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A HYPER-HEURISTIC FOR DISTRIBUTED PARALLEL MACHINE
SCHEDULING WITH MACHINE-DEPENDENT PROCESSING AND

SEQUENCE-DEPENDENT SETUP TIMES

Javad Behnamian* and Hamed Asgari

Abstract. Today, because the market is scattered around the world, manufacturing activities are not
limited to a single location and have spread globally. As a result, the discussion of scheduling the factory
has changed from a classic single to a network scheduling as a need in the real world. In this regard,
this study considers the scheduling of multiple factories by taking into account the job transportation
time between factories. The main problem here is that each job would be assigned to which factory and
machine. In this research, unrelated parallel machines are considered in which the processing time of jobs
depends on the machine and setup time. To minimize the makespan, first, a mixed-integer linear model
was proposed in which two types of modeling have been combined. Then, a hyper-heuristic algorithm
(HHA) was designed to solve the problem in a reasonable time by choosing the best method among
four low-level heuristic methods that are precisely designed according to the properties of the problem.
Finally, the efficiency of the proposed algorithm has been compared with the imperialist competitive
algorithm (ICA) by conducting experiments. The results show that the proposed algorithm performs
very well compared to the ICA and, in more than 75% of the test problems, the proposed algorithm
was superior. Also, based on the analysis, in comparing the proposed algorithm with the ICA, it can
be concluded that there is a significant difference between the results, and in all cases, the HHA was
remarkably better. Considering the challenges and rapid changes of today’s market that traditional
centralized production planning does not have enough flexibility to respond to them, the results of this
research are expected to be useful and attractive for planners in this field.
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1. Introduction

In classic scheduling research, it is assumed that a job is centrally produced in a single factory [11]. But as
real problems become more complex, and with the current globalization process, the high volume of diversified
demand in the markets, and the pressure on innovation to maximize benefits, the centralized approach is not
effective enough in the real world. In order to maintain competitiveness in such markets, the factories, with
their growth by default, configure internally to enjoy economies of scale by increasing the level of capacity.
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The continued growth of factories has necessitated the decision to establish a production network consisting of
multi-factories. On the other hand, changes in manufacturing factories and the interest of smaller companies
in entering the global market, have created a new challenge in structuring efficient operations management in
geographically distributed production networks [3]. As a result, the small organizations are interested in merging
to overcome the following problems:

– Response time to large stochastic disturbances in the market is not satisfactory due to the lack of agility of
traditional production systems.

– Insufficient, inaccurate, and unreliable information due to the geographical size of the customer distribution
has led decision-makers to make decisions based on conjecture or very little information.

– The organizational structure of traditional systems is predetermined, which makes it inflexible to the emer-
gence of new markets and changes.

In such an environment, factories decide to merge and form a multi-factory production network to work
more closely together [8]. The production system of multi-factory means that several factories are located in
different geographical areas in order to achieve greater profit and to achieve globalization. This integration will
allow factories to get closer to their customers, hire professional employees, adapt more to local rules, produce
more efficient products, and respond more quickly to market changes. The main difference between single-
factory scheduling and multi-factory production scheduling is that in single-factory production, the products
are produced by a single site and then marketed. But in the production of multi-factory, the products can be
produced in multi-factory, which may be located in different regions. So sometimes, they may be able to reap
the benefits of such integration. In addition, not all factories are able to do all kinds of jobs. In other words,
some factories perform some jobs better.

In the meantime, it should be noted that there are fundamental differences between single-factory and multi-
factories production. In a single factory, the products are produced using one factory and then transferred
to the points of sale, which have the task of distributing or retailing these products, while in the case of
network production, this manufacturer may produce some products in multi-factories. In the mentioned network,
the decision is delegated to lower levels of the organization hierarchy and resolved locally in different system
institutions. The solutions are then coordinated together under a global objective function. The multi-factory
production takes place in multi-factories, which may be geographically distributed in different places to satisfy
the demand and adapt to the globalization trend.

In the multi-factory production scheduling, since most research have been devoted to factories with identical
parallel machines, in this study, it is assumed each factory has unrelated parallel machines. In this research, con-
sidering sequence-dependent setups, an attempt was made to bring the problem closer to real-world situations.
Note that the unrelated parallel machine scheduling is the general mode of the parallel machine scheduling
problem, in which the processing time of the job on the machines depends not only on the type of job but also
on the type of machine [11]. The problem of distributed scheduling is the same as classic scheduling when the
number of factories is one, and the problem of scheduling even with two machines with the makespan objective
function is an NP-hard problem [6]. In fact, the problem under our investigation is bi-assignment scheduling
in which the first assignment is made when appropriate factory is chosen for each job, and the second one is
made when the jobs are assigned to the factories. In this stage, appropriate machine from among the unrelated
machines according to the sequence-dependent setups is selected for each job assigned to each factory. In this
environment, adding new constraints, such as sequence-dependent setup times, makes the problem more com-
plicated [24]. Therefore, our considered problem, distributed scheduling with the unrelated parallel machines, is
also NP-hard, and a heuristic/meta-heuristic algorithm must be used to solve it in a reasonable time, especially
in large-size instances [2]. In this regard, the present study uses a hyper-heuristic algorithm to approach the
optimal solution. The proposed hyper-heuristic as a computing manager was designed to solve the problem in a
reasonable time by choosing the best method among four low-level heuristic methods that are defined according
to the properties of the problem, at each stage of the search process, and taking into account the properties of
the problem and the solution space.
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The rest of this study is organized as follows: The second section deals with the literature related to the present
study. In the third section, the problem is defined and then modeled. Section four describes the algorithm used
in the research, and Section five discusses the validity of the proposed algorithm in small, medium, and large-size
instances, and finally, Section six summarizes, concludes and elaborates our suggestions for future research.

2. Literature review

In recent years, distributed systems have become increasingly important, with their application to a wide
range of sciences (from multimedia to production control) and many efforts to use them in other areas [3]. In the
field of production, industrial managers in recent years have tended to use distributed systems due to changes in
the production environment. Production in an environment distributed in a multi-factory production network
is one of the most attractive topics in recent years [28].

In multi-factory scheduling, various problems have been investigated, among which the research of Williams
[30] can be mentioned, which is the first research conducted on the subject of distributed scheduling. In that
study, Williams outlined common scheduling for the production and distribution of complex networks. To
this end, he proposed a method based on dynamic programming and compared it with heuristic methods
in a centralized production environment to examine performance. In this study, the objective function was
to minimize production and distribution costs in each time period. One of the weaknesses of the research
is that the author has assumed that the demand rate is constant, which has reduced its applicability. To
minimize production costs considering the product demand rates during the planning time horizon, Giordani
et al. [13] proposed a decentralized multi-agent scheduling system with a number of agents in the system, with
a resource owner which assigns the robots to the tasks in each time period. Behdani et al. [4] have considered
the organization of multi-factory production in the chemical industry as a complex company of producers that
are distributed in different geographical locations who are responsible for the production and distribution of
specific products. Given some of the realities of the problem, researchers have shown how factor-based models
can reflect the dynamic behavior of a multifactorial network. To this end, they compared different mechanisms
in such models to study the behavior of the proposed model under equal conditions in both centralized and
distributed modes. In today’s international market, none of the small factories can operate independently well.
Therefore, a number of different factories are integrated to form a production network. In this case, factories
can work economically separated too. With the globalization process occurring, factories are moving towards
integration at different speeds. The development of cheap transportation and communications networks has
also accelerated this globalization process. Lei et al. [15] considered a distributed unrelated parallel machine
scheduling problem in a heterogeneous production network. For minimizing makespan, an imperialist competitive
algorithm (ICA) was presented.

Gharaei and Jolai [12] examined the complexity of supply chain scheduling in different cases and proposed
rapid heuristic methods for each case. The problem under consideration in this research is that the production
and distribution network includes multi-parallel factories in foreign countries and one domestic distribution
center. In this network, the job is first processed in factories and then transported to the distribution center
to be distributed among retailers in other countries. Depending on the diversity of productivity and costs in
different factories, the costs and processing times vary depending on which factory the job is processed. In this
paper, the authors consider four different objective functions for their problem, all of which include delivery
times. Finally, some heuristic methods are used to solve the presented problem.

Behnamian [6] provided a hybrid algorithm for searching for variable neighbors and tabu search based on
analysis for scheduling parallel factories distributed with virtual corporations. A virtual production network is a
distributed system in which smaller parts of a scheduling problem are solved by local decision-makers, who may
also have different objective functions. This network is a new type of corporation and the horizontal relationship
between independent factories. Factories in this network can be identical or non-identical. In fact, virtual
corporation means that multiple factories work together to produce an order. Behnamian et al. [7] considered a
multi-factory production schedule in which a group of independent-owned producers joined together to create
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a production network. Also known as a virtual corporation, each factory, as a separate member, usually focuses
on its own interests and strives to improve them, and is less concerned with the interests of other members.
The objective function minimizes the makespan in this problem. Despite the fact that the problem was single-
objective, the discussion of dominant and non-dominated solutions was first proposed in the space of single-
objective problems. Then, a hybrid algorithm based on particle swarm optimization and the hyper-heuristic
method was proposed.

Behnamian [5] presented a mathematical model and a new algorithm to solve distributed network scheduling.
In this model, parallel and non-homogeneous factories are located in different places. They then used the swarm
particle optimization algorithm to minimize makespan in the network. The idea of this algorithm is derived from
a society in which members behave in chaos to improve their position. This algorithm can prevent trapping in
local areas. Finally, they tested the performance of the particle optimization algorithm provided, the standard
particle optimization, and a genetic algorithm for the number of test problems. Recently, Behnamian and
Fatemi Ghomi [9] studied a multi-factory scheduling problem with heterogeneous factories and identical parallel
machines. For simultaneous minimization of the sum of the earliness and tardiness of jobs and total completion
time, after modeling the problem as a mixed-integer linear program, the elastic constraints method and heuristic
algorithm are proposed for this problem.

Lei and Liu [14] investigated the distributed unrelated parallel machine scheduling problems with preventive
maintenance and an artificial bee colony with division is proposed to minimize makespan. Abdollahzadeh et al.
[1] considered the integrated scheduling of production and distribution operations in a parallel-multi-factory
environment with identical parallel machines available at each factory in a make-to-order production system.
They proposed a mixed-integer nonlinear programming model to minimize the total costs of the supply chain,
including production, distribution, and late delivery costs. To solve large-size instances, a whale optimization
algorithm is developed in that research. Zhou and Yang [33] considered a dynamic flexible job shop scheduling
problem and proposed four multi-objective genetic programming-based hyper-heuristic methods for it. Their
proposed algorithm had two phases: job sequencing and machine assignment. In this study, the objective func-
tion includes mean weighted tardiness, maximum tardiness and mean flow time. For the distributed assembly
permutation flow-shop scheduling problem, Lin et al. [17] proposed a backtracking search hyper-heuristic. In
the proposed algorithm, ten heuristics are designed as low-level heuristics, and the backtracking search algo-
rithm is used as the high-level strategy. Yahyaoui et al. [31] combined iterated local search with a variable
neighborhood hyper-heuristic algorithm. They used the algorithm to minimize the makespan and total flowtime
algorithm in a permutation flowshop scheduling problem. Park et al. [22] proposed a genetic programming-based
hyper-heuristic that uses several dispatching rules to solve a dynamic job shop scheduling problem. Lin [16] stud-
ied the flexible job-shop scheduling problem with fuzzy processing and proposed a backtracking search-based
hyper-heuristic to solve it. In the proposed algorithm, six low-level heuristics, as well as a backtracking search
algorithm, were used.

To minimize adjustment and energy consumption, Mou et al. [21] proposed a model for the energy-efficient
distributed permutation flow-shop inverse scheduling problem with controllable processing times and energy
consumption factors. They also designed a hybrid collaborative algorithm with a cooperative search scheme.
Shao et al. [27] proposed a mixed-integer linear programming model for a distributed flowshop scheduling prob-
lem. Their considered production network includes the heterogeneous multi-factories with different processing
capabilities of machines and electricity prices in multi-factories. To solve large-size instances, they also pro-
posed four greedy local search methods with a right-shifting procedure that move jobs between heterogeneous
multi-factories. Mao et al. [20] studied the distributed permutation flowshop scheduling problem with preven-
tive maintenance. To minimize the total flow time, they proposed a mathematical model and a hash map-based
algorithm. They also modified the selection, crossover, and mutation operators in the proposed algorithm. To
minimize the total tardiness, Wang et al. [29] proposed a mathematical model for a distributed flowshop group
scheduling problem with sequence-dependent setup time. They also designed a two-stage iterated greedy algo-
rithm with a two-stage structure. Luo et al. [19] studied the distributed flexible job shop scheduling problem with
worker arrangement. To solve small-size instances, in this study a mixed-integer linear programming model was
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formulated. The authors also, based on the structure of NSGA-II, designed a memetic algorithm for large-size
instances in which they were taken advantage of a two-level encoding as well as four heuristic decoding methods.
Lu et al. [18] designed a Pareto-based multi-objective hybrid iterated greedy algorithm for a distributed hybrid
flowshop scheduling problem. To minimize the makespan and total energy consumption, they also, embedded a
knowledge-based multi-objective local search method and energy-saving technique in the proposed algorithm.
Zhao et al. [32] proposed a memetic discrete differential evolution algorithm for the distributed permutation
flowshop scheduling problem. To minimize the makespan, they applied an enhanced NEH (Nawaz–Enscore–
Ham) and Taillard’s acceleration methods. Schulz et al. [26] studied a multi-objective distributed permutation
flowshop scheduling problem. To equally minimize makespan and carbon emission caused by both production
and transportation, they proposed a mixed-integer programming model with the epsilon constraint method. To
solve large-size instances, in this study, a multi-objective iterated greedy algorithm was also proposed. Sang
and Tan [25] modeled the many-objective distributed flexible job shop problem as a mixed-integer program. To
optimize the economic indicators and green indicators, they combined the improved NSGA-III and local search
method. In the proposed high-dimensional many-objective memetic algorithm, the neighborhood structure, as
well as a dual-mode environment selection method, were also utilized. Wang et al. [29] studied an energy-efficient
distributed production scheduling problem with identical factories of welding flowshop. This problem was for-
mulated as a multi-objective mixed integer programming model based on three sub-problems with allocating
jobs among factories, scheduling the jobs in each factory and determining the number of machines upon each
job. They also, designed a whale swarm algorithm to optimize the total energy consumption and makespan.

According to Bagheri and Behnamian [3], as well as the reviewed papers in this study, it can be said that
although researchers approach many problems of distributed scheduling with different objective functions and
constraints that bring the problems closer to the real world, but the vacancy of this type of problem can be
seen in environments with the unrelated parallel machines. Therefore, the present study examines the problem
of distributed scheduling with unrelated parallel machines to fill part of the existing research gap. It should
be noted that the closest study for this research is a paper by Lei et al. [14], in which job transportation time
among distributed factories as the main feature of the distributed environment is ignored. In this regard, not
considering the time of transportation between the distributed factories will cause the problem to be out of the
distributed mode, and in fact, the problem will become an integrated scheduling problem with several unrelated
parallel machines in the single-site production environment. In order to eliminate such a major shortcoming, as
well as to make the considered problem more realistic, in addition to taking into account the job transportation
time between factories, sequence-dependent setup times are also considered in this paper. The hyper-heuristic
algorithm is also applied to solve the problem, which has received less attention in previous research.

3. Problem description and modeling

In this research, two types of conventional modeling (modeling based on allocation and sequencing) have
been combined. In the next step, to confirm the accuracy of the model, the problem was solved for small-size
instances by GAMS software, and the optimal solution was reached.

In this study, the following assumptions are considered:

– There is a number of parallel factories with unrelated parallel machines.
– There is not any precedence between jobs.
– Each job must be assigned exactly to one of the factories.
– Setup time depends on the sequence.
– All jobs and machines are available at the beginning of the schedule.

The following are the indices, parameters, and decision variables used in the present study:

Parameters and indices

𝑛 Number of jobs
𝑀 Total number of all machines in all factories
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𝐹 Number of factories
𝑖, 𝑗, 𝑘 Indices of jobs
𝑓, 𝑞 Indices of factories
ℎ Indices of machines
𝑚𝑓 Number of machines in factory 𝑓
𝑃 𝑓

ℎ𝑗 Processing time of job 𝑗 on machine ℎ in factory 𝑓
𝑆ℎ𝑖𝑗 Setup time of job 𝑗 after job 𝑖 on machine ℎ
𝑡𝑓𝑞 Transportation time for each job between factory 𝑓 and 𝑞
𝑤𝑖 A binary variable which is one if job 𝑖 processed in origin factory (that the jobs were originally ordered

to them); otherwise, 0
𝐿 A large positive number

Decision variables

𝑥𝑓
ℎ𝑖𝑗 A binary variable that takes the value of one if job 𝑗 is processed after job 𝑖 in factory 𝑓 is processed on

machine ℎ
𝑦𝑓

ℎ𝑖 A binary variable that takes the value of one if job 𝑖 in factory 𝑓 is processed on machine ℎ

𝐶𝑓
ℎ𝑖 Completion time of job 𝑖 on machine ℎ in factory 𝑓

𝐶max Time to complete the last job (makespan)

The proposed model is as follows.

𝑍 = Min 𝐶max (1)

s.t.
𝑀∑︁

ℎ=1

𝐹∑︁
𝑓=1

𝑦𝑓
ℎ𝑖 = 1 𝑖 = 1, 2, . . . , 𝑛 (2)

𝑀∑︁
ℎ=1

𝑛∑︁
𝑖=1
𝑖 ̸=𝑗

𝐹∑︁
𝑓=1

𝑥𝑓
ℎ𝑖𝑗 = 1 𝑗 = 1, 2, . . . , 𝑛 (3)

𝑀∑︁
ℎ=1

𝑛∑︁
𝑗=1
𝑗 ̸=𝑖

𝐹∑︁
𝑓=1

𝑥𝑓
ℎ𝑖𝑗 ≤ 1 𝑗 = 1, 2, . . . , 𝑛 (4)

𝑀∑︁
ℎ=1

𝐹∑︁
𝑓=1

(︁
𝑥𝑓

ℎ𝑖𝑗 + 𝑥𝑓
ℎ𝑗𝑖

)︁
≤ 1 𝑖 = 1, 2, . . . , 𝑛− 1, 𝑗 > 𝑖 (5)

𝑛∑︁
𝑖=1
𝑖 ̸=𝑗

𝑥𝑓
ℎ𝑖𝑗 +

𝑛∑︁
𝑘=1
𝑘 ̸=𝑗

𝑥𝑓
ℎ𝑗𝑘 = 2𝑦𝑓

ℎ𝑗 𝑗 = 1, 2, . . . , 𝑛 𝑓 = 1, 2, 3, . . . , 𝐹 ℎ = 1, 2, . . . ,𝑀 (6)

𝐶𝑓
ℎ𝑗 + 𝐿

(︁
1− 𝑥𝑓

ℎ𝑖𝑗

)︁
≥ 𝐶𝑓

ℎ𝑖 + 𝑆𝑓
ℎ𝑖𝑗

+ 𝑃 𝑓
ℎ𝑗 +

(︀
2𝑤𝑗 × 𝑡𝑓𝑞

)︀
𝑖 = 0, 1, . . . , 𝑛 𝑗 = 1, 2, . . . , 𝑛 ℎ = 1, 2, . . . ,𝑀 (7)

𝐶𝑓
ℎ𝑖 ≥ 0 ℎ = 1, 2, . . . ,𝑀 𝑖 = 1, 2, . . . , 𝑛 𝑓 = 1, 2, . . . , 𝐹 (8)

𝐶max ≥ 𝐶𝑓
ℎ𝑖 ℎ = 1, 2, . . . ,𝑀 𝑖 = 1, 2, . . . , 𝑛 𝑓 = 1, 2, . . . , 𝐹 (9)

𝑥𝑓
ℎ𝑖𝑗 , 𝑦

𝑓
ℎ𝑖 ∈ {0, 1} 𝑖 = 0, 1, .., 𝑛 ℎ = 1, 2, . . . ,𝑀 𝑓 = 1, 2, . . . , 𝐹 𝑗 ̸= 𝑖. (10)

Equation (1) is the objective function of this model, which indicates the completion time of all jobs, which
should be minimized. Constraint (2) specifies that each job must be assigned to a machine in a factory. Constraint
(3) states that each job in each factory is processed exactly on one machine. Constraint (4) states that each
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job on each machine in each factory can have a maximum of one job as the next job. Constraint (5) indicates
that one job cannot be another’s previous and next job at the same time. Constraint (6) states that if a job is
assigned to a machine in a factory, it will have exactly one previous job and one next job (considering dummy
jobs 0 and 𝑛 + 1). Constraint (7) calculates the amount of processing time of a job when assigned to a specific
machine in a particular factory, including the setup time depending on the sequence and time of transportation
(time of return from the original factory to another factory with the aim of achieving balance). Equation (8)
indicates that the duration of each job on a particular machine in a particular factory is positive. Constraint
(9) calculates the completion time of all jobs. Constraint (10) is related to model variables.

4. Hyper-heuristic algorithm

Due to the NP-hardness of the considered problem, the exact method cannot solve it in large size in a
reasonable time [23]. The hyper-heuristic algorithm (HHA) was first introduced by Cowling and Soubeiga [10]
as a higher-level approach of metaheuristic methods. They defined it as: “The HHA as a computing manager
should be designed to solve the problem in a reasonable time by choosing the best method among the low-level
heuristic methods defined for it, at each stage of the solution, and taking into account the properties of the
problem and the solution space”.

Hyper-heuristic algorithms are among those methods that seek appropriate solutions in a reasonable time
and are applicable to a wide range of problems. The main difference between HHAs and metaheuristic methods
is the generality of metaheuristic algorithms that can be modified and used depending on the type of problem,
the operators and their parameters. Whereas HHAs are problem-based approaches, it is less likely that a specific
HHA would be applicable to any other problem. In fact, HHAs are based on several heuristics called low-level
heuristics that are designed for specific problem situations. Low-level heuristics are an inseparable part of HHAs,
which are some kind of simple local search operator or heuristic. In other words, the core of the HHA has the
task of choosing the heuristic method to solve the problem. Given that each heuristic has its strengths and
weaknesses, it seems wise to employ one of them in each step of the solution space search, depending on the
circumstances of each heuristic to obtain a better solution.

There are generally two types of HHAs: constructive and local search. Constructive HHAs have the ability to
generate and improve initial solutions. Whereas in local search HHAs, a complete preliminary solution is needed
to improve, using appropriate choices of local search methods in different iterations. Local search methods are
usually based on some neighborhood or local search that can change the current state of the solutions. Similar
to metaheuristic algorithms, to avoid getting caught up in local optimizations, here, a technique is needed to
be added to the HHA to support its diversification.

4.1. Implementation details

The monte-Carlo-based hyper-heuristic algorithm sends an initial solution as the core of the computational
algorithm to low-level algorithms so that they can perform a local search by their definition of neighborhood
structure for a specific number of iterations, with the focus being on the solution from the core. Then each of
them sends a new solution from their search that may be better, worse, or even equal to the input objective
function, to the core of the algorithm. Once all solutions have been received, the core of the algorithm stores
the best heuristic algorithm and its corresponding solution among all the received ones. The best low-level
heuristic algorithm is the one that produces the most improvement in the current objective function or the least
deterioration of the solution when none of the algorithms can improve the current solution. In such cases, the
Monte Carlo criterion is used, this means that the solution which has the least deterioration is first examined,
and if not accepted as the next solution, the second one is selected from the list of solutions. This operation will
continue until the solution for the next step of the algorithm is created. In the worst case, when all solutions are
rejected, a random change such as a mutation operator in the previous step is used as the next step input of low-
level algorithms and this will continue until the algorithm stopping criterion (number of iterations) is satisfied.
According to the Monte Carlo criterion, the best solution is always accepted and if there is no improvement
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Figure 1. Flowchart of the proposed hyper-heuristic.

in the solution sent by the algorithm core to the low-level heuristics, the worse solution is accepted with a
particular probability. This probability depends on the number of repetitions and how much worse the solution
is compared to the previous one. Acceptance of the solution is as follows: if 𝑓(𝑠best) ≤ 𝑓(𝑠), then 𝑓(𝑠best) will
be accepted; otherwise, the worse solution will be accepted if 𝑒−(𝑓(𝑠best)−𝑓(𝑠)).iter is smaller than or equal to
the random number between zero and one. The flowchart of the proposed hyper-heuristic algorithm is shown in
Figure 1.

4.2. Solution representation

The proposed representation to solve the distributed scheduling problem is based on coding all jobs as a
matrix in a 3-by-𝑁 string where 𝑁 is the number of jobs. In this matrix, the first row shows the order of jobs.
The second row represents the factory in which a specific job is processed, and the third row illustrates the
relevant machine number in that factory.

For example, as shown in Figure 2, it is assumed to be the scheduling of five jobs in two factories with two
machines in the first factory and three machines in the second factory.
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Figure 2. Solution representation.

Figure 3. Local Search 1.

Figure 4. Local Search 2.

4.3. Local searches

The local search method examines all current neighbor states for optimal results. The following is an intro-
duction to the four neighborhood structures.

Local Search 1: Knowledge sharing. Here, in addition to the solution sent from the core (S1), a new string
(S2) is also generated randomly. Then, the cells between the strings in the first rows (order of jobs) are matched.
The cells between the two members are moved and the remaining cells are copied from the correspondence. For
example, with ten jobs, suppose three or nine colonial members are selected. As can be seen, the cells between
the no. 3 and 9, have been copied in the corresponding cells in (a). So far, in the output, jobs 8, 7, 2, 4, and 6
have been copied and 1, 3, 5, 9, and 10 have not been copied from the S1. They are also copied as they appear
in (b). Finally, values 3 and 10 are copied to the empty cells in the same order as in the local search output.
This local search is shown in Figure 3.

Local Search 2: Diversification. Since the amount of diversity may not be sufficient and more parts of the
space solution may need to be searched to increase the variety of solutions. In this local search, two cells are
randomly selected, and the jobs in those two cells are moved together. According to Figure 4, if the selected
cells are cells four and seven, a new solution is obtained according to the original solution.

Local Search 3: Load balancing among factories. The purpose of this search, as shown in Figure 5, is to move
a job from one factory to another in order to change the amount of workload in the factories. For this purpose,
a job is selected and its factory is changed randomly. Note that the machine is randomly selected in the new
factory.

Local Search 4: Load balancing among machines. Unlike the previous local search, here, an attempt was made
to change the load on the machines of a factory. For this purpose, according to the Figure 6, a job from a machine
in a specific factory should be selected randomly and assigned to another machine from the same factory.
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Figure 5. Local Search 3.

Figure 6. Local Search 4.

Table 1. Numerical results for small-size instances.

Factories Jobs Machine GAMS ICA HHA

2 2 (2, 2) 0 0.959484 0
3 3 (1, 2, 2) 0 0.336907 0.00767
2 3 (2, 2) 0 0.685759 0.174923
3 3 (1, 3, 3) 0 0.683432 0.008876
2 5 (3, 2) 0 0.235725 0.054173
4 5 (4, 1, 3, 4) 0 0.82381 0.026984
3 9 (3, 3, 3) 0 0.562402 0

5. Numerical results

The purpose of this section is to validate the proposed model, so the algorithm is evaluated on three scales.
In this regard, the problem is divided into three categories with small, medium, and large sizes. In this study,
the proposed hyper-heuristic and ICA were solved ten times for 25 test problems. The average of ten runs
is used as a measure of comparison. Furthermore, for small-scale problems, the results of the algorithms are
also compared with the results of the GAMS software. To evaluate the performance of the proposed algorithm,
Relative Percentage Deviation (RPD) (Eq. (11)) is used.

RPD =
Algorithmsolution −Minimumsolution

Minimumsolution
* 100. (11)

In order to evaluate the performance of the proposed hyper-heuristic algorithm, it is necessary to compare
it with another algorithm that has already been used to solve a similar problem. Due to the novelty of the
present research model and the lack of research on the problem, one of the most recent research in the field has
been selected, which is more similar to the present study and to investigate the performance of the proposed
algorithm, it was adapted to the conditions of our problem. For this purpose, the ICA that was developed by
Lei et al. [14] was selected.

The numerical results of solving the small-size instances by GAMS, the ICA and HHA are reported along in
Table 1.

Table 2 also demonstrates the results obtained from the ICA and HHA in large-size instances.
To verify the statistical validity of the results shown in Tables 1, 2 and confirm which is the best algorithm

between ICA and HHA, a Kruskal–Wallis test as a non-parametric method has been performed in which the
different algorithms as a factor and the response variable as an RPD value are considered. Note that the
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Table 2. Numerical results for medium and large-size instances.

Instances Factories Jobs Machine ICA HHA

Medium-size

2 25 (3, 3) 0.59612763 0
3 25 (3, 3, 3) 0.495676343 0
5 25 (3, 3, 3, 3, 3) 0 0.442760063
5 25 (2, 3, 2, 3, 2) 0.400764575 0
5 25 (5, 5, 5, 5, 5) 0 0.0739775519
2 50 (3, 3) 0.422704076 0
3 50 (3, 3) 0.3062315 0
5 50 (5, 5, 5, 5, 5) 0.67737229 0
5 50 (2, 2, 3, 3) 0.7023026 0

Large-size instances

2 100 (3, 3) 0.35550039 0
5 100 (2, 3, 2, 3, 2) 0.3373313 0
5 100 (3, 3, 3, 3, 3) 0.25428843 0
5 100 (5, 5, 5, 5, 5) 0 0.1217753
5 200 (5, 5, 5, 5, 5) 0.4363601 0
2 200 (5, 5) 0.40654415 0
3 200 (3, 3, 3) 0 0.002131
5 200 (3, 3, 3, 3, 3) 0.44305574 0
5 200 (2, 3, 3, 2, 3) 0 0.0806031

Table 3. Kruskal–Wallis ANOVA table for methods For ICA and HHA with the RPD index.

(a) Small-size instances
Source SS df MS Chi-sq Prob Chi-sq

Columns 171.5 1 171. 9.82 0.0017
Error 55.5 12 4.625
Total 227 13

(b) Medium-size instances
Columns 168.056 1 168.056 6.73 0.0095
Error 256.444 16 16.028
Total 424.5 17

(c) Large-size instances
Columns 112.5 1 112.5 4.51 0.0338
Error 312 16 19.5
Total 424.5 17

parametric equivalent of the Kruskal–Wallis test is the one-way analysis of variance (ANOVA). The obtained
results are shown in Table 3 and Figure 7.

Based on the analysis, in comparing the proposed algorithm with the ICA in small, medium and large-size
instances, it can be concluded that there is a significant difference between the results and in all case, the HHA
was remarkably better. Also, Figure 7 shows that the dispersion of the results obtained in the ICA is much
higher than the proposed algorithm, and the HHA is more stable in finding solutions with a lower mean in all
cases.

5.1. Analysis of results based on the number of factories

In this section, problems are categorized according to the number of factories in different groups. Then, the
average RPD is considered for each category.
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Figure 7. Kruskal–Wallis chart for methods For ICA and HHA with the RPD index.
(a) Small-size instances. (b) Medium-size instances. (c) Large-size instances.

Figure 8. The interaction of the number of factories on algorithms. (a) Small-size instances.
(b) Medium-size instances. (c) Large-size instances.

Figure 9. The interaction of the number of jobs on algorithms. (a) Small-size instances.
(b) Medium-size instances. (c) Large-size instances.

As shown in Figure 8, in small-size instances, as the number of factories increases, the performance of the
proposed hyper-heuristic algorithm is better than the ICA and provides better RPDs. In medium-size instances,
the performance of both algorithms is almost the same as in small-size instances, and again the hyper-heuristic
algorithm works better. In large-size instances, there is no longer a steady decline in the RPD with an increase
in the number of factories, but the efficiency of the hyper-heuristic algorithm is still better than the ICA.

5.2. Analysis of results based on the number of jobs

In this subsection, the problems were categorized according to the number of jobs in each size, and the RPD
of each category was considered as an indicator for comparison.

As can be seen in Figure 9, the RPD decreases with the increase in the number of jobs in all three sizes of
the hyper-heuristic, and the efficiency of the proposed algorithm is still better than the ICA. It should be noted
that as the number of jobs increases, the efficiency of the ICA weakens and becomes somewhat entangled in
local optimization, and the algorithm is unable to achieve a relatively good solution.
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6. Conclusion and future research

In the present study, the problem of scheduling unrelated parallel machines was examined for the first time in
a multi-factory environment. Based on a base model, an attempt was made to model the problem, but since the
base model was not suitable for the problem under consideration, for the first time, a combined model of two
types of conventional modeling (modeling based on sequence and allocation) was presented. The model presented
for the problem in small sizes was solved by the GAMS software and the optimal solution was reached. Due to
the extrem complexity of the problem, solving the proposed model was not able to find the optimal solution
for the medium and large-size instances. Therefore, a hyper-heuristic algorithm (HHA) was designed to solve
the real-size instances in a reasonable time. In the proposed algorithm four low-level heuristics were designed
that improved the exploitation and exploration of the search strategy. To evaluate the efficiency of the HHA,
its results were compared with the results of an imperialist competitive algorithm (ICA). The obtained results
showed that in all instances, the HHA performed better than the ICA. In addition to this, the analysis showed
the significance of the difference between the algorithms, so that in all cases, i.e., small, medium, and large-size
instances, it was the HHA that obtained a better average with less variance, which showed the reliability of the
results. The efficiency of the ICA weakens when the size of the problem increases, and it traps in local optima
and is unable to improve the initial solutions, whereas this does not apply to the hyper-heuristic algorithm.

Considering the ever-increasing competition in today’s changing global market and the fact that the structure
of organizations has changed from centralized to distributed in many decision-making areas, the results of this
research can lead to the improvement of the organization’s competitiveness along with a better understanding of
market needs (by getting closer to customers through improvement in geographic distribution and information
collection) and the possibility of more timely and stable supply (with the possibility of production in alternative
factories in case of failure in one of the members of the production network). It is obvious that, like any
other research, there are many limitations, such as considering classical functions, solving a single-objective
problem, and not paying attention to the real-world constraints of the scheduling problem in the current research,
which their investigation can be interesting for the continuation of this research. Therefore, several research
areas can be considered as suggestions for future research. As striking future research, the problem can be
practically examined by implementing the suggested approach in real cases. To this end, utilizing some data-
driven techniques will not be far from the mind. Adding more constraints, including constraints on access to
machines, machines breakdown, and etc., are also interesting issues for further extensions. The use of the model
with the assumption of uncertainty can be considered for future studies. Developing other solving algorithms,
e.g., the combination of meta-heuristic algorithms and exact methods, is one of the open fields for upcoming
research. Besides, the novel objective functions, such as social responsibilities and environmental issues can also
be investigated.
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insightful comments and suggestions.
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