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A MAKESPAN MINIMIZATION PROBLEM FOR VERSATILE DEVELOPERS IN
THE GAME INDUSTRY

CHUNG-HO Su! AND JEN-YA WANG?*

Abstract. Today, the development of a modern video game draws upon multiple areas of expertise.
Moreover, its development cost could be as high as tens of millions of dollars. Consequently, we should
carefully schedule its jobs so as not to increase the total cost. However, project leaders traditionally treat
developers alike or even schedule all the jobs manually. In this study, we consider a versatile-developer
scheduling problem. The objective is to minimize the makespan of a game project. We propose a
branch-and-bound algorithm (B&B) to generate the optimal schedules for small problem instances.
On the other hand, an imperialist competitive algorithm (ICA) is proposed to obtain approximate
schedules for large problem instances. Lastly, computational experiments are conducted to show the
performances of both algorithms. When the problem size is small (e.g., n < 12), B&B can generate the
optimal schedules within 5s. For some large problem instances (e.g., n = 600), near-optimal schedules
can be obtained by ICA within 10 min. The final results imply that both algorithms converge quickly
and are of high solution quality.
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1. INTRODUCTION

Multi-machine scheduling is an important research topic in the field of job scheduling. First, from a customer’s
viewpoint, his/her satisfaction can be improved if these machines are fully utilized. For the same price, the cus-
tomer usually would prefer an early shipping date. Second, from an enterprise’s viewpoint, parallel environments
are common in the real world. Multi-machine scheduling is helpful to reduce business costs, such as tardiness
penalties. Third, from a researcher’s viewpoint, such optimization problems are of great research interest. Most
of them are NP-hard, even for the simplest case of P2||Cpax [49]. Multi-machine scheduling is a generalization
of single-machine scheduling, and it is also a special case of flexible flow shops. Hence, any further progress in
multi-machine scheduling will benefit the above basic research.

The scheduling of heterogeneous machines is more complicated than that of identical machines. When schedul-
ing jobs on multiple identical machines, we do not need to consider the permutations of the machines. Any one
of them can be the leading machine, since they are identical. Even so, minimizing the makespan of two identi-
cal machines, i.e., P2||Cpax, is still NP-hard. In a heterogeneous environment, however, the situation is more
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complicated. Consider two machines with different capabilities, e.g., 10 and 1 job/h. For a two-unit-job project,
it is undesirable to have each machine process one unit job. We had better allocate both unit jobs to machine
1, and the makespan will be only 0.2h. That is, we need to consider all the permutations of jobs on different
machines. For example, Alidaee et al. [2] aimed to minimize the total tardiness on different machines. These
machines were numbered and organized, respectively. Kayvanfar et al. [23] also minimized the makespan over
unrelated machines. In contrast to a common definition of processing time p;, they defined a specific symbol
pj; for job j assigned to machine i. Both imply that the scheduling is more complicated on unrelated machines
than that on homogeneous ones.

Since most heterogeneous machine scheduling problems are NP-hard, metaheuristic algorithms are employed
to obtain near-optimal solutions. For example, Khalilpourazari et al. [26] proposed a grey wolf optimizer which
can quickly converge to a local minimum based on gradient descending. To improve the feasibility, Doulabi et al.
[12] used only a few parameters to accelerate their convergence speed. On the other hand, Khalilpourazari et al.
[25] proposed an interesting stochastic fractal search to improve their solution quality; however, their approach
required the setting of a dozen parameters. Moreover, a learning-based algorithm was proposed in [24] to predict
near-optimal solutions efficiently, i.e., higher execution speed. However, none of the above approaches can
ensure solution quality and achieve optimality. For the evaluation of the solution quality of such metaheuristic
algorithms, some exact algorithms are needed to disclose the gaps between their approximate solutions and the
optimal ones. For more recent metaheuristic algorithms and their solution quality, readers can refer to [11,43,58].

Compared with multi-machine scheduling, multi-developer scheduling is more interesting but also more com-
plicated. In a heterogeneous-machine environment, e.g., [63,64], a capable machine always processes jobs effi-
ciently in terms of processing speed. However, in the game industry, there are many types of jobs, such as
storyboarding, storytelling, prototyping, figure modeling, scene design, sound design, visual effects, rendering,
physics, mechanics, programming, and testing [58]. In general, developers with only one specialty cannot easily
survive in this industry; they need to equip themselves with several. For example, after finishing the figure mod-
eling, a developer might be asked to perform some testing. Developers are not omnipotent or omniscient, either.
Some may excel in figure modeling but be mediocre in programming. Clearly, a versatile developer succeeds in
only some specialties. It depends on what types of jobs we assign to him/her. In light of the above observations,
scheduling these versatile developers is more complicated than scheduling non-uniform machines. Consequently,
new multi-developer scheduling algorithms are called for, rather instead of manual project management.

Three kinds of resources (i.e., finance, manpower, and time) are needed during game development and they
should be considered as a whole. First, the cost of developing a large online game is considerably high. For
example, the cost of Grand Theft Auto V was at least $10000 000 [3,14,15,58]. Second, the team size of such a
large game may range from 3 to 100 different developers [40,58]. Clearly, we could hardly schedule them by our
hands alone. Third, the time management of a large game is also a top priority. In general, a developer’ annual
salary is at least $66 000 [58]. For some critical jobs, poor time management might lead to heavy penalties. In
light of these observations, these resources should be well organized and scheduled in advance. That is, a small
makespan could be regarded as an indicator of good resource management.

Today, big data can be used to predict or at least estimate the performance of a developer. For example, Lin
et al. [36] aimed to minimize the makespan for ordinary manufacturing industries. They employed big data and
machine learning to estimate the processing times of jobs. In [34], big data and machine learning were utilized
to predict human behaviors in a smart home environment. With these big data, each operation of a single user
could be recorded and entered into a database. Therefore, estimating each individual’s processing times for
different types of jobs will no longer be out of reach. In [28], big data was used to establish a knowledgebase.
Referring to failure probabilities, operators could perform various technological processes at the operational
level. Moreover, each machine’s remaining life could become predictable for a specific operator after a run-in
period. The above observations suggest that big data can help us to estimate an operator’s processing time if
we assign him/her a particular type of job.

Makespan is an important issue in both the manufacturing industry and the game industry. In operations
research, the makespan is defined as the total length of a project from beginning to end. In general, a project
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leader aims to minimize the makespan to reduce the time cost, resource consumption, and human resources as
well as to maximize the profit and customer satisfaction. Such makespan minimization problems are common
in many industries, such as the semiconductor industry [60], aviation industry [8], building industry [20], and
design industry [29]. In these industries, makespan minimization effectively reduces their costs and increases
customer satisfaction. On the other hand, in the game industry, a medium project usually costs a game company
at least one million dollars. Furthermore, the cost of a large game like Grand Theft Auto V can be as high as
several hundred million dollars [58]. In fact, many game companies run considerable risk and face great financial
pressure. For example, Supercell needs to pay Gree 92 million dollars in damages after a mobile-game patent
verdict [7]. Intuitively, all of these project leaders need to organize their jobs within a controllable time span.
All the above examples show that uncertain or manual project management cannot be used for such large-scale
projects. Efficient makespan minimization algorithms for game development are therefore called for.

To our best knowledge, few studies have focused on job scheduling in the game industry, especially for versatile
developers. Since some jobs, such as figure modeling, are intangible and inconvenient to quantify in this industry,
some project leaders still schedule their jobs manually. Such manual and uncertain scheduling may adversely
impact subsequent jobs, such as testing and release. Nowadays, with big data, we can estimate and quantify the
processing times of such intangible jobs easily. After setting the scheduling model with proper values, e.g., each
job’s processing time or a developer’s proficiency, makespan minimization in the game industry will become
more efficient and effective than it was in the past.

In this study, we aim to minimize the makespan of a project in the game industry. As discussed earlier, we
cannot equate a versatile developer with a heterogeneous machine, unless all the jobs in the game industry
degenerate into only a single type. This restriction implies that the problem is more complicated and some
new algorithms are needed. First, we propose an exact algorithm, i.e., a branch-and-bound algorithm (B&B),
to generate the optimal schedules as a benchmark for evaluating other algorithms’ solution qualities. Second,
an approximate algorithms, i.e., an imperialist competitive algorithm (ICA), is also developed for providing
approximate schedules. The reasons are that the problem size, i.e., number of jobs, is usually larger than 100
in the real world and no exact algorithm can provide real-time solutions to this NP-hard problem.

The rest of this paper is organized as follows. Section 2 introduces some related studies. In Section 3, a
makespan minimization problem in the game industry is presented. In Section 4, we develop a branch-and-
bound algorithm to generate the optimal schedules when the problem size is small. In Section 5, an imperialist
competitive algorithm is proposed to deal with larger problem instances. Some computational experiments are
conducted to evaluate the two algorithms in Section 6. Finally, conclusions are presented in Section 7.

2. RELATED WORK

In this section, some exact and approximate algorithms are introduced and discussed. Since they still have
some shortcomings, these existing algorithms cannot be directly applied to the presented problem.

2.1. Branch-and-bound algorithms

Branch-and-bound algorithms are a popular solution technique for obtaining exact solutions in the field of
job scheduling. Table 1 divides these branch-and-bound algorithms into two types: unifunctional machines and
multifunctional ones. For example, in this study, a versatile developer excels in programming but is mediocre in
scene modeling; i.e., the developer is a kind of multifunctional machine. For unifunctional machines, a capable
one always processes jobs at a steady speed; however, a developer’s processing speeds may fluctuate between 1
and 10 jobs/day, depending on the job types. That is, one should not be simply rated as a versatile developer due
to his/her high processing speed for a single type of jobs only. Consequently, these branch-and-bound algorithms
cannot be directly applied to the presented problem.

Developing an exact algorithm for this problem is of great importance. Clearly, branch-and-bound algorithms
are of little practicality for the real-world problem instances. For example, branch-and-bound algorithms schedule
identical machines well only for small instances, e.g., n < 15 in [63]. However, the optimal solutions can be used
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TABLE 1. Some existing branch-and-bound algorithms for job scheduling.

Type Unifunctional machine(s) Multifunctional
machine(s) /Versatile
developer(s)

Objective Single Identical Heterogeneous Unrelated Versatile

Tardiness [27,66,70] [30,42,61] [64] [5,23,41]

Completion time  [22,44,69] [17,33,45] [48]

Makespan [62,68] [46] [54] [18] [This study]

TABLE 2. Some existing metaheuristic algorithms for job scheduling.

Type Unifunctional machine(s) Multifunctional
machine(s)/developer(s)

Objective Single Identical Heterogeneous Unrelated  Versatile

Tardiness [13,39,71] [38,52,53] [16] (35,41, 57

Completion time [51,59] [10] [50,72]

Makespan [1,47] [55] [56] [4,21,37] [This study]

as benchmarks for evaluating other metaheuristic algorithms. Without these exact algorithms, comparing two
metaheuristic algorithms (e.g., GA and ACO) seems meaningless. Maybe both of them easily become trapped
in some local minimums. Therefore, thousands of studies on branch and bound algorithms are proposed each
year to obtain the optimal solutions.

2.2. Metaheuristic algorithms

Metaheuristic algorithms are helpful for generating near-optimal solutions when problem sizes are large.
Table 2 lists some metaheuristic algorithms for scheduling machines in the field of job scheduling. Again, those
approximate algorithms designed for unifunctional machine(s) are not suitable for the presented problem because
the processing speed of each machine is always fixed, i.e., inflexible, in our problem. On the other hand, although
some approximate algorithms have been proposed for unrelated machines, they are too time-consuming because
there are m x n relationships (e.g., p;;) among m different machines and n various jobs, i.e., a very large solution
space. In the real world, in fact, there are only several job types; i.e., each single job rarely forms a job type.
To our best knowledge, no past research has studied such job scheduling problems in the game industry. Some
efficient approximate algorithms are required.

3. PROBLEM DEFINITION

The scheduling problem is defined as follows. There are m developers about to undertake a game project
consisting of n jobs. Each job j has a default processing time p; € Z™" and a job type e; € {1,2,3} and needs
to be assigned to one developer only. Each developer processes one job at a time. Let 7. € [0,1) denote the
proficiency of developer = processing a job of type e. Namely, if job j is assigned to developer = and e; = a, the
actual processing time is p;(1 — r4¢;) = pj(1 — rz4). For a schedule 7, the completion time of jobs j is denoted
by Cj(m). Under the above assumptions, the problem is to minimize the makespan of the game project. That
is, the objective function is defined as

Minimize f(7) = max}.;{max{C;(m)| job j is assigned to developer x}}.
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job type 1 job type 2 job type 3
(programming) (graphic design) (testing)
developer 1 (Amy) 7, =0.5 r, =04 n, =05
developer 2 (Bob) 1, =0.2 r, =05 r; =0.1
(@)
developer 1 (Amy) job 1 (programming) | job 4 (testing) | job 5 (testing) |
processing time 2 2
completion time 3 5 7
developer 2 (Bob)| job 2 (graphic design) | job 3 (graphic design) |
processing time 2 4
completion time 2 6
(b)

FIGURE 1. A problem instance. (a) The proficiency ratios of two developers. (b) A schedule =
and its objective cost.

TABLE 3. The notations and meanings.

Symbol Meaning

m The number of developers

n The number of jobs

Dj The processing time of job j, where suffix j means job Id

ej=a The type of job j, where suffix j € {1,2,...,n} means a job Id and a € {1, 2,3} means a job type

Tze The proficiency of developer z processing a job of type e, suffix z € {1,2,...,m} means a developer
and suffix e € {1,2,3} means a job type

T A schedule or a permutation of all the n jobs (i.e., a decision variable)

7= (a,3) A partially determined schedule, where o means a determined partial schedule and 3 means a the
set of the remaining undetermined job Ids
Cj() The completion time of job j for a given schedule 7

A problem instance is shown in Figure 1. Consider that there are two developers (m = 2) and five jobs (n = 5)
with e; = 1,2,2,3,3, p; = 6,4,8,4,4, for j = 1,2,3,4,5. Clearly, developer Amy is proficient at programming
and testing, and developer Bob is good at graphic design. Consequently, we assign jobs 1, 4, and 5 to Amy and
jobs 2 and 3 to Bob. That is, we have a schedule 7 = (1,4, 5,0, 2, 3), where the zero represents a separator that
divides jobs between these developers. For example, the actual processing time of job 1 is 3(= 6 x (1 — 0.5)),
since job 1 is assigned to developer 1, e; = 1, and r1; = 0.5. For this problem instance, each job is assigned to
its best-fit developer. Therefore, the makespan is 7, i.e., the completion time of the last job.

For convenience, all the related symbols used in the problem are listed in Table 3. Note that m, n, p;, e;,
and r,., are all given constants, and 7 is the decision variable of this presented problem.

The following lemma shows that each problem instance has a bound for its objective cost. No matter how we
schedule these jobs, the optimal cost is never lower than this bound. Later, this property can help us to develop
an efficient branch-and-bound algorithm.
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Lemma 1. For each job j, let ri*® = max’ {rzc, }. The makespan of the presented problem is at least
21 pi(1 =) /m.

Proof. This problem can be proved by contradiction. Suppose that there exists an optimal schedule 7* and it gen-
erates a makespan f(7*) < 327 p;(1— maX)/m That is, for each developer z, we have max]"  {C;(m)|jQz} <
> e pj(L—=rP¥) /m for all z = 1,2,...,m. On the other hand, we have

mx f(m*) =m x m"éx{c-(w)\j@x}

Z pi (1= 7ae;) (Not all developers take the makespan f(7*))
_]@z

8
Il
—

3
3
S

(]

Z Dj (1 — r;»nax) (Let each job be processed by its best-fit developer)
jQx

8
Il
—

I
M=

pj(l - r;-“ax).
1

<.
I

Then we obtain f(r*) > Z?lej(l — ) /m. It contradicts the initial supposition. The proof is
complete. O

The presented problem is NP-hard. Even for a simple case named X, i.e., r;; = 0 for all ¢ and j, the presented
problem is still NP-hard. Before proving this property, a determined NP-hard problem is introduced for later
problem reduction. Consider a well-known NP-hard problem, i.e., sub-set sum [9], as follows. Given a set of n
positive integers, i.e., R = {ry,r2,...,7,}, and a target ¢, the problem named Y is to check if there exists a
subset whose elements sum up to ¢t. The following lemma will prove the NP-hardness by reducing problem Y to
problem X.

Lemma 2. Problem X is NP-hard.

Proof. First, given an instance of problem X, we build a corresponding instance of problem Y. Then, let
P= 2?21 p;. Next, we construct a corresponding instance of Y by letting 71,72, ..., r, be n m-digit (P+1)-ary
numbers and 7;; denoting the i-th significant digit of number r;. Finally, let

[ pj, ifjob jis assigned to developer i,
Tgi = 0, otherwise,

fort=1,2,....mand j=1,2,...,n

Now we show that problem Y has a solution if and only if problem X has a solution. Let ¢ be an m-
digit (P+1)-ary target with the largest digit ¢; for problem Y. Then, given a solution of Y, i.e., a subset
R’, we need to show that there exists a schedule 7’ such that f(n’) = t; for problem X. According to t, let
Zjob j is assigned to developer i (pj) =t; for i =1,2,...,m, where t; is the i-th significant digit of ¢. Therefore, the
solution of problem X, i.e., f(7') = t, is found.

Conversely, assume that =" is the solution of problem X. According to =, let t; =
D iob j is assigned to developer ¢ (P7) for i =1,2,...,m, where ¢; is the i-th significant digit of the m- dlglt (P+1)-ary
target ¢. Note that there exists ¢, = f(7”) for some k. Then, for problem Y, there exists a subset R”, i.e., R
itself, in which the summation of its elements is ¢. Note that problem Y is NP-hard. Hence, problem X is also
NP-hard. The proof is complete. O

Clearly, the presented problem is different from those in past research. Consequently, some new scheduling
algorithms are called for. The following observations can help us to develop more efficient scheduling algorithms.
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Observation 1. Intrinsically, this presented problem is a partition problem. By dividing these jobs, the opti-
mality, 4.e., minimum makespan, can be achieved by partition instead of permutation.

Observation 2. Load balance is emphasized in traditional multi-machine scheduling. However, for the pre-
sented problem, there might be an evenness anomaly. For example, some developers capable of handling jobs of
type 1, they might be idle in an optimal schedule. That is, the numbers of jobs assigned to each developer are
not even. As it happens, in this problem instance, no type-1 jobs need to be processed.

Observation 3. For tardiness minimization problems, the minimum costs can be zero. However, for the pre-
sented problem, the minimum makespan will not be shorter than Z?Zl pi(1— r;-“ax) /m.

Observation 4. For completion time minimization problems, the goal is to minimize the average completion
time of all jobs. However, for the presented problem, we aim to reduce the completion time of the last job only.
That is, the optimal schedules of the former problems are not necessarily equal to that of the latter problem.

Observation 5. For traditional heterogeneous-machine scheduling problems, given the same job, the most
efficient machine always outperforms other machines in terms of throughput. These efficient machines dominate
the game. However, in the presented problem, there is no pre-decided winner. The success depends on the
complementarity of all the developers.

4. BRANCH-AND-BOUND ALGORITHM

In this section, we propose a branch-and-bound algorithm (named B&B) for generating the optimal schedules.
First, some dominance rules are developed. Then, a lower bound is proposed for accelerating B&B’s speed. Lastly,
B&B traverses a search tree in the depth-first-search (DFS) order. This exact algorithm can help us to measure
solution quality; i.e., it can serve as a benchmark for evaluating other approximate algorithms.

4.1. Dominance rules

For convenience, we introduce some simple notations to develop the following rules. Suppose that we have
an incomplete schedule © = («, ), where « is a determined partial sequence and £ is not. Since B&B proceeds
in the DFS order, some root-to-leaf schedules have been visited halfway. Therefore, we can keep track of the
currently minimal cost, i.e., C*, at any time. Moreover, we assume that the ID of each job j is number j and
the last job of « is assigned to some developer z.

In Rule 1, each of the two developers is assigned a job he/she dislikes. If we interchange the two jobs and the
original objective cost can be reduced, this rule holds. Since these proofs of these dominance rules are similar,
due to the limited length, we provide only the first one.

Rule 1. Let jobs j and i be the last two jobs in a with e; = b and e; = a, job j be assigned to developer y, and
job @ be assigned to developer . If p; (1 —ryp) > pi(1 —7yq) and p;(1 —rgq) > pj(1 —74p), then 7 is dominated.

Proof. Let us interchange the two jobs and observe their outcomes. The original processing times of the two
jobs are p;(1 —ryp) and p;(1 — 744), respectively. After interchanging, the resultant processing times of the two
jobs are p;(1 —ry,) and p;(1 — ry), respectively. Clearly, both developers’ processing times decrease. That is,
the interchange will not lead to any makespan gain. The proof is complete. O

Rule 2 shows that a schedule of a developer cannot end too late, i.e., he/she will be overloaded. In contrast,
Rule 3 shows that we cannot let a capable developer be idle too early.

Rule 2. Let i be the last job of a. If C;(«) > C*, then 7 is dominated.

Rule 3. Let ¢ be the last job of o and assigned to developer z. If there exists a job &k of some type a in 8 such
that CVjob i is assigned to developer w(a> + pkeﬁ(l - rwa) < C*a then 7 is dominated.
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Without loss of generality, we assume that all the jobs assigned to a single developer are sorted in ascending
order. This assumption does no harm to the optimality. Rule 4 shows that the ID’s of two adjacent jobs must be
increasing. Similarly, if developer z is the last available developer, his/her leading job ID must be the minimal
one in the remaining jobs.

Rule 4. Let j and ¢ be the last two jobs in « assigned to a developer. If j > i, then 7 is dominated.

Rule 5. Let developer z be the last developer and his/her leading job is job i. If there exists a job k < i in 3,
then 7 is dominated.

Let developer z be the last developer. Clearly, we need to assign all the remaining jobs of 8 to him/her. If
his/her maximum completion time is larger than the current one, then Rule 6 will trim this branch.

Rule 6. Let developer x be the last developer and the last job ¢ in « be processed by him/her. If
Cvjob 4 is assigned to developer z(a) + Zkeﬁ (1 - rzek) > 0*7 then 7 is dominated.

4.2. Lower bound

When searching a search tree, B&B supposedly needs to browse all of the root-to-leaf paths in the DFS order.
However, sometimes, some paths are not worth following to the end. For example, at the beginning, no jobs are
assigned to developer 1, despite the availability of many jobs suitable for him/her. Such a root-to-leaf path (i.e.,
a schedule) can be eliminated from a search tree as early as possible, since this path will never be an optimal
solution. Consequently, a lower bound, named LB, is developed to eliminate these useless paths.

Figure 2 depicts a lower bound to accelerate the exact algorithm, i.e., B&B. Let C* be the currently minimal
cost that B&B has ever recorded so far, since B&B is still only halfway to searching all the root-to-leaf paths.
For a root-to-leaf path m = (a, 3), we can assume the leading nodes, i.e., a;, have been visited and the remaining
jobs have not been visited. Since B&B proceeds in the DFS order, we can assume that developers a, a+1, ...,
m are available and that their individual makespans are set in Steps 1 and 2. Then the remaining jobs in
are grouped by their job types and the total workloads of the three job types are accumulated in Steps 3 and
4. In Step 5, a maximal proficiency 7+~ is determined; i.e., some available developer m* is of the maximal
proficiency 7,,+~ for some remaining job type e*. If developer m™* still has a lot of capacity to accept jobs, let
him/her finish all the jobs of type e*; i.e., no jobs of type e* remain. Moreover, the makespan of developer m*
needs to be reset (Steps 9 and 10). On the other hand, if the developer will be fully-loaded soon, we allocate
to him/her only some of jobs of type e*, which keep him/her busy until C*. Note that he/she is no longer able
to accept jobs. Since jobs of type e* still remain, we reset the remaining workload in Steps 12 and 13. Thus
far, there might be some fully-loaded developers or some types of jobs are all finished. Consequently, we need
to determine another new developer m* who excels in another type of remaining jobs (i.e., e*) and has a new
maximal proficiency 7.+ in the end of the for loop (Step 14). Repeating the for loop, if all the workloads are
digested, the estimated lower bound is returned in the last step.

4.3. Main program

Figure 3 shows our proposed branch-and-bound algorithm, i.e., B&B. Supposedly, B&B needs to visit every
root-to-leaf path in a search tree one by one in the DFS order. Due to the above dominance rules and lower
bound, B&B can prune some useless branches in advance and accelerate its searching speed. Suppose that B&B
is searching a search tree halfway; i.e., only some jobs in a root-to-leaf path are determined. Let the determined
partial sequence be «, the number of jobs in « be d, developer a process the last job of «, and the remaining
jobs be [ (Steps 1 and 2). Since B&B is designed in the DFS order, it implies that the workloads of developers
1,2,...,a — 1 are all determined by «. That is, so far, developer a is semi-loaded, and the workloads of the
remaining developers are all undetermined. Since developers 1,2, ..., and a are assigned more or fewer jobs, the
currently heaviest workload of a developer (i.e., his/her makespan) is known and denoted by t™** = f(«a) in
Step 3. If the schedule 7 = («, 3) is dominated by a rule or its estimated makespan is larger than the current
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9
10)

11)
12)

13)
14)
15)

Algorithm LB(«, 3, C")
INPUT

OUTPUT

« : the determined partial sequence in a schedule 7 =(a, f3)
f : the undetermined part

C": the currently minimal makespan that B&B has obtained so far

C": the lower bound for the specific schedule 7 =(a, 3)

Let a be the ID of the developer processing the last job of & and the completion time be ¢, ;
For i=a+1 tomdo t,=0; //set the initial makespan for each reaming developer
For e=1 to3do w[e]=0;
For jobjin £ do wle ;1=wle;1+ p;;/faccumulate the workloads of three job types
Let r..=max{r, [for any available developer and any remaing job type};
Set sum=t,; /Istart to accumulate the total processing time
Repeat Steps 8—15 until all the workloads are zeros, i.e., wle]=0 foralle=1, 2, 3;
If(z .+ wle 11— r.)< C") then do Steps 9-10;
Set sum = sum+wle ](1— re);
Let to=1 .+ wle' 11— rm%é.) and wle']=0;
Else do Steps 12—-13;
Set A=C" —t . and sum=sum+A;
Let ¢ .= C', wle'l=wle']-A/(1- r..), and developer m’ be unavailable;
Let r..=max{r, [for any available developer and any remaing job type};

Set C" =sum/(m—a+1) andreturn C”.

FIGURE 2. The pseudo code of the lower bound.

one, the schedule will be pruned in Steps 4 and 5 to avoid further meaningless searches. If B&B is at a leaf node
(i.e., the schedule is determined) and the makespan is shorter than the current C*, then C* will be replaced by
the lower one (Steps 6 and 7). If B&B is at a middle node, all possible permutations of § are fabricated and we
let B&B explore each permutation one by one in the DFS order. As all the root-to-leaf paths are either visited
or pruned, the optimal schedule and the minimal makespan are stored in the two global variables, i.e., 7* and
C*, respectively.

With the above exact algorithm, we can obtain the optimal schedules for some small problem instances (e.g.,
n = 12). Although B&B cannot be applied to some large instances in the real world, it can be used as a
benchmark to evaluate some metaheuristic algorithm’s performance, e.g., GA or ACO. Consequently, it is still
of great research interest.
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Algorithm B&B(«, )
INPUT
« : the determined partial sequence in a schedule 7 =(a, )

[ : the undetermined part

OUTPUT
7" : the optimal schedule //global variable
C": the minimal makespan that B&B has recorded so far  //global variable

1) Let a be the ID of the developer processing the last job of «;
2) Let d be the depth of the DFS search, i.e., the number of jobs in «;

3) Let t™ = f(a) be the maximum of the first a developers' makespans;
4) If & is not dominated by rules 1-6 then do Steps 5-14;

5) If (max{t™,LB(a, 3,C")} < C") then do Steps 6-14;

6) If (d =n) thendo Step 7; //at aleaf node

7) If (f(x)<C’) thenlet 7 =z and C = f(7);

8) Else do Steps 9-14; //at a middle node of the search path, i.e., 7T

9) For j=d+1 to n do Steps 10-14;

10) Let 7'=x; //Get a new copy of &

11) Swap the two jobs of 7z” at positions d +1 and j;

12) Let o be the partial sequence of the first (d +1) scheduled jobs in 7’ ;
13) Let B be the remaining jobs;

14) Execute B&B( ', f) recursively.

F1GURE 3. The pseudo code of the branch-and-bound algorithm.

5. IMPERIALIST COMPETITIVE ALGORITHM

A metaheuristic algorithm is developed in this section to provide approximate solutions to large problem
instances in the real world. Compared with an ordinary genetic algorithm, an imperialist competitive algorithm
has a better capability for diversification; i.e., it can explore a wider space [6]. The reason is that a genetic
algorithm, in general, evolves within a single population, whereas an imperialist competitive algorithm evolves
within several empires. The emergence of a locally optimal solution will not cause a premature convergence
of all the empires. That is, an imperialist competitive algorithm constructs its fire wall to avoid some adverse
bandwagon effects [65].

Figure 4 presents the proposed imperialist competitive algorithm (named ICA). At the beginning, N citizens
are randomly generated in Step 1, where a citizen is a random permutation of the ID’s of n jobs. Consider
the example shown in Figure 1 again. Citizens 1, 4, and 5 are assigned to empire 1, and citizens 2 and 3 are
assigned to empire 2. Then a schedule 7 is encoded as (1, 4, 5, 0, 2, 3), where the number 0 means a separator.
In Steps 2 and 3, each citizen is evaluated and randomly assigned to an empire. If a citizen has a shorter
makespan, i.e., a lower objective cost f(m;), he/she has a greater chance to survive into a next generation, i.e.,
[1/f(7rl)]/[zf€v:1 1/f(m)]. So far, ICA can determines each empire’s ruler, defined as the best citizen having
the lowest objective cost in his/her empire. Step 4 sets the initial values for parameters G, T, 7+, and CT,
where G means the current generation, T the elapsed execution time, 77 the currently optimal schedule, and
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TABLE 4. The default values of the parameters.

Parameter Default value Range Meaning

m 3 2,3,5 The number of developers

n 12 8,10, 12,200,400,600 The number of jobs

DP 0 0,1,2,3 The distribution of developers

D’ 3 0,1,2,3 The distribution of jobs

D 1,2,...,100 The processing time of job j

Tq 0.90 0.50,0.55,...,0.95 The assimilation rate of ICA

Tr 0.10 0.05,0.10,...,0.50 The rebellion rate of ICA

Tls 0.02 0.00,0.01,...,0.05 The local search rate of ICA

M 3 3 The number of empires

N 500 500 The population size

n 12 8,10, 12,200,400,600 A stopping criterion, i.e., the num-
ber of jobs

G 500 500 A stopping criterion, i.e., the num-

ber of unimproved generations

C™ the globally minimal objective cost. Then, a standard roulette wheel selection [67] is employed to select
r,IN citizens and they will be forced to randomly move towards their corresponding rulers, respectively. Step
6 adopts a crossover operation, PMX crossover [19]. Next, r,.N citizens are randomly chosen for adjustment in
Step 7; i.e., either some jobs within a citizen are randomly swapped or the citizen is forced to betray his/her
empire. The adjustment is implemented by a shift-and-insert mutation [32]. In Step 8, only a few citizens are
chosen for modification again; i.e., a local search is performed [67]. At the end of each generation, Steps 9-13
reassign a citizen of the weakest empire to another empire, wherein the weakest empire is the one with the
ruler having the largest objective cost among the M rulers. Moreover, if some newly-born citizen has the lowest
objective cost, we reset the stopping criterion G = 0 and let him/her be the new ruler of his/her empire and
record the current information. If execution time 7' is less than n seconds and the currently optimal schedule is
frequently updated, let Steps 613 repeat again. Otherwise, we end this algorithm and return the near-optimal
schedule 7.

6. EXPERIMENTAL RESULTS

In this section, we first examine the execution speed of B&B. Then we evaluate the solution quality and
execution speed of ICA. Moreover, ICA is also compared with a typical genetic algorithm (named GA) [53].
Lastly, we perform a sensitivity test for observing the influence of versatile developers on the objective cost.

Table 4 lists the default values of the parameters. As defined in Section 2, m and n are the numbers of
developers and jobs, respectively. We design four distributions of developers for DP =1, 2, 3, and 4. First, for
DP =0, let all the developers be mediocre, i.e., T4 € [0.1,0.4]. Second, for DP =1, let all the developers be
uni-specialty experts. That is, a developer z has r,. € [0.6,0.9] for only some single type of e € {1,2,3} and
rze € [0.1,0.4] for the other two types of jobs. Third, for DP = 2, all the developers are bi-specialty experts.
That is, a developer  has r,. € [0.6,0.9] for two random job types and r,. € [0.1,0.4] for the other remaining
type. Fourth, for D = 3, all the developers are versatile experts, i.e., 5. € [0.6,0.9] for all z and e. On the
other hand, note that there are three types of jobs. We also design four different distributions of jobs: D” for
J =1, 2, 3, and 4. First, for D’ = 0, all the jobs are of an identical processing time and belong to only some
single type. Second, for D/ = 1, all the jobs are of an identical processing time and belong to two types at
random. Third, for D7 = 2, all the jobs randomly belong to two types and the processing time of each job is
randomly chosen from {1, 2, ..., 100}. Fourth, for D7 = 3, all the jobs randomly belong to three types and the
processing time of each job is randomly chosen from {1, 2, ..., 100}. Lastly, the parameters used in the following
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Algorithm ICA(r, 7,1, ,M ,N ,n)
INPUT

r, : the assimilation rate

r.: the rebellion rate

r,. - the local search rate

M : the number of empires

N : the number of citizens, i.e., population size

n : the number of jobs, i.e., stopping criterion
OUTPUT

7" : the best ruler, i.e., a near-optimal schedule

/Mnitialization
1) Fori=1to N dorandomly generate citizen i and assign it to an empire; //i.e., schedule 7,

2) Fori=1to N do evaluate the objective cost of citizen i;
3) Fori=1toM do determine the ruler of empire i each;//i.e., has the minimal objective cost

4) SetG=0,T=0, 7" =x,,and C' = f(71));
5) While (G<500 and T <n) do Steps 6-13;

//Assimilation

6) Fori=1to r,N do force a citizen to move towards its ruler at random;
//Rebellion

7) Fori=1to rN do make a citizen stroll or reassign it to another empire at random;
//Local search

8) Fori=1to r N do let a citizen stroll around its neighborhood at random;
//Competition

9) Randomly let a citizen of the weakest empire betray its empire;

10) Fori=1to N do Steps 11-12;

//Evaluation

11) Compute the objective cost of citizen i, i.e., f(7;);

12) If f(r)<C" thenset G=0, 7" =x,,and C' = f(7,);

13) Record elapsed time 7and set G =G +1;

14) Output the best ruler 7°.

FIGURE 4. The pseudo code of the imperialist competitive algorithm.

experiments, i.e., rq, T, s, M, N, n, G, are the same as those introduced in the previous sections. A pilot
experiment suggests that r, = 0.9, r, = 0.1, and ;5 = 0.02 lead to higher solution quality and less execution
time. All the proposed algorithms are implemented in Pascal and executed on an Intel Core i7@3.20 GHz with
32 GB RAM in a Windows 10 environment. For each setting, 50 random trials are conducted and their statistics
are recorded.
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TABLE 5. The performance of B&B for n = 8, DP =0, and D’ = 3.

B&B ICA GA
Nodes Run Time Run Time REP Run Time REP
m  Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max
2 1419.640 6513 0.004 0.016 3.244 3.531 0.000 0.000 0.144 0.172 0.000 0.000
3 477.980 5809 0.001 0.016 3.470 3.828 0.000 0.000 0.151 0.157 0.400 4.422
5 2079.720 24234 0.005 0.063 3.662 4.766 0.000 0.000 0.163 0.172 1.713 11.681
TABLE 6. The performance of B&B for n = 10 and D’ = 3.
B&B ICA GA
Nodes Run Time Run Time REP Run Time REP
m DP Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max
2 0 26 508.800 91433 0.100 0.313 3.615 3.906 0.000 0.000 0.155 0.172 0.032 0.731
1 59514.840 286 223 0.204 0.844 3.623 3.906 0.000 0.000 0.154 0.157 0.034 0.721
2 105649.760 1349301 0.300 2.500 3.625 4.015 0.000 0.000 0.155 0.172 0.012 0.558
3 49 598.500 650949 0.168 1.875 3.709 5.110 0.000 0.000 0.153 0.157 0.008 0.419
3 0 17 386.180 272 369 0.055 0.844 3.880 4.250 0.000 0.000 0.165 0.281 1.240 5.372
1 12107.780 322 349 0.039 0.891 3.827 4.125 0.000 0.000 0.161 0.187 0.639 3.965
2 69 288.560 1621025 0.185 4.062 3.785 4.188 0.000 0.000 0.160 0.172 0.953 5.247
3 5983.100 122318 0.021 0.344 3.880 5.094 0.000 0.000 0.169 0.250 0.549 3.655
5 0 23148.080 631688 0.072 1.938 4.202 5.109 0.000 0.000 0.181 0.265 3.904 11.979
1 195300.920 5216072 0.524 13.563 3.992 4.875 0.000 0.000 0.177 0.219 2.106 12.770
2 1237123.880 18961243 3.244 48.110 3.879 4.922 0.000 0.000 0.175 0.188 0.535 15.718
3 102113.180 4194394 0.275 11.031 4.229 4.703 0.000 0.000 0.180 0.250 2.675 16.689

Table 5 lists the statistics of the three algorithms for n = 8. Assume that all the m developers are mediocre
and all the n jobs each randomly belong to one of three types. Note that the increase in developers does not
necessarily lead to a decrease in nodes for B&B. The reason is that the scale of a search tree increases, so we
need to perform more trial and error to locate the optimal schedule. To evaluate the solution quality of both
metaheuristic algorithms, we define the relative error percentage (REP) as (fI°4 — f*)/f* x 100% for ICA,
where fIC4 is the objective cost of ICA and f* is the optimal cost obtained by B&B. Similarly, the REP for
GA is (fGA — f%)/f* x 100%. Observing the two REP columns, we learn that ICA always outperforms GA in
terms of solution quality. It is clear that ICA requires more run time, which is indeed a shortcoming. However,
from the viewpoint of diversification [6], ICA can avoid premature convergence and prevent itself from being
trapped in some local minimums. This implies that ICA has a better ability to explore the search space at a
cost of run time.

In Table 6, there are 10 jobs, each belonging to a random type. Again, the results show that more developers
means more execution time for B&B. In addition, the more consistent the developers are, the less run time B&B
takes. That is, a mix of mediocre and versatile developers will cause B&B to require more run time. Note that
each system setting requires 50 trials of B&B, 50 trials of ICA, and 50 trials of GA. In a worst case, B&B will
take 48.11 s for a single trial. This duration implies that B&B is too time-consuming for large problem instances.
On the other hand, ICA remains good solution quality for n = 10. The consistency of the developers does not
influence the run times of the two metaheuristic algorithms. However, it is more difficult for GA to locate the
optimal solutions (i.e., larger REP’s), if all the developers are mediocre. In general, the more developers we
have, the more run time both approximate algorithms will take.
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TABLE 7. The performance of B&B for n = 12, m = 3, and DP = 2.

B&B ICA GA
Nodes Run Time Run Time REP Run Time REP
D7 Mean Max Mean Max NA Mean Max Mean Max NA Mean Max Mean Max NA
0 10941247.268 29500825 41.061 112.359 9  2.490 2.594 0.000 0.000 9  0.173 0.188 0.000 0.000 9
1 3971253.760 71928145 13.439 219.594 0 3.310 3.797 0.000 0.000 0 0.169 0.172 0.042 2.101 0
2 1008421.480 15746313 3.398 47.891 0  4.253 5.469 0.000 0.000 0 0.172 0.234 1.086 5.547 0
3 962066.080 11601099 2.997 30.329 0  4.208 5.235 0.000 0.000 0 0.173 0.219 1.226 5.676 0

TABLE 8. The performance of ICA for n = 200, DP =0, and D’ = 3.

ICA GA
Run Time RDP Run Time RDP
Mean Max Mean Max Mean Max Mean Max

123.523 193.734 0.000 0.000 1.455 4.359 0.872 1.726
169.288  200.547 0.000 0.000 1.714 3.953 4.271 8.984
182.740 200.765 0.000 0.000 1.698 4.297 7.187 13.918

Tt W N 3

In Table 7, B&B aims to solve the problem instances of n = 12. There are three developers and all of them
are very good at processing two types of jobs at random, i.e., 7, € [0.6,0.9]. Unlike the previous two tables,
the columns of NA means that the optimal solutions are not available within one billion nodes of B&B. In
the first setting, 4.e., D/ = 0, nine problem instances cannot be optimally solved within 1 billion nodes. That
is, n = 12 is the maximal problem size that B&B can accept. It is interesting that the variety of jobs can
help B&B to converge quickly; this is true because a job of a particular type is likely to be assigned to a
corresponding developer at a very low cost. The lower bound can efficiently prune such a subtree. On the other
hand, ICA can locate the optimal solutions within 5.5s. However, jobs of various types will increase the run time
of both metaheuristic algorithms. That is, the local minimums of D’ = 3 are similar and neither metaheuristic
algorithms can tell which is the globally minimal or converge to it.

Table 8 presents the experimental results when the problem size is large, i.e., n = 200. The developers are
all mediocre and the types of jobs are randomly distributed in 1, 2, or 3. Since B&B cannot play the role of a
benchmark for such large problem instances, we define a new measurement. The relative deviation percentage
(RDP) for ICA is defined as (f1°4 — f#)/f# x 100%, where f# = min{fI¢4 fGAl. Similarly, the RDP for
GA is defined as (fS* — f#)/f# x 100%. For ICA, with the increasing number of developers, the run time also
increases. Conversely, the run time of GA is slightly influenced by m. As expected, ICA always provides the
minimal objective cost, i.e., f#. For a 200-job project in the real world, it is worthwhile to wait for 200s and
obtain its near-optimal schedule.

In Table 9, ICA and GA are compared for larger problem instances, i.e., 400. In general, the run time of ICA
is slightly affected by the number of developers and unaffected by the distribution of developers. On the other
hand, the number and the distribution of developers do not increase the run time of GA. However, the solution
quality of GA deteriorates as the distribution of developers varies, e.g., a large RDP of 20.576%.

Table 10 shows the influence of n = 600 on the performances of ICA and GA. It is interesting that both
metaheuristic algorithms excel in processing equally-sized jobs, i.e., D’ = 0. However, the problem becomes
difficult for both algorithms if the jobs have different processing times. Although ICA takes 10 min on average,
it generates better solutions in most situations. Moreover, in the real world, scheduling 600 jobs within 10 min
is allowable.
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TABLE 9. The performance of ICA for n = 400 and D7 = 3.

ICA GA
Run Time RDP Run Time RDP
m  DP Mean Max Mean Max Mean Max Mean Max
2 0 320.264 400.735 0.000 0.000 3.343 7.031 1.174 2.394
1 360.954 400.968 0.000 0.000 2.980 5.516 1.589 3.732
2 379.643 401.015 0.000 0.000 2.992 6.625 1.318 2.529
3 358.217 400.891 0.000 0.000 2.965 5.750 1.789 5.955
3 0 391.496  401.578 0.000 0.000 2.973 6.875 4.612 8.494
1 394.137 401.437 0.000 0.000 3.217 6.047 5.162 9.960
2 396.411 401.781 0.000 0.000 3.268 5.656 7.000 11.317
3 393.300 401.828 0.000 0.000 2.844 4.640 9.656 19.388
5 0 395.284  401.797 0.000 0.000 3.199 6.015 6.903 11.393
1 400.716  402.109 0.000 0.000 3.113 5.843 8.319 13.983
2 400.676  401.640 0.000 0.000 3.398 7.844 12.559 23.537
3 400.398 402.578 0.000 0.000 3.164 5.703 20.576 47.307

TABLE 10. The performance of ICA for n = 600, m = 3, and D = 2.

ICA GA
Run Time RDP Run Time RDP
D7 Mean Max Mean Max Mean Max Mean Max

35.397 51.515 0.000 0.000 3.396 3.515 0.000  0.000
351.333  600.422 0.140 2802 6.943 18.610 1.042 2941
590.282 602.328 0.000 0.000 4.076 8.078 5.962  26.819
601.092 602.328 0.000 0.000 4.736 10.469 7.358 16.987

W N = O

In Figure 5, a sensitivity test shows the benefits of employing versatile developers. At the beginning, we
make 5 mediocre developers process 100 jobs of various types. The estimated objective cost is 707.55. Then we
replace the first developer with a versatile one at random. The objective cost is quickly reduced to 485.49. After
repetition, the objective cost is only 182.85 if all the mediocre developers are replaced by versatile developers.
Suppose that the salary of a versatile developer is 300% of that of a mediocre one. However, the throughput
of a versatile developer is 386.96% higher than that of a mediocre one (= (1/182.85)/(1/707.55) = 386.96%).
Clearly, it is worth paying a trilingual dubbing specialist triple the salary, instead of hiring three mediocre voice
actors.

7. DISCUSSION AND CONCLUSION

In this study, we present an interesting scheduling problem in the game industry. Three contributions are
made. First, research findings show that versatile developers are not equivalent to efficient machines. For exam-
ple, some machines which efficiently heat, extrude, and pull aluminum billets cannot spray paint the corre-
sponding final products. That is, machines are usually dedicated for only one particular purpose. Developers, in
contrast, might excel not only in figure modeling but also in programming. Therefore, new scheduling algorithms
are called for. Second, an exact algorithm (B&B) is proposed to serve as a benchmark of solution quality, and
a metaheuristic algorithm (ICA) is developed for obtaining approximate schedules in the real world. Third, a
sensitivity test is conducted to differentiate between a versatile developer and a mediocre one.
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FIGURE 5. A sensitivity test for developers (n = 100, m =5, D7 = 3).

Compared with past research, this study has the following features. First, traditional branch-and-bound
algorithms for scheduling unifunctional machines cannot be directly applied to the presented problem. That is,
the consideration of versatile developers makes this study more practical and realistic. Second, the proposed
branch-and-bound algorithm is relatively efficient. For traditional machine scheduling problems, e.g., [63], n = 25
is the maximal size for their branch-and-bound algorithms. Note that their machines are identical and all of
them process jobs at a fixed pace; i.e., they are easier problems. However, in this study, we must consider three
kinds of jobs and m heterogonous developers. Consequently, n = 12 is an acceptable problem size for our B&B
algorithm. Third, the solution quality of ICA is ensured, for B&B can generate the optimal solutions which we
can use them as fair benchmarks to address the solution quality gap between ICA and B&B.

Although these proposed algorithms are relatively efficient, they still have some shortcomings. We may
overcome these shortcomings by considering the following future directions.

— Some non-preemptive lower bounds are helpful for improving the efficiency of a branch-and-bound algorithm,
for preemption may lead to underestimations of actual objective costs.

— Some mathematical analyses, e.g., [31], can help a metaheuristic algorithm to accelerate its execution speed.
That is, we can skip some invalid solutions and reduce the execution time.

— Hybridization may be beneficial for improving the efficiency of a metaheuristic algorithm. The related findings
regarding lower bound may be valuable information for developing some operations, such as mutation.
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