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AN APPLICATION OF FUZZY LOGISTIC REGRESSION FOR PREDICTING
CVSS SEVERITY CATEGORY OF INDUSTRIAL CONTROL SYSTEMS

Ahmet Murat Dere* and Mehmet Kabak

Abstract. Cybersecurity is rapidly gaining significance due to growing use of computers in daily
life and business sectors. Likewise, industrial sector has also become more vulnerable to cyber threats
exclusively with the onset of Industry 4.0, which is a digital transformation evolved with industrial
control systems (ICS). Nowadays industrial organizations aim to build capacity towards protection
of ICS to be cybersafe. To assess the effects of vulnerabilities in ICS, organizations utilize Common
Vulnerability Scoring System (CVSS), which calculates severity categories/scores. In this study, we
implemented a prediction model for CVSS vulnerability categorization of ICS. Although there exist
many applicable methods to use in data analysis paradigm such as statistical regression, cluster and
classification analysis, the categorical form of CVSS data based on verbal statements and the failure
to satisfy basic statistical assumptions for classical models motivated us to focus on implementation
of fuzzy logistic regression (FLR) model, which is one possible alternative method. We chose the FLR
method to explore that it is applicable to ICS vulnerability data. Furthermore, the model was improved
by employing metaheuristic algorithms to optimize the spread of fuzzy numbers representing input
variables. This study is expected to contribute to practical application of vulnerability categorization
of ICS.
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1. Introduction

Digital Era has profoundly affected our daily life. Now, we live in a digitally interconnected world and most of
these conveniences have already irreversibly been integrated into our life. Moreover, traditional methods of edu-
cation, production, health and commerce have undergone extensive changes to take advantage of the innovations
brought by the Digital Era. This deep impact of digitalization also triggered Industry 4.0 in the industrial sector.
Industry 4.0 is defined as the fourth generation of the industrial revolution and digital industrial transformation
in parallel with developments in informatics, ICS, big data, internet of things (IoT), artificial intelligence (AI),
cloud computing, machine learning. By integrating these digital technologies into various processes and making
better decisions by analyzing data from the supply chain, Enterprise Resource Planning (ERP), customer service
and other systems, Industry 4.0 is improving overall efficiency in operations management [1]. However, all these
systems inevitably face an inherent threat created by digital technology itself, and that is the cyber threat. A
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cyber threat source may exploit a vulnerability, a weakness in an information system, system security proce-
dures, internal controls, or implementation [2]. A flaw or weakness could be exercised (accidentally triggered or
intentionally exploited) and result in a security breach or a violation of the system’s security policy [3]. A weak-
ness in the computational logic (e.g., code) found in software and hardware components, when exploited, results
in a negative impact to confidentiality, integrity, or availability (of the system), which may likely cause monetary
losses, disruption of processes, digital theft, and damage to institutional reputation. Mitigation of vulnerabilities
typically involves coding changes, but could also include specification changes or even specification deprecations
(e.g., removal of affected protocols or functionality in their entirety) [4]. In this context, all information systems
including countries’ critical infrastructure, ICS, personal smartphones, and even home-use robot vacuum clean-
ers are vulnerably exposed to the ever-increasing risk of these threats. Since cybersecurity preparedness entails a
close and up-to-date support from various providers, organizations – large or small – include cybersecurity costs
in institutional budget, which has made cybersecurity a huge market. In 2004, the global cybersecurity market
was worth just $3.5 billion, but with cybercrime predicted to cost the world $10.5 trillion annually by 2025 (up
from $3 trillion a decade ago and $6 trillion in 2021), the cumulative global spending on cybersecurity products
and services for the five-year period from 2021 to 2025 is predicted to have a market value of $1.75 trillion [5].
Therefore, organizations, to sustain a desired level of operational effectiveness, rigorously seek ways to promote
security posture by identifying potential vulnerabilities in their systems to prioritize cybersecurity investment.
To achieve this goal, organizations predominantly use the Common Vulnerability Scoring System (CVSS) to
assess the severity of potential vulnerabilities (i.e., None, Low, Medium, High and Critical). CVSS provides a
standard metric and captures the principal technical characteristics of software, hardware and firmware vulner-
abilities. CVSS was first designed by The National Infrastructure Advisory Council (NIAC), a US government
advisory council, in 2003, then the Council chose the Forum of Incident Response and Security Teams (FIRST)
to develop and manage CVSS. Vulnerability data feeds for analysis are available at the National Vulnerability
Database [6] kept up to date by the National Institute of Standards and Technology (NIST), which is a part
of the U.S. Department of Commerce. CVSS calculates a base severity category or a score of a vulnerability,
based on some categorical input variables values defined by expert evaluation/human assessment. Typically, the
vendor who announces the vulnerability provides certain details to create CVSS scores. If the vendor declines to
provide certain details, National Vulnerability Database (NVD) analysts assign CVSS scores using a worst-case
approach. If a vendor provides no details about a vulnerability, NVD will score that vulnerability as a 10.0 (the
highest rating) [7].

The vulnerability categories/scores of ICS are also determined by using CVSS. Furthermore, the Cybersecu-
rity and Infrastructure Security Agency (CISA), a part of the U.S. Department of Homeland Security, promotes
a cohesive effort between government and industry to improve the cyber security posture of ICS by providing
an online database for advisories and alerts about current cyber security issues, vulnerabilities and exploits.
CISA also uses CVSS to identify the category of security vulnerabilities of ICS [8].

ICS vulnerability data based on CVSS is in categorical form. The values assigned by an expert and both
input and output variables are expressed in linguistic terms.

There are many methods to analyze categorical data. In this study, on the other hand, we emphasize on fuzzy
regression analysis which is an extension of (or an alternative for) the classical regression analysis in which some
elements of the model are represented by fuzzy numbers [9]. The fuzzy models based on fuzzy set theory provides
a proper substitution for modeling to handle the uncertainty and irrepressible imprecision in the data. Fuzzy
regression approach is also a promising alternative, when distributional assumptions of the underlying regression
model are not satisfied or they cannot be tested. There are many situations in practical applications where the
data cannot be measured as crisp quantities, since information in data is often irrepressibly imprecise, vague,
incomplete, verbal/linguistic, and qualitative similar to the case of CVSS vulnerability data. As can be seen in
the literature review section, fuzzy modeling approaches provide a promising alternative techniques for dealing
with such situations and fuzzy regression models have been extensively used in categorical data analysis [10].
All of those considerations motivated us to conclude that Fuzzy Logistic Regression (FLR) is the most viable
alternative method for analyzing the ICS vulnerability data based on CVSS.
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There has been much research on CVSS, Fuzzy Regression (FR) and FLR, however, this study is the first
attempt to use FLR method to demonstrate that fuzzy input and fuzzy output FLR models can be applicable to
ICS vulnerability data based on CVSS. The applied model is also improved by applying metaheuristic algorithms
for optimizing the spread of fuzzy numbers representing input variables. Section 2 reviews relevant literature.
Section 3 introduces data, briefly explains the basic concept of fuzzy set theory and the applied methodology,
and conducts FLR models. Section 4 discusses the performance of the model and the results. Section 5 concludes
the study.

2. Literature review

In this section, we first review some approaches for CVSS prediction models. We then focus on the previous
studies in the FR and FLR.

2.1. General CVSS prediction models

CVSS has specific equations/formulas defined to calculate the score based on CVSS metrics [11]. However,
there are numerous studies in the literature that explore and propose various alternative models. Dondo [12]
presented a fuzzy inference system that ranks vulnerabilities by using fuzzy rules. They argued that the approach
has more meaningful vulnerability prioritization values than the severity level calculated by the popular CVSS.
Their approach was shown to be capable of ranking vulnerabilities over networks and organizations, which
CVSS scores cannot provide comparable rankings for such cases. Anikin [13] suggested a risk assessment model
using the fuzzy inference method for these fuzzy rules to describe experts’ knowledge. They concluded that their
method has some advantages over CVSS. Gencer and Başçiftçi [14] presented a novel model that explored how
CVSS vulnerability could be calculated using linguistic terms by an FLR model only with crisp (non-fuzzy)
input and fuzzy output. They did implement an FLR model, rather than classic logistic regression model, due to
the fuzzy nature of CVSS data. The performance was evaluated by a several different criteria and they obtained
effective results.

2.2. FR models

Regression analysis is a powerful statistical method for estimating the relationships between a dependent
variable and one or more independent variables. It is extensively used in many areas, such as engineering,
finance and economics, biology, and environmental sciences. Statistical regression models can actually cope
with randomness in the data, and only use observations which are in numeric form with exact/crisp values. On
the other hand, it is very common in real life that the data is defined/collected as linguistic/verbal terms (such
as low, medium, high) based on subjective human assessment. This naturally yields uncertainty or vagueness
caused by imprecise boundaries between the different levels of categories assigned to linguistic terms [15]. In this
case, rather than randomness, uncertainty should be taken into consideration. Besides, the basic assumptions
(such as normality, the identical distribution of the error terms) for statistical models do not hold [16]. In such
situations, fuzzy models are an alternative method which may perform better in capturing and extracting useful
information from imprecise data [17].

FR was introduced by Tanaka et al. [18]. Classical regression is based on probability theory, whereas fuzzy
regression is based on Zadeh’s fuzzy set theory [19]. There are two main approaches for FR. The first one is
the probabilistic approach by Tanaka et al. [18]. They developed a linear programming model to minimize the
total spread of each fuzzy coefficient and the total vagueness of the estimated output. The second one is the
fuzzy least squares approach by Diamond [20] that is based on minimizing the distance between fuzzy observed
and estimated outputs. Unfortunately, Tanaka’s approach only allows the responses to be fuzzy numbers and
the predictors to be crisp [21]. In the literature, they are many studies that applied various methods of FR
successfully. Some studies considered input variables to be crisp and output are fuzzy, while other studies
analyzed FR with both fuzzy input and outputs.
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Yoon and Choi [22] were able to provide a new least-squares approach for fuzzy regression through one
compact formula derived from triangular fuzzy matrices and they defined also fuzzy matrix new operations.
This approach opened a new perspective for methods in fuzzy regression since it became possible to express
estimators in one formula that makes it easy to prove optimal or asymptotic properties. In their study, they
considered a fuzzy linear regression model with fuzzy input and fuzzy output data.

Yoon and Grzegorzewski [23], as a follow-on study, explained details and properties of the least-squares
approach based on Yoon and Choi [22]. It was also shown that a fuzzy least-squares approach is originally a
fuzzy generalization/extension of ordinary (crisp) least-squares. This method was also successfully applied by
Sohn et al. [21] in an FLR model with fuzzy input and fuzzy binary output.

Chukhrova and Johannssen [10] focused on presenting a comprehensive systematic review on the topic of FR
analysis.

2.3. FLR models

FLR, an extension of FR, models the relationship between fuzzy independent variables and fuzzy categorical
(multinomial/ordinal or binary) dependent variables. Although it is relatively new, there exists a considerable
amount of literature available on FLR models.

Pourahmad et al. [16] introduced a new term called “possibilistic odds”, which is the possibility rate of success
to non-success. Due to the imprecise nature of the output variable, no underlying probability distribution can
be assumed. Hence, instead of using classical logistic regression, they introduced an FLR model based on
possibilistic odds. In their model, the input was crisp, and the output was fuzzy binary. They also proposed
a new goodness-of-fit criteria called Mean Degree of Memberships (MDM). This approach was used in many
other studies.

Pourahmad et al. [9] proposed an FLR approach based on the least-squares method. They considered a crisp
input and fuzzy multinomial output FLR model. To evaluate the proposed model, they adopted Mean Capability
Index (MCI) presented by Taheri and Kelkinnama [22].

Sohn et al. [21] used the fuzzy least-square estimation method to fit an FLR model for technology credit
scoring, which consists of fuzzy input and fuzzy binary output variables. They successfully applied the least-
squares approach proposed by Yoon and Choi [22]. They used sensitivity, specificity, accuracy, and a ROC
Curve to evaluate the performance of the proposed model. They also compared the fitted FLR model with an
ordinary/classical logistic regression.

Yapıcı Pehlivan and Yonar [19] introduced an FLR model with crisp input and fuzzy binary output variables
based on possibilistic odds presented by Pourahmad et al. [16]. They used the least-squares approach of Diamond
[20] to estimate the parameters of the FLR model. As for the goodness-of-fit criteria, they also used sensitivity,
specificity and accuracy to compare their FLR model with an ordinary/classical logistic regression.

Atalik and Senturk [25] introduced an FLR model based on Tanaka’s regression model in which the objective
function is improved. An application is performed on a crisp input and fuzzy binary output data set. They
evaluated their model using the MDM criteria.

Namdari et al. [26] constructed a crisp input and fuzzy multinomial output FLR model using least-squares
approach to examine the effect of folic acid on appetite in children. The results of the FLR and a statistical
ordinal logistic regression (OLR) was compared.

Namdari et al. [27] proposed a new estimator for FLR with crisp input and fuzzy ordinal output. This
estimator was called “Least Absolute Deviations (LAD)”, and the results were compared with the typical least-
squares estimation (LSE) method. They presented two new goodness-of-fit indices called Measure of Performance
based on Fuzzy Distance (Mp) and Index of Sensitivity for outliers (Is).

Gencer and Başçiftçi [14] applied an FLR model based on least-squares approach. The input variables were
crisp, and output was fuzzy multinomial. As for assessment criteria, they adopted the Kim and Bishu [28]’s
criterion, mean squared error (MSE) and mean absolute error (MAE). In their model CVSS data is used. For
further study, they suggested a fuzzy input-fuzzy output model.
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Salmani et al. [29] proposed a forward variable selection method for FLR for fuzzy/crisp input and fuzzy
multinomial output. They used the least-squares estimation method introduced in Xu and Li [30] as an extension
of traditional least-squares approach in a fuzzy environment as in Diamond [20]. They measured the goodness-of-
fit of the stepwise modeling with fuzzy extensions of MSE, Akaike Information Criteria (AIC), Mallows Measure
(Cp).

Salmani et al. [31] applied a least-squares method to construct an FLR with crisp input and fuzzy multinomial
output. The least-squares approach was the same as in Salmani et al. [29] which was proposed by Xu and Li
[30] as an extension of traditional least-squares approach in a fuzzy environment as in Diamond [20]. MCI was
used to measure the goodness-of-fit.

Mustafa et al. [17] developed a least-squares FLR model with crisp input and fuzzy binary output. The model
was evaluated by MCI. This study considered a trapezoidal membership function which is different from most
studies in FLR literature.

Gao and Lu [15] developed a least-squares FLR model with crisp/fuzzy input and fuzzy multinomial output.
They proposed a fuzzy adjustment error term. For evaluation criteria, Kim–Bishu and MCI were adopted.

Nikbakht and Bahrampour [32] used an FLR model with crisp input and fuzzy binary output to determine
predictive survival factors of breast cancer patients. The performance was determined in terms of MDM.

Behnampour et al. [33] considered an FLR model with crisp input and fuzzy multinomial output to predict the
severity of autism. The fuzzy model parameters were estimated by LSE and LAD with an approach presented
in Kelkinnama and Taheri [34]. The results of LSE and LAD Mp was compared in terms of Mp criterion.

Bennaser [35] focused on developing an FLR model with crisp input and fuzzy multinomial output for DNA
methylation data. He compared three methods, weighted average logistic regression (WALR), OLR, and FLR
based on the correct classification rates.

Anggraeni et al. [36] applied FLR to predict Dengue fever outbreak with fuzzy input variables a fuzzy multi-
nomial output. For estimation of parameters, maximum likelihood estimator (MLE) was used. They compared
the performance of the FLR model with Neural Network, Random Forest, and Naive Bayes approaches.

This study and the main relevant previous studies are compared in Table 1 in terms of similar approaches in
methodology available in the relevant literature.

According to Table 1, a closer look at the relevant literature reveals a gap: an FLR model with fuzzy input and
fuzzy multinomial/ordinal output. Although, crisp input and fuzzy output models have drawn much attention,
FLR models with fuzzy input and fuzzy multinomial/ordinal output are quite limited. Especially, for CVSS
vulnerability data, only one study [14] exists in the relevant literature, with a crisp input and fuzzy multinomial
output. The ICS vulnerability data, based on CVSS, the input (independent) and output (dependent) variables
are in ordinal/multinomial categorical variable form and the values assigned are defined by linguistic terms (i.e.,
low, medium, high, etc.), which intrinsically holds uncertainty caused by subjective human assessment. Within
this regard, an FLR model to analyze ICS vulnerability data is an appropriate method. Hence, an FLR model
based on least-squares with fuzzy input and fuzzy multinomial output model applied on ICS vulnerability data
is assumed to be a contribution in terms of application and addresses the gap in the relevant literature.

This study demonstrates that FLR models can be applied to fuzzy input and fuzzy multinomial/ordinal
output ICS vulnerability data based on CVSS. For parameter estimation, the fuzzy least-squares estimate
concept proposed in Yoon and Choi [22], Yoon and Grzegorzewski [23] is used. The form of data, in our case
fuzzy input and fuzzy multinomial/ordinal output, and the least-squares method for parameter estimation are
different from the approaches proposed in Gencer and Başçiftçi [14] and Sohn et al. [21], which are the closest
studies to our methodology. Moreover, after estimating the parameters of FLR using initial spreads of fuzzy
input variables, the model is improved by applying metaheuristic algorithms to optimize the values of the
spreads. To the best of our knowledge, no prior studies have examined these issues. Therefore, this is the first
study in the literature to investigate the applicability of the FLR model to ICS data and optimize the spread
of fuzzy numbers using metaheuristic algorithms.



4088 A.M. DERE AND M. KABAK

Table 1. Current study vs. the previous studies in the relevant literature.

Authors Method Form of data Performance criteria
Possibilistic Least-Squares Input Output

Pourahmad
et al. [16]

Tanaka et al. [18] Crisp Fuzzy
binary

MDM MSE

Pourahmad
et al. [9]

Diamond [20] Crisp Fuzzy
multinomial

MCI

Yapıcı
Pehlivan and
Yonar [19]

Diamond [20] Crisp Fuzzy
Binary

Sensitivity, Specificity,
Accuracy.

Atalik and
Senturk [25]

Tanaka et al. [18] Crisp Fuzzy
Binary

MDM

Namdari et al.
[26]

Diamond [20] Crisp Fuzzy
ordinal

Comparison with ordinary
logistic regression

Mustafa et al.
[17]

Diamond [20] Crisp Fuzzy
Binary

MCI

Salmani et al.
[31]

Xu and Li [30] Crisp Fuzzy
Multinomial

MCI

Gao and Lu
[15]

Diamond [20] Crisp/
Fuzzy

Fuzzy
Multinomial

Kim–Bishu MCI

Nikbakht and
Bahrampour
[32]

Tanaka et al. [18] Crisp Fuzzy
Binary

MDM

Bennaser [35] Diamond [20] Crisp Fuzzy
Multinomial

True Positive and False
Positive Rates

Gencer and
Başçiftçi [14]

Diamond [20] Crisp Fuzzy
Multinomial

MSE, MAE, Kim–Bishu

Sohn et al.
[21]

Yoon and Choi [22] Fuzzy Fuzzy
Binary

Sensitivity, Specificity,
Accuracy, ROC Curve

This study Yoon and Choi [22] Fuzzy Fuzzy
Multinomial

Kim–Bishu MCI MDM
Accuracy

3. Methodology

This section presents the ICS vulnerability data based on CVSS, briefly reviews the underlying concepts and
basic theory and introduces the FLR model application.

3.1. Data

ICS Data, which uses the CVSS metrics, is a special subset of CVSS vulnerability data in terms of ICS
and is available on the CISA online databases [8]. Therefore, explaining the data structure of CVSS will also
cover the definition of ICS vulnerability data. However, when it comes to comparison of ICS and CVSS scores,
we showed with a 𝑡-test that there is a statistically significant difference between ICS and CVSS data, and
also the mean score of ICS is larger than that of CVSS. Technically, it means that ICS is more vulnerable to
cyber threats, and it forms a different group than general CVSS, which is for all computer systems. CVSS is
composed of three metrics groups: Basic, Temporal and Environmental. The “Base” metric group represents
the intrinsic characteristics of a vulnerability that are “constant” over time and across user environments. The
“Temporal” metric group reflects the characteristics of a vulnerability that may change over time but not across
user environments. For example, the presence of an exploit code could increase the CVSS score today, after some
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Table 2. A sample portion of the dataset.

Obs
number

Base
category

AV AC PR UI Scope C I A
Base
score

1 HIGH LOCAL LOW NONE REQUIRED UNCHANGED HIGH HIGH HIGH 7.8
2 HIGH NETWORK LOW NONE NONE UNCHANGED NONE NONE HIGH 7.5
3 CRITICAL NETWORK HIGH NONE NONE CHANGED HIGH HIGH HIGH 9
4 HIGH LOCAL LOW LOW NONE CHANGED HIGH HIGH HIGH 8.8
5 HIGH NETWORK LOW NONE NONE UNCHANGED HIGH NONE NONE 7.5
6 HIGH NETWORK LOW LOW NONE UNCHANGED HIGH HIGH HIGH 8.8
7 MEDIUM NETWORK HIGH NONE REQUIRED CHANGED NONE HIGH NONE 6.1
8 HIGH LOCAL HIGH LOW NONE CHANGED NONE HIGH HIGH 7.5
9 CRITICAL NETWORK HIGH NONE NONE CHANGED HIGH HIGH HIGH 9
10 MEDIUM NETWORK LOW HIGH REQUIRED UNCHANGED HIGH HIGH HIGH 6.8

Figure 1. Attack Vector.

time when the creation of an official fix or patch would decrease the score. The “Environmental” metric group
represents the characteristics of a vulnerability relevant and unique to a particular user’s specific environment.
Generally, only the score calculated on the Base metric is used for analysis. The “Base” metric consists of
five basic components (total of eight categorical variables) to calculate a score: Attack Vector (AV), Attack
Complexity (AC), Privileges Required (PR), User Interaction (UI), Scope, Confidentiality (C), Integrity (I),
and Availability (A) (Tab. 2).

In this study, a set of ICS vulnerability based on CVSS (version 3.0/3.1) data containing 525 samples
(Figs. 1–11) was downloaded from the CISA database. This dataset was split into train set (𝑛 = 365, 70%
of all data) and test set (𝑛 = 160, 30% of all data). Another set of data containing 100 samples was separately
collected from the same source as the out-data set to unbiasedly evaluate the performance of the final models
with out-of-sample data.

Attack Vector (Network, Adjacent, Local, and Physical) reflects the context by which vulnerability exploita-
tion is possible. Network means remote exploit over the internet. Physical means that the attack requires the
attacker to physically touch or manipulate the vulnerable component.

Attack Complexity (High, Low) describes the conditions beyond the attacker’s control that must exist to
exploit the vulnerability. It is “High” when it requires the attacker to invest in some measurable amount of
effort in preparation or execution against the vulnerable component before a successful attack can be expected.
The lower the “Attack Complexity” is, the greater “the score” is, since the attack is easy to execute.

Privileges Required (None, Low, High) describes the level of privileges (i.e., admin or user) an attacker must
possess before successfully exploiting the vulnerability. If no privileges are required, the score is higher since
anyone without a privilege could exploit the system.
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Figure 2. Attack Complexity.

Figure 3. Privileges Required.

Figure 4. User Interaction.

User Interaction (None, Required) captures the requirement for a user, other than the attacker, to interact
with the system such as installing an application. If no “User Interaction” is required, the score becomes larger.

Scope (Changed, Unchanged) captures whether a vulnerability in one vulnerable component impacts resources
in components beyond its security scope. Typically, in a certain organization, all devices or components (e.g.,
files, CPU, memory) are under a single security authority meaning under the same single jurisdiction of a
security Scope. If an attack affects resources beyond the Scope of that organization (e.g., cloud databases
remotely accessed) and under control of another Scope, it means that Scope is changed. The “Scope” parameter
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Figure 5. Scope.

Figure 6. Confidentiality.

was not used in the model not to create redundancy or correlation due to its definition in the CVSS Specification
Document, which states that different levels of Scope directly change the numeric value of Privileges Required
variable, so the effect of Scope is already covered by “Privileges Required”.

Confidentiality (High, Low, None) measures the impact on the confidentiality of the information resources
managed by a software component due to a successfully exploited vulnerability. It is “High” when there is a
total loss of confidentiality (e.g., an attacker steals the administrator’s password).

Integrity (High, Low, None) measures the impact on the integrity of a successfully exploited vulnerability.
Integrity attains the value “High”, when the attacker can modify any files protected by the impacted component.
In this case, the information stored on the system is no longer trustworthy.

Availability (High, Low, None) measures the impact on the availability of the impacted component resulting
from a successfully exploited vulnerability. It is “High” when the attacker has the ability to deny some availability
(e.g., the attacker cannot disrupt existing connections, but can prevent the new connections, or after repeated
exploitation the attacker causes a service to become completely unavailable due to all memory is used) [11,14].

There is also an online calculator on FIRST’s website where it can be readily seen that an expert can assign
values to metrics by selecting categories of input variables and the output is calculated using specific equa-
tions. These input data are basically in binary/ordinal/multinomial form. When the values for Base metrics are
assigned by an analyst (human assessment), the Base equation defined in [11] computes a base score ranging
from 0.0 to 10.0, and this rating is then transformed into qualitative categories (None, Low, Medium, High,
and Critical). The cut-off points for borderlines between categories are also specified by human judgment, so
the output variable is imprecise and there exists uncertainty (and fuzziness) its nature. Therefore, no statistical
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Figure 7. Integrity.

Figure 8. Availability.

Figure 9. Base Category.

distribution can be fitted to the output data due to innate uncertainty which is not caused by randomness.
Besides, when experts are expressing their assessment in linguistic/verbal terms, their opinions may vary, differ-
ent values could be allotted while inspecting the very same vulnerability case. So, the classical statistical models
can’t address this issue. Uncertainty may be represented in exact/crisp value, but this simplification may cause
information loss in prediction models. In this case, fuzzy regression model based on fuzzy set theory can account
for the irreducible uncertainty inherent in data induced by human judgment. Indeed, the categorical form in
data requires a statistical logistic regression model for data analysis while the linguistic nature of the data
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Figure 10. The histogram of Base score (continuous).

Figure 11. The scatter plot of Base score (along with its boxplot on the right).

entails methods on fuzzy set theory. Therefore, in the current study, an FLR model, which is a generalization
of logistic regression in a fuzzy environment using least-squares approach, is fitted to the ICS data.

For modeling since input and output variables are linguistic terms, they are characterized by triangular fuzzy
numbers (TFN). Due to the computational simplicity in arithmetic operations, TFN is the most widely used
fuzzy number type in literature and has a common range of uses [19].

3.2. Basic introduction to fuzzy set theory and FLR

This section briefly reviews the basic definitions, operations on fuzzy sets, the underlying concepts of the
FLR model and metaheuristic algorithms.

Fuzzy logic (FL), first introduced by Zadeh [37], can be defined as a mathematical model to study and
define uncertainties, which is very prevalent in real life. FL systemically deals with imprecision and uncertainty,
efficiently evaluates linguistic/verbal categorical terms defined by subjective human assessment, which are rep-
resented by fuzzy numbers, and successfully extracts useful information. Prediction models based on classical
models are not feasible, since the basic statistical assumptions are not met for the uncertain/imprecise data.
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Much research on FL as a forecast model has been conducted, especially in engineering. FL is a process of
mapping an input space onto an output space using membership functions (MF) and linguistically specified
rules [38]. The fundamentals of a set in FL are basic and simple: “concurrent partial membership or belonging
to different subsets of the universal set instead of full belonging to a single set” and “a gradual membership (or
being element) of a set”. The gradual membership degree on the interval [0, 1] is numerically associated with
an element value defined by MFs. An MF, the selection of which also generally depends on human assessment,
can be in the form of different shapes for different kinds of fuzzy sets, such as triangle, and trapezoid, Gaus-
sian, bell, and sigmoid. By FL, the degree of trueness of a statement can simultaneously be a member of the
“totally true set” and “totally false set” with different degrees of membership respectively, which is not limited
to just the classical Boolean logic values (true or false) [39]. The ideas of Aristotle’s classical two-valued Boolean
logic and  Lukasiewicz’s three-valued logic are comprehensively covered by the concept of FL. The FL enabled
mathematical prediction models based on linguistic/verbal/qualitative statements (such as low, medium, high)
in natural language, which triggered a new approach in approximate human reasoning. The basic definitions of
FL are as follows:

Definition 3.1. A fuzzy set ̃︀𝐴 defined in space 𝑋 is a set of pairs:

̃︀𝐴 =

{︃(︀
𝑥, 𝜇 ̃︀𝐴(𝑥)

)︀
𝑥

∈ 𝑋

}︃
. (1)

Definition 3.2. 𝛼 level sets of a fuzzy set defined in 𝑋 space are expressed as:

𝜇 ̃︀𝐴(𝑥) ≥ 𝛼, 𝛼 ∈ [0, 1]. (2)

Definition 3.3. A TFN indicated by the fuzzy set is mathematically illustrated as:

𝜇 ̃︀𝐴(𝑥) = 𝜇 ̃︀𝐴(𝑥; 𝑎, 𝑏, 𝑐) =

⎧⎪⎨⎪⎩
𝑥−𝑎
𝑏−𝑎 if 𝑎 ≤ 𝑥 ≤ 𝑏
𝑐−𝑥
𝑐−𝑏 if 𝑏 ≤ 𝑥 ≤ 𝑐

0 if 𝑥 > 𝑐 or 𝑥 < 𝑎.

⎫⎪⎬⎪⎭ (3)

Definition 3.4. ̃︀𝐴 = (𝑎1, 𝑎2, 𝑎3) and ̃︀𝐵 = (𝑏1, 𝑏2, 𝑏3) are two TFN 𝑠, and some arithmetical operations regarding
fuzzy number 𝑠 are as:

Addition/Subtraction: ̃︀𝐴± ̃︀𝐵 = (𝑎1 + 𝑏1/𝑎1 − 𝑏3, 𝑎2 + 𝑏2/𝑎2 − 𝑏2, 𝑎3 + 𝑏3/𝑎3 − 𝑏1)

Multiplication: ̃︀𝐴× ̃︀𝐵 = (𝑎1 · 𝑏1, 𝑎2 · 𝑏2, 𝑎3 · 𝑏3)

Division: ̃︀𝐴/ ̃︀𝐵 = (𝑎1/𝑏1, 𝑎2/𝑏2, 𝑎3/𝑏3).

(4)

Definition 3.5 (Extension Principle). Let 𝐹 indicates fuzzy sets space (therefore 𝐸 ⊆ 𝐹 . So, for each arbitrary
𝑚 ∈ 𝐹,𝑚 : 𝑅 → [0, 1], consider 𝑋 to be the Cartesian product of universes (𝑋1, 𝑋2, · · · , 𝑋𝑛) i.e., (𝑋1×· · ·×𝑋𝑛)
and 𝑚1, 𝑚2, · · · , 𝑚𝑛 are 𝑛 fuzzy sets in respectively. Also, suppose that 𝑓 is a mapping from 𝑋 to a universe 𝑌
and 𝑦 = 𝑓(𝑥1, 𝑥2, · · · , 𝑥𝑛). Then the Extension Principle lets us define a fuzzy set in 𝑌 .

̃︀𝐴 =
{︂

sup(𝑥1,𝑥2,...,𝑥𝑛)∈𝑓−1 min{𝑚1(𝑥1), 𝑚2(𝑥2), · · · , 𝑚𝑛(𝑥𝑛)} 𝑓−1(𝑦) ̸= 0
0 otherwise

}︂
(5)

in which 𝑓−1 is the inverse image of 𝑓 .

In many studies, Zadeh’s Extension Principle introduced in Zadeh [37] is employed for the logarithmic trans-
formation of possibilistic odds as fuzzy numbers representing observed output values.
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Definition 3.6 (Possibilistic Odds). Let 𝜇𝑖, 𝑖 = 1, . . . ,𝑚 be the possibility of success, 𝜇𝑖 = poss(𝑌𝑖 ≈ 1). The
ratio, 𝜇𝑖

1−𝜇𝑖
𝑖 = 1, . . . ,𝑚, is considered as “possibilistic odds” of the 𝑖th case, which defines “the possibility of

success” relative to “the possibility of nonsuccess”.

Logistic regression is used to identify the relationship between the probability of an output variable (i.e.,
success) and input variables. Due to the vague status of cases relative to response categories, Bernoulli probability
distribution cannot be assumed, as a result, probability of success (𝑃 (𝑌𝑖 = 1) = 𝜋𝑖) cannot be calculated and
modeled exactly based on explanatory variables. In this situation, the probability odds,

(︁
𝜋𝑖

1−𝜋𝑖

)︁
, the rate of

success to fail, is irrelevant. To handle this situation, the possibility of success instead of the probability of
success was introduced as in Definition 3.6 by Pourahmad et al. [16]. The cases are basically a linguistic variable
defined by terms, 𝜇𝑖 ∈ {. . . , low, medium, high . . .}. These terms should be constructed as fuzzy numbers in
such manner that the union of the supports covers the whole range of [0, 1] as defined in Pourahmad et al. [9].
In this study, the output variable is represented by the linguistic term (None, Low, Medium, High or Critical).
Adopting the same calculation steps given in [9,16], the output variable is converted into possibility of success.
Zadeh’s well-known extension principle is then employed for logarithmic (logit) transformation of possibility to
“log of possibilistic odds” for linearity. Backwards transformation of ̃︀𝑌𝑖 to ̃︀𝜇𝑖 is also possible, since the logit
function is one-to-one and there is one and only one value for each element in the range. This logarithmic
transformation can avert the nonlinear effects, so the model becomes intrinsically linear:

̃︀𝑌𝑖 = ln
̃︀𝜇𝑖

1− ̃︀𝜇𝑖
= 𝐴0 + 𝐴1̃︀𝑥𝑖1 + · · ·+ 𝐴𝑛̃︀𝑥in 𝑖 = 1, . . . ,𝑚. (6)

3.3. FLR

FLR is an integrated regression method that utilizes both the statistical regression analysis technique and
the fundamentals of fuzzy set theory. FLR allows the dependent variable (output) to be fuzzy in binary, ordinal,
and multinomial form, just as the independent variable/s (input) to be crisp (exact) or fuzzy in categorical or
continuous form. As has been previously reported in the Literature Review, among the previous research in
FLR, the works of Pourahmad et al. [9,16], Sohn et al. [21], Yoon and Choi [22], Yoon and Grzegorzewski [23],
Namdari et al. [26], have comprehensively contributed to FLR. Especially, in Sohn et al. [21], Yoon and Choi
[22], Yoon and Grzegorzewski [23] a fuzzy least-squares estimation method by defining new fuzzy operations
was developed. The method provides us with regression parameters through one compact formula which was
derived from the new fuzzy matrix and fuzzy matrix arithmetic operations defined in Sohn et al. [21], Yoon
and Choi [22], Yoon and Grzegorzewski [23], which enabled to prove optimal or asymptotic properties easily.
They also showed that the FLR method is actually a generalized fuzzy extension of statistical regression. They
defined the fuzzy general multiple regression model as the following:

̃︀𝑌𝑖 = 𝛽0 ⊕ 𝛽1
̃︀𝑋𝑖1 ⊕ · · · ⊕ 𝛽𝑝

̃︀𝑌𝑖𝑝 ⊕ Φ𝑖, 𝑖 = 1, . . . , 𝑛 (7)

where ̃︀𝑋𝑖𝑗 , ̃︀𝑌𝑖(𝑗 = 1, . . . ,𝑚) are fuzzy numbers, and 𝛽𝑗 are unknown regression crisp parameters to be estimated
on the basis of fuzzy observations on ̃︀𝑌𝑖 and ̃︀𝑋𝑖𝑗 . 𝜑𝑖 is assumed to be fuzzy error terms. The fuzzy numbers
are ̃︀𝑋𝑖𝑗 = (𝑙𝑥𝑖𝑗 , 𝑥𝑖𝑗 , 𝑟𝑥𝑖𝑗) and ̃︀𝑌𝑖𝑗 = (𝑙𝑦𝑖, 𝑦𝑖, 𝑟𝑦𝑖), are represented by TFN, where 𝑙 and 𝑟 are the left and right
endpoints calculated based on the left and right spread values respectively.

Diamond [20] proposed a metric in the set of all TFN. Let 𝐹𝑇 (R) denote the set of all TFN in R. ̃︀𝑋 =
⟨𝑣, 𝜉𝑙, 𝜉𝑟⟩Δ, ̃︀𝑌 = ⟨𝑤, 𝜂𝑙, 𝜂𝑟⟩Δ are called TFN.

Definition 3.7. For ̃︀𝑋, ̃︀𝑌 ∈ 𝐹𝑇 (R), the distance between two fuzzy numbers, which is the error between the
observed and the estimated fuzzy numbers, 𝑑, is defined as follows:

𝑑2
(︁ ̃︀𝑋, ̃︀𝑌 )︁

=
[︀
𝑤 − 𝜂𝑙 −

(︀
𝑣 − 𝜉𝑙

)︀]︀2
+ [𝑤 + 𝜂𝑟 − (𝑣 + 𝜉𝑟)]2 + (𝑤 − 𝑣)2. (8)
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Using metric 𝑑 in model ̃︀𝑌𝑖, we obtain sums of squares error (SSE) as:

𝑞(𝛽0, 𝛽1, . . . , 𝛽𝑀 ) = 𝑑2

⎛⎝̃︀𝑌 ,

𝑚∑︁
𝑗=0

𝛽𝑗
̃︀𝑋𝑖𝑗

⎞⎠ =

⎡⎣𝑙𝑦𝑖 −
𝑚∑︁

𝑗=0

𝛽𝑗 𝑙𝑥𝑖𝑗

⎤⎦2

+

⎡⎣𝑞𝑖 −
𝑚∑︁

𝑗=0

𝛽𝑗𝑝𝑖𝑗

⎤⎦2

+

⎡⎣𝑟𝑦𝑖 −
𝑚∑︁

𝑗=0

𝛽𝑗𝑟𝑥𝑖𝑗

⎤⎦2

. (9)

𝛽𝑗 can be obtained by minimizing the 𝑄 = 𝑄(𝛽0, 𝛽1, . . . , 𝛽𝑀 ). For each 𝑘 = 0, 1, . . . ,𝑚, 𝜕𝑄

𝜕𝛽𝑗
= 0 results the

normal equation, which has 𝛽𝑗 as solutions,

𝑚∑︁
𝑗=0

𝛽𝑗

𝑛∑︁
𝑖=1

(𝑙𝑥𝑖𝑘𝑙𝑥𝑖𝑗 + 𝑝𝑖𝑘𝑝𝑖𝑗 + 𝑟𝑥𝑖𝑘𝑟𝑥𝑖𝑗) =
𝑛∑︁

𝑖=1

(𝑙𝑥𝑖𝑘𝑙𝑦𝑖 + 𝑝𝑖𝑘𝑞𝑖 + 𝑟𝑥𝑖𝑘𝑟𝑦𝑖). (10)

Here, we define the design matrix 𝑋̂ as [𝑙𝑥𝑖𝑗 , 𝑝𝑖𝑗 , 𝑟𝑥𝑖𝑗 ]𝑛×(𝑚+1), that is,

̃︀𝑋 =

⎡⎢⎢⎣
(1, 1, 1)(𝑙𝑥11, 𝑝11𝑟𝑥11) · · · (𝑙𝑥1𝑝, 𝑝1𝑚𝑟𝑥1𝑚)

...
. . .

...
(1, 1, 1)(𝑙𝑥11, 𝑝11𝑟𝑥11) · · · (𝑙𝑥𝑛𝑚, 𝑝𝑛𝑚𝑟𝑥𝑛𝑚)

⎤⎥⎥⎦. (11)

And define ̃︀𝑦 as [𝑙𝑦𝑖, 𝑞𝑖, 𝑟𝑦𝑖]𝑛×1 = [(𝑙𝑦1, 𝑞1, 𝑟𝑦1), . . . , (𝑙𝑦𝑛, 𝑞𝑛, 𝑟𝑦𝑛)]𝑡, then, the coefficient matrix of the system of
normal equations. Consequently, we have a compact form as in Sohn et al. [21]:

𝛽 =
(︁ ̃︀𝑋𝑡 ◇ ̃︀𝑋)︁−1 ̃︀𝑋𝑡 ◇ ̃︀𝑦. (12)

Further explanations for the “◇” operator, and triangular fuzzy matrices ̃︀𝑋 and ̃︀𝑦 are presented in Yoon and
Choi [22] and Yoon and Grzegorzewski [23]. In this study, an FLR model is fitted to estimate the CVSS base
category using ICS data based on CVSS by applying the fuzzy least square estimation concept proposed by
Yoon and Choi [22].

3.4. The performance criteria

We adopted MCI, Kim–Bishu Index (KB), MDM and Accuracy (ACC) to evaluate the performance of the
model application.

Definition 3.8. MCI, proposed by Taheri and Kelkinnama [24], is the mean of capability index to measure the
goodness-of-fit:

MCI =
1
𝑚

𝑚∑︁
𝑖=1

𝐼UI

(︁ ̃︀𝑤𝑖, ̃︁𝑊𝑖

)︁
(13)

where Capability Index is defined by 𝐼UI:

𝐼UI =
Card(𝑢 ∩ 𝑣)
Card(𝑢 ∪ 𝑣)

, where Card(𝑢) =

{︃∫︀
𝑡
𝑢(𝑡) d𝑡 continuous case∑︀
𝑡 𝑢(𝑡) discrete case.

(14)

The “min” operator is used for the intersection of two fuzzy sets and the “max” operator for the union. It
means that larger ratio of intersection to the union of the observed and the estimated fuzzy numbers indicates
a better fit, and 0 ≤ MCI ≤ 1.
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Definition 3.9. Kim and Bishu [28] defined the error of fitting by the ratio of the difference of membership
values to the observed membership values. If the ratio of the total difference over the union of supports

(︀
𝑆̃︀𝑌 ∪ 𝑆𝑌

)︀
to the observed membership values gets closer to zero, the two membership functions overlaps more, which
corresponds a better goodness-of-fit. The KB is calculated as follows:

Error =

∫︀
𝑆 ̃︀𝑌 ∪ 𝑆 ̂︀̃︀𝑌

⃒⃒⃒⃒ ̃︀𝑌 (𝑦)− ̂︀̃︀𝑌 (𝑦)
⃒⃒⃒⃒
d𝑦∫︀

𝑆 ̃︀𝑌

⃒⃒⃒ ̃︀𝑌 (𝑦)
⃒⃒⃒
d𝑦

· (15)

Definition 3.10. MDM Criterion, introduced by Pourahmad et al. [16] as the mean of the membership values
for the observed data evaluated in the estimated membership functions:

MDM =
1
𝑛

𝑛∑︁
𝑖=1

̃︁𝑊𝑖(𝑤𝑖) =
1
𝑛

exp
(︂(︁̃︁𝑊𝑖

)︁ 𝜇𝑖

1− 𝜇𝑖

)︂
(16)

MDM ≥ 0.5 provides a good fit.

Definition 3.11. ACC is the ratio of the number of correct classifications to the number of all classifications.
In a multinomial classification, ACC is ratio of the sum of the values on the diagonal of the coincidence matrix
(or confusion matrix) to the sum of all values in the matrix. The larger ACC means better performance in
predicting the categories.

3.5. Metaheuristic Algorithms (MA)

MA are general algorithmic methods, usually nature-inspired, designed to approximate global optimum or
solve complex problems in optimization by an efficient and guided search (typically based on stochastic oper-
ations not to be trapped in local optima), which explores a space of randomly generated or selected feasible
solutions. Recently, MA are emerging as successful alternatives to more classical approaches also for solving
optimization problems that include uncertain, stochastic, and dynamic information in their mathematical for-
mulation [40]. There are many proposed MA available in the literature and they apply practically to a wide
variety of problems. A general pseudo-code of any metaheuristic algorithm is outlined in Figure 12 [41]. Besides
many attributes, MA are also classified in terms of their method in handling possible solutions; single solution
approaches pivot a single candidate whereas population-based approaches keep multiple solutions to improve
the objective function value. MA are typically applied to discrete combinatorial optimization problems, on the
other hand there exist many studies carried out MA applications on continuous optimization problems.

Evolutionary Algorithm (EA), a population-based approach, applies biological mechanisms (i.e., reproduc-
tion, mutation, recombination, and selection) and defines many operators such as mutations and crossover.

Simulated Annealing (SA), a single solution approach, is based on the process of melting and freezing metals
on a molecular scale.

EA and SA are inarguably the two most extensively used nature-inspired algorithms [42]. In this study,
EA and SA are used to improve the FLR model performance by optimizing the left-right spreads of TFN
representing input variables.

3.6. Application

In this section, we conduct an FLR model with fuzzy input and fuzzy output data based on possibilistic odds
defined by Pourahmad et al. [16], applying least-squares estimation method introduced by Yoon and Choi [22],
using ICS vulnerability data. As noted in the previous section, there are seven input (independent) variables and
one output (dependent) variable. Since all these categorical variables are in linguistic terms, which inherently
possess uncertainty in their nature, they are represented by fuzzy numbers. A fuzzy number can be in the form of
triangular, trapezoid or Gaussian, etc. In this study, TFN form is chosen to fuzzify the data for modeling. There
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Figure 12. The pseudo-code for Generic Metaheuristic algorithm.

are two reasons for this selection. First, since each level in variable should spread around a single value, such
as “approximately 0.85”, TFN can easily to capture this specific definition of CVSS metrics in the fuzzification
step. If the data were represented by some particular intervals, trapezoidal fuzzy numbers would be choice of use
to represent the variables in modeling [43]. In that case, the core of the trapezoid number actually represents
an interval of numbers which are observed more frequently than the other numbers. Second, the arithmetic
operations on triangular fuzzy matrices, to solve the normal equations for estimating the model parameters,
have already been defined and successfully applied in many previous studies. A schematic representation of the
stepwise model application is presented in Figure 13.

CVSS Specification Document available online [44] defines a numerical value of each metric level in the vul-
nerability data to calculate a continuous score using its specific equations. Actually, this gives a clear guidance
to decide the approximate values of the center/modes and initial values of spread parameters of TFNs repre-
senting the regression variables. Taking the qualitative severity rating scale intervals defined in the Specification
Document as basis, the output variable, which is the Base category (Critical, High, Medium, Low, and None), is
fuzzified. The possibilistic odds are calculated and logit transformation is performed for FLR modeling (Tab. 3,
Fig. 14). The support is totally covered by the TFNs representing different levels of corresponding output
variable.

Likewise, applying the same steps, seven input variables are fuzzified. The endpoints of each TFN are calcu-
lated using the initial spread values acquired also from the CVSS Specification Document. Later, these initial
spread value parameters are to be optimized by EA and SA application to improve the performance of the FLR
model (Tab. 4, Figs. 15–19).

The fuzzified data (𝑛 = 525) was then randomly split into train (𝑛 = 365, 70%) and test set (𝑛 = 160, 30%).
Another set of ICS vulnerability data (all newly released) is collected from the CISA database, to unbiasedly
test/validate the final models with independent data (out-sample). An FLR model is fitted to the ICS vulner-
ability data based on CVSS, by applying the fuzzy least-square estimate approach used in Yoon and Choi [22].
The coefficients of the base model are estimated by FLR as follows:
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Figure 13. The stepwise procedure of the applied methodology.
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Table 3. Fuzzification and transformation of output variable for FLR modeling.

Linguistic
scales
(category)

Triangular fuzzy
numbers (endpoints) ̃︀𝑌 = ln

(︁
𝜇

1−𝜇

)︁

Left Center Right

None 0.01 0.05 0.12 −4.5951 −2.9444 −1.9924
Low 0.08 0.245 0.42 −2.442 −1.1254 −0.3227
Medium 0.39 0.545 0.69 −0.447 0.1804 0.8001
High 0.6 0.795 0.92 0.4054 1.3553 2.44235
Critical 0.8 0.945 0.99 1.3862 2.8438 4.5951

Table 4. Fuzzification of input variables.

Input variables Linguistic/verbal terms
Triangular fuzzy numbers

Left
endpoint

Center
Right
endpoint

Attack Vector (AV) Network 0.70 0.85 0.99
Adjacent Network 0.59 0.62 0.74
Local 0.46 0.55 0.58
Physical 0.01 0.20 0.45

Attack Complexity (AC) Low 0.62 0.77 0.99
High 0.010 0.44 0.6

Privileges Required (PR) None 0.7 0.85 0.99
Low (scope changed) 0.53 0.68 0.83
Low (scope unchanged) 0.47 0.62 0.77
High (scope changed) 0.35 0.5 0.65
High (scope unchanged) 0.12 0.27 0.42

User Interaction (UI) None 0.71 0.85 0.99
Required 0.01 0.62 0.7

Confidentiality (C) High 0.41 0.56 0.99
Low 0.001 0.22 0.4
None 0

Integrity (I) High 0.41 0.56 0.99
Low 0.001 0.22 0.4
None 0

Availability (A) High 0.41 0.56 0.99
Low 0.001 0.22 0.4
None 0

̃︀𝑌 = ln
(︂ ̃︀𝜇

1− ̃︀𝜇
)︂

= ̂︀𝛽0 + ̂︀𝛽1
̃︀𝑋1 + ̂︀𝛽2

̃︀𝑋2 + · · ·+ ̂︀𝛽7
̃︀𝑋7

= −3.2472 + 1.9690 ̃︀𝑋1 + 0.3722 ̃︀𝑋2 + 1.3599 ̃︀𝑋3 + 0.6861 ̃︀𝑋4 + 0.8064 ̃︀𝑋5

+ 0.8404 ̃︀𝑋6 + 1.2816 ̃︀𝑋7.

Defuzzification (purification) using the centroid method and backwards transformations (for logit and possi-
bilistic odds) are the postprocess steps of the model application.

3.7. Improvement of FLR model with EA and SA

In this section, we seek to improve the performance of the base FLR model. In the base model, the non-
symmetric spread values for fuzzy input variables are first determined using the guidance from CVSS Specifi-
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Figure 14. Fuzzy membership function of base category (None, Low, Medium, High, Critical).

Figure 15. Attack Vector (Physical, Local, Adjacent, Network).

cation Document. A further question that arises here is whether tuning of non-symmetric spread values of the
TFNs representing the input variables (no change in the value of the modes) can improve the performance of
the FLR model in terms of accuracy. The base FLR model is reconstructed to have 14 non-symmetric spread
parameters for seven input variables so that it can be optimized for better performance. The EA and SA were
used for optimization separately.

EA algorithm is executed in MS Excel Solver Add-in [45] with the execution parameters given in Table 5.
Along with these criteria, additional constraints are also defined, to ensure a reasonable spread over the support,
left endpoints greater than zero, and right endpoint less than one.

As for SA application, Generalized Simulated Annealing (GenSA) package available in R statistical computing
language is used [46]. GenSA has a built-in function that searches global minimum of a very complex non-linear
objective function with a very large number of optima. The execution parameters for the application of SA are
given in Table 6.
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Figure 16. Attack Complexity (High, Low).

Figure 17. Privileges Required [High (SC, NSC), Low (SC, NSC), None].

Table 5. EA execution parameters.

EA execution parameters Value set

Convergence 0.0001
Mutation rate 0.2
Population size Default
Random seed Random
Maximum time without improvement 100
Require bounds on variables Yes
Max times (s) Unlimited
Iteration limit Unlimited
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Figure 18. User Interaction (Required, None).

Figure 19. Confidentiality, Integrity and Availability (N, L, H).

Table 6. SA execution parameters.

SA execution parameters Value set

Par (initial vector of values) Random
Lower bounds 0.0001
Upper bounds 0.99
Max number of iterations 1000
Threshold.stop Null
Nb.stop.improvement (no imp. max steps) 100
Smooth (differentiable obj. function True
Temperature 400
Seed Random
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Table 7. Results.

Model TRAIN TEST
Out
sample

Model ACC KB MCI MDM INT AV AC PR UI C I A

0 In-sample In-sample FLR 83% 0.88 0.47 0.62 −3.25 1.97 0.37 1.36 0.69 0.81 0.84 1.28
1 365 160 FLR 86% 0.78 0.52 0.69 −3.40 1.95 0.20 1.56 0.86 0.68 0.95 1.28
2 365 100 FLR 85% 0.86 0.50 0.71 −3.40 1.95 0.20 1.56 0.86 0.68 0.95 1.28
3 In-sample In-sample FLR+EA 91% 0.74 0.54 0.63 −6.53 2.14 1.56 2.32 2.25 1.33 1.34 1.74
4 365 160 FLR+EA 91% 0.68 0.57 0.70 −7.15 2.29 1.53 2.43 2.58 1.13 1.28 1.75
5 365 100 FLR+EA 90% 0.68 0.57 0.75 −7.15 2.29 1.53 2.43 2.58 1.13 1.28 1.75
6 In-sample In-sample FLR+SA 91% 0.77 0.53 0.67 −6.53 2.20 1.54 2.17 2.30 0.76 1.60 1.67
7 365 160 FLR+SA 88% 0.72 0.53 0.64 −6.58 2.21 1.82 2.20 2.51 0.88 1.72 1.41
8 365 100 FLR+SA 94% 0.68 0.56 0.61 −6.58 2.21 1.82 2.20 2.51 0.88 1.72 1.41

Table 8. The overall average results.

Model
Average
Accuracy

Average
Kim–Bishu
Index

Average
MCI

Average
MDM

FLR BASE 0.85 0.84 0.50 0.67
FLR+EA 0.91 0.70 0.56 0.70
FLR+SA 0.91 0.72 0.54 0.64

4. Discussion

In this section, the performance of the model is evaluated and the results are discussed. There are in total
nine different FLR models fitted, variations in the model are created by different data set usage (i.e., in-
sample/train/test) and existence of model improvement by EA/SA as presented in Figure 13. As for the per-
formance criteria (Fig. 20), KB, MCI, MDM and ACC are used. The results obtained are outlined in Table 7
and overall average of performance is summarized in Table 8.

It can be readily observed that models with EA and SA have the same average ACC performance of 91% and
they have approximately 6% of advantage in terms ACC over the Base models. Furthermore, the FLR models
with optimized EA (Models 3–5) performed better on average with respect to three out of four criteria (KB,
MCI, MDM). When we examine the results, we can claim three things. First, when the spread values of TFNs are
tuned by EA/SA, the performance of FLR model improves. Second, in terms of improvement the performance,
EA is effectively superior to SA. Third, when we test the models with the out-sample data, the performance
values are in a reasonable range with no outliers. This shows the prediction stability of the application. It is also
assumed to be a good indication that even if there are different designs for modeling, the values of estimated
parameters are close to each other within groups, so it can be inferred that the model is insensitive to both the
way of sampling data for modelling and different approaches in developing FLR models (Fig. 21). In-sample
modeling, in a sense, should achieve the best performance since train and test data are the same, but this is
not the case. The reason why that is the initial spread is defined based on the CVSS Specification Document,
when these initial values are optimized they yield better results.

When we examine the coincidence matrices (Tabs. 9–17), the predictions are mostly on the diagonals of
the matrices, which indicates the ACC of the models. The correct classifications are shown in bold font. No
bad/unacceptable misclassifications occurred, since most of the misclassifications, higlighted in red color, are
dispersed in the “one-step-away” neighborhood of the diagonal. Predominantly, a reasonable number of “CRIT-
ICAL” and “MEDIUM” observations are misclassified as “HIGH”. An inclusion of a penalty matrix in EA/SA
optimization formulation may decrease the number of such misclassifications.
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Figure 20. The values of the performance criteria.
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Table 9. The coincidence matrix for Model 0 (base FLR with in-sample data).

Model 0
OBSERVED

CRITICAL HIGH MEDIUM LOW Total

PREDICTED CRITICAL 89 9 98
HIGH 30 226 23 279
MEDIUM 1 10 118 14 143
LOW 1 4 5
Total 120 245 142 18 525

Table 10. The coincidence matrix for Model 1 (base FLR with 365 Train and 160 test set).

Model 1
OBSERVED

CRITICAL HIGH MEDIUM LOW Total

PREDICTED

CRITICAL 21 2 23
HIGH 9 85 6 100
MEDIUM 2 29 3 34
LOW 1 2 3
Total 30 89 36 5 160

Table 11. The coincidence matrix for Model 2 (base FLR with 365 Train and 100 out-test set).

Model 2
OBSERVED

CRITICAL HIGH MEDIUM LOW Total

PREDICTED

CRITICAL 14 1 15
HIGH 2 51 8 61
MEDIUM 2 20 2 24
LOW 0 0 0
Total 16 54 28 2 100

Table 12. The coincidence matrix for Model 3 (FLR+EA with in-sample data).

Model 3
OBSERVED

CRITICAL HIGH MEDIUM LOW Total

PREDICTED

CRITICAL 95 95
HIGH 24 234 6 264
MEDIUM 1 11 133 2 147
LOW 3 16 19
Total 120 245 142 18 525
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Table 13. The coincidence matrix for Model 4 (FLR+EA with 365 Train and 160 test set).

Model 4
OBSERVED

CRITICAL HIGH MEDIUM LOW Total

PREDICTED

CRITICAL 23 23
HIGH 7 86 2 95
MEDIUM 3 32 1 36
LOW 2 4 6
Total 30 89 36 5 160

Table 14. The coincidence matrix for Model 5 (base FLR with 365 Train and 100 out-test set).

Model 5
OBSERVED

CRITICAL HIGH MEDIUM LOW Total

PREDICTED

CRITICAL 14 14
HIGH 2 52 2 56
MEDIUM 2 24 2 28
LOW 2 2
Total 16 54 28 2 100

Table 15. The coincidence matrix for Model 6 (FLR+SA with in-sample data).

Model 6
OBSERVED

CRITICAL HIGH MEDIUM LOW Total

PREDICTED

CRITICAL 95 95
HIGH 24 236 11 271
MEDIUM 1 9 128 4 142
LOW 3 14 17
Total 120 245 142 18 525

Table 16. The coincidence matrix for Model 7 (FLR+SA with 365 Train and 160 test set).

Model 7
OBSERVED

CRITICAL HIGH MEDIUM LOW Total

PREDICTED

CRITICAL 23 23
HIGH 7 85 5 97
MEDIUM 4 30 3 37
LOW 1 2 3
Total 30 89 36 5 160
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Figure 21. The estimated parameters for all models.

Table 17. The coincidence matrix for Model 8 (FLR+SA with 365 Train and 100 out-test set).

Model 8
OBSERVED

CRITICAL HIGH MEDIUM LOW Total

PREDICTED

CRITICAL 14 14
HIGH 2 53 55
MEDIUM 1 27 2 30
LOW 1 0 1
Total 16 54 28 2 100

Another interesting point to discuss is the pattern/shape of MF after EA/SA optimizes the spread parameters.
In a sense, we find, if not optimal, an approximate MF by means of tuning the spread values. After the
optimization process, the final MF turn out not to cover the support on the interval of [0, 1] (Fig. 22). This is
the same essence of “narrow fuzzy number” and “expanded fuzzy number” previously explored in Sohn et al.
[21]. An expanded fuzzy number covers the whole support, there are overlaps in the lower 𝛼-cut sets, and on
the other hand a narrow fuzzy number does not. In this study, an MF, which is defined as an expanded fuzzy
number at the beginning of modeling, transformed into a narrow fuzzy number. The underlying reason for this
change in the shape of MF after optimization is that this variable is actually “less fuzzy” than initially assumed.
This may also provide an approximate insight to decide, whether or not the type of fuzzy number (and its
spread parameters) is an effective representative of that variable.

No overlapping and whole support is not covered.

5. Conclusion

In real life, it is frequently more practical to define qualifications or categories using linguistic/verbal terms
(such as low, medium, and high) rather than exact numbers. Similarly, in many researches based on human
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Figure 22. The MF of AV after application of EA in Model 3.

assessment, using linguistic terms to define categories is reasonably more applicable to describe data for model-
ing. Since human assessment innately bears uncertainty, the exact numerical boundaries of linguistic terms are
imprecise and a probability distribution cannot be assumed for the output variable. In some cases, the basic
statistical assumptions for classical statistical models are not fulfilled. The vulnerability data for ICS based on
CVSS mostly conforms to the definition given above, it is indeed defined by some linguistic categorical terms
and the values of variables are assigned by subjective expert judgment.

Such cases, although there are many other alternative methods available, fuzzy regression models based on
fuzzy set theory introduced by Zadeh [37] can be applied since it is one of the an appropriate alternative
methods to analyze categorical data with uncertainty and vagueness. Fuzzy regression models can efficiently
contain imprecise information and systemically analyze it by transforming the data into fuzzy numbers. The
considerations given above motivated us to apply fuzzy regression model to build a prediction model specifically
focuses on ICS vulnerability data.

In this study, to illustrate the applicability, we fitted an FLR model to ICS vulnerability data. Furthermore,
the model is effectively improved by applying metaheuristic algorithms for optimizing the spread of fuzzy
numbers representing input variables. The model is assessed using ACC, KB, MCI and MDM performance
criteria. The model achieved 91% of ACC. The findings this study show that FLR, as an alternative method,
using both fuzzy input and fuzzy multinomial output data, can be successfully applicable to ICS vulnerability
data based on CVSS.

The application of metaheuristic algorithms to optimize the spread values of the fuzzy numbers corresponding
to input variables notably improved the models performance. After the application of metaheuristic algorithms,
the shape of the MFs also changed. Some of the supports of the “new MFs” became narrower, indicating “how
fuzzy the variable really is”.

For further studies, this model can be expanded using trapezoid fuzzy numbers, different defuzzification
methods may be explored, a penalty matrix can be defined in coding the metaheuristic algorithms so that bad
misclassifications can be prevented, one of the other alternative/classical methods can be used for modeling to
compare the results with the ones from FLR model, the goal programming approach may be applied in the
optimization phase to balance a trade-off in conflicting objectives (such as ACC vs. KB).

Acknowledgements. The authors would like to thank the editors and reviewers for their constructive suggestions and
corrections to enhance the clarity and the quality of this article.
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