑖, 𝐷𝑘

𝑖𝑗 , 𝑥𝑖𝑗𝑘, 𝑆𝑖𝑗𝑘 and 𝑅̃𝑖𝑗𝑘. The
indices, parameters, and variables related to the proposed model are summarized as follows.

Nomenclature of mathematical formulation

Indices
𝑖, 𝑗, ℎ indices of customers and depot (𝑖, 𝑗 ∈ 𝐶)
𝑘 index of vehicles (𝑘 ∈ 𝐾)

Parameters
𝑑𝑖𝑗 travel distance between node 𝑖 and node 𝑗
𝑚𝑖 demand of customer 𝑖
𝑒𝑖 earliest allowable service time for customer 𝑖
𝑙𝑖 latest allowable service time for customer 𝑖
𝑄𝑘 capacity of vehicle 𝑘
𝑠𝑖 time needed to service customer 𝑖
𝑡𝑖𝑗 travel time between nodes 𝑖 and 𝑗
𝑟𝑘 maximum allowed time of vehicle 𝑘

𝑃𝑖𝑗 fuzzy probability of accident in link 𝑖𝑗
˜𝑝𝑜𝑝𝑖𝑗 maximum number of people affected by the Hazmat in link 𝑖𝑗 per maximum vehicle load

𝑀 A big number

Decision variables
𝑥𝑖𝑗𝑘 variable set to 1 if the vehicle 𝑘 travels from node 𝑖 to node 𝑗
𝑢𝑖 arrival time at customer 𝑖
𝑤𝑖 waiting time at node 𝑖
𝐷𝑘

𝑖𝑗 the load of vehicle 𝑘 when travels from node 𝑖 to node 𝑗

𝑅̃𝑖𝑗𝑘 the fuzzy risk of vehicle 𝑘 when travels from node 𝑖 to node 𝑗

𝑆𝑖𝑗𝑘 fuzzy severity of accident of vehicle 𝑘 in link 𝑖𝑗
𝜃𝑖𝑗𝑘 Occupancy rate (The ratio of vehicle load to vehicle capacity in link 𝑖𝑗)
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Figure 1. An instance of Hazmat routing problem with fuzzy risk.

3.1. Risk estimation

The Hazmat transportation risk includes a vehicle accident and the resulting explosion and fire. This risk
depends on various factors that cannot be estimated with certainty. In this paper, the effective factors in the
risk of the exposed population and the probability of the event are assumed as fuzzy parameters. Thus, the
fuzzy equation (1) is presented to estimate the Hazmat transportation risk.

𝑅̃𝑖𝑗𝑘 = 𝑆𝑖𝑗𝑘𝑃𝑖𝑗∀𝑖, 𝑗 ∈ 𝐶, ∀𝑘 ∈ 𝐾 (1)

where 𝑅̃𝑖𝑗𝑘represents the risk of the fuzzy vehicle 𝑘 in link 𝑖𝑗. The parameter 𝑃𝑖𝑗 indicates the fuzzy probability
of occurrence of an accident in link 𝑖𝑗, which is determined according to the expert’s opinion. The variable
𝑆𝑖𝑗𝑘shows the severity of the effect of the accident. This variable represents the population affected by the
explosion, which depends on the population density around the link and the amount of Hazmat transported.
To put it simply, to calculate this variable, the approximate number of people close to the accident, who are
affected depending on the amount of vehicle load, is estimated. Therefore, the value of 𝑆𝑖𝑗𝑘is calculated as
equation (2).

𝑆𝑖𝑗𝑘 = ˜𝑝𝑜𝑝𝑖𝑗𝜃𝑖𝑗𝑘∀𝑖, 𝑗 ∈ 𝐶, ∀𝑘 ∈ 𝐾. (2)

In this equation, ˜𝑝𝑜𝑝𝑖𝑗 represents the maximum number of people affected by the accident in link 𝑖𝑗 per maximum
vehicle load. Also, 𝜃𝑖𝑗𝑘 denotes the ratio of vehicle load 𝑘 to the maximum load (vehicle capacity) in link 𝑖𝑗.

Figure 1 shows a vehicle routing problem for Hazmat distribution from the depot to several factories. This
figure illustrates the total population close to the accident site and the population affected by the accident. As
seen in the figure, fleet routing planning is highly hazardous because the vehicle passes through crowd points
when it carries the heaviest load. It is worth mentioning that because the vehicle load in the link connecting
factory 2 to the depot is zero, there is no risk of explosion as a consequence of a vehicle accident.
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3.2. Mathematical modeling

The bi-objective model of the Hazmat routing problem with minimizing the transportation distance and risk
is described as follows.

Min𝑓1 =
𝐾∑︁

𝑘=1

𝑁∑︁
𝑖=0

𝑁∑︁
𝑗 ̸=𝑖,𝑗=0

𝑑𝑖𝑗𝑥𝑖𝑗𝑘 (3)

Min𝑓2 =
𝐾∑︁

𝑘=1

𝑁∑︁
𝑖=0

𝑁∑︁
𝑗 ̸=𝑖,𝑗=0

𝑅̃𝑖𝑗𝑘𝑥𝑖𝑗𝑘 = 𝑆𝑖𝑗𝑘𝑃𝑖𝑗 = ˜𝑝𝑜𝑝𝑖𝑗𝜃𝑖𝑗𝑘𝑃𝑖𝑗 (4)

𝑠.𝑡. (5)
𝐾∑︀

𝑘=1

𝑁∑︀
𝑗=0

𝑥0𝑗𝑘 ≤ |𝐾|

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖 = 0
𝑖 ̸= 𝑗

𝑥𝑖𝑗𝑘 = 1∀𝑗 ∈ 𝐶∖ {0} (6)

𝑁∑︁
𝑗 = 0
𝑗 ̸= 𝑖

𝑥𝑖𝑗𝑘 ≤ 1∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾 (7)

𝑁∑︁
𝑗 = 0
𝑗 ̸= 𝑖

𝑥𝑗𝑖𝑘 ≤ 1∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾 (8)

𝑁∑︁
𝑖=0

𝑥𝑖ℎ𝑘 −
𝑁∑︁

𝑗=0

𝑥ℎ𝑗𝑘 = 0∀ℎ ∈ 𝐶,∀𝑘 ∈ 𝐾 (9)

𝑁∑︁
𝑗 = 0
𝑗 ̸= 𝑖

𝐾∑︁
𝑘=1

𝐷𝑘
𝑗𝑖 −

𝑁∑︁
𝑗 = 0
𝑗 ̸= 𝑖

𝐾∑︁
𝑘=1

𝐷𝑘
𝑖𝑗 = 𝑚𝑖∀𝑖 ∈ 𝐶∖ {0} (10)

𝑁∑︁
𝑖=0

𝑁∑︁
𝑗 = 0
𝑗 ̸= 𝑖

𝑚𝑖𝑥𝑖𝑗𝑘 ≤ 𝑄𝑘∀𝑘 ∈ 𝐾 (11)

𝜃𝑖𝑗𝑘 = 𝐷𝑘
𝑖𝑗
⧸︀
𝑄𝑘
∀𝑖, 𝑗 ∈ 𝐶,∀𝑘 ∈ 𝐾 (12)
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𝑢𝑖 + 𝑠𝑖 + 𝑤𝑖 + 𝑡𝑖0 − (1− 𝑥𝑖0𝑘) 𝑀 ≤ 𝑇𝑘∀𝑖 ∈ 𝐶∖ {0} (13)

𝑢0 = 𝑤0 = 𝑠0 = 0 (14)

𝑢𝑖 + 𝑠𝑖 + 𝑤𝑖 + 𝑡𝑖𝑗 − (1− 𝑥𝑖𝑗𝑘) 𝑀 ≤ 𝑡𝑗∀𝑖 ∈ 𝐶∖ {0} ,∀𝑖 ̸= 𝑗 ∈ 𝐶,∀𝑘 ∈ 𝐾 (15)

𝑒𝑖 ≤ (𝑢𝑖 + 𝑤𝑖) ≤ 𝑙𝑖∀𝑖 ∈ 𝐶∖ {0} (16)

𝑥𝑖𝑗𝑘 ∈ {0, 1} , 𝑎𝑡𝑖 ≥ 0, 𝑤𝑖 ≥ 0, 𝐷𝑘
𝑖𝑗 ≥ 0, 𝜃𝑖𝑗𝑘 ≥ 0,∀𝑖, 𝑗 ∈ 𝐶, ∀𝑘 ∈ 𝐾. (17)

Equations (3) and (4) show the objective functions of the problem, with equation (3) minimizing the dis-
tance and equation (4) minimizing the risk. Constraint (5) guarantees a maximum 𝐾 routes out of the depot.
Equations (6), (7), and (8) guarantee that each customer is serviced exactly once by a vehicle. Constraint (9)
ensures that if a node is entered by a vehicle, it should leave from the same node. Equation (10) calculates the
vehicle load. Constraint (11) applies the capacity constraint. Equation (12) calculates Occupancy rate of vehicle
𝑘 in link 𝑖𝑗. Constraint (13) is related to the maximum service time of each vehicle. Equation (14) ensures that
the starting time from the depot, the waiting time, and the service time of the depot are zero. Constraint (15)
calculates the arrival time of each customer. Equation (16) applies the time window limit to customers.

4. The proposed solution approach

The proposed solution approach involves optimizing the problem by a multi-objective hybrid genetic algorithm
in which the risk is calculated using Z-number. Therefore, in this section, first the Z-number risk assessment is
described then the details of the proposed algorithm are explained. Figure 2 shows the conceptual model of the
proposed solution approach.

4.1. Z-number risk assessment

As mentioned earlier, in this paper, the risk is considered a fuzzy Z-number. To this end, a triple Z-valuation
is defined for risk assessment, in which risk assessment factors are expressed as Z-numbers. The Z-valuation of
expert 𝑒 for risk factor 𝑙 (𝑆 and 𝑃 ) is defined as equation (18).

𝑍𝑒
𝑙 =

(︁
𝐹𝑀𝑙, 𝐴

𝑒
𝑙 , 𝐵̃

𝑒
𝑙

)︁ 𝑖 = 1, . . . ,ℳ
𝑙 = 1, . . . , 𝐿
𝑒 = 1, . . . , 𝐸

(18)

where 𝐹𝑀𝑙 gives the degree of risk factors of risk 𝑙. Also, 𝐴𝑒
𝑙 = (𝑎𝑒

𝑙1, 𝑎
𝑒
𝑙2, , 𝑎

𝑒
𝑙3, 𝑎

𝑒
𝑙4) and 𝐵̃𝑒

𝑙 =
(𝑏𝑒

𝑙1, 𝑏
𝑒
𝑙2, 𝑏

𝑒
𝑙3) respectively denote risk prevention and reliability, where 𝑎𝑒

𝑙ℎ (ℎ = 1, 2, 3, 4) ∈ [0, 10] and
𝑏𝑒
𝑙ℎ (ℎ = 1, 2, 3) ∈ [0, 1]. The Z-number can then be interpreted to mean that the fuzzy probability 𝐹𝑀𝑙is

equal to 𝐴𝑒
𝑙 and the fuzzy probability

(︁
𝐹𝑀𝑙, 𝐴

𝑒
𝑙

)︁
is 𝐵̃𝑒

𝑙 .
In the next step, the values of risk factors (severity of effect, probability of occurrence) are determined

between 0 to 10 according to Table 2. The population affected by the accident was determined based on a
study [52]. According to this study, the population affected by the earthquake and its score is determined based
on the statistics of people affected by real earthquakes in the world, which is available on reference [24]. The
maximum population that has been under the earthquake so far is corresponding to 5 and other scores are
specified based on it. In this paper, a similar approach has been taken. According to studies on the statistics
of Hazmat transportation events, one of the most events with the greatest population affected by the event is
related to an event in Ohio that affected approximately 3700 people [26]. Trapezoidal fuzzy numbers are also
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Figure 2. Conceptual model of the proposed solution approach.

Table 2. Risk index parameters for risk estimation.

Linguistic variables Trapezoidal fuzzy numbers
Affected population Probability of event

very low (0–100) very low (0, 1, 2, 3)
Low (100–1000) low (1, 2, 3, 4)
Medium (1000–2000) medium (3, 4, 5, 6)
High (2000–3000) high (5, 6, 7, 8)
very high (>3000) very high (7, 8, 9, 10)

determined using trapezoidal fuzzy numbers of a study conducted by Zheng et al. [60]. Therefore, the scales of
a population affected by the event are expressed according to Table 2.

The rules of transformation are listed in Table 3.
To transform the Z-number risk, initially, the second component of the Z-number (reliability) is transformed

to a crisp number by equation (19).

𝛿 =
∫ 𝑥𝜇𝐵̃ (𝑥) d𝑥

∫ 𝜇𝐵̃ (𝑥) d𝑥
· (19)
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Table 3. Transformation rules of linguistic variables of reliabilities [1].

Linguistic terms Very low Low Medium High Very high

Membership function (0, 0, 0.3) (0.1, 0.3, 0.5) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.7, 1, 1)

In the above equation, 𝛿 and 𝜇𝐵̃ (𝑥) represent the reliability weight and degree of membership 𝑥 ∈ 𝑋 in the
set 𝐵̃, respectively. In the next step, the Z-number is transformed using equation (20).

𝑍𝛿 = {(𝑥, 𝜇𝐴𝛿 ) |𝜇𝐴𝛿 (𝑥) = 𝛿𝜇𝐴 (𝑥) , 𝑥 ∈ [0, 10]} (20)

where 𝜇𝐴𝛿 (𝑥) denotes the degree of membership 𝑥 ∈ 𝑋 in the set 𝐴𝛿. Refer to [23] for more details on this
method.

Given that the weight of each expert is different for the risk components, the fuzzy numbers 𝑉 corresponding
to the expert 𝑒 are combined as given in equation 21.

𝑉 =

(︃
𝐸∑︁

𝑒=1

𝑤𝑒𝑎
𝑒
1,

𝐸∑︁
𝑒=1

𝑤𝑒𝑎
𝑒
2,

𝐸∑︁
𝑒=1

𝑤𝑒𝑎
𝑒
3, ,

𝐸∑︁
𝑒=1

𝑤𝑒𝑎
𝑒
4

)︃
= (𝑎1, 𝑎2, 𝑎3, 𝑎4) . (21)

In the above equation, 𝑉 is the weight combination related to experts’ fuzzy numbers (𝑍𝛿) and 𝑤𝑒is the weight
of each of the experts. In the end, the risk of Z-number obtained for link 𝑖𝑗 is defuzzified using equation (22)
(for more details on this method, the reader can refer to [12]).

𝑍𝑅𝑃𝑁𝑖𝑗 =
M𝑖𝑗 −N𝑖𝑗

M𝑖𝑗 + N𝑖𝑗 + (100− 𝐶𝑂𝐺 (𝐴𝑖𝑗))
(22)

where M𝑖𝑗 = 𝐿𝑁𝑖𝑗 + 𝑅𝑁𝑖𝑗and N𝑖𝑗 = 𝐿𝑃𝑖𝑗 + 𝑅𝑃𝑖𝑗are established. Also,𝐿𝑁𝑖𝑗 , 𝑅𝑁𝑖𝑗 , 𝐿𝑃𝑖𝑗 , and 𝑅𝑃𝑖𝑗 represent
the left negative area, the right negative area, the left positive area, and the right positive area (as shown in
Fig. 3), respectively. 𝐶𝑂𝐺 (𝐴𝑖𝑗) is the center of gravity of the fuzzy number 𝐴𝑖𝑗 , which is calculated using
equation (23).

𝐶𝑂𝐺 (𝐴𝑖𝑗) =
∫𝑥2
𝑥1

𝑥𝑔1 (𝑥) d𝑥 + ∫𝑥3
𝑥2

𝑥𝑔2 (𝑥) d𝑥 + ∫𝑥4
𝑥3

𝑥𝑔3 (𝑥) d𝑥

∫𝑥2
𝑥1

𝑔1 (𝑥) d𝑥 + ∫𝑥3
𝑥2

𝑔2 (𝑥) d𝑥 + ∫𝑥4
𝑥3

𝑔3 (𝑥) d𝑥
· (23)

4.2. Multi-objective hybrid genetic algorithm

The vehicle routing problem belongs to NP-hard problems due to its high computational complexity and
many conditional constraints. Genetic algorithms has been successful in solving NP-hard problems [4,7,15]. The
genetic algorithm is based on the evolution theory, and the solutions improve through repeated modification and
natural selection [29]. This algorithms and related hybrids have many advantages over traditional optimization
algorithms, such as being capable of handling complex and parallel problems. Genetic algorithms can deal with
various optimization problems, including time-varying or fixed, linear or nonlinear, and continuous or non-
continuous objective functions, or those with stochastic noise. Since various offspring in a population act like
independent factors, the population (or each subset) can explore the search space in different directions. High
robustness, excellent convergence, and effective global search are other advantages of this algorithm. Nonetheless,
poor local search ability, low search efficiency in final iterations, and high dependence on parameters setting are
some of its demerits [6, 50].

In the proposed genetic algorithm, the initial population is formed randomly. In the next step, the parent
population is selected by tournament selection, then crossover and mutation are applied to the parent population
and the offspring population is formed. In the next step, the offspring population is improved by neighborhood



Z-TRAPEZOIDAL RISK ASSESSMENT FOR MULTI-OBJECTIVE HAZMAT ROUTING MODEL 4239

Figure 3. Areas in the positive and negative sides of the fuzzy number 𝐴𝑖𝑗 .

search algorithms. To maintain suitable solutions for each population, the elitism is performed in each iteration.
In other words, several desirable solutions replace the undesirable solutions of the offspring population. Finally,
this process continues until the best solution in each objective function converges (Refer to the Appendix to
view the flowchart of the proposed algorithm).

4.2.1. Crossover

In this paper, the best cost route crossover (BCRC) [37] is used for crossover operation. In this method, a
route is selected from one parent and the customers in that route are deleted in the other parent, and then the
deleted customers on each chromosome are placed in the lowest possible and least risky position. This results
in two parent chromosomes of the two offspring, which are likely to be less costly and risky. Figure 4 shows how
to select a random route from each parent and remove the customers of that route from the opposite parent.

4.2.2. Mutation

To mutate the population solutions, three reverse, routes swaps, swap algorithms are used as follows.
Reverse algorithm: In this algorithm, two points are randomly selected from a route and the point between

them is reversed [19].
Route swaps: Two points are selected randomly and their routes are swapped from two selected points [20].
Swap: In this algorithm, two points are randomly selected from one or more routes and then are swapped.

4.2.3. Hill-climbing

In the neighborhood search process, an algorithm is used to extract the solution space in the neighborhood
of the current solution. In this algorithm, a point from a route is selected randomly and removed from its route.
It is then placed in intra-route or inter-route so that a non-dominated solution is established. Figure 5 shows
the neighborhood search algorithm.
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Figure 4. Graphical representation of customers deletion in BCRC.

Table 4. Parameter setting of the proposed genetic algorithm.

Parameters Lower bound (−1) Upper bound (+1) Optimum value

Number of population 50 150 100
Maximum iteration 500 1000 600
Probability of crossover 0.1 0.9 0.7
Probability of mutation 0.1 0.9 0.4
Probability of hill-climbing 0.1 0.9 0.7
Number of elitism 1 4 4

5. Results and discussion

To evaluate the proposed algorithm, initially, the algorithm parameters are set and then its performance is
measured by a set of Solomon’s problems [46].

5.1. Parameter setting

Parameter setting is highly recommended when applying metaheuristics to any problem domain [3]. Appro-
priate design of the parameters and operators has a significant impact on the efficiency of the imperialistic
competitive algorithm [44]. Thus, to achieve an effective and robust algorithm, parameter setting in an appro-
priate manner is a necessary step in establishing a meta-heuristic algorithm. In this paper, the response surface
methodology (RSM) is employed as an effective approach to adjust the parameters of the proposed algorithm.
The RSM method is considered as a design of the experiments (DOE) method which imposes an upper boundary
and a lower boundary for each parameter. The upper and lower boundaries assumed for the parameters of the
proposed algorithm along with its optimal value are tabulated in Table 4.
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Figure 5. Single-point neighborhood search.

5.2. Numerical test

In this section, several Solomon problems in different sizes (25, 50, and 100) are optimized using the proposed
algorithm and compared with the best-known solutions. The results of this evaluation are provided in Table 5.
The best-known values for 25-and 50-customer problems are downloadable from the branch and value algorithm
at [47] The best-known values of [22] are also used for 100-customer problems.

Referring to Table 5, the effect uncertainty of Z-number on the distance and safety of Hazmat transportation
is investigated. If the problem is optimized only by the distance objective function, the distance is reduced but
the transportation risk is increased, which indicates increased damage to the population around the event. As
can be seen in the risk difference column for minimum distance response and the minimum risk response, when
the problem is optimized with distance and risk minimization objectives, the risk is greatly reduced, which
can help improve transportation safety and reduce the damage caused by vehicle explosions. For instance, in
the R105 problem, the proposed bi-objective solution approach reduces the risk of accident and explosion of a
vehicle by 35.35% by increasing the transportation distance up to 29.69%.

Also, the performance of the proposed algorithm is compared with NSGA-II [14], which is represented in
Table 6.

As can be seen in Table 6, the proposed algorithm outperforms the NSGA-II algorithm on average. So that
the proposed algorithm is 0.82% better than NSGA-II in the distance objective function and −34.99% better
than NSGA-II in the risk objective function.

Nonetheless, it is worth noting that since risk and distance objective functions are inversely correlated,
reducing the risk leads to increasing the distance and, as a result, increases the transportation system costs.
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Table 5. Results of the proposed genetic algorithm.

Problem |𝑁 | BKS (distance) Min distance Min risk Dev. B% Dev. D% Dev. R%
TD TR TD TR

C201 25 214.7 216.25 1.05 469.07 0.55 0.71 54.23 47.62
C207 25 214.5 215.34 1.11 446.16 0.53 0.39 54.73 52.25
R105 25 530.5 531.53 0.99 755.96 0.64 0.19 29.69 35.35
R210 25 404.6 410.60 1.01 730.28 0.54 0.18 43.77 46.53
RC104 25 306.6 307.14 1.32 782.00 0.79 0.18 60.72 40.15

R101 50 1044.0 1069.51 2.03 1494.34 1.83 2.39 28.70 9.85
R211 50 535.5 563.73 2.41 1075.03 1.79 5.00 47.56 25.73
RC102 50 822.5 840.27 2.60 1630.00 1.64 2.11 48.45 36.92
RC107 50 642.7 645.58 3.19 1725.78 1.71 0.45 62.59 46.39
RC204 50 444.2 444.97 2.28 1772.90 1.47 0.17 74.69 35.52

C102 100 828.94 828.94 6.20 2214.57 4.87 0.00 62.57 21.45
C202 100 591.56 591.56 6.76 2562.16 4.10 0.00 76.91 43.60
C207 100 588.29 591.62 6.10 1810.42 4.05 0.56 67.32 33.60
R108 100 960.26 1011.11 5.62 1683.22 4.56 5.03 39.93 18.86
R111 100 1096.72 1206.04 5.05 1489.70 4.73 9.07 19.04 6.34
R112 100 976.99 1085.92 5.70 1596.14 4.93 9.03 31.97 13.51
R204 100 789.72 808.63 4.29 1437.76 3.58 2.34 43.76 16.55
RC102 100 1470.26 1553.23 5.62 1786.56 4.94 5.34 13.06 12.10
RC203 100 1026.61 1054.18 4.33 1751.00 3.52 2.62 39.80 18.70
RC205 100 1300.25 1220.19 3.67 1797.08 3.46 −6.56 32.10 5.72

Notes. Best Known solution for distance objective; Dev. B: distance deviation of BKS and solutions with the best
distance; Dev. D: distance deviation of solutions with the best distance and solutions with the best risk; Dev. R: risk
deviation of solutions with the best distance and solutions with the best risk.

Yet, given that the damage caused by the accident and the explosion of the vehicle concerns humans and
the environment, sometimes the cost saved by using the solution with the minimum distance may damage
the Hazmat transportation system and lead to irreparable damage. Figure 6 indicates the inverse relationship
between risk and distance objective functions in the Pareto fronts of R105 and R210 problems.

5.3. Sensitivity analysis

In this part, a small-sized example is designed, and the performance of the Z-number approach in estimating
the risk is evaluated. The example is optimized by the proposed approach and the classic method (with certain
parameters and variables). Then, the solutions are compared. The example includes five customers and one
depot. The best risk value in the approach based on Z-number is 0.3435. Also, the risk associated with the
solution to the classic approach with the best risk is calculated using Z-number. This is because the accuracy
of the Z-number is more than that of the classic method, and the solution of the classic method contains an
error. The risk associated with the solution to the classic method is 0.4067. Therefore, the solution of the classic
method has an error of 18% compared with the Z-number approach. Figure 7 represents these solutions in detail.
The average risk for the links of the two solutions is 0.0535. If the links with a risk higher than this value are
considered the risky links, the solution of the Z-number approach includes two risky links, while that of the
classic solution contains four risky links.
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Table 6. Transformation rules of linguistic variables of reliabilities.

Problem |𝑁 | Proposed genetic algorithm NSGA-II Dev. D% Dev. R%
Min TD Min TR Min TD Min TR

C201 25 216.25 0.55 235.20 0.63 −8.76 −14.55
C207 25 215.34 0.53 231.57 0.68 −7.54 −28.30
R105 25 531.53 0.64 556.43 0.71 −4.68 −10.94
R210 25 410.60 0.54 415.31 0.54 −1.15 0.00
RC104 25 307.14 0.79 307.14 0.79 0.00 0.00

R101 50 1069.51 1.83 1091.44 4.92 −2.05 −168.85
R211 50 563.73 1.79 569.73 2.38 −1.06 −32.96
RC102 50 840.27 1.64 840.31 1.64 0.00 0.00
RC107 50 645.58 1.71 490.41 1.47 24.04 14.04
RC204 50 444.97 1.47 444.97 1.47 0.00 0.00

C102 100 828.94 4.87 828.94 8.19 −68.17
C202 100 591.56 4.10 687.40 5.45 −16.20 −32.93
C207 100 591.62 4.05 620.35 2.82 −4.86 30.37
R108 100 1011.11 4.56 1042.38 5.56 −3.09 −21.93
R111 100 1206.04 4.73 1229.82 10.60 −1.97 −124.10
R112 100 1085.92 4.93 1132.00 10.10 −4.24 −104.87
R204 100 808.63 3.58 875.36 9.25 −8.25 −158.38
RC102 100 1553.23 4.94 1714.25 9.96 −10.37 −101.62
RC203 100 1054.18 3.52 648.18 2.01 38.51 42.90
RC205 100 1220.19 3.46 1276.50 3.10 −4.61 10.40
Average −0.82 −34.99

Figure 6. Pareto solutions to R105 and R210 problems.
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Figure 7. Comparison of risk estimation by Z-number and classic approach.

6. Case study

With the economic growth and the ever-increasing need to provide equipment for daily consumption in Iran, a
large amount of chemicals and other Hazmat products are transported daily. Besides, since Iran is an exporting
country, many chemicals must be processed for export purposes. As mentioned earlier, planning the Hazmat
transportation is of great importance as it leads to irreparable damage to nature and the population around the
event. There are no official statistics on the amount of damage caused by accidents involving Hazmat carrier
vehicles in Iran. However, a brief review of the news and published events reveals that this problem is serious
[55]. Hence, this section examines a case study of the distribution of hazardous material among a number
of demand points (factories and chemical laboratories). The case study includes 24 points (23 factories and
chemical laboratories and 1 depot) in Tehran and Karaj (located in Iran). Figure 8 depicts the dispersion of
case points in the two cities and their communication routes.

Among the Pareto solutions obtained, two solutions with the minimum distance and risk are considered.
Figure 9 shows the routes to this solution. The solution with the minimum distance includes three vehicles that
distribute Hazmat with the minimum distance. This solution carries considerable risk because the vehicle passes
through crowded places with a large load. For instance, in Route 1, the vehicle with large Hazmat by passing
through links 8–1, 7–17, and 23–16, passes through crowded places three times, which increases the Hazmat
transportation risk. The total distance of this solution is 198.82 km and the total value of risk is 1.28.

Figure 10 shows a solution with minimum risk to illustrate how to reduce risk. In the given solution, the
vehicle passes through less crowded points as much as possible, and if it passes through crowded places it will
pass through with less Hazmat. For example, the vehicle on Route 2 passes through a densely populated area
through link 1–7 but does not carry much Hazmat. Therefore, Hazmat transportation risks are reduced. The
total risk of this solution is 0.74 and the total distance of this solution is 397.86 km.

7. Conclusion

Given the importance of Hazmat transportation and its significant damage to individuals and the environ-
ment, this paper presents an approach to the vehicle routing problem with time windows to optimize distribution
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Figure 8. Dispersion of points in the case study.

Figure 9. The solution with the best distance.
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Figure 10. The solution with the best risk.

and reduce damage caused by vehicle accidents. Due to the uncertainty in this problem, the transportation risk
was assumed fuzzy in which the probability of an accident and its severity of the effect are is considered in the
context of Z-information. The severity of the accident is the population impacted by the accident, the number
of which can vary in proportion to a load of vehicles.

To solve the proposed model, a bi-objective hybrid genetic algorithm that incorporated with a neighborhood
search algorithm was proposed to improve performance. The algorithm was evaluated using Salmon problems.
The results of the distance and risk objective functions show the relatively desirable performance of the solution
method. Additionally, from the distance objective function results concerning the risk objective function, it
can be observed that these two objectives are inversely correlated, and as the amount of risk is reduced, the
transportation system distances escalate. Eventually, the proposed problem was evaluated in a case study in
Iran, the results of which show a reduced risk of Hazmat transportation.
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Appendix A. Supplement to algorithm

Figure A.1. The flowchart of the proposed algorithm.
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